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Abstract

We consider mean-field control problems in discrete time with discounted reward,
infinite time horizon and compact state and action space. The existence of optimal
policies is shown and the limiting mean-field problem is derived when the number of
individuals tends to infinity. Moreover, we consider the average reward problem and
show that the optimal policy in this mean-field limit is e-optimal for the discounted
problem if the number of individuals is large and the discount factor close to one. This
result is very helpful, because it turns out that in the special case when the reward
does only depend on the distribution of the individuals, we obtain a very interesting
subclass of problems where an average reward optimal policy can be obtained by first
computing an optimal measure from a static optimization problem and then achieving
it with Markov Chain Monte Carlo methods. We give two applications: Avoiding
congestion an a graph and optimal positioning on a market place which we solve
explicitly.

Keywords Mean-field control - Markov decision process - Average reward

1 Introduction

Mean-field control problems have been developed from McKean-Vlasov processes
(see [26]) where the dynamics depend on the distribution of the current state itself.
In the corresponding control problem the relevant data like reward and transition
function not only depend on the current state and action but also on the distribution of
the state. Whereas the original motivation comes from physics these kind of problems
are able to model the interaction of a large population. Thus, other popular applications
include finance, queueing, energy and security problems among others. In this paper
we consider mean-field control problems in discrete time in contrast to the majority of
literature which concentrates on continuous time models. Moreover, our optimization
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criterion is to maximize the social benefit of the system i.e. the overall expected reward.
In particular in our paper individuals cooperate in contrast to the game situation where
one usually tries to find the Nash equilibrium of the system. Here we rather aim at
obtaining the Pareto optimal solution. A comprehensive overview over continuous-
time mean-field games can be found in [7]. These games have been introduced in
economics and later studied in mathematics since at least 15 years (see e.g. [24] for
one of the first mathematical papers on this topic).

We review briefly the latest results on discrete-time mean-field problems. First
note that there have been some early studies of interactive games in [23] under the
name anonymous sequential games and in [35] of so-called oblivious games which
are in nature very similar to mean-field games. For a recent paper on discrete-time
mean-field games and a literature survey, see for example [32]. In this paper Markov
Nash equilibria are considered in a model without common noise. For an early game
paper with finite state space see [16]. Since our paper is not a game and more in the
spirit of Markov Decision Processes (MDPs) we concentrate our literature survey on
control papers. One of the first papers in this area have been [13, 14]. In both papers
the authors’ goal is to investigate the convergence of a large interacting population
process to the simpler mean-field model. More precisely, the authors show convergence
of value functions and convergence of optimal policies which implies the construction
of asymptotically optimal policies. In both papers the state space is finite and the action
space compact. Whereas in [13] the convergence rate is studied, in [14] the authors
also scale the time steps to obtain a continuous-time deterministic limit. Finite as well
as infinite-horizon discounted reward problems are considered. In [20] the authors
also investigate convergence in a discounted reward problem, however consider the
situation that the random disturbance density in unknown. A consumption-investment
example is discussed there. In [21] the same authors treat the unknown disturbance as
a game against nature. The paper [29] already starts from a discrete-time mean-field
control problem. The authors derive the value iteration and solve an LQ McKean-
Vlasov control problem. In contrast to our paper there is no common noise, the authors
restrict to finite time horizon and do not use MDP theory to solve their problem.
However, their model data like cost and transition function may also depend on the
distribution of actions. LQ-problems are popular as applications of mean-field control
since it is often possible to obtain optimal policies in these cases. E.g. [11] is entirely
devoted to these kind of problems.

The two papers which are closest to ours, at least as far as the model is concerned, are
[8, 27]. In both papers, the model data may also depend on the distribution of actions,
but there is no restriction on admissible actions. Both consider a discounted problem
with infinite time horizon. In [8] the authors work with lower semicontinuous value
functions, whereas we show continuity under the same assumptions. The main issues in
[8] are an extensive discussion of different types of policies and the development of Q-
learning algorithms. We however start already with Markovian deterministic policies
since in MDP theory it is well-known that history-dependent policies or randomized
policies do not increase the value. Moreover, we consider the convergence of the
N-individuals problem as well as average reward optimization. In [27] the authors
deal with so-called open-loop controls and restrict to individualized or decentralized
information. They investigate the rate of convergence from the N-population model
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to the mean-field problem. They also derive a fixed point characterization of the value
function and discuss the role of randomized controls. Since in [27] decisions may
only depend on the history of the single agent an additional source of randomness is
required such that individuals with same history may take different actions.

Other recent papers discuss reinforcement learning for mean-field control problems,
seee.g.[8,9, 17, 18]. In the second part of the paper we consider average reward mean-
field control problems which is a new aspect. There are papers on average reward
games, like [S] where the transition probability does not depend on the empirical
distribution of individuals and [36] where under some strong ergodicity assumptions
the existence of a stationary mean-field equilibrium is shown. Both papers do not
consider the vanishing discount approach which we do here. The recent paper [6]
considers the vanishing discount approach, but in a continuous-time setting and for a
game.

The main contributions of our paper are as follows: We first want to stress the point
that mean-field control problems fit naturally into the established MDP theory. We
start with a problem where N interacting individuals try to maximize their expected
discounted reward over an infinite time horizon. Reward and transition functions may
depend on the empirical measure of the individuals. Moreover, the transition functions
of individuals depend on an idiosyncratic noise and a common noise. Due to symmetry
reasons instead of taking the state of each individual as a common state of the system it
is enough to know the empirical measure over the states. This equivalence implies an
MDP formulation where the underlying state process consists of empirical measures. A
similar observation can be found in [27], however there the authors take the mean-field
limit first. Letting the number N of individuals tend to infinity, implies a mean-field
limit by applying the Glivenko-Cantelli theorem. The idiosyncratic noise vanishes in
the limit. In our setting state and action spaces are compact Borel spaces. We also
discuss the existence of optimal policies which is rarely done in other papers. E.g. we
give explicit conditions under which an optimal deterministic policy does exist for the
limit problem as well as for the initial N -individuals problem. Moreover, we investigate
average optimality in mean-field control problems, an aspect which is neglected in the
literature. Applying results from MDP theory leads to an average reward optimality
inequality. In some cases we obtain optimal policies in this setting rather easily. Since
we use the vanishing discount approach, we can show that these policies are e-optimal
for the initial problem when the number of individuals is large and the discount factor
close to one. Thus, we get some kind of double approximation which is helpful in some
applications. Indeed, it turns out that the case when the reward does not depend on
the action yields an interesting special case. The average reward problem can then be
solved by first finding an optimal measure for a static optimization problem and then by
using Markov Chain Monte Carlo to find an optimal randomized decision rule which
achieves the optimal measure in the limit. We show how this works in a network
example where the aim is to avoid congestion. Another interesting feature of the
solution is that it is a decentralized control, i.e. individuals can decide optimally based
on their own state without knowing the distribution of all individuals, i.e. individuals
do not have to communicate. A second example is the optimal placement on a market
square.
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The paper is organized as follows: In the first section we introduce the model with
a finite number of N individuals. We give conditions under which the optimality
equation holds and optimal policies exist. In Sect.3 we show how to formulate an
equivalent MDP whose state space consists of the empirical measures of individuals.
Based on this formulation we let the number N of individuals tend to infinity in the next
section. We prove the convergence of value functions and show how an asymptotically
optimal policy can be constructed. In Sect.5 we consider the average reward problem
via the vanishing discount approach. Under some ergodicity assumptions we prove the
existence of average reward optimal policies and verify that the value function satisfies
an average reward optimality inequality. Next we show how to use this optimal policy
to construct e-optimal policies for the original problem.

We discuss how to solve average reward problems when the reward depends only
on the distribution of individuals and not on the action. Finally in Sect. 6 we consider
two applications (network congestion and positioning on market place) which we
solve explicitly. The appendix contains additional material which consists of a useful
convergence result and the definition of the Wasserstein distance and Wasserstein
ergodicity. Moreover, longer proofs are also deferred to the appendix.

2 The Mean-Field Model

We consider the following Markov Decision Process with a finite number of indi-
viduals: Suppose we have a compact Borel set S of states and N statistically equal
individuals. Each individual is at the beginning in one of the states, i.e. the state
of the system is described by a vector x = (x1,...,xy) € SN which repre-
sents the states of the individuals. In case we need the time index n, we write xfl,
i = 1,...,N. Each individual can choose actions from the same Borel set A. Let
D(x) C A be the actions available for one individual who is in state x € S, i.e.
a=(ay,...,ay) € DX) := D(x1) X...x D(xy) is the vector of admissible actions
for all individuals. We denote D := {(x,a) € S X A : a € D(x) forall x € S} and
assume that it contains the graph of a measurable mapping f : S — A. Moreover,
D := {(x,a)]a € D(x)}. After choosing an action each individual faces a random
transition. In order to define this, suppose that (Z,i)neN, i=1,...,N and (ZS),,EN
are sequences of i.i.d. random variables with values in a Borel set Z. The sequence
(Zg )nen Will play the role of a common noise. In what follows we need the empirical
measure of x, i.e. we denote

1 N
ulx] = > b

i=1

where §y is the Dirac measure in point y. u[x] can be interpreted as a distribution on
S. We denote by P(S) the set of all distributions on S and by

Py (S) :={n € P(S) | u = pIx], forx e SV},
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the set of all distributions which are empirical measures of N points. On these sets
we consider the topology of weak convergence. The transition function of the system
is now a combination of the individual transition functions which are given by a
measurable mapping 7 : S x A x P(S) x 22 — S such that

) o . 0
Xy = Ty ay, ilxnl, Zyys Zypiy)

fori =1, ..., N.Note that the individual transition may also depend on the empirical
distribution w[x,] of all individuals. In total the transition function for the entire
system is a measurable mapping T : D x Py (S) x ZN+1 — SN of the state x, the
chosen actions a € D(x), the empirical measure p[x] and the disturbances Z,, 1 :=

(Z;H, R Z,IZVH), ZSH such that

Xut1 = T n, 1[Xn] Zns1, 20, ) = (T(x:;, ab, ulx,l. Z . zg+1))

i=1,...,

Last but not least each individual generates a bounded one-stage reward r : § x A X
P(S) — R which is given by r(x;, a;, n[x]), i.e. it may also depend on the empirical
distribution of all individuals. The total one-stage reward of the system is the average

N

r(x, a) = %Zr(xi,ai, wIx])

i=1

of all individuals. The first aim will be to maximize the joint expected discounted
reward of the system over an infinite time horizon, i.e. we consider here the social
optimum of the system or Pareto optimality. In particular the agents have to work
together in order to optimize the system. This is in contrast to mean-field games where
each individual tries to maximize her own expected discounted reward and where the
aim is to find Nash equilibria. We make the following assumptions:

(AO0) D is compact.

(A1) x — D(x) is upper semicontinuous, i.e. forall x € §: If x,, - x forn — oo
and a, € D(xy), then (a,) has an accumulation point in D(x).

(A2) (x,a,p)— r(x,a, ) is upper semicontinuous.

(A3) (x,a,un)— T(x,a,u,z, z0) is continuous for all z, zg € Z.

A policy in this model is given by # = (fo, f1,...) with f;, € F being a decision
rule where

F:={f: SN AN | f is measurable f(x) € D(x) forall x SN}

is the set of all decision rules. In case we do not need the time index n we write
fx) = (f'x), ..., fNx)).Itis not necessary to introduce randomized or history-
dependent policies here, since we obtain a classical MDP below and it is well-known
that an optimal policy will be among deterministic Markov ones. We assume that each
individual has information about the position of all other individuals. This point of
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view can be interpreted as a centralized control problem where all information is
collected and shared by a central controller.

Together with the distributions of (Zfl), (ZS) and the transition function T, a policy
7 induces a probability measure P on the measurable space

Q=S"xS"x ..., F=BS"MHY9BEM)®..)

where B(S") is the Borel o -algebra on SV . The corresponding state process is denoted
by (X,,) where X, (w1, w2,...) = w, € SN and the action process is denoted by (A,,)
where A, (w1, w2, ...) = fu(wy). Our aim is to maximize the expected discounted
reward of the system over an infinite time horizon. Hence we define for a policy

7 = (fo, f1,-.)

1 N oo ) )

N e kg i i
Vo (%) = ?:1 kE:Oﬁ EY [r (X}, A}, u[X])] 2.1
VN (x) := sup VN (x) (2.2)

where B € (0, 1) is a discount factor. ET is the expectation w.r.t. PT. V¥ (x) is the
maximal expected discounted reward over an infinite time horizon, initially given the
configuration x of individual’s states.

Remark 2.1 Tt is not difficult to see that V" is symmetric, i.e. VY (x) = V¥ (6 (x))
for any permutation o (x) of x because the reward r(x,a) = r(o(x), o(a)) and the
transition function T(x, a, u[x], Z, ZO) = T(o(x),0(a), ulo®)], Z, ZO) are sym-
metric. This is a simple observation but in the end leads to the conclusion that it is
only necessary to know how many individuals are in the different states.

In what follows we introduce some notations.

Definition 2.2 Let us define:

a) The set M := {v : S — R | v is bounded and upper semicontinuous}.
b) The operator U on M by

Uv(x) = (Uv)(x) := sup {r(x, a) + ,BIE[U(T(X, a, u[x], Z, ZO))] }
aeD(x)

¢) Adecisionrule f € F is called maximizer of v € M if

Uv() =r(x, f(x) + BE[o(Tex, /0, ulx, 2, 2%)

From classical MDP theory we obtain:

Theorem 2.3 Assume (AO)—(A3). Then:

(@) The value function V" is the unique fixed point of the U-operator in M, i.e. it
satisfies the optimality equation VN = UV,
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) VN =1lim,_, o U"O0.
(c) There exists a maximizer of VN and every maximizer f* € F of VN defines an
optimal stationary (deterministic) policy (f*, f*,...).

The proof of this statement and all other longer proofs can be found in the appendix.
We summarize the model data below:

Model MDP

State space SN sx= (X1, ..., xN)

Admissible actions D(x) := D(x1) X...x D(xy)2a=(ay,..., ay)

Transition function TXp, an, n[Xnl, Zy41, Z’?_H) = (T(x,’;, af,, nlxnl, Zil_H, Zl(l)_._l))i:1 ’’’’ v
Reward r(x,a) ;= % ZlN:l r(x;,a;, w[x])

Policy 7= (fo, f1,--)s

fneF:={f: SN AN | f is measurable f(x) € D(x), Vx € SN}

Example 2.4 Suppose individuals move on a triangle. The state space is given by
the nodes S = {l,2,3}. Admissible actions are adjacent nodes, i.e. D(1) =
{2,3}, D2) = {1, 3}, D(3) = {1, 2}. The individual one-stage reward may be given
by r(x;, a;, ) = 1iy(xi) — 1(j1—g1<0.5)-

Here n = f xu(dx). This means an individual gets a reward of 1 when it is in
state 1, but only when the average position of the others is away from 1. A transition
function may be

if 7 € [0, 1),

T 0 — av 1 2

('X:’avl’l”Z?Z ) {‘x, lfze[%,l]

For N = 5 individuals, a state may be x = (1,2,3,1,3) and an action a =
(2,1,2,3,1) € D(x). In this case u[x] = (2/5,1/5,2/5) and r(x, a) = 2/5.

3 The Mean-Field MDP

Suppose that N is large. Even if the state space S is small, the solution of the problem
may not be computationally tractable any more because S is large. We seek for some
simplifications. In particular we want to exploit the symmetry of the problem. In the
last section we have seen that the empirical measures of the individuals’ states is the
essential information. Thus, we define as new state space Py (S). Further we define
the following sets:

ﬁ(u) = {ul(x,a)] | x € SV s.t. u[x] = wand a € D(x)}, w € Py(S)

D:={(u, Q) | nePy(S), 0 € D(w)}
F = {p : Py(S) = Py(D) | ¢ measurable, (i) € D(u) forall i € Py(S)},
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where
Py (D) :={Q € P(D) | Q = ul(x, a)] for (x, a) € D}

is the set of all probability measures on D which are empirical measures on N points.
The set D(u) consists of probability measures on D which are empirical measures
on N points and whose first marginal distribution equals p. We obtain the following
result.

Lemma 3.1 Suppose a € D(X) is an arbitrary action in state X € SN. Then there
exists an admissible Q € D(u[x]), s.t.

r(x, 8) = /Droc,a,mQ(d(x,a)) P, Q). 3.1

forall x € SN, The converse is also true, i.e. if Q € b(u[x]) then there exists an
a € D(x) s.t. (3.1) holds.

Proof Let x and a € D(x) be given and let i := u[x] € Py (S). Define the discrete
point measure Q on D by

0 = ul(x,a)].
Then Q € b(,u) by construction and

N

1
r(x, a) = NZr(xi,ai,m=f r(x,a, 1) Q(d(x, a))

i=1 D
which proves the first statement. For the converse, suppose Q € D( 1[x]). By definition
this implies that there exists a € D(x) s.t. Q0 = u[(x, a)]. Using this relation, (3.1)
follows. O

This lemma shows that instead of choosing actions a € D(x) we can choose mea-
sures Q € ﬁ(,u[x]) and u = p[x] is a sufficient information which can replace the
high dimensional state x € SN. Intuitively this is clear from the fact that r(x, a) is
symmetric (see Remark 2.1).

We consider now a second MDP with the following data which we will call mean-

field MDP (for short @) The state space is P (S) and the action space is Py (D).
The one-stage reward 7 : D — R is given by the expression in Lemma 3.1, i.e.

Fu, Q) = /Dr(x,a,M)Q(d(x,a)) (3.2)

and the transition law 7 : D x ZNt! — Py (S) for Q = u[(x, a)], u = w[x] by (the
empty sum is zero)

T(, Q,Z, 2°) = plT(x, a, u[x], Z, Z2%)]
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The value of T simply is the empirical measure of the new states after a random
transition. A policy is here denoted by ¢ = (¢, ¢1, ...) with ¢, € F and we denote
by (un) the corresponding (random) sequence of empirical measures, i.e. o = W,
and forn € Ny

MHn+1 = f(“’nv ©n(n)s Znt1, Z,?+1)~

Remark 3.2 We define an action as a joint probability distribution Q on state and action
combinations instead of the conditional distribution on actions given the state. Both
descriptions are equivalent, since for Q € D(u) we can disintegrate

QO(B) = /B O(da|x)u(dx), B € B(D)

where Q is the regular conditional probability. For short: 0 = u® Q. The advantage of
using the joint distribution is that we have one object to define actions in all states. The
disadvantage is that we need to formulate the restriction that the marginal distribution
on the states coincides with .

We define the value function of MDP in the usual way for state u € Py (S) and
policy ¥ = (¢o, ¢1, ...) by

Iy () =Y BB [F (ks o). (33)
k=0
I () = sup I3 ). (3.4)

Finally, we show that the MDP and the mean-field MDP are equivalent.

Theorem 3.3 Assume (A0)-(A3). Forx € SV and p = u[x] we have:
vV = IV (w).

Proof Note that ;19 = u = u[x] by definition. Let a9 = a € D(x) be the first aAction
taken by MDP under an arbitrary policy. Then by Lemma 3.1 there exists Q € D(u),
s.t. r(x,a) = r(u, Q) and

ulXi] = pulT(x, a, ulx], Z1, ZN1 = T(w, Q, Z1, Z9) = .

By induction over time n it follows that a sequence of states and feasible actions in
MDP (Xp, Ag, X1, ...) can be coupled with a sequence of states and feasible actions
(no, Qo, K1, - ..) for l\f]i’ and vice versa s.t. the same sequence of disturbances
(Z,), (ZS) isused and r(X,;, A,) = 7 (in, Q) pathwise. The corresponding policies
may be history-dependent, but V¥ = J¥ follows since it is well-known for MDPs
that the maximal value is obtained when we restrict our optimization to Markovian
policies. O
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As in Sect.2 we define here a set and an operator for the mean-field MDP.

Definition 3.4 Let us define

(a) The set M = iv : Py (S) = R | v is bounded and upper semicontinuous}.
(b) The operator U on M by

Ov(w = O = sup {7, ©) + PEV(T (n. Q. 2. 2% .
QeD(n)

Due to Theorem 3.3 and Theorem 2.3 we obtain:

Theorem 3.5 Assume (AO)—(A3). Then:

(@) The value function JV is the unique fixed point of the U- -operator in M ie. it
satisfies the optimality equation J N=gJV.

) JV =lim,_ o U"0.

(c) There exists a maximizer of JN and every maximizer ¢* € F of JN defines an
optimal stationary policy (¢*, ¢*, .. .).

We summarize the model data below:

Model MDP

State space ]P’N(S) ={u eP(S) | n=upulx], forx e SN} EN
Admissible actions D(,u,) ={ulx,a)]|xe SV st u[x] =panda e Dx)} > Q
Transition function f(u, 0,7, ZO) = u[T(x, a, u[x], Z, ZO)]

Reward F(u, Q) == [pr(x,a, p)Qd(x, a))

Policy ¥ = (g0, ¢1,---),

pneF:={p :PN(S) = PyN(D) | ¢ meas., p(1) € D(n), Y € Py (S)}

Example 3.6 We reconsider Example 2.4. The given state and action translates in
MDP to u = pu[x] = (2/5, 1/5,2/5) as distribution on S = {1, 2, 3}. The action
is a distribution on D = {(1,2), (1,3), (2, 1), (2,3), (3, 1), (3,2)} and translates
into Q0 = (1/5,1/5,1/5,0,1/5,1/5). The transition kernel mentioned in Remark
3.2 in this example is given by Q(2|1) = 2, Q(3|1) 2, Q(1|2) =1, Q(3|2)
0,0(113) = 2, 0123) = 1. Obviously 7(u, Q) = 2/5.

4 The Mean-Field Limit MDP

In this section we let N — oo in order to obtain some simplifications. This yields the
so-called mean-field limit. o

We thus consider a third MDP, the so-called limit MDP (denoted by MDP). We
will later show that it will indeed appear to be the limit of the problems studied in the
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previous section. The limit MDP is defined by the following data: The state space is
P(S) and the action space is P(D). We define

D(u) :={Q € P(D) | the first margin of Q is u}, u € P(S) 4.1)
= {(n. Q) | L € P(S), 0 € D(w)}. (4.2)

The one-stage reward 7 : D — R is given as in (3.2):
r(u, Q) = /Dr(x,a,M)Q(d(x,a))-
The transition function is defined by T:Dx Z—P(S)
T(u, 0. 2°)(B) = /D peet 2 (B)Q(d(x, @) “3)

where p*@m 2 (B) := P(T(x,a, u, Z', Z°) € B|Z°) with B € B(S), is the con-
ditional probability that the next state is in B, given x, a, u and the common noise
random variable Z°.

Remark 4.1 Recalling that Q € D(w) means Q = ® Q, we can (with the help of
the Fubini theorem) instead of (4.3) equivalently write

T(n, Q,Z2°(B) = /D P2 (B) O (dalx) u(dx) (4.4)

B /s P27 (Blx)u(dx) (4.5)

where P22" (dx'|x) = o p*Z2 (dx'y O(dalx). Hence P22’ is the tran-
sition kernel which determines the distribution at the next stage. In general it depends
on Q, i and the common noise Z°.

A decision rule is here a measurable mapping ¢ from P(S) to P(D) such that
o(p) € D(u) for all ;. We denote by F the set of all decision rules. Suppose that

¥ = (¢o, ¢1, - . .) is a policy for the MDP. As in the previous section we setforn € Ny

Mo = U,
a1 =T (tn, ©n(n), Z?Hr])

which yields the sequence of distributions of individuals. Note that it is deterministic
if T does not depend on the common noise Z°.

Then we define for MDP the following value functions for policy ¥ = (¢, ¢1, - - .)
and state u € P(S)

Ty (w) =Y BELIF (k. 0],
k=0
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J(w) = SEP Jy (). (4.6)

Instead of (A2) we will now assume that
(A2’) (x,a, pn) — r(x,a, ) is continuous.
Definition 4.2 We define

(a) The set M := fv:PS) — R |~v is cgntinuous and bounded}.
(b) The maximal reward operator U on M in this model is

Ovw) = @) == sup {7, ) + PEV(T (1, 0. 2°) }.
0eD()

For the mean-field limit MDP we obtain:

Theorem 4.3 Assume (A0), (Al), (A2’), (A3). Then:

(a) The value function J is the unique fixed point of the U -operator in M, i.e. it satisfies
the optimality equation J = U J.

(b) J = lim,_ o0 U"0.

(c) There exists a maximizer of J and every maximizer ¢* € F of J defines an optimal
stationary deterministic policy (¢*, ¢*, .. .).

Remark 4.4 We can use the established solution methods like value iteration, policy
iteration, linear programmes or reinforcement learning to numerically solve the limit
MDP ( [4, 10, 30]).

The limit problem can be seen as a problem which approximates the original model
when N is large. In order to proceed, we need a more restrictive assumption than (A3)

(A3’) Zis compact and (x, a, i, z,z0) — T(x,a, 1, z, zo) is continuous.

Remark 4.5 The assumption that Z is compact is not a strong assumption. Indeed,
w.l.o.g. we may choose the disturbances to be uniformly distributed over [0, 1]. This
is because if for example Z = R and F is the distribution function of Z we get

z 2 p-! (U) with U ~ U ([0, 1]) and F~! is then part of the transition function.
Then it is possible to prove the following limit result.

Theorem 4.6 Assume (AO), (Al), (A2’) and (A3’). Let pL(])v = uo for N — oo where

1y € Pn(S). Then

(@) limsupy_, o JV (1)) = J (o).

(b) Suppose ¢* is a maximizer of J. Then it is possible to construct (possibly history-
dependent) policies ¥V = (goév, (p{v, ...) for MDP s.t. limy_, JJ/VN (/L{)V) =
J (o).

In particular the proof of part (b) shows how to obtain an g-optimal policy for the
model with N individuals (N large) when we know the optimal policy for the limit
MDP.
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Remark 4.7 (a) In case there is no common noise, MDP is completely deterministic.

(b)

()

The optimality equation then reads

Jw = swp |f7(u, 0+ BI(T (1, 0] @.7)
QeD(p)

where T (11, Q)(B) = [ p©“*(B)Q(d(x, a)) with p***(B) = (T (x, a, ju, Z)
€ B).

If there is no common noise and r and 7' do not depend on w, we obtain as a
special case a standard MDP. The usual optimality equation for this MDP (for one
individual) would be

Vx)= sup {r(x,a)+BEV(T(x,a,Z))}, xeS 4.8)
aeD(x)

where V (x) = sup, > 1o ﬂkE;’ [r(Xi, A};)]. The results in this paper show that
we can equivalently consider MDP which implies the optimality equation (4.7). Itis
possible to show by induction that the relation between both value functions is given
by J(n) = f V (x)u(dx). Moreover, amaximizer of J is givenby ¢* (1) = u® 0*
with Q*(-|x) = 8+ (x) for some f* : § — A with f*(x) € D(x) and f*isa
maximizer of V. Here the choice of the conditional distribution Q* does not depend
on u and is concentrated on a single action.

The policy "V which is constructed in Theorem 4.6 is deterministic but has the dis-
advantage that individuals have to communicate. Another possibility is to choose
Q{)V as an empirical measure of Q( given ,u(l)v . This means if Qf = 1o ® 0* and
[/Lév = u[x"] then simulate for all xiN actions aiN according to the kernel QO*. This
is then a randomized policy but has the advantage that every individual can do
this on its own without having the information about the other states and actions.
This is then a decentralized control, i.e. f i(x) = f (x;). Also the speed of the
convergence in Theorem 4.6 depends on the chosen approximation method.

We summarize the model data below:

Model MDP

State space P(S) >

Admissible actions D(p) :={Q € P(D) | the first margin of Q is u} > Q

Transition function T(w, 0,Z2%B) = [p 5@ Z° (B 0 (d(x, a)) where
a2 By . B(T(x,a, u, Z!, Z°) € B|Z0)

Reward F(u, Q) = [pr(x,a, n)Qd(x, a))

Policy ¥ = (g0, ¢1,---),

@n € F :={p : P(S) > P(D) | ¢ meas., (1) € D(n), Y € P(S)}

Example 4.8 We reconsider Example 2.4. In MDP a state can be any distribu-
tion on S, e.g. u = (JT_1,0,1 — n_l). An action is a distribution on D =
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{(1,2),(1,3),(2,1),(2,3), (3, 1), (3,2)} s.t. the first margin is u. For example
Q0= (@""10,003/401—-n"1,1/4(1 —x~1)). Here #(, Q) = 7w~ ..

5 Average Reward Optimality

In this section we consider the problem of finding the maximal average reward of the
mean-field limit problem MDP. So suppose an MDP as in the previous section (Eq.
(4.6)) is given. For a fixed policy ¢ = (¢1, ¢2, . ..) define

n—1

1
liminf = "EY [F (. ¢)] =: Gy (). (5.1)

n—oo n
k=0

The problem is to find G(u) := sup,, Gy (w) for all u € P(S). We will construct
the solution via the vanishing discount approach, see e.g. [3, 19, 33, 34]. This has
the advantage that we get a statement about the approximation of the -discounted
problem by the average reward problem immediately. For this purpose we denote by
JB, Jf the value functions of the discounted reward problem MDP of the previous
section in order to stress that they depend on the discount factor S.

We first note that the following Tauber Theorem holds (see e.g. [34], Th. A.4.2):

Lemma 5.1 For arbitrary u € P(S) and policy ¥ = (o, ¢1, . ..) we have

n—1

1
fiminf - 3 B Gu 901 = Gy () < liminf (1= $)J] 0

n—-oo n k:()
1 n—1
< limsup(l — )J} () < limsup — Y EY [ (. gx)] < 00
B n—oo N =0

In order to proceed we make the following assumption (compare with condition
(B) in [33] or condition (SEN) in [34], Section 7.2).

(A4) There exist L > 0, B € (0, 1) and a function M : P(S) — R such that
M) < hP () = JP(u) — 1P (v) < L

for fixed v € P(S), all u € P(S) and all 8 > B.

We define p(8) = (1 — ,B)Jﬂ(v). Note that since r is bounded by a constant
C > 0 say, we obtain [p(8)| < (1 — B)|JP(v)| < C. lLe. p(B) is bounded and
lim supgy; p(B) =: p exists. Now we obtain:

Lemma 5.2 Under (A4) there exists a sequence (f,) with limy,_c0 fn = 1 s.2.
lim (1= )P () = p
n—oo

forall i € P(S). In particular we have Gy (i) < p for all u and .
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Proof Using (A4) we obtain:

(1= B)IP(w) — pl = 11— PRP () + p(B) — pl < (1 — BIRP ()| + 1p(B) — ol
< —=pB)ymax{L, M(w)} + |p(B) — pl.

The last term converges to zero when we choose (8,) s.t. lim,_,oc 8, = 1 and

lim,—, o« p(B,) = p which is possible due to the considerations preceding this lemma.

The first term also tends to zero. O
We obtain:

Theorem 5.3 Assume (A0), (Al), (A2’), (A3’), (A4). Then:

(a) There exists aconstant p € R and anupper semicontinuous functionh : P(S) — R
such that the average reward optimality inequality holds, i.e. for all u € P(S)

p+h(w = sup {FGu O +Eh(T (i 0. 201 (5:2)
QeD()

Moreover, there exists a maximizer ¢* of (5.2).
(b) The stationary policy (¢*, ¢*, ...) is optimal for the average reward problem and
p = limsupg, p(B) is the maximal average reward, independent of .. Moreover,

there exists a decision rule ¢° and sequences By (1) 1+ 1, pm () — 1 s.1.
¢ = lim_ P gy ()
m— 00

where ¢P is an optimal decision rule in the B-discounted model and the stationary
policy (¢°, ¢°, . ..) is optimal for the average reward problem.

Note that part (b) of the previous theorem states that it is possible to obtain an
average reward optimal policy from optimal policies in the discounted model. Indeed
what is maybe more interesting is the converse. From the average optimal policy we
can construct -optimal policies for MDP and thus also for MDP if B is close to one.
The idea is to use the double approximation (number of agents large, discount factor
large) to approximate the discounted finite agent model by the average mean-field
problem. We do not tackle the question of convergence speed or how 8 depends on N
here. A policy ¥ is e-optimal in state u € P(S) for MDP if

J (1)
J ’3 ()

Thus, we obtain:

Corollary 5.4 Under the assumptions of Theorem 5.3 suppose ¥* = (¢*, ¢*,...) is
an optimal stationary policy for the average reward problem and W is constructed
as in Theorem 4.6. Then for all ¢ > 0 and for all p € P(S) there exists a () < 1

@ Springer



12 Page 16 of 36 Applied Mathematics & Optimization (2023) 88:12

(a) s.t. ¥* is e-optimal for MDP in state wforall B > B(u).
(b) and there exists a N(u, B(in)) € N s.t. forall N > N(u, B(n)) and B > B(wn)
W is e-optimal for MDP, i.e. (1 —ﬁ)ujp",v (uNy = IN (uN)| < & where uN = L.

Proof (a) By Theorem 5.3 we know that p = G+ (u) is the maximal average reward.
Lemma 5.1 and Theorem 5.3 together imply

p = Gy=(p) < liminf(1 — B)J. () < limsup(1 — B)J. (1)
Bl B

< limsup(1 — B)JP () = p
A1

which means that we have equality everywhere. Since r is bounded, w.l.o.g. we
may assume that r is bounded from below by C > 0, otherwise we have to shift
the function by a constant. Now for all ¢ > 0 we can choose, due to the preceding

equation, B(w) s.t. forall B > B(n)

T () e e
< < —
JEw 1= A =pJbu) ~ C

175w = I ()] < and hence 1 |

e
iy
which implies the result.

(b) Let ¢ > 0. From part a) choose f(u) < 1 s.t. for all B > B(n) we have (1 —

,3)|Jﬂ(pb) — Jf* (m)] < ¢/3. Fix such a g > B(u). From Theorem 4.6 choose
N > N(u, B) s.t.

o) = 7wl < e/3 and |7V ™) = 1P o)l < e/3.
Then, in total
(1= B (™) = TN (M) < (1= By (™) = T ()]
+(1 =BG = TP+ A =PI ) — TN V) <6 (53)

which implies the statement.

5.1 Special Casel

We consider the following special case: The reward depends only on u, i.e. we have
r(u, Q) = r(w). The transition function is independent of x and there is no common
noise, i.e. all individuals move independently from each other. Suppose n* € P(S) is
the solution of the static optimization problem

(5.4)

max 7 (u)
s.t.pu e P(S)
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which exists since r is continuous on the compact space P(S5). In the described situation
MDP is deterministic and the evolution of the state process for a given policy is

Mk+1(B)=/Dpx’”(B)Q(daIX)Mk(dX) =/SPQ(BIX)Mk(dX), B eB(S) (55

for k € N where we start with the initial distribution .

Now suppose further that there exists a transition kernel (policy) O* such that p*
is a stationary distribution of P2 and P2" satisfies the Wasserstein ergodicity (see
Appendix). Suppose further that (11;) is the state sequence obtained in (5.5) where

we replace P by P2". Then ui = w* for k — oo weakly since convergence in the
Wasserstein metric implies weak convergence on compact sets. Problem (5.4) and the
solution approach here is similar to the concept of steady state policies in [12].

Lemma 5.5 Under the assumptions of this subsection ¢*(1) = u ® Q* defines an
average reward optimal stationary policy ¥™* = (¢*, ¢*,...).

Proof Since pu + 7(u) is continuous (see proof of Theorem 4.3) we obtain
limy 00 7(11) — 7(u*). Thus we have for all u € P(S)

CR 1 - ~co % ~0 %
Gy (u) = liminf ~ ];Jr(/m = F(1*) = G(w).

The last equation follows from the definition of p*. Hence v* is average reward
optimal. O

We can think of the problem thus been transformed into a Markov Chain Monte
Carlo problem to sample from p*. In order to obtain an e-optimal policy in the N
individual problem with large discount factor, an individual in state x can sample its
action from Q*(-|x) (see proof of Theorem 4.6 and Remark 4.7 ¢)). This yields a
decentralized decision which does not depend on the complete state of the system.
Le. the individuals do not have to communicate with each other in order to push
the system to the social optimum. The knowledge about the own state is sufficient.
Problems may occur when the solution of (5.4) is not unique. Then the individuals
have to communicate which solution is preferred. In particular the individual’s optimal
decision coincides with the social optimal decision. This is because we can interpret 1¢x
as the distribution of a typical individual at time k. Also note that in this case it can be
shown that Assumption (A4) is satisfied since |7 (uu}) =7 (u*)| < CW (uy, u*) < Cpk
with p € (0, 1) where W is the Wasserstein distance of two measures (see Appendix).
We will give a more specific application in Sect. 6.

5.2 Special Casell

We relax the previous case and allow the transition function to depend on p. Again
we determine the solution u* of (5.4) first. Next we check whether there exists a
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transition kernel (policy) Q* such that u* is a stationary distribution of P€" with
P2 (Blx) = [ p*“" (B)Q*(dalx) for x € S,B € B(S) and P<" satisfies the
Wasserstein ergodicity. Here, we need some further properties of the model to obtain
the same result as in Case I, because we have to make sure that the system still
converges to i*, even if we choose the *wrong’ transition kernel

/ p* @ (B)Q*(dalx)

at stage k. Note that the evolution of the state in this model is given by

M1 (B) =//Px’“”‘k(B)Q*(dalx)MZ(dX)-

In particular we want to find an optimal decentralized control. The following assump-
tions will be useful:

(T1) Thereexists yw > Os.t.sup, , . |T(x,a, u,2)=T(x,a, u*, 2)| < ywW(u, n*)
for all u € P(S).

(T2) D(x) does not depend on x and W (Q*(-|x), Q*(-|x)) < yolx — x’| for all
x,x' eS8.

(T3) There exists y4 > Os.t.sup,  |T(x,a,u*,2) = T(x,d’, u*, z)| < yala —d’|
foralla,a’ € A.

(T4) There exists ys > O s.t. sup, . |T(x,a, u*,2) = T(x',a, u*, 2)| < yslx — x|
forall x, x’ € S.

(TS) y :==yw +vova+ys <L

The next lemma states that under these assumptions the sequence (1) still converges
against the optimal distribution p*.

Lemma 5.6 Under(T1)-(T5)we obtain: Wy, i, u*) < y W(ug, u*) andthus juy =
w* weakly.

Lemma 5.6 then implies that even in this case the maximal average reward 7 (™) is
achieved by applying Q* throughout the process which corresponds to a decentralized
control. An example where (T1), (T3), (T4) are fulfilledis T (x, a, u, z2) = ysx+yasa+

yw [ xp(dx) + z.

6 Applications

6.1 Avoiding Congestion

We consider here the following special case: N individuals move on a graph with nodes
S ={l,...,d} and edges E C {(x,x") : x,x’ € S}. Individuals can move along
one edge in one time step. We assume that nodes are connected. The aim is to avoid

congestion and to try to spread the individuals such that they keep a maximum distance.
More precisely suppose that the current empirical distribution of the individuals on
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the nodes is « and that the distance between node x and x’, x, x’ € S is given by
A(x, x") > 0 where A(x, x) = 0and A(x, x’) = A(x', x). Then the average distance
between an individual at position x and all other individuals is

r(x,a, p) =rx, pu) = Z Alx, Xp(x') = / A(x, x)p(dx').
Here r(x, a, i) does not depend on a. Hence
0 =7 = [ rputan = [ [ awxu@nnax) = pan”

where A = (A(x, x’/ ))X’x, g is the matrix of distances. Note that A is symmetric.
We assume that A = S and D(x) = {x’ € S : (x,x') € E} U {x}, i.a. actions
in the original model are neighbours on the graph. We interpret actions as intended
directions the individual wants to move to, but this may be disturbed by some random
external noise. In the mean-field limit the state of the system at time »n is just given
by a generalized distribution on S. Recall that the general transition equation of the
mean-field limit is

M1 (x') = Z Z poern ()0, (x, @)

X aeD(x)

=3 3 prern () Qulalpa ) ©.1)

X aeD(x)

if S, A are finite where px'“’“'zo(x’) =P(T(x,a, u, Z,z% = x’) and Q, has first
margin [,. Problems where the reward decreases when more individuals share the
same state are typical for mean-field problems, see e.g. [25] where a Wardrop equi-
librium is computed. In [28] the authors consider spreading contamination on graphs.

6.1.1 No Common Noise

. .. . . 0
We consider the mean-field limit now. At the beginning let us assume that p* 4" =
p*“ does not depend on p and z°, i.e. the individuals move on their own, not affected

by others and there is no common noise. Moreover, it is reasonable to set p*“(x") = 0
0

XX

if (x, x") ¢ E except for x = x’. Let us denote PO = (p..) where

p2 = 3 p)dal) 62)

aeD(x)

with Q(alx)pu(x) = Q(x, a). Hence (6.1) can be written as fAnt1 = ,u,,PQ". Here it
is more intuitive to work with the conditional probabilities Q (a|x) instead of the joint
distribution Q(x, a).
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Obviously the optimization problem

max MAMT
{s.t. u € P(S) 6.3)

has an optimal solution u* since P(S) is compact and uAp | continuous.

We consider the following special case: For a, x’ € D(x) set p*“(x’) = «a for
a=x"and p*4(x’) = IDLC% else. All other probabilities are zero. Le. if we choose
a vertex a we will move there with probability « and move to any other admissible
vertex with equal probability. Formally for x € S, actiona € D(x) = {x1, ..., X}
(where x; = x for one of the x;’s) and disturbance Z ~ U|O0, 1] the transition function
in this example is given by

x;, ifz €0, o],
T, xi 0,220 = § % ifze@+(— D= a4+ 1% j=1,...i-1,

xj, ifze@+ (-2 a+(j—Di2), j=i+1,....m.
Lemma6.1 If u*(x) > 0 for all x € S and a is large enough, then there exists a
Q" € P(D) s.t. u* = w*PL e p*isa stationary distribution for the transition
kernel P9 given in (6.2).

Proof We use a construction similar to the Metropolis algorithm. For x, x" € S let

k, if (x,x') e E

Wiy = {0 else.

and

\I/xx/<“*(x/) A l), if x # x/

w*(x)

1 — Zy#x q”xy(ﬁ*gj};; AN 1) lf.x = .x/.

0* . _
pxx’ T

The parameter ¥ > 0 should be such that P 0" is a transition matrix. Then the detailed
balance equations

M*(X)PXQX/ = M*(X’)pgx, x,x' €S

are satisfied and hence p* is a stationary distribution of P Q" 'We now have to determine

O* s.t. P2 has the specified form. Let us fix x € S. We have to solve (6.2) for Q*.
We claim that (6.2) is solved for

(DW= DpL — (1 —w)
0*(alx) = D . 6.4)
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This can be seen since

_ _ 1— _
Y PN 0 al) = 0F( e + (1 — 0*(x|x) =

aeDe) [D(x)] —1
e oz|D(x)|—1) l—«a o*
frd = ’ 65
Q(XMK|Dun—1 Dl —1 - P&
In order to have Q*(a|x) € [0, 1] we have to make sure that « > pXQ_x*, V(1 - pg;)
forallx,x’eSandaz%. O

Theorem 6.2 The optimal average reward policy for the limit model considered here
is the stationary policy ¥* = (¢*, ¢*, ...) with ™ (1) = nu ® Q* with Q* from (6.4).
Thus, for N large and B close to one, sampling actions from Q* is e-optimal for the
B-discounted problem with N individuals.

Proof The statement follows from our previous discussions. Note that when we start
with an arbitrary (3, the sequence of distributions generated by u;,; = MZPQ*

converges against ;* since the matrix P 0" is irreducible by construction and we have
a finite state space. Thus, Gy () in (5.1) yields the same limit w*A(u*)T which is
maximal since it solves (5.4). O

Remark 6.3 Itis tempting to say that for the discounted problem, once we have reached
the stationary distribution after a transient phase we know that the optimal policy is to
choose Q* forever. However, there are only rare cases where the stationary distribution
is reached after a finite number of steps (see e.g. [15]), so the transient phase will in
most cases last forever.

Example 6.4 We consider a regular 3 x 3 grid, i.e. d = 9 (see Fig. 1, left). We set
the distance between nodes equal to 1 when there is only one edge between them.
Nodes which are connected via 2 edges get the distance 1.4, when there are 3 edges
in between 1.7 and finally we set the distance equal to 2.2 when there are 4 edges in
between. The distance matrix A is thus given by

0O 1 14 1 14 1.7 14 17 22
1 0 1 14 1 14 17 14 1.7
14 1 0 1.7 14 1 22 1.7 14
1 1417 0 1 14 1 14 1.7
A=|14 1 14 1 0 1 14 1 14
1.7 14 1 14 1 0 17 14 1
14 1722 1 1417 0 1 14
1.7 14 17 14 1 14 1 0 1
22 17 14 17 14 1 14 1 O

The optimal distribution of problem (5.4) is here given by u* = %(7, 2,7,2,1,2,7,
2,7). The masses are illustrated in Fig. 1, right picture. The area of the circle is pro-
portional to the corresponding value of u*. We think of the proportion of individuals
who occupy this node.
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3
distribution (right)

[§

9
Fig. 2 Evolution of the individuals using the optimal randomized decision when all start in node 1, after
n=2,4,8, 16,32 and 64 time steps (left to right, above to below)

Fig.1 Network with labelled
nodes (left); Optimal stationary

o

We set @« = 1 and ¢ = 0.25. Then we obtain from (6.4_1) that the optimal decision
in every node is given by the following transition kernel Q*(a|x)

12c ¢ 0 ¢ 0 0O O O O

2b 3 2p 0 b O O O O

0 ¢ 12¢ 0 0 ¢ O O O

2b 0 0 3 b 0 2o 0 O

0* = 0O 2 0 2b 020 0 2 O
0O O 2 0 b3 0 0 2b

0 0 O ¢ 0 0 12¢ ¢ O

0O 0 O O b O 2b 3b 2b
0O 0 0 0 0 ¢ 0 ¢ 12

where b = % and ¢ = ﬁ. So using this decentralized decision throughout the process
yields the maximal average reward. In Fig.2 we see the evolution of the system when
all mass starts initially in node 1. The pictures show the distribution of the mass after
2,4, 8, 16, 32 and 64 time steps. Note that sampling actions from Q* is also e-optimal
for the system when we have a finite but large number of individuals and g is close to
one for the discounted reward criterion.
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6.1.2 With Common Noise

Next we suppose that & depends on the common noise Z°. In this case the maximal
average reward which can be achieved is less or equal to the case without common
noise since the sequence of distributions is stochastic and may deviate from the optimal
one. We simplify things a little bit since we assume here that | D(x)| = y independent
of x. From the previous section, equation (6.5) we know that we can write

a(Z%y -1 1-—a(Z9
y—1 y—1 =

P2, = 0(x'v)

In matrix notation

_ 1 1 A

y —

where U is ad x d matrix containing ones only and 0 = (Q(x’|x)). Here the situation
is more complicated, in particular the next empirical distribution of individuals is
stochastic and given by

1
y —1

1 -
tnr = (1= a(Z%)e + @(Z%)y = Din O

withe = (1,..., 1) € RY. Plugging this into the reward function yields

(v = DBt ATy | = EI(1 = a(2)leaeT
F2E[(1 — a(Z)(@(Z%)y — DIeAQ, 1)
+E[@(Z%)y — D 114n 0nAQ, i, - (6.6)

Now consider the problem
{Z]E[(l —a(ZM@(Z%y — DlteAvT) + E[(a(Z%)y — D?*IvAvT — max

6.7)
v e P(S)

Obviously this problem has an optimal solution v* since we maximize a continuous
function over a compact set. Now v corresponds to 11, @, in (6.6). In case it is possible
to choose for all 1 € P(S) a matrix Q s.t. ©Q = v*, then this would be the optimal
strategy, since we would get the maximal expected reward in each step. This is for
example possible if the graph is complete. Then we can simply choose Q as the matrix
with identical rows which consist of v*.

6.2 Positioning on a Market Place

Suppose we have a rectangular market place like in Fig. 3. The state u represents the
distribution of individuals over the market place. Point A is an ice cream vendor. The
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Fig.3 Market place with ice D E
cream vendor (left). Optimal
distribution in example (right)

B I o

aim of the individuals is to keep distance to others and be as close as possible to the
ice cream vendor. Thus, S C R? is the rectangle BC E D and the one-stage reward is

Fu) = / / d(x, Y (dn)p(dy) — / d(x, A)u(dx).

In what follows in order to simplify the computation we choose d(x, y) = ||x — y||°
for x, y € S. We want to solve (5.4) in this case. Let us formulate the problem with
the help of random variables. Let X = (X1, X»),Y = (Y1, Y») be independent r.v.
having distribution p. Then 7 () is the same as

2
D B —¥)? —E(X: — A,

i=1

Thus, we can treat the margins separately and the dependence between them is not
interesting for the reward. Now obviously since X and Y both have the same distribu-
tion we can write

E(X; — ¥)? —E(X; — A)? = EX? + 2EX; (A; — EX;) — AZ.
Suppose we fix EX; for a moment. Since x > x? is convex, the distribution which
maximizes the expression is maximal in convex order, given the fixed expectation. But
this distribution is due to the convexity property concentrated on the endpoints of the
interval. Thus we can restrict to random variables X which have mass p € [0, 1] on
Byand 1 — p on Cq, i.e. we maximize

Bip+CH(1—p)+2(Bip+ Ci(1 — p))(A; — Bip — Ci (1 — p))
over p € [0, 1]. o
1—A]

The solution is given by p = 4—1L + 3c-8 Since the joint distribution does not
matter we can choose independent margins and obtain
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* ! ! Do -4
wr=oa(g+ 2(C1 Bl))(z * 301 )
3 L
+oc (5 - 2(01 Bl)>(1 " 30s- BZZ))
1 3_ DA
+op(3+ 2(01 Bl)><7L 50r B 322)>
3

+
=

(3G 30 5y)

4 2(C;—B)/\4 2(Dy—By)/
This is the target distribution which should be attained. For a numerical example we
choose B(0,0), C(4,0), D(0, 3), E(4,3) and A(2.5, 2). In this case we obtain

g 35S 46
W =0B1g; T0CTgy TOD gy TOE g,

The distribution is illustrated in Fig. 3, (right).

Depending on how the transition law precisely looks like, if one is able to choose
Q* such that ;* is the stationary distribution of P Q" the problem is solved. Of course
the optimal distribution u* depends on what kind of distance d we choose. Varying
the metric for the distance leads to interesting optimization problems.

7 Conclusion

We have seen that the average reward mean-field problem can in some cases be solved
rather easily by computing an optimal measure from a static optimization problem. The
policy which is obtained in this way is e-optimal for the B-discounted N-individuals
problem where N is large and 8 close to one. The static optimization problem for
measures gives rise to some interesting mathematical questions.

8 Appendix

8.1 Auxiliary Results

The following result can be found in [1], Lemma 7.2:

Lemma 8.1 Let X be a separable metric space, Y be compact metricand f : X XY —
R continuous. Then x, — x for n — oo implies

lim sup | f(xn, y) — f(x, )| = 0.
yeY

n—o0
8.2 Wasserstein Ergodicity
For the following definitions and results see [31].
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Definition 8.2 For two probability measures p, v on S, the dual representation of the
Wasserstein distance is given by

W, v) = sup f J @) (v(dx) — p(dx))

IfllLip=<1
where

o= sup M@= FON

X,y€S, x#y lx — vl

Note that convergence in Wasserstein metric implies weak convergence when we are
on compact sets.

Definition 8.3 A transition kernel P(-|x) from S to S is called Wasserstein ergodic
when there exist constants p € (0, 1) and C > Os.t. foralln € N

W(P"(1x), P" (1) _

Cp".

X,yES, x#Yy lx — y]
Suppose P is Wasserstein ergodic and has stationary distribution p* which means that
w* = [ P(|x)u*(dx) =: u*P. Then for any o € P and p, = poP" we obtain
W (un, p*) < Cp".
8.3 Additional Proofs
8.3.1 Proof of Theorem 2.3:
We first show that U : M — M. Hence, let v € M. Since r and v are bounded, Uv
is bounded. (A2) implies that (x, a) — r(x, a) is upper semicontinuous. This follows
since (X,,a,) — (x,a) forn — oo implies x;, — x',a, — a',i = 1,...,N
and ul[x,] — w[x] (in weak topology) for n — oo. Moreover, the sum of upper

semicontinuous functions is upper semicontinuous. And finally due to (A3) and the
fact that v is upper semicontinuous

x.) > E[u(T(x.a, ulx], Z, 2) ]
is upper semicontinuous. This together implies that
(X, a) > (X, a) + E[U(T(X, a, u[x], Z, ZO))]} (8.1)

is upper semicontinuous and U : M — M follows from Proposition 2.4.3 in [2].
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Next note that M together with the sup-norm |[v|| = supygv [v(X)] is a Banach
space. Also 0 € M which is the function identical to zero. Moreover for v, w € M:

jUv—vwl <p sup [E[o(T(x.a,uix]. Z. 2%) - w(Tex, a, ulx), 2, 29) |
aeD(x)

< Bllv —wl|

thus U is contracting since f € (0, 1). Next, the properties in (A0), (A1) imply that
D(x) is compact and x +— D(x) is upper semicontinuous. From the first part of the
proof we know that the mapping in (8.1) is upper semicontinuous. Thus, the existence
result for maximizers from Proposition 2.4.3 in [2] implies that for all v € M there
exists a maximizer f € F.

Altogether, we have shown all assumptions from Theorem 7.3.5 in [2] which directly
implies the statement. ]

8.3.2. Proof of Theorem 3.5:

We only have to show that U : M — M. The statement then follows from Theorem 2.3
and Theorem 3.3 since we can identify policies, rewards, transition laws and operators.
To show U : M — M we use Proposition 2.4.3 in [2]. Thus, we have to check the
following continuity and compactness assumptions.

@) ﬁ(u) is compact and @ — ﬁ(u) is upper semicontinuous on IP’N (S).
(i) (u, Q) > F(u, Q) is upper semlcontmuous and bounded on D.
(iii) forv € M the mappmg (u, Q) — ]Ev(T(,u 0,7, Z%)is upper semicontinuous
and bounded on D.

For (i) first note that ﬁ(u) is compact for all p since D is compact. Upper semi-
continuity of p > D(/L) can be seen as follows: Let (i) C Py(S) and u, = u
forn — ocoand Q, € D(un) Since D is compact there exists an accumulation point
Q € Py(D) s.t. Q,, = Q for a subsequence (ny), and the sequence of the first
margins converges to i hence Q € ﬁ(,u).

Part (ii) follows from the fact that

N

1
Fu, Q)=+ D r(xisai, )

i=1

for O = u[(x, a)], (A2) and the observation that (Q,) C Py (D), @, = O € Py(D)

implies pointwise convergence x(") N x,,a»(") — a; forn - oco,i =1,...,N.

Finally for (iii) note that

(1, Q) T, Q, 2, 2%

is continuous on D which follows from (A3). This implies (iii) and the statement
follows from Proposition 2.4.3 in [2].
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8.3.3. Proof of Theorem 4.3:

Ip orger to §h0w the statement we use Theorem 7.3.5 in [2]. Thus, we first prove that
U : M — M. We do this by showing that

@) D(/,L) is compact and @ D(M) is continuous.
(ii) (u, Q) > r(u, Q) is continuous and bounded.
(iii) forv € M the mapping (1, Q) — Ev(T (i, O, Z9)) is continuous and bounded.

Consider (i): D(u) is compact for all u since D is compact. Next the mapping
w — D(w) is continuous if and only if it is upper and lower semicontinuous. Upper
semicontinuity follows as in the proof of Lemma 3.5. Lower semicontinuity means
that when p, = u € P(S) for n — oo, then for each Q € D(u) we find a sequence
(Q,) with 0, = Q and Q, € 5(;1,,1). This can be achieved as follows: We can
decompose Q into Q = u ® Q. Now define O, := u, ® Q, then the constructed
sequence has the desired properties.

For (ii) suppose that (u,, @,) = (1, Q) for n — oo. We have to show that

lim Dr(x,d,un)Qn(d(x,a))=/Dr(x,a,M)Q(d(x,a))~

n—oo

We obtain:

=

/Dr(x,a,/tn)Qn(d(x,a))—/Dr(x,a,,u)Q(d(x,a))

s/Dv(x,a,un) — r(x.a, 0] Ou(d(x, @)

+ /Dr(x,a,m(Qn(d(x,a»—Q(d(x,a»)

=

< sup [r(x,a,pn) —rx,a, )|+ ‘/Dr(x,ayu)(Qn(d(x,a))— Q(d(x,a))|.

(x,a)eD
The first term converges to zero due to Assumption (A2’) and Lemma 8.1. The second
term converges to zero since Q, = Q forn — oo and (A2’). Boundedness follows
from the boundedness of r.

Next we show (iii). Boundedness is clear. In order to show continuity we first
consider the mapping

(1, Q) T(n, 0,2°) = fD p=er Q(d(x, a)) (8.2)

for fixed z°. We claim that this mapping is continuous. Let h : S — R be continuous
and bounded. By PZ we denote the distribution of the r.v. Z. We have to show that

(. Q)H/Sh(y)f(u, Q,z°>(dy)=/D/Zh(T(x,a,u,z,z"»PZ(dz)Q(d(x,a))
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is a.s. continuous. Let (u,, Q,) — (1, Q). We obtain:

//h(T(X,a,/Ln,z,zo))IP’Z(dz)Qn(d(x,a))

pJz

—/ / h(T(x,a,M,z,zo))PZ(dz)Q(d(x,a))‘
pJz

= / /z ‘h(T(x’ a jin.2,2°) = h(T(x.a. .z, ZO))’ P#(dz) Qn(d(x, a))
D

_|_

fD /Z h(T(x,a,u,z,z‘)))PZ(dz)(Qn(d(x,a))—Q(d(x,a»)‘

5/ sup [B(T(x, a, g, 2, 2%) = h(T (5, @, 1 2. 2) | P ()
Z (x,a)eD

+

fD fz h(T(x,a,/L,Z,zo))IP’Z(dz)(Qn(d(x,a))—Q(d(x,a)))‘

In the first term we can interchange the limit lim,,_, o, and the integral due to dominated
convergence and obtain

lim sup ‘h(T(x,a,an,Z,zO))—h(T(x,a,M,z,zo))‘=O

n—>00 (v 1yeD

due to (A2’) and Lemma 8.1. The second term converges to zero for n — oo since
x,a) — h(T(x,a, u, z, zo)) is continuous due to (A3). In total we have shown that
the mapping in (8.2) is continuous.

Finally take v € M and pick a sequence with (u,, Q,) — (4, Q) forn — oco. We
obtain with dominated convergence, the continuity of v and the continuity of (8.2)

Jim BT (i, Qn, Z2°) = Ev(lim T (i, Q. 2°) = Ev(T (1, 0,2%)

which shows the stated continuity of (i, Q) Eu(T (1, Q, Z%)). Now Proposition
2.4.8 in [2] implies that U : Ml — M.

The next condition in Theorem 7.3.5 [2] is that U is contracting on M. But this
follows along the same lines as in the proof of Theorem 2.3. Finally, the existence
of maximizers which is another assumption in Theorem 7.3.5 [2] follows again from
Proposition 2.4.8 in [2].

In total the statement is a consequence of Theorem 7.3.5 in [2] with the set M. O

8.3.4. Proof of Theorem 4.6

We partition the proof into three steps.

Step 1: Let QY = Q for N — oo where QV € Py (D). Hence there exist
xN = (x{v, ...,xﬁ) and a = (a{v,...,all\\,/) e DY) s.t. ,u[(xN,aN)] = QN and
pulxN) = 1V and QN € D).
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Further, suppose we fix w € € and consider a realization v = (ziv s z%)

of (zV,...,ZN) and 20 of Z9. We show that 7(uN, OV, 2V, %) = T(u, Q,2°)
where w is the first margin of Q. In order to show this let 4 : S — R be bounded and
continuous. We obtain:

/h(y)fw, oN. 2V, 2 dy) = Zh CNCANANTAS AN D)

1
N

™M=

(h(T(xlN, a, w2V O = h(TN, el z,N,ZO))>
l
1

N (TN, a2, 20). (8.3)

M=t

+

i=1

Since &, T are continuous, D, Z are compact and ¥ = 1 we can for all ¢ > 0
choose N large enough s.t.

sup Ih(T (x,a, 1N, 2,2%) = (T (x,a, 1,2, 20)| < e

(x,a,z,2%)eDx Z2

Hence the first term in (8.3) converges to zero for N — oo. Let ,uév be the empirical
measures of z". We obtain:

N
%Zh(T(xiN,afv,u,zfv,zo)) = /h(T(x,a,u,z,zo))QN(d(x,a))ugv(dz).
i=l

(8.4)

Since OV ® /Lév = Q ® P for N — oo by the Glivenko-Cantelli Theorem for
N — oo, the r.h.s. of (8.4) converges to

/ h(T(x,a, 1, z,2°) QW (x, @)P* (dz) = / hOMT (. Q,20)(dy).

Thus, we get T(u™, OV, ZN, 2% = T(u, Q, Z°) P-as. In the proof of Theorem
4.3 we have shown that this implies limy_, o0 #(1V, OQV) = F(1, Q).

Step 2: Suppose ¥V = ((pév, (pfv, ...) is an arbitrary policy for MDP. Let Qév =
(p(’)V (u(’)\' ). Now (Q(’)V ) is a sequence of measures on the compact space D. Hence there
is a subsequence (my) s.t. Qg" = Qo € P(D) for N — oo. From Step 1 we know
that limpy _, o V(Mo M. Qg oMy = F(1o, Qo) where p is the first margin of Qg and that

W™ =T g, 04N, 2y, Z9) = T(no, Qo, Z¥), P —ass. (8.5)

Let QT = (pl(,ul M) and choose again a subsequence m'y s.t. Q1 = Q1 where the
first margin of Qg is T(pl,(), Qo, Z ). When we consider the first L € N transitions in
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that way, we find a joint subsequence (for convenience still denoted by m y) s.t. for
N — oo P-as.

(g™, QN ™, O o N, 0T = (mo. Qo i1, Q1 iir. QL)

and where the limit is by construction an admissible state-action sequence for MDP.
This is because the subsequences are taken such that the limits satisfy Q, € P(D)
that the first margin of Q,, is i, and finally because of (8.5) which is by induction not
only satisfied for time point one, but also forn =1, ..., L. Hence

L L
nglookz_joﬂkla[fw;’”ﬁ v = I;)ﬂkE[f<uk, Q0]

Since |r| < C we can choose L large enough s.t.

ﬁL+]

_/g'

> BEFu™, 0 < C

k=L+1

This implies lim supy_, oo JV (1)) < J (1o).

Step 3: We finally have to show that we can construct from ¢* a policy ¥V =
(gp(l)v, gp{v, .. st limsupy o JN (,uO ) = J(uo). This proves a) and b). Suppose
[0 (,uo) Q5. Itis p0551b1e to construct a sequence Q0 € Py(D) s.t. QO = Qfand
/,LO is the first margin of Q0 This can be done as follows: Suppose Qf = 1o ® Qo
then Mo = o by assumption and Q0 = “0 ® Qo where the kernel Q0 is an
appropriate discretization of Qg (e.g. by quantization or quasi Monte Carlo methods).
Applying the results in Step 1 we obtain limy_, f(,u(l)v, Qf)v) = r(u*, 0*) and
M{V = f‘(uév, Qév, Z,, Z(l)) = T(u*, Q*, Z?) = uj Pa.s.. Continuing in that way as
in Step 1 we can attain the upper bound J (1o) in the limit. In order to implement this
strategy the central controller has to know Q} or ¥ at time n. If there is no common
noise, then the sequence (5, Q. uj, Q7F. ...) is deterministic and we only have to
know the time step n, so the policy is non-stationary. If the common noise is present, in
order to know Q} the central controller has to keep track of the history (ZO, Z(z) yeed),
so the policy ¥V is history-dependent. However, we know from MDP theory that such
a policy can always be dominated by a Markovian policy, so

J (o) = lim JU\ (ug) < limsup /™ () < J (o)

N—o0

which yields the statements of the theorem. U
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8.3.5. Proof of Theorem 5.3

Let p = lim supgpi 0 (B) and let (B,) be the subsequence s.t. p = lim,— o0 p(Bn).
Define

h(w) := lim sup sup hP (i)
"% kzn (<

where d is a metric on IP(S). Note that % is a limit of bounded, continuous functions
which are decreasing in n and is thus at least upper semicontinuous.
Let us now consider the -discounted optimality equation

TP = 7w, P () + BEJP (T (11, o (0), %)

where ¢ is an optimal decision rule in the S-discounted model. Subtracting 8.7 (v)
on both sides yields:

p(B) + hP () = F(u, P (W) + BERP (T (i, 9P (1), 2°)). (8.6)

From Lemma 3.4 in [33] we know that there exist sequences (k) of integer-valued
measurable mappings and (u,, ) of P(S)-valued measurable mappings on IP(S) such that
kn (@) — 00, pn (1) = p for n — 0o and hPnto (11, (1)) — h(u). Define Q, (1) =
P (1, (1)). In what follows we fix i € P(S) and suppress the dependence on 11
in our notation. Then by (8.6)

0 Bry) + WP () = F(pan, Qn) + BERP (T (wp, Qs 2°). (8.7)

Moreover, it follows from [33] Proposition 3.5 that there exists a measurable function
gO :P(S) - P(D)s.t. go(u) is an accumulation point of (Q, ()) and go(u) € D(u).
For the fixed u choose a subsequence (7,,) of natural numbers (for simplicity denoted
by m) such that Q,,(n) = g%(w). Next note since 7 is continuous (see proof of
Theorem 4.3) we obtain

m 7 (wm, Om) = 7 (1, g2 ().

m—0oQ

Since for k,, large enough

WP (T (g, Ok,» Z°)) < sup sup WP ()
k=kn d(T (10,80 (). 20) )=

we obtain lim sup,,_, Pk (T(/,Lkn, Ok, Z%) < h(T (u, g%(w), Z9)). Hence taking
lim sup,,,_, , in (8.7) we obtain altogether with monotone convergence for the integral

p+h(p) < F(u, g2 (w) + Eh(f(u, "), 72%)
< P, * () + ER(T (1, 9* (), Z°%)
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where ¢* is a maximizer of & which exists since the r.h.s. is upper semicontinuous
and since D(w) is compact. This proves part a).
Iterating this inequality n times yields by (A4)

n—1 n—1

np +h(u) < 3 ES [FGue, 8]+ ES h(un)] < 3B [Fluk. 8°Gu)] + L.
k=0 k=0

Dividing by n and taking lim inf,,, o on both sides we obtain p < G ,o(u). From

Lemma 5.2 we deduce that g% and hence also ¢* yield an average optimal policy. The
remaining statements follow from [33], Proposition 3.5. ]

8.3.6. Proof of Lemma 5.6

We obtain

Wk n™) = sup /f(X)(MZH(dx) —M*(dx))‘

IfllLip=1
= ]\ / f f (F(T (a1 2) = F(T G a, 1%, 2)P (d2) 0* dalo)p dx)| (8.8)
+ s l\ / / (TG, a, 1, )P (d2) 0¥ (dalx) (i (dx) — 1 ()| (8.9)

Let us first consider the term in (8.8). By the fact that all f are Lipschitz with maximal
constant 1 and (T1) we obtain that (8.8) can be bounded by yw W (i}, u*). Thus, we
consider next (8.9). We show that

h(x) :=/ f(T(x, a, p*, 2))P? (dz) 0* (dalx)

is Lipschitz with constant bounded by ypya + ys. From this property it follows then
that (8.9) can be bounded by (ypya + ys) W (i), u*). Hence consider

| [[ a0t ain

- / / FIT( a1, )P (d2) 0 (dalx)

<| [[ 1w a @ wam - 0'way| @10

+// ‘f(T(x,a,u*,z)) - f(T(X’,a,M*,z))‘lP’Z(dz)Q*(dalx’) (8.11)

By (T4) we can bound (8.11) by ys|x — x'| since f is Lipschitz with constant
less than 1. Now finally we have to treat (8.10). Here we show that g(a) :=
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[ f(T(x,a, u*, z))P%(dz) is Lipschitz with constant less than y4:

[l - rrea [P < yala -

This altogether shows that (8.9) can be bounded by (ygya + yS)W(;L,’;, w*). Finally
we obtain

Wy 1) < v W nt — 0

for k — oo and weak convergence follows from convergence in the Wasserstein
metric. .
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