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ABSTRACT

Future increases of energy density of lithium ion batteries require a systematic optimization of electrode
structure and the related production process. Such optimization is facilitated by electrochemical models
which predict cell performance with good accuracy. In this work, classic relations of structure to model
parameters in the classical Doyle Newman electrode model are replaced to improve the prediction ac

curacy of the model regarding electrode structure effects. Therefor, a 3D micro structure model is used to
derive effective electrode property relations for ionic and electric conductivity, which are then used in
the computationally efficient P2D framework of the Doyle Newman model. Simulations show clearly the
transition from an electron transport limited to an ion transport limited electrode performance with
increasing compression ratio. Integrating the derived algebraic structure model parameter relations into
the electrochemical model allows a higher accuracy in predicting the optimal porosity of the experi

mental data compared to the classical P2D model.

1. Introduction

Lithium ion batteries have outperformed other electrochemical
storage technologies for more than twenty years. Just as the
lithium ion battery is commonly found in all types of application,
the pseudo two dimensional (P2D) battery model of Doyle et al. [1]
has been commonly used in battery research and development for
about 25 years. The homogenized model has proven its feasibility
to reproduce the discharge behaviour of different cells in many
publications [1—4]. However, the model is not feasible to reproduce
many production effects such as calendering, i.e. compression of
the electrode. Generally, in this work, the link between electrode
structure parameters like porosity and model parameters like
effective conductivity is referred to as structure model parameter
relations. The probably most famous structure model parameter
relation is the Bruggeman relation. In the calendering simulations
published up to now, effective electrode parameters like conduc
tivity and electrochemically active area, i.e. the material to
electrolyte interface, have to be estimated for all calendering
rates individually [2]. This allows a model based analysis of battery
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performance based on experimental data, but it causes the model's
shortcomings in terms of prediction and optimization.

1.1. Calendering influence on cell performance

Calendering is the final step of electrode production before
sheet separation, e.g. by cutting, and cell assembly. Together with
coating and drying it is an important production step to influence
micro structural properties of the electrodes and hence the cell
performance. In principle, the calendering step is well understood.
With increasing calendering rate, the electric conductivity in
creases as the volume fraction of the conducting phase increases
and a highly conductive network of conducting additives like Car
bon Black or graphene is built. In contrast, calendering decreases
the ionic conductivity of the electrode by decreasing the porosity.
The optimal calendering rate would provide a trade off between
both effects. For graphite anodes, this was shown e.g. by Shim and
Striebel [5] and the negative effect of a too strongly compressed
anode by Yang and Joo [6]. To understand the complex processes on
micro scale in depth, research focused on different aspects. Beside
the decrease of the electrode resistance due to the Carbon Black
network, the contact resistance between active material and cur
rent collector decreases significantly [7,8]. The influence of calen
dering on pore size distribution and deformation of particles was



investigated by Haselrieder et al. [9]. Schmidt et al. investigated
highly compressed NMC electrodes and found an optimal high
current performance at moderate porosities and a maximal energy
density at low porosities [10]. A too low compression can be
detrimental compared to no calendering, as binder or Carbon Black
bridges between particles can be fractured [9,11]. In addition, the
calendering rate influences the wetting rate of the electrode which
is important for the cell production planing and utilization of the
active material. Experimental results of Sheng et al. showed an
optimal wetting at moderate calendering [12].

1.2. Modeling calendering and structure effects

In terms of calendering, there are two different modeling ap
proaches. On the one hand, there are process models to describe
the production process itself. On the other hand, there are elec
trochemical models which are used to quantify the influence of
calendering on the electrochemical cell performance.

Process models can be categorized into empiric models which
are strongly related to experimental data [13], and highly sophis
ticated physics based models, e.g. based on the discrete element
method (DEM). The physics based models simulate the particle
movement during the calendering step to gain insight into pro
cesses as well as to determine the optimal calendering rate [14].

Electrochemical modeling is widely applied. However, only very
few contributions are specifically assigned to calendering. Lenze
et al. applied a P2D model to estimate the effective electrode
properties at different calendering rates and revealed significant
changes of electric conductivity and active surface area in depen
dence on the calendering rate [2]. Kenney et al. quantified the
impact of deviations in the drying and calendering process,
applying an electrochemical single particle model [15] and Smek
ens et al. simulated the calendering influence on a positive elec
trode [8].

Micro structures have been modeled frequently but mostly
without focus on calendering. Some models are based on artificial
structures [16—19], some reconstruct structures from e.g. FIB SEM
images [20—24]. There are DEM micro structure models, e.g. see
Ref. [25], FEM micro structure models, e.g. see Ref. [26], and full 3D
electrochemical models [22,26—28]. The later suffer from excessive
computational costs even at domain sizes of very few particle sizes
[19]. Beside stochastic approaches and reconstruction, Liu and
Mukherjee used a Kinetic Monte Carlo method to investigate the
influence of solvent evaporation and interaction of solvent and
nano particles on the conductive interfacial area [29]. Ngangdjong
et al. introduced a multiscale approach of coarse grain molecule
dynamic simulations coupled with a electrochemical full 3D model
[30]. This approach allowed to predict the micro structure in
dependence on the fabrication process and to simulate the elec
trochemical cell performance.

In electrochemical homogeneous models, structure model
parameter relations provide the link between geometric structure
properties like porosity and model parameters like effective ionic
conductivity. In the classical Doyle Newman model three simpli
fied structure model parameter relations are considered. For the
effective ionic conductivity the Bruggeman relation is applied

Tlq  Oiiq-e’ (1)
which describes the influence of the porosity ¢ on the effective
conductivity gjiq. The Bruggeman coefficient § is a measure of tor

tuosity 7, as tortuosity can be determined by:

el (2)

Thus, the bigger § the higher the tortuosity. For an electrode
consisting of ideal spheres, (§ is equal to 1.5. In many publications, it
is adjusted to fit simulated cell performance and experiments. In
Egs. (1) and (3), and in the further, a tilde denotes a bulk property.

For the electric conductivity, it is assumed:

o5 Gamel (3)

wherein ¢ is the solid phase volume fraction. In some publications
the Bruggeman coefficient g is set to one for the solid phase [4] as
the Bruggeman relation was developed only for the transport
around spherical non contacting obstacles [31].

For the active surface area, which is the contact area between
active material and electrolyte, the estimation

(4)

is commonly known, which is based on the assumption of mono
disperse particles of size R, which do not contact each other. In
dependent on particle to particle contacts, the assumption of
mono disperse spheres is limited by the densest possible particle
packing of 74% solid.

In literature, various extended structure model parameter re
lations for conductivity exist. Zacharias et al. derived more accurate
Bruggeman relations from experimental data for different poros
ities and Carbon Black amounts to enhance the accuracy of the
effective ionic conductivity in an electrochemical battery model
[32]. This approach is similar to the one presented in this article.
Here however, a 3D model is used instead of experimental data, and
further structural properties are investigated. Ott et al. introduced a
micro mechanical model to derive effective ionic and electric
conductivities of structures of mono disperse spherical [25]. This
approach is similar to the micro structure model applied in this
work. However, it neglects to consider the crucial impact of Carbon
Black. Thus, no model based approach that considers structural
impacts including Carbon Black on the LIB performance is available.
The carbon black binder domain was considered by Ngandjong
et al. in an electrochemical 3D model [30]. Compared to this model,
our approach neglects concentration differences due to spatial ef
fects, but the coupling approach with the P2D model allows opti
mization due to moderate computation costs. In the work of
Bielefeld et al. the commercial software GeoDict was used [33]. The
software allows automated generation of particle structures of
different particle shapes and the article focused on the contact area
of active material and electrolyte and the utilization fraction of
active material. Derived percolation thresholds and active surface
areas were in good accordance with results derived from the micro
structure model in our previous study [34]. The major advantage of
the self programmed micro structure model, compared to com
mercial software, is the flexibility with respect to novel focuses as
well as the compatibility with the P2D model, which allows a fluent
processing and optimization of batteries. In contrast to the work of
Ngandjong et al. and Liu and Mukherjee [29,30], the applied model
is limited to generic distributions, which is not governed by
chemical processes in the drying step of the electrode production.
Further, Carbon Black and binder are not distinguished. In this
contribution we present a study on the crucial role of the spatial
Carbon Black distribution on conductivity and active surface area to
allow quantification and prediction of the calendering influence.

The outline of this work is as follows: First the micro structure
model is introduced. From this, a set of algebraic structure model
parameter relations is derived which is used to enhance the elec
trochemical model. Eventually, the feasibility of the framework of
enhanced structure parameter relations and P2D model to



reproduce the experimental discharge curves for different calen
dering rates with a single parameter set is assessed.

This approach is chosen as results of Lenze et al. show that the
homogeneous P2D model is able to simulate batteries at different
calendering rates if the effective micro structure parameters are
known for each calendering rate [2]. Hence, calendering rate
dependent modeling of effective micro structure parameters allows
an accurate prediction of cell performance at different calendering
rates.

2. Cell setup and test conditions

For the electrochemical experiments a commercial three
electrode setup was used. PAT Cells from the EL Cell GmbH pro
vide a three electrode setup with a cylindrical electrode with a
diameter of 18 mm and a separator with an included lithium
reference electrode. The separator is a glass fiber separator by EL
Cell GmbH (EU1 000210 0/X). For anode and cathode, graphite
(SMG of Hitachi Corp.) and NMC 111 (BASF Corp.) were used,
respectively. The paring of these electrodes was produced in the
Battery Lab Factory Braunschweig on a pilot plant production line
and were also studied in Refs. [14,35,36]. Ref. [14] provides further
information on the respective compression forces of the different
calendering rates and Ref. [35] provides details on the production
process regarding e.g. the mixing process. Both electrodes had
about 10 wt% of additives including Carbon Black and binder. The
cathode was calendered to layer thicknesses of 82 um, 70 pm,
64 um, 62 pum, 59 pm and 55 um while the anode was the same for
all cells. The layer thickness of 82 pum represents the non
calendered electrode. The porosity used in this work is a calcu
lated one, based on measured weight (scales XS205, Mettler
Toledo) and thickness (micrometer screw absolute digimatic IP66
of Mitutoyo) of the punched out electrodes. The electrolyte consists
of EC, EMC and DMC with a ratio of 1:1:1 and traces of VC and CHB.
For each cell 102.7 pL are used.

All experiments were conduced at 25°C in a temperature
chamber. Discharge curves were recorded (Maccor 4000) between
4.2V and 29V.

3. Computational methods

The method applied in this work is illustrated in Fig. 1. Related to
this, the structure generation and evaluation, the empiric surrogate
models as well as the electrochemical model are introduced.

3.1. Micro structure generation and evaluation

The algorithms for the structure generation and evaluation have
been published in Ref. [34] for a lithium based all solid state bat
tery. Here, this approach is briefly summarized and modified to
account for liquid electrolyte. Details are given in the appendix.
General assumptions for the generated micro structure are as fol
lows: homogeneous bulk within each phase, isotropic properties,
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no structure changes along layer thickness, no breakage of AM and
CB particles, no voids in the electrode.

As illustrated in Fig. 2, structure generation starts with setting
randomly distributed nuclei with points {4); in entire 3D domain
for the active material phase AM. A nucleus fills the entire voxel. To
every nucleus, a random numerical particle size Spy;EN is
assigned. Afterwards, nuclei for the Carbon Black binder phase at
{cpm,i are set. In contrast to AM nuclei, the nuclei at {cgy; are set in
a sub domain, e.g. at the AM particle surface. To every {cpy; a
random numerical particle size Scgy; ; is assigned. Then, the domain
of the electron conducting phase .#s and the domain of the ion
conducting phase .#);q, which is filled with liquid electrolyte, are
set: Every voxel close to a AM nucleus becomes part of the AM
particle, every voxel close to a CB nucleus becomes part of the CB
domain if it is not part of the AM yet, and the remaining space is
electrolyte.

To evaluate the effective electric and the ionic conductivity of
the micro structure, the voxel based structure is transformed into a
node based resistor network with the conductivity, wherein every
node represents the center of a voxel. The connector conductivity
between two nodes is dependent on size and bulk conductivity of
the corresponding voxel. Considering one Dirichlet boundary con
dition of constant current and one Neumann boundary condition of
constant potential allows to calculate the potential drop in the
structure. From the macroscopic potential drop between the first
and the last node, the effective conductivity can be determined This
approach is applicable to the electron conducting phase, as well as
to the ion conducting phase. To evaluate larger structures and to
reduce stochastic effects, a super structure approach is applied
wherein smaller evaluated structures become voxels of the super
structure. For details and illustration see Ref. [34]. The volume
specific active surface area as between active material and elec
trolyte is determined by counting electrolyte to AM interface areas.

In our previous work, numerical effects and deviations due to
the randomness of the generation were addressed. Deviations of
the predicted conductivity were generally below 5% and higher in
the range of the percolation threshold of the CB network [34].

3.2. Electrochemical modeling

In this section, the electrochemical model is introduced which is
based on the work of Legrand et al. [4]. The electrochemical model
is extended with the enhanced structure model parameter re
lations derived in Section 4.2.

3.2.1. Governing equations

The P2D model of Doyle et al. [1] is based on a set of partial
differential equations for the mass and charge balances of solid
(Egs. (5) and (6)), liquid (Egs. (7) and (8)) and interfaces (Egs.
(9)—(11)). The most important equations are summarized in Table 1.
For a complete list of symbols, it is referred to Table 7.

Cell voltage and half cell voltages are derived from the state
variables. As the whole calendering influence shall be simulated

Effective macroscopic

parameters

Structural D Sample Discharge
parameters Micro Data | Structure- performance
Structure Parameter P2D Modell

Model Relations

Fig. 1. Flow chart of the surrogate model approach: Sample structure generation/evaluation, ESMs and electrochemical simulations in P2D.
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Fig. 2. Flow chart of the structure generation [34]. Randomly distributed nuclei (blue dots) are used to build up an electrode consisting of active material (red), Carbon Black (green)
and electrolyte (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 1

Extract from the governing equations of the P2D standard model. For the full set of equations see Refs. [4,37]. L denotes the full cell
thickness and de 2 and de ¢ the layer thickness of anode and cathode, respectively.
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with one parameter set, the extended model applies Eqgs. (9b), (11)
and (13), while the classical P2D model uses the structure
parameter relations of Eqs. (1), (3) and (4). All other governing
equations remain unchanged. For a complete list of e.g. geometric
properties it is referred to Ref. [38].

3.2.2. Parameter estimation

In Section 4.3, parameters listed in Table 3 of the classical model
and the extended model are estimated applying a curve fitting
routine to discharge curves from 0.5C to 5C. As a three electrode
setup was used in the experiments, half cell potentials of both
electrodes are used.

For both models, exchange current densities, iy, Vk< {a, c}, and

Table 2
Parameter ranges of sample data for parameterization of the surrogate model.

cgM /0am Tatio

Parameter £AM ecgM /€am Tatio
lower bound 0.4 0 4810
upper bound 0.75 0.3 14286

solid phase diffusion coefficients D, Vk< {a, c}, of both electrodes
are derived from the experiments,'as well as the diffusion coeffi

cient of the electrolyte D.. For the parameter estimation, values of
Dy etc. Taken from Ref. [38] are used as starting values. For the
extended model, the bulk conductivity of NMC is derived from the
experiments, while the conductivity of the Carbon Black binder



Table 3

Estimated parameters of the electrochemical model for different scenarios and models. . cgyy 760 Sm ! [17].
Model extended classical extended extended
evaluated cells all cells all cells cells1 &4 cells1&6
parameter
Dsc inm?s ! 4976 x 10 12 5.000 x 10 12 4.976 x 10 12 4512 x 10 12
Ds, in m2s ! 1.177 x 10 14 11.097 x 10 4 1.180x 10 0.879x 10 4
De in m?s ! 5.927 x 10 10 6.693 x 10 10 5.931x 10 10 6.058 x 10 10
FeaminSm 1! 0.0161 0.0161 0.0167

0.0141

_ . 1
TsAM4cBM iNSm

matrix is kept constant at 5. cgm ~ 760S m~! [17]. For the classical
model the solid phase bulk conductivity of the cathode is adjusted
which does not distinguish between the contribution of active
material and Carbon Black binder matrix. The anode conductivity is
not adjusted since in literature a high conductivity of graphite
electrodes is stated, e.g. 100S m~! in Ref. [39].

The least square formulation for the parameter estimation is as
follows

2
e(0) § Eké: (Ucell,simdlk(&tiu)ref Ucell,expj,k(fi)>
J i

¢c<simj.k(®7 ti) d’c,expj,k(ti)) 2 (5)

+
Uref

wherein 0 is the parameter set and & the cost function to minimize.
The simulated cell voltage is Ucejj sim jx(®, i), and ¢ sim jk(®, &) is
the simulated cathodic half cell potential at the C rate with index k
and calendering rate with index j at the equidistant sample time ¢;.

The parameter estimation routine leads to six adjustable pa
rameters, which is comparable to published models, e.g. see
Refs. [2,40]. Lenze et al. highlighted the different distinguishable
influences of different parameters in C rate tests [2]. Further, Eq. (5)
considers 4 C rates and 6 calendering rates simultaneously. This
ensures uniqueness of the parameter set, as calendering has a
characteristic influence on solid phase diffusion, surface over
potential and electrolyte diffusion.

4. Results and discussion

In this section, micro structure simulations are presented and
empiric surrogate models for the structure model parameter re
lations are derived from 3D simulations. Eventually, electro
chemical simulation results are shown and validated with the
experimental results of the calendering study to prove the concept
of the enhanced structure model parameter from the micro
structure model.

4.1. Micro structure modeling

In this section, different micro structures are investigated for a
variation of porosity. All simulations are run with a constant vol
ume ratio of 1/4.4 between the Carbon Black binder Matrix (CBM)
and active material (AM) which is in accordance to the experi
mental cells in Section 2. Reference mean particle sizes of AM and
CBM are 5.5 textmum and 1.83 textmum, respectively. The voxel
size is 0.33 textmum. The CBM particle size represents agglomer
ates containing CB and binder. Related to Refs. [17,36,41], conduc
tivities are assumed as follows: oay 1.4x 1072Sm™!, ocp
100Sm~! and 6o,  0.6S m~!. These values, are used to generate
the samples for identification of the surrogate models. Literature
values are used here, to ensure that the sample conductivity fit the

magnitude of the experimental conductivity. The exact conductiv
ity of the materials are determined by parameter estimation as
described in Section 3.2. Literature values can only provide a initial
guess, as differences between different probes of the same material
are large. For instance, for NMC conductivities are reported over
three magnitudes [17,39,42].

In Fig. 3, the interface area between active material and elec
trolyte is shown for different porosities. As this work is related to
calendering, all plots are plotted with decreasing porosity respec
tively increasing calendering rate from left to right. Calendering
rate is initial (non calendered) layer thickness divided by layer
thickness of the calendered electrode.

Blue dots represent the 3D simulations. The dashed line repre
sents the widely used equation for active surface area, Eq. (4). At
high porosities, surface area increases for the 3D structures as well
as Eq. (4), as the number of particles increases and particle to
particle contacts are marginal. The simulations show a maximal
active surface area at a porosity of 0.45. At low porosities, the active
surface area is decreased by particle particle contacts.

The influence of the electrode composition on electric and ionic
conductivity is depicted in Fig. 4.

The simulated ionic conductivity (orange dots) decreases with
decreasing porosity. The respective Bruggeman relation (orange
dashed line) is in good accordance at high porosities. At low po
rosities, the simulated ionic conductivity decreases more signifi
cantly than the Bruggeman relation would assume, as first non
connected pores occur, i.e. pores inactive for the macroscopic
charge transport. Thus, there is a minimal porosity above zero, at
which effective conductivity drops to zero. Calendering should stay
well above this porosity.

The simulated electric conductivity (blue dots) increases slightly
towards higher porosities, until at a porosity of about 0.35 the
percolation of the Carbon Black network starts and the electric
conductivity increases more significantly. The Bruggeman relation
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Fig. 3. Effective surface area vs. electrode porosity. 3D simulations are dots. Eq. (4) is
the dashed line. Volume ratio between AM and CB is 1/4.4.
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Fig. 4. Effective electric (blue) and ionic (orange) conductivity vs. porosity, resulting
from 3D simulations (dots) vs. Bruggeman relations (dashed lines). Constant active
material-to-Carbon Black volume ratio of 1/4.4. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)

for the solid phase conductivity (blue dashed line) shows a small
deviation at high porosities. At moderate to low porosities, the
difference is several orders of magnitude, as the influence of the
Carbon Black on the conductivity, which is neglected in the Brug
geman relation, is large. Thus, there is a percolation threshold
above which Carbon Black forms a network containing only Carbon
Black. This enables a high conductivity of the entire electrode.

As electric and ionic conductivity are both relevant for the
discharge performance of a lithium ion battery, the intercept of
electric and ionic conductivity in Fig. 4 could be a starting point to
minimize the cell resistance and to maximize cell performance.
Therefore, simulation results in Fig. 4 would suggest an optimal
porosity of about 0.35. Applying the Bruggeman relation for electric
and ionic conductivity would suggest an optimal porosity of 0.2 at a
three times smaller conductivity. This highlights the importance of
the usage of 3 dimensional models to obtain and understand
effective conductivities, and to transfer this knowledge into elec
trochemical models.

4.2. Algebraic structure parameter relations

Structure model parameter relations applied in literature were
reviewed in Section 1. In the following, based on structure simu
lations, three more accurate surrogates for those equations are
derived: Egs. (9b), (11) and (13). It should be noted that any type of
surrogate model which fits the sample data could be used. Here, we
try to stick to simple empiric equations which cover none the less
essential physical effects as explained in the following.

For the further structure model parameter relations, effective
volume fractions are introduced as part of the empiric surrogates:

EAM  Ecrit,s

EAM » VeaM 1 €AM > Eqitss (6)
1 Ecrit,s
£ Ecritli
" P Cmth: Ve:e> Ecrit liq> (7)
Ecrit lig
B+ €AM  Ecrit;s

€CBM  ECBM— 7 , VecBM : €cBM + €AM > Ecrits (8)

Ecrit,s

For electrolyte and AM the effective volume fractions represent
the relative distance between the percolation threshold volume
fraction of the individual phase and a volume fraction of one. Values
range between zero and one. This allows to combine the simplicity
of the Bruggeman relation with the existence of the percolation

threshold of the conducting network. The effective volume frac

tions of active material &},;, as well as the effective porosity &*,
consider a critical percolation threshold of the conducting phase
ecrit, respectively for the solid and liquid phase: eqjps and e lig-
The volume fraction e s is related to the combined volume of AM
and CBM. For the effective Carbon Black binder volume fraction
efgyp the strong interaction with the active material is additionally
taken into account. Eq. (8) isequal ecgy forecgmy 1 eam and zero
for ecgm + eam ecrits- Thus, the effective volume fraction scales
linearly between zero, at ;¢ s, and the absolute volume fraction
ecgm» Where all voxels of one phase are connected. The difference
between effective volume fraction of CBM and Eqgs. (6) and (7) gives
weight to the assumption that in a dense AM structure the CBM
percolates at lower volume fractions than in a less dense AM
structure. This can be expected as dense structures have lower
active material surface areas [33,34], and thus, the CBM spreads to a
smaller area. This leads to a higher surface area specific coverage of
the AM with CBM and thus to a lower percolation threshold.

For the ion conducting phase, the Bruggeman relation is
extended regarding the effects of percolation and Carbon Black. In
addition, a nonzero critical percolation porosity ei jiq is considered
in efg), (see Egs. (7) and (9a)) as well as an increase of tortuosity
due to Carbon Black, represented by 3, (see Eq. (9b)):

Giq g ()", 0liq  Fiig (). 9)

Eq. (9a), which is strongly related to Bruggeman, already pro
vides a quite accurate fit, but for electrodes containing CBM Eq. (9b)
outperforms it due to the additional empiric term (§, which is:

P (10)

Eq. (10) is related to an increase of liquid phase tortuosity due to
Carbon Black, just as the Bruggeman coefficient for the active ma
terial phase. Due to that, Eq. (9b) is used in the further. The fitting
parameters of these equations are egjt jiq, an exponent 8y which is
related to the tortuosity due to the active material like a Bruggeman
coefficient and a second coefficient ;.

For the electron conducting phase, Eq. (11) is introduced, which
consists of two summands. Due to the shape of the tangens
hyperbolicus, the first summand is zero below the percolation
threshold, is equal a Bruggeman type term, UCBM°(EEBM)63, repre
senting the percolating CBM network above the percolation
threshold, and has a steep transition between the both states. The
mixed contribution of AM and CBM in the second summand can be
understood as representation of a structure where CBM is present
but does not form a network yet, but contribute to the AM network
conductivity by e.g. connecting two AM particles. The mathemat
ical formulation of the mixed contribution is related to a serial
conduction of conducting AM element and a conducting AM
element in parallel to a CBM element. This represents the physical
processes in the electrode where the electron transport occurs
partly in both materials, but the Carbon Black binder domain is not
forming a matrix yet.

. . 1 1.
0s  Gcam® (ECBM)BB ‘5 (1 + tanh (ESCBM V3)>

contribution of percolated CB matrix

-1

1 1
Gcam® (epm)” +20am" (eae) ™ 20am" ()™
contribution of AM and non—percolated CBM AM contribution
(11)



The exponents 83 and 4 are related to the tortuosity of the two
conducting materials and the coefficients v, and v3 are dependent
on the percolation threshold and the slope in the transition.

The fitting parameters are eit s, 83, 84, 72, and v3. While Eq. (11)
may seems quite long, for the absence of Carbon Black, it is
equivalent to:

o5 Game (ehu)™ (12)

For the effective surface area, Eq. (13) is introduced:

Vs
€ 1
dg (1 Vy CBM) Vg
£AM

4(0.75
Rp Am

eAM)z'E (-13)

The fitting parameters are vy, v5 and vg. The first term is related
to the blocking of active material surface by Carbon Black which is
dependent on the ratio of the two volume fractions. The bigger the
volume fraction of CBM compared to AM, the less surface is
accessible for electrolyte. The numerator of the second term is a
downward parabola vs. e4y Which takes into account that there is
an increasing particle to particle contact area as well as less elec
trolyte with increasing volume fraction of active material. The de
nominator is the particle size, representing the influence of the
particle size on the surface to volume ratio of particles just as in Eq.
(4).

To derive algebraic structure model parameter relations, which
in their entity are referred to as surrogate model, a set of sample
structures is simulated applying the micro structure model. The

different samples have varying electrode compositions and electric
conductivities of Carbon Black. An excerpt of this data was pre
sented above.

The ranges of the sample data are given in Table 2. Validity of
surrogate model is only ensured for the sampled ranges. On the one
hand, higher conductivity ratios can likely be calculated correctly as
above a ratio of 14286 the physical process of percolation remains
unchanged. On the other hand, the lower threshold is more rele
vant as below the bound, conduction through AM and conduction
through CBM is not anymore as distinct as it is at high conductivity
ratios. Exemplary fits of electric and ionic conductivity are shown in
Figs. 5 and 6, respectively. They show percolation effects on the
electric conductivity. The accordance for the ionic conductivity is
higher than for the electric conductivity. This is related to the more
complex processes for electrode conducting due to two conducting
species compared to only on ion conducting species. Considering a
smaller range of gcgy to oan ratios would increase the accuracy of
the fit for an individual ocgy to gapy ratio but would constrain the
parameter range for the later parameter estimation.

Parameter estimation with the sample data leads to the pa
rameters listed in Tables 4—6 for Egs. (9b), (11) and (13).

4.3. Electrochemical modeling

In order to compare the electrochemical model with the derived
new structure model parameter relations to the classical model,
both are parameterized using the experimental discharge curves
from the calendering study. It should be noted that the adjusted
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Fig. 5. Validation of surrogate model with 3D simulation data. Effective electric conductivity vs.
(crosses) and the surrogate model (lines) for ocg of 67.33 Sm ! and gy of 0.014 Sm 1.
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Fig. 6. Validation of surrogate model with 3D simulation data. Effective ionic conductivity vs. active material volume fraction for the 3D-simulations (crosses) and the surrogate

model (lines) with an intrinsic ionic conductivity of.5 x 10 4Sm 1.



Table 4
Parameters of Eq. (9b).

Parameter Ecrit liq 61 121

Value 0.127 1.77 0.680

Table 5
Parameters of Eq. (11).

Parameter Ecrit,s B3 B4 " V2

Value 0.1 0.023 20 0.2 1.5

Table 6
Parameters of Eq. (13).

Parameter vy Vs Vg

Value 0.904 1.127 4.912

Table 7
List of symbols.

Name Symbol Unit

active surface area as m !
Bruggeman coefficient 6

cell area Acell m?
concentration c
conductivity

current

current density

diffusion coefficient
domain size

domain/set of voxel
error

exchange current density
Faraday constant

molm 3
Sm !

Am 2
m?s !

ey — g~ — a

Am 2

Asmol 2

S

geometric structure
ideal gas law constant JK 'mol !
m

m

layer thickness

thickness of full cell

nucleus

number of exchange electrons
numerical parameter
numerical particle size
overpotential

parameter set

particle size

porosity

potential

radius

reaction rate constant k;
resistor network <
structure number of neighbors VA
time t
transference number tp
volume fraction &
voxel edge length Ax m
voxel position 1%

=S N R N UX S 3 Tl
&) 2 W§

IR SR
o
we 3< 3

7}

parameters consider all calendering rates simultaneously, conse
quently there are no individual parameter sets for different calen
dering rates. The parameter sets are provided in Table 3. In contrast
to the novel approach introduced in this work, calendering simu
lations, e.g. by Lenze et al., used one parameter set per calendering
rate [2].

The discharge capacities for different calendering rates from
0.2C to 5C and for varying porosity are depicted for the classical
model in Fig. 7.

N

Capacity / mAh
[\ (O8]

0.5 0.45 0.4 0.35 0.3 0.25 0.2
Porosity / -

Fig. 7. Discharge capacity at 2.9V for different C-rates in a calendering study with
classical model (dashed lines) vs. experiment (squares) with a constant Carbon Black-
to-active material volume ratio of 1/4.4.

Squares represent experimental data, dashed lines are simula
tions. Each column of squares in this plot represents one cell. From
0.5C to 1C, the experimental and simulated discharge capacities
show no impact of the calendering rate. This is because, the
discharge capacity is close to the theoretical capacity and is limited
solely by solid phase diffusion. At 5C and high porosities the
simulation reproduces the experiment, but at low porosities the
simulated discharge capacity does not decrease, while the experi
mental capacity does. Hence, the classical model fundamentally
fails to simulate the transition from an electrode limited due to
poor electrical conductivity at high porosities to an electrode
limited by poor ionic conductivity at low porosities.

In Fig. 8, the same experimental data are plotted together with
the simulation results of the extended model.

At 0.5C and 1C also this model shows no influence of porosity on
discharge capacity. For experiment and simulation, at 3C there is a
slight and for 5C there is a distinct optimum of the discharge ca
pacity at a porosity of about 0.35. The simulations reproduce
experimental trends qualitatively nicely, though the capacity at 5C
and 40% porosity is too high. Still, the experimental trend is
correctly reproduced with the proposed model. Thus in contrast to
the classical model, the extended model is feasible to simulate the
transition from an electric conduction limited electrode to an ionic
conduction limited electrode with increasing calendering rate.

= e
4t = o .
E o o°J
.‘?3V o ~ .
g ) ) ~o
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[= = o05Cc = — IC 3¢ = = 5C|

1 1 1 1 1

0
0.5 0.45 0.4 0.35 0.3 0.25 0.2
Porosity / -

Fig. 8. Discharge capacity at 2.9V for different C-rates in a calendering study with
extended model (dashed lines) vs. experiment (squares) with a constant active
material-to-Carbon Black volume ratio of 1/4.4.



Residuals of the parameter estimation of both models are depicted
in Fig. 12 for quantitative comparison. The normalized residual of
the extended model is about 9% lower than for the classical model.

In Figs. 9—11, discharge curves for the experiments and the
extended model are shown for four C rates and 3 different calen
dering rate. For all C rates and calendering rates simulation and
experiment are in good accordance, as well with respect to cell
voltage, as with respect to half cell potential of the cathode. Thus,
the extended model is feasible to predict the discharge perfor
mance as well as the overpotentials of the cell.

In conclusion, the extended model reproduces the calendering
experiment while the classical model fails. From this, it is
concluded that calendering effects are strongly related to change of
porosity and the related conductivities and active surface area
considered by the extended model. Further effects may occur due
to surface resistance etc.

4.4. Evaluation of the robustness of the approach

In Section 4.3, all experimental data are used for the parameter

[ L S L S L S L B

[= = 05c= = IC

voltage / V

time / h

Fig. 9. Model validation with experimental data from a C-rate test in a three-electrode
setup. Uncalendered cathode with a porosity of about 48.9% and an active material-to-
Carbon Black-binder volume ratio of 1/4.4. Simulated (dashed lines) and experimental
(solid lines) discharge curves. Gray lines represent the simulated (dashed lines) and
experimental (solid lines) half-cell potential of the cathode. The extended model is
used for simulations.
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Fig. 10. Model validation with experimental data from a C-rate test in a three-
electrode setup. Moderately calendered cathode with a porosity of about 32.6% and
an active material-to-Carbon Black-binder volume ratio of 1/4.4. Simulated (dashed
lines) and experimental (solid lines) discharge curves. Gray lines represent the simu-
lated (dashed lines) and experimental (solid lines) half-cell potential of the cathode.
The extended model is used for simulations.

voltage / V
W (98] W W
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time / h

Fig.11. Model validation with experimental data from a C-rate test in a three-electrode
setup. Highly calendered cathode with a porosity of about 23.3% and an active
material-to-Carbon Black-binder volume ratio of 1/4.4. Simulated (dashed lines) and
experimental (solid lines) discharge curves. Gray lines represent the simulated (dashed
lines) and experimental (solid lines) half-cell potential of the cathode. The extended
model is used for simulations.

estimation of the model. If the model shall be used for optimization
of the calendering process, it has to be able to reproduce the
experiment without using all presently available calendering data
sets. To investigate the feasibility of the electrochemical model with
the enhanced structure model parameter relations to predict the
calendering impact properly, a scenario is assumed wherein only
the non calendered cell and one single calendering rate is available.
For this purpose, the parameter estimation and C rate test simu
lations from Section 4.3 are repeated for the extended model with
the subset of data which consists of the non calendered cathode
with a porosity of 48.9% and the cathode calendered to a layer
thickness of 62 um with a porosity of 32.6%, respectively unca
lendered and highly calendered cell (23.3% porosity).

The estimated parameters are listed in Table 3 in comparison to
those using the full data set and those using the classical model.
Respective residuals are shown in Fig. 12. Consideration of the
uncalendered and a moderately calendered cell leads to almost
exact quantitatively the same parameters.

Thus, even conducting only two

experiments allow

130

120

110

100

residuum ||€|| / -

Nl
(=)

80

all all

1&4 1&6

Fig. 12. Residuals of the extended model (ext.) considering all cells for parameter
estimation (PE), classical model considering all cells for PE, extended model consid-
ering an uncalendered and a moderately calendered cell (cells 1 & 4), and extended
model considering an uncalendered and a highly calendered cell (cells 1 & 6). The
residual is defined in Eq. (5) and is the sum of the squared deviation of cell voltage and
cathode half-cell potential for all C-rates and all calendering rate, respectively, with
100 equidistant sample points per curve.



parameterization of the extended model and prediction of the
optimal porosity with a precision of 5% points of porosity (see
Fig. 8). Further experimental tests would be required to find the
optimal calendering rate in this scenario as 5% points of porosity is
not small compared to the parameter space. However, the model
could reduce the total costs by reducing the number of required
experiments in an combined experimental and simulation based
optimization process compared to a solely experimental
optimization.

There are different possible reasons of the discrepancy between
measured and simulated discharge performance. In general, in
fluences of the micro structure model, the surrogate model, the
homogeneous model, as well as deviations in the experimental
data are possible. The micro structure model provides an uncertain
predictions of the effective parameters, as there is a discretization
error, as well as there is a possible discrepancy between the real
micro structure and the artificial structure which is evaluated.
Lastly, the experimental data is based on cells with a diameter of
18 mm. Due to that, there could be an effect of manufacturing de
viations on the cell properties. Electrodes were manufactured in a
large scale role to role process. The length scale of process de
viations are bigger than the cell size. The leads to possible cell to
cell deviations.

Eventually, the estimated parameter set has to be unique,
proving physical insight. The estimated parameters are in the of
quantitative values provided in literature. Chen et al. reported a
NMC bulk conductivity of 1.06 x 10-3Sm~! and electrical con
ductivity of the Carbon Black binder matrix of 760 Sm~!. For a
slightly different electrolyte than applied here they stated a diffu
sion coefficient of 1.2 x 102m?2s~! [17]. Vazquez Arenas et al.
stated diffusion coefficients for graphite and NMC of 3.9x
10-“m?2s-1 and 1.64 x 10-%m2s~1, respectively. The estimated
parameters are in good accordance with the literature, while de
viations are plausible since slightly different materials are used.

5. Conclusions

Accurate structure model parameter relations are essential for
prediction and optimization of cell properties. This is especially
important during electrode manufacturing, e.g. for the calendering
process. Therefore, a 3D micro structure model was applied to
derive more accurate structure model parameter relations than
those applied in the classical Doyle Newman model. These include
addition of Carbon Black and particle sizes and distributions. Arti
ficial non spherical particles are generated in the micro structure
model and the effective electric conductivity of an electrode, its
ionic conductivity and interface area between active material and
electrolyte are determined for various electrode compositions.
Empirical surrogate models are derived from the conductivity re
lations of the micro structure model and are used to extend the
classical Doyle Newman model. The such extended electro
chemical model is able to reproduce and predict the calendering
experiment. A single experimental calendering rate allowed to
estimate the optimal calendering rate with an accuracy of about 5%
points. The feasibility of the extended model to reproduce the
experiment suggests that homogeneous models could be sophis
ticated enough to simulate the micro structure and calendering
influence on the cell performance for the investigated system. For
novel active materials, the approach should be validated again.
Also, it is concluded that the investigated calendering rate primarily
effects the porosity of the electrode. Consideration of effects like CB
particle breaking or interface resistances were not required to
predict the cell performance in dependence on the calendering
rate.

In the further, the model may be applied to a wider range of

electrode structure variations and to mathematically optimize
electrode structure and calendering rate.
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Appendix A. Micro Structure Generation and Evaluation

Consider a domain .~ N3 which is our electrode. Any location
in .~ is described by ¢  (x1,X5,%3)T. Any sub domain of .7 is
denoted as Q. Each structure consists of voxels of size Ax x Ax x Ax.
For a complete list of symbols, it is referred to Table 7.

The structure generation starts with setting randomly distrib
uted nuclei with points {ay; in entire .# for the active material
phase AM. To every nucleus a random numerical particle size
Sami €N is assigned. The geometrical particle radius Rp can be
derived from S by R,  S-Ax. Afterwards, nuclei for the Carbon
Black phase at {c; are set. In contrast to AM nuclei, the nuclei at
{cp; are set in a sub domain of . which is
QEB {(p S5 V//| }(p ZAM,iu > SA]VLi Vl/\zf/((p) > O}, (A])
wherein 7" N3 is of the same size as.~ and contains the number
of neighboring voxels containing active material for every voxel ¢.
To every {cp; a random numerical particle size Scp; is assigned.
Then, the domain of the electron conducting phase .75 and the
domain of the ion conducting phase .#};q, which is filled with liquid
electrolyte, are set:

1 if 3Cami: [le Camil| <Sami Vi

, 2 if 3t |le Lcpil| <Sci Vi
p : il <Sesi Vi A2
#5(9) AAlamic [le Camil| <Sami Vi (A.2)
else
1 ifALp;: |le Ccpil| <Scsi Vi
Mg (@) AALami: |lo Camil| <Sam; Vi (A3)

else

In Egs. A.2 and A.3, the numbers 0, 1, 2, which are assigned to
#Nje{s, liq}, are identifiers for the represented phases i.e. active
material, carbon black and non conducting volume for .7,
respectively, and electrolyte and non conducting volume for .#;q,
respectively. Eq. (A.3) is altered compared to Ref. [34], as voids in
the liquid electrolyte are neglected here. Eqs. A.2 and A.3 describe
the final structure that is generated. To get a structure which fits the
set volume fractions, particles sizes Spy and Scg are adjusted iter
atively. For details it is referred to Ref. [34].

To evaluate the effective electric conductivity of .#s and the
ionic conductive of .#jq, the voxel based structures .7 € N3 are
transformed into a node based resistor network with the conduc
tivity matrix .~ €R2. Introducing a connector conductivity .7 i
between nodes i and j in dependence on size and bulk conductivity
of the corresponding voxel

Zij  0ij*DXyoxel, (A4)

The resistor network becomes



Z-¢ L

=2 (A.5)
wherein the vector ¢ contains the potential in each node and the
vector | the boundary currents. In this equation system, the first
equation at i 1 is a Dirichlet boundary condition of constant
current .

N
> Z1j(¢; #1)  Ibe (A.6)
i

The last equation at i
constant potential ¢y,.

(bbe  on) O

All intermediate equations, representing a individual connec
tion between two nodes in the resistor network, are based on
Ohm's law:

N is a Neumann boundary condition of

(A7)

N
S Zij(¢; ¢i) 0, Vi: 1<i<N. (A8)
j1

The first node and the last node are at opposite surfaces of the
porous electrode structure, which allows to calculate the potential
drop in the structure. For details and illustration see Ref. [34]. For
the given boundary conditions, the current I, leaving the structure
in node 1 and potential ¢y, in the last node, the potential in every
node ¢; can be determined by solving Eq. (A.5). From the macro
scopic potential drop between the first and the last node, the
effective conductivity ¢ can be determined

, ol

A9
NP1 (A.9)

wherein [ being the structure thickness.

The volume specific active surface area as between active ma
terial and electrolyte is determined by counting electrolyte to AM
interface areas of size Ax x Ax in an structure of size n; x np x ns:

1 n ny ns Y lf A -l
a T igk “ 1iq,ij,k .
S nynpn3Ax 121: Jz]: ;( 0 else

(A.10)
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