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ABSTRACT: Anion-exchange membrane (AEM) degradation during
fuel cell operation represents the main challenge that hampers the
implementation of AEM fuel cells (AEMFCs). Reported degradation
values of AEMs are difficult to reproduce as no standard methods are
used. The present use of different techniques based on exposure of
membranes to aqueous KOH solutions under different conditions and
measuring different outputs during time does not allow for a reliable and
meaningful comparison of reported degradation data of different AEMs.
In this study, we present a practical and reproducible ex-situ technique to
measure AEM degradation in conditions that mimic an operando fuel cell
environment. In this novel technique, we measure the change of the true
hydroxide conductivity of the AEM over time, while exposing it to
different relative humidity conditions. The technique does not make use
of liquid alkaline solution, thus simulating real fuel cell conditions and providing a good baseline for comparative degradation
studies.

Anion-exchange membrane fuel cells (AEMFCs) have
attracted growing attention during the past few years
due to their rapid development and great potential to

provide a low-cost and efficient power generation solution.1−4

However, their commercial development is hampered by the
chemical degradation of the anion-exchange membranes
(AEMs) during cell operation.5−7 The hydroxide anions
(OH−), while transported from the cathode to the anode,
attack the positively charged functional groups in the polymer
membrane (and ionomers in the electrodes), suppressing their
anion and water transport capabilities, reducing in turn the
effective hydroxide conductivity.8−13

To measure the chemical degradation of AEMs, many
studies used model compounds that mimic the functional
groups of the membranes. While this provides a good
quantitative understanding of the chemical degradation of
the cationic moieties in alkaline media, it does not necessarily
represent the real behavior of the whole AEM.14−17

Furthermore, AEMs functionalized with alkaline-stable cations
are not necessarily alkaline-stable unless also the polymer
backbones and its linkers to the cations are also stable.18

To measure the degradation of AEMs over time and to
determine their stability in alkaline environments, different
procedures have been used. All of them involve soaking of
AEMs in liquid KOH (or NaOH) electrolytes, at different
alkaline electrolyte concentrations, different temperatures, for
different extended periods of time, to try to imitate the alkaline
environment of the AEMFCs.19,20,29,30,21−28 The AEMs are
then washed with the aim of removing all the KOH electrolyte
absorbed in the polymer matrix, after which the loss in
conductivity as a function of soaking time is evaluated. Besides
the lack of standard conditions that allows comparison
between different results, several problems occur during
measurement of the degradation of the anion conducting
polymer.31 Liquid KOH electrolyte absorbs differently in
different AEMs, rendering a complete removal of the
electrolyte from the polymer matrix of the membrane
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uncertain, thus affecting conductivity measurement and
therefore degradation data. In addition, while trying to remove
the remaining KOH from the AEM by washing with water, or
during measurements of conductivity, carbonation (on any air
exposure) may occur,32−37 detrimentally affecting results.
Already a short exposure to small traces of CO2 in the
atmosphere strongly impacts the composition of ions in the
solid electrolyte.33,38 Up to now, no single study may assure
that all the remaining KOH was fully removed and that no
(bi)carbonates were formed during the entire conductivity
measurements.
In addition to these issues, all previous degradation studies

on AEMs were carried out at high hydration conditions,39−44

which do not simulate well the harsh conditions of AEMFC
operations.45 Just a few studies were conducted under low
hydration conditions.45−53 Dekel et al.45 first reported that
model cationic compounds degrade significantly faster at low
hydration conditions. The authors also showed that decreasing
the amount of water molecules in the medium decreases the
activation energy of the nucleophilic attack of the OH− with
the cationic model molecules,45 consistent with DFT
predictions of Chempath et al.54 In a subsequent study,
using a thermogravimetric method, Kreuer et al. measured the
ion-exchange capacity (IEC) of an AEM under controlled
temperature and low relative humidity (RH) conditions.51

They showed that the reduction of the IEC during time due to
the chemical degradation of the membrane is higher as the RH
is reduced.51 The enhancement in the cation degradation
exposed to low hydration medium was further confirmed in
theoretical studies by Pusara et al., who simulated the
interactions between the quaternary ammonium cations and
the OH− solvated by different amount of water molecules.46

The authors reported that when fewer water molecules are
available in the medium, ammonium−hydroxide pairing occurs
more frequently and with higher intensity, confirming then the
cationic moieties in the AEM.46

All the mentioned methods include the use of an alkaline
solution to measure the chemical degradation, which does not
necessarily represent the real behavior of the entire AEM in the
environment of an operating AEMFC, where OH− ions are in
situ generated in the cell, without any liquid electrolyte or
solution (or excess K+/Na+ or OH− ions). Consequently, the
development of a standard, reliable technique is necessary to
measure the true degradation of AEMs without the use of
liquid KOH electrolyte at any step of the measurement. We
present here a practical ex-situ technique to measure the
degradation of an AEM in conditions that mimic the true
environment of an AEMFC in operation.
The technique is based on our recently developed ex-situ

method to measure the true OH− conductivity in AEMs
without the use of liquid electrolyte.55 This method offers an
opportunity to standardize conductivity measurements by
determining the true OH− conductivity simulating the real
environment of an AEMFC during operation. In short, the
method takes advantage of the reversibility character of the
carbonation process32,33,38,55,56 and exchange the (bi)-
carbonate anions by OH− anions generated in situ by an
external current. The applied current during the experiment
causes the anions to move toward the anode, and the
(bi)carbonates are released in the form of carbon dioxide.55

This method was already adopted by several studies to
characterize AEMs (see for instance, Varcoe et al. and

others50,52,57−60), and recently by Holdcroft et al.60 who
showed visual effects of the anion-exchange process.
Using this method, we measured the anion conductivity

during the decarbonation process of an LDPE-based radiation-
grafted AEM as a function of time, until the plateau maximum
value is reached (see Figure 1). This value is referred to as the

true OH− conductivity of the membrane.55 At the plateau, the
AEM is in its full OH− form, and we measure the drop in the
value of true hydroxide conductivity as a function of time. A
similar test was already carried out by Varcoe et al.,52 to show
the stability of the AEM at a relative humidity of 100%;
however, as already mentioned, at high hydration levels there is
little or no degradation due to the water solvation effect
around the OH− ions.45 For this study, we use the technique to
investigate the impacts of different and harsher environmental
conditions on the AEMs and present a method to measure the
degradation of AEMs in an environment that mimics an
operating AEMFC. In the proposed technique, we measure the
drop in the value of true OH− conductivity as a function of
time at different (lower) relative humidity values. The resulting
OH− conductivity changes are then normalized to the initial
conductivity values measured at different RH values, as shown
in Figure 2.
The drop in the normalized true OH− conductivity over

time measured in different relative humidity environments
(Figure 2a) shows the relative stability of the AEM under flow
of OH− anions at different hydration levels. As can be seen, as
RH decreases, the chemical degradation of the AEM increases.
While at 100% RH the AEM is stable, showing a decay of
normalized OH− conductivity of only 0.07%/h, at 60% and
20% RH the conductivity decay is 0.40%/h and 2.06%/h,
respectively. To confirm that this decay in conductivity is a
result of polymer degradation, the final IEC values of the
membranes after the test time were measured and shown in
Figure 2b. It is clearly noticeable that the IEC decreases by

Figure 1. Decarbonation process of an AEM using Ziv and Dekel
ex-situ method,55 to measure the true OH− conductivity of the
membrane (55 μm thick low-density polyethylene radiation-
grafted AEM functionalized with benzyl trimethylammonium
(BTMA-LDPE) AEM50,52,61). The average and the standard
deviations (shown by bars) of the conductivity are based on
measurements of three different samples of the same AEM.
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reducing the RH in the gas inlet of the cell. Consequentially,
the decrease of the ionic conductivity is caused by a reduced
number of functional groups in the AEM. Correlating the rate
of decay of the normalized OH− conductivity (from slope of
Figure 2a) at different RH values provides a practical and
reliable way to characterize the chemical stability of AEMs. For
instance, for the membrane measured in this study, BTMA-
functionalized LDPE-based radiation-grafted AEMs, the
calculated OH− stability relationship is 0.025%/h/RH. Using
this parameter, which we call the “AEM degradation
parameter”, will help to standardize degradation results,
allowing us to compare degradation properties of different
AEMs to be used for AEMFCs.
The effect of temperature on the chemical stability of the

AEM using this new technique is also studied. Figure 3 shows
the change in normalized true OH− conductivity at 65, 80, and
95 °C measured at 60% RH, a representative humidity level at
which the decrease in conductivity is largely noticeable. As

expected, the degradation rate of the AEM increases with
temperature.47,62 While at 65 °C there is no evident
degradation, at 80 and 95 °C the conductivity decay increases
to 0.4%/h and to 0.7%/h, respectively. The IEC loss of the
AEMs tested at different temperatures is shown in Figure 3b.
The IEC dropped from 2.40 to 2.14 mmol/g at 65 °C, while it
dropped to 2.02 and 0.49 mmol/g at 80 and 95 °C,
respectively, confirming the increasing degradation caused by
the increasing temperature of the proposed stability tests.
In conclusion, we present a practical, ex-situ method for

measuring the chemical stability of AEMs in a fuel cell-like
environment. With this method, we conducted tests showing
the degradation rate of a relatively stable AEM (LDPE-BTMA
radiation-grafted AEM) at different RH values and different
temperatures. We propose to use a sole parameter to
characterize the membrane stability to be used for AEMFCs,
which we call the “AEM degradation parameter”. For the

Figure 2. (a) Normalized true OH− conductivity of the BTMA-
LDPE AEM as a function of test time (80 °C, 100 μA, and a
nitrogen flow of 500 sccm/min) at different RH levels. (b) Final
IEC of the AEMs measured after the degradation experiments
shown in (a), as a function of the RH applied during the tests. The
average and the standard error of the IEC are based on three
measurements of the different samples of AEM. The dashed line
marks the initial IEC of a fresh (non-degraded) membrane.

Figure 3. (a) Normalized true OH− conductivity of the BTMA-
LDPE AEM as a function of time (60% RH, 100 μA, and a nitrogen
flow of 500 sccm/min) at different temperatures. (b) Final IEC of
the AEMs measured after the degradation experiments shown in
(a), as a function of the temperature applied during the tests. The
average and the standard error of the IEC are based on three
measurements of the different samples of AEM. The dashed line
marks the initial IEC of a fresh (non-degraded) membrane.
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LDPE-BTMA membrane, for example, this parameter was
calculated to be 0.025%/h/RH.
In comparison with all current methods to measure chemical

degradation of AEMs, this technique offers excellent reliability
and reproducibility, as no liquid electrolyte (with all the
involved complications) is used at any time of the test. This
also assures to mimic the in-operando fuel cell environment,
measuring then the real stability behavior of an AEM during
fuel cell operation.
Finally, this method, which only requires a four-probe

conductivity instrumentation, can be easily standardized. By
adopting this new liquid electrolyte-free stability measurement
method to calculate the AEM degradation parameter of
developed anion conducting polymers, the research commun-
ity will finally be able to measure and compare the chemical
stability between different AEMs in a reliable, reproducible,
and comparable way. We strongly recommend the adoption of
this method and the new degradation parameter as a standard
for measuring and expressing the stability of AEMs.

■ EXPERIMENTAL SECTION
Anion-Exchange Membrane. For these experiments we

used the low-density polyethylene-based radiation-grafted
anion-exchange membrane functionalized with benzyltrime-
thylammonium cationic functional groups synthesized by
Wang et al.61 The BTMA-LDPE AEMs (55 ± 2.0 μm in
thickness, received in Cl− form) were first exchanged to
bicarbonate form, by soaking them in 1 M KHCO3 aqueous
solution at room temperature for 48 h and then soaking in
deionized water for 48 h at room temperature. Solution and
water are renewed six times.
In-Situ Exchange to the Hydroxide Form and

Chemical Degradation Measurement without Alkaline
Solutions. To exchange the AEMs from bicarbonate to their
hydroxide form, the liquid electrolyte-free method from Ziv
and Dekel is used.55 The carbonated membranes were
mounted in a four-electrode (two current and two potential
sense) membrane test system (MTS 740, Scribner Associates
Inc.) and exposed to pure nitrogen (99.999% N2) with a
continuous flow rate of 500 sccm/min. The RH is set to 100%
and the temperature to 40 °C with a direct current flow
between the current electrodes to release the bicarbonates at
the anode (in-situ exchange them with OH− inside the AEM).
For the decarbonation process of the AEM the current is
increased from 100 to 300 μA (Ivium-n-Stat, Ivium
Technologies) for the first 6 h to accelerate the process and
then is set to 400 μA. The resistance is measured every 2 h by
using a standard four-probe technique.63 After 400 μA is set,
the resistance is measured every 30 min. The ionic
conductivity of the membrane samples is calculated by63

σ =
· ·

L
R W d (1)

where L is the distance between the sensing electrodes (4.25
mm), R is the measured resistance of the membrane sample,W
is the width of the sample, and d the thickness of the
membrane, which is measured right after taking out of the
deionized water from the washing process mentioned before.
After a threshold of the conductivity is reached and the value
does not change significantly, we assumed that the AEM is in
the pure OH− form. This procedure has been repeated for each
membrane sample. For the degradation measurement, the RH
is set to 60%, temperature to 80 °C, and the applied current to

100 μA, unless it is specified differently. The hydroxide
conductivity is determined frequently (every 1−2 h) for
around 100 h. By measuring the slope in change of hydroxide
conductivity we determine the degradation of the membrane,
and based on that data, the final AEM degradation parameter.

Ion-Exchange Capacity Measurement. The AEM is
soaked in 1 M KCl aqueous solution and continuously shaken
(TOS-4030PD, mrclab) for 48 h. The solution is renewed six
times to make sure that enough ions are available for the ion-
exchanging process. After this, the membrane samples are
washed with deionized water for 48 h, followed by storing
them in 1 M KNO3 aqueous solution for 48 h. The KNO3
solution with the membrane is titrated with 0.01 M AgNO3,
and the molarity of the chloride ions is measured (751 GPD
Titrino, Metrohm). Finally, the membrane in nitrate form is
washed in deionized water and dried for at least 8 h in a
vacuum oven. The IEC is then calculated by64,65

=
Δ ·V c

W
IEC

(dry)
AgNO AgNO

NO

3 3

3 (2)

where ΔVAgNO3
and cAgNO3

are the volume and the
concentration of the added titrant solution, respectively, and
WNO3

(dry) is the dry weight of the membrane. This procedure
is repeated three times for each sample; average and standard
deviations of the IEC measurement are determined.
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