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A model-based uncertainty quantification (UQ) approach is applied to the
manufacturing process of lithium-ion batteries (LIB). Cell-to-cell deviations and
the influence of sub-cell level variations in the material and electrode properties of
the cell performance are investigated experimentally and via modeling. The
electrochemical battery model of the Doyle–Newman type is extended to
cover the effect of sub-cell deviation of product properties of the LIB. The applied
model is parameterized and validated using a stacked pouch cell containing
Li(Ni1/3Co1/3Mn1/3)O2 (NMC) and graphite (LixC6). It is integrated into a sam-
pling-based UQ framework. A nested point estimate method (PEM) is applied to a
large number of independent normal distributed parameters. The simulations
follow two consecutive nonideal manufacturing process steps: coating and
calendering. The nested PEM provides a global sensitivity analysis that shows a
change in sensitivity of the investigated parameters depending on the applied
C-rate. Furthermore, the sub-cell level deviation of parameters in heterogeneous
electrodes provokes a nonuniform current distribution in the cell. This alters the
variance of the discharge capacity distribution. Therefore, sub-cell deviation has
to be considered to quantify process uncertainties. The applied method is feasible
and highly efficient for this purpose.

1. Introduction

The manufacturing process of lithium ion batteries (LIBs) contains
many process parameters. Their influence on the product perfor
mance is often nonlinear and not well understood, especially in
quantitative terms. However, to achieve a product that exhibits
good performance and meets quality goals such as high energy
density and low costs, the manufacturing process has to be opti
mized and uncertainties of process and product parameters have
to be dealt with.[1] Knowledge about process uncertainties and their
influence on the product performance can enable a robust optimi
zation of cell design and balancing. Two processes have a signifi
cant impact on the product: first, the coating process of the slurry of
active material, carbon black (CB), and binder on the metallic

substrate, and second, the subsequent com
pression of the coated particle layer, called
calendering. Both processes have a signifi
cant influence on the electrode properties,
such as electrolyte phase volume fraction,
electrode thickness, and effective conductiv
ity. The influence of calendering is investi
gated experimentally in refs. [2 7] and by
simulation in refs. [2,3,8]. In addition, ther
modynamic properties of the active material
will deviate due to processes before the
actual manufacturing process; for example,
the specific capacity of graphite is dependent
on the degree of disorder, which is caused by
the temperature in the prior processes.[9]

Due to the crucial need for an advanced
process, the application of uncertainty
quantification (UQ) methods to the man
ufacturing process of LIBs has gained inter
est.[10–13] In addition to the common
modeling approaches as reviewed in ref.
[14], UQ provides quantitative information
about the interaction between different
parameters and enables the adaption of

production quality measures to the specific produced battery.
As a model based approach, UQ can partially substitute the fre
quently used time and cost intensive experimental approaches.

In the context of LIBs, there are different approaches of UQ or
uncertainty propagation (UP). They are classified into sample
based, or direct, methods and indirect methods that adapt
the system. The sample based methods include, for example,
Monte Carlo (MC) simulations wherein the system is evaluated
with random parameter sets. For instance, Kenney et al. quanti
fied the influence of process variations related to layer thickness,
electrode density, and the amount of active material by evaluating
a serial set of single particle models (SPMs) with randomly cho
sen parameter sets in each model.[12] Indirect methods include
polynomial chaos expansion (PCE), see ref. [15], wherein varia
tions in the particle size were addressed, and methods of control
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model’s computational cost is significantly lower than those of
the real 3Dmodels. For classification of models and their compu
tational cost, it is referred to the review of Ramadesigan et al.[30]

As the proposed model considers sub cell level deviations, it is of
special interest for stacked pouch cells as described in Section 3.

By applying this model to an exemplary LIB, global SA and UQ
are presented.

2. Mathematical Model

In this section, the methodology applied in this work is intro
duced. A given LIB, containing state of the art active material,
is simulated by a physics based model, and the model is evalu
ated using a sample based UQ approach.

2.1. Uncertainty Quantification Using Monte Carlo Simulations

Monte Carlo (MC) simulations are commonly used for UQ. MC
simulations generate samples from the probability distribution
via random inputs using different sample techniques and esti
mate the statistical information of the model output. Consider
a model FðX 1,X2, : : : ,XNÞ ∈ RN . From the parameter space
for ðX1,X2, : : : ,XNÞ, a finite number m of sample points
ξi ¼ ðX1,i,X2,i, : : : ,XN,iÞ, ∀i ∈ f1, : : : ,mg are drawn randomly.
Themodel is then evaluated, leading tom simulated observations
of the model output: Zi ¼ FðξiÞ, ∀i ∈ f1, : : : ,mg, which can
be evaluated in terms of mean value and variance if a sufficient
number of samples are drawn. The method is straightforward for
implementation and can provide accurate estimation. In the con
text of batteries, MC was applied, for example, by Mendoza
et al.[31] and López et al.[32] However, the computational cost
is often, as in this case, unaffordable because it requires a large
number of model evaluations to approximate the real statistical
information of the model output. Alternatively, the point esti
mate method (PEM) can be used, as it requires fewer model eval
uations compared with MC simulations.

In this work, MC simulations are used for cases where PEM
could lead to misleading results and for comparison and valida
tion of PEM. Therefore, random sample points of deviating elec
trode properties are generated and C rate tests are simulated. The
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Figure 1. Scale of deviations from particle to lot level.

theory as used in ref. [16], wherein an analytic model of the bat 
tery’s impedance response was applied, considering variations in 
porosity, particle size, and layer thickness. The former is limited 
to a low number of uncertain parameters and the latter provides 
only upper and lower bounds of the uncertain output.[15]

In addition to the usage of UQ to investigate the UP between 
product parameters and cell performance, UQ also can provide a 
sensitivity analysis (SA) for parameter estimation and parameter 
ization of physics based models.[17,18] Especially for parameteri 
zation, the number of uncertain parameters is large compared 
with UP investigations. For instance, Schmidt et al. considered 
33 uncertain parameters in a single model. They applied SA 
based on the Fisher information matrix.[19] More recently, Lin 
et al. applied PCE to a 3D multiphysics battery model to conduct 
a global SA.[20]

In the literature, different distribution shapes and widths are 
observed. For example, Schuster et al. and Dubarry et al. showed 
deviations of quantities such as weight, capacity, and resistance
variations from �0.1% to �5.7% 

[21,22]
considering partially normal

and partially Weibull distributions, whereas Vazquez
Arenas et al. assumed a normal distribution with variations of
�10%,[17] and Kenney et al. 

[12]
investigated electrodes assuming var

iances between 1% and 5%. Recently, Röder et al. investigated
the impact of particle size distribution and its shape considering 
Weibull distribution.[23]

As mentioned above, common uncertain parameters are layer 
thickness, porosity, and particle size. It is noteworthy that there 
are significant differences in distributions of macroscopic quanti 
ties such as layer thickness and microscopic quantities such as 
particle size. In general, four different kinds of parameter distribu 
tions have to be considered. The scale of these parameter deviations  
is illustrated in Figure 1. First, parameters may be  distributed on
particle level due to the processing before the electrode and cell 
production, for example, particle size.[23–25] In addition, its distri 
bution corresponds to the used active material. Second, there are 
local changes in macroscopic quantities such as porosity due to 
small scale process deviations. These deviations occur at the scale 
of a single electrode sheet or below, termed sub cell, and they 
are influenced by process steps such as mixing,[26–28] calender 
ing,[2–7,28] and drying.[29] Third, there are cell to cell deviations of 
macroscopic quantities such as layer thickness.[11–13,21,22] These 
deviations are caused by process deviations, which occur at large 
scales compared  with  the size of the electrode of a whole cell.
Fourth, there are lot to lot or batch deviations occurring between 
lots or batches produced, for example, on different days.[16,21] 
However, these deviations are neglected in this work. To the best 
of the author’s knowledge, the combined effect of the first three 
kinds of deviations have only been the subject of simulation studies 
implicitly, in so far as real 3D structures were considered, but not 
as an effect of the production process. These models are computa 
tionally time consuming and prone to numerical issues. In addi 
tion, the effects of single parameter distributions are indistinct, 
and thus, an unambiguous assignment is not possible.

In this article, a mathematical model is introduced that is fea 
sible to simulate process deviations on a sub cell level (second 
kind). Parameter distributions of the first kind could easily be 
included in the model, but they are beyond the scope of this arti 
cle, which focuses on a novel approach to the model distributions 
of electrode properties on a sub cell level. The introduced



of F is beneficial because a nondifferential function could cause
physically meaningless results.[35]

Next, a UQ framework is used, introduced as PEM5 in ref. [36]
and references therein. This method requires 2N2þ 1 sampling
points, which is significantly less than the number of sample
points an MC approach would require normally. For instance,
assuming three uncertain parameters (X1, X2, X3), which are
normally distributed with Xi ¼ 0,∀i ∈ f1, : : : , 3g, there are
19 sample points (ξi, ∀i ∈ f1, : : : , 19g). The three generator func
tions GF[⋅] of the sample points are as follows

GF½0� ¼ fð0, 0, 0ÞTg, (2)

GF½�ν� ¼ fðν, 0, 0ÞT, ð ν, 0, 0ÞT, ð0, ν, 0ÞT,
ð0, ν, 0ÞT, ð0, 0, νÞT, ð0, 0, νÞTg

(3)

and

large number of sample points enables the discussion of mean 
value and shape of probability density function (PDF) of the 
model output. This approach was applied in ref. [12].

2.2. Applied Uncertainty Quantification Approach

PEM was introduced by Tyler[33] in 1953 and Rosenblueth[34]

in 1975 and is frequently used, for example, by Lin and Li,[35]

to reconstruct the PDF of an output variable Z of a nonlinear 
function

Z ¼ FðX1, X2, : : : , XN Þ ∈ RN (1)

based on a finite number of sampling points of the N uncertain
variables ðX1, X2, : : : , XN Þ. As illustrated in Figure 2, different
uncertain input variables with different distribution widths
can be considered. While F can be a black box, differentiability

Figure 2. Flow chart of uncertainties for a generic function Z FðX1, X2, X3Þ ∈ R3.



ð ν, ν, 0ÞT, ðν, 0, νÞT, ð ν, 0, νÞT,
ðν, 0, νÞT, ð ν, 0, νÞT, ð0, ν, νÞT,
ð0, ν, νÞT, ð0, ν, νÞT, ð0, ν, νÞTg,

(4)

where ν is a scalar parameter.
In general, the first sample point, ξ1, would be ðX1,X2,X3ÞT

and the second sample point, ξ2, would be ðX1 þ ν,X2,X3ÞT. But
as Xi ¼ 0,∀i, all Xi are spared in Equation (2) (4). Figure 3 illus
trates the positions of these sample points for a 3D model. By
introducing weights wj, ∀j ∈ f0, : : : 2g, this leads, for the 3D
case, to the following expansionZ
Ω
FðξÞpdf ξdξ � w0�FðGF½0�Þþw1�

X
FðGF½�ν�Þþw2

�
X

FðGF½�ν, � ν�Þ
(5)

From this expansion, the mean value Z and variance σ of the
result Z are derived as follows

Z � w0 � Z0 þ w1

X2n
i 1

Zi (6a)

σ2 � w0ðZ0 ZÞ ⋅ ðZ0 ZÞT þ w1

X2n
i 1

ðZi ZÞ

� ðZi ZÞT
(6b)

Furthermore, determination of the moments of Z and for a
normally distributed Z of the PDF of Z would be possible.
For further details, see ref. [36] and references therein. Using
these variances, Sobol indices are determined for the global
SA.[37] Neglecting higher order interactions, these indices can
be defined as follows

Si ¼
σ i
σ

(7a)

Si,j ¼
σ i,j
σ

(7b)

STi
¼ Si þ

XN
j 1

Si,j (7c)

where σ is the variance of Z and σi and σi,j are the partial variances,
respectively. In general, σ is a measure of the width of the distri
bution of the output Z of the nonlinear equation F defined in
Equation (1), as it is a measure of the sensitivity of output Z
to the input variables. The partial variance σi, related to the vari
able Xi, is a measure of sensitivity of Z to Xi. The second order
partial variance σi,j is a measure to which extent a change in Xi can
eliminate the impact of a change in Xj on the output Z. Thus, the
latter considers the interaction of the uncertain parameters Xi

and Xj.
[37] For a general definition of the variance and the partial

variances, ref. [37] is referred (Chapter 15.1.1, pp. 323 326).
Commonly, an SA is conducted for model reduction, parameter
grouping, or parameter estimation purposes.[17,19,38] In this
work, sensitivity is used to assess whether the deviations of prod
uct properties have a significant influence on the product
performance.

In this article, the nonlinear function F(⋅) is a battery model as
introduced in the following sections; the uncertain variables Xi

are the normally distributed cell properties, and the output vari
able Z is the cell’s discharge voltage at a specified discharge rate
and time, that is, state of charge (SOC). For comparison with
common experimental characteristic values, the cell voltage at
50% SOC and the discharge capacity at a voltage of 2.9 V are
extracted from the discharge curves.

2.3. Battery Model

In this section, the two applied mathematical models are
described: 1) a homogenized standard P2D model and 2) the
extended model that also considers distributed electrode proper
ties on a sub cell level. Both are based on the pseudo 2D (P2D)
electrochemical model introduced by Doyle et al. and further
developed, among others, by Legrand et al.[39–41] Discretization
is performed in x direction from anode to cathode and in r
direction from the particle center to the particle surface. In
addition, relevant equations and assumptions of the P2D are
briefly introduced. For further details, refs. [39 41] are referred.

2.3.1. Governing Equations of the P2D Model

A dual intercalation cell is implemented, considering the follow
ing reaction at both electrodes[39]

Liþ þ e� þ Θs ⇋ Li Θs (8)

where Θs is a free space lattice in the intercalation material
(solid) and Li Θs is an intercalated lithium atom. The reaction
kinetics are described using a Butler Volmer type expression,
see Equation (14) in Table 1. The reaction fluxes jLi(x) occurring
at the particle surface provide the boundary conditions for the
mass transport processes in solid and electrolyte, described in
Equation (9) and (11), respectively. Conservation of charge
and mass is ensured by Equation (9) (12). At the particle sur
faces of both electrodes, a double layer is considered,[41] see
Equation (13). This double layer is relevant for the short time

X2+
X3-

X1-

X3

X2

X3+

X1
X2-X1+

Figure 3. Position of the 2N2þ 1 sample points ξi for a generic function
Z FðX1, X2, X3Þ ∈ R3.

GF½�ν, � ν� ¼ fðν, ν, 0ÞT, ð ν, ν, 0ÞT, ðν, ν, 0ÞT,



response of the battery. For the investigated cells with local devi
ations, this is important, as even at constant current discharge,
the local current density can change significantly at short
time scales. In general, the model has a set of time dependent
state variables, such as solid and liquid phase concentrations
(cs and ce, respectively), solid and liquid phase potentials
(ϕs and ϕe, respectively), and the surface overpotential (η) for both
electrodes. The governing equations of the model and their
boundary conditions are summarized in Table 1. From the states
of the solid phase potential, the cell voltage can be derived as
follows

Ucell ¼ ϕsðLÞ ϕsð0Þ (22)

where L is the combined thickness of anode, separator, and
cathode (δel,a þ δel,s þ δel,c). The effective liquid phase diffusion
coefficient (De,eff) and the effective solid phase conductivity
(σs,eff) are determined by applying Bruggeman coefficients:

σs,eff ¼ σs � ε
β
s (23)

All parameters, such as porosity, particle size, and shape, are
assumed to be homogeneous within each electrode. Assuming a
cell whose area (A), in y and z directions, is huge compared with
the anode’s and cathode’s thickness (δel,a and δel,c) in x direction,
and assuming homogeneous parameters, there is no significant
change in the mass transport in the second or third dimen
sion,[40] that is

∂ce
∂y

¼ ∂ce
∂z

¼ 0 (24)

To reduce the number of independent uncertain parameters,
the Nernst Einstein equation is considered as follows

σe ¼
F2

R
� cLi � ðDþ þ D�Þ (25)

which describes the relationship between liquid phase conduc
tivity (σe) and cation’s and anion’s liquid phase diffusion coeffi
cient (Dþ and D�), respectively. This is a simplification
compared with the concentrated solution theory of the classical
Doyle NewmanModel.[40] However, it is of minor significance at
the applied concentrations.

2.3.2. Governing Equations of the Area Distributed Model

In contrast to the homogenized standard model, deviations
of electrode properties along the cell area Acell, i.e., in y and
z directions, are addressed in the extended model, whereas a
homogeneous structure is assumed along x direction similar
to that of the standard model. In addition to the investigated pro
cesses that cause mainly deviations in y and z directions, there
are processes such as drying, which cause nonhomogeneities in
the x direction.[42,43] However, the consideration of deviations in
3D would require a full 3Dmodel. This would not be beneficial to
the sample based PEM, due to its high computational cost.
Hence, in this work, the focus is set on the deviations of electrode
properties along the cell area.

Therefore, Acell is divided into a finite number of sub cells Ai

of slightly different properties, for example, solid volume fraction
(εs,i) and electrode thickness (δel,i). For the stacked pouch in the
experiments a sub cell is equivalent to one compartment as illus
trated in Figure 4. A complete list of all uncertain parameters is
given in Table 2. Based on the assumptions in the standard
model in Equation (24), and neglecting the resistance of the
current collector, as it is small compared with the resistance of
the electrodes, ðσCu ¼ 58� 106 Sm�1 ≫ σC6

¼ 0.11 Sm�1 ≫
σNMC ¼ 68� 10�3 Sm�1Þ (see refs. [44 46]), the liquid phase
diffusion in the sub cells can be calculated separately in one
single 1D scheme per sub cell. This assumption leads to a

Table 1. Extract of the governing equations of the P2D standard model.

Equations Boundary conditions

∂cs
∂t

¼ 1
r2

∂

∂r

�
Dsr2

∂cs
∂r

�
(9)

jtot ¼ ∂

∂x

�
σs,eff

∂ϕs

∂x

�
(10)

ε
∂ce
∂t

¼ ∂

∂x

�
De,eff

∂ce
∂x

�
þ ð1 tpÞ

jLiðxÞ
F

(11)

jtot ¼ ∂

∂x

�
σe,eff

∂ϕe

∂x

�
2
RT
F

ðtp 1Þσe,eff
∂ ln ce
∂x

(12)

jtot ¼ jLi þ jDL (13)

jLi ¼ as i0

�
exp
�
α
ηF
RT

�
exp
�
ðα 1Þ ηF

RT

��
(14)

i0 ¼ kFcαe ðcmax csÞαc1 α
s (15)

∂cs
∂r

¼ jLi

z� F� as � Ds
, r ¼ Rp (16)

∂cs
∂r

¼ 0, r ¼ 0 (17)

∂ce
∂x

¼ 0, x ¼ f0, Lg (18)

∂ϕs

∂x
¼ Icell

Acell � σs,eff
, x ¼ f0, Lg (19)

∂ϕs

∂x
¼ 0, x ¼ fδel,a , L δel,cg (20)

∂ϕs

∂x
¼ 0, x ¼ f0, Lg (21)

For a complete set of equations see refs. [39,41]. L denotes the full cell thickness and, δel,a and δel,c denote the layer thickness of anode and cathode, respectively.



or an SPM in terms of physical product parameters and validity
for a wide C rate range.

In addition to the states of the N in parallelly coupled P2D
models, the current of each area (Ii) is an additional state variable.
The sub cell currents have to satisfy two conditions: conservation
of charge and equality of voltage in all sub cells

0 ¼ Itotal
XN
k 1

Ik (26)

0 ¼ Ucell Uk , k ¼ 1, : : : ,N (27)

Using the equation introduced above, it is possible to discre
tize a cell in sub cells with different electrode properties that can
be varied independently for both electrodes. Data of both models
are analyzed using Matlab 2016a and run on a CentOS Linux
desktop PC @3.40 GHz and 32 GB of RAM.

2.4. Cell Parameters of the 9 A h Pouch Cell

The method introduced above is applied to a LIB containing
graphite (LixC6) and LiðNi1=3Co1=3Mn1=3ÞO2 (NCM) as anode
and cathode, respectively. Model parameters are obtained from
ref. [41] own measurements or are determined via parametriza
tion of the model, and they are presented in Table 2.

Layer thickness and area specific weight are measured as dis
cussed in Section 3, the specific capacity is derived from the open
cell potentials (OCP) measurement, and the mean porosity is
derived from del, fel, the composition of the electrode, and the
densities of its components. The calculated porosity is slightly
higher than those measured by applying a mercury intrusion
technique[27], but it is believed to be more accurate.

For the estimation of the homogeneous parameters, as shown
in Table 2, a least square curve fitting technique is used

X�:FðX�Þ ¼ min
X∈RN

jFðXÞj (28a)

Table 2. Cell parameters used in the applied model.

Parameter Symbol Unit Anode Separator Cathode

Layer thicknessm,u δel μm 55.25 20.0 60.0

Porositym,u εe 0.35 0.50 0.40

Diffusion coefficienta De m2s 1 7.15� 10 9 7.15� 10 9 7.15� 10 9

Diffusion coefficienta Ds m2s 1 9.35� 10 15 1.10� 10 12

Particle sizem,u Rp μm 11.5 5.5

Specific capacitym,u Δcmax molL 1 24.9 25.4

Electronic conductivitya,u σs mSm 1 20.4 9.9

Exchange current densitya,u i0 Am 2 1.47 198

Transference numberl tp 0.24 0.24 0.24

Charge transfer coefficientl α 0.5 0.5

Double layer capacityl CDL Fm 2 0.2 0.2

Given as mean value, if uncertain. The separator is assumed to have no uncertainties. m, measured; u, uncertain parameter; a, adjusted; l, taken from ref. [41].

Figure 4. Model domains of the extended model.

parallel arrangement of the sub cells with independent diffusion 
processes, but with a uniform voltage and coupled currents.

There are a few models of battery systems introduced in the 
literature considering cell to cell deviations. For instance, 
Dubarry et al. simulated a battery pack consisting of equivalent 
circuit models (ECMs).[47,48] Kenney et al. applied a serial set of 
SPMs to simulate cells stacked in sequence.[12] However, the 
scope of these models was to predict aging or to control pro 
cesses in battery management systems, and it is far from the 
scope of this work, which is the quantification of deviations 
of electrode properties along the cell area and the assessment 
of the feasibility of the applied PEM for this purpose. In addi 
tion, the P2D model applied in this work is superior to an ECM



FðXÞ ¼
Xm
j

Xn
k 1

ðUsimðCk,X , tÞ UexpðCk, tÞÞ2=U2
max,j

þ
Xn
k 1

ðCsimðUk,XÞ CexpðUkÞÞ2=C2
max,j

! (28b)

Here, the simulated capacity (Csim) and cell voltage (Usim) are
compared with the experimentally measured capacity (Cexp) and
cell voltage (Uexp) at m C rates at n equidistant points (Ck and Uk,
respectively). Both differences are normalized to the maximum
capacity and respective voltage of simulation and experiment at
the corresponding C rate. The consideration of deviations in the
directions of capacity and voltage becomes necessary in areas
with a very low or very high slope (dU/dC). For instance, at
the end of discharge, where dU/dC is steep, a marginal shift
of the onset of the diffusion limitation would lead to a significant
deviation regarding the cell voltage. In contrast, Equation (28b)
considers the impact of the deviations in C and U directions on
the numerical fit and enables a solution X* that provides a good
fit for the whole capacity range. The resulting values are summa
rized in Table 2.

In this work, a parameter is uncertain, if it is affected by the
deviations of the investigated process steps: coating and calender
ing. This includes layer thickness and porosity, but excludes all
intrinsic parameters such as the solid phase diffusion coefficient.
In contrast, the solid phase conductivity is a macroscopic effec
tive parameter that is affected, for example, by the CB binder
matrix, which in turn is affected by coating and calendering.
Eventually, this classification leads to similar uncertain parame
ters as commonly shown in the literature, see Section 1. If not
noted elsewise, all uncertain parameters Xi are assumed to be
independent and normally distributed with Xi ¼ Xi � 5%. For
deviations observed in the literature, see Section 1. For deviations
observed at the investigated 9 A h cell, see Section 4.1.

The OCP depend on the normalized concentration
(c̃ ¼ c=cmax) of the exemplary cell as described by the following
equation

OCPaðc̃Þ ¼ k1 þ k2c̃ þ k3c̃0.5 þ k4c̃1.5 þ k5 expðk6ðk7 c̃ÞÞ
þ k8 expðk9ðk10 c̃ÞÞ þ k11 expðk12ðk13 c̃ÞÞ
þ k14ðk15 þ c̃Þ�1

(29)

for the anode and by

OCPCðc̃Þ ¼ k1 c̃6 þ k2c̃5 þ k3c̃4 þ k4c̃3 þ k5c̃2 þ k6 c̃

þ k7 expðk8c̃k9Þ þ k10
(30)

for the cathode, respectively. Equations, similar to those of Smith
and Wang,[49] are used and the coefficients are determined by a
least square fit on the experimental data from the cells as
described in Section 3. The coefficients are listed in Table 3.

3. Experimental Section

3.1. Electrode and Cell Preparation

For the electrode production, commercially available NCM, with
a theoretical capacity of 165mAh g�1, and surface modified

graphite (SMG), with a theoretical capacity of 360mAh g�1, were
used on the cathode and anode sides, respectively. The NCM has
an average particle size of �11 μm and a surface area Brunauer
Emmett Teller (BET) of �0.25m2 g�1. The SMG has an average
particle size of �23 μm and a surface area (BET) of �2.1 m2 g�1.
In addition, CB with a surface area (BET) of�62m2 g�1, conduc
tive graphite (G) with a surface area (BET) of �16m2 g�1, and
polyvinylidene fluoride (PVDF) were added to both electrodes
as conducting additives and binder, respectively. The composi
tions of the solids in the suspensions are listed in Table 4.

All solids were dry mixed in a planetary mixer (PMH 10,
NETZSCH Corp.) for 5min to obtain a homogeneous mixture.
N Methyl 2 pyrrolidone (NMP) as a solvent was added after the
dry mixing step to obtain a suspension of 55 and 45 wt% for
anode’s and cathode’s slurry, respectively. The suspensions were
mixed for 60min and degassed under vacuum for another
30min using the planetary mixer. In the next step, aluminum
or copper foil was coated on one side using a pilot scale coater
(LabCo, Kroenert Corp.) with a dry coating weight of 16.88� 0.12
and 8.40� 0.06mg cm�2 on cathode and anode sides,
respectively.

Dry coating weights were obtained by ultrasonic measure
ments (USM 200 Array, MeSys Corp.) after the drying process
of the continuous coater. This device uses an oscillating sensor
with a measuring frequency of 100Hz continuously crossing the
dry electrodes. In the calendering step, the electrodes were com
pressed to the densities of 1.5 g cm�3 at the anode and 2.8 g cm�3

Table 3. Coefficients of the empirical half cell potential functions.

Coefficient Anode Cathode

k1 8.0391 V 3.1058 V

k2 5.0822 V 9.5098 V

k3 12.561 V 10.372 V

k4 0.4484 V 5.0932 V

k5 0.0962 V 1.9426 V

k6 15.001 1.4960 V

k7 0.1684 5.9019 V

k8 0.4599 V 1.3812� 10 5

k9 2.3166 415.09

k10 0.5856 1.5383 V

k11 0.9575 V –

k12 2.4033 –

k13 0.5124 –

k14 0.0114 V –

k15 0.03173 –

Table 4. Recipes for cathode and anode suspension. Listed are the
amounts of solid contents in wt%.

PVDF CB G NMC, respectively SMG

Anode 5 2 2 91

Cathode 4 4 2 90



The measured open cell voltage (OCV) at 50% SOC is
3.6956� 0.0055 V. The deviations are quite small, which is
reasonable as the OCV is only affected by the thermodynamic

properties of the active material. The experimental ohmic cell
resistance is 12.5� 4.0 mΩ. The standard deviation of this
parameter is 32%, which is high compared with the other inves
tigated parameters. This could be due to a high sensitivity of the
contacting of the stacked electrode sheets or due to the contacting
of the particle layer to the current collector.

The deviations of the layer thickness and discharge capacity of
the evaluated cells are in the range of deviations in the literature
discussed in Section 2.4. In addition, it should be noted that the
standard deviation of the discharge capacity is significantly
higher than that of the layer thickness of anode and cathode,
respectively.

In Figure 6a, the discharge curves of EL Cells (solid lines) at
0.5 3 C and simulated C rate tests (dashed lines) are shown. It
can be seen that there is a very good agreement between simu
lations and experimental data for the investigated range from 0.2
to 3 C.

In Figure 6b, the UP is compared between simulation (solid
lines) and experiment (grey area and histograms, respectively).
For the MC simulations, deviations as measured and listed at

Figure 5. Product properties of evaluated pouch cells from ref. [50]:
a) Normalized layer thickness of anode and cathode (Anode: 273 sample
points; Cathode: 183 sample points). b) Capacity at different C rates of
55 pouch cells.

at the cathode. Electrode density was calculated before and after 
calendering of the electrode using the coating weight and elec 
trode thickness with a tactile measurement for every 5 m of the 
electrode. Double sided coated electrodes were cut out in sheets 
of 11.0 cm x 15.0 cm for the anode and 10.5 cm x 14.5 cm for the 
cathode, using a laser beam. In the next step, these electrodes 
were assembled to pouch full cells with 15 layers of cathode 
separator anode configuration according to a cell capacity of about 
9 Ah and filled with electrolyte with a composition of ethylen car 
bonate (EC)/dimethyl carbonate (DMC)/ethyl methyl carbonate
(EMC) (1:1:1) þ 1 m LiPF6 þ 2% vinylene carbonate (VC) þ 3%
cyclohexyl benzene (CHB). The cells were produced in five
batches. A detail description of the manufacturing process 
and a comprehensive experimental investigation of the pouch 
cell batch production are given in ref. [50].

For OCP measurements and model parametrization, the elec 
trodes with a diameter of 18 mm were manually punched out of 
the large sheets and assembled in a three electrode setup with a 
lithium metal ring as reference (PAT Cell, EL CELL GmbH).

3.2. Electrochemical Cell Characterization

Formation of pouch cells and EL Cells was conducted at 0.1 C 
for the two consecutive cycles. C rate tests were conducted for 
EL Cells at 0.2, 0.5, 1, 2, and 3 C and for pouch cells at 0.1, 1, 
and 2 C. All experiments were conducted in temperature cham 
bers at 25 �C. For OCP measurement, an EL cell was discharged 
incrementally from 4.2 to 2.9 V in steps of 0.05 V and relaxation 
was maintained till dU=dt ≤ 0.2 mV h�1. The cell resistance of 
the pouch cells was determined by a pulsed discharge of 1 C 
for 1 s at 50% SOC. In ref. [51], it is shown that the performance 
of the EL cell is in good accordance with the performance of the 
stacked pouch cell. Hence, the model parameterized using the 
three electrode setup in this work should also be able to simulate 
the stacked pouch cell.

4. Results and Discussion

The outline of this section is as follows. Deviations of experimental 
cells and product parameters are summarized. Next, local SA and 
global SA are carried out. The global SA applying the nested PEM 
is assessed in comparison with the first order SA, and the influ 
ence of sub cell level deviations is assessed, where appropriate.

4.1. Deviation of Product Parameters

As shown in Figure 5a, the layer thickness of the evaluated cells 
has a normal distribution with the standard deviations of 1.2%
and 0.88% for anode and cathode, respectively.[50] The resulting 
cell capacity of the pouch cells at different C rates is shown in 
Figure 5b. With increasing C rate, the standard deviations are 
3.4%, 4.3%, and 4.6%. However, the number of samples is 
too small to evaluate the shape of the distribution, as the 
lot to lot deviation is large compared with the cell to cell 
deviation. This causes a significant non normal distribution.



the beginning of this section are�1.2% and�0.88% for the layer
thickness of anode and cathode, respectively. As the area specific
weight is held constant during the manufacturing process, it is
assumed to be constant, which leads to a deviation of porosity
that is linearly correlated to the layer thickness. To model the
uncertainty of the cell resistance, the reciprocal electrolyte con
ductivity and the reciprocal electrolyte diffusion coefficient are
varied by �32.0%. All other parameters are set constant to inves
tigate whether del,i, εi, and Rcell, as easily measurable quantities,
could provide sufficient information to understand and quantify
the process deviations. The discharge capacity shows a standard
deviation of 0.45% at 2.9 V and 0.5% at 0.1 and 2 C. While the
increase in the deviation with increasing C rate is significant in
the simulations (þ11.1%) and in the experiments (þ35.3%), the
width of the simulated distribution with a deviation of�0.45% to

�0.5% is significantly lower than that in the experiments with a
deviation of �3.4% to �4.6%. The displacement between histo
gram and grey area is due to the different cell formats. The
histogram is based on stacked pouch cells, while the grey area
is the projection of the deviation of the pouch cells on the smaller
laboratory cells (PAT cells), which allows comparison with the
simulation data, as the model is parameterized and validated
with labor cells that provide a three electrode setup. The differ
ence between large cells and laboratory cells and the difference
between predicted and measured deviations suggest that not all
relevant uncertain parameters in the cell production have been
identified. Furthermore, deviations in the cell assembly and the
electrolyte injection are not quantified yet as imaging the influ
ences of, for example, electrode stacking would require a full
order electrochemical 3D model. Furthermore, it is likely that
there are process deviations that affect parameters, which are
generally not covered by the classical Doyle Newman model.
Furthermore, it is possible that the sensitivity of the mathemati
cal battery model to its parameters does not fit the sensitivity of
the real battery to its parameters; nevertheless, the model is fea
sible to describe the discharge performance of the reference cell
accurately.

Based on these findings, in the further simulations, additional
uncertain parameters are considered, which are assumed to be
also affected by process uncertainties in the production.

4.2. Parameter SA

Next, a global first order SA is carried out to investigate the
influence of the different product parameters on the cell capacity.
This allows a quantification of the effect that an input variable
such as the layer thickness has on an output variable such as
the discharge capacity. However, this approach is not feasible
to quantify any interactions between parameters. To evaluate
the influence of all uncertain input parameters, MC simulations
are conducted. Using the PEM, a global SA is conducted to show
the interactions between uncertain parameters. This method
could be feasible to substitute the combination of first order
SA and MC simulations for UP. In that case, using the PEM
could reduce the computational cost for UQ significantly. For
simplification, an input parameter is denoted as sensitive if there
is an output parameter that is sensitive to this input parameter.

4.2.1. First Order SA

A global first order SA is carried out by varying each parameter
consecutively, whereas all other parameters are kept constant at
the values presented in Table 2. The varied parameters are layer
thickness (δel), porosity (εe), particle size (Rp), and specific capac
ity (Δcmax) of anode and cathode. Figure 7a c shows the resulting
discharge capacities at 0.2, 1, and 3 C, respectively. Parameter
variations are �10% to investigate a range slightly larger than
the expected range discussed in Section 2.4. In general, the slope
of these graphs is a measure of sensitivity. In this figure, the
graphs of variations of the effective electrical conductivity are
not shown, as this parameter is insensitive for all C rates for
the investigated cell.

Figure 6. Validation of the model considering EL Cell measurements and
the standard deviation of the large format pouch cells. a) Experimental
(solid lines) and simulated (dashed lines) C rate tests of an EL Cell.
b) Extract from simulated C rate test of an EL Cell. The grey area is the
confidence interval calculated from Figure 5b applied to the simula
tion data of the model, parameterized to EL Cells. MC sampling with
5000 sample points. Histogram shows experimental discharge capacity
of pouch cells as shown in Figure 5b.



Sensitive parameters at 0.2 C are the porosity, specific capac
ity, and layer thickness (see Figure 7a). A change in those
parameters causes a linear decrease in the discharge capacity,
but there is no significant increase compared with the cell with
reference parameters. This is attributed to the good balancing
of the electrodes and to the fact that the cell performance is
solely limited by the electrode with lower theoretical capacity
(Ctheo,i)

Ctheo ¼ minðfCtheo,a, Ctheo,cgÞ (31a)

Ctheo ¼ Acell �minðfεs,a � δel,a � Δcmax ,a, εs,c

� δel,c � Δcmax ,cgÞ
(31b)

as kinetic effects have little influence at 0.2 C. As such, the par
ticle sizes Rp,i are also insensitive. The slopes of the graphs of
both electrodes are similar. The occurrence of the transition
between sensitivity and insensitivity of many parameters at
almost exactly zero parameter variation illustrates the precise
balancing of the cell for the operation at low cell currents.

As shown in Figure 7b, at 1 C, the performance becomes sen
sitive to the particle size of the anode, whereas the cathode’s layer
thickness and specific capacity have an effect only when they are
decreased to more than 5%. In this range, there is again a linear
effect on the discharge capacity. In contrast, the anode’s layer
thickness and specific capacity are sensitive till a threshold of
about þ5% after which they become insensitive. The sensitivity
of the cathode’s porosity is negligible at this C rate. As moderate
changes of cathode parameters cannot alter the cell performance,
the discharge capacity at 1 C is not limited by the capacity of the
cathode. The anode layer thickness (δel,a) and specific concentra
tion (Δcmax,a) of the anode show a similar sensitivity as δel,c and
Δcmax,c in their sensitive range, respectively. For the investigated
range of porosity and particle size of the anode, the system
behaves linearly. The sensitivity of the performance to the
anode’s particle size indicates a limitation of the cell by diffusion
processes in the active material of the anode. In summary,
kinetic effects become significant as indicated by the increasing
sensitivity to the particle size.

The first order sensitivities at 3 C are similar to those at 1 C.
The sensitivity to the particle size (Rp,a) increases while the cath
ode, in general, becomes less sensitive. A noteworthy feature is a
distinguished maximum at an anode layer thickness of about
105%. This indicates a limitation due to charge or mass transport
in the electrolyte phase along the cell area. The decrease in the
cathode’s sensitivity and the distinct maximum of the graph of
δel,a suggests higher sensitivities of the anode to high C rates
compared with the cathode. For both electrodes, some graphs
show that nonlinear behavior and transitions between linear
areas with different slopes become smoother than those at
0.2 C as shown in Figure 7a. For 3 C, this indicates an interaction
of different limitations that decrease the cell performance
simultaneously.

From Figure 7a c, four types of parameters are derived: 1) in
or minor sensitive parameters; 2) parameters sensitive in the
entire parameter range (linear and nonlinear); 3) parameters sen
sitive till a certain threshold; and 4) parameters sensitive from a
certain threshold. The classification of parameters could be used
for an advanced optimization or balancing process that considers
limitations at different C rates. In this work, in the following UQ,
it is considered that the kind of parameter sensitivity influences
the shape of the PDF of the output parameters of the investigated
system.

Regarding the design of batteries, the conducted global first
order SA shows a need for a model based balancing approach to
set up a battery cell that is well balanced at all applied C rates, as
the limitation changes with the C rate. This will also help to

Figure 7. First order SA: Discharge capacity versus variation of parameter.
a) 0.2 C, b) 1 C, and c) 3 C. The legend in Figure 7a is valid for all three
plots.



failure of the PEM is due to the nondifferentiability of the model
in this aspect. However, it shall be used to show sensitivities and
interactions independently of the given set of electrodes.
To enable this and to overcome the limitations of the PEM dis
cussed in Section 2.2, the PEM is applied on two different
cell setups: one with a 10% increased layer thickness of the anode
(δel,a ¼ 60.78 μm) and one with a 10% increased layer thickness
of the cathode (δel,c ¼ 66.0 μm). Due to this change in the layer
thickness, the cells are not in the point of the nonlinearity at
0.2 C, as shown in Figure 7a. Comparing the sensitivities of both
cells can also enable more general conclusions which go beyond
the influence of the simulated cell geometry.

C rate tests are simulated for the two cells at 0.2, 1, and 3 C.
The evaluated output parameters are the discharge capacity and
the cell voltage after discharging 50% of theoretical capacity at the
corresponding C rate.

Results of these simulations are summarized in Figure 9,
where Sobol Indices and Total Solbol Indices are shown for
the ten uncertain product parameters for the influence on dis
charge capacity and cell voltage at 50% SOC and at 0.2 and
3 C. The number of uncertain parameters is reduced by one,
as one electrode is over designed and kept constant to overcome
the limitations of PEM regarding the differentiability of the sys
tem’s output. Each peak indicates a sensitive parameter at the
given performance criterion.

Obviously, the cell performance is sensitive to the cell area
(Acell) and layer thickness of the nonadjusted electrode (δel,i),
whereas it is insensitive to electrical conductivity of the solid
phase (σs) for both electrodes. Interactions between parameters
are marginal, as there is no significant difference between Sobol
Indices and the corresponding Total Sobol Indices.

Comparison of Figure 9b,d shows that with increasing C rate,
the anode particle size (Rp,a) becomes sensitive, which is in good
accordance with the first order SA. In addition, Figure 9b,d
shows that the cell capacity is sensitive to the anode, character
ized by εe,a and del,a, as the cathode’s layer thickness was
increased, whereas the cell voltage at 50% SOC is sensitive to
the parameters of the cathode. This is related to the higher slope
(dU/dC) of the OCP curve of the cathode compared with the
anode. Consequently, a change in the concentration in cathode
leads to a significant change in the voltage, and the limitation at
the end of discharge is related to the anode.

From Figure 9a,c, it is clear that the sensitivities of cell voltage
at 50% SOC and the discharge capacity are similar. But at 3 C, the
cell voltage at 50% SOC becomes sensitive to the anode particle
size, whereas the discharge capacity becomes sensitive to the
anode’s porosity, as compared with that at 0.2 C.

In general, the most sensitive parameters are the porosity (εe,c)
and the specific capacity (Δcmax,c) of the cathode, and the layer
thickness and cell area of both cathode and anode. The results
of the first order SA for the cell with reference parameters
already showed a strong sensitivity of the battery on the anode.
The global SA of a cell with slightly altered electrode layers
showed additionally a sensitivity of the cell voltage to the elec
trode with the steeper OCP curve independently of the specific
cell geometry. In the development of commercial battery cells,
this has to be considered in the balancing and in the set of quality
requirements. Thus, regarding large scale process deviations, the
cathode should be produced with higher quality requirements.

Figure 8. Histogram of the discharge capacity of 10 000 simulated dis
charge capacities at 1, 3, and 4 C considering 11 uncertain parameters with
Xi X̄i � 5%. Sample points are chosen randomly (MC Approach).

prevent lithium plating. Regarding the UQ of the product param 
eters of an LIB, the nonlinearity of the system indicates that the 
discharge capacity of the battery is to a certain extent not nor 
mally distributed. For a significant asymmetry of the capacity, 
the PEM could fail to reconstruct the PDF. Because of this limi 
tation, MC simulations were used to investigate the symmetry of 
the system output in the following section.

4.2.2. UQ Applying MC Simulations

To evaluate the shape of the PDF regarding asymmetry, from 
Figure 8, the PDF of the discharge capacities at 0.2, 1, 3, and 
4 C were determined. They are determined from MC simulations 
with 10 000 sample points considering the 11 uncertain param
eters, marked as uncertain in Table 2, with X i ¼ X i � 5%, inde 
pendent of the deviations determined experimentally. A C rate of
4 C is simulated additionally, to confirm the hypotheses of an 
increase in the standard deviation with increasing C rate.

The corresponding standard deviations are 3.20%, 3.20%, 
3.88%, and 7.46% for 0.2, 1, 3, and 4 C, respectively. The 
increase in the standard deviation with increasing C rate could 
be due to a change in the sensitivity of the product parameters 
depending on the C rate and could indicate an interaction of 
different partially limiting processes and parameters. This leads 
to the conclusion that there is a need for a physics based model 
to reconstruct process to product dependencies and thus to 
optimize the battery production. In general, it seems impossi 
ble to conclude any nonlinear dependencies from a normally 
distributed output.

4.2.3. Global SA Applying the PEM

As illustrated in the first order SA, the system is significantly 
nonlinear due to the transition of limitations between different 
processes in the electrodes. Therefore, under the condition of 
high nonlinearity or nondifferentiability, the PEM is not a suit 
able method. In fact, for the parameters varied as shown in 
Figure 8, it provides mathematically incorrect Sobol indices at 
0.2 C. As this operational conditions showed the most nondiffer 
ential behavior as shown in Figure 7a, it is assumed that the



This supports the common practice to have a slightly overde
signed anode, similar to the cell simulated in Figure 9a,c. At this
instance, quality requirements for the cathode should consider
porosity, for example, whether the quality is affected by calender
ing, and the intrinsic parameters of the active material that are
affected by the supplied material. However, it should be noted
that these guidelines are sensitive to the respective cell and
application.

4.3. Assessment of the Nested PEM

In the UQ in this work, two methods have been applied. First, a
first order global SA is combined with MC simulations. Second,
the nested PEM introduced in ref. [36] is applied to calculate the
Sobol Indices. These approaches differ in terms of information
obtained about the investigated system, the computational cost,
and the limitations regarding nondifferentiability of the system.

Comparing Figure 9 with Figure 7a c shows that both SA
approaches are feasible to reveal sensitive parameters. C rate
dependency of the sensitivity of some parameters could also
be quantified using both methods.

In addition to the information obtained from the first order
SA, the nested PEM provided the Total Sobol Indices quantifying
the interactions between different uncertain parameters. For
the investigated system, deviations and sensitivities seem to

be insufficiently high to obtain noticeable interactions. A general
lack of interactions is unlikely for the investigated system, as
Equation (31b) provides a lumped approximation of the depen
dency between cell parameters and cell capacity at a low C rate.
Therefore, it cannot be excluded that the PEM might have a lim
itation regarding the resolution of minor interactions.

The PEM assumes a normal distribution of the output. In
contrast, the MC simulations provide additional information
regarding the shape of the output distribution. However, as
the output is quite symmetrical for the validated operational
range of C rates of 0.2 3 C, this advantage is of no practical
relevance in the present investigated case. It, however, may
become relevant for another cell chemistry or different opera
tional conditions.

While the results of both approaches are similar, there is a
significant difference in the required number of sample points.
For the conducted analysis, ten uncertain parameters are consid
ered in Section 4.2 and from 5 to 30 in Section 4.4. While the
PEM requires 2n2þ1 sample points, for example, for MC simu
lation with 11 uncertain parameters, 10 000 sample points are
chosen in comparison with the required 243 of the PEM. As
such, the nested PEM provides comparable results with signifi
cantly lower computational costs compared with the approach
of applying MC simulations. A drawback of the PEM is its
sensitivity to the differentiability of the investigated system.
But this drawback could be avoided if slightly adjusted cells

Figure 9. Global SA for a cell with a) δel,a 60.78 μm at 0.2 C, b) δel,c 66.00 μm at 0.2C, c) δel,a 60.78 μm at 3C, and d) δel,c 66.00 μm at 3 C. Ten
uncertain parameters Xi are considered: 1) σs,c, 2) σs,a, 3) Δcmax,c, 4) Δcmax,a, 5) Rp,c, 6) Rp,a, 7) εe,c, 8) εe,a, 9) δel,i, and 10) Acell. The layer δel,i denotes the
layer thickness of the non adjusted electrode.



between different sub cells and balancing of differences in per
formance as shown below.

To illustrate the influence of sub cell variations and the inter
action between sub cells, Figure 11 shows exemplary current
distribution between sub cells at one PEM sample point at
3 C. In the applied parameter set, the anode layer thickness
and the porosity of the corresponding cathode of one sub cell
(sub cell 4) are increased to 71.51 μm and 36.01%, respectively,
whereas the overall loading is constant in all sub cells. The
other four sub cells have the parameters of the reference cell.
During the first 0.2 h of operation, all sub cells have a similar
current density. When the slope of the discharge curve becomes
more negative toward the end of operation, there are significant
and rapid changes in the current distribution between the dif
ferent sub cells on a small time scale of tens of seconds. The
current density in sub cell 4 increases slightly before it drops
significantly after about 0.22 h. The other four areas together
balance this drop by an increase in their current density.
Eventually after about 0.23 h, the current in sub cell 4 drops
by about 20%, which is more than the remaining areas that
can balance on a suitable voltage level, thus causing a large volt
age drop that reaches the lower cutoff voltage.

The observed dynamics in the current distribution is related to
the slightly differing surface concentrations of lithium in the
active material of different sub cells. As the surface concentration
in the active material in, for example, the anode of a sub cell
decreases, its potential losses increase and the cell voltage
decreases. To ensure equality of voltage between such a sub cell
and the other sub cells, the current of this sub cell decreases. In
the battery depicted in Figure 11, the effective ionic resistance of
sub cell 4 is reduced and the active surface and the layer thick
ness are increased. The latter leads to a higher current density in
the first seconds and a lower current in the next about 0.2 h. The
increased layer thickness leads to areas in sub cell 4 that are less
utilized within the first 0.2 h. These areas are utilized when the
current density of sub cell 4 increases above the current density
in the other sub cells.

Figure 10. Discharge curves at 0.2 and 3 C of the reference cell simulated
with the extended model. PDFs of the discharge capacity at 2.9 V of the
extended model considering sub cells and of the model with homogenized
membrane properties. Standard deviations are �5% for all uncertain
parameters.

Figure 11. Current distribution between sub cells with different electrode
properties. Sub cell 1 is identical to the sub cells 2, 3, and 5. In sub cell 4,
the anode layer thickness is increased to 71.51 μm and the cathode poros
ity to 36.01%. Apart from these changes, standard parameters are used.

are investigated, as shown in Section 4.2, or a C rate of 1 or 
higher is considered, see Figure 7b,c compared with Figure 7a.

4.4. Investigation of Sub-Cell Level Deviations

In this section, the PEM and the extended model, as introduced 
in Section 2.3, are used to quantify the effect of sub cell devia 
tions. Five sub cells, parallel to each other, are considered in 
the extended model to simulate deviations in the cell due to 
the production process. Six independent uncertain parameters

(X i ¼ X i � 5%) per sub cell are considered: δel,j, εe,j, and
Δcmax,j, where j indicates anode and cathode, respectively. This
results in a total of 30 uncertain parameters. The choice of 
parameters is based on the high sensitivity of the cell perfor 
mance to those six parameters, described in Section 4.2. For 
comparison with the model considering sub cell deviations, 
the same model is used with five identical sub cells, thus contain 
ing only six uncertain parameters in total. Consequently, the lat 
ter model’s discharge curves and PDFs are identical to the results 
of the standard model.

In Figure 10, the discharge curves of the extended model at 0.2 
and 3 C and the PDFs of both models at 0.2 and 3 C are shown. 
The PDFs are determined using the PEM. The discharge curves 
represent the reference cell with five identical sub cells and stan 
dard parameters. This reference simulation is the same for both 
models as only the expectation values are used. See the first sam 
ple point (ξ1) in Equation (2).

Comparing both models, there is a marginal shift of the deter 
mined mean discharge capacity from 15.93 and 15.95 A m�2 

with and without consideration of sub cell level deviations, 
respectively, and a significant shrinking of the confidence inter
val for the model considering sub cell level deviations, σ ¼ 0.066
compared with 0.133 for the standard model. Note that the mean
discharge capacity is slightly smaller than the discharge capacity 
of the reference cell, which is 16.16 A m�2. The decreased size of 
the confidence interval seems to be related to the interaction



Parallel to changes in current distribution, there is high fluc
tuation in the local overpotentials of up to 100mV. For illustra
tion, see Figure 12. The figure shows the maximum difference of
the overpotential between the different sub cells.

The detrimental influence of local high overpotentials regard
ing cell degradation is discussed in refs. [52,53]. In depth discus
sion of this is beyond the scope of this work, but it shows that
inhomogeneities in cell properties might be a cause for degrada
tion. At low cell currents, a positive effect could also be achieved.
The dynamic balancing could compensate poor performance of
some sub cells and allow a further utilization of the theoretical
battery capacity due to the operation at a lower local current den
sity compared with a homogenized cell.

While the results regarding the spatial current distribution
cannot be validated experimentally in this work, they are highly
reasonable. For instance, in experiments of Pastor Fernández
et al., similar current profiles were measured for a parallel
set of 18 650 cells with different states of health.[54] In addition,
similar effects of a nonuniform current distribution were
observed in experiments with segmented fuel cells and spatially
reduced active area.[55–57] Furthermore, overpotential over
shooting due to nonsteady currents was seen in the simula
tions of a direct methanol fuel cell.[58] The findings are also
in accordance with the simulation results of a battery pack
model based on ECMs[47] and the explanation regarding the
detrimental effects of local imbalances or pore blockage of
the electrodes, leading to lithium plating and accelerated aging
due to locally higher current densities[59,60] and resulting
overpotentials.

In summary, our studies show that sub cell level property devi
ations affect the discharge capacity due to nonuniform spatial
current distribution. This effect alters the mean discharge capac
ity and the standard deviation of the cells. Hence, there is a need
for additional quality requirements for small scale variation in
the production process, as their influence on local overpotentials
is at least as important as the influence of cell to cell deviations.
For instance, for the investigated stacked pouch cells, the use of
sheets of different batches should be avoided and a continuous
process should be implemented.

5. Summary and Conclusions

Amodel based approach for the UQ of LIB product parameters is
introduced that is feasible to evaluate cell to cell deviations and
sub cell level deviations by applying an extended Doyle Newman
model. A nested PEM is applied for a large number of indepen
dent normal distributed parameters, which provides a global SA
that shows a change in the sensitivity of the investigated param
eters depending on the applied C rate. The method is assessed by
comparing with a first order global SA by parameter variation
and an MC approach. The PEM is highly efficient regarding
computational costs but is limited in terms of imaging minor
sensitivities. In addition, at low C rates, the PEM fails due to
the nondifferentiability of the system.

The global first order SA shows a significant linearity at low
C rates and nonlinearity of the investigated electrochemical sys
tem at high C rates. The presence of four types of sensitivities is
observed, which have to be taken into account differently in pro
cesses such as UQ or optimization. Application of the introduced
UQ approach in large scale cell production showed that there is a
need to control certain parameters within tighter constraints than
others. In general, important parameters are those affecting the
theoretical capacity such as layer thickness of the limiting elec
trode. In addition, the discharge voltage is sensitive to the param
eters of the electrode that bears the steeper half cell potential
curve. In the investigated case, this was the cathode despite
the anode causing the limitation of the discharge capacity. For
the investigated cell, key parameters for performance are the
cathode’s specific capacity (Δcmax,c) and the cathode layer thick
ness (δe,c). Hence, the calendering steps should be thoroughly
monitored.

The investigation of the influence of sub cell level deviations
showed that the effect of small scale deviations is less important
for the performance of a cell at low C rates, but it may cause
locally higher overpotentials that can be detrimental regarding
the long term performance of the cell, especially at high C rates.
This leads to higher quality requirements for small scale process
deviations within a cell.

In conclusion, the results of this work show that a model
based approach is feasible to investigate and optimize the non
ideal LIB manufacturing process to reduce costs and time efforts
of the development of, for example, next generation batteries. In
addition, the conducted global SA and the novel model approach
showed electrochemical processes and interactions between
product properties and cell performance.
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