KIT | KIT-Bibliothek | Impressum | Datenschutz

Generating realistic data for developing artificial neural network based SOC estimators for electric vehicles

Kalk, Alexis ORCID iD icon 1; Birkholz, Oleg; Zhang, Jiaming; Kupper, Christian ORCID iD icon 1; Hiller, Marc 1
1 Elektrotechnisches Institut (ETI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Tracking the state of a lithium-ion battery in an electric vehicle (EV) is a challenging task. In order to tackle one aspect of this task, we choose a data-driven approach for estimating the State of Charge (SOC), which is one of the most import parameters. In this context, the quality of the provided data is of utmost importance. Usually, standardized driving profiles are used to generate current profiles which are then applied to battery cells during testing. However, these standardized driving profiles exhibit significant deviation from real-world conditions, which can considerably affect the learning and validation performance of data-driven approaches. In this paper, we first propose a test profile generator which generates realistic current profiles for EV battery testing. Second, to demonstrate the effect of the proposed test profiles a multilayer perceptron (MLP) based SOC estimator is presented. Finally, we compare the results to the standardized driving profiles.

Zugehörige Institution(en) am KIT Elektrotechnisches Institut (ETI)
Publikationstyp Vortrag
Publikationsdatum 23.06.2023
Sprache Englisch
Identifikator KITopen-ID: 1000159884
HGF-Programm 38.02.03 (POF IV, LK 01) Batteries in Application
Veranstaltung IEEE Transportation Electrification Conference & Expo (ITEC 2023), Detroit, MI, USA, 21.06.2023 – 23.06.2023
Schlagwörter State of Charge, Artificial Neural Networks, Realistic Driving Cycle, SOC Estimation, Lithium-Ion Battery

Volltext §
DOI: 10.5445/IR/1000159884
Veröffentlicht am 27.06.2023
Seitenaufrufe: 124
seit 27.06.2023
Downloads: 56
seit 04.07.2023
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page