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Biologic drugs are promising therapeutics, and their efficient production is essential for a competitive

pharma industry. Dynamic flux balance analysis (dFBA) enables the dynamic simulation of the extracel- 

lular bioreactor environment and intracellular fluxes in microorganisms, but it is rarely used for model- 

based optimization of biopharmaceutical manufacturing in Pichia pastoris . To bridge this gap, we present

a model-based optimization approach based on dFBA to produce biologics in P. pastoris that combines

ideas from bilevel optimization, penalization schemes, and direct dynamic optimization. As a case study,

we consider the production of recombinant erythropoietin in P. pastoris growing on glucose, and pre- 

dict a 66% improvement in the productivity of erythropoietin. We show that this improvement could be

obtained by implementing an almost constant optimal feeding strategy which is different from typical ex- 

ponential feeding strategies and that a high activity of most pathways in the central carbon metabolism

is crucial for a high productivity.
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. Introduction

The biopharmaceutical industry is the fastest growing sector

f the pharmaceutical industry with a steadily increasing mar-

et value which attained a total sales value of $140 billion in

013 and will continue to increase in the near future ( Aggarwal,

014; Walsh, 2014 ). This immense growth of the biopharmaceu-

ical industry can be attributed to the potency of biopharmaceu-

icals, their high specificity, fewer off-target effects, and their ef-

ectiveness in treating deadly diseases such as cancer and dia-

etes ( Wells and Robinson, 2017 ). However, the cost of biologic

rugs is extremely high and as such makes it difficult for de-

eloping countries to gain access to these drugs ( Love et al.,

013 ). A possible solution to this challenge as suggested by

ove et al. (2013) is to reduce the cost of manufactured goods

COGs) by increasing product yields while ensuring improved qual-

ty and potency per drug amount; this ensures reduced number

f doses. Therefore, technological advances in biopharmaceutical
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anufacturing are required to drive down the COGs. In order to

nable such technological advances particularly in fermentation,

igh-quality host cells and optimal bioreactor design are essen-

ial ( Love et al., 2013; Wells and Robinson, 2017 ). 

Typically, an ideal host cell line is one which ensures high cel-

ular growth under economic media requirements, human-like gly-

osylation patterns, and the ability to efficiently excrete the re-

ombinant protein of interest into the extracellular media ( Love

t al., 2013; Sreekrishna et al., 1997 ). The methylotrophic yeast

ichia pastoris fulfills the aforementioned qualities and as such is

 popular and intensively studied host cell line since its devel-

pment in the 1970s ( Cereghino and Cregg, 20 0 0; Potvin et al.,

012 ). Other features that makes P. pastoris a favorable host cell

nclude its tightly regulated alcohol oxidase 1 promoter (pAOX1)

nd its preference for respiratory over fermentative-based growth;

hus, it mitigates the formation of fermentative by-products such

s ethanol which could lead to high toxic levels and negatively im-

act protein expression ( Cereghino et al., 2002; Potvin et al., 2012 ).

Moreover, various strategies have been proposed to improve

he productivity of recombinant proteins in P. pastoris . These in-

lude: intelligent design of expression vectors ( Sreekrishna et al.,

997 ), use of different carbon sources ( Xie et al., 2005 ),

etabolic engineering ( Saitua et al., 2017 ), efficient fermenta-

ion protocols ( Potvin et al., 2012 ), and innovative bioreactor de-

igns ( Mozdzierz et al., 2015 ). Typically, these strategies are inves-
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tigated by empirical means, but various studies have shown that

model-based approaches are key to uncovering strategies that lead

to improved production of biopharmaceuticals in P. pastoris ( Cos

et al., 2006; d’Anjou and Daugulis, 2001; Jahic et al., 2002 ). 

Amongst various modeling strategies for P. pastoris , first princi-

ples dynamic models are important because they predict temporal

changes in relevant variables of the bioprocess ( Çalık et al., 2011;

Niu et al., 2013; Saitua et al., 2017 ). Dynamic models for P. pastoris

fermentation can be classified into unstructured and structured

models ( Lu et al., 2015; Tziampazis and Sambanis, 1994 ). Unstruc-

tured models are phenomenological models that only consider the

extracellular concentrations in a bioreactor and do not take into

account the intracellular dynamics of the yeast cells ( Lu et al.,

2015; Tziampazis and Sambanis, 1994 ). Nevertheless, they are pop-

ular because they can be easily constructed ( Tziampazis and Sam-

banis, 1994 ). However, unstructured models are limited because

they cannot be extrapolated to operating conditions where there

are significant cellular changes ( Tziampazis and Sambanis, 1994;

Zhang et al., 20 0 0 ). Therefore, they might limit the possibility of

identifying novel process windows ( Hessel, 2009 ). 

Structured models, on the other hand, are more detailed than

unstructured models and consider both intracellular information

and extracellular conditions ( Höffner et al., 2013; Tziampazis and

Sambanis, 1994 ). However, most structured models that are avail-

able for the recombinant expression of proteins in P. pastoris are

based on compartmentalized models ( Çelik et al., 2009b; Muñoz

et al., 2008; Niu et al., 2013 ) that do not consider detailed intra-

cellular fluxes. 

In contrast to compartmentalized structured models, dynamic

flux balance analysis (dFBA) models are structured models that

enable the prediction of changes in the reaction pathways of a

microorganism’s metabolism due to changes in the external envi-

ronment in a bioreactor ( Höffner et al., 2013; Mahadevan et al.,

2002 ). Several dFBA models have been used to simulate, control,

and optimize the expression of proteins in other important mi-

crobial systems such as Escherichia coli ( Meadows et al., 2010 ) and

Saccharomyces Cerevisiae ( Hjersted and Henson, 2006 ), but there is

a scarcity of dFBA models for P. pastoris expression systems. 

In an attempt to bridge this gap, Saitua et al. (2017) devel-

oped a dynamic genome-scale metabolic model for the produc-

tion of recombinant human serum albumin (rHSA) in P. pastoris .

Their model consists of the dynamic evolution of seven state vari-

ables, namely: glucose, biomass, ethanol, arabitol, citrate, pyru-

vate and the culture volume. They applied the dFBA framework

by Sánchez et al. (2014) which involves an iteration between a

dynamic block of the aforementioned states, a kinetic block that

determines the substrate uptake kinetics, and a metabolic block

which determines the flux distributions. However, the work by

Saitua et al. (2017) involves a lot of dFBA simulations to optimize

the protein productivity – this could be cumbersome given their

iterative approach. Instead, algorithmic optimization could be used

to optimize protein productivity by using the dFBA model. 

Studies involving model-based algorithmic optimization for re-

combinant protein production in P. pastoris have been reported in

the literature. Kobayashi et al. (20 0 0) applied dynamic program-

ming to determine the optimal methanol feeding profile for the

maximization of rHSA. However, their approach could not pre-

dict the product concentrations accurately due to discontinuities

in the methanol feed rate. Hence, they used trial-and-error sim-

ulations to get an optimal profile that predicts the product con-

centration – this is cumbersome and could lead to suboptimal re-

sults. Moreover, since their approach is based on dynamic pro-

gramming, it suffers from the “curse of dimensionality” ( Li et al.,

20 08; Sager, 20 09 ) and is unsuitable for large scale problems. Even

though the work of Kobayashi et al. (20 0 0) represent progress

in the use of algorithmic optimization for biopharmaceutical pro-
uction in P. pastoris , they used an unstructured model that does

ot consider intracellular changes in the yeast cells. Furthermore,

laneras et al. (2012) combined optimization algorithms, possibility

heory, and stoichiometric models to estimate dynamic intracellu-

ar fluxes in P. pastoris . However, their work was geared towards

tate estimation and monitoring, and not the maximization of pro-

ein production. Therefore, there remains a need for more efficient

lgorithmic optimization approaches that utilize dFBA models to

aximize biopharmaceutical production in P. pastoris . 

In this paper, we present a model-based optimization approach

or the recombinant production of the P. pastoris that is based on

FBA. As a case study, we consider the production of the glyco-

rotein erythropoietin ( Jacobs et al., 1985 ) by P. pastoris growing

n glucose. It has been reported that variations in the glycosyla-

ion patterns of recombinant erythropoietin can influence its po-

ency ( Schiestl et al., 2011 ). These variations are usually caused

y changes in the cell line or process conditions ( Schiestl et al.,

011 ). Therefore, it is important to utilize model-based approaches

o predict the effects of process changes before these changes are

mplemented in the real bioprocess or even before the process is

uilt. 

Our dFBA model consists of an upper-level problem that is cast

ithin the framework of elementary process functions ( Freund and

undmacher, 2008 ), and a lower-level problem posed as a flux

alance analysis (FBA) model ( Orth et al., 2010 ) – leading to a

ilevel optimization problem. Here, the bi-level optimization prob-

em is transformed into a single optimization problem by using

he Karush–Kuhn–Tucker (KKT) conditions of the lower-level prob-

em ( Raghunathan et al., 2003 ). This transformation is done in or-

er to solve the problem in one-shot without the need for inter-

cting between multiple solvers, i.e., improving computational effi-

iency ( Hjersted and Henson, 2006 ). The single optimization prob-

em is a dynamic optimization problem that falls into a class of

ptimization problems called mathematical programs with equilib-

ium constraints (MPECs). MPECs present difficulties for state-of-

rt nonlinear programming (NLP) solvers because they violate con-

traint qualifications required by these solvers ( Baumrucker et al.,

008 ). We address this issue by using the exact � 1 penaliza-

ion scheme ( Baumrucker et al., 2008 ) instead of using mixed

nteger programming algorithms which are combinatorial in na-

ure ( Waldherr, 2016 ) or regularization schemes which involve

olving relaxed MPECs iteratively ( Joy and Kremling, 2010 ). Penal-

zation schemes have been shown to be very efficient for solving

PECs resulting from FBA ( Yang et al., 2008 ), but to our knowl-

dge, this approach has not been used for MPECs arising from

FBA. Therefore, another contribution of our work is the extension

f the penalization technique to handle the complementarity con-

traints stemming from dFBA bilevel optimization problems. The

eformulated optimization problem is then solved at once by using

he direct optimization approach ( Biegler, 2007; Mahadevan et al.,

002 ) and avoids the iterative approach that was previously men-

ioned ( Kobayashi et al., 20 0 0; Saitua et al., 2017 ). We show that

ur solution approach is fast and efficient, and is able to maximize

he productivity of erythropoietin in P. pastoris . Fig. 1 summarizes

he tenets of the methodology we employed in this paper. 

The rest of this paper is structured as follows: in Section 2 ,

e describe the main features of the model-based approach and

resent the solution strategy used in Section 3 . Following this, we

ntroduce the optimization formulation for the case study consid-

red in Section 4 and the accompanying results in Section 5 . Lastly,

e conclude and highlight possible future directions in Section 6 . 

. Preliminaries

The dFBA modeling framework proposed in this work is a

ilevel optimization problem that consists of an upper-level prob-



Fig. 1. Work flow of methodology from the model formulation to the solution strategy. EPF stands for elementary process function, FBA for flux balance analysis, dFBA for

dynamic flux balance analysis, and MPEC for mathematical program with equilibrium constraints.
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l  
em that is cast within the EPF paradigm and a lower-level problem

hat is modelled as FBA. Therefore, we describe FBA and then the

PF framework in more detail in the following sections. 

.1. Flux balance analysis 

FBA is a stoichiometric modeling approach that is used for

tudying metabolic networks that range from small-scale to

enome-scale metabolic reconstructions ( Boghigian et al., 2010;

rth et al., 2010 ). FBA computes an optimal distribution of

etabolic fluxes within the metabolic network of a microorganism.

hus, it leads to flux distributions that optimize phenotypes, e.g.,

ellular growth or the production of key metabolites ( Orth et al.,

010 ). 

Before performing FBA, a microorganism’s metabolic network

as to be represented mathematically by performing what is

nown as a metabolic reconstruction ( Thiele and Palsson, 2010 ).

his mathematical representation takes the form of a matrix with

etabolic reactions and metabolites represented as columns and

ows, respectively. The elements of this matrix are the stoichiomet-

ic coefficients of each reaction, and as such this matrix is called
 stoichiometric matrix ( Orth et al., 2010 ). The stoichiometric ma-

rix in combination with a vector representing the fluxes leads to

quality constraints that impose bounds on the system. Typically,

he microorganism is assumed to be in a pseudo-steady state with

espect to the external environment, and as such, there is no accu-

ulation ( Höffner et al., 2013 ). 

Next, a phenotype in the form of a biological objective is de-

ned. Typically, the biomass growth is selected as the objective

unction, but other objectives can also be considered ( Schuetz

t al., 2007; Zhao et al., 2017 ). Subsequently, the objective function

s then maximized (or minimized) subject to the aforementioned

quality constraints. Unfortunately, the stoichiometric matrix is un-

erdetermined and therefore leads to different solutions that fulfill

he same objective ( Segre et al., 2002 ). To further constrain the so-

ution space, bounds in the form of inequality constraints are im-

osed on the fluxes ( Orth et al., 2010 ). Therefore, the solution set

f these constraints is a convex polyhedron, i.e., an intersection of

 finite number of half planes and half spaces ( Boyd and Vanden-

erghe, 2004 ). 

In sum, FBA is formulated as a linear programming (LP) prob-

em with the biomass flux as the objective function, a steady-state



Fig. 2. Conceptual representation of biofluid element (including cells) in thermody- 

namic state space acted upon by dynamic fluxes such as the intracellular v ( t ) and

extracellular fluxes j ( t ).
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balance of n (intracellular) fluxes v through m metabolic reactions,

the corresponding stoichiometric matrix S ∈ R 

m ×n , and bounds v L 

and v U on the fluxes ( Orth et al., 2010 ). It is mathematically ex-

pressed as 

maximize 
v

c � v 

subject to Sv = 0 , 

v L ≤ v ≤ v U , 

(1)

where c ∈ R 

n is a weighting vector for the fluxes considered in the

objective function, whose elements, as in our case, take the value

of one for the element corresponding to the biomass flux and zero

otherwise. 

2.2. Elementary process functions 

The EPF methodology proposed by Freund and Sund-

macher (2008) differentiates itself from the conventional unit

operation approach in process design that is based on and there-

fore limited to “off-the-shelf” processing units. Within the EPF

framework, these units are replaced by functional modules in

which the states of a passing fluid element are changed by fluxes

such as heat, mass, component dosing, and diffusion fluxes.

Mathematically, the fluid element is represented as ( Freund and

Sundmacher, 2008 ): 

d x 

d t 
= 

J ∑ 

k =1

j �k ( x ) e k , (2)

where x is a state vector (e.g. mass, energy, concentration, etc.), j �
k

is the (extracellular) flux k of the functional module �, e k is the

elementary process function (EPF) of flux k , i.e., its basis vector in

thermodynamic state space, and J is the total number of fluxes of

the functional module �. The EPF e k represents a certain direc-

tion of the flux k in thermodynamic state space, and the combined

effect of the EPFs determines the region in thermodynamic state

space that is attainable by the fluid element (see Freund and Sund-

macher, 2008 for details). Alternatively, Eq. (2) could be re-written

in state-space representation notation as: 

d x 

d t 
= E ( x ) j �( x ) , (3)

where j � is the generalized flux vector of the functional module

�, and E is the elementary process functions matrix which is the

product of the inverse capacity matrix and a flux weighting matrix

(see Peschel, 2012 for details). 

The fluid element traveling through the functional modules is

then tracked in order to find the optimal route in state space (see

Fig. 2 ). Information of the optimal route is subsequently used for a

technical realization with existing process units or gives rise to the

development of new apparatuses. Recently, we have shown how

to adapt the EPF approach for the design of optimal reactors for

the synthesis of small molecule drugs ( Emenike and Krewer, 2016;

Emenike et al., 2018 ). In this work, we take a first step in extend-

ing EPF to the design of optimal bioreactors for the synthesis of

biologic drugs ( Emenike et al., 2017 ). 
Within the EPF framework, an optimal bioreactor design prob-

em can be formulated in such a way that an extracellular biore-

ction functional module is used instead of a bioreactor unit. This

esults in the following dynamic optimization problem: 

minimize 
j (t) , z (t)

J 

subject to 

d x 

d t 
= E (x , z , θ, t) j (x , z , θ, t) , 

g (x , z , θ, t) = 0 , 

h (x , z , θ, t) ≤ 0 , 

x (t 0 ) = x 0 , (4)

n the time interval T ∈ [ t 0 , t f ] ⊂ R of the biochemical reaction

ith time t ∈ [ t 0 , t f ], where J is an objective function of biolog-

cal relevance, e.g., yield or productivity, x (t) ∈ R 

n x is a vector of

tate variables such as extracellular metabolite concentrations or

asses, z (t) ∈ R 

n z is a vector of algebraic variables such as sub-

trate uptake or growth rates represented by Monod-type kinet-

cs, θ ∈ R 

n θ is a vector of time independent parameters, j (t) ∈ R 

n u 

s the flux vector containing feeding rates and other key con-

rol variables, E ∈ R 

n epf ×n u is the EPF matrix which contains the

asis vectors in thermodynamic state space ( Freund and Sund-

acher, 2008 ), g : T × R 

n x × R 

n θ × R 

n z → R 

n g is a function vec-

or that defines the equality constraints, h : T × R 

n x × R 

n θ × R 

n z →
 

n h is the inequality constraint function vector, and x 0 is a vector

f initial conditions of the states variables at initial time t 0 . 

.3. Dynamic flux balance analysis 

The dFBA is formulated as a bilevel optimization problem

here the EPF dynamic optimization problem (4) is the upper-level

roblem, and the FBA (1) is the lower-level problem: 

minimize 
j (t) , z (t) , ̃ v (t) 

J 

subject to 

d x 

d t 
= E (x , z , θ, t) j (x , z , ̃  v , θ, t) , 

g (x , z , ̃  v , θ, t) = 0 , 

h (x , z , ̃  v , θ, t) ≤ 0 , ˜ v (t) ∈ arg min 

v (t)

{−c � v (t) | Sv (t) = 0 , v L (t)

≤ v (t) ≤ v U (t) } ,
x (t 0 ) = x 0 . (5)

ere, the rates of extracellular metabolites ̃  v such as the biomass

rowth rate and substrate uptake rate are computed by the in-

er FBA model at each time point. Note that ˜ v represent the

ates (i.e., extracellular fluxes) that are computed by the lower-

evel FBA and used by the upper-level dynamic optimization prob-

em ( Höffner et al., 2013 ), while z ( t ) is the vector of algebraic vari-

bles (mostly rates) that are still computed by Monod-type kinetic

quations and not by the lower-level FBA. In the next section, we

resent the solution strategy (as shown in Fig. 1 ) that we em-

loyed to solve the dFBA optimization problem efficiently. 

. Solution strategy

.1. Bilevel optimization 

In this section, we formulate the bilevel optimization problem

 Eq. (5) ) into a form that is convenient for most dynamic optimiza-

ion solution strategies by transforming it into a single objective

ynamic optimization problem. We also show how we handle the

esulting complementarity constraints. 
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.1.1. Karush–Kuhn–Tucker reformulation 

Here, we transform the bilevel problem into a single objective

ptimization problem by replacing the lower-level FBA problem

ith its Karush–Kuhn–Tucker (KKT) conditions and complementar-

ty constraints ( Raghunathan et al., 2003 ): 

minimize 
j (t) , z (t) , v (t) ,

λ(t) , αL (t) , αU (t)

J (6a) 

subject to 

dx 

dt 
= E (x , z , θ, t) j (x , z , v , θ, t) (6b) 

g (x , z , v , θ, t) = 0 (6c) 

h 

(
x , z , v , θ, t 

)
≤ 0 (6d) 

∇ v L = c + S � λ(t) + αL (t) − αU (t) = 0 (6e) 

∇ λL = Sv (t) = 0 (6f) 

diag (v (t) − v L (t)) αL (t) = 0 (6g) 

diag (v (t) − v U (t)) αU (t) = 0 (6h) 

x (t 0 ) = x 0 (6i) 

αL ( t ) ∈ R 

n 
, αU ( t ) ∈ R 

n 
, λ( t ) ∈ R 

m ≥ 0 . (6j) 

here L is the Lagrangian function given as: 

 (v , λ, αL , αU , t) = −c � v − (Sv ) � λ − (v U − v ) � αU − (v − v L ) � αL ,

(7) 
here λ is a vector of Lagrange multipliers corresponding to Sv =
 , αL and αU are vectors of Lagrange multipliers associated with

he lower and upper bounds of the fluxes v , and ∇ v L and ∇ λL are

rst derivatives of the Lagrangian with respect to v and λ, respec-

ively. 

The reformulation (6) is valid because the lower-level problem

s convex and regular and as such the KKT conditions are sufficient

nd necessary conditions for optimality ( Colson et al., 2007 ). With

he occurrence of complementarity constraints (6g) and (6h) , the

roblem represented by (6) falls into the class of problems called

athematical programs with equilibrium constraints ( Baumrucker

t al., 2008; Ralph and Wright, 2004 ). 

Another approach to transforming the bilevel optimization

roblem into a single level optimization problem has been pro-

osed by Nikdel et al. (2018) . In their work, a systematic approach

as used to identify a suitable objective function and limiting con-

traints by data fitting. Next, the identified objective function and

imiting constraints are used to develop a predictive dFBA model.

n our approach, no identification or experimental data fitting step

s required. Instead, we directly use the KKT conditions of the in-

er FBA problem and then use the exact � 1 penalization technique

o handle issues with complementarity constraints as presented in

ection 3.1.2 . 
.1.2. Exact � 1 penalization 

For mathematical programs with equilibrium constraints

MPECs), even if the objective functions and the solution set of

he fluxes v ∈ V are both convex, they are still difficult to solve

ecause of nonconvexities introduced by complementarity and La-

rangian constraints ( Baumrucker et al., 2008; Colson et al., 2007 ).

oreover, in order to ensure that the replacement of the lower-

evel problem by its KKT conditions provides a necessary optimal-

ty condition, certain constraint qualifications (CQs) such as Guig-

ard’s CQ, Mangasarian-Fromovitz CQ and the linear independence

Q have to be fulfilled ( Kyparisis, 1985; Wachsmuth, 2013 ). 

Unfortunately, MPECs are known to violate these CQs and as

uch reformulations are often used to make them tractable for

tate-of-the-art NLP solvers to handle ( Baumrucker et al., 2008;

alph and Wright, 2004 ). Such reformulations can be classified

nto two main groups namely, regularization and penalization

chemes ( Baumrucker et al., 2008; Ralph and Wright, 2004 ). Regu-

arization involves replacing the complementarity constraints with

 constraint that has a positive parameter and then repeatedly

olving the NLP as this value is successively decreased to a tol-

rance that is close to zero ( Ralph and Wright, 2004 ). In the case

f penalization, the complementarity constraints are transferred to

he objective to form a penalty term ( Ralph and Wright, 2004 ). 

In this work, we performed preliminary studies in which we

ompared the regularization and penalization formulations, but

ound the penalization formulation to be the most stable for

ur purposes. We are also in favor of penalization schemes be-

ause provided that a sufficiently large penalty term is cho-

en, the reformulated MPEC can be solved efficiently in one-

hot. This is in contrast with regularization schemes for dFBA

here repeated iterations of relaxed MPECs is required to con-

erge to a local optimal solution ( Joy and Kremling, 2010 ). Fur-

hermore, Baumrucker et al. (2008) conducted benchmark stud-

es and showed that the usage of well-posed complementarity

onstraints coupled with the penalty formulation and an active

et NLP solver is the most efficient strategy for solving MPECs

rising from chemical engineering. This was also the case in

ur work, and as such, we used the exact � 1 penalization tech-

ique ( Baumrucker et al., 2008 ) in combination with the active set

LP solver CONOPT ( Drud, 1994 ). The � 1 penalization formulation

f (6) is given as: 

minimize 
j (t) , z (t) , v (t) ,

λ(t) , αL (t) , αU (t)

J + ρ
∥∥ˆ v � α

∥∥
1

(8a) 

subject to 

dx 

dt 
= E (x , z , θ, t) j (x , z , v , θ, t) (8b) 

g (x , z , v , θ, t) = 0 (8c) 

h 

(
x , z , v , θ, t 

)
≤ 0 (8d) 

∇ v L = c + S � λ(t) + αL (t) − αU (t) = 0 (8e) 

∇ λL = Sv (t) = 0 (8f) 

ˆ v = 

[
v (t) − v L (t) 
v (t) − v U (t) 

]
∈ R 

2 n (8g) 

α = 

[
αL ( t ) 

αU ( t ) 

]
(8h) 
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x (t 0 ) = x 0 (8i)

α ∈ R 

2 n , λ(t) ∈ R 

m ≥ 0 . (8j)

Here, the variables associated with the complementarity con-

straints Eqs. (6g) and (6h) were rearranged into the variables ˆ v

(8g) and α (8h) . Moreover, the complementarity constraints are

transferred from the constraints to the objective function (8a) and

multiplied by a sufficiently large penalty parameter ρ . The � 1 pe-

nalization technique ensures that the complementarity constraints

are satisfied provided that ρ ≥ρc , where ρc is a critical penalty pa-

rameter ( Baumrucker et al., 2008 ). In this work, various values of

ρ were compared and ρ = 10 3 was found to be sufficient. 

3.2. Dynamic optimization 

Eq. (8) is a dynamic optimization problem that can be

solved by three main approaches: dynamic programming, in-

direct, and direct approaches ( Sager, 2009 ). Dynamic program-

ming ( Bellman, 1952 ) typical is not suitable for large scale prob-

lems because it suffers from the “curse of dimensionality” ( Li et al.,

20 08; Sager, 20 09 ). Indirect (“optimize-then-discretize”) methods

such as Pontryagin’s minimum principle ( Pontryagin et al., 1962 )

are also known to be unapplicable to large scale problems be-

cause of difficulties in handling adjoints associated with path con-

straints ( Sager, 2009 ). Direct (“discretize-then-optimize”) methods

are usually the method of choice for complex, highly nonlinear,

large scale problems ( Sager, 2009 ) such as the one considered in

this paper. Direct methods include control vector parameteriza-

tion ( Vassiliadis et al., 1994a; 1994b ), multiple shooting ( Bock and

Plitt, 1984 ), and the simultaneous approach ( Biegler, 1984 ). 

In this work, the simultaneous approach was selected because it

allows us to transcribe Eq. (8) directly into NLPs without the need

for successively calling a DAE solver as is the case for both control

vector parameterization and multiple shooting ( Biegler, 2007 ). Fur-

thermore, the simultaneous approach has been shown to handle

instabilities and path constraints efficiently ( Biegler, 2007; 2010 ).

Specifically, the DAEs were transcribed by using the method of or-

thogonal collocation on finite elements ( Cuthrell and Biegler, 1987 ).

The extracellular states were discretized on both collocation points

and finite elements by using 20 finite elements with 3 Radau

collocation points in each element, while the extracellular con-

trols and intracellular fluxes were discretized on the 20 finite el-

ements only by using a piecewise constant parameterization. The

resulting NLP was implemented in the algebraic mathematical lan-

guage AMPL ( Fourer et al., 2003 ) and the CONOPT solver was

used ( Drud, 1994 ). All computations were performed on a Linux

machine with an Intel (R) Core (TM) i7-4789 processor at 3.60 GHz,

and 16 GB RAM. 

4. Case study: recombinant protein production in Pichia

pastoris

As already mentioned, the case study we consider is the recom-

binant production of the biologic drug erythropoeitin in Pichia pas-

toris with glucose as the sole carbon source (substrate). Here, we

aim to maximize the productivity of erythropoeitin by using the

computational approach presented previously. At the same time,

we aim to obtain optimal dynamic controls at both the extracellu-

lar and intracellular levels that maximize productivity during the

fermentation process. We chose the productivity of erythropoeitin

as the objective function of the upper-level optimization problem

as it is a widely used metric for accessing the economic viability

of a bioprocess ( Anesiadis et al., 2008; Kumar and Budman, 2017;
t. John et al., 2017 ). Typically, high productivity implies lower op-

rating and capital costs ( Anesiadis et al., 2008 ). 

As a benchmark to compare our optimization results, we

hose the experimental work of Çelik et al. (2009a) in which

rythropoeitin was produced in the presence of sorbitol and

ethanol. The maximum concentration of erythropoeitin reported

y Çelik et al. (2009a) was 130 mg L −1 in 24 h and the maxi-

um working volume was 2 L. Based on these values, the max-

mum possible productivity obtained by Çelik et al. (2009a) was

stimated to be 10.83 mg h 

−1 . This productivity was obtained by

tilizing the traditional exponential feeding strategy. In our study,

e do not use any pre-defined feeding strategies, but obtain an op-

imal feeding strategy (control) by solving the optimization prob-

em. 

To model the dynamic intracellular flux distributions, a

etabolic flux network adapted from the validated FBA model

y Morales et al. (2014) was used. It consists of 37 intracellular

etabolites and 47 intracellular reactions. The network consists

f the TCA cycle, the pentose phosphate pathway (PPP), Embden-

eyerhoff-Parnas (EMP) pathway (i.e., glycolysis), pathways de-

cribing the metabolism of methanol, glycerol and glucose sub-

trates, and transport reactions (see Fig. 3 ). For our purposes, we

et the glycerol (flux 43) and methanol (flux 46) uptake fluxes to

ero by enforcing the constraints v gly = 0 and v meoh = 0 , respec-

ively ( Morales et al., 2014; Vercammen et al., 2014 ). Note that

 gly represents the glycerol uptake flux, while v meoh represents

ethanol uptake flux. We also assume that sufficient oxygen is

resent for the cells to grow aerobically and as such do not include

n oxygen balance in the dFBA model ( Hjersted and Henson, 2006 ).

In contrast to available structured models for P. pastoris ( Çelik

t al., 2009b; Muñoz et al., 2008; Niu et al., 2013 ), we do not com-

artmentalize any of the aforementioned pathways, but consider

ll relevant intracellular metabolites and reactions. Moreover, we

onsider only the first level that was proposed in the reactor de-

ign framework proposed by Peschel et al. (2010) , i.e., we do not

onstrain fluxes such as the substrate feeding rates or dissolved

xygen rate to mass or heat transfer limitations. Here, we consider

n intensification strategy that involves the intermittent feeding of

lucose substrate as the biofluid element progresses in time. This

an be physically translated into a fed-batch bioreactor; however,

e consider this as a functional module in order to be consistent

ith the EPF concept ( Freund and Sundmacher, 2008 ). Neverthe-

ess, since the approach presented in this work is based on the EPF

ramework, it can be extended to other intensification strategies. 

Therefore, we obtain the following dFBA model: 

minimize 
φ(t) gluc , ̃ v (t) ,t f 

J � −m epo (t f ) /t f ,

subject to 

dm biom 

(t) 

dt 
= m biom 

v biom 

,

dm gluc (t) 

dt 
= −m biom 

v gluc + C gluc , in φgluc ,

dm epo (t) 

dt 
= m epo v epo , 

dV (t) 

dt 
= φgluc , 

˜ v (t) ∈ arg min 

v (t)

{−c � v (t) | Sv (t) = 0 ,

−10 

3 ≤ v (t) ≤ 10 

3 } ,
m k = C k V , k ∈ { biom , gluc , epo } ,
C gluc , 0 = 50 mmol L −1 ,

C biom , 0 = 1 . 0 g L −1 ,

C epo , 0 = 0 . 0 g L −1 ,

V 0 = 0 . 82 L , 
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Table 1

Model parameters.

Parameter Value Unit Source

a 4 . 8 × 10 −4 – This work

b 8 × 10 −5 – This work

K gluc 0.1 g L −1 Jahic et al. (2002)

γ gluc 0.025 g g -1 h -1 Çelik et al. (2009b)

μgluc, max 0.032 h -1 Jungo et al. (2007)

Y biom/gluc 0.62 g g -1 Jungo et al. (2007)

5
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C gluc , in = C gluc , 0 , 

v epo = a v biom 

+ b,

m k ≥ 0 , k ∈ { biom , gluc , epo } ,
m biom 

≤ 400 g , 

0 . 0 ≤ V ≤ 3 . 0 L , 

0 ≤ φgluc ≤ 1 . 0 L / h , 

v gly = 0 , v meoh = 0 ,

v gluc ≤
μgluc , max C gluc 

Y biom / gluc (K gluc + C gluc ) 
+ γgluc ,

20 ≤ t f ≤ 60 h . (9) 

he presented dFBA optimization problem is then translated into

he EPF formulation as follows: 

minimize 
φ(t) , ̃ v (t) ,t f 

J := −m epo (t f ) /t f 

subject to 

dx 

dt 
= E (x , θ, t) j (φ, ̃  v , t) , 

˜ v (t) ∈ arg min 

v (t)

{−c � v (t) | Sv (t) = 0 , v L (t)

≤ v (t) ≤ v U (t) } ,
g (x , φ, v , θ, t) = 0 , 

h (x , φ, v , θ, t) ≤ 0 , 

x (t 0 ) = x 0 , (10) 

here x = [ m biom 

, m gluc , m epo , V ] 
� 

,

j = [ v biom 

, v gluc , v epo , φgluc ] 
� 

,

E = 

⎡
⎢⎣

m biom 

0 0 0 

0 −m biom 0 C gluc , in 

0 0 m epo 0 

0 0 0 1 

⎤
⎥⎦

here J is the productivity objective function in g h 

−1 , S ∈ R 

37 ×47 

s the stoichiometric matrix, v (t) ∈ R 

47 is a vector representing the

etabolic reaction fluxes in mmol g −1 h 

−1 , c ∈ R 

47 is the weight-

ng vector as described in Section 2.1 ; m biom 

, m gluc , and m epo are

asses of the biomass, glucose, and erythropoietin, respectively.

imilarly, C k represents the concentration of component k ∈ {biom,

luc, epo}, and C k , 0 is the initial concentration of component k.

 gluc, in is the inlet concentration of the fed glucose, V is the vol-

me of the biofluid element, V 0 is the initial condition of the vol-

me at time, t 0 , and φgluc is the feeding flux of glucose. 

Furthermore, we bounded the glucose uptake flux with a

onod-type kinetic equation derived from Çelik et al. (2009b) . This

s to ensure that the glucose uptake flux at each time point is real-

stic ( Höffner et al., 2013; Mahadevan et al., 2002 ). For the Monod-

ype kinetics bounding the glucose uptake flux v gluc , μgluc, max rep-

esents the maximum specific growth rate on glucose, Y biom/gluc 

epresents the biomass-to-glucose yield, K gluc is the glucose satura-

ion constant, and γ gluc denotes the maintenance coefficient based

n glucose. The specific erythropoietin production rate v epo was

ssumed to follow the Luedeking-Piret model ( Ren et al., 2003 )

nd the coefficients a and b were determined by performing a

east squares optimization on data from Çelik et al. (2009b) and

laneras et al. (2012) . For convenience, all kinetic parameters are

ummarized in Table 1 . The bounds for final bioreaction time t f 
nd volume V were obtained from Çelik et al. (2009a,b) and were

et between 20–60 h and 0.0–3.0 L, respectively, in order to ensure

 fair comparison of our results to already published results in the

iterature. 
. Results and discussion

.1. Extracellular states and metabolites 

The maximum productivity of erythropoietin obtained after

olving the problem in Section 4 was 17.97 mg h 

−1 , while the to-

al cultivation time was at the lower bound of 20 h. This maximum

roductivity is approximately 66% higher than the benchmark ex-

erimental study described in Section 4 ( Çelik et al., 2009a ). More-

ver, the optimization problem was solved within a total compu-

ational solution time of approximately 0.3 s. This shows that the

odel-based optimization approach presented in this paper is able

o predict an improvement in the productivity of recombinant pro-

eins in P. pastoris . Therefore, if experiments validate this improve-

ent in productivity, the proposed model-based design framework

ill reduce the number of costly experiments and facilitate the de-

ign of efficient biopharmaceutical processes. 

The concentration profiles of the glucose substrate and biomass

re shown in Fig. 4 a. It can be seen that the glucose concentra-

ion is gradually consumed by the cells to ensure growth. Concur-

ently, the glucose substrate feeding starts at a rate of 50 mL/h

t the initial time point and decreases slightly to 45 mL/h at t =
8 h to indicate a slow transitioning from growth to production

hase (cf. Fig. 5 ). This is to ensure the rapid growth of the P. pas-

oris cells in the shortest possible time, thereby ensuring maximum

roductivity of recombinant erythropoietin. Rapid cellular growth

s crucial for the maximization of the productivity because growth

ate is proportional to the erythropoietin production rate as math-

matically represented by the Luedeking-Piret model in Section 4 .

rom a practical point of view, maximum productivity is favored

y rapid cellular growth because recombinant erythropoietin is

eterologously expressed and secreted in the host cells ( Park and

red Ramirez, 1988 ). Furthermore, the glucose concentration in the

xtracellular environment is almost exhausted after 18 h to indi-

ate the complete transition from the growth phase to the produc-

ion phase (cf. Fig. 4 a). Next, a sudden increase in the glucose sub-

trate feeding from 45 to 195 mL/h is observed at the 18-h mark,

aintained at this value for 1 h before decreasing to approximately

ero at the final time t f = 20 h (cf. Fig. 5 ). This sudden increase in

lucose feed rate could be to counteract the exhaustion of glucose

nd cell death in fermentation media at time, t = 18 h (see Fig. 4 a)

hile ensuring that erythropoietin productivity is maximized to-

ards the end of the process (see Fig. 4 b). This shows that our

pproach can handle trade-off issues between growth and produc-

ivity that typically arise in biopharmaceutical production. It can

lso be seen on Fig. 5 that the highest volume obtained is approxi-

ately 1.8 L and therefore within the working volume of 0.5 - 2.0 L

tipulated by Çelik et al. (2009a) . 

We can also see from Fig. 4 that cells grow exponentially for the

rst 18 h and then the biomass concentration decreases slightly to-

ards the end of the fermentation time of 20 h. This decrease in-

icates the commencement of proteolytic degradation as described

n other studies ( Çelik et al., 2009b; Muñoz et al., 2008 ). Thus, the

odel-based optimization approach presented in this work is able



Fig. 3. Metabolic network of Pichia pastoris , adapted from Morales et al. (2014) .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2

Flux-gene-enzyme mapping (adapted from Nocon et al., 2014 ).

Flux Gene Enzyme Functional category

11 ADH2 Alcohol dehydrogenase Fermentative pathway

20 MDH1 Malate dehydrogenase TCA

21 SOL3 6-phosphogluconolactonase PPP

21 ZWF1 Glucose-6-phosphatedehydrogenase PPP

22 RPE1 Ribulose-5-phosphate-3- epiremase PPP

23 RPE1 Ribulose-5-phosphate-3- epiremase PPP

5

 

p  

(  
to predict both the exponential growth and proteolytic degradation

that are akin to P. pastoris ( Muñoz et al., 2008; Potvin et al., 2012 ).

Moreover, our approach simultaneously predicts all considered

intracellular fluxes of P. pastoris along with the extracellular fluxes.

Fig. 6 shows that the intracellular glucose uptake flux follows a

similar trend as the extracellular glucose concentration profile (cf.

Fig. 4 ). 

Furthermore, the slight decrease in external biomass concentra-

tion after 18 h ( Fig. 4 ) is caused by the intracellular growth rate

flux which reaches zero at the same time ( Fig. 6 ). On the other

hand, the biomass growth rate gradually decreases as the extracel-

lular biomass and substrate concentrations increase and decrease,

respectively. However, we notice that the biomass concentration

increases to 221.27 g/L in 18 h after which it slightly decreases to

220.20 g/L at the final time. This can be explained by the intracel-

lular growth rate flux which reaches zero at this same time thus

implying that cellular growth has stopped (cf. Fig. 6 ). 

r  

m

.2. Intracellular fluxes 

The optimal dynamic activity of the intracellular fluxes in P.

astoris are shown in Fig. 7 . Details on the metabolic reactions

fluxes) are shown in Fig. 3 . These dynamic flux distributions cor-

espond to the optimal metabolic physiological activity required for

aximum productivity of erythropoeitin. 



Fig. 4. Extracellular concentration profiles for the glucose substrate and biomass

(a); and the recombinant erythropoietin product (b).

Fig. 5. Substrate feed rate control and volume profiles.

Fig. 6. Intracellular substrate uptake and growth rate fluxes.

Fig. 7. Optimal dynamic intracellular fluxes in P. pastoris . Flux numbers correspond

to the intracellular reactions in Fig. 3 .
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Note that since methanol and glycerol uptake fluxes are set to

ero as described in Section 4 , fluxes 32–35 and 46 correspond-

ng to methanol metabolism and flux 27 corresponding to glycerol

ormation are inactive throughout the process. In the subsequent

ections, we discuss in detail optimal flux evolution of the glycoly-

is, tricarboxylic acid (TCA) cycle, fermentative, pentose phosphate

athways, and the transport fluxes. 

.2.1. Embden–Meyerhoff–Parnas (glycolysis) pathway 

First, we consider the flux distributions at the initial time point

cf. Fig. 8 a). We observe that fluxes 1–8 corresponding to the Em-

den Meyerhoff Parnas (EMP) pathway (i.e., glycolysis) are higher

t the initial time point t = 0 h than at time, t = 19 h . This im-

lies that for optimal productivity to be achieved, a higher ac-

ivity of the glycolysis pathway at the onset of the fermentation

s required during the exponential growth phase when high cell

rowth is crucial. This high activity of the EMP pathway plays

n important role in the production of energy in the form of

TPs required for the synthesis of organic intermediates and amino

cids ( Vercammen et al., 2017 ). 

Apart from the onset of the fermentation process, the EMP

uxes (fluxes 1–8) are active for the majority of the fermentation

rocess until 18 h where the growth rate decreases in order to fa-

ilitate higher erythropoietin production in the shortest possible

ime (see Fig. 7 ). On the contrary, towards the end of the process,



Fig. 8. Flux distributions at the initial time, t 0 = 0 h (a); and at time, t = 19 h close to the final time (b). Flux numbers correspond to the intracellular reactions in Fig. 3 . 
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relatively lower glycolysis fluxes are required for cellular mainte-

nance in order to counteract the cellular burden posed by recom-

binant protein production ( Heyland et al., 2011 ). 

We also note that the fluxes 9 and 10 are inactive for the first

14 h of the process, but increases slightly towards the end of the

process (see Figs. 8 b and 7 ). Intracellular reactions 9 and 10 cor-

respond to the pathway which drives the formation and consump-

tion of pyruvate, and therefore implies that pyruvate is produced

in trace amounts as a by-product at the end of the bioreaction.

This validates the claim by other authors that trace amounts of

pyruvate are sometimes present in the media when using P. pas-

toris ( Heyland et al., 2010; Isidro et al., 2016 ). This implies that

for optimal productivity to be ensured, P. pastoris strain should be

metabolically engineered in such a way that fluxes corresponding

to pyruvate formation are inactive. However, more experimental

work is required to validate this finding. 

5.2.2. Tricarboxylic acid (TCA) cycle 

The TCA cycle is an important part of the central carbon

metabolism of P. pastoris because it produces a majority of en-

ergy required for the synthesis of amino acids used for cell

growth ( Vercammen et al., 2017 ). The dynamic intracelluar fluxes

in TCA cycle are shown in Fig. 7 . It can be concluded that the ac-

tivity of the TCA cycle (fluxes 14–20) implies that enough energy is

produced during the exponential growth phase, and this energy is

simultaneously used to produce amino acids required for cellular

growth and recombinant proteins during the production phase (cf.

Fig. 7 ). 

By looking at Figs. 6 and 7 , we see that the TCA cycle and

biomass flux are positively correlated with the exception of time

 = 13 h . Here, we see that the biomass flux decreases while fluxes

18–20 increase slightly. This slight increase suggests an increase
n energy generation through the TCA cycle for productivity maxi-

ization while compensating for low growth rate ( Heyland et al.,

011 ). 

We also notice that the malate dehydrogenase (MDH1) gene

see Table 2 ) which drives flux 20 is active for the most part of

he process. Nocon et al. (2014) state that overexpression and ac-

ivity of MDH1 might be beneficial for protein production, while

riouch et al. (2012) suggest that the downregulation or knockout

f MDH1 could improve protein synthesis in the fungus Aspergillus

iger . Due to this discrepancy, Nocon et al. (2014) have reported

hat there is no lucid correlation between MDH1 activity and pro-

ein production. Our results suggest that the activity or inactivity

f the MDH1 could depend on the exact time point in the fermen-

ation in which a measurement is taken. Specifically, we notice a

ynamic switching between activity and inactivity of the MDH1

ene (flux 20) at the 19-h mark. It might be that the dynamic

witching between activity and inactivity of MDH1 could favor op-

imal erythropoietin production. Furthermore, this could be imple-

ented experimentally by dynamically overexpressing and knock-

ng out the MDH1 gene in the growth and production phases, re-

pectively ( Brockman and Prather, 2015a; 2015b ). 

.3. Fermentative pathway 

The fermentative pathway is represented by fluxes 11–13.

luxes 12 and 13 of the fermentative pathway are inactive through-

ut time horizon (cf. Fig. 7 ). Flux 11 corresponds to the activity of

he alcohol dehydrogenase (ADH2) gene (cf. Table 2 ) which drives

he intracellular reaction that results in the production of ethanol

n the cytoplasm. Similar to the fluxes 9 and 10 of the pyruvate

ranch point, flux 11 slightly increases towards the end of the pro-

ess due to the activity of ADH2; implying that ethanol is formed
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owards the end of process where cellular burden is high. Since

thanol production could lead to lower erythropoeitin productivity,

ur results show that P. pastoris can optimally adjust its physiology

roperly. 

This is done in order to ensure that erythropoeitin productivity

s still maximized towards the end of the process. Our results sup-

ort earlier studies which claim that P. pastoris host cells favor the

espiratory pathway and as such produce little or no by-products

nd are less prone to follow the fermentative pathways as in E. coli

r S. cerevisiae ( Fazenda et al., 2013 ). 

.3.1. Pentose phosphate pathway (PPP) 

The pentose phosphate pathway (PPP) is a part of the central

arbon metabolism of P. pastoris that utilizes the energy produced

rom the EMP pathway and TCA cycle to synthesize the amino

cids and organic precursors required for biomass synthesis and

ecombinant protein production. The results for the optimal dy-

amic intracellular fluxes in PPP (fluxes 21–26) are shown in Fig. 7 .

Here, fluxes 21–26 are active throughout the first 18 h when

rowth rate is highest (see Figs. 6 and 7 ). This is logical as

he PPP is a major producer of the amino acids and organic

recursors required for biomass synthesis ( Vercammen et al.,

017 ). A closer look at Fig. 7 reveals that flux 21 which corre-

ponds to the 6-phosphogluconolactonase (SOL3) and glucose-6-

hosphatedehydrogenase (ZWF1) genes has the strongest impact

n the PPP, and consequently, the biomass and the recombinant

rythropoietin protein production. This implies that for maximum

roductivity, more emphasis should be placed on engineering P.

astoris strains such that the activity of the ZWF1 and SOL3 genes

re higher than other PPP-associated genes such as ribulose-5-

hosphate-3-epiremase (see Table 2 ). Lastly, we observe that flux

8 is very high for the first 17 h but decreases slightly at the 18-

 mark. This is logical because flux 28 represents oxidative phos-

horylation which is a reaction that produces energy in the form

f ATP that is required for both biomass synthesis and maximum

rythropoietin productivity. 

.3.2. Transport fluxes 

Transport fluxes (fluxes 29–46) facilitate the exchange of

etabolites between the P. pastoris cell membrane and the extra-

ellular environment, and between the mitochondrion and the cy-

oplasm within the cell (cf. Fig. 7 ). Flux 31 shows the transport of

-ketoglutarate which serves as an organic precursor for the syn-

hesis of biomass. Even though, flux 31 is very low throughout the

rocess, its presence throughout the growth phase implies that it

s still important for maximum biomass synthesis. 

Moreover, the cell maintenance is represented by flux 38. It can

e seen that there is no need for cellular maintenance during the

rowth phase. However, as soon as the cell transitions to the pro-

uction phase at t = 18 h , we observe the activity of the cellu-

ar maintenance flux. This sudden need for cellular maintenance

an be attributed to the need for the cell to counteract proteolytic

egradation. This is logical and attests to the key insights that can

e obtained by using the approach presented in this paper. We also

bserve that the glucose uptake flux (flux 40) is relatively high un-

il t = 18 h (see also Fig. 6 ). Flux 39 which represents the oxygen

ptake flux is active and high for the first 18 h and as a result justi-

es our assumption that the process is well aerated (see Section 4 ).

his implies that for maximum recombinant production, high oxy-

en rates are required. 

Another important finding is the presence of fermentative by-

roducts. Most studies suggest that fermentative by-products such

s ethanol, citrate acid or pyruvate are either not produced or pro-

uced in little quantities ( Heyland et al., 2010; Isidro et al., 2016 ).

his is because P. pastoris has been known to follow oxidative res-

iration instead of the fermentative pathway ( Fazenda et al., 2013;
sidro et al., 2016 ). However, our results show that ethanol (flux

2) is excreted to the extracellular environment during the pro-

uction phase, but not produced during the growth phase (0–13 h).

his could be the reason why some authors do not detect ethanol

n their studies ( Çelik et al., 2010; Sola et al., 2007 ). Furthermore,

ur results suggest that citric acid (flux 44) and pyruvate (flux

5) are present during the process. Nonetheless, the presence of

ermentative by-products is supported by other studies ( Heyland

t al., 2010; 2011 ) and NMR experiments ( Isidro et al., 2016 ).

Even though fermentative by-products such as ethanol are con-

idered to be disadvantageous during heterologous protein produc-

ion, it might be that a little ethanol in the culture media serves

s a carbon source when the main carbon sources such as glu-

ose are exhausted, thus improving productivity ( Wegerhoff and

ngell, 2016 ). This shows that our dFBA approach can pro-

ide insights into the underlying biological occurrences in the

. pastoris cells; thus, serving as a detailed modeling approach

or the design of optimal bioreactors for biopharmaceutical

anufacturing.

. Conclusions

In this paper, we have presented a model-based strategy to op-

imize the productivity of recombinant protein production by P.

astoris that is based on dFBA. In our work, the external environ-

ent is modeled within the EPF framework, while the intracellular

etabolic network is modeled with FBA. Our approach enables us

o gain insights into what dynamic strategies can be implemented

t both bioreactor and microorganism scales in order to maximize

roductivity. 

Besides the maximization of productivity, we believe that

he approach presented herein can be extended to other ob-

ectives that are of biological relevance. Another key contribu-

ion in this work is the efficient solution strategy for the dFBA.

ere, we have shown that dFBA problems can be solved effi-

iently and directly by replacing the lower-level with its KKT

onditions ( Raghunathan et al., 2003 ), handling the belliger-

nt complementarity constraints with the � 1 penalization tech-

ique ( Baumrucker et al., 2008 ), and solving the dynamic optimiza-

ion by the simultaneous approach ( Biegler, 2007 ). 

Nevertheless, there are some open questions and research op-

ortunities to be tackled. For instance, the EPF formulation of

he bioreactor design problem presented needs to be explored in

reater detail in future studies. A possible direction will be to

ombine the EPF bioreactor formulation with the three-level reac-

or design approach proposed by Peschel et al. (2010) . This could

ead to the design of innovative bioreactors that consider the dy-

amic manipulations of extracellular and intracellular controls for

mproving the production of biologic drugs in P. pastoris . 

Another interesting aspect to consider is the oxygen consump-

ion rate. In this work, we have assumed that sufficient oxygen

s available for the cells to grow. Nevertheless, it might be inter-

sting in the future to include an oxygen balance and dissolved

xygen as an additional control variable ( Güne ̧s and Çalık, 2016 ).

n addition, some of the trajectories of the intracellular fluxes

re not smooth. Hence, B-splines can be used to parameter-

ze the intracellular fluxes profiles so as to obtain smoothened

urves ( Vercammen et al., 2014 ). All in all, we believe that the

odel-based optimization strategy presented in this paper is a

aluable contribution to the growing literature on strategies for

mproving the heterologous expression of proteins in P. pastoris

nd could facilitate the design of next generation biopharmaceu-

ical processes. 
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