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We explore the magnetohydrodynamics of Dirac fermions in neutral graphene in the Corbino geometry.
Based on the fully consistent hydrodynamic description derived from a microscopic framework and taking into
account all peculiarities of graphene-specific hydrodynamics, we report the results of a comprehensive study of
the interplay of viscosity, disorder-induced scattering, recombination, energy relaxation, and interface-induced
dissipation. In the clean limit, magnetoresistance of a Corbino sample is determined by viscosity. Hence the
Corbino geometry could be used to measure the viscosity coefficient in neutral graphene.
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Transport measurements remain one of the most common
experimental tools in condensed matter physics. Having dra-
matically evolved past the original task of establishing bulk
material characteristics such as electrical and thermal conduc-
tivities, modern experiments often involve samples that are
tailor-made to target particular properties or behavior.

In recent years considerable efforts have been devoted to
uncovering the collective or hydrodynamic flows of charge
carriers in ultraclean materials as predicted theoretically
[1–4]. Several dedicated experiments focused on answering
two major questions: Is the observed electronic flow really hy-
drodynamic and how to measure electronic viscosity [5–10],
the quantity that fascinates physicists beyond the traditional
condensed matter physics [11–18]. The hydrodynamic regime
is apparently easiest to achieve in graphene [2–4]. This mate-
rial is especially interesting since it can host two drastically
different types of hydrodynamic behavior: (i) “conventional”
at relatively high carrier densities [3,19,20] and (ii) “uncon-
ventional” at charge neutrality [21,22].

Linearity of the excitation spectrum in graphene leads to
the fact that electronic momentum density defines the energy
current, jE . In the intermediate temperature window where
electron-electron interaction is the dominant scattering pro-
cess in the system (�ee � �dis, �e-ph,W , in the self-evident
notation) the energy flow becomes hydrodynamic. At high
carrier densities (in “doped graphene”) the energy current
is essentially equivalent to the electric current, j, allowing
one to formulate a Navier-Stokes-like equation for j [20] as
pioneered by Gurzhi [19].

At charge neutrality and in the absence of the external
magnetic field (B = 0) the energy and electric currents de-
couple [23]. In the hydrodynamic regime the electric current
remains Ohmic [22] (with the “internal” or “quantum” con-
ductivity σQ due to electron-electron interaction [24–27]),
while the Navier-Stokes-like equation describes the energy
current [22,28,29]. If external magnetic field is applied, the
energy and charge flows become entangled [21–23] allow-
ing for a possibility to detect the hydrodynamic flow in

electronic transport experiments. In particular, a bulk (infinite)
system is characterized by positive, parabolic magnetoresis-
tance [23,30] proportional to the disorder mean free time
τdis (disorder scattering is the only mechanism of momentum
relaxation).

The outcome of a given measurement is strongly influ-
enced by the sample size and geometry. Early experiments
focused on either the “strip” (or Hall bar) [5–8] or the point
contact geometry [9,10], while more recently data on Corbino
disks became available [31].

The simplest viscous phenomenon one can look for in
a long (striplike) sample [7–10,12,32–52] is the Poiseuille
flow [53–55]. This flow is characterized by a parabolic ve-
locity profile with the curvature determined by viscosity.
In doped graphene the Poiseuille flow of charge can be
detected by imaging the electric current density [8]. In con-
trast, neutral graphene exhibits the Poiseuille flow of the
energy current [56]. Moreover, at relatively high temperatures
where hydrodynamic behavior in graphene is observed the
electron-phonon interaction (either direct [23,57,58] or via
“supercollisions” [59–64]) cannot be neglected and hence
electronic energy is not conserved. The resulting energy re-
laxation dwarfs the viscous contribution to the Navier-Stokes
[65] equation.

Applying a perpendicular magnetic field to a neutral
graphene strip leads to a coupled charge and energy flow
with the two currents being orthogonal [23]. The electric
current flowing along the strip is accompanied by a neu-
tral quasiparticle flow in the lateral direction resulting in
energy and quasiparticle accumulation near the strip bound-
aries [66,67]. The accumulation is limited by quasiparticle
recombination [67] and energy relaxation processes [59].
As a result, the boundary region’s contribution to the resis-
tance is linear in the applied magnetic field [23,48,67,68],
in contrast to the standard quadratic magnetoresistance of
the bulk system [23,30]. In classically strong fields the
boundary contribution dominates making the linear magne-
toresistance directly observable. This effect is not specific
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FIG. 1. Hydrodynamic velocity u and temperature δT distribu-
tion in the device obtained by solving the hydrodynamic equations at
relatively high temperatures where energy relaxation is dominated
by supercollisions. Arrows indicate u and the color map shows δT .
The quantitative results were computed using the following values of
the average temperature T = 150 K, disorder scattering time τdis =
1.5 ps (corresponding to the scattering rate τ−1

dis ≈ 0.67 THz ≈5.1 K),
recombination time τR = 15 ps, energy relaxation time τRE = 5 ps,
dimensionless coupling constant in graphene α = 0.5, carrier density
in the leads nL = 5 × 1012 cm−2, and the current passing through the
device I = 1 µA. The four panels correspond to the indicated values
of magnetic field.

to Dirac fermions as shown by experiments in bilayer
graphene [69].

The Corbino geometry presents an interesting alternative
to the Hall bar experiments [31,65,70–78]. In a typical mea-
surement the electric current is passed from the inner to the
outer boundary of a Corbino disk. The specific feature of the
stationary flow in this geometry is that the magnitude of the ra-
dial component of the current is determined by the continuity
equation alone. In the absence of the magnetic field the whole
current flows radially. Combining the solution of the conti-
nuity equation with the hydrodynamic Gurzhi equation (e.g.,
in doped graphene) leads to an apparent paradox [73]: The
current flow appears unaffected by viscosity. However, the
dissipated energy is still determined by viscosity leading to
the jumps of electric potential at the contacts thus resolving
the paradox. In a perpendicular magnetic field the system ex-
hibits parabolic magnetoresistance inverse proportional to the
viscosity and independent of the disorder scattering. Applied
phenomenologically to neutral graphene (neglecting contact
effects) [78] this conclusion stands in sharp contrast to the
standard result [23,30] raising the question of the fate of
the disorder-limited bulk magnetoresistance in the Corbino
geometry.

In this paper we investigate hydrodynamic flows in neutral
graphene in the Corbino disk subjected to the perpendicular

magnetic field based on the graphene-specific hydrodynamic
theory [2,22,59] reporting the results of a careful study of the
interplay of viscosity, disorder-induced scattering, recombi-
nation, energy relaxation, and interface-induced dissipation.
Solving the hydrodynamic equations we find the spatial dis-
tribution of the hydrodynamic velocity u, temperature (see
Fig. 1), electric current, and potential ϕ (see Fig. 2). Fur-
thermore, we calculate the field-dependent resistance of the
whole Corbino sample including the leads. Keeping in mind
recent and ongoing experiments, it appears logical to include
the effect of the lead resistance in order to achieve a more
realistic description of the Corbino device. However, the the-
oretical limit of “ideal” leads can be considered without any
complications.

The main results of this paper are as follows. We show that
magnetoresistance of the Corbino device exhibits a crossover
from the “hydrodynamic” (viscosity-dominated) to the “bulk”
(disorder-limited) behavior with the increasing system size
as compared to the Gurzhi length �G = √

ντdis [46–49,52]
(ν is the kinematic viscosity [3,5,6,55,79] and τdis is the
disorder mean free time). In the clean limit (τdis → ∞) mag-
netoresistance remains finite and is determined by viscosity
offering a way to measure the viscosity coefficient in neutral
graphene. In classically strong fields magnetoresistance re-
mains parabolic (in contrast to the linear magnetoresistance in
the strip geometry). The “contact magnetoresistance” induced
through the dissipation jump is present, but is typically weaker
than the bulk contribution.

I. MAGNETOHYDRODYNAMICS IN GRAPHENE

Our arguments are based on the hydrodynamic theory
of electronic transport in neutral graphene derived from
the kinetic (Boltzmann) equation [21,22,59] or from the
microscopic Keldysh technique [80]. At charge neutrality
both bands contribute to transport on an equal footing. A
current-carrying state is characterized by the chemical poten-
tials μ± of each band or by their linear combinations [22,81]:

μ = μ++μ−
2

, μI = μ+−μ−
2

(1a)

conjugate to the “charge” and “imbalance” (or “total quasipar-
ticle”) densities

n = n+ − n−, nI = n+ + n−. (1b)

In equilibrium μI = 0. Any macroscopic current can be
expressed as a product of the corresponding density and hy-
drodynamic velocity u (up to dissipative corrections). Due to
the kinematic peculiarity of the Dirac fermions in graphene
known as the “collinear scattering singularity” [21,25] one
has to consider the electric, energy, and imbalance, jI currents
defined as

j = nu+δ j, jI = nI u+δ jI , jE = Wu, (2)

where W is the enthalpy density and δ j and δ jI are the
dissipative corrections. In the degenerate limit μ � T the
dissipative corrections vanish [22,28] justifying the applica-
bility of the single-band picture to doped graphene. At charge
neutrality n = 0, the electric and energy currents in Eq. (2)
appear to be decoupled [22].
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Within linear response, steady-state macroscopic currents
obey the linearized hydrodynamic equations [82]. Assuming
that the dominant mechanism of energy relaxation is super-
collisions [59], the equations have the form

∇ · δ j = 0, (3a)

nI∇ · u + ∇ · δ jI = −12 ln 2

π2

nIμI

T τR
, (3b)

∇δP = η�u + e

c
δ j × B − 3Pu

v2
gτdis

, (3c)

3P∇ · u = −2δP

τRE
. (3d)

Here Eq. (3a) is the continuity equation; Eq. (3b) is the im-
balance continuity equation [22,81] (where vg is the band
velocity in graphene, c is the speed of light, e is the unit
charge, and τR is the recombination time); Eq. (3c) is the
linearized Navier-Stokes equation [22,29,82,83] (with η being
the shear viscosity); and Eq. (3d) is the linearized “ther-
mal transport” equation (τRE is the energy relaxation time
[59]). We follow the standard approach [55] where the ther-
modynamic quantities are replaced by the corresponding
equilibrium functions of the hydrodynamic variables. Equi-
librium thermodynamic quantities, i.e., the pressure P =
3ζ (3)T 3/(πv2

g ), enthalpy density W , imbalance density,
nI = πT 2/(3v2

g ), and energy density are related by the “equa-
tion of state,” W = 3P = 3nE/2. Equations (3) should be
solved for the unknowns u, μI , and δP keeping the remaining
(thermodynamic) quantities, e.g., nI , P, and T , constant.

The dissipative corrections to the macroscopic currents
can be determined from the underlying microscopic theory
[22,29,82] and are expressed in terms of the same variables
closing the set of hydrodynamic equations (3):

δ j = 1

e2R̃

[
eE + ωBeB ×

(
α1δI∇μI

τ−1
dis + δ−1

I τ−1
22

− 2T ln 2

v2
g

u

)]
,

(4a)

δ jI = − δI

τ−1
dis + δ−1

I τ−1
22

1

e2R̃

[
α1ωBeB × E + 2T ln 2

π
e2R0∇μI

+α1ω
2
B

2T ln 2

v2
g

u

]
, (4b)

R̃ = R0 + α2
1δI R̃B. (4c)

In Eqs. (4) the following notations are introduced. R0 is the
zero-field bulk resistivity in neutral graphene [23,30];

R0 = π

2e2T ln 2

(
1

τ11
+ 1

τdis

)
−→

τdis→∞
1

σQ
, (5)

where τ11 ∝ α−2
g T −1 describes the appropriate electron-

electron collision integral. R̃B denotes [65,82]

R̃B = π

2e2T ln 2

ω2
B

τ−1
dis + δ−1

I τ−1
22

, (6)

where τ22 ∝ α−2
g T −1 describes a component of the collision

integral that is qualitatively similar, but quantitatively distinct
from τ11 and δI ≈ 0.28. Another numerical factor in Eqs. (4)

is α1 ≈ 2.08 and ωB = eBv2
g/(2cT ln 2) is the generalized

cyclotron frequency at μ = 0.
The shear viscosity at charge neutrality and in the absence

of magnetic field was evaluated in Refs. [22,79,83] and has
the form

η(μ = 0, B = 0) = B T 2

α2
gv

2
g

, B ≈ 0.45. (7)

Within the renormalization group (RG) approach, αg is a run-
ning coupling constant [56,83–86]. However, the product αgvg

remains constant along the RG flow [24,83]. Hence Eq. (7)
gives the correct form of shear viscosity in neutral graphene
[84]. Within the kinetic theory approach, the coefficient B
can be expressed in terms of timescales characterizing the
collision integral [22,79]. At neutrality these timescales are
qualitatively similar to, but quantitatively distinct from τ11 and
τ22. The similarity follows from the fact that in general all
timescales are functions of the chemical potential and temper-
ature [22,28,87]. At neutrality μ = 0 and hence all timescales
are inverse proportional to temperature.

As a function of the magnetic field, the viscosity coefficient
in neutral graphene exhibits a weak decay until eventually
saturating in classically strong fields [79]

η(μ = 0, B) = B + B1γ
2
B

1 + B2γ
2
B

T 2

α2
gv

2
g

, γB = |e|v2
gB

α2
gcT 2

, (8)

where

B1 ≈ 0.0037, B2 ≈ 0.0274.

This behavior should be contrasted with the more conven-
tional Lorentzian decay of field-dependent shear viscosity
in doped graphene [6,45,46,79,88]. However, in weak fields
where most present-day experiments are performed this dis-
tinction is negligible. Moreover, due to the smallness of the
coefficient B1 and B2 we disregard the field dependence of η

in what follows.
Under the assumptions of the hydrodynamic regime, dis-

order scattering is characterized by the large mean free time,
τdis � τ11, τ22, yielding a negligible contribution to Eqs. (5)
and (6). Equation (5) describes the uniform bulk current (at
B = 0) and is independent of viscosity (i.e., in a channel
[3,21,67,82]). In contrast, in the Corbino geometry the current
flow is necessarily inhomogeneous and hence viscous dissipa-
tion must be taken into account.

II. BOUNDARY CONDITIONS

Differential equations (3) should be supplemented by
boundary conditions, which should be expressed in terms of
the hydrodynamic velocity and macroscopic currents. The
statement of the boundary conditions does not imply the va-
lidity of the hydrodynamic approximation at the sample edges
and generally have to be derived from the underlying mi-
croscopic theory. However some of the boundary conditions
can be derived based on the conservation laws alone. In the
circular Corbino geometry conservation laws can be used to
establish boundary conditions for radial components of the
currents [65].
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A. Radial components of macroscopic currents

A typical experimental setup involves a graphene sample
(in our case, at charge neutrality) in the shape of an annulus
placed between the inner (a disk of radius r1) and outer (a ring
with the inner radius r2) metallic contacts (leads). The electric
current I is injected into the center of the inner lead preserving
the rotational invariance (e.g., through a thin vertical wire
attached to the center point) and spreads towards the outer
lead, which for concreteness we assume to be grounded. The
overall voltage drop U is measured between two points in
the two leads (at the radii rin < r1 and rout > r2) yielding
the device resistance, R = U/I . The only boundaries in the
system are between the sample and the external leads.

For simplicity, we assume both leads to be of the same
material with a single-band electronic system, e.g., highly
doped graphene with the same doping level. In that case, all
macroscopic currents in the leads are proportional to the drift
velocity and hence are determined by the injected current. In
the stationary case, the continuity equation (3a) determines the
radial component of the electric current density. In the inner
lead this yields jin

r = I/(2πer), defining the radial component
of the drift velocity, uin

r = jin
r /nL (nL is the carrier density in

the inner lead). Assuming charge conservation is not violated
at the interface, we find the boundary condition between the
inner lead and the sample

jr (r1 − ε) = nLur (r1 − ε) = δ jr (r1 + ε), (9a)

where ε > 0 is infinitesimal and we took into account that in
neutral (n = 0) graphene j = δ j.

The second hydrodynamic equation, Eq. (3b), is the con-
tinuity equation for the imbalance density. Although the
total quasiparticle number is not conserved, integrating this
equation over an infinitesimally thin region encompassing
the boundary yields a similar boundary condition for the
imbalance current assuming that the relaxation rate due to
quasiparticle recombination is not singular at the boundary

jI,r (r1 − ε) = nLur (r1 − ε) = nI ur (r1 + ε) + δ jI,r (r1 + ε).

(9b)

Here we took into account the fact that in a single-band system
jI is identical with j.

Finally, Eq. (3d) is the linearized continuity equation for
the entropy density (here we follow the standard practice [55]
of replacing the continuity equation for the energy density by
the entropy flow equation, also known as the thermal transport
equation). Again, assuming the energy relaxation rate is not
singular at the interface (i.e., the current flow is not accom-
panied by energy or excess heat accumulation at the boundary
between the sample and the contact) we integrate Eq. (3d) over
an infinitesimally thin region encompassing the boundary and
arrive at the boundary condition for the entropy current

sinur (r1 − ε) = sur (r1 + ε), (9c)

where s and sin are the entropy densities in the sample and
inner lead, respectively.

B. Tangential flows in external magnetic field

The above boundary conditions (and the corresponding
conditions on the outer lead) are sufficient to solve the hy-
drodynamic equations in the absence of magnetic field where
all currents are radial [65]. An external magnetic field induces
the tangential components of the currents due to the classical
Hall effect. The continuity equations do not determine the
tangential components and hence the boundary conditions
have to be derived from a microscopic theory. Generally
speaking, the boundary conditions depend on the presence
of tangential forces at the interface, usually associated with
edge roughness. Typically [2–4,55,73], one considers the two
limiting cases of either the “no-slip” or “no-stress” boundary
conditions corresponding to either the presence or the absence
of the draglike friction across the interface.

For contact interfaces in the Corbino geometry, the bound-
ary conditions corresponding to the above limiting cases differ
from the well-known expression of conventional hydrody-
namics. The no-slip boundary condition now means that the
tangential component of the hydrodynamic velocity is con-
tinuous across the interface (written as above for the inner
interface)

uLϑ (r1 − ε) = uϑ (r1 + ε), (10a)

in contrast to the common condition of vanishing velocity
at the channel boundary (the two are consistent, since in the
latter case there is no flow beyond the edge).

The no-stress boundary condition means the absence of
any forces along the interface in which case the tangential
component of the stress tensor �i j is continuous. In polar
coordinates appropriate for the Corbino geometry one finds

�ϑr
L,E (r1 − ε) = �ϑr

E (r1 + ε). (10b)

The no-stress boundary condition is easy to derive starting
from the kinetic equation. Multiplying the kinetic equation by
the momentum and summing over all quasiparticle states,
one finds an equation featuring the gradient of the stress
tensor [22] as well as macroscopic forces in the system. Now
the boundary condition can be obtained by integrating that
equation over the small volume around the interface. Unless
there is a force localized at the interface (with a δ-function-
like coordinate dependence on the hydrodynamic scale), this
procedure would yield Eq. (10b). Usually, the interfaces are
microscopically rough with the roughness providing such a
force. As a result, the no-slip boundary condition is more
commonly used. In neutral graphene, however, the quasiparti-
cle wavelength typically exceeds any length scale associated
with edge roughness leading to specular scattering [82] and
Eq. (10b).

In the case of the hard wall edges, the boundary condi-
tions were previously studied theoretically in Ref. [89] and
confirmed experimentally in Ref. [8] where a nonzero slip
length was proposed indicating a more general Maxwell’s
boundary condition. However, the specific choice of the
boundary conditions does not lead to qualitatively differ-
ent results [73]. Here we follow the hydrodynamic tradi-
tion and consider both the no-slip and no-stress boundary
conditions.
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C. Interface-induced dissipation and jumps
of the electric potential

The hydrodynamic theory discussed so far completely
describes the energy flow in neutral graphene. In order to
establish the device resistance R we have to find the behavior
of the electrochemical potential at the interfaces.

The standard description of interfaces between metals or
semiconductors in terms of the contact resistance [90] can
be carried over to neutral graphene [81]. In graphene, the
contact resistance was recently measured in Ref. [8] (see also
Refs. [31,91,92]). In the diffusive (or Ohmic) case, the contact
resistance leads to a voltage drop that is small compared
to that in the bulk of the sample and can be neglected. In
contrast, in the ballistic case with almost no voltage drop in the
bulk, most energy is dissipated at the contacts. Both scenarios
neglect interactions.

In the diffusive regime interactions give rise to perturba-
tive corrections to the bulk resistivity [93,94] and the contact
resistance can still be neglected. In ballistic samples electron-
electron interaction may lead to the “Knudsen-Poiseuille”
crossover [19] and drive the system to the hydrodynamic
regime. In this case the Ohmic resistivity of the electronic
fluid may remain small, but there exist other channels for dis-
sipation due to viscosity [73] and energy relaxation processes
[59]. In neutral graphene the effect is subtle [65], since the
electric current is decoupled from the hydrodynamic energy
flow. However, both are induced by the current source that
provides the energy dissipated through all the above channels.
The energy dissipated in the system corresponds to the overall
voltage drop. In the bulk of the sample the voltage drop is
Ohmic as determined by Eq. (4a), while the additional con-
tribution takes the form of a potential jump at the interface
between the sample and leads. At the same time, an excess
electric field is induced in a thin Knudsen layer around the
interface [73].

The magnitude of the jump in φ can be established by con-
sidering the flow of energy through the interface as suggested
in Ref. [73] and detailed in neutral graphene at B = 0 in
Ref. [65]. Consider the kinetic energy defined by integrating
the energy density nE (u) − nE (0) over the volume

E =
∫

dV [nE (u) − nE (0)] ≈
∫

dV
6P

v2
g

u2, (11)

which we have expanded to the leading order in u (and hence
in I). In the stationary state, dissipation is balanced by the
work done by the source, such that the time derivative of the
kinetic energy vanishes, A = Ė = 0. Using the equations of
motion and continuity equations to find time derivatives, one
may split A into the “bulk” and “boundary” contributions,
A = Abulk + Aedge. The former may be interpreted as the bulk
dissipation, while Aedge must include the energy brought in
(carried away) through the boundary by the incoming (out-
going) flow. The boundary condition is then found under the
assumption that energy is not accumulated at the interface.

Assuming the leads’ material is highly doped graphene,
the equation of motion is the usual Ohm’s law where we
may combine the diffusion term [95] with a contribution of
viscosity ηL due to disorder [96] into the gradient of the

FIG. 2. Electric current density j and potential ϕ in the device
obtained by solving the hydrodynamic equations at relatively high
temperatures where energy relaxation is dominated by supercolli-
sions. Arrows indicate j and the color map shows ϕ. The outer lead is
chosen to be grounded. The four panels correspond to the indicated
values of magnetic field. For the values of other parameters, see
Fig. 1.

stress-energy tensor [23] and hence

3PL

v2
g

uL∂t uL

= ui
L

(
−3PL

v2
g

ui
L

τL
− ∇ j�

i j
L,E + nLeEi + e

c
εi jk j jBk

)

= −3PL

v2
g

u2
L

τL
+ ∂uL,i

∂x j
�

i j
L,E + e

c
uL · ( j × B) + eϕ∇ · j

−∇ i
(
u j

L�
i j
L,E + e jiϕ

)
.

The last term in this expression determines the boundary
contribution. Given that the Lorentz force does not explicitly
contribute, the only difference from the expression derived in
Ref. [65] at B = 0 is the nonzero tangential components of the
hydrodynamic velocity and the stress tensor (vanishing in the
absence of magnetic field). In neutral graphene, we obtain a
similar expression from the Navier-Stokes equation, while the
Joule heat is determined by δ j. Equating the two contributions
we find the jump of the potential in the form

ϕ(r1 − ε) − ϕ(r1 + ε) = IRc + 2πr1

I

[(
ur�

rr
E + uϑ�ϑr

E

)∣∣
r1+ε

− (
ur�

rr
L,E + uϑ�ϑr

L,E

)∣∣
r1−ε

]
, (12)

where Rc is the usual contact resistance [81]. A similar condi-
tion holds at the boundary with the outer lead.
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III. HYDRODYNAMIC FLOWS
IN THE CORBINO GEOMETRY

In polar coordinates and taking into account radial symme-
try, the hydrodynamic equations (3) and (4) form two disjoint

sets of differential equations. The first one determines the
tangential component of the velocity uϑ :

1

r

∂ (rδ jr )

∂r
= 0, (13a)

η∂r

(
1

r

∂ (ruϑ )

∂r

)
− eB

c
δ jr − 3Puϑ

v2
gτdis

= 0, (13b)

δ jr = 1

e2R̃

[
eEr (r) + ωB

2T ln 2

v2
g

uϑ

]
, (13c)

δ jIϑ = − α1δIωB

τ−1
dis + δ−1

I τ−1
22

δ jr, (13d)

while the second one involves the radial component ur :

nI

r

∂ (rur )

∂r
+ 1

r

∂ (rδ jIr )

∂r
= −12 ln 2

π2

nIμI (r)

T τR
, (14a)

∂δP

∂r
= η∂r

(
1

r

∂ (rur )

∂r

)
+ eB

c
δ jϑ − 3Pur

v2
gτdis

, (14b)

3P

r

∂ (rur )

∂r
= −2δP(r)

τRE
, (14c)

δ jϑ = ωB

e2R̃

(
α1δI

τ−1
dis + δ−1

I τ−1
22

∂μI

∂r
− 2T ln 2

v2
g

ur

)
, (14d)

δ jIr = − 2δI T ln 2

τ−1
dis + δ−1

I τ−1
22

[
R0

π R̃

∂μI

∂r
+ α1ω

2
B

e2R̃

ur

v2
g

]
. (14e)

A. Tangential component of the velocity and bulk voltage drop

The bulk magnetoresistance can be found by solving
Eqs. (13) with the appropriate boundary conditions. Combin-
ing Eqs. (13a) and (13b) we find an inhomogeneous Bessel
equation for the tangential component of the velocity uϑ with
the characteristic length scale being the Gurzhi length �2

G =
ηv2

gτdis/(3P). The boundary condition for uϑ is determined by
microscopic details of viscous drag at the interface and hence
is not universal. Here we follow the hydrodynamic tradition
and consider both the no-slip and the no-stress boundary
conditions (see Sec. II B). Moreover, one can distinguish two
different setups where the external magnetic field is applied
either to the sample only or to the whole device including the
leads. In all these cases we can find an analytic expression for
uϑ , which can be substituted into Eq. (13c) to find the electric
field in the sample, Er (the radial component of the current
is determined by the continuity equation alone). Similarly,
Eq. (13d) determines δ jIϑ . Using the obtained electric field
we can determine the voltage drop through the bulk of the
sample as

U =
∫ r2

r1

Erdr =
∫ r2

r1

dr

(
R̃I

2πr
− B

c
uϑ

)
. (15)

For the no-slip boundary condition for uϑ and al-
lowing the external magnetic field to penetrate the
leads, the tangential component of the velocity is given
by

uϑ = − BI�2
G

2πcηr
+ BI

(
η�2

L − ηL�2
G

)
2πcηηLr1r2

×
[

K1

(
r

�G

) r1I1
( r1

�G

) − r2I1
( r2

�G

)
K1

( r1
�G

)
I1

( r2
�G

) − I1
( r1

�G

)
K1

( r2
�G

)
+ I1

(
r

�G

) r2K1
( r2

�G

) − r1K1
( r1

�G

)
K1

( r1
�G

)
I1

( r2
�G

) − I1
( r1

�G

)
K1

( r2
�G

)]
, (16)

where ηL is the disorder-induced viscosity [96] and �2
L =

v2
gηLτL/(2PL ) is the Gurzhi length in the leads.

In the limit �G � r1, r2 (i.e., “clean system” with long
mean free time τdis → ∞) this simplifies to (p = r2/r1)

uϑ ≈ − BI�2
L

4πcrηL

[
2 +

(
1

�2
G

− ηL

η�2
L

)

× r2 ln
(

r
r1

) + r2 p2 ln
( r2

r

) − r2
2 ln p

1 − p2

]
. (17)
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The corresponding voltage drop remains finite:

U ≈
(

1 − η�2
L

ηL�2
G

)
B2Ir2

2

4πc2η

(p2 − 1)2 − 4p2 ln2 p

4p2(p2 − 1)

+ I ln p

2π

(
B2

c2

v2
gτL

3PL
+ R̃

)
, (18a)

yielding the field-dependent bulk resistance (R = U/I)

R(B) ≈ ln p

2π
R0 + B2r2

2

4πc2η

(p2 − 1)2 − 4p2 ln2 p

4p2(p2 − 1)

+ B2v4
g ln p

2c2T 3

[
α2

1δI

8 ln3 2

1

τ−1
dis + δ−1

I τ−1
22

+ T 3

μ3
τL

]
, (18b)

assuming η�2
L/(ηL�2

G) = 3PτL/(2PLτdis) � 1 with PL =
μ3

L/(3πv2
g ). The two field-dependent terms differ in their

dependence on temperature, sample size, and coupling
constant [35] opening a possibility to separate the two
contributions from the experimental data and thus to measure
the viscosity coefficient.

If the magnetic field is applied to the sample only (and not
to the leads) uϑ vanishes in the leads and hence the terms
with �L do not appear in the voltage drop (18). In that case,
the field-dependent contribution to U does not contain τdis in
contrast to the known result in the strip geometry [23,30].

A similar result can be obtained in the case of no-stress
boundary conditions, where the tangential component of the
velocity uϑ is still expressed in terms of the Bessel functions.
In the clean limit (�G � r1, r2) the voltage drop also remains
finite:

U ≈ I

2π

(
R̃ + B2�2

L

c2η
− BηH

ecηnL

)
ln p

+ r2
2B2I

4πc2η

[(
p2 − 1

)(
p4 + 10p2 + 1

)
12p2(p2 + 1)2 − ln p

1 + p2

]

+ I

2π

[
B2

c2

(
�2

G − �2
L

)
η

+ BηH

ecηnL

]
p2 − 1

p2 + 1
, (19)

where ηH is the Hall viscosity in the leads, which vanishes if
the magnetic field is not allowed in the leads. In that case, the
last term in the voltage drop (19) is proportional to τdis and
independent of viscosity. The second term in Eq. (19) remains
similar to Eq. (18) and is inverse proportional to η. This term’s
dependence on the ratio p is distinct from both Eq. (18) and
the third term in Eq. (19) and could be extracted by analyzing
the data in a set of Corbino disks with different p.

In the opposite limit �G � r1, r2, the leading contribution
to the bulk voltage drop is independent of η. For no-slip
boundary conditions and in the simplified case where the
field is not allowed to penetrate the leads we find for the
field-dependent part of U

R(B) − R(0) ≈ B2v2
gτdis ln p

6πc2P
+ ln p

2π
δIα

2
1 R̃B ∝ τdisB

2. (20)

The voltage drop (20) is proportional to τdis similarly to the
result in the strip geometry (see Refs. [23,30]). Of course,
in the limit �G � r1, r2 the mean free time τdis cannot
be arbitrarily large, hence the voltage drop (20) does not

diverge. In the limit τdis → ∞ the voltage drop crosses over
to the above “clean” limit and is given by Eq. (18). However,
the limiting expression (20) is independent of viscosity, and
hence qualitatively similar to the usual result.

To summarize the results of this section, we have shown
that bulk magnetoresistance in neutral graphene in the
Corbino geometry exhibits a crossover between the “clean”
limit of the large (compared to the disk radius) Gurzhi length
to the limit of small Gurzhi length. In the former case, the
field-dependent part of the bulk voltage drop is determined
by viscosity, while in the latter limit it is proportional to the
disorder mean free time similarly to the known result in the
strip geometry.

B. Radial component of the velocity and the device resistance

The five equations (14) can be reduced to two coupled
differential equations (for similar calculations in the strip ge-
ometry, see Refs. [23,48,68,82]). To simplify the arguments,
we introduce the following notations:

q = nI ur, p = δ jI,r, x = 2nI

3P
δP, y = 12 ln 2

π2

nI

T
μI .

(21)

In terms of the new variables, Eqs. (14a) and (14c) can be
written as

1

r

∂ (rq)

∂r
+ 1

r

∂ (r p)

∂r
= − y

τR
, (22a)

1

r

∂ (rq)

∂r
= − x

τRE
. (22b)

Equation (14e) can be rewritten as

∂y

∂r
= − 6

π

R̃nI

R0T 2τ̃
p − 12 ln 2

π

α1ω
2
B

e2v2
gR0T

q, (23a)

where τ̃ = δI/(τ−1
dis + δ−1

I τ−1
22 ). Finally, Eqs. (14b) and (14d)

can be combined into

∂x

∂r
= 2η

3P

∂

∂r

1

r

∂ (rq)

∂r
− 2

v2
g

[
τ−1

dis + ω2
B

e2R̃

4T 2 ln2 2

3Pv2
g

]
q

+α1τ̃
π2T 2

9Pv2
g

ω2
B

e2R̃

∂y

∂r
. (23b)

Introducing the differential operator

D̂q = ∂

∂r

1

r

∂ (rq)

∂r
, (24)

we rewrite Eqs. (22) in the matrix form

D̂

(
q
p

)
= T̂S

(
∂x/∂r
∂y/∂r

)
, T̂S =

(
1

τRE
0

− 1
τRE

1
τR

)
. (25a)

Similarly, Eqs. (23) can be written in the matrix form(
∂x/∂r
∂y/∂r

)
= −M̂

(
q
p

)
+ V̂ D̂

(
q
p

)
, (25b)

where

V̂ =
(

2η

3P 0
0 0

)
235401-7
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FIG. 3. Radial (top panel) and tangential (bottom panel) com-
ponents of the hydrodynamic velocity u computed within the
“supercollisions model” of energy relaxation. Black lines in the
shaded regions show the drift velocity in the leads. Color curves cor-
respond to different values of the external magnetic field according
to the shown color coding. The top curve shows values at B = 0 and
is identical with the results of Ref. [65]. For the parameter values,
see Fig 1.

and

M̂ =
⎛⎝ 16 ln3 2

3π
δI R̃BT 3

v4
g PR0 τ̃

+ 2
v2

gτdis

4 ln 2
3

α1δI nI R̃BT
v2

g PR0 τ̃

24 ln2 2
π2

α1δI R̃B
v2

g R0 τ̃
6
π

nI R̃
R0T 2 τ̃

⎞⎠.

Finally, combining Eqs. (25) we find the equation for the
variables p and q:

D̂

(
q
p

)
= K̂

(
q
p

)
, K̂ = [1 − T̂SV̂ ]−1T̂SM̂. (26)

The obtained equation should be solved with the boundary
conditions (9). The solution is straightforward albeit tedious.
The results can be expressed in terms of linear combina-
tions of the Bessel functions. Thus obtained solutions are not
particularly instructive, hence we present the results of the
calculation in graphical form.

The radial component of the hydrodynamic velocity is
shown in the top panel of Fig. 3. The drift velocity in the leads
shows the standard Corbino profile, ur ∝ 1/r. At each inter-
face, ur exhibits a jump due to the mismatch of the entropy
densities in the sample and leads. For high enough magnetic
field, ur has a sign change close to the interface. However, the

FIG. 4. Local variations of temperature (top panel) and pressure
(bottom panel) in the Corbino device computed within the “supercol-
lisions model” of energy relaxation. Black lines in the shaded regions
indicate that the leads are at equilibrium. Color curves correspond
to different values of the external magnetic field according to the
shown color coding. Zero-field values are identical with the results
of Ref. [65]. For the parameter values, see Fig. 1.

corresponding change of direction is hardly seen in the overall
flow diagram shown in Fig. 1, since the numerical value of the
tangential component uϑ is much larger (see the bottom panel
of Fig. 3).

The hydrodynamic velocity determines the energy current
in the system. The nonuniform energy current results in local
variations of the electronic temperature from its equilibrium
value (see Fig. 4). The inhomogeneous temperature profile
suggests that energy relaxation is less effective in strong mag-
netic fields. Figure 1 shows the same data as Fig. 4 but in the
form of the color map.

Finally we use the boundary conditions (12) to find the
interface jumps of the electric potential which allows us to
determine the device resistance. The procedure is the same
as in the case of B = 0 discussed in Ref. [65]. The results
are shown in Fig. 5. For small enough samples (see the top
panel in Fig. 5) the device resistance deviates only slightly
from R̃ which is of the same order of magnitude as the mag-
netoresistance in the infinite system [23,82]. In large samples
the deviation is more pronounced and depends on the actual
radius of the disk rather than on the ratio p (which is the same
in both plots).

The quantitative results shown in this section were
computed for a particular choice of the relaxation times.
These values are largely phenomenological; however, the
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FIG. 5. Magnetoresistance of a small (top panel) and large (bot-
tom panel) Corbino device computed within the “supercollisions
model” of energy relaxation. The radii of the Corbino disks are
shown above the plots. The black dotted line shows the quantity R̃,
which is of the same order of magnitude as the magnetoresistance in
the infinite system [23,82]. Color curves correspond to three different
sets of values of the relaxation times. For other parameter values
(yielding �G = 0.2 µm), see Fig. 1. The insets show the contact
resistance due to viscous dissipation.

magnetoresistance shown in Fig. 5 hardly depends on them,
while for larger samples (the bottom panel) the three curves
are indistinguishable. However, the values of the relaxation
times cannot be completely arbitrary. The point is that the
matrix K̂ in Eq. (26) is not guaranteed to have real, positive
eigenvalues (although its determinant is positive). In partic-
ular, the recombination time τR and energy relaxation time
τRE cannot be very different. Within the physical model of
supercollisions [59] these timescales are of the same order
of magnitude. Quasiparticle recombination involves supercol-
lision scattering between the bands, while energy relaxation
includes an additional contribution of intraband scattering. As
a result, the energy relaxation time is shorter than τR, but not
much shorter since the model does not involve any additional
parameter. For such physical values of the relaxation times the
eigenvalues of the matrix K̂ are real positive and the resulting

magnetoresistance is well accounted for by the curves shown
in Fig. 5 where, again, the particular values of τR and τRE do
not have a strong quantitative impact on the overall resistance
magnitude.

C. Energy relaxation due to electron-phonon interaction

Supercollisions are scattering events involving electron
scattering off a phonon and an impurity. As such, this is a
next-order process as compared to the direct electron-phonon
scattering. The reason supercollisions might be important is
that the speed of sound is much smaller than vg. At high
enough temperatures [59,60] supercollisions indeed domi-
nate, but at lower temperatures the direct electron-phonon
scattering cannot be neglected.

Energy relaxation and quasiparticle recombination due to
electron-phonon scattering was considered in Ref. [23] within
the linear response theory. Since the macroscopic equations of
the linear response theory coincide with the linearized hy-
drodynamic equations [22], we can directly incorporate the
corresponding decay terms into our hydrodynamic theory.
These decay terms appear in Eq. (25a) through the matrix
T̂S . The model of electron-phonon interaction introduced in
Ref. [23] corresponds to the following choice of this matrix:

T̂ep = − 1

|�|

⎛⎝ γ

τEc
+ 1

τEb
− γ 2

N2τEb
− γ

τEc

− γ 2N2

γ τEc
− N2

τIc
− 1

τEb

2γ

τEc
+ γ 2

N2τEb
+ N2

τIc

⎞⎠,

(27)
where

γ=
π2

12 ln2 2
, N2 = 9ζ (3)

8 ln3 2
, � = γ 2 − N2,

and τEb � τEc � τIc describe the three independent compo-
nents of the electron-phonon collision integral [23].

Repeating the above calculation with T̂ep instead of T̂S , we
arrive at the results that are largely similar to those obtained
within the supercollision model, but with a few notable differ-
ences (see Figs. 6–11). Unless specified in the figure captions,
the parameter values used for the quantitative computation are
the same as in the case of supercollisions (see the caption to
Fig. 1).

Magnetoresistance of the device is still positive and
parabolic (see Fig. 6). In small devices, it is still largely
determined by the quantity R̃ (shown by the black dotted
line in Fig. 6 similarly to Fig. 5). In this case, variations of
the electron-phonon relaxation rates still do not affect the
result in any noticeable way. The results for large devices
are also similar to the case of supercollisions: Calculated
magnetoresistance clearly exceeds R̃ and thus shows a strong
dependence on the size of the device (but not on the ratio p).

The electric current density and potential in the device
are seen largely the same as in the case of supercollisions,
although the deviation of the current from the radial direction
(i.e., its tangential component δ jϑ ) is somewhat smaller (see
Fig. 7; cf. Fig. 2). This result seems to be consistent with the
similarities in the magnetoresistance in the two cases.

The hydrodynamic velocity u is still dominated by its tan-
gential component (see Figs. 8 and 9). The latter shows the
behavior that is largely similar to that shown in the bottom
panel of Fig. 3, although the magnitude of uϑ shows stronger
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FIG. 6. Magnetoresistance in small (top) and large (bottom)
Corbino devices computed within the “electron-phonon model” of
energy relaxation (cf. Fig. 5).

growth with increasing magnetic field. In contrast, the temper-
ature variation is “reversed”: Now the electronic temperature
is increased around the inner contact and decreased close to
the outer one (the opposite behavior to that seen in Figs. 1 and
4) (see Fig. 10).

The reversed behavior of the temperature variation cor-
responds to the change in the radial component of the
hydrodynamic velocity ur . While the jumps at the interfaces
with the leads remain the same (insofar ur on the sample side
of the interface is larger than the drift velocity in the leads),
the initial slope of ur as a function of the radial coordinate has
the opposite sign, which does not change with the increase in
the magnetic field.

Overall, it is rather natural that the choice of the energy
relaxation model mostly affects the energy flow in the device
rather than the charge flow. This is a clear consequence of
the decoupling of the energy and electric currents in neutral
graphene. Although the two currents are being coupled by the
magnetic field, the effect appears to be subleading. It is not
surprising that the effect of this coupling is most pronounced
in strong magnetic fields and large Corbino disks.

FIG. 7. Electric current density j and potential ϕ within the
electron-phonon model of energy relaxation (cf. Fig. 2).

Contact resistance induced by viscous dissipation (see in-
sets in Figs. 5 and 6) is also affected by the choice of the
energy relaxation model. In the case of supercollisions its
qualitative behavior exhibits a strong dependence on the size
of the disk (see Fig. 5), while in the model of electron-phonon
scattering this dependence is reduced to the magnitude only.
The contact resistance is significantly stronger in small

FIG. 8. Hydrodynamic velocity u and temperature δT distribu-
tion in the device obtained by solving the hydrodynamic equations at
relatively low temperatures where energy relaxation is dominated by
direct electron-phonon scattering (cf. Fig. 1).
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FIG. 9. Tangential component of the hydrodynamic velocity uϑ

computed within the electron-phonon model of energy relaxation (cf.
Fig. 3).

devices for both choices of the energy relaxation model as
expected on general grounds.

IV. SUMMARY

In this paper we considered hydrodynamic flows of charge
and energy in neutral graphene Corbino disks. We have shown
that the Corbino geometry offers a (in principle realizable)
possibility to measure electronic viscosity in neutral graphene,
a task that so far has appeared elusive. The viscosity coeffi-
cient could be extracted from the magnetoresistance data in
the ultraclean limit where the bulk contribution to the device
resistance is independent of the electron-impurity scattering
time. The bulk resistance dominates over the contact resis-
tance for larger sized disks and hence can in principle be
measured in laboratory experiments.

Corbino magnetoresistance in graphene is illustrated in
Figs. 5 and 6, where the calculated magnetoresistance is
shown for two models of energy relaxation. In both cases,
the dependence R(B) is parabolic, similarly to the known
result in the strip geometry. The viscosity coefficient can be
in principle determined experimentally by analyzing the data
in a set of different Corbino disks (see Sec. III A). This is not
a straightforward task since the magnetoresistance is given

FIG. 10. Local temperature variation computed within the
electron-phonon model of energy relaxation (cf. Fig. 3).

FIG. 11. Radial component of the hydrodynamic velocity ur

computed within the electron-phonon model of energy relaxation (cf.
Fig. 3).

by a sum of viscosity-dependent and viscosity-independent
terms. In the clean limit �G � r1, r2 [see Eq. (18)], these terms
exhibit distinct dependence on the sample size r2, the ratio
of the radii p = r2/r1, and temperature, making it possible to
extract the viscosity coefficient from the experimental data. In
the opposite limit [see Eq. (19)], the dominant contribution
to magnetoresistance is independent of viscosity. Existing
experiments appear to be in the crossover between these two
limits. In this paper we have used parameter values yielding
�G ≈ 0.2 µm. The size of the Corbino disk used in a recent
experiment [31] was r1 = 2 µm, r2 = 9 µm, which is closer to
the “large Corbino disk” illustrated in panels (b) in Figs. 5 and
6 than to the clean limit. It is fair to say that at present extract-
ing viscosity from Corbino magnetoresistance measurements
would be extremely difficult. At the same time, we are not
aware of any other way to measure the viscosity coefficient in
neutral graphene. We believe that viscosity measurements and
more generally experimental observation of purely viscous
effects in neutral graphene will be more accessible in the near
future with even cleaner samples (increasing τdis by an order
of magnitude).

The regime of linear magnetoresistance as seen in the strip
geometry or infinitely sized models does not exist in the
Corbino geometry. This can be easily understood by noting
that the origin of linear magnetoresistance is in the accumu-
lation of energy and quasiparticle density in the boundary
region of a long strip where the sample edges provide a
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natural barrier for the lateral neutral flow of quasiparticles
induced by the magnetic field. In a Corbino disk there is no
such edge. The lateral currents (energy and imbalance) flow
freely around the disk without accumulating quasiparticles at
any point.

Unlike the case of a single-band conductor (e.g., doped
graphene), at charge neutrality the electric field is not ex-
pelled from the bulk of the sample. Nevertheless bulk viscous
dissipation does lead to a discontinuity of the electric potential
at the sample-lead interfaces inducing an additional contact
resistance. This resistance, however, is rather small as com-
pared to the resistance of the whole device and should not
have a strong effect on the viscosity measurements.
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