Article

Sp(2N) Lattice Gauge Theories and Extensions of the Standard
Model of Particle Physics

Ed Bennett 119, Jack Holligan 23(9, Deog Ki Hong *(*, Ho Hsiao 5(7, Jong-Wan Lee #%7*([, C.-J. David Lin 580, Biagio

Lucini 1910, Michele Mesiti 11

Citation: Bennett, E.; Holligan, J.;

I\ Hong, D. K.; Hsiao, H.; Lee, ].-W.; Lin,

O C.-]. D.; Lucini, B.; Mesiti, M.; Piai, M.;

i Vadacchino, D. Sp(2N) Lattice Gauge

~ Theories and Extensions of the

ﬁ- Standard Model of Particle Physics.
CTPU-PTC-23-09, PNUTP-23/A02.

&) Universe 2021, 1, 0. https://doi.org/

Ov2 [hep-lat] 10 May 2023

> Received:
Accepted:

E Published:

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2023 by the authors.
Submitted to Universe for possible
open access publication under the
terms and conditions of the Cre-
ative Commons Attribution (CC
BY) license (https://creativecom-
mons.org/licenses /by/ 4.0/).

, Maurizio Piai 12(”, and Davide Vadacchino 1314

Swansea Academy of Advanced Computing, Swansea University (Bay Campus), Fabian Way, SA1 8EN
Swansea, Wales, United Kingdom

Biomedical and Physical Sciences Building, Michigan State University, East Lansing, Michigan, USA, 48824
Physical Sciences Complex, University of Maryland, College Park, Maryland, USA, 20742

Department of Physics, Pusan National University, Busan 46241, Korea

Institute of Physics, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
Institute for Extreme Physics, Pusan National University, Busan 46241, Korea

N oo W

Particle Theory and Cosmology Group, Center for Theoretical Physics of the Universe, Institute for Basic
Science (IBS), Daejeon, 34126, Korea
Center for High Energy Physics, Chung-Yuan Christian University, Chung-Li 32023, Taiwan
Centre for Theoretical and Computational Physics, National Yang Ming Chiao Tung University, 1001
Ta-Hsueh Road, Hsinchu 30010, Taiwan

Department of Mathematics, Faculty of Science and Engineering, Swansea University (Bay Campus), Fabian
Way, SA1 8EN Swansea, Wales, United Kingdom

Steinbuch Centre for Computing, Karlsruher Institut fiir Technologie, Zirkel 2, 76131 Karlsruhe, Germany

Department of Physics, Faculty of Science and Engineering, Swansea University (Singleton Park Campus),
Singleton Park, SA2 8PP Swansea, Wales, United Kingdom

School of Mathematics and Hamilton Mathematics Institute, Trinity College, Dublin 2, Ireland

Centre for Mathematical Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom
Correspondence: j.w.lee@ibs.re.kr;

@

13
14

*

Abstract: We review the current status of the long-term programme of numerical investigation of
Sp(2N) gauge theories with and without fermionic matter content. We start by introducing the
phenomenological as well as theoretical motivations for this research programme, which are related
to composite Higgs models, models of partial top compositeness, dark matter models, and in general
to the physics of strongly coupled theories and their approach to the large-N limit. We summarise the
results of lattice studies conducted so far in the Sp(2N) Yang-Mills theories, measuring the string
tension, the mass spectrum of glueballs and the topological susceptibility, and discuss their large-N
extrapolation. We then focus our discussion on Sp(4), and summarise numerical measurements of
mass and decay constant of mesons in the theories with fermion matter in either the fundamental
or the antisymmetric representation, first in the quenched approximation, and then with dynamical
fermions. We finally discuss the case of dynamical fermions in mixed representations, and exotic
composite fermion states such as the chimera baryons. We conclude by sketching the future stages of
the programme. And we describe our approach to open access.

Keywords: lattice gauge theory, Sp(2N) gauge group, composite Higgs, composite dark matter, top
partial compositeness, physics beyond the standard model
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1. Introduction

The past two decades have seen the publication of the first dedicated lattice stud-
ies of the four-dimensional Sp(2N) gauge theories with N > 1 [1-18]. Large classes of
Sp(2N) gauge theories confine, and, in the presence of matter fields, chiral symmetry
breaking condensates govern the long-distance dynamics. The interest in these theories
ultimately descends from the nature of Sp(2N) groups and their representations: they
possess symmetries and (dynamically) yield symmetry-breaking patterns that are different
from those of related SU(N,) theories [19]. New opportunities for model-building and
phenomenology hence emerge, thanks to the peculiar symmetries, symmetry breaking
patterns, spectroscopy, and low-energy effective field theory (EFT) description associated
with Sp(2N) gauge theories. Yet, the microscopic dynamics of Sp(2N) gauge theories
is not dissimilar from SU(N,)—in particular SU(2) and SU(3)—theories. Having imple-
mented the necessary adjustments to the Monte Carlo update algorithms that generate
the ensembles [2,4,7,10], as well as to the correlation functions used to measure spectral
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observables [4,5,7,10,14,15], it is then possible to adapt the modern advancements of lattice
gauge theories to study the non-perturbative regime of the Sp(2N) gauge theories.

The standard model (SM) of particle physics has been spectacularly successful at
describing the strong and electroweak forces through which the known elementary particles
interact among each other. Yet, there is solid evidence that the SM is incomplete and must
be extended to explain several astronomical and experimental observations, among which
are the existence of dark matter, the matter-antimatter asymmetry, and non-zero masses
of neutrinos. Furthermore, the SM is unnaturally fine tuned, since it does not provide a
mechanism that explains why the Higgs boson has a mass at the electroweak scale, rather
than receiving the expected large quantum corrections that would generate a mass at the
Planck scale. To address these shortcomings, much effort has been devoted to developing
models based on novel strongly coupled gauge theories as extensions of the standard model
of particle physics

This review summarises briefly the phenomenological and theoretical motivations to
study Sp(2N) gauge theories, and then discusses at length the available (lattice) numerical
results, to facilitate their use by model-builders and phenomenologists. We start by intro-
ducing in this first section the main arguments why Sp(2N) gauge theories are a promising
topic of investigation. These are further developed in the body of the paper. They include
phenomenological consideration pertaining to composite Higgs, top (partial) composite-
ness, dark matter physics, and theoretical considerations about finite temperature phase
transitions (and gravitational wave detection), as well as non-perturbative phenomena in
non-Abelian gauge theories, especially in relation to the large-N, extrapolation. Within
each such topic, we provide the context for the application of Sp(2N) theories, explaining
the main ideas and their historical development. We complement the narrative by an ample
list of references that contain expanded explanations and technical details.

The discovery of the Higgs boson [20,21] has triggered a revival of interest in composite
Higgs models (CHMSs) [22-24] (see, e.g., the reviews in Refs. [25-27], the summary tables in
Refs. [28-30], and the selection of papers in Refs. [31-68] and Refs. [69-77]), many of which
also implement top (partial) compositeness [78] (see also Refs. [79-81]). In this context, the
lightest composite spin-0 and spin-1/2 states in a new strongly coupled sector are identified
with the heaviest particles in the Standard Model: the Higgs boson and the top quark.
The former emerges as one of the Pseudo-Nambu-Goldstone Bosons (PNGBs) associated
with spontaneous breaking of the global symmetry in the underlying microscopic theory.
The latter is a generalisation of the baryons, which plays the role of a top quark partner,
and may involve fermions in more than one representation of the gauge group, so that in
the following we call them chimera baryons. These ideas admit a multitude of possible
realisations with strikingly diverse phenomenological implications, as suggested by the
vastness of the literature on this subject. They can be tested by the future experimental
programme of the Large Hadron Collider (LHC), with aid from computational techniques
adapted to the study of the non-perturbative nature of the underlying strong dynamics.

The natural choice of non-perturbative instrument for the investigation of strongly cou-
pled gauge theories is lattice field theory. Depending on the nature of the representations of
the fermion matter field content, three different symmetry patterns emerge. As in QCD-like
theories with N f Dirac fermions in the fundamental representation, in the presence of com-
plex representations the global non-Abelian SU(Ny) x SU(Ny) is broken to the diagonal
SU(Ny) subgroup by the condensates forming in the theory. Real representations yield
the spontaneous breaking of the enhanced SU(2Ny) symmetry to its SO(2Ny) maximal
subgroup. Pseudo-real representations are characterised by the breaking of SU(2Ns) to
Sp(2Ny¢). Vacuum alignment arguments can be used to select the vacuum, on the basis of
which deformations are admissible [19]. The resulting cosets, the PNGBs spanning them,
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and the masses induced by explicit breaking of the global symmetries, are the starting point
for the construction of CHMs.

A number of dedicated studies of the lattice SU(2) gauge theories relevant to CHMs
have been performed [82-90], which with Ny = 2 (Dirac) fermions transforming in the
fundamental representation of the gauge group yield the SU(4)/Sp(4) coset relevant to the
CHDMs of interest in this paper. The low-energy theory has five PNGBs, four of which are
interpreted in terms of the SM Higgs doublet, and one as a scalar SM singlet.

Studies of SU(4) gauge theories have also been published [91-97], their field content
consisting of mixed fermion representations, as required in models combining Higgs and
top (partial) compositeness. Lattice studies consider matter consisting of Dirac fermions,
while the minimal model of this class would require odd numbers of Majorana fermions—
with five 2-index antisymmetric Majorana fermions one can see the SU(5)/SO(5) coset
emerge, and the 14 PNGBs can be reorganised into one scalar SM doublet and additional
SM singlets and triplets [39].

Lattice theories with an SU(3) gauge group, in which the antisymmetric representation
of the group coincides with the (conjugate) fundamental, allow for an alternative way of
combining composite Higgs and top compositeness [98]. The chimera baryons, used
as top quark partners, are actual baryons of the new SU(3) theory. By exploiting the
dilaton EFT [99-104] in the new context of near conformal gauge theories and their EFT
treatment [105-117], Refs. [118,119] showed that it is possible to build new CHMs, based on
SU(Ny) x SU(Nys)/SU(Ny) cosets (see also Refs. [120,121]), with input from lattice data
on the SU(3) theory with Ny = 8 fundamental fermions [122-126].

Gauge theories with Sp(2N) group are special in this context. With Ny = 2 (Dirac)
fermions in the fundamental representation, they give rise to the same SU(4)/Sp(4) coset
as the aforementioned SU(2) = Sp(2) theories. In addition, with N > 1, Ny = 2, and
ng = 3 (Dirac) fermions transforming in the 2-index antisymmetric representation, they
yield bound states of two fundamental and one antisymmetric fermion (chimera baryons),
that can play the role of top partners, hence combining composite Higgs and top (partial)
compositeness [127]. Progress has been made in studying the spectra of mesons [2,4,5] and
chimera baryons [10]..! These theories have been studied also with semi-analytical tech-
niques [128], based on replacing the fundamental dynamics with four-fermion interactions,
as in the Nambu-Jona-Lasinio model. The theories with ny = 3 and Ny = 0 can also realise
alternative composite Higgs and dark matter models [62].

We must mention that an alternative way to study strongly coupled dynamics is based
upon gauge-gravity dualities; special strongly-coupled field theories admit an equivalent
description as weakly coupled theories of gravity living in higher dimensions [129-132].
Indeed, the recent revival of interest on CHMs started before the Higgs discovery, driven by
extra-dimensional models inspired by gauge/gravity dualities, and based on the minimal
SO(5)/S0(4) coset [69-77]. More recently, progress has been made towards building semi-
realistic descriptions of the dynamics of the more complex CHMs that are amenable to
lattice studies, but in the context of bottom-up holography [133-136]. Even the first steps
towards embedding models with SO(5)/SO(4) coset into supergravity (and string theory)
have been taken [137]. The complementary role of these approaches to strong dynamics is
actively being investigated.

A completely independent, compelling argument for new physics extending the
standard model is that it does not provide an explanation for the nature and origin of
dark matter. This could be explained by the existence of a new dark sector—see Refs. [138—

1 We borrow the terminology and nomenclature associated with mesons and baryons from QCD, when referring to the analogous composite states in new

strongly coupled gauge theories.
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143] and the review in Ref. [144], for example. This dark sector might consist of a new
strongly coupled theory, with matter consisting only of SM singlet fields. The new strong
dynamics would lead to the formation of composite PNGBs and in general the spectroscopy
resemble qualitatively that of a generalisation of Quantum Chromo-Dynamics (QCD). These
proposals go under the names of composite dark matter (CoDM), as in Refs. [145-153], or
strongly interacting dark matter (SIMP), as in Refs. [154-162]. Sp(2N) gauge theories play
a prominent role in many of these proposals, and the first dedicated lattice studies of the
spectroscopy of Sp(4) with Ny = 2, non-degenerate (Dirac) fundamental fermions have
recently become available [16-18].

The first dedicated lattice exploration of Sp(2N) gauge theories focused on the pure
gauge dynamics, and its confinement/deconfinement phase transition at finite tempera-
ture [1]. All Sp(2N) Yang-Mills theories have centre symmetry Z,. The expectation value
of the Polyakov loop behaves as the order parameter of the transition, vanishing at low
temperature (Z;-unbroken phase), and becoming non-trivial above some critical temper-
ature T (Zp-broken phase). In three spatial dimensions, while for Sp(2) = SU(2) the
phase transition is of second order, when N > 1 there is evidence of a first-order phase
transition. If originally this quest had mostly a theoretical motivation, related to the gen-
eral characterisation of phase transitions in non-Abelian gauge theories, in recent times it
has acquired new phenomenological relevance, related to the aforementioned context of
strongly interacting dark matter.

Such a dark Sp(2N) sector might undergo a strong enough first order (dark confine-
ment) phase transition, in the early universe, to leave behind a relic stochastic background
of gravitational waves [163-168], potentially accessible to present and future gravitational-
wave detectors [169-186]. For recent phenomenological studies, see for instance Refs. [187-
189], and references therein. The finite-temperature behaviour of many gauge theories has
been studied; for examples of SU(N,) studies see Refs. [190-195], for Sp(N,) see Ref. [1],
and for G, see Ref. [196-199]. A handful of dedicated lattice calculations focus on stealth
dark matter with SU(4) gauge dynamics [200-202]. The recent Ref. [203] critically sum-
marises the history of SU(3) studies, and the technical difficulties intrinsic to current
state-of-the-art lattice calculations. It is hoped that by applying new ideas in lattice field
theory, such as the Logarithmic Linear Relaxation (LLR) algorithm [204-206], some of
these difficulties may be overcome—see in particular Ref. [207] for zero-temperature stud-
ies of SU(3), and preliminary finite-temperature results for SU(4) in Ref. [208], SU(3) in
Refs. [209,210], and SU(N,) in Ref [211]. Sp(2N) theories can be explored with the LLR
method, but such lattice calculations are not available yet, and we will not discuss them
further.

The final topic we touch upon in this introduction is the observation that, while
different in nature, the sequence of Sp(N, = 2N) gauge theories shares (in the common
sector of the spectrum of bound states) the same large-N, limit as obtained with SU(N;)
theories. One can then study these theories as a complementary way of testing theoretical
expectations, for observables such as the vacuum condensates and the mass spectra of
bound states. And one can use the comparison between different sequences of theories
to learn about commonalities and differences, hence deducing general field-theoretical
lessons. In the case of pure Yang-Mills theories, the spectrum of glueballs can be computed,
in the large-N, limit, with the tools of gauge-gravity dualities—a selection of papers on the
topic includes Refs. [212-220]—or other semi-analytical approaches [221-223]. These can
then be compared to the results of the lattice literature on SU(N,) Yang-Mills theories [224-
233], and Sp(N,) theories [2,6,7]. The spectra of mesons and of fermion bound states
are more challenging to compute on the lattice [227], but equally interesting, and the
quenched calculation may soften such difficulties, while producing interesting results—for
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Sp(2N) theories, see Ref. [5]. Other non-perturbative objects, such as the string tension (see
Ref. [366] and references therein) and the topological susceptibility of Yang-Mills theories—
see the useful Refs. [235-238]—are also accessible to the lattice [207,239-254]. Recently,
the topological susceptibility of Sp(2N) theories has been the subject of dedicated studies
summarised in Ref. [11,12].

The paper is organised as follows. In Sect. 2 we define the gauge actions of Sp(2N)
theories, couple them to matter fields, analyse the low-energy description—borrowing
ideas from the literature on Chiral Perturbation Theory (xPT) and Hidden Local Symmetry
(HLS) [255-263]—and applications in CHM, top compositeness, and SIMP contexts. Sig-
nificant parts of this section follow Refs. [2,4,5] and references therein. Section 3 is a brief
summary of lattice field theory numerical techniques used in Refs. [2-13], and we refer
the reader to the original literature for details. We summarise in Sect. 4 results obtained
in the (quenched) lattice Sp(2N) theory, in which the only dynamical degrees of freedom
correspond to the gluons. Besides strings (or fluxtubes) and glueballs [2,6,7], we discuss
quenched mesons [5], and topological susceptibility [11,12]. Section 5 considers observables
in lattice studies that implement dynamical fermions [2—4,10,13]. After the summary and
conclusion in Sect. 6, we devote Appendix A to a summary of technical details, and the
short Appendix B to our open access approach to data and analysis code.

2. Sp(2N) gauge theory and composite dynamics

In this section we provide the microscopic description of the broad class of Sp(2N)
gauge theories of interest. We discuss the field content and interactions, the symmetries and
symmetry-breaking patterns (including both explicit and spontaneous symmetry-breaking
effects), and some interesting results obtained by deploying perturbation theory and low-
energy EFT arguments. In the process, we fix the notation adopted in the paper. We sketch
the connection with applications in the context of the phenomenology of extensions of
the standard model, focusing on composite Higgs models, on top partial compositeness,
and on composite dark matter. As a note of caution, we highlight that in this review we
ignore almost completely the Abelian U(1) global symmetry factors, except for occasionally
mentioning the anomalous U(1) 4 ~ SO(2) 4 symmetry acting on the fermions.? Lattice
explorations of the flavor singlet mesons are in their early stages—see for instance Ref. [85].

2.1. Fields, symmetries and observables

We start by defining the short-distance dynamics in continuum field-theory terms. For
convenience, we write explicitly the Lagrangian density of the dynamical theory relevant
to the CHM proposed in Ref. [127] (see also Ref. [28]), but without coupling it to the SM
fields. This is an Sp(4) gauge theory coupled to Ny = 2 Dirac fermions Q/ 7 transforming
in the fundamental (f) representation of the gauge group, and 1y = 3 Dirac fermions yjab
transforming in the 2-index antisymmetric (as) representation. All other gauge theories
of relevance to this review can be obtained by either replacing the Sp(4) gauge group by
Sp(Ne = 2N) (with N > 1) and/or by changing the number of dynamical fermion species
Nyand ny. We follow the notation of Ref. [10]—see also Refs. [2,5] and references therein.

Here and in the following, we denote the color indices in the fundamental representa-
tion by letters at the beginning of the Latin alphabet, asina,b =1, ---, N, =4 = 2N. We
capitalise the index to denote the adjoint representation, so that A=1, ---, N2N+1) =
10 is used to denote the gauge bosons of Sp(4). We reserve the letters in the middle of

2 In the presence of fermions transforming in different representations of the gauge group, the triangle anomaly gives mass to only one linear combination

of the PNGBs associated with the breaking of the chiral U(1) symmetries acting on the different flavor species. Phenomenological implications are
discussed for example in Ref. [47].
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the Latin alphabet for flavor/family indices in Dirac fermion notation, so that the cap-
italised [, K =1,---, N =2 labels the Dirac species in the (f) representation, while
the lower-case j,k = 1, ---, ny = 3 is used for the Dirac species in the (as) representa-
tion. We find it useful also to denote by characters taken from the second half of the
Latin alphabet the flavor/family indices in 2-component spinor representation, so that
M,N=1,---,2N =4 labels 2-component spinors transforming in the (f) representation,
whilem,n =1, ---, 2ny = 6 is reserved for the (as) representation of the gauge group. We
use letters taken from the second half of the Greek alphabet to denote Lorentz indices, as
inpu,v =0,1, 2, 3. In different parts of the text we use Minkowski (M) or Euclidean (E)
space-time notation—when possible ambiguities cannot be resolved by the context, we
will add the subscripts (M) or (E) to differentiate between the two. Spinorial indices are
denoted by the first letters of the Greek alphabet, and we restrict their use to 2-component
notation, for example by writing «, B = 1, 2, but we mostly omit writing them and leave
them implicit instead.

The symplectic group Sp(2N) is defined as the subgroup of SU(2N) consisting of
2N x 2N matrices U that obey the defining relationship

uou’ = Q, 1)

where () is the 2N x 2N symplectic matrix, which we can write in N x N blocks as

Onxn | Inxn )
QO = . 2
( —Inxn | Onxn @)
These matrices can also be written in the form
A B

with the N x N matrices A and B satisfying the non-trivial relations ATA + BB = Iy, n
and ATB = BTA3
In Minkowski space-time, with signature mostly —, the Lagrangian density is

1
L= STV V' +

1 2 o a . 2
+- ) (i Q4" <D#Q]) —iD,QJ ,YyQ]a) —mY Q0 +
2 a jst

1

—

3 3
+% | <i‘1’faw” (D;,‘I’f)ab _ iDy‘I’fub’yu‘Yj”b) — m(®) Y ¥, @)
j=1 j=1

where we have suppressed spinor indices, and summations over color and Lorentz in-
dices are understood. The irreducible 2-index antisymmetric representation of Sp(4) is
()-traceless, so that Tr QY = 0. In this review, we take the mass matrices for the two species
of fermions to be proportional to the identity matrix—see Ref. [18] for the generalisation
to non-degenerate masses—and denote the masses as m) and m(#), for the (f) and (as)

representations, respectively. The transformation properties under the action of an element

3 This property is useful in defining the Cabibbo-Marinari [264] updating algorithm for Sp(2N); see Appendix A of Ref. [7] for technical details.
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U of the Sp(4) gauge group are Q — UQ and ¥ — UYU". Hence, the field-strength tensor,
Vi, and the covariant derivatives, are given by

Vie = Vy—aVyu+ig[Vu, Vi, ©)
D,Q = 3,Q +igV,Q, (6)
DY = 0,¥ +igV, ¥ + ig¥IV], @)

where ¢ is the gauge coupling, while V,, = V;f‘ TA are matrix-values gauge fields—the TA
matrices are the generators of the gauge group, normalised so that Tr TAT? = %5"‘3.

The Lagrangian density in Eq. (4) is formally identical to that of the SU(N,) theories
coupled to Dirac fermions. If the group is taken to be SU(3), then the equivalence of the
2-index antisymmetric representation and the (conjugate) fundamental implies that this
would become an extension of QCD with two fermions with mass mf) and three with mass
m(%). But the representations of Sp(2N) are (pseudo-)real, which leads to an enhancement
of the non-Abelian global symmetry from SU(Ny) x SU(Ny) and SU(ns) x SU(ny), acting
on the (f) and (as) fermions, to SU(2Ny) and SU(2#ny), respectively. From here onwards,
in the rest of this section we restrict attentionto N = 2, N =2, and n F=3 [28,127], as
reinstating the general dependence on number of colors and flavors is straightforward.

To demonstrate symmetry enhancement manifestly, we perform the following exercise.
First, we introduce 2-component spinors g¢™¢ and ", transforming in the (f) and (as)
representations of the gauge group, respectively, withM =1, --- ,4andn =1, ---, 6. We
then construct the four component spinors via the following definitions:

Ja — q]u L2 ab — jab 8
Q = ( Qab(_cq]JrZ*)h ) ’ = ( QuCde(icwj-‘r?)*)cd ) ’ 8)
where C = —it? is the 2 x 2 charge-conjugation matrix in spinor space, T2 is the second

Pauli matrix, ] =1, 2and j = 1, 2, 3. Because of the contraction with the symplectic matrix
), which raises and lowers the Sp(4) index, the pseudo-real nature of the (f) representation,
and real nature of the (as) representation, what results are two Dirac fermions of type (f)
and three of type (as), which are those appearing in Eq. (4). By replacing the definitions in
Eq. (4), after some tedious algebra one arrives at the identity

1 &y, Myt ~u M\?* . Myt =u_Ma
+5 Z(l(q ' (Dug™)” — i (Dug™)t,o"g™e ) +
M=1
1 4 MaT ~ _Nb Myt b~ N
—5m Yy MN( “T0Ce " — (7). Q7C(q *)b) +
M,N=1
L1 6 , _
3 L (1" e (™) — i (D) 9" ™) +
1 6 . .
_ Em(as) Z Won (lpmabTQuCthCanCd o (lpm)fahQaCdeC(lpn*)cd) , (9)
m,n=1

where the kinetic terms for the 2-component spinors are written by making use of the 2 x 2
matrices 7 = (]Iz, T’). In these expressions, () = (), but notice that the former acts on the
flavor space, while the latter in the color space—the former is a 2Ny x 2Ny matrix, while
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the latter is a 2N x 2N one. The matrix w is defined to be symmetric, and we can use the
explicit expression
_ [ Osx3 | I3x3
“ o= ( I3x3 | O3x3 > ' 10

With the Lagrangian density in the form of Eq. (9), it becomes manifest that the theory
has a global SU(4) x SU(6) non-Abelian symmetry, and that the mass terms proportional
to m) and m(*) introduce a (small) breaking effect, reducing the exact symmetry to the
subgroups of SU(4) and SU(6) that leave invariant, respectively, the matrices () and w.
Vacuum alignment arguments [19] suggest that fermion bilinear condensates form in the
underlying dynamics, breaking spontaneously the global symmetry in the same way, and
hence PNGBs will emerge that describe the SU(4)/Sp(4) coset in the (f) sector, and the
SU(6)/SO(6) coset in the (as) sector.

We conclude this subsection with a set of counting exercises and symmetry considera-
tion, and characterise the spectrum of lightest bound states of the theory, and the operators
that are used to define spectral observables from correlation functions. Some of the bound
states admit a weakly coupled description as particles associated with fields in the low
energy EFT description of the dynamics. More details and a broader set of considerations
of this type can be found for example in Appendix E and F of Ref. [5], in Appendix C of
Ref. [10], in Section III.C of Ref. [7], and in the references therein.

Let us start with the glueballs. These are bound states that exist in the Yang-Mills theory,
without matter fields, in the confined phase. They do not carry flavor, but they can have any
(integer) spin ], and in general are characterised by J’C, with P the parity and C the charge-
conjugation eigenvalues, except that, at odds with the SU(N,) cases, in the Sp(2N) gauge
theories C = + for all glueballs. The interpolating operators sourcing the glueballs can be
built from the Wilson loops, traced path ordered products of links around closed spatial
(contractible) loops, along with appropriate projections to the states with desired spin and
parity quantum numbers. We will return in due time to the subtleties related to how the
continuum rotation symmetry is broken to the octahedral group O, on a hypercubic lattice
theory. Here we notice only the fact that in the presence of additional fermionic matter, one
expects the glueballs to mix with the flavor-singlet mesons. Quantitative understanding
of these and related effects, which involve disconnected diagrams, is an open problem on
the lattice—an interesting exploration of this topic in the SU(2) theory can be found in
Ref. [85].

The flavored mesons made of (f) fermions can be classified by their spin J, the repre-
sentation of the unbroken Sp(4) ~ SO(5) global symmetry group, and additional discrete
quantum numbers, such the unbroken parity P—constructed by combining ordinary spatial
parity and discrete internal symmetries. As long as the mass terms are small, in appropriate
units, the lightest states are going to be the PNGBs. These have J” = 0, and transform as
5 of Sp(4), the Q-traceless antisymmetric representation. In the language of 2-flavor QCD,
the PNGBs are identified with the pions 7. Their parity partner J” = 0% mesons transform
as 5 of Sp(4), and are the analogous of the 4y in QCD, in the sense that if U(1)4 = SO(2) 4
were exact, 7T and ap would be degenerate. There are then four multiplets of spin-1 states.
Two JP = 1~ states transforming as the 10 of Sp(4) correspond to what in QCD are the
p and p’ states, which have different properties in the global SU(4), but undergo mixing.
Two J¥ = 1% states exist, one of which transforms as a 5 of Sp(4), and is the analogue of
the a1, and one transforming as a 10, related to the b; in QCD. We summarise in Table
1 the operators Oy sourcing these states (see also Ref. [265]), and their basic quantum
numbers and properties. We label them as pseudoscalar (PS), scalar (S), vector (V), tensor
(T), axial-vector (AV), and axial-tensor (AT). The (as) fermions give rise to a similar set
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Table 1. Interpolating operators Oy, built with Dirac fermions of types (f) and (as). Colour and spinor
indices are implicit and summed over, and flavor combinations are denoted generically. More details
can be found in Ref. [5]. We also show the [ quantum numbers, the corresponding QCD meson
sourced by the operator with analogous quantum numbers, and the irreducible representation of the
unbroken global Sp(4) x SO(6) symmetry groups.

Label | Interpolating operator Mesons in J' [ Sp(4) | SO(6)
M Oum Nf =2QCD
PS Qlys0Q/ s 0~ 5 1
S QrQ/ ag 0t 5 1
Y% Qly, Q! 0.0’ 1~ 10 1
T Qloy, Q 0,0 1~ 10 1
AV Qlysy,Q/ M 1+ 5 1
AT Qlys0 Q/ by 1+ 10 1
ps Yhosyi s 0~ 1 20’
s i a9 0t 1 20/
v Yoy, ¥ 0,0 1~ 1 15
t Yoy, ¥ 0,0 1~ 1 15
av Frysy, ¥/ m 1t 1 20/
at YEy500, ¥/ by 1+ 1 15

of multiplets, but for the fact that the symmetric and antisymmetric representations are
swapped. For example, the 20 PNGBs describing the SU(6)/SO(6) coset are in the traceless
symmetric representation.*

Table 2. Interpolating operators Ocp sourcing the lightest chimera baryons, built with two Dirac
fermions of types (f) and one of type (as), with their Sp(4) x SO(6) quantum numbers. Details can be
found in Ref. [10].

Label Interpolating operator Sp(4) | SO(6)
Oé’él <W75 Q¥+ Q295Q! b) QpcPLRY*

Ol | I(—QTP Q% + Q2P Q1Y) oy Py -
Ofis | (QU7°Q1 —Q"°Q2 ) uePLe¥te | 5 | 6
Oy —i (WQZCb +Q2Q! h) Qe PR
Oé’éi; i(_inqucb +iQZQ! b) Qp Pr g EF
Ocihy i (WQZ b+ Q2Q! b) QpcPLRYF

O’C%E (@(f b Q! b) Qpc P RE*
Ofgs | i(QeQ - QT Q) O P R 5 | 6

(’)&%ﬁ (@’YSQZC by QRinQ! b) 0 Py gk
O/CLé,I; i (Ql a,Y5Q2Cb . Q%ja')’SQl b) chPL,R‘Ijkm

4 We denote the set of PNGBs of SU(6)/SO(6) as 20/, for consistency with the conventional notation of SU(4) ~ SO(6), as there are three inequivalent
representations with 20 degrees of freedom, usually denoted as 20, 20’, and 20" [266].
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We list in Table 2 the explicit form of the operators sourcing the two sets of lightest
chimera baryons in the theory, made of two (f) and one (as) elementary fermions. The two
sets we consider transform both as a 5 of Sp(4), and are one the U(1)4 ~ SO(2) 4 partner
of the other, reproducing for these spin-1/2 states the relation between PS and S mesons in
the scalar sector of the spectrum. As conventional, the chiral projectors are

PLr = %(H4x4i’75)- (11)

Other spin-1/2 and spin-3/2 states can be built systematically in a similar fashion [15].
(Table 1 of Ref. [50] shows a classification of top partners for SO(d) gauge theories.) These
operators also form multiplets of the global SU(6) symmetry and its unbroken SO(6)
subgroup, and we will return to this part of the classification later in the paper.

2.2. Perturbative considerations

The confining, QCD-like dynamics leading to the appearance of light PNGBs, that are
essential to CHMs, can be complemented by implementing the top (partial) compositeness
mechanism. Interacting near-conformal theories, with extended fermion matter content,
in which (chimera) baryon operators develop large anomalous dimensions are best suited
to provide an origin for top partial compositeness, for reasons we discuss in Sect. 2.4.2.
The underlying strong interactions can be understood in full only with non-perturbative
tools, such as lattice simulations. Yet, perturbative calculations, supplemented by other
techniques, provide useful insight into their infrared (IR) phase structure, and guidance
in identifying promising theories to be subjected to dedicated numerical studies. In this
section, we briefly discuss the IR behaviour of non-Abelian gauge theories with fermions in
the fundamental and/or two-index representations, and review existing analytical results
relevant to Sp(2N) gauge theories.

Yang-Mills theories are asymptotically free at short distances. Their ultraviolet (UV)
properties can be studied perturbatively, as an expansion in the coupling « = g2/ (47).
When coupled to Ny fundamental fermions, there is a maximum N2F above which the
theory loses asymptotic freedom. It can be determined from the renormalisation group (RG)
analysis of the beta function B(«) = da /9 log (), estimated at the 1-loop order. ° If N ris
sufficiently small, the theory confines in the IR, and breaks chiral symmetry, as in QCD. For
N £ just below N ]‘Q“F, the theory admits the Banks-Zaks fixed point [267,268], identified as a
zero of the 2-loop beta function at small coupling. One therefore expects that asymptotically
free gauge theories undergo a zero-temperature quantum phase transition, for a critical
number of flavours NJST, between the IR conformal and chirally broken phases. The interval
Njﬁr < Ny < Nj?F is called conformal window, and has been extensively studied by both
analytical and numerical methods. For Ny < N', but in proximity of the conformal window,
near-conformal dynamics has been suggested to display potential for phenomenological
applications, in such contexts as (walking) technicolor, composite Higgs, and composite
dark matter (e.g. see Refs. [25-27,269-274]).

The determination of Nj‘}r is notably difficult, because the coupling at the IR fixed point
aRr grows in the approach to the lower end of the conformal window. As a first, crude
approximation, one can identify N}r as the number of flavors for which the zero of the
2-loop beta function disappears. This can be systematically improved to higher orders in «,

by solving 0 = B(a) = —2a Zg’f{ by (ﬁ)g, where the coefficients by are functions of N¢, N,

5 Although only integer values of N ¢ are physically meaningful, Ny is treated as a continuous variable. An alternative argument could be made by taking
the large-N, (Veneziano) limit while holding fixed the continuous ratio x = N i /N¢.
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Figure 1. Left panel: Conformal window of Sp(2N) gauge theories with Ny Dirac flavours in the
fundamental (top, blue), antisymmetric (middle, green), and symmetric (bottom, red) representations.
Right panel: Conformal window of Sp(4) gauge theories with Nf = 2Ny fundamental and N4p = 21y
antisymmetric Weyl fermions. Red diamond, blue circle and black square indicate some representative
CHMs, quoted in the main text. The left and right plots are from Refs. [295] and [294], respectively.

and the fermion representation R, but suffer from the intrinsic limitation of perturbation
theory. In particular, even if the existence of a fixed point is physical, and hence scheme
independent, its determination and characterisation are affected by the scheme dependence
of B(a) for £ > 3. For example, in the MS scheme with €0 = 4, Nj‘jr critical for various

non-abelian gauge groups and representations can be found in Ref. [275].° Going beyond
perturbation theory, several approaches intended to capture non-perturbative dynamics
have been proposed in the literature, such as the Schwinger-Dyson analysis in the ladder
approximation [279,280], or a conjectured all orders beta function [281,282] inspired by the
better controlled supersymmetric gauge theories—for the latter, see the review Ref. [283].

A number of recent studies [284-292] discuss the determination of the conformal
window in terms of a (Banks-Zaks) expansion in the small physical parameter Ar =
NZF — Ng, where Ny denotes the number of fermions in representation R. Compared
to the standard perturbative expansion, it has several salient features. First of all, it is
scheme-independent, as the expansion parameter Ay is a physical quantity. Secondly, it has
been found that its coefficients are positive, to the highest order known [287,288], which
improves its convergence and stability.

A particularly interesting quantity, directly relevant for model-building considera-
tions, is the anomalous dimension, ¢*, of the fermion bilinear operator, measured at the
IR fixed point. It has been suggested that 7{; = 1 at the lower edge of the conformal
window [280,293]. In Refs. [294,295], it has further been shown that the equivalent critical
condition {3 (2 — ¥jg) = 1 computed at a finite order in the BZ expansion results in a
more rapidly convergent series expansion and thus can be used to improve the estimate for
the critical value Ny 7 The results of Refs. [294,295] are in excellent agreement with non-
perturbative lattice results for SU(2) and SU(3) gauge theories coupled to the fundamental
and two-index representations. The left panel of Fig. 1, borrowed from Ref. [295], shows

6

7

After the 5-loop beta function was computed [276,277], the conformal window has also been studied for £;,4x = 5, and in Ref. [278] the authors report on
a strong instability of the perturbative expansion over a wide range of Ny in the would be conformal window of SU(3) gauge theories.

This critical condition should agree with 7 = 1, yet it gives rise to different results at finite order in the expansion. This critical condition reproduces
the value of the critical coupling a" obtained from the Schwinger-Dyson analysis in the ladder approximation [296], and furthermore |1 — j;| has a
square-root singularity with respect to when the IR and UV fixed point merge [295].
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the conformal window of Sp(2N) gauge theories coupled to fundamental, antisymmetric
and symmetric Dirac fermions. According to this approach, Sp(4) theories with either two
fundamental or three antisymmetric flavours of fermions are in the confining phase. In the
same paper, the uncertainties associated with the truncation of the BZ expansion, which
might capture some non-perturbative effects, are also discussed, and their sizes estimated.

In the presence of fermions transforming in distinct representations, the properties of
the IR fixed point depend on all choices of Nr. The results for the theory of main interest
in this paper, namely the Sp(4) gauge theory coupled to fermions in the fundamental
and antisymmetric representations, are presented in the right panel of Fig. 1 [295]—here,
Nr = 2Ny and Ny = 2ny count Weyl fermions. In the figure, the shaded region is the
conformal window estimated from the critical condition y*(2 — 74*) = 1 applied to the
results in the 34 order BZ expansion, while the dashed lines denote the analytical results
obtained by the truncated Schwinger-Dyson analysis (black), the all-orders beta function
(red) and the 2-loop order beta function (green). The red diamond, blue circle and the
black squares indicate the UV-complete theory proposed in Refs. [28,39,64,127], in the CHM
context. The Sp(4) theory with Ny = 2 and ny = 3 is expected to lie near the sill of the
conformal window, which motivates further dedicated studies with non-perturbative lattice
methods. As mentioned at the beginning of this section, the top partial compositeness
mechanism is most effective with large anomalous dimensions of the chimera baryons.
So far, this has only been estimated at the one-loop order in « in standard perturbation
theory [63].

2.3. Low-energy EFT

We focus here on the flavored mesons. The PNGBs have masses that are expected
to be suppressed, in respect to those of other mesons transforming non-trivially under
the action of the unbroken Sp(4) x SO(6) symmetry. At least in principle, if the fermion
masses are small with respect to the dynamical scale of the theory, this would create a
hierarchy of scales in the spectrum, with the sole PNGBs being important in long-distance
observables. This (little) hierarchy is ultimately what drives interest in applications to
CHMs. Generalising the chiral Lagrangian of QCD, one can write an EFT that captures
the long-distance dynamics within a weakly-coupled field theory description, by retaining
only the fields associated with the PNGBs. Following the notation in Refs. [2,4,5,10] (and
references therein), we recollect here the main properties of this EFT, and of its extension to
include the lightest spin-1 flavored mesons.

We start by defining the relevant notation and conventions, which for the most part
follow Refs. [5,10]. An orthonormalised basis for the 15 generators T4 of the global SU(4)
can be chosen so that A =1, - - -, 5 denotes the broken generators and A =6, - - -, 15 the
unbroken ones. They obey the following relations:

A

A

~
~J

0, for A=1,---,5, (12)

ko)
o) 0, for A=6,---,15. (13)

SN

TA + T4

The same applies for the 35 generators t? of SU(6), which we splitin B=1, - - -, 20 for the
broken ones and B = 21, - - -, 35 for the unbroken ones. They satisfy the relations:

th _ tBT

wtB + BT

w = for B=1,---,20, (14)

0,
0, for B=21,---,35. (15)

We introduce two non-linear sigma-model fields. The matrix-valued ¢ transforms
in the same way as the bilinear operator in the underlying dynamics Q,,g™*TCqN?, in
the antisymmetric representation of the global SU(4). Namely, for any U € SU(4), ¢ —



Version May 11, 2023 submitted to Universe 14 of 75

UZgUT. X5 has the quantum numbers of —Q,, Q9" *TCy", and transforms in the
symmetric representation of the SU(6) global symmetry: £p; — uXp1u’ for any u € SU(6).
In the vacuum, the 2-index antisymmetric representation of SU(4) decomposes as 6 = 1 &5
of the unbroken Sp(4), and the 2-index, symmetric representation of SU(6) as 21 = 1 & 20/
of SO(6). We parametrise the non-linear sigma-model fields X4 and X in terms of the
PNGSB fields 7t5 and 71y as

26 = ef5 QefS :€f5 Q:Qe f5 , (16)
i iy 2imyg 2im)
Yoy = e f20 wefo =e 20 w = we 0 . (17)

The shorthands 715 = 2?4:1 7t5(x)AT4 and 119 = 2%021 7020 (x)BtP are used to lighten the
notation. The decay constants are denoted by f5 and fp, and are introduced to make the
exponents dimensionless.We choose the conventions used in this parameterisation and
in the Lagrangian density so that, when applied to the QCD chiral Lagrangian, the decay
constant is f =~ 93 MeV. These relations are equivalent to imposing (and solving) the
non-linear constraints 2622 = g4 and Xpq Z;l = Isx6. With the specific choice of SU(4)
basis in Ref. [87] (which we reproduce in Appendix A), the five PNGBs in the SU(4)/Sp(4)
coset are written as follows [5]:

3 1_ .2 4 5
1715’ ) Tis —137'[5 ‘ 40 ; —i7s" + 75
- 1 Tty + 1718 —Ttg i7" — 75 0 (18)
5= &5 4 5 3 1, -2 ’
242 . 0 —i7y — 7ls 7'[5. Tts + 1715
17'[54 + 7'(55 0 7'[51 — 17'(52 —TTg

where we have omitted the explicit dependence on the space-time coordinates. A similar
expression holds for 7, given a choice of basis for SU(6).

The symmetry breaking effects due to the fermion masses in the underlying dynamical
theory are captured in the EFT Lagrangian density with the introduction of (non-dynamical)
spurion fields Mg = m) Q) and My = —m®) . Formally, they transform as Mg —
U*MgU' and My; — u* My u® under the action of the SU(4) x SU(6) global symmetry
transformations—but they are not fields, they are constants. The Lagrangian density
describing the PNGBs of the SU(4)/Sp(4) coset is

2 3
Lo = %Tr{ 9,Z6("%e)" } _ %Tr{ MeZg } + he (19)
1
= TI‘{ ayn5a?*n5 } + %Tr{ [8;17-[5, 7'[5] [aﬂy-[5, 7-[5] } + o+

(f)z)3 5 mfz)

3
6 6
Trms +

5 3 é

Trrs 4 - - -, (20)

1 3 + m
+3 mf o3 Tr(ZeZd) — 7
where vg parameterises the condensate, and where we include only the leading-order terms

in both the derivative and mass expansions. The expansion for the SU(6)/SO(6) PNGBs is
formally identical:

2 'U3
Ly = %Tr{ 3H221(3V221)+ } — %TI‘{ M1 } + h.c.. (21)

Notice the opposite sign in the definition of M1, which combines with the defining property
O? = —Iy 4 (as opposed to w? = Tgyp), so that by just replacing the condensates vg — vy
one can recover the same expressions for the physical observables.
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Figure 2. From Ref. [2], the symmetries and their representations in the low-energy EFT descriptions
based on HLS. In the left panel, SU(4)¢4 is gauged, while SU(4)gp is a global symmetry and the fact
that Sg and X4 are non-trivial in the vacuum breaks the symmetry to Sp(4). As a result, all the gauge
bosons are heavy, and in addition one has five PNGBs. In the right panel, the same construction is
applied to SU(6)21p X SU(6)214 and to its breaking to the SO(6) subgroup.

By perturbatively expanding the Lagrangian density, one can extract the propagator
and the couplings of the EFT, and compute observable quantities. The definitions and
conventions are such that the Gell-Mann-Oakes-Renner (GMOR) [297] relation can be
recovered, in both meson sectors:

m%5f,%5 = m 02 , (22)

M Sy = m 03, (23)

relating the pion masses 1,y and my,, to the decay constants f;, = fs and fr,, = f20. One
can then add subleading corrections, following the same process applied for the chiral
Lagrangian—the only technicality worth noting is that the normalisations of multi-trace
deformations depend on the dimension of the matrices, and hence on the number of fermion
species.

2.3.1. Hidden Local Symmetry

Refs. [2,5] report an extension of the EFT description to include the lightest V and AV
states (corresponding to the p and 4 in 2-flavor QCD), besides the PNGBs. This is done
within the framework of Hidden Local Symmetry (HLS) [255-259] (see also [260-263]). We
report here the basic construction, and comment about the applicability of such approach.

We introduce two meson sectors that are completely independent from one another,
which is a reasonable approximation as long as one allows only for single-trace opera-
tors [2,5]. One starts by promoting the unbroken SU(4) and SU(6) global symmetries
acting on the (f) and (as) fermions to SU(4)¢p X SU(4)s4 and SU(6)215 X SU(6)214, respec-
tively. One then introduces two sets of sigma-model, matrix-valued fields; ¥ transforms
in the antisymmetric 2-index representation of SU(4)¢4 and X in the symmetric 2-index
representation of SU(6)214; Se transforms in the (4,4) bifundamental representation of
SU(4)p x SU(4)a, and Sp; in the (6,6) of SU(6)215 X SU(6)214. Hence, the transforma-
tion rules are as follows:

Se — UspSeli,,  T¢ — UgaZeUl,, (24)
Sy — UnpSnlUiu, Y1 — UpaXolny, (25)

where Uy and Ugp are group elements of SU(4)ga and SU(4)ep, respectively, while
Uz 4 and Upyp are in SU(4)214 and SU(4)215. These fields are subject to the nonlinear

2io,

constraints X4 Zg = I4xq = Sg¢ Sg, which are solved by parameterising S = e F and
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2ir, 217TT

Yo =e [ "A=0e 1 . Analogous expressions apply to the SU(6) sector. This process
yields a parametrisation for the exactly massless Nambu-Goldstone bosons describing the
cosets SU(4)gp x SU(4)sa/Sp(4) and SU(6)215 % SU(6)214/SO(6), respectively.

As a next step one gauges (weakly) the SU(4)¢4 and SU(6)14 symmetries, by intro-
ducing the appropriate gauge fields, covariant derivatives, field-strength tensors, and gauge
couplings g¢ and g1. The Higgs mechanism turns 15 4 35 of the exact Nambu-Goldstone
bosons into the longitudinal components of the resulting massive vectors, which have the
quantum numbers of the states identified with the p and a; particles in QCD. In order for
the remaining 5 + 20 pseudoscalars to acquire a physical mass as PNGBs do, one must add
sources of explicit symmetry breaking. This is done by writing the Mg and M;; matrices as
spurions that, under the action of the global SU(4)¢p and SU(6)213, transform as follows:
Mg — UspM; UgB and M3, — Uy pM;3,; l,IZT1 g- One then uses X, 21, and their derivatives,
as well as Mg and Mp;, to build all possible operators allowed by the symmetries, organises
them as an expansion in derivatives (momenta p?) and explicit mass terms, and writes a
Lagrangian density that includes all such operators up to a given order in the expansion.
We also restrict attention to operators that can be written as single traces, as repeatedly
anticipated.

The Lagrangian density for the SU(4)/Sp(4) mesons is Eq. (2.16) of Ref. [5]:

1
Lo = —5TrAuA" - gTr{AWZ(AW)TZ*} +

+f£Tr{ D,z (D'E)"} + %Tr{ DS (D)} +
+bf—2Tr{D,4(SZ)(D”(SZ))+} + c{fTr{Dy(SZST)(DP‘(SZST)Y} +

—%Tr MSZST} + he + (26)

— By sz[ (4")TSTMs — sTmMS | } + he.+

{
_ZTr{ M (D,S) £ (D"S) } - %Tr{ MS (D,x) (D”S)T} + he +

s {

57

sz[ (AMY) TSTMS+STMSAVV” +he +
+3—;Tr{ MSESTMSEST } + he..

To lighten the notation, we suppressed the subscript “6" on all fields and parameters,
and multi-trace operators have been omitted [2]. The covariant derivatives contain the
parameter g4, that controls the strength of the coupling of the spin-1 states. We write

DS = 3,S—iSgeAy 27)
and
DT = 9T +i[(36A0)E + (g4 - (28)

The Lagrangian density in Eq. (26) can be adapted to the SU(6)/SO(6) sector. One
replaces X4 by Xp1, S¢ by S21, Mg by My = —mw, Ag‘y by Aé“l 17 86 by g»1, and furthermore
changes the sign of the second term in the first line kg — —%51. With these conventions,
masses and decay constants are given by the same relations as in Ref. [2], to which we refer
the reader for further details.
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One has to adopt some caution in the way one uses Eq. (26). In particular, one
has to ensure that the parameters are all within a range of values such that the EFT is
weakly coupled. The main source of concern here is the size of the gauge couplings
8621, and the related effective couplings ( gprr). The mass of the vector mesons can
be estimated as M% ~ O(% 32,21 fé21), up to a complicated functional dependence on all
the parameters [2]. Hence, if in comparing to lattice data one finds that M, > f, this
might imply that the coupling is not small—barring the possibility of cancellations and
fine-tuning. In practice, for the Sp(4) theory, as in 2-flavor QCD, real data seem to sit
half-way between the extremes of trustable perturbative and uncontrolled strong-coupling
regimes: the self-couplings are perturbative, but not small enough that one can do precision
measurements and calculations with the tree-level Lagrangian and its couplings. On
the other hand, this is a non-renormalisable EFT, in which the number of independent
couplings proliferates going to higher-order in the loop expansion, making unappealing
the in principle viable programme of systematic expansion beyond the leading order.
Nevertheless, the organisational principles, order-of-magnitude estimates, and general
lessons associated with Eq. (26) have general value.

2.4. Phenomenological applications

In this subsection we consider three examples of applications of the Sp(2N) gauge
theories of interest: a model of composite Higgs, a realisation of top partial compositeness,
and two opportunities arising in the context of strongly interacting dark matter. For the
most part, we make explicit reference to the SU(4)/Sp(4) model with the field content
discussed in Refs. [28,127], but, where appropriate we also highlight considerations that
have more general validity, applicable to larger classes of models.

2.4.1. Composite Higgs

We start by recalling the basic properties of the standard model, and the motivations
for compositeness. For concreteness, we postulate the existence of three right-handed
neutrinos, singlet under the SM gauge group. All the fermions are then Dirac particles, and
can be classified in terms of their quantum numbers under the symmetry

SU(3). x SU(2)L x SU(2)g x U(1)p_ - (29)

The SU(3), symmetry is gauged, with coupling g, and describes the strong nuclear forces.
The SU(2); and the hypercharge subgroup U(1)y C SU(2)r x U(1)p_r. are also gauged,
with couplings g7 and gy, respectively, in the electroweak (EW) theory. The hypercharge
generator is Y = T3 + £ (B — L), where T} is the diagonal generator of SU(2)g, and B — L
is anomaly free; quarks have baryon number B = +1 and no lepton number, while leptons
have no baryon number, and lepton number L = +1. The field content of the standard
model consists of three copies (families) of (Dirac) quarks transforming as (3,2,2,1/3)
of SU(3). x SU(2) x SU(2)g x U(1)p_1, and three families of leptons transforming as
(1,2,2,—1). The chiral symmetry acting on the left-handed and right-handed projections of
the fermions admits the local isomorphism SU(2); x SU(2)r ~ SO(4)gw, which plays an
important role in the following.

In the minimal version of the standard model, electroweak symmetry breaking (EWSB)
is implemented by adding to the field content a scalar (Higgs) transforming as & ~
(1,2,2,0). The Lagrangian density for ® consists of its kinetic term, with appropriate
covariant derivatives, coupling it to the SU(2); x U(1)y gauge fields, a renormalizable
potential with SO(4)gw global symmetry, and Yukawa couplings to the fermions which
break explicitly the SU(2)g global symmetry (as does the hypercharge coupling). It is
customary to write ® in terms of a doublet of complex scalars transforming as H ~



Version May 11, 2023 submitted to Universe 18 of 75

(1,2,41/2) under the SM gauge group SU(3). x SU(2); x U(1)y, and define the conjugate
field H = it?H*, so that the 2 x 2 complex matrix

o = (HH) (30)

transforms under the action of SU(2); x SU(2)g as @ — U PU}. Itis at times useful also
to write the Higgs fields in real components h = (hy, hy, h3, hy), defined by

1 hs +ihy
H = — . . 31
ﬁ < hl +1 h2 ) ( )
The potential, V, can be written as
2\> A 2 A 2
V = AlHH- ) = Z(Trcp*cp - ) = Z(hTh -%). 6

The SO(4)gw global symmetry of V is manifest in the last expression. The minimisation of
the potential yields a vacuum expectation value (VEV) for the scalar, that induces EWSB. In
turn, because of the coupling of H to gauge bosons and fermions, it also provides them with
a mass. With these conventions, the electroweak VEV vyy is related to the Fermi constant
Gr by vy = \/\}TGF ~ 246 GeV, the mass of the Higgs boson is given by the relation

m% = 2)\0%\, ~ (125 GeV)? [20,21], the W bosons have mass My, = %gLUW ~ 80 GeV, and
for the Z bosons M% = 1(g? + g2)0%, ~ (91 GeV)?.

The standard model has passed successfully countless experimental tests. Yet, it is
not a complete theory: several of its interactions (the Yukawa couplings, the U(1)y gauge
coupling, and the scalar self-coupling A) are not asymptotically free, and most likely require
ultraviolet (UV) completion above some new physics scale A. One way to show how this
may lead to a general problem is by considering quantum corrections on the Higgs potential.
Following Coleman and Weinberg in Ref. [298], the (divergent part of the) 1-loop effective
potential computed (perturbatively) in the external field formalism, in the presence of a
hard cutoff scale A, can be written as follows:

2
- 3

MZ

5V STr M2 + 6417877 <M4 1n(>), (33)

A2

where M is the mass matrix of all the fields in the classical external field background,
and ST denotes the super-trace, a trace in which bosons enter with positive sign, while
fermions count with negative sign. For example, the contributions of the top quark, that has
mass m; ~ (173 GeV)?, and the W*, Z, and Higgs boson, to the quadratically divergent
part of this potential are estimated to be [299]

A? ) ) ’ ,12HTH
sV = 327[3<2MW+MZ> +3m? — 12m? }W (34)

If A > O(TeV), for example if A ~ O(Mp), with Mp the Planck scale characterising
quantum gravity, then the experimental value of the Higgs boson mass is reproduced only
at the price of fine-tuning loop effects against appropriately chosen counter-terms.

This fine-tuning phenomenon is usually referred to as (big) hierarchy problem. It
can avoided by replacing the Higgs sector with a new strongly-coupled dynamical theory.
In the potential in Eq. (33), A is the characteristic scale of the new physics sector, above
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which new particles and interactions appear. Given that the Higgs sector has the same
SU(2)p x SU(2)gr ~ SO(4)ew — SU(2)y ~ SO(3) global non-Abelian symmetry breaking
pattern as in 2-flavor QCD, it is intuitive to model the new sector as a generalisation of QCD
itself. The new gauge theory, with appropriate matter fields, is asymptotically free in the far
UV, but at scale A strongly coupling induces the formation of composite condensates, EWSB
appears, and the theory confines. This idea predates most of modern particle physics, and
goes under the name of technicolor (TC). We are not going to explore further this topic, but
rather refer the reader to the original papers on technicolor [300,301], walking technicolor
(WTC) [103,302,303], and extended technicolor (ETC) [304,305], as well as to more recent
reviews in Refs. [269-274]. To the present purposes, it suffices to notice that in its original,
QCD-like formulation, the spectrum of TC would not contain a light state identifiable with
the Higgs boson. Furthermore, generic TC models would struggle to satisfy indirect bounds
from electroweak precision physics, encoded in the S and T parameters of Peskin and
Takeuchi [306], and their generalisations as in Ref. [307], or in the subleading terms of the
electroweak chiral Lagrangian [308-312].

The solution provided by CHMs [22-24] relies on the engineering of a two-stage
symmetry-breaking pattern, which introduces a little hierarchy of scales. At the strong
coupling scale A, an approximate global symmetry G is spontaneously broken to a subgroup
H. While all other composite particles have mass O(A), the PNGBs have suppressed mass,
and decay constant f;;. The PNGBs admit an EFT description in terms of weakly coupled
fields, and by embedding the SM gauge group into G, and coupling the PNGBs to the
SM fermions, one can introduce a perturbative instability, which triggers EWSB in the
vacuum. A hierarchy vy < f emerges, between f;, which originates in the strong-
coupling dynamics, and the electroweak VEV, which has a weak-coupling origin, as a
destabilising perturbation of the vacuum. This vacuum misalignment phenomenon relies
on a special modification of the vacuum alignment arguments ubiquitous in the theory of
phase transitions (and exploited in Ref. [19]).

Let us now return to the SU(4)/Sp(4) model of Refs. [28,127]. We have already estab-
lished that with Ny = 2 Dirac fermions transforming as the fundamental representation
of Sp(2N), the strong dynamics gives rise to the spontaneous breaking of SU(4) to Sp(4).
Working in the basis, in flavor space, in which ) = Q) in Eq. (2), in Sect. 2.3 we chose a
parametrisation of the five PNGBs, in Eq. (18), and we will present a choice of generators
for SU(4) in Egs. (A1) of Appendix A. We now discuss the embedding of SO(4) .2 In
Appendix A we define a first embedding SO(4)o, in Egs. (A2) and (A3), so that the vacuum
Y6 « Q) leaves SO(4) unaffected. We then define a second embedding in Egs. (A4) and (
A5), denoted as SO(4)rc. SO(4)rc is broken at scale f,; to the SO(3)rc ~ SU(2)y v
subgroup; this is the embedding one would use in a traditional technicolor theory, in which
the strong coupling and EWSB scale coincide. In practice, by doing so one establishes
that the EFT field ® describes light particles that originate in the fundamental theory as
composite excitations sourced by the operator QrQ;, with Q g the chiral projections of
the two Dirac fields transforming in the fundamental representation of Sp(2N).

We write the generators of SO(4)gw as a linear combination of the two:

T;'(,EW = sin(0) T;,Tc + COS(G)T;C’O, (35)

fori =1, 2,3 and x = L, R. The vacuum (mis-)alignment angle, 6 = %\,, is determined
dynamically by the interplay between symmetry-breaking terms that stabilise the EW vac-
uum, and hence favor 6 = 0 and SO(4)giw — SO(4)o, and symmetry-breaking interactions

8 By preserving the whole SO(4) g, the model preserves custodial symmetry, suppressing new physics contributions to the T parameter [306].
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that destabilise it, and trigger EWSB. A nice discussion of the typical, generic potential one
expects to arise from combining such symmetry breaking terms (which originate from the
masses of the fundamental fermions, the gauging of the SU(2); x U(1)y subgroup, and
the coupling to the SM fermions) can be found in Eq. (125) of Ref. [75], which studies the
potential for |k| = VATh,

Vet = ams('j&) — ﬁsinz(;;). (36)

The coefficients & and B are model dependent, and determined by the non-trivial interplay
between weakly coupled effects encoded in the EFT, and strongly coupled effects that can
in principle be extracted from matrix elements in the strongly coupled sector.

Other model-dependent quantities are the number, masses, and couplings of the
additional PNGBs, besides H; models with SU(4)/Sp(4) coset predict an additional singlet,
while other CHMs have richer spectra. Precision electroweak (and Higgs boson) observables
are affected by the additional light scalars, and the spin-1 bound states. Except for the
PNGBs, bound states have masses of order the scale A, and carry EW quantum numbers;
they can be detected in direct searches at colliders. As anticipated, we do not discuss in this
review the singlet sector, though it may have important phenomenological implications
both for collider and dark matter physics—for broader phenomenological considerations
see Refs. [25-27,29,30] and references therein. The feasibility of direct and indirect searches
depends on dynamical information from the underlying microscopic theory, which requires
non-perturbative methods. Lattice studies can measure, in increasing order of difficulty:
masses of some bound states (relevant to direct searches), decay constants (entering for
instance precision electroweak observables) and other matrix elements (relevant for example
for vacuum misalignment), and couplings between bound states (determining width,
production and decay rates of new particles).

2.4.2. Top partial compositeness

This subsection is devoted to the mechanism producing the mass of the SM fermions.
We start with the standard model, in which the Yukawa couplings take the form

Ly = —Yqb Ay =y a Hol — Y[V Ang — Y6 Hel + he,  (37)

i
Dl 1

tively, while uk, 9%, ni,, and ¢%, are the right-handed up- and down-type quark, neutrino,
and charged lepton SU(2)| singlets. The index i = 1, 2, 3 labels the three families, and

. ‘ i
where q; = ( iy ) and /] = ( : ) are the quark and lepton SU(2); doublets, respec-
L L

the 3 x 3 complex Yukawa matrices Yi(].u), Yi(ja), Yl»g»n), and Yl.g.e) are proportional to the mass
matrices in the EWSB vacuum, via the relations ml(]fp) = Yi(]-¢) z\%, for ¢ = u,9,n,¢e. Not only

does Eq. (37) provide masses for all the fermions, after EWSB, but it also automatically im-
plements the Glashow-Iliopoulos-Maiani (GIM) mechanism, suppressing Flavor Changing
Neutral Current (FCNC) processes [313].

Let us now discuss what changes if the Higgs field H is composite. Broadly speaking,
there are two ways to couple elementary fermions to a strongly-coupled vector-like theory
that yields EWSB—we find it useful to refer the reader to the discussions in Ref. [81],
although a vast literature on the subject predates it. For concreteness, we refer to the Sp(4)
gauge theory in Ref. [28,127], using the conventions introduced in Sect. 2.
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The first possibility arises because, in the EFT, the quantum numbers of & do not
depend on whether it is an elementary SM field, or describes a mesonic composite state.
Equation (37) originates in the coupling to the meson operator QrQ; (transforms as ®):

Lere = — A2 < CEJP)*u]R / Cz(j )*DJR ) Qu Qrar + he, (38)
ETC

()
1

couplings. These interactions involve four-fermion operators, have engineering dimension
6, spoil asymptotic freedom, and force us to introduce the new physics scale Arrc. This is
the construction adopted in the ETC literature, and above Arrc a further, more fundamental
theory unifies family/generation physics with the strong dynamics, in such a way that all

and a similar term for the leptons. The dimensionless parameters c;’” are proto-Yukawa

the ci(]q)) have a dynamical origin. New physics also produces other four-fermion interactions,
involving only SM fermions, which spoils the GIM mechanism, so that the experimentally
verified suppression of FCNC processes requires that Agrc > A. An example of valiant
effort at producing a semi-realistic implementation of this challenging model-building
programme can be found in Refs. [314-320].

The magnitude of the Yukawa couplings one is likely to generate in this fashion may
be too small. In matching to the low energy EFT at the scale A, one replaces QrQ; —

4tk®A2,? so that Yi§¢) = 47'[1($§C cqu)) is suppressed by the ratio A?/A%;- < 1. The top
quark Yukawa coupling y¢ = v/2m;/vw ~ 1 is particularly problematic, as on the basis
of Naive Dimensional Analysis (NDA) [321], one expects the strong dynamics to yield
k ~ O(1). Hence, one would need an unreasonably low scale Appc ~ 3A, in order to
reproduce a large enough top mass.

If the underlying dynamics is quasi-conformal in proximity of the strong coupling
scale A, up to some scale Ay, and if the scaling dimension of the QrQ;. operator is y < 3in

3-y
this regime, then the constant x receives an anomalous enhancement  ~ O ( (ATW) ) .

For example, if Ay = Agrc, and y = 2 [280,322], then it might be possible to arrive at a
reasonable estimate, provided Agprc/A S 47. (If y ~ 1 were admissible, concerns about
the ratio Aprc/ A would be superseded [323].)

Top partial compositeness (TPC) [78] is an alternative way to generate the top mass. In
the microscopic theory, one couples the top fields to strongly coupled operators, 51 g with
spin-1/2, scaling dimensions A g, and carrying appropriate quantum numbers to preserve
the SM gauge symmetry. Schematically, one writes:

C . C _
Lrpc = —ﬁqL B — ﬁulz Br + h.c.. (39)
ATPC ATPC

The scale Arpc > A is introduced to compensate for the fact that By, g are composite oper-
ators, and Eq. (39) introduces higher-dimension, non-renormalisable operators. Matching
to the low energy EFT leads to effective Yukawa couplings of the form

P Hud, (40)

Ap+AR—=5
,Ct = —47TKtCLCR< >
Arpc

with x; ~ O(1), another parameter that has its origin in the strong dynamics.

9

The important difference between CHMs and TC is that vy < f;, so that A can naturally be larger than the TeV scale.
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Generically, Ap r is expected to be large, suppressing the top mass. For example,
in the SU(N;) theory, with odd N,, and with fermion matter fields in the fundamental
representation, the baryons have engineering dimension Ap g = %Nc, sothat Ap +Agr —5=
3N: — 5 >> 1. But this needs not to be so. First, if the theory is approximately scale invariant,
the dimensions A7 g may be smaller, thanks to non-perturbative effects. For A; g ~ 3, the
suppression factor in Eq. (40) would depend logarithmically on A/ Arpc. Second, B; g may
have a different composition, as is the case for the Sp(4) theory with Ny =2 and ny = 3
that we introduced in earlier in this section [28,127], where By g are identified with the
chimera baryons in the top part of Table 2. Whether the former is also true, and under
what conditions, are highly non-trivial questions about the strong dynamics, that future
dedicated lattice studies can in principle try to answer (see also Sect. 2.2).

In our prototype CHM, the presence of 1y = 3 Dirac fermions transforming in the
2-index antisymmetric representation ¥/ introduces an SU(6) global symmetry, explicitly
and spontaneously broken to SO(6). It also defines a natural SU(3); x SU(3)gr C SU(6)
subgroup, itself explicitly and spontaneously broken to the diagonal SU(3).. This coin-
cides with the SM gauge group describing strong nuclear interactions. A specific basis
of SU(3), C SU(6) generators is given in Appendix C of Ref. [5]. The traceless, diagonal
generator of SU(6) that commutes with SU(3),, is also unbroken. As explained in Ref. [28],
a linear combination of this U(1)x generator and of the unbroken T3 yields the SM hyper-
change Y. (X, appropriately normalised, is related to B — L.) In the same way in which the
set (i, 2, 2, n2) transforms as a 4 of SO(4) gy, and hence we can identify it with the
Higgs field @, the (Ocp 1, Ocp2, Ocpa, Ocp5) operators have the same transformation
properties under SU(2); x SU(2)g. Furthermore, because of the presence of ¥ in the
constituents, the chimera baryons transform as SU(3). triplets, and the hypercharge Y is
such to match all transformation properties of the quarks, aside from the fact that the field
content is vector-like, rather than chiral. In the literature, sometimes these operators are
said to source the top partners.

Lattice studies of chimera baryons in strongly coupled theories are non-trivial. (See
Ref. [92] for lattice study in a SU(4) theory with multiple fermion representations.) Even
in ordinary QCD, the study of the baryons is resource intensive, and produces noisy
numerical signals. Additional difficulties arise with fermions in different representations,
which require developing dedicated software, and a complicated scanning of the multi-
dimensional parameter space of the lattice theory [10]. So far, Sp(4) results are restricted
to the masses of the lightest such states. Measuring scaling dimensions of chimera baryon
operators is an ambitious long-term goal.

2.4.3. Composite dark matter

We anticipated in Sect. 1 that strongly coupled dark matter sectors have much phe-
nomenological potential. We extend the discussion in this subsection, focusing on two
examples. First, we follow Refs. [154-158]; relic cold dark matter (CDM) made of self-
interacting particles yields predictions for dark-matter distribution profiles in the small
scale structure of astrophysical objects—for example the centers of dark-matter halos have
cores with spherical symmetry [324]. Second, we follow Refs. [185,187,188], and discuss
how the presence of a first-order phase transition in a dark sector could, in principle, be de-
tected in experiments such a the LISA [185], that are sensitive to relic stochastic gravitational
wave backgrounds.

In Ref. [154], SIMP models were proposed, in which a strongly self-interacting dark
sector is feebly coupled to the SM particles, but in thermal equilibrium with the visible
sector, and 3 — 2 annihilation processes are strong enough to resolve the ‘core vs. cusp’ [325]
and ‘too big to fail’ [326] problems in small scale structures, while reproducing the same
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successful predictions of weakly interacting massive particles (WIMPs) in large-scale struc-
tures. Combination of numerical and observational studies of rotational velocities in spiral
galaxies indicate the existence of a spherical core, in sharp qualitative contrast with the
generic expectation from collisionless CDM models, leading to power-law dark matter
distributions and cusp profiles. Similarly, the highly peaked distribution of dark matter
expected within the WIMP-based CDM paradigm would predict the existence of massive,
satellite subhaloes, which have not been observed experimentally.

Realisations of the SIMP scenario were identified in general strongly-coupled dark
sectors [155] that, in analogy with ordinary QCD, admit a Wess-Zumino-Witten (WZW)
interaction term [327-329]. The Sp(4) gauge theory with Ny = 2 fermions transforming in
the fundamental representation is the minimal model realising this paradigm. In studying
the phenomenology of such models, Ref. [156] highlighted the importance of having non-
perturbative information about the spin-1 bound states in the strongly-coupled dark sector,
for example because it determines the phenomenology of models in which a dark photon
mediates the interactions between visible and hidden sector that keep them in thermal
equilibrium at freeze out. This suggestion was further developed in Ref. [157], by noticing
that in the presence of symmetry-breaking, large masses for the PNGBs, the physics of
the vector mesons can have a dominant effect in determining the CDM relic abundance.
Furthermore, in the presence of a small mass splitting within the dark PNGB multiplet, the
observed dark matter density may result from other depletion mechanisms that rely on the
exchange of dark vectors, but do not assume that dark and visible sectors are at thermal
equilibrium with one another (see for instance Ref. [158]).

This brief, incomplete, collection of thoughts about the phenomenological and model-
building developments taking place over the past ten years of dark matter studies is yet
sufficient to support three points of general validity.

*  Gauge theories with Sp(2N) group, coupled to Ny families of fundamental matter,
might play a central role in SIMP model building, and it is hence a priority to study
them on the lattice, both in the minimal N =2 = N ¢ realisation and its extensions.

e Indark matter models, the mass of the lightest spin-1 composite state lies between that
of the PNGBs, and about twice of it. This is to be contrasted with the CHM context,
where addressing the little hierarchy problem requires a scale separation between
PNGBs and heavier states. And this is diametrically opposite to TC, where gauge
invariance forbids fermion masses. For lattice practitioners, this observation makes
the quenched calculations into a reasonable approximation of the true dynamics in the
phenomenologically relevant region of parameter space.

*  Many variations of the mechanism yielding the SIMP dark matter relic abundance
exist, including SIMP adaptations [162] of the freeze-in mechanism [330-334], and
more are likely to be proposed in the near future. This observation suggests to carry
out broad, unprejudiced explorations of the whole parameter space. As high preci-
sion measurements are not yet a priority, feasible investigation strategies for these
explorations make reasonable use of available computing resources.

A quite significant amount of information can already be found in Refs. [2,4,5,7], that
report the masses and decay constants of PNGBs and other light mesons in Sp(4) theories
with Ny = 2 (quenched or dynamical) fermions, as well as the masses of glueballs in Sp(2N)
with N = 1, 2, 3, 4. Future studies of the spectrum of mesons with dynamical matter
transforming in the antisymmetric representation will further contribute. A systematic
study of the mesons in the low dimensional representations of Sp(2N), for varying N,
inside the regime of validity of the quenched approximation, will tabulate dynamical input
that is essential to SIMP model builders. The ongoing programme of study of Sp(4) theories
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in the presence of small mass splitting within the fermion sector provides complementary
strong-coupling input for phenomenology [16-18].

Without pretence of encyclopaedic completeness, we also discuss the potential implica-
tions for the early universe of first-order phase transitions. At the transition, the formation
of bubbles of true vacuum, their growth, collisions, and the resulting sound waves and
friction source a relic stochastic GW background, which is detectable, in principle, in future
experiments. The original motivation to consider such scenarios comes from the miscella-
neous environment of hidden sectors and strongly coupled dark matter models. A broad
portfolio of tools has been optimised to analyse the specific reach of future experimental
programmes, and test broad classes of new physics models.

One such tool is the online software package PTPlot [185]. Developed with the spec-
ifications of LISA, PTPlot provides the gravitational wave power spectrum h?Qgw (f)
predicted for a given choice of input parameters, as a function of the frequency f, and
compares it to the sensitivity curves, determined by the experiment configuration and its ex-
pected noise level. Sound waves are the main source of gravitational waves, and following
Ref. [185] (to which we refer the reader, as to the original literature, for details) we ignore
other sources. The power spectrum is computed from (model-dependent) knowledge of
the following five parameters.

*  The (percolation) temperature T (or Hubble parameter H,) at which the phase transi-
tion ends. The phase transition starts at the critical temperature T, > T;.

*  The inverse duration of the transition, measured by the bubble nucleation rate
computed at T, defined in terms of S(T), the 3-dimensional action of the system:

*  The parameter «, determining the strength of the transition, depends on Af, the jump
at the transition in trace of the stress-energy tensor § = e — 3p, and the enthalpy
w4 = e4 + p4+ in the high-T phase:

(41)

T

NG
3C(J+ ’

(42)

*  The bubble wall speed vyy—the efficiency parameter x (the ratio of bulk kinetic energy
to vacuum energy) depends on « and vy [335].
¢ The number of degrees of freedom g after the phase transition.

We specify a dark, strongly coupled gauge theory. Following Refs. [187,188], we
assume the transition to be very fast, so that Tx ~ T, and g/H. > 1. Furthermore, we
assume a relativistic bubble wall velocity vy ~ 1; a precise determination of the wall
velocity would require dedicated studies of the bubble wall dynamics, and as shown in
Ref. [187] the signal strength depends only mildly on this parameter. We borrow from
Ref. [193] the lattice indication that p < e =~ 0 for SU(N,) Yang-Mills theories near T, and
that p varies smoothly across T.. As a result

a0 o~ - (43)
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The value of B/ H. can be obtained by modelling and measuring the effective action, or
with detailed knowledge about the surface tension of the bubbles. For SU(N,) Yang-Mills
theories, Refs. [187,188] agree in indicating the range

4 P 5
10* S N S 107, (44)
which is affected by large uncertainties, for all N.. Finally, the number of relativistic degrees
of freedom is the sum of the SM ones and the new dark sector ones. For example, for a
SU(N,) dark sector coupled to the SM fields (no right-handed neutrinos):
g = ngM4 gn(FSM) +n) 4 gnfth) —106.75+2(N2 —1), (45)
while if we treat the SM neutrinos as Dirac particles, then g, = 112 +2(N? — 1).

By making use of the online interface of PTPlot [185], one can compare the GW power
spectrum, h>Qgw (f), as a function of the frequency f, to the predicted reach of LISA (3-year
exposure). Assuming vy = 1, & = 0.33, and g« = 142, one finds empirically that holding
fixed the product T/ H, = 10000 GeV the peak of the GW signal appears at frequencies
close to f ~ 0.001 Hz, near the best reach of LISA. The GW signal could be detected by
LISA for B/ H. < 100, which can be compared to the inequalities (44).

Coming back to the topic of this review, the percolation temperature T is essentially
a free parameter, and additional GW experiments are being planned [169-186], that will
be sensitive to higher frequencies and lower values of h2Qgyy. Hence, it is possible that
dark sectors based on Sp(2N) theories that undergo first order phase transitions in the
early universe are testable via their relic stochastic GW background. Furthermore, the
quantities « and B have not yet been computed for Sp(2N) theories with N > 1. (The
Sp(2) = SU(2) case is trivial, as the transition is believed to be of second order.) Large-N
universality suggests that similar results should hold for Sp(2N) as for SU(N,) theories,
in which the thermodynamics depends mildly on N; > 2. Some interesting work in this
direction, based on gauge-gravity dualities and their relation to large-N, theories, can be
found in Refs. [336-343]. But dedicated, non perturbative studies of Sp(2N) theories at
finite temperature are needed, for which the LLR method [204-207] offers an intriguing
opportunity, as argued in Refs. [208-211].

3. Sp(2N) lattice gauge theories

This section introduces the lattice treatment of the theories of interest. We start by
describing the lattice action, for bosons and fermions, in Sect. 3.1, and the numerical Monte
Carlo algorithms adopted in Sect. 3.2. Section 3.3 discusses scale setting and topology.
Section 3.4 introduces the strategy employed in data analysis, focusing mostly on the two-
point functions used for spectroscopy measurements. Additional information on the lattice
theory and its systematic effects are presented in Sect. 3.5, which discusses the bulk phase
structure and finite volume effects.

3.1. Lattice action

For the numerical calculations we first rewrite Eq. (4) in four-dimensional Euclidean
space-time, then discretise the lattice action, that contains the gauge-field term S < and the
fermion matter-field term S r

S =S¢+ 5f. (46)



Version May 11, 2023 submitted to Universe 26 of 75

We use the standard Wilson plaquette action for the gauge fields. With the bare lattice
coupling B = 4N /g?, it gives

=By ) <1 — ReTer,) , (47)

x u<v
where the plaquette P, is defined as
P (x) = U () Uy (x + YU (x + 0)U (x) - (48)

The gauge link U, (x) € Sp(2N) transforms in the fundamental representation. The massive
Wilson-Dirac action for fermionic fields is

Ny )
s;=a* Y. Y. Q' (x)D0 +ﬁ22@ YD (x), (49)
j=1% =1

with the definition of the massive Wilson-Dirac operator
Dygf(x) = (4/a+m§)pf(x) (50)
1 o\ R .
—%{u—v) ROPR G+ ) + (1)U (e = pyf (- )},
where we denote as a the lattice spacing, R the representation, with (f) and (as) being

the fundamental and antisymmetric, respectively, and m{ the (degenerate) bare masses of

(f)( )

the fermion fields l[JlR. The link variable for fundamental fermions, U’ (x),is the same as

Uy, (x) in Eq. (48). For the antisymmetric fermions, the link variable, U,(fs) (x), is obtained
by the construction

(as) oA\t (cd)y ;T .
(Uy )(ab)(cd)( x) = Tr[( (a )) Uy (x)e (ﬂs)u},(x)}, witha < b, ¢ < d. (51)

The basis matrices are defined as

— L ___ forc<a,
(eEZS)))C,NJrC = _(eEZi))))NJrc,c = { _Z(ﬂﬂ(_ﬂlf)l) forc =a (52)
V2a(a-1)" o
forb=N+awith2 <g <N, and
1
(EEZS))>Cd = E(éadfsbc - 5ac§bd) (53)

for b # N + a. We assign the multi-index pairs (ab) with the order 1 < a < b < 2N. In this
work, the spatial extents, Ly/a, Ly/a and L;/a, of the lattice are taken to be the same, while
the temporal extent, T/, can be different. Periodic boundary conditions are imposed for all
fields in the spatial directions. For the temporal direction, we use periodic and anti-periodic
boundary conditions for the gauge and fermion fields, respectively. Using the lattice actions
described above, we generate gauge-field ensembles with Monte Carlo (MC) methods, as
described in the next section.

The lattice theory with Ny = 2 and ny = 3 (massive) Dirac flavours is expected to
exhibit the same global (flavour) symmetry breaking pattern of the continuum theory
discussed in Sec. 2.1. Namely, the breaking patterns are SU(4) — Sp(4) and SU(6) —
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SO(6), for the fundamental and antisymmetric sectors, respectively. This information is
encoded in the spectrum of the Dirac operator, which can be modelled by chiral random
matrix theory (ChRMT) [344]. In particular, ChRMT predicts that the distribution of the
unfolded density of spacings, s, between subsequent Dirac eigenvalues, P(s), is described
by the Wigner surmise with a Dyson index different for the symmetry breaking patterns.
In Ref. [10], we computed the Dirac eigenvalues for fermions in the fundamental and
antisymmetric representations from a quenched ensemble with lattice size 4*, and found
that the numerical results are in good agreement with the ChRMT predictions of P(s). We
hence confirmed that fermions are correctly implemented in the code used for numerical
simulations and measurements.

3.2. Simulation strategies

In the lattice studies reported in Refs. [2-15], numerical calculations are carried out by
using the HiRep code [345,346], with bespoke software implementation of Sp(2N) gauge
groups [347]. For pure Sp(2N) gauge theories, gauge configurations are generated with
the heat bath (HB) algorithm, and decorrelation between configurations is improved by
micro-canonical over-relaxation (OR) updates. Similar to the case of SU(N,) [264], the
gauge links evolve with the minimal set of SU(2) subgroups covering the whole Sp(2N)
group to ensure ergodicity. A variant of the (modified) Gram-Schmidt algorithm allows to
correct the link variables and keep them in the desired group manifold over the updates.
This re-symplectisation procedure is important for correcting for numerical errors arising
from the limit of machine precision.

Simulations with dynamical fermions are performed using the hybrid Monte Carlo
(HMC) algorithm for even number of Dirac flavours. For simulating odd number of Dirac
flavours, we resort to the rational HMC (RHMC) algorithm [348]. Contrary to the HB
algorithm, the explicit form of the group generators of Sp(2N) enters the definition of
the molecular dynamics (MD) update (see also Refs. [349,350] for the relevant choice of
integrators and conditioning of the fermion matrices). Again, the link variables are re-
symplectised to correct for machine-precision errors. Beside the Gram-Schmidt method
mentioned above, this can also be achieved by carrying out projections with the quaternion
basis, as described in Appendix C of Ref. [2].

Correlations between consecutive trajectories (Monte-Carlo steps) exist in the algo-
rithms mentioned above. In order to obtain independent gauge-field configurations, we
monitor the average value of the plaquette along Monte-Carlo steps, and investigate its
autocorrelation time in all our simulations. We find that it is sufficient to perform measure-
ments for every 12 trajectories in quenched simulations, and for every 8 to 28 trajectories for
dynamical calculations. Furthermore, we typically discard a few hundred initial trajectories
for the purpose of thermalisation, which is monitored via the plaquette value. Statistical
analysis employs the standard bootstrap method.

3.3. Scale setting and topology

The raw data obtained from lattice calculations are all expressed in lattice units—each
ensemble with a given set of lattice parameters defines a lattice theory at some value of
the lattice spacing, a, which depends on the chosen couplings. It is therefore necessary
to set a common scale to convert all the lattice results to the same continuum theory in a
consistent way, using a procedure of scale setting. The gradient flow method for the scale
setting is particularly suitable for lattice studies of novel strongly coupled theories, as the
ones considered here. The lattice version of the gradient flow for the gauge fields, the Wilson
flow, is nowadays common practice in the field. Thus we do not venture into a complete
treatment of this technique here, referring the reader to Refs. [351,352] for further details;
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Figure 3. Inverse of the gradient flow scale, a/wy, in the Sp(4) gauge theory coupled to Ny = 2
fundamental fermions, as a function to the mass of the lightest pseudoscalar riipg = mpgwy. Different

colours denote different B values; from top to bottom: 6.65 (blue), 7.05 (magenta), 7.2 (green), 7.4 (red)
and 7.5 (brown). The plot is taken from Ref. [4].

we instead briefly define the gradient flow scheme used for this work and discuss the key
numerical results.

The gradient flow is defined via a diffusion equation in which a new gauge field
By (t, x) at a fictitious flow time t (having length dimension two) is defined from the four-
dimensional gauge field A, (x) as

dBy(t,x)

T = D, Gyu(t, x), with B, (0,x) = Ay (x), (54)

where D, is the covariant derivative and GV# is the field-strength tensor. For t > 0 any
gauge invariant observables built out of By (t, x) are renormalised [353]. An observable that
does not generate new operators along the flow time is the action density,

E(t,%) = —3 TGy (1, 1) Gy (1), (55)
After defining a dimensionless quantity using the expectation value of E(t, x),
E(t) = (E(t,x)), (56)
one can obtain the scale ty by imposing the condition
E(t)|t=t, = &o- (57)

Here, the renormalisation scale can be identified with the diffusion radius p = 1/+v/8t. The
reference scale & is chosen empirically so that lattice artefacts are minimised. Two further
choices are made: firstly, rather than taking the simple plaquette operator G, = Py, in
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Figure 4. Left panel: £(t)/Cy(F) as a function of the rescaled flow time, t/ty. Right panel:
W(t)/Cy(F) as a function of the rescaled flow time ¢/w3. Both quantities are computed using
the four-plaquette clover-leaf discretisation on the ensembles corresponding to the finest and coarsest
available lattices for each N, with C;(F) = (N, + 1) /4. The figure adopts the choice ¢, = ¢y, = 0.225
(horizontal dashed line). The plots are taken from Ref. [12].

Eq. (55) one can replace Gy with a four-plaquette clover, denoted by CMV' that will also be
used to define the topological charge density. Second, rather than £(t), one can consider

d
W(t) =t2{E)}, (58)
and define the scale wy [354] by the relation

, =Wy =035. (59)

|t:wO

Wi(t)

Since wy and ty are affected differently by discretisation effects, their comparison allows for
an assessment of their magnitude.

While the flow scale shows mild quark-mass dependence in a typical lattice calculation
for QCD with light quarks [354], for the Sp(4) theory involving dynamical fermions consid-
ered here it turns out to significantly depend on the fermion mass, as shown in Fig. 3. Notice
that the mass dependence is milder on finer lattices. We introduce the hatted notation to
present physical quantities in units of the Wilson flow scale wy, e.g. i = mwy = m'atwt
with m'@ = ma and w%)a“ = wy/a.

When studying Sp(2N) pure gauge theories on the lattice, it is convenient to define a
way to relate the value of the scales obtained at different values of N. It can be shown that
the following relation holds true,

£(1) = oy CalF) (60)

at leading order in a perturbative expansion in the 't Hooft coupling, defined as A = 47t N«,
with a(p) the renormalized coupling in the Wilson Flow scheme and C;(F) = (2N + 1) /4
the quadratic Casimir of the fundamental representation of the Sp(2N) group. It is then
natural, especially in the context of studies about the large-N, limit of gauge theories, to set

50 = CECZ(F) ’ WO = CwCZ(F) . (61)
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Figure 5. The topological charge Q; as a function of simulation time (trajectory) for the ensembles
corresponding to the coarsest (top) and finest (bottom) lattice with N. = 6. The value of Qr is
computed at ¢ = ty, where the value of ¢ is obtained from ¢, = 0.225. The average value of the
topological charge along the trajectory is reported in the bottom left-hand side of the plot. The side
panel contains the cumulative histogram of the values of Qy (o). The orange curve is a gaussian fit to
the cumulative histogram. The plots are taken from Ref. [12].

where ¢, and ¢, are empirically chosen constants. The usefulness of this scaling law outside
of perturbation theory can be assessed numerically. The behaviours of £(t) and W(t),
rescaled with C,(F ), as a function of the rescaled flow times t/ty and t/ wg, respectively,
are displayed in Fig. 4. Notice the approximate superposition of the curves corresponding
to different values of N and similar values of the 't Hooft coupling, which holds beyond
perturbation theory.

We close this section with a brief discussion on the topological charge Q. The discreti-
sation of this observable is not unique. As a — 0, valid lattice definitions differ by terms
proportional to a*. Regardless of the definition, lattice measurements of Q are dominated
by UV fluctuations. In order to extract the value of the topological charge at finite lattice
spacing, an efficient strategy is to compute Q on configurations that have been evolved
according to the Wilson flow, Eq. (54), up to a finite flow-time t.
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In the lattice studies on Sp(2N) we review, the definition of the topological charge Q.
is

1
Qu(t) =Y q(t, x), qr(t x)= Wgwmﬁ{cw(tr x)Cor(t, x)}. (62)

where g1 (t, x) and Cyy (t, x) are, respectively, the topological charge density and the four-
plaquette clover-leaf operator computed at space-time site x and flow time ¢ [355,356]. This
observable is used for monitoring the simulations. Specifically, for each of the lattice settings,
the topological charge is computed and its value as a function of simulation time inspected
to ascertain absence of topological freezing, so that Monte Carlo configuration are not stuck
in particular values of Q;, which would indicate one is not sampling correctly the space of
the configurations—more sophisticated ideas exist to address topological freezing [357-359],
and might be implemented in the future. As an example, the Monte Carlo time history of
the topological charge Qy is reported in Fig. 5 for the case N, = 2N = 6. The trajectory
of Qr does not display any sign of topological freezing. In the side panel, the frequency
histograms of Qr, are reported. The distribution of Q; is compatible with a Gaussian
centered at Q = 0, as expected from theoretical considerations.

When the topological charge plays a quantitative role in the physics observables of
interest, for instance in the measurement of its susceptibility, its a-rounded version is used
in order to further reduce discretisation effects, see Sect. 4.3 for details.

3.4. Measurements: two-point functions, masses and decay constants

Spectroscopy studies are a crucial component in understanding gauge theories. These
studies involve the computation of masses and decay constants of the low-lying hadronic
states, such as those listed in Tables 1 and 2.

Two-point correlation functions are a central tool for these calculations. For mesons,
the structure of a generic two-point correlator (using the notation x = (, X)) is

Crm(t) = L(Ou(x)0}4(0)), (63)

X

where M and M’ are labels appearing in the first column of Table 1, with Oy and O,y being
the corresponding interpolating operators. These operators overlap with the lowest-lying
mesonic states with zero spatial momentum. Carrying out the Wick contraction for the
fermion fields in Eq. (63), the correlation function is

Ca () = = ¥ Tr [T S® ()T ysSt (x)75 (64)

where the trace is taken in both spinor and colour spaces, with I, ) being the relevant
Dirac matrix in O, (. In Eq. (64), the symbol SR denotes the fermion propagator in the
representation R. We define respectively the (f) and (as) fermion propagators as

Séu bocﬁ(x) = <Qiuzx(x)@‘3(0)> and S‘II{’ab cdacﬁ(x) = <Tkubtx<x>wﬁ(0)> ’ (65)

where 4, b, ¢, d are colour indices while « and 8 are spinor indices. In the case of a point
source, the meson interpolating operator is constructed at one space-time point, and the
fermion propagator is computed by solving the Dirac equation

Dfa,bﬁ(x/ ]/)SRCbVﬁ (]/) = 5x051x'yf5ac ’ (66)
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with DR referring to the Dirac operator in representation R. Using Z, x Z single-time
stochastic wall sources [360] (with number of hits 3, in our case) improves the signal by
increasing the overlap of interpolating operators and the lowest-lying physical state. At
large Euclidean time t — oo, the correlator with M = M’ behaves as

|(0|OmIM)[?

Cmm(t) = 2

[e—mmt+e—mM(T_t)} , (67)

where |[M) denotes the lowest-lying mesonic state that overlaps with Oy, with m); being
its mass, and T the temporal extent of the lattice. The combination M = PS and M’ = AV is
used to determine the pseudoscalar meson decay constant, as the correlator reads

(0]Oav|PS) (0|Ops|PS)*
2mps

Cps/Av(t) — [6_mpst — e_mPS(T_t)} . (68)

The decay constants of the PS, V, and AV mesons are extracted from the matrix elements:

(0]0avIPS) = V2fpspt, (69)
(0|Oy|V) = V2fymye", (70)
(0|OAVIAV) = V2faymaye, (71)

where p# and e¥ are the momentum and polarisation four-vectors, respectively. The PS
decay constant, fpg, is normalised by adopting the convention which yields fps ~ 93
MeV in QCD. Furthermore, we renormalise the decay constants using the renormalisation
constants obtained in lattice perturbation theory for Wilson fermions at the one-loop level
with tadpole improvement [361].

The zero momentum two-point function of a chimera baryon, after the Wick contrac-
tions, takes the form,

Cea(t) = ) (Ocp(x)Ocp(0))

X
- Z(rzsi;fﬂ’c,d, (x, O)ﬁ) 0,0 0,00
X
x Te[T18Y 4 (x,0)TTSY i (x,0)], (72)

where we define T' = 7°T"7?, with I''? being the Dirac matrices appearing in the second
column of Table 2. The trace is over the spinor indices. Unlike mesonic correlators, the
chimera-baryon two-point function in Eq. (72) contains contributions from both even and
odd parity states. The asymptotic behaviour of such a correlator at t — co is thus,

CCB(t) — ’Pg |:Ceefmgt + Coefmg(Tft):| _ 7)0 |:Coe*mut + Cee*me(Tft):| , (73)

where P,,, = (14 ) /2 are the parity projectors in the non-relativistic limit. We denote
as m, and m, the masses of the baryons in parity even and odd states, respectively, while
ce and ¢, are coefficients related to matrix elements of the interpolating operator between
the baryon states and the vacuum. By combining the correlators of both parity projections,
C, = P.Ccp and C, = P,Ccp, we obtain

Conlt) = S[Co(t) — Co(T — )] 2% 1 [cee_m‘“t + coe—mv<T—f>]. (74)

2

NI~
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The masses are extracted by fitting Eq. (67) for a meson and Eq. (74) for a chimera baryon.

Glueballs and torelons are color-singlet states of the system. Their existence descents
from the confining nature of the theory. These states transform according to the irreducible
representations of the spacetime symmetries of the system, which identify classification
channels. In the continuum, the symmetry channels are the J” representations of the Poincaré
group. The lattice is governed by the octahedral group, which is the symmetry group
(rotations and parity transformation) of the cube. Near the continuum limit, degeneracies
of states arise that restore Poincaré invariance. The masses of the low-lying glueball states
in all J¥ channels and of the ground state torelon were determined in Sp(2N)) theories for
N =1, 2, 3, and 4—see Ref. [7] and references therein. In the rest of this section, we provide
an overview of the methodology that underpins Ref. [7], with the results reviewed in Sect.
4.1.

On the lattice, states are generated from the vacuum by the action of gauge-invariant
operators. These are defined as the trace of path-ordered, P, products of link variables along
closed space-like lattice paths C,

Ue(t, ©) =TcP [ Uulx), (75)
(xu)ec

where x = (t, X¥) are the coordinates of any site that belongs to the path. Elementary
paths can be linearly combined with suitably chosen weights that preserve the symmetry
channel. This fact can be exploited to optimise the signal-over-noise ratio, for instance using
a variational approach involving the combination of multiple operators for each given
symmetry channel. This observation underpins efficient methods of extraction of masses
from lattice data, such as smearing and blocking.

Glueballs are sourced by operators defined on contractible paths. They transform in
the trivial representation of the center of the group. As mentioned above, on the lattice the
spacetime symmetries are described by the octahedral group, which has five irreducible
representations, each with two parity sectors. These ten channels are labelled by A7, A;,
E*, Tli, TZi , where =+ indicate the parity P and A1, A; etc. the irreducible representations R
in standard crystallographic notation. The ground state mass in channel R” is determined
variationally. Among all the possible linear combinations of operators defined as in Eq. (
75), the ones with the maximal overlap with the ground state, denoted by OR”, are found.
The large euclidean-time behaviour the two-points correlation functions of these operators
then allows to extract the mass in channel R”, for different choices of the lattice spacing, at
each value of N.

Torelons are sourced by operators defined on paths that wind around the lattice along
a compactified direction. They transform non-trivial representation under the action of the
centre of the group. From the ground state energy of the torelon, the string tension, ¢, can be
extracted. The string tension is defined as the energy per unit length of a fluxtube winding
around a compactified direction of the system. If the length of the winding direction is L
and m is the mass of torelon, then in general

_ vk

where dj are dimensionless coefficients. The first three subleading terms in this expansion
have been computed and have been shown to be constrained by symmetries (i.e., they are
universal) [362-372]. For a winding direction of sufficiently large length,

m=cL, 77)
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Figure 6. Schematic diagram of the phase space of Sp(4) lattice gauge theory with Ny = 2 and
ng = 3 Wilson Dirac fermions. The black surface denotes the 1st order phase transition. Coloured
solid lines represent three distinct cases with fixed p values: the transition is always 1st order (red),
becomes crossover for an interval with small masses (blue), and is only 1st order with a large mass of
antisymmetric fermions (green). The image is taken from Ref. [10].

in agreement with the classical picture of fluxtubes as strings of constant energy per unit
length. In Ref. [7], the value of the string tension ¢ has been obtained from fits of the

Nambu-Goto formula
/ T
L)=cL{/1— — 7

which can be shown to reproduce the universal terms of Eq. (76), to order L=5.

3.5. Bulk phase structure and finite volume effects

The lattice action in Eq. (46) involves at most three bare parameters: the lattice coupling

f) — (f) (as) (as)

p and two bare masses m ... = amg * and m, ;. = amg ', as we restrict attention to mass
matrices that are flavour degenerate. The continuum and massless counterpart of this lattice
theory can be obtained by taking the zero limit of 1/ and mf,, (after accounting for the
additive renormalisation to the bare mass of the Wilson-Dirac fermions). Understanding the
phase space of the lattice theory is necessary to choose appropriate values of 8, for which
numerical simulations are doable on lattices of realistic size, without severe finite size effects,
and yet such as to still be in the weak coupling regime. The latter condition is particularly
important when the strong and weak coupling regimes are separated a first order bulk
phase transition: the dynamics of the strong coupling regime could systematically differ
from the continuum theory.

The average plaquette value is an order parameter for lattice bulk phase transitions.
By measuring the ensemble average of the plaquette with initial configuration either unity
or random, on a small lattice (e.g. 4%), one associates the presence of (strong) hysteresis as a
sign of first order phase transitions. By computing the plaquette susceptibility and using
different sizes of lattice, the study of the volume dependence can confirm the order of phase
transition and pin down the location of the phase boundaries.

The phase structure of Sp(4) Yang-Mills has first been studied with (unimproved)
Wilson plaquette action in Ref. [1], and later in Ref. [2]. The bulk phase transition disappears
above § 2 7.5. With degenerate fermions in a given representation the parameter space
extends to a two-dimensional plane that can be scanned by measuring the average plaquette
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Figure 7. Volume dependence of pseudoscalar meson masses. Top-left and top-right panels show the
results for the Sp(4) theories containing Ny = 2 fundamental and n; = 3 antisymmetric fermions,
respectively. Bottom-left and bottom-right panels display the masses of the PS meson composed of
fundamental and antisymmetric fermions, respectively, but measured in the dynamical Sp(4) theory
containing both Ny = 2 fundamental and 1y = 3 antisymmetric fermions. The lattice parameters are
B =72aml) = —0.79 (top-left), B = 6.8, am{™) = —1.03 (top-right), and g = 6.5, am’) = —0.71,

am(()as)

= —1.01 (bottom panels). The mass in the infinite volume limit, amg‘sf, is estimated from the
largest available lattice, except for the top-left panel in which it is determined from infinite volume

extrapolation (dashed line). Plot derived from Refs. [4,9,10].

values. References [2,3] show that the bulk transition is of first order at strong coupling
in the Sp(4) theory with Ny = 2 fundamental and ny = 3 antisymmetric Wilson-Dirac
fermions, respectively. The weak coupling regime is B 2 6.7 for the former and g 2 6.5 for
the latter. The critical beta value associated with the phase boundary decreases as more
fermionic degrees of freedom are involved. Finally, the phase space of the Sp(4) theory
with fermions in both representations, two fundamental and three antisymmetric Dirac
flavours, has been explored in Ref. [10]—see Fig. 6—and the weak coupling region extends

(f) (as)
0

to smaller beta values 8 2 6.3. The infinite mass limit of either am; ’ or am; "’ recovers the
phase structure of the theory with the same number of dynamical Dirac fermions in the
fundamental or antisymmetric representation, which is asymmetric as represented by the
green solid line in Fig. 6.

Finite volume (FV) effects are an inherent source of systematic errors in lattice calcula-
tions. In confining theories, they are expected to be exponentially suppressed or quantities
that do not involve scattering states, if the volume is larger than the longest (intrinsic)
scale of the theory, e.g. the Compton wavelength of the lightest state—usually, the pseu-
doscalar meson, for which one requires mg‘sf L > 1. To quantify the size of FV effects,
we compute mpg by varying the spacial lattice extent L and investigate its dependence
on mg‘sf L. Illustrative examples for different dynamical theories are shown in Fig. 7: the
top-left and top-right panels are for the Sp(4) theories with Ny = 2 fundamental [4] and
ny = 3 antisymmetric fermions [9], respectively, while the bottom panels are for the theory
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with both N =2 fundamental and n ¢ = 3 antisymmetric fermions [10]. We find that

the FV effects can be safely neglected if the condition mi%‘sf L 2 7.0 is satisfied, except for

amlj:,s in the two-representation theory, in which the condition becomes more stringent as
mi¥ L > 8.5. Such conditions are sufficient to ensure that FV effects are within a percent
level.

We highlight that the FV corrections to ampg have opposite sign for mesons composed
of fundamental and of antisymmetric fermions. This can be understood within the low-
energy description of chiral perturbation theory (xPT), as FV corrections are dominated
by the contribution of PS states wrapping around each lattice spatial direction. The NLO

expression of the PS mass squared at finite volume in the continuum theory is

A(M) + Apy(M)
F2

2
s = M2 (1-+ay +bu) gz + O, 79)
where M and F are the mass and decay constant of the PS meson defined at the leading
order in the xPT, and y is the renormalisation scale. A(M) is the chiral logarithm arising
from the one-loop integral at infinite volume, while Apy (M) is the FV contribution obtained
by replacing integrals with discrete sums on a cubic box of size L. A(M) and Apy(M) are
independent of the details of the theory, encoded in the coefficient ay; [373]

*%*Nif' for SU(2Nys) — Sp(2Ny),
=~ for SU(Ny) x SU(Ny) = SU(Ny), (80)

— ﬁ for SU(2Ns) — SO(2Ny) .

N—

For the two fundamental and three antisymmetric flavours, corresponding to the first and
the third classes, one finds that a); = —1 and +1/3. The resulting FV corrections would
have an opposite sign and thus agree with our findings in Fig. 7.

4. Numerical investigation I: Pure Sp(2N)

We summarise in this section the main results for the measurement of physical ob-
servables obtained in Sp(2N) lattice gauge theories in which only gauge dynamics is
included in generating the ensembles. Section 4.1 focuses on string tension and glue-
ball masses [2,6,7], Sect. 4.2 reports a selection of measurements of meson masses in the
quenched approximation [2,5], and Sect. 4.3 reports on the topological susceptibility of
the Sp(2N) theories [11,12]. We only reproduce some illustrative examples, and refer the
reader to the original publications for more extensive selections of numerical results, and
for technical details about the calculations.

4.1. Glueballs and string tension

Numerical results for glueballs and string tension are available for several values of the
lattice spacing. For each Sp(2N) group, and for each representation R”, the extrapolation
for the ratio myp /+/0 is performed with the relation

mRP me

Vo Vo

The leading-order linear behaviour in a% in Eq. (81) describes the data well for all channels,
as attested by the values of the x?/ Ny reported in the figure. As an example, Figure

8 shows the extrapolations to the continuum limit for all the channels in the case N = 4.
Similar results are obtained for N = 1, 2, and 3 [7]. The values of the masses in the

(1+ cgpoa®). (81)

(a) =




Version May 11, 2023 submitted to Universe

37 of 75

bt

AT* X%/Naos. =037

" At X2/Nios. =1.01
.\.-'—.—.'—._L.\.

7

=6 —+ A7, X*/Naos. =017

§ —#— A7, x*/Naos. = 0.45
5 *\f‘r’—f—i—{—-*-

@ + 2

=% —+— A, x*/Naos. =021

§ —— A5, x*/Naos. = 0.23
6 .

mpe /o

! T2+ﬂ X2/Nd.o.f. =0.61
E E+# X2/N<l.o.f. =1.01

. 71 .
§ 11. f Jl' Ik e Ty, x*/Naos = 0.13
gcﬁ' . Pl 11 —#— B, x*/Naos =0.35
5 T T T
10
)
§ g —+ T, x*/Naox. = 0.66
E —E— Ty, X*/Naos. = 0.26
‘! f
0.00 0.02 0.04 0.06
oa?

Figure 8. Glueball masses in units of /¢ in each channel R of the Sp(2N) theory with N = 4, as a
function of ca?. The value at ¢a?> — 0 is obtained, for each symmetry channel R”, by a likelihood
analysis of the measurements with Eq. (81)—see the solid lines. The plots are taken from Ref. [7].

spectrum extrapolated to the continuum limit are reported in Table 3, and displayed in Fig.

9. The masses in the E* and T2i channels have degenerate continuum limit, as expected by
rotational invariance. Because the masses are degenerate even at non-zero values of a, we
infer that discretisation effects are small in all the ensembles. The lightest glueball states in
the spectrum are found in the channels 0*,2%,and 0, for every value of N, consistently
with the pattern observed in gauge theories with SU(N,) groups [226].

me

NG

(N) =

mgp (OO) CrP

VA

The leading-order, finite-N correction to glueball masses near the N — co limit is

(82)
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Figure 9. Continuum limit of the glueball spectrum of Sp(2N) gauge theories in units of /o for

N =1,2,3 4and N = o, for each R channel (bottom horizontal axis), and continuum channels

(top horizontal axis). The spectrum A", A]**, and E™* states for SU(0) is also reported, for

comparison [225]. The boxes represent 1o statistical errors. The plot is taken from Ref. [7].

and is used to perform the large-N limit extrapolation in each R” channel. The results are
displayed in Fig. 10, for all symmetry channels. The numerical results are also reported in

the last column of Table 3.

Figure 9 displays also large-N, extrapolations in the SU(N,) family of gauge groups [225],
for comparison, showing the compatibility of the results obtained for the two different
group sequences. This is in agreement with the expectation that, in the large-N limit,
the gauge theories based on the Sp(2N) and the SU(N,) families of groups agree in their

common sector.

Table 3. Continuum limit extrapolations of mpr/+/0. For N = 2, these values are the weighted
average of those in Ref. [2] and Ref. [7]. In the case of SU(N; — o), we have m/+/v = 3.307(53) for
the A] " channel, 6.07(17) for the A] ** channel, and 4.80(14) for the E™* channel [225]. The table is

taken from Ref. [7].

1 2 3 4 00
RP me/\/E mRP/\/E mRP/\/E mRP/\/E mRP/\/E
Al+ 3.841(84) | 3.577(49) | 3.430(75) | 3.308(98) | 3.241(88)
A;r* 5.22(33) | 6.049(40) | 5.63(32) 5.58(44) 6.29(33)
AT 6.20(14) 5.69(16) 5.22(23) 5.36(26) 5.00(22)
Al_* 7.37(72) | 7.809(79) | 6.59(49) 7.76(85) 7.31(45)
A;‘ 6.81(31) 7.91(16) 7.36(39) 6.5(1.0) 8.22(46)
Ay 8.99(86) 9.30(38) 8.60(67) 7.2(1.4) 8.69(83)
T2+ 5.29(20) | 5.050(88) | 5.09(16) 4.73(23) 4.80(20)
T, 6.55(34) | 6.879(88) | 6.47(43) 6.36(35) 6.71(35)
ET 5.33(18) 5.05(13) 5.03(13) 4.62(29) 4.79(19)
E~ 6.61(37) 6.65(12) 6.34(40) 6.29(29) 6.44(33)
T1+ 8.58(41) 8.67(28) 7.77(59) 8.45(52) 8.33(51)
T 9.63(77) 9.24(33) 9.15(69) 8.90(75) 8.76(72)
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mpge /+/0(c0) is obtained from the best fit of Eq. (82) to the numerical measurements at fixed N. The
plots are taken from Ref. [7].

Measurements of glueball masses in Sp(2N) and SU(N,) gauge theories can be used
to test conjectured universal behaviours in Yang-Mills theories. We mention two such tests
here, referring to Ref. [223] and Ref. [6] for details. Ref. [223] suggested that the ratio of the
mass of the lightest 07 glueball to the string tension, normalised to the ratio Co(F)/Cy(A)
of the Casimir operator for the fundamental (F) and adjoint (A) representation, might be a
universal quantity in Yang-Mills theories, denoted as 1, dependent only on the space-time
dimensionality. By fitting a constant to the numerical results for Yang-Mills theories in
d =2+1and d = 3+ 1 dimensions [7,223] yields:

(83)

_m3. Gy(F)  [5388(81)(60), (d=3+1)
1= 70 G(A) T \8440(18)(76), (d=2+1)
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Figure 11. Top panel: the ratio 5 for SU(N,) and Sp(N, = 2N) theories in d = 3 4 1 space-time
dimensions. Fits of 77 are shown for the Sp(N;) family, the SU(N,) family and their combination.
Bottom panel: ratio m%H /o, plotted as a function of 1/ N in d = 3 + 1; the lines are the ratios of the
quadratic Casimir operators, C»(A)/Cy(F), of the adjoint representation over the corresponding ones
of the fundamental representation. The plots are taken from Ref. [7].

Here, first and second parentheses denote statistical and systematic uncertainties, respec-
tively, the latter estimated as the difference between the two sequences of gauge groups.
Although none of them is conclusive, several arguments, based on Bethe-Salpeter equations,
scale anomaly, and sum rules, might be able to explain the striking agreement between
this conjecture and numerical results displayed in Fig. 11 for d = 3 4 1 dimensions—see
Ref. [223] for similar results in d = 2 + 1 dimensions . In a similar spirit, we borrow Fig. 12
from Ref. [6], to highlight a regular pattern in the ratio R = Zi:’ , a quantity that can also
be compared with a plethora of predictions obtained with non-perturbative instruments
alternative to lattice techniques.

4.2. Quenched mesons

The first step in the study of any new gauge theory with fermion matter content
is the measurement of the spectrum of mesons in the quenched approximation, as it
sets a reference framework for subsequent dynamical fermion simulations. Furthermore,
this exercise already provides useful information in the mass regime that is interesting
for model-building purposes; for example, both for CHMs and for SIMPs based on the
SU(4)/Sp(4) coset, which are microscopically realised by Sp(2N) theories with Ny = 2
fundamental fermions, the masses of the underlying fermions are not small, so that the
quenched approximation already provides useful estimates of the meson spectrum, which
can then be refined with dynamical simulations. Ref. [5] performed the quenched analysis
for Sp(4), restricted to flavored mesons, both for fermions transforming in the fundamental
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Figure 12. Numerical and semi-analytical results for the ratio R. Different markers denote lattice
continuum extrapolations in 3 + 1 dimensions for Sp(N,) and SU(N,) [225], as well as in 2 + 1
dimensions for SO(N,) [229] and SU(N;) [374]. Extrapolations to the N; — oo limit are also included.
Differently rendered lines at R = V2,1.46,1.57,1.61,1.74, are the holographic calculations in the GPPZ
model [214], the circle reduction of AdSs x $° [212,220], the holographic model Bg"“f in Ref. [375],
the Witten model [212,217], and the circle reduction of Romans supergravity [215,217], respectively.
With R = v/2,1.64 we report the field theoretical results from Refs. [222] and [376], for YM theories in
3 +1and 2 + 1 dimensions, respectively. The plot is taken from Ref. [6].

as well as the 2-index antisymmetric representations. Further research will extend these
studies in the future, by performing the calculations for chimera baryons composed of
fermions in these two representations [15], as well as considering mesons composed of
fermions in the symmetric representation, and finally by extending the study to theories
with larger groups [9].

A complete description of the ensembles, and the measurements they are used for, can
be found in Ref. [5]. 200 thermalised configurations are generated for each value of the
coupling used for the glueballs in Ref. [7], B = 7.62, 7.7, 7.85, 8.0, 8.2, but on larger lattices,
with N; x Ng = 48 x 243 for B =762, and N; x Ns3 = 60 x 483 for the other ensembles.
In order to ensure that finite-volume effects are negligible, in comparison with statistical
uncertainties, the fermion masses in the propagators are chosen so that nps ,sL 2, 7.5. By
inspection, one finds that fpsL 2 1.6 and fpsL 2 2.3 for the fundamental and antisymmetric
representation fermions, respectively, large enough to ensure applicability of the Chiral
Perturbation Theory. All the measurements have my,y /1ps ps < 2, so that the vector bound
states cannot decay.

Figures 13 and 14 are taken from Ref. [5], and show the massless and continuum
extrapolations of the lattice measurements of the flavoured-meson decay constants and
the masses, respectively. Lattice measurements are combined by making use of a double
expansion in small fi3s and ~—we recall that the hatted notation uses the gradient flow scale
wy, as discussed in Sect. 3.5, so that 71 = m wy, for example—by adopting tree-level NLO
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Figure 13. Decay constant squared, as a function of the pseudoscalar meson mass squared, of
flavoured mesons composed of fermion constituents in the fundamental (blue) and antisymmetric
(red) representations in the quenched approximation. The plots are taken from Ref. [5].

Wilson chiral perturbation theory (WxPT) [355,377] (see also Ref. [378], and Refs. [379,380]
on improvement), and writing

A Azl N R
MO = AL yids) + WP, (84)
miZNLO = ”Aﬁ\?lx(l + L%,M’ﬁl%s) + W%,Mﬁ / (85)

where fX and X are the decay constant and the mass in the chiral limit, while L° and W?°
are low-energy constants to be determined from the fits to the numerical data. Implicit in
this formalism is the replacement of the pseudoscalar mass squared for the fermion mass,
which is justified at this order of the chiral expansion, as long as the relation rii3q = 2B f
holds.

In Figs. 13 and 14, each data point has been obtained by subtracting the finite lattice-
spacing correction from the raw data, and the bands denote the results of the fit obtained
after removing the last terms in Egs. (84) and (85). The width of the bands represents
the statistical uncertainties. With present accuracy, there is no evidence of corrections

beyond linear order in m%,slps, to fNPZS ps for m%s’ps < 0.4 and to all the other observables

for rhl%s, ps < 0.6, in agreement with Egs. (84) and (85). The masses and decay constants
of mesons composed of fermions transforming in the antisymmetric representation are
always larger than those of fundamental ones, for equal values of the pseudoscalar masses.
A particularly important quantity in the context of CHM and top partial compositeness
is the pseudoscalar decay constant, which shows the hierarchy fgs / fI%S = 1.81(4), in the
massless limit. The masses of vector and tensor mesons are consistent with each other, as
the two channels contain the same states, although these two measurements are affected by

comparatively large discretisation effects [5].
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Figure 14. Mass squared of flavour non-singlet mesons, as a function of the pseudoscalar meson
mass squared, composed of fermion constituents in the fundamental (blue) and antisymmetric (red)
representations in the quenched approximation. The plots are taken from Ref. [5].

Figure 15 summarises the mass spectra of the ground states for (flavoured) mesons and
glueballs in the quenched Sp(4) theory. The meson masses are shown as a function of the
pseudoscalar mass squared, chosen to be the same for the fundamental and antisymmetric
representations. We also include the pseudoscalar decay constants, for completeness.
Glueball masses are denoted by their quantum numbers J”. As seen in the figure, the mass
dependence of mesons in the two different representations are similar to each other, but the
antisymmetric ones are heavier than the fundamental ones, in all individual channels. The
lightest, ot, glueball has mass of the order of that of heavy mesons in the antisymmetric
representation.

We anticipate, as a closing comment, some of the results of Sect. 5.1, obtained with
dynamical calculations for mesons in the theory with Ny = 2 fermions in the fundamental
representation. The comparison between dynamical and quenched calculations of contin-
uum and chiral extrapolations show a discrepancies of about 25% for 113, 20% for fI%S’ 10%
for n%%,, and smaller for the other measurements. In the case of the two-index antisymmetric
representation, only preliminary results for mesons have been reported recently [14], but
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Figure 15. A summary plot of quenched mass spectra of Sp(4) gauge theory. The red and blue colours
denote the mesons composed of fermions in the fundamental and antisymmetric representations,
respectively. The black coloured data are for the glueballs in various channels classified by the
quantum number J”. The plot is taken from Ref. [8].

the massless extrapolation has not been made, and thus the analogous comparison is not
yet possible. Dedicated investigations are undergoing and the results will be published in
the near future [13].

4.3. Topology

We report here a selection of results taken from Ref. [12], in which the (a-rounded)
topological charge [241], denoted Q;, is studied for several values of g and groups Sp(2N).
The topological susceptibility is then obtained for each value of N and § from

xiat = 5 QL) (56)

The continuum extrapolations can be obtained with the Wilson flow scale-setting procedure

using the relation
2

a
xu(a)td = xp(a=0)t3 + Cl% (87)

where c; is a dimensionless coefficient. Alternatively, one can adopt wy to set the scale,
and use the same formula, but replacing t( with w3. These extrapolations are displayed in
Figure 16.
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Figure 16. Topological susceptibility per unit volume x, t% as a function of a2/t (top panels) and
)(Lwé as a function of a2/ wg (bottom), in Sp(N,) Yang-Mills theories with N; = 2, 4, 6, 8. We adopt
reference values c, = ¢y = 0.225 (left panels) and ¢, = ¢y = 0.5 (right). Our continuum extrapolations
are represented as dashed lines. The plots are taken from Ref. [12].

One would like to compare the value of the topological susceptibility in Sp(2N) and
SU(N,) gauge theories. Scaling arguments (see for instance Ref. [11]) suggest to rescale the
topological susceptibility in units of the squared string tension as follows:

X Co(F)?
o2 dG !

Mx (88)
where d is the dimension of the gauge group, and test whether it captures universal feature
of Yang-Mills theories. In the large-N regime, one expects that

. x C(F)? Xeo
R e e )

where b = 1/4 for Sp(2N) and b = 1/8 for SU(N;). A compilation of results from the
literature on SU(N;) gauge theories, along with the results for Sp(2N) [11,12], on the
rescaled topological susceptibility, is displayed as a function of 1/d in Fig. 17. A combined
fit yields

A}ignm ny = (4842 +£0.77 £3.31) x 107*, (90)
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Figure 17. Ratio of topological susceptibility and square of the string tension, rescaled by the group
factor Co(F)?/dg, as a function of 1/dg. Dotted and dashed-line are results of a 2-parameter (dotted
line), and 3-parameter fit (dashed line) including O(1/ dZG) corrections. The horizontal dashed line is
the naive dimensional analysis estimate 1/(47)2. The plot is taken from Ref. [11].

where the first error is the statistical error from a 2-parameters linear fit in 1/dg. The second
error is the difference between the result of a 2-parameters fit O(1/dg), and a 3-parameter
O(1/d%), performed on the same data. Both fits are displayed in Fig. 17. We observe that
the naive dimensional analysis estimate for 77, (o) is of the same order of magnitude as the
numerical results.

5. Numerical investigations II: Dynamical fermions in Sp(4)

This section contains a selection of numerical results obtained in Sp(4) gauge theories
with dynamical matter fields. In the case of N = 2 fundamental Dirac fermions, we show
in Sect. 5.1 the results for the masses and decay constants of flavoured mesons in various
spin-0 and spin-1 channels, and discuss their implications for low-energy dynamics. More
complete information can be found in Refs. [2-4]. For theories with other fermion field
content, we discuss in general terms the spectrum of mesons and (chimera) baryons in Sect.
5.2. We refer the reader to Refs. [10,13-15] for extended selections of numerical results.

5.1. Ny = 2 fundamental fermions

The Sp(4) gauge theory with Ny = 2 dynamical fermions transforming in the funda-
mental representation is treated with the Wilson-Dirac formulation and HMC algorithm,
as discussed in Sects. 3.1 and 3.2. Careful analysis of the average plaquette value and
its susceptibility indicates the existence of a first-order bulk phase transition [2], that
can be avoided for B 2 6.8. Reference [4] hence discusses five values of the coupling:
B =69,705,72,74,75. The bare fermion mass, my, is chosen so that the (pseudoscalar
and vector meson) composite states are lighter than the cut-off scale, identified with the
inverse of the lattice spacing, 1/a.

The gauge ensembles used for the measurements reported in Ref. [4] consist typically
of 100 ~ 150 thermalised configurations, separated by at least one autocorrelation time. In
order for the size of finite-volume effects, as discussed in Sect. 3.5, to be negligibly small,
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Figure 18. The square of masses (green) and decay constants (blue) of the pseudoscalar mesons as a
function of the bare fermion masses (left panel), and the relation between gradient flow scale wy/a
and squared pseudoscalar masses (right), for f = 7.2. The plots are taken from Ref. [4].

in respect to the statistical uncertainties, the stringent bound mpgL 2 7.5 is imposed, and
ensembles that do not satisfy this criterion are discarded.

All dimensional quantities are expressed in terms of the gradient flow scale, wy,
discussed in Sec. 3.5, in line with the treatment of quenched measurements. While the
gradient flow depends itself non-trivially on both 8 and my, yet a mass-dependent scheme is
adopted in the massless and continuum limit extrapolations, in which the gradient flow
scale is measured at a given fermion mass, as in Ref. [91]. This approximation neglects
corrections appearing only in higher-order terms of the effective field theory.

As the Sp(4) theory with Ny = 2 fundamental Dirac fermions is expected to lie
deep inside of the chiral symmetry broken phase, classical results such as the GMOR
relation in Eq. (22) should hold. The left panel of Fig. 18 shows how the pseudoscalar
mass squared, i1, and decay constant, f2, depend on ritg = (moa)(wo/a) and the critical
value rfip—identified numerically by performing a linear fit to the lightest five data points,
and extrapolating to the limit #1134 — 0—for the choice p = 7.2. The decay constant frs
extrapolates to a finite value in the massless limit. Both fpg and 113 are linear in the fermion
mass when 3¢ < 0.4.

The right panel of Fig. 18 shows the relation between wy/a and 13, for the same
ensemble with § = 7.2. One expects it to obey the next-to-leading-order (NLO) result [381]:

m
WO (g ) = W (1 + k1(1’5)> , (91)

and the lightest five points exhibit this linear behaviour. A fit to the data using Eq. (91)
yields x?/Ngof = 0.5 [4], supporting the adoption of WxPT, as in Egs. (84) and (85).

In contrast to the quenched theory, however, in the case of dynamical fermions the
wo scheme is mass-dependent, as discussed above Mg and 4 are measured in units of
Wy (1ihg), with the replacement of @ (1i3g) by @;. The key requirements for the validity of
WxPT can hence be summarised as follows:

PP aAy <1land fpsL > 1, (92)
AX

where Ay is the symmetry breaking scale, roughly estimated as AX = 47 fps. By restricting
attention to rii3g < 0.4 for pseudoscalar mesons (extended to 7ii3g < 0.6 for all the other
mesons), the first condition is automatically satisfied. The second condition is satisfied
restricting the acceptable lattice spacing to 4 < 1, which is also needed in the expansions
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Figure 19. Global fit and continuum extrapolation of masses and decay constants of flavour non-
singlet spin-0 and spin-1 mesons, based upon the low-energy EFT considerations based on hidden
local symmetry (HLS). The plots are taken from Ref. [4].

in Egs. (84) and (85). The ensembles satisfying these two conditions also have fps L 2 1.5,
satisfying the third one. Continuum and massless extrapolations are restricted to ensembles
satisfying all of these conditions, making use of Eqs. (84) and (85), as for the quenched
theory. We refer the reader to Ref. [4] for details of the fits, including the values of x?/Nq o -

As discussed in Sec. 2.3.1, HLS further extends the EFT to include the spin-1 states.
Reference [4] focuses on the eleven lightest and finest ensembles with m%,s < 0.4, in which
range one is allowed to replace the fermion mass by the pseudoscalar mass squared. The
resulting expressions involve 10 of the 12 unknown parameters in Eq. (20). The final
results of the global (uncorrelated) fit are presented by blue bands in Fig. 19, along with
the continuum values of the masses and decay constants. The value of x?/Nq s ~ 0.4
supports the EFT fit, and, despite the weak constraints on some other combinations of the
parameters, one finds that g{pp = 6.0(4)(2)—first and second parentheses denote statistical
and systematic errors in the numerical fits.
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Figure 20. Continuum extrapolation of GMOR relation and Weinberg sum rules in the Sp(4) gauge
theory with Ny = 2 fundamental Dirac fermions. The plots are taken from Ref. [4].

The EFT based on HLS incorporates several striking, testable predictions. The first one
is the GMOR relation extended to include NLO corrections:

s fps = mf(03 + mfvé) , (93)

where v and v5 are associated with the spurion mass terms in Eq. (20)—see the top-left
panel in Fig. 20.

Within this truncated EFT treatment, reasonable assumptions lead to the omission of
certain operators, and one finds that the sum of the decay constant squared for PS, V and
AV,

f5 = fos + fo + favs (94)

is independent of my [2]. The top-right panel of Fig. 20 shows the measurements of
fo at finite mass and the massless extrapolation, providing strong evidence of the mass
independence of fZ. Also the violations of Weinberg’s sum rules are independent of the
fermion mass, as shown in the bottom panels in Fig. 20.

We conclude this Section by comparing several lattice gauge theory calculations taken
from the literature, all with Ny = 2 (dynamical) fundamental fermions. We consider

the ratio my /+/2fps, that, as discussed in Sec. 4.2, appears in the right-hand side of the
KSREF relation, gypp = my/+/2fps. For Sp(4) one finds that the lightest ensemble yields
my /\/2fps = 5.47(11), while the massless extrapolation is my /v/2 fps = 5.72(18)(13). The
latter is statistically consistent with g4pp = 6.0(4)(2), determined from the global fit of the
EFT, providing some support for the aforementioned KSRF relation holds. For QCD, using
experimental values of m, ~ 140MeV, m, ~ 775MeV, fr ~93MeV, and Iy ~150MeV,

one finds m, / V2 fr ~ 5.9, while one obtain gy ~ 6.0 from the tree-level definition of the

S w2\
decay rate of p, T, = fg=m, (1 _ mz”) )

M
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Figure 21. Vector meson masses in units of the pseudoscalar decay constant obtained from several
lattice gauge theories coupled to two fundamental Dirac fermions: magenta, red, blue, and green
colours denote SU(2), SU(3), Sp(4), and SU(4) gauge groups, respectively. The black dot denotes
the real-world QCD value. The plot is taken from Ref. [4].

Figure 21 displays together the lattice results for SU(2) [84], SU(3) [382], SU(4) [91],
and Sp(4) [4], as well as the experimental QCD value. In the case of SU(4), the result has
been obtained by using dynamical ensembles with additional ny = 2 dynamical (massive)
Dirac fermions in the two-index antisymmetric representation. Near the threshold of the
two-pseudoscalar decay, the ratio mvy /v/2fps in Sp(4) is close to those of SU(3) and SU (4).
Large-N, arguments suggest that this ratio should be larger for SU(2), as is indeed observed
numerically.

5.2. Antisymmetric and multiple representation dynamical fermions

As discussed in Sec. 2.4, the Sp(4) gauge theory with matter consisting of 7y = 3 Dirac
fermions transforming in the antisymmetric representation (but Ny = 0 in the fundamental)
is interesting in itself as a completion for alternative CHM and SIMP proposals [62], and
it is hence worth studying it in detail. Most importantly, understanding its dynamics is
a necessary first step towards the study of the theory with multiple species of fermions,
transforming in different representations of the gauge group, which is relevant to TPC
models. A large-scale lattice exploration of the parameter space of this theory is under
way [13]. We comment briefly on some preliminary results of this exploration that have
been presented at the Lattice 2022 Conference [14]. The main focus of the ongoing study
is the spectroscopy of the spin-0 and 1 mesons listed in Table 1, together with the decay
constants for pseudoscalar, vector and axial vector mesons. Preliminary results for the ratio
mps/ fps indicate that this theory is likely in the broken phase, as evidenced by a sharp
drop of the ratio towards the massless limit—see Fig. 2 in Ref. [14]. Yet, the theory also
exhibits a strong mass dependence in the gradient flow scale, and it is difficult to lower
the physical mass of the mesons (expressed in units of wy) in the numerical calculations.
These observations might be explained by the proximity of this theory to the lower edge of
conformal window, as suggested by the perturbative analysis in Sec. 2.2. The long distance
dynamical features in this theory in the limit of massless fermions might show substantial
differences from the theory with N =2 fundamental fermions, or other QCD-like theories,
but a dedicated study is needed to ascertain this.
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Figure 22. Masses of composite states in the Sp(4) lattice theory coupled to Ny = 2 Dirac fermions
transforming in the fundamental and 7 = 3 in the antisymmetric representation. Blue and red colors
denote mesons with constituents in the fundamental and antisymmetric representations, respectively.
In magenta we display the chimera baryon composed of two constituent fermions in the fundamental

(as)

and one in the antisymmetric representation. The lattice parameters used are § = 6.5, am; ’ = —1.01,
am(()f) = —0.71, and N; x NS =54 x 283. The plot is taken from Ref. [10].

A main target for the study of lattice gauge theories with Sp(4) gauge group is the the-
ory with Ny = 2 Dirac fermions transforming in the fundamental representation combined
with 7y = 3 transforming in the 2-index antisymmetric representation. The literature on lat-
tice calculations with multiple fermionic representations is quite limited [10,91-97]. We have
developed the necessary software, adapted from HiRep [345], and performed non-trivial
technical tests by studying the bulk phase structure and finite volume effects [10]. The first
results characterising the non-perturbative dynamics of phenomenologically interesting
regions of parameter space are available.

Several species of chimera baryon states with different parity and spin quantum
numbers have been identified, their spectrum for representative examples of parameter
choices in under study [10,15], and future dedicated studies will report on this extensive
work. In Fig. 22, we present the combined mass spectrum of mesons composed of fermion
constituents in the fundamental and antisymmetric representations, together with the
lightest chimera baryon. For the one choice of lattice parameters specified in the caption of

the figure, the mass of the chimera baryon with J© = %+ is slightly lighter than the mass of
the scalar meson composed of constituent fermions in the antisymmetric representation.
A comprehensive study will be carried out in the lattice parameter space, to determine
how the masses of chimera baryons depend on bare masses of fermion constituents in both
representations.

6. Summary and outlook

Lattice gauge theories with Sp(2N) gauge group are interesting for a variety of reasons,
both in abstract terms and in view of applications, and this review summaries just the
first few steps of the systematic programme of explorations of the parameter space of
these theories, a programme that we envision will further develop in the near future. We
listed a number of interesting results, and connected them to the ongoing theoretical and
phenomenological developments. We briefly summarise these results and connections in
this short section, and indicate future avenues for further study.
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In the case of pure Yang-Mills theories, we collected results for Sp(2N) theories with
N =1, - -+, 4, and the extrapolation to the large-N limit. We presented the measurements of
string tension, masses of glueballs, and topological susceptibility. All these quantities have
primarily a theoretical interest, for example because we expect to find agreement in the large-
N extrapolations of the same observables in the SU(N,) sequence of gauge theories. There
is also an interesting connection with gauge-gravity dualities, in which the non-perturbative
regime of the large-N theories is captured by perturbative supergravity calculations. All the
quantities we have been able to compute so far show hints of interesting regular patterns
when extrapolated towards the large-N limit, and furthermore it seems that the convergence
is comparatively fast, with Sp(8) being close to the continuum limit for several observables.
Applications, for example in the context of dark-matter model building, would benefit from
the measurement of additional observables, related to interactions between glueballs (such
as 3-point functions, decay rates, scattering cross-sections).

The calculation of observables involving quenched fermions provides a good approxi-
mation of the complete dynamical theory if the number of fermion species is small, and
their mass is large. This regime is important for SIMP models, for example, but is also
relevant in the CHM context. We summarised an extensive number of measurements in
the Sp(4) theory, for mesons built with fermions transforming either in the fundamental
representation, or the 2-index antisymmetric one. These studies will be extended in three
directions: we will consider additional fermion representations (e.g., fermions transforming
in the 2-index symmetric representation of the gauge group), study the masses of composite
states containing two fundamental and one antisymmetric fermions (chimera baryons), and
extend the study to Sp(2N) groups with larger N.

The study of theories with dynamical fermions is much more challenging, for a number
of reasons. It requires specifying the number of species of each type of fermion (in different
representations), and for each case one has to identify the regime of lattice parameters that
is useful in numerical studies. So far, rather extensive studies of the Sp(4) mesons in en-
sembles with dynamical fermions in the fundamental representation have been performed,
so that the continuum limit can be taken. Masses and decay constants of mesons relevant
to CHM phenomenology have been made available. The masses of the fermions in these
studies are large enough that they preclude decay of the spin-1 states onto PNGBs, hence it
is not possible yet to measure directly, say, the coupling of a vector and two pseudoscalar
mesons. Similar studies, but with dynamical matter transforming in the 2-index antisym-
metric representation, are under way. High precision calculations performed with lattice
parameters closer to the massless (chiral) regime require a new numerical strategy, which
combines smaller fermion masses with larger volumes, and, possibly, adopts an improved
action, to accelerate the convergence towards the continuum limit.

In the case of Sp(4) with multiple dynamical fermion representations (fundamental
and 2-index antisymmetric), the phase space of the lattice theory is rather complicated, as
we have shown in a relevant example, and this observation affects the choice of parameters
that allows us to approach the continuum limit. Preliminary results have been published
for one choice of lattice parameters, showing that both meson and chimera baryon 2-point
correlation functions can be measured. This study will be extended, to allow for a systematic
study of the continuum and massless extrapolations, by making use of an extended selection
of ensembles. Work on the observables themselves is also being carried out, to gain access to
an extended set of composite states and, where possible, their excitations. These are the first
necessary steps towards testing whether the minimal models combining composite Higgs
and top partial compositeness are viable. A critical requirement is also to understand how
the couplings and dimensionalities of the composite operators are affected by the presence
of many fermions in the dynamics; the presence of large, non-perturbative anomalous



Version May 11, 2023 submitted to Universe 53 of 75

dimensions would have important model-building implications, but it is not known what
theories yield them.

To make contact with CHM phenomenology, one would couple the SM fields to the
strong coupling sector—the Sp(2N) gauge theories. For example, this would allow to
compute the contributions to the effective potential for the PNGBs, and to study vacuum
(mis-)alignment. In this way, one would be able to test directly the properties of the
strong coupling sector and its heavy resonances. Part of this programme can be performed
approximating the dynamics of the combined system of strong and weak coupling fields by
ignoring the back-reaction of the latter on the former, along the lines of what is routinely
done for QCD in the B-mesons system, for instance, and hence by computing matrix
elements of higher-order operators in the strongly coupled theory.

Last but not least, finite temperature studies are currently being performed, aimed at
characterising the confinement/deconfinement phase transition of Sp(2N) theories, and
hence extending the pioneering work in Ref. [1]. The results of this investigation might
play an important role in the context of dark matter, for example as a source of (detectable)
stochastic gravitational wave background. In general, the complete characterisation of
such phase transitions is a topic that has great potential to reveal new, theoretical and
phenomenological, possible developments.

Lattice studies of Sp(2N) gauge theories represent a lively field of research, which is
still in its infancy. We gathered together a large compilation of results, yet this is but a taster
of the wealth of information contained in the original literature [1-18]. This is the first stage
of what will be a fertile ground for testing new ideas, and learning new lessons, which are
going to inform further theoretical developments as well as applications.
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Abbreviations

The following abbreviations are used in this manuscript:

(as)
(AT
(AV
BZ

CB
CDM
CERN
CHM
ChRMT
CoDM
(E)
EFT
ETC
EW(SB)
6
FCNC
FV
GIM
GMOR
GW
HB
(R)HMC
IR
KSRF
HLS
HPC
LHC
LISA
LLR
M)
MC
MD
NDA
NLO
OR
PNGB
PS
QCD
RG(E)

SIMP
SM
(W)TC
TPC
URL
uv
VEV
WIMP
WZW
(W)xPT

2-index antisymmetric (representation)
(Axial-)Tensor (operator, particle)
(Axial-)Vector (operator, particle)
Banks-Zaks

Chimera Baryon

Cold Dark Matter

European Organisation for Nuclear Research
Composite Higgs Model

Chiral Random Matrix Theory
Composite Dark Matter

Euclidean (space-time)

Effective Field Theory

Extended Technicolor

ElectroWeak (Symmetry Breaking)
fundamental (representation)

Flavor Changing Neutral Current
Finite Volume
Glashow-Iliopoulos-Maiani (mechanism)
Gell-Mann-Oakes-Renner
Gravitational Wave

Heat Bath

(Rational) Hybrid Monte Carlo
Infra-Red

Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin (relation)

Hidden Local Symmetry

High Performance Computing
Large Hadron Collider

Laser Interferometer Space Antenna
Logarithmic Linear Relaxation
Minkowski (space-time)

Monte Carlo

Molecular Dynamics

Naive Dimensional Analysis
Next-to-Leading Order
Over-Relaxation
Pseudo-Nambu-Goldstone Boson
Pseudoscalar (operator, particle)
Quantum Chromodynamics
Renormalisation Group (Equation)
Scalar (operator, particle)

Strongly Interacting Massive Particle
Standard Model (of particle physics)
(Walking) Technicolor

Top Partial Compositeness

Uniform Resource Locator
Ultra-Violet

Vacuum Expectation Value

Weakly Interacting Massive Particle
Wess-Zumino-Witten (interaction term)
(Wilson) Chiral Perturbation Theory
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Appendix A. Groups, Algebras and technical details

We collect in this Appendix technical details, in particular about conventional choices
and group theory notions, that support the main narrative of the paper.

We start from the generators of the global symmetry group SU(4). We adopt the
convenient parametrisation of the 15 generators of SU(4) in Ref. [87]. The generators obey
the relations TrTATE = %(5‘43 , and are written as follows—see Egs. (12) and (13).
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Following Refs. [5,87], we define the unbroken subgroup SO(4)y ~ SU(2)rp X
SU(2)rp as the subset of the unbroken global Sp(4) C SU(4) that is generated by the
following elements of the associated algebra:

0010 00 —i 0

Tl_;oooo 72 00 0 0

Lo-= 9211 0 0 0 |7 L0 i 0 0 0|
0000 00 0 0
10 0 0

. 1100 0 0

3 _ 1

fio = 3000 -1 0| (A2)
00 0 0
0000 000 0

T1_10001 72 _ 00 0 —i

RO-= 92 0 0 0 0 |7 RO 000 0 |
0100 0 i 0 0
000 O

3 11 01 0 o0

3 _ 1

Tro = 21 0o 0o 0 o (A3)
00 0 -1

The T7 o and Tg generators satisfy the algebra [Ti , Tﬂ = i€k T, [Tll2 , TH = i€k Tk,
and [Ti, T{{] = 0. In the vacuum aligned with (), this is the natural choice of embedding

of the SO(4) pw symmetry of the Higgs potential that leaves it unbroken. These are linear
combinations of the generators T1°, T2, T¢, 7%, T'4, and T'? in Egs. (A1).
The following alternative choice of generators defines SO(4)rc ~ SU(2)r, ¢ x SU(2)r,rc [87]:
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These are linear combinations of the generators T1, T2, T3, T8, T'3, and T'* in Egs. (A1).
The vacuum g « Q) breaks SU(2); ¢ x SU(2)g 1¢ to its diagonal subgroup SU(2)y rc.
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Appendix B. Data and Analysis code

Recently, our collaboration has resolved to openly release full datasets for the work
that goes into our future publications, as well as, where possible, the analysis software
used, both to obtain these data and to prepare them for publication. By doing so, we
enable other researchers to make maximal use of our results, and to fully understand the
process by which they are obtained. Starting from Refs. [10-12], our analysis can be fully
reproduced,'? by means of the data and analysis code packages referred to within the
publications themselves. The intended benefits of this policy include (but are not limited
to) the following.

* A potential reader might be interested in learning how to apply one of the techniques
that we have used in our work to their own research. Some technical detail might have
been omitted from the published paper for presentation reasons (length or readability
constraints). Said reader will benefit from direct inspection of the complete procedure
we followed, which can be found in the associated code release.

* A reader, who seeks to replicate independently one of our findings, might discover
some tension between the results of our and their own implementation of the analysis.
Direct inspection of the software we used would enable this reader to identify at what
point the divergence between the two processes occurs, avoiding protracted arguments
on reproducibility—see, e.g., the case described in Ref. [384].

*  Lattice studies frequently generate more data than what can be feasible to fully exploit
for a single group of researchers. The interested readers may perform their own,
additional analysis on our data, with alternative methodologies, without the need
to regenerate the data from scratch (which might require a significant investment
of computer time). For example, more advanced fitting algorithms may give more
detailed or precise results, or gain access to additional observables.

*  Phenomenologists and other researchers who look to build on the numerical results of
lattice computations may import the data from our work directly into their computa-
tional environment, without the need to resort to copying and pasting from published
tables (or reading numbers off published plots). By doing so, one reduces the risk of
introducing additional uncertainties, and avoids one source of potential human error.

In the following, we discuss our approach to releasing our data, our analysis code,
and other components of our workflow that affect the reproducibility of our work, before
briefly returning to discussing the benefits we see in our process for the robustness of our
final results. This appendix will focus on the approach that has been taken to date by our
collaboration, with specific reference to Refs. [10-12]; a more general, pedagogical guide to
adopting this approach is in preparation [385].

Appendix B.1. Data release

The primary data we publish are plaintext output files from production of config-
urations and from subsequent computation of observables (measurements). We do not
release gauge configurations used for Refs. [10-12], due to the unavailability of a suitable
hosting platform with adequate capacity, but restrict our release to the measurements. Even
in the case where such capacity were available, releasing the measurement output files
significantly reduces the barrier to entry (in terms of computer time and capability required)
for those readers who are looking to reproduce the analysis.

To be more specific, we release four primary classes of data:

10" In this work we use “reproduce” to mean “perform the same analysis on the same data and obtain the same result”, and “replicate” to mean “repeat the

same or a similar analysis on freshly-obtained data and obtain compatible results”, as suggested by the Turing Way [383].
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Raw data, such as correlation functions and gradient flow histories, are released in their
native formats as generated by the HiRep code [345,347], in accordance with the
principle of “keeping raw data raw” [386]. By doing so, we reduce the chances of
human error in transcription of data formats, while increasing the opportunity to
detect such type of errors in a subsequent validation process.

Reformatted raw data, obtained by taking the output files of raw data, condense the salient
information in tables stored in HDF5 format [387]. Commonly available library
functions can read the data in this format, so that one does not need to write a parser
to interpret the bespoke formats generated by HiRep. Currently this information is
generated from the raw log files as part of the analysis process.

Metadata are collections of parameter values which identify the analysis performed. They
include physical parameters, such as the lattice coupling j, algorithmic ones, such as
the number of trajectories between successive configurations, and analysis ones, such
as the start and end of plateaux in effective mass plots. The metadata we publish are
primarily those which enable the analysis.

Final results, also presented in tabular form in the corresponding publications, are released
in CSV format; they are typically compact enough that using a denser format such as
HDF5 would not yield a significant benefit (in file size, for example), and the use of
CSYV files makes the data accessible without specialist software tools.

If a data format is not formally defined, we include in the release also detailed de-
scriptions to enable the user to understand and parse the data. This aids users who are
unfamiliar with data formats used by bespoke software packages, such as HiRep.

We publish the data to Zenodo [388], a general-purpose data repository maintained by
the European Organisation for Nuclear Research (CERN). Each data set (or each version
of a dataset, in cases where revisions are necessary) is allocated a Digital Object Identifier
(DOI) which may be used to cite the data directly. Unlike a Uniform Resource Locator
(URL), typically used to refer to a web page, a DOI is designed to avoid “link rot”, where
changes in website structure cause links to become invalid. Zenodo, as other dedicated
data repositories, is planned to outlast a typical institutional affiliation, and its data sets are
expected to remain available past the time when the author has retired, changed institutions,
or simply stopped paying a hosting bill. The Zenodo DOl is cited from the paper in order
to alert the reader to its availability.

Appendix B.2. Analysis code release

We automate the analysis leading to a publication: our tooling takes the data and
metadata release, and its output consists of the full set of plots and tables in the paper. This
analysis kit is not written a priori and then run on the data obtained from High Performance
Computing (HPC) simulations. Rather, any manual steps are subsequently translated into
data that can be used a posteriori to compute the result. To provide a concrete example, our
choice of plateaux in mesonic correlation functions is not fully algorithmic: the positions of
the plateaux are identified by a member of the collaboration in a semi-algorithmic way, and
then the results (start and end time of the plateaux) stored in a text file that is subsequently
read in by the analysis code to be released. The end user of the release does not have to
identify the plateaux manually (which would compromise reproducibility), yet they may
inspect and test our choices.

Our Collaboration has developed a body of bespoke software, coded in several differ-
ent computer languages: Python [389] (in particular the packages Numpy [390], Scipy [391],
and Matplotlib [392]), Mathematica [393], and to lesser extent Bash [394]. Individual anal-
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ysis tools are combined together using GNU Make [395], which offers a few significant
advantages over using a hard-coded shell script.

1.  Dependencies between steps are automatically managed. The ordering of steps is
automatically decided, rather than requiring user’s input.

2. Steps can automatically be run in parallel, with Make ensuring that no step runs
before its prerequisites are complete. This allows the analysis process to scale with the
available compute capacity.

3. The workflow can be interrupted partway and resumed subsequently, without the
need to re-run previously completed steps.

4. Make is able to re-run only the steps of the analysis that depend on specific files, if
data are updated, expediting the debugging cycle.

The moderate cost to pay for these benefits is that writing and debugging a Makefile for the
type of workflow we automate is relatively complex.

The workflows for Refs. [10-12] were originally run interactively, hence required
postproduction reworking and automation before release. Reformulating our toolchain to
be written in an automation-first way is an ongoing internal project which will significantly
reduce the effort required for future code releases.

We verify that repeated runs of the analysis give identical output. Small fluctuations
(within uncertainties) due, for example, to changes in the bootstrap samples have been
removed by fixing the random seeds based on metadata about the files being processed.

Where possible, we specify the full software environment used to perform the analysis—
for example, the version of Python and all Python packages used. Doing so is necessary to
enable reproducibility, as some libraries give quantitively different results when switching
between versions. We specify this such via an environment.yml file compatible with the
Conda package manager [396].

Analysis tools are held in GitHub [397] while they are being actively developed, and
then pushed to Zenodo [388] when they are ready for publication, where they acquire
a persistent identifier (DOI). This process also identifies the specific revision of the code
used to generate the publication; as we move to building tools that are used for multiple
publications and modified or updated in between, this will remove any ambiguity as to
software version. As with the data release, the analysis code release on Zenodo is cited in
the paper to alert the reader to its availability.

Appendix B.3. Closing remarks

Not all data sets can be released, due to the excessive requirements of storage and
computer time, but also not all steps of a computation can be automated. We document as
much of the process as possible in the steps of our computations that cannot be prepared
and published as automated reproducible pipelines. As an example, while we make use of
the open-source tool HiRep [346], we have also made a number of customised modifications
on it, including adapting the Monte Carlo to the Sp(2N) groups and implementing the
measurement of the chimera baryon correlators. These modifications are publicly released
elsewhere [347], and the specific branch used is identified in our publications.

In the process of preparing data and analysis software for release, we identified a
number of minor inconsistencies in our data sets that otherwise might have been overlooked,
and ultimately did not affect the conclusions of our work. Said inconsistencies originate
from the fact that working with large numbers of files and data is inherently prone to
unavoidable human error. They might have adversely affected the ability of someone else
to replicate our work. The very adoption of our open release policy ultimately had the
serendipitous consequence of adding one more layer of independent consistency checks,
making our scientific output more robust.
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