KIT | KIT-Bibliothek | Impressum | Datenschutz

$\mathbf{J}$, M- and $\mathbf{L}$-integrals of line charges and line forces

Lazar, Markus 1; Agiasofitou, Eleni 1
1 Institut für Technische Mechanik (ITM), Karlsruher Institut für Technologie (KIT)

Abstract:

In this work, the JJ-, M- and LL-integrals of two line charges and two line forces in generalized plane strain are derived in the framework of three-dimensional (3D) electrostatics and three-dimensional compatible linear elasticity, respectively, in order to study the interaction between them. The key point in this derivation is achieved by expressing the JJ-, M- and LL-integrals of point charges and point forces in three dimensions in terms of the corresponding three-dimensional Green functions, that is, the three-dimensional Green function of the Laplace operator and the three-dimensional Green tensor of the Navier operator, respectively. The major mathematical tool used in deriving the JJ-, M- and L3-integrals of line charges and line forces from the corresponding JJ-, M- and LL-integrals of point charges and point forces is the method of embedding or method of descent of Green functions to two dimensions (2D) from the corresponding Green functions in 3D. The analytical expressions of JJ-, M- and L3-integrals of line charges and line forces in antiplane and plane strain are derived and discussed. The JJ-integral is the electrostatic part of the Lorentz force (electrostatic interaction force) between two line charges in electrostatics and the Cherepanov force between two line forces in elasticity. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000159674
Veröffentlicht am 22.06.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Mechanik (ITM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2023
Sprache Englisch
Identifikator ISSN: 0001-5970, 1619-6937
KITopen-ID: 1000159674
Erschienen in Acta Mechanica
Verlag Springer
Band 234
Heft 8
Seiten 3131–3159
Vorab online veröffentlicht am 03.04.2023
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page