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Energy-Momentum-Entropy consistent time integration of dissipative
thermomechanical systems in an extended framework of GENERIC
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Energy-Momentum-Entropy (EME) time-stepping schemes are distinguished by their numerical stable and robust behaviour,
which stems from their ability to preserve the structure of the underlying system. In the context of closed dissipative ther-
momechanical systems, they are energy- and momentum-preserving as well as entropy-producing. In order to illustrate the
qualification of the GENERIC framework for the design of EME integrators, a thermoviscoelastic double pendulum is chosen
as discrete model problem to which the discrete gradient operator due to Gonzalez [1] is applied. The acronym GENERIC per-
tains to ‘General Equation for Non-Equilibrium Reversible Irreversible Coupling’ and provides by design a thermodynamic
admissible mathematical framework for the evolution equations of dissipative thermomechanic systems. This contribution
enlightens the incorporation of constraints in the GENERIC formalism and the necessity of a Lyapunov function as stability
criterion.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Model problem

Despite its simplicity the model problem of a thermoviscoelastic double pendulum (Fig. 1) possesses essential structural
properties of dissipative thermodynamic coupled systems. In this context, it facilitates the description of the GENERIC
framework and therefore the design of thermodynamic consistent time-stepping schemes.
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Fig. 1: The model problem of the thermoviscoelastic double pendulum.

The double pendulum’s position in space is described through coordinates qα ∈ R3, (α = 1, 2) that can be collected in the
vector q = (q1,q2). They state the position of the mass points mα, where q2 measures the distance from m2 relative to m1.
Hence, the mass matrix has the form

m =

[
(m1 +m2)I m2I

m2I m2I

]
, (1)

with the identity matrix I. The conjugate momenta are denoted p = (p1,p2) and calculated via p = mq̇, where the dot in the
superscript denotes the temporal derivative. A thermoelastic spring connects the origin with m1, while a thermoviscoelastic
spring connects m1 to m2. Each spring’s individual length is denoted by lα =

√
qα · qα and their unique temperature by θα.

It is assumed that the thermoelastic behaviour of the first spring is governed by a free energy function ψ1(l1, θ1). Similarly,
the thermoviscoelastic behaviour is characterized by ψ2(l2, θ2, γ), with γ being an internal variable that describes the inelastic
strain in the damper. Both energy functions account for the Gough-Joule effect. According to Fourier’s law, a heat flux takes
place between the two springs.

An important advantage of GENERIC is the facilitation of the free choice of the thermodynamic variable τα among the
entropy sα, the temperature θα or the internal energy uα due to its transformation properties (see [2]). The associated functions
for the internal energy U1(l1, τ1) and U2(l2, τ2, γ) and the entropy S1(l1, τ1) and S2(l2, τ2, γ) can be determined from the two
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free energy functions by Legendre transformation. The temperature of the two springs can be calculated via

Θα =
∂ταUα

∂ταSα
. (2)

Hence, the state vector, which completely describes the system follows as

z = (q,p, γ, τ) , (3)

where τ = (τ1, τ2).

2 GENERIC-based formulation

The evolution equations within the GENERIC formalism according to Öttinger [3] follow as

ż = żrev + żirr = L(z)∇E(z) +K(z)∇S(z) . (4)

Herein, reversible processes are described through the gradient of the total energy E with the skew-symmetric Poisson matrix
L. In contrast, the irreversible evolution is generated through the gradient of the total entropy S with the symmetric and
positive-semidefinite dissipative matrix K. The framework is based on the thermodynamic consistency of the evolution
equation (4), which is ensured through the degeneracy or non-interaction conditions

L∇S = 0

K∇E = 0 .
(5)

It is easily shown that GENERIC guarantees energy preservation (Ė(z) = 0) according to the first law of thermodynamics in
a closed system as well as a non-decreasing entropy (Ṡ(z) ≥ 0) as per second law of thermodynamics. Due to its thermody-
namic admissibility, the GENERIC evolution equation (4) provides an ideal basis for the design of numerical time integration
schemes for dissipative thermodynamic systems. If no external forces act on the point masses m1 and m2 and thermal inter-
action with the surrounding is prevented, the model problem constitutes a closed system. The total internal energy U(z) and
entropy S(z) follow as the sum of the spring’s internal energy and entropy. The total energy results in

E(z) =
1

2
p ·m−1p+ U(z) (6)

as the sum of the kinetic and internal energy, gravitation is considered by adding the corresponding potential.
The choice of the thermodynamic variable τα ∈ {θα, uα, sα} influences the occupation of the structure-matrices L and K

in the GENERIC formalism (4), which is illustrated in Fig. 2. Choosing the entropy (τα = sα) as thermodynamic variable
does not lead to further contributions to the Poisson matrix L, where only the entries due to the canonic Hamilton equations
remain. In contrast, the choice of the temperature (τα = θα) leads to the maximum occupation.
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Fig. 2: Structure of the GENERIC evolution equation (4) dependent on the choice of the thermodynamic variable τα ∈ {θα, uα, sα} for
the model problem.

Mielke [2] proposed a special form of the GENERIC framework, which is based on a split of the Poisson matrix L and the
dissipative matrix K. Therefore, the matrices

MH (ω, τ) =




I 0

− 1

∇τH
∇ωHT 1

∇τH


 and MT

H (ω, τ) =



I − 1

∇τH
∇ωH

0
1

∇τH


 (7)
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are defined for a functional H, where ω = (q,p, γ). The evolution equation in the specialized form follows as
[
ω̇
τ̇

]
= MSL0M

T
S∇E +MEK0M

T
E∇S = L∇E +K∇S , (8)

where the mechanical matrices MS and ME , as well as MT
S and MT

E correspond to the evaluation of (7) with respect to the
functions of the total entropy and total energy. The matrices L0 and K0 possess a Poisson and dissipative structure, therefore
the matrices L = MSL0M

T
S and K = MEK0M

T
E automatically define a Poisson and dissipative structure.

Multiplying the mechanical submatrices with the gradient of the total energy or total entropy gives

MT
E∇E =

[
0
1

]
and MT

S∇S =

[
0
1

]
, (9)

which leads to the necessary condition

L0 (ω, τ)

[
0
1

]
≡ 0 ≡ K0 (ω, τ)

[
0
1

]
(10)

for the fulfilment of the degeneracy conditions. The special form of GENERIC reveals the role of the reversible and irreversible
driving forces as

MT
S∇E =

[
∇ωE − θ∇ωS

θ

]
and MT

E∇S =

[
∇ωS − θ−1∇ωE

θ−1

]
. (11)

In contrast to the original GENERIC formulation due to Öttinger [3], the construction of the Poisson and dissipative matrices
is very simple due to the split. The thermodynamic matrices L0 and K0 follow as

L0 =




0 I 0 0
−I 0 0 0
0 0 0 0
0 0 0 0


 , K0 =




0 0 0 0
0 0 0 0
0 0 η−1θ2 0
0 0 0 K0,ττ


 and K0,ττ =

[
κθ2θ1 −κθ2θ1
−κθ2θ1 κθ2θ1

]
. (12)

Within the GENERIC framework constraints can be easily taken into account by adding an additional term, leading to

ż = żrev + żirr = L(z)∇E(z) +M(z)∇S(z) +N(z)λ (13)

as extension of the evolution equation (4). In this contribution two types of constraints will be addressed. Impeding the
stretching of the first spring corresponds to the holonomic constraint g1(q1) = 0 with g1 = 1

2 (l1 − l̄1), where l̄1 denotes
the prescribed distance of m1 to the origin. The constraint force, which is necessary to that end, arises from the product of
N(z)λ. A variation of the first spring’s temperature is prevented by g2(q1, τ1) = 0, where g2 = Θ1 − θ̄1 with Θ1 following
(2) and θ̄1 denoting the prescribed temperature. The corresponding entry in the matrix N with the entry in the vector λ
governs the heat flux over the boundary of the system that is necessary to fulfil the temperature condition and which follows
Fourier’s law of heat conduction. In order to retain the GENERIC’s thermodynamic consistency, the additional condition
NT∇E = NT∇S = 0 has to hold for workless constraints. The condition on the temperature g2(q1, τ1) = 0 leads to a heat
flux over the system’s boundary and therefore to a modification of the thermodynamic properties.

3 Energy-Momentum-Entropy consistent discretization

Structure-preserving time discretization methods are known for their numerical stable and robust behaviour (cf. [4, 5]). Pre-
vious work has shown that the midpoint rule as implicit integrator is only partially structure-preserving in dependence of the
choice of the thermodynamic variable (compare [6–8]). The energy, which has proven to be a suitable numerical stability
criterion for isothermal elastic systems is not adequate for the assessment of a dissipative thermomechanic system’s stability.
For this purpose

V (z) = E(z)− θRS(z) (14)

has emerged as excellent indicator. Herein, θR denotes a constant reference temperature. It can be easily shown that V con-
stitutes a Lyapunov function for the considered closed system. An integrator, which is able to correctly reproduce the first and
second law of thermodynamics for arbitrary time step sizes, fulfils the stability criterion Vn+1 ≤ Vn and is thermodynami-
cally consistent. If the integrator additionally preserves the angular momentum, it is denoted as EME (‘Energy-Momentum-
Entropy’) integrator. Dependent on the choice of the thermodynamic variable τα ∈ {θα, uα, sα}, three different time-stepping
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4 of 6 Section 7: Coupled problems

schemes emerge ((EME)s,(EME)θ,(EME)u). The approximation of the differential-algebraic equations follows for initial val-
ues z0 of the state vector (3) at time t = 0 within the finite time interval In = (tn−1, tn] and time step size ∆t = tn+1 − tn
as

∆z =
zn+1 − zn

∆t
= L(zn+1, zn)DE(zn+1, zn) +M(zn+1, zn)DS(zn+1, zn) + N(zn+1, zn)λn+1

gn+1 = 0 ,
(15)

where the functional values at time tn are denoted by (•)n and as (•)n+1 at time tn+1. Herein, the derivatives are evaluated
with the discrete derivative operator due to Gonzalez [1].

4 Numerical simulations

The free Helmholtz energy function that describes the thermoelastic and thermoviscoelastic behaviour of the two springs is
chosen similarly to [9] as

ψ = ψeq
1 (λ1, θ1) + ψeq

2 (λ2, θ2) + ψneq
2 (λ2, θ2, γ2)

ψeq
α (λα, θα) =

µeq
α (θα)

2
ln2

(
λα
λ0α

)
− β(θα − θref ) ln

(
λα
λ0α

)
+ c0α

(
θα − θref − θα ln

(
θα
θref

))

ψneq
α (λα, θα, γα) = βv

αψ
eq
α (λα, θα) + µneq

α (θα)γ
2
α − βv

αγα
∂ψeq

α (λα, θα)

∂λα
.

(16)

It is composed of the spring’s free energy function ψeq
α and the Maxwell element’s free energy function ψneq

α , where c0α, θref ,
β and βv denote the specific heat capacity, reference temperature and coupling parameters. The stiffness of the spring µeq

α (θ)
and the Maxwell element µneq

α (θ) plus the viscosity parameter η are temperature-dependent and result from

µeq
α (θ) = µeq

α,cst − µeq
α,θ(θ − θref )

µeq
α (θ) = µneq

α,cst − µneq
α,θ (θ − θref )

η = ηcst exp

[
ηθ

(
1

θ
− 1

θref

)] with

µeq
α,cst, µ

eq
α,θ > 0

µeq
α,cst, µ

neq
α,θ > 0

ηcst, ηθ > 0 .

(17)

An overview of the chosen parameter values can be found in Table 1. The numeric data is produced within a time interval of
I = [0, 20] s with a constant time step size of ∆t = 0.15 s. The initial conditions are:

θ01 = 280 K, θ02 = 350 K, q0
1 =



1
0
0


m, q0

2 =



3
0
0


m, p0

1 =



0
0
0


Ns, q0

2 =



−1
−1
0


Ns, γ02 = 0 m.

Table 1: Numerical data for the thermo-viscoelastic double pendulum.

Mass m1 1 m2 1 kg

Natural length λ01 1.5 λ02 2 m

Spring stiffness µeq
1,cst 200 µeq

2,cst 200 J

µeq
1,θ 0.5 µeq

2,θ 0.5 JK−1

Maxwell element stiffness - - µneq
2,cst 5 Jm−2

- - µneq
2,θ 0.1 J/m2K

Specific heat capacity c01 10 c02 10 JK−1

Viscosity - - ηcst 100 Nsm−1

- - ηθ 10 K

Thermal conductivity k 1 JK−1s−1

Reference temperature θref 300 K

Coupling parameter β 0.02 JK−1

βv 0.5 m−2

Gravitational vector g [0, 0,−9.81]T ms−2

Newton tolerance 10e-8 -

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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Fig. 3: Snapshots of the motion of the thermoviscoelastic double pendulum at time tn ∈ {0, 8, 16, 24}.

Fig. 3 captures the motion of the double pendulum at discrete time steps and displays the approximation of the spring’s
temperatures due to the heat flux. Numeric results, that show the thermodynamic consistent behaviour of the EME integrators
for all possible choices of the thermodynamic variable τα ∈ (θα, uα, sα) are displayed in Fig. 4. Energy is preserved up
to numeric errors, the entropy is an increasing function as per second law of thermodynamics due to heat flux and inelastic
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Fig. 4: Numeric results of the EME integrators that display the course of the total energy, the total entropy and the Lyapunov function as
well as their respective incremental changes.

www.gamm-proceedings.com © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

 16177061, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pam

m
.202200126 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [26/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 6 Section 7: Coupled problems

deformations. The numeric stability of the EME integrators follows from the monotonous decreasing course of the Lyapunov
function.

The incorporation of the constraint functions g1 and g2 is evaluated in Fig. 5 for the (EME)θ integrator. As mentioned before
the constraint on the position vector is workless and hence inherits the GENERIC’s thermodynamic consistency. However,
the constraint on the temperature leads to a heat flux over the system’s boundary, leading to a decay of the energy and entropy.
Still, the (EME)θ integrator yields a numeric stable behaviour, as depicted by the decreasing Lyapunov function.
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Fig. 5: Numeric results of the (EME)θ integrator for the incorporation of the constraint functions g1(q1) and g2(q1, τ1), showing the course
of the total energy and entropy, as well as the Lyapunov function and its incremental change.
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