Synthesis, Characterization, and Stability of Two Americium Vanadates, AmVO₃ and AmVO₄

Jean-François Vigier,* Thierry Wiss, Natalia Palina, Tonya Vitova, Jean-Yves Colle, Daniel Bouëxière, Daniel Freis, Rudy J. M. Konings, and Karin Popa*

extreme conditions including vacuum, high or low temperatures, and internal irradiation. Thus, their stability under self-irradiation and heat treatment in inert and oxidizing atmospheres was tested and discussed relative to other compounds with a high content of americium.

1. INTRODUCTION

The americium isotope ²⁴¹Am is formed during storage of plutonium via β^- -decay of ²⁴¹Pu with a half-life of 14.33 years. Due to ²⁴¹Am accumulation in existing stocks of civil-separated plutonium in Europe, and its relatively high specific power of 0.114 W/g, ²⁴¹Am has been proposed for use in radioisotope power systems (RPSs)¹ and is under consideration by the European Space Agency (ESA) as an energy source for future European space missions.² The requirements for a stable solid form are very diverse, ranging from storage on earth and operation in space to safe performance in case of accidents and post-accident scenarios. Our group studied several ceramic forms containing significant specific Am amounts,^{3–5} the present study being in line with the past efforts.

The synthesis and crystal structure of AmVO₃ were reported for the first time by Keller and co-workers.^{6,7} In their work, AmVO₄ was prepared by dissolving AmO₂ and V₂O₃ as hydroxides, mixed, dried, and reacted at 1250 °C under an oxidizing atmosphere. The produced AmVO₄ was subsequently reduced to obtain AmVO₃. The authors proposed the crystal structure for the two compounds (perovskite-type for AmVO₃ and zircon-like for AmVO₄) and gave the lattice parameters.

According to the Inorganic Crystal Structure Database (ICSD), there are no compounds of americium and vanadium with a fully characterized crystal structure. We present here the complete crystal structure refinement of the two vanadates by Rietveld analysis at room temperature. Spectroscopic and

microscopic studies were carried out to check the purity of the samples. The high-resolution X-ray absorption near-edge structure (HR-XANES) technique was applied at the Am M_5 edge to characterize the Am oxidation states. The stability of AmVO₃ and AmVO₄ under self-irradiation and heat treatment in an inert and oxidizing atmosphere was tested and discussed relative to other americium-containing compounds.

2. EXPERIMENTAL SECTION

Caution: ²⁴¹Am is a highly radioactive isotope ($t_{1/2}$ = 432.8 years, specific activity of 126.8 GBq/g). All work presented in this paper were carried out in glove boxes in radiological laboratories licensed for handling actinides. When appropriate, shielding and remote handling tools were used to protect the workers in these experiments.

2.1. Sample Preparation. *2.1.1. AmVO*₃. Stoichiometric amounts of ²⁴¹AmO₂ (158 mg of aged material containing about 7% ²³⁷Np as the decay product and 2% ²³⁹Pu) and V₂O₅ (48 mg, Merck, 99.95%) were mixed in an agate mortar and pressed into a pellet. The thermal treatment was performed for 10 h at 1250 °C under Ar/H₂ (5%) with heating and cooling ramps of 200 °C/h.

2.1.2. $AmVO_4$. A chip of 78 mg of the previous $AmVO_3$ pellet was oxidized for 2 h up to 1000 °C under oxygen by using a Netzsch STA

Received: January 23, 2023 Published: June 5, 2023

449C thermogravimetric analysis instrument. Oxidation started at about 400 $^{\circ}$ C with a maximum oxidation rate at 450 $^{\circ}$ C, as discussed in the Materials Characterization section. This synthesis was done independently from the thermogravimetric analysis described below during in which higher temperatures were reached.

2.2. Thermogravimetric Analysis. The thermal behaviors of $AmVO_3$ and $AmVO_4$ were assessed under an argon/hydrogen and oxygen atmosphere, respectively (to preserve the oxidation state of the respective compounds) using a Netzsch STA 449C thermogravimetric analysis instrument. The temperature was controlled by a Pt-PtRh (10%) thermocouple. The measurements were conducted on pellet fragments (11–78 mg) up to 1500 °C in alumina crucibles, and the applied heating and cooling rates were 10 °C/min.

2.3. XRD. Room temperature XRD analyses were performed on about 10 mg of powdered material loaded in a bicomponent epoxy resin using a Bruker D8 Advance diffractometer (Cu K α radiation, 40 kV, 40 mA) mounted in a Bragg–Brentano configuration. The diffractometer was equipped with a curved Ge(1,1,1) K α_1 monochromator, a ceramic copper tube, and a LinxEye position sensitive detector. The XRD patterns were recorded using a step size of 0.01° across the 10° $\leq 2\theta \leq 120^\circ$ angular range. Structural analysis was performed by the Rietveld method using the Jana2006 software.⁸

Since all the crystallographic parameters could not be independently refined, some structural constrains were applied. For the atomic displacement parameter, isotropic displacement parameters U_{iso} were used, and the following equation has been considered:⁹

$$U_{iso}[O] = 2 \times U_{iso}[Am] = 2 \times U_{iso}[V]$$
⁽¹⁾

The V–O distances were constrained to 2 Å for the perovskite structure $AmVO_3^{10}$ and to 1.71 Å for the zircon structure $AmVO_4^{.11}$

2.4. Raman Spectroscopy. Raman spectroscopy measurements were performed on fragment of pellets (2-3 mg) at room temperature and ambient pressure on a polycrystalline specimen using a Horiba Jobin-Yvon T64000 spectrometer. For technical reasons, two lasers at different wavelengths were used; a 647 nm Kr+ laser and a 660 nm solid state laser excitation source. A 50× long focal objective was used to irradiate the sample and collect the back-scattered light. Great care was taken to avoid sample damage or laser-induced heating. Measurements were performed with few tenths of a milliwatt incident power.

2.5. Scanning Electron Microscopy. Images of the samples (fragment of pellets of 1-2 mg) were obtained in a Philips/FEI XL40 SEM operated at 25 kV, equipped with a SAMx energy-dispersive X-ray analysis system (EDX). This microscope (high-voltage unit, column, chamber, and turbomolecular pump) was placed inside a glovebox, while the components that are not getting in contact with the active materials (primary vacuum system, the water-cooling circuit, and the acquisition electronic) were outside.¹²

2.6. XANES and HR-XANES. For AmVO₃ and AmVO₄ compounds, the Am M5 HR-XANES spectroscopy technique was performed at the ACT station of the beamline for catalysis and actinide research (hereafter CAT-ACT beamline) of the KIT Light Source, Karlsruhe, Germany.¹³ Spectra acquisitions were done utilizing a Johann type X-ray emission spectrometer. The incident beam was monochromatized by a Si(111) double-crystal monochromator (DCM), focused to 500 \times 500 μ m, and subsequently narrowed down by slits onto the sample to a spot size of about 200 \times 200 μ m. The X-ray emission spectrometer consists of four Si(220) crystals with a 1 m bending radius and a single diode VITUS silicon drift detector (Ketek, Germany), which together with the sample were arranged in a Rowland circle geometry.¹³ AmO₂ reference sample was used to calibrate Am M5 HR-XANES spectra. The main absorption maximum was set to 3890 eV for AmO2.¹⁴ The maxima of the WLs are located at $AmCl_6^{3-}$ (3888.4 eV), $AmFe_2$ (3887.5 eV) reported elsewhere.^{15,16} Both Am M₅ edge data cited above were measured in conventional fluorescence mode and were similar to AmVO3 and AmVO₄ (3888.5 eV) recorded in this work. The slight divergence of the absorption maximum of AmO_2 in the current work (3890 eV) from the data reported by Epifano et al.¹⁷ (about 3891.5 eV) is a result of different experimental energy resolutions (for details cf.

Discussion in the Supporting Information and Figure S5). The multiposition sample cell (containing <1 mg powdered material embedded in bicomponent glue) was placed into a double containment, where the inner compartment was sealed by 8 μ m and the outer compartment by 13 μ m Kapton foil. The HR-XANES spectra were measured with a step size of 0.1 eV from -10 to +25 eV from the white line (WL) of the respective edge and 0.5 eV in all other parts of the spectra. At least two spectra were averaged for each sample. The sample, crystals, and detector were enclosed in a box filled with helium to minimize intensity losses due to scattering and absorption of photons in air. Constant helium flow was maintained to keep the oxygen level below 0.1%.

Additionally, Am L_3 edge and V K-edge XANES measurements were performed at the INE-Beamline¹⁸ of the KIT Light Source, Karlsruhe, Germany. The radiation protection measures were kept identical to those used at the ACT station.¹⁹ Two Ge(422) and two Si(111) crystals were mounted in the double-crystal monochromator (DCM) for Am L₃ and V K edge measurements, respectively. The beam was focused on a \sim 0.5 mm \times 0.5 mm spot on the sample. Zr or V metal foils were used for energy calibration for the Am L₃ edge or V K edge XANES, respectively. V2O3 (Sigma-Aldrich, 99.99%) and V₂O₅ (Merck, 99.95%) powders were mixed with cellulose and pressed into the pellets and used as references for V K edge XANES. The XANES spectra were measured in fluorescence mode with step sizes of 0.25 and 0.8 eV from -10 to +25 eV from the white line (WL) of the respective edges for the V K edge and Am L_3 edge and 4 eV steps in the post-edge area of the spectra. At least two spectra were averaged for each sample. Measurements were performed in air, and no radiation damage was observed during the measurements.

2.7. α **Self-Irradiation.** Due to the high alpha activity of americium, the doses accumulated by the AmVO₃ and AmVO₄ at the time of different measurements must be considered. Daily doses of about 7.8 × 10¹⁵ and 7.4 × 10¹⁵ α /g were built up for AmVO₃ and AmVO₄, respectively. Only TGA and XRD techniques could be applied on freshly prepared material. The calculated doses of the materials at the time of the different measurements are summarized in Table 1. Between measurements, the samples were stored under the atmosphere of the glovebox where the samples were produced (nitrogen with up to 10,000 ppm oxygen).

Table 1. α Dose Accumulated in AmVO₃ and AmVO₄ at the Time of the Different Measurements, in α Decay Events per Gram of Material

	AmVO ₃		$AmVO_4$	
	sample age, days	cumulated dose, α/g	sample age, days	cumulated dose, α/g
XRD	1.6	1.2×10^{16}	2.7	2.1×10^{16}
	132	1.0×10^{18}	131	1.0×10^{18}
	212	1.6×10^{18}	211	1.6×10^{18}
TGA	3.4	2.7×10^{16}	2.5	1.9×10^{16}
Raman	451	3.5×10^{18}	450	3.5×10^{18}
	890	6.8×10^{18}	890	6.8×10^{18}
SEM	660	5.1×10^{18}	659	5.1×10^{18}
Am L ₃ edge XANES, Am M ₅ edge HR-XANES	603	4.7×10^{18}	607	4.7×10^{18}
V XANES	726	5.6×10^{18}	727	5.6×10^{18}

3. RESULTS AND DISCUSSION

3.1. Materials Characterization: Fresh Material. During the synthesis of $AmVO_4$ by oxidation of an $AmVO_3$ specimen, the DTA measurement (Figure S1) performed in oxygen indicated a single exothermic event reaching a maximum energy release at 450 °C with an associated weight gain of 4.5

pubs.acs.org/IC

Figure 1. XRD patterns, Rietveld refinement, and crystal structure of AmVO3 and AmVO4.

wt %, which was attributed to the oxidation to the $AmVO_4$ form (expected gain of 4.7 wt %).

Americium vanadate $AmVO_3$ crystalizes in the perovskite *Pbnm* structure after sintering under an Ar/H_2 atmosphere; meanwhile, after thermal treatment in oxidative conditions, the material converts into $AmVO_4$ showing a zircon-like $I4_1/amd$ structure (Figure 1 and Table 2). Residual NpO₂ can be detected in quantifiable amounts, which indicates that this daughter element of ²⁴¹Am does not fully integrate the two vanadate compounds and segregates (at least partially) into an oxide phase. The Np L₃ edge XANES data are shown in Figure S4, supporting the above statement.

The crystal structures suggest that americium stays in the oxidation state III in the materials whatever the redox condition, while vanadium can have the oxidation state III or V, which results in ABO_3 perovskite or ABO_4 zircon structures, respectively. One can notice that during the oxidation process, the density of the material strongly decreases from 9.565 g/ cm³ for the close-packed AmVO₃ to 6.914 g/cm³ for the oxyanionic AmVO₄, which indicates a volume increase of 45% during oxidation. The formation of a zircon-like structure for AmVO₄ is in accordance with the works of Keller *et al.*^{6,7} or of

Goubard *et al.*²⁰ showing slightly lower but similar lattice parameters (Table 2).

TGA analyses, under air and argon/hydrogen for $AmVO_4$ and $AmVO_3$, respectively, revealed no significant weight loss for both materials, indicating a good thermal stability of the compounds at high temperature. However, XRD analysis of $AmVO_3$ after TGA measurement showed the presence of a new unidentified phase, $AmVO_3$ remaining as the main compound, suggesting the beginning of a degradation of the material at this temperature. In contrast, XRD measurement of $AmVO_4$ after TGA showed that the material remains fully unchanged, indicating an excellent thermal stability of this material under oxidative conditions.

The evolution of the unit-cell parameters/volumes of the MVO_3 and MVO_4 compounds (Figure 2) confirms that the Am-vanadates belong to the corresponding crystallographic families. Only the perovskite phases crystalizing in the orthorhombic *Pbnm* space group are considered in the MVO_3 part of Figure 2. The atomic coordinates and displacement parameters for AmVO₃ and AmVO₄ compounds are presented in Table 3.

3.2. Materials Characterization: α Self-Irradiated Material. Due to the impact of the COVID-19 pandemic,

Table 2. Unit Cell Parameters and Results of the Rietveld Refinement for $AmVO_3$ and $AmVO_4^a$

formula unit	AmVO ₃	AmVO ₄	AmVO ₄ (Keller et al. ⁷)	AmVO ₄ (Goubard et al. ²⁰)		
space group	Pbnm	$I4_1/amd$	$I4_1/amd$	$I4_1/amd$		
space group number	62	141	141	141		
a, Å	5.4445(3)	7.2938(2)	7.31(1)	7.311(2)		
b, Å	5.5914(3)	7.2938(2)	7.31(1)	7.311(2)		
<i>c,</i> Å	7.7556(4)	6.4284(2)	6.42(1)	6.422(2)		
α, °	90	90	90	90		
<i>β</i> , °	90	90	90	90		
γ, °	90	90	90	90		
<i>V</i> , Å ³	236.10(2)	341.992(10)	343	343.26		
Ζ	4	4	4	4		
<i>M</i> , g/mol	340.00	356.00	356.00	356.00		
crystallographic density, g/cm ³	9.565	6.9142	6.89	6.89		
GOF	1.57	2.15				
$R_{\rm P}$	0.0106	0.0154				
R _{wp}	0.0150	0.0254				
R _{exp}	0.0068	0.0072				
${}^{a}R_{n} = \Sigma(i)[vi(obs) - vi(calc)]/\Sigma(i)[vi(obs)]; R_{un} = \{\Sigma(i)-$						
$[wi(vi(obs) - vi(calc))^2]/\Sigma(i)[wi \times vi(obs)^2]$ ^{1/2} ; GOF = R_p/R_{exp} ;						
$R_{\exp} = \{\Sigma(i)[wi \times yi(\text{obs})^2]/(n-p)\}^{1/2}.$						

SEM, XANES, and Raman characterization could only be performed about 1–2 years after synthesis. Due to the high alpha activity of ²⁴¹Am, the effect of self-irradiation must be considered in this condition, the main effect being amorphization of the crystal structure. The amorphization of the two vanadates was followed through XRD analyses, confirming that SEM, XANES, and Raman were performed on amorphous material. However, the results further described below seem to show only a limited impact of this amorphization on the microstructure (SEM) and electronic structure (XANES) of the two vanadates, while Raman spectroscopy showed limited impact of self-irradiation for AmVO₄ and a chemical transformation due to Raman laser heating for AmVO₃.

The XRD results reveal that the volume of the close-packed AmVO₃ perovskite structure increases by about 4.2% after a

dose of $1.03 \times 10^{18} \alpha/g$, while that of the oxyanionic AmVO₄ zircon structure shows a contraction of about 1.8% after a similar dose (Table 4). Therefore, the increased lattice disorder under α self-irradiation in this low-density structure results in a more compact arrangement. One can clearly see the swelling in AmVO₃ and the contraction in AmVO₄ in Figure 3, with a shift of the diffraction peaks into lower and higher 2 Θ values, respectively. After a dose of about 1.65 × 10¹⁸ α/g (7 months), the main diffraction peak of AmVO₃ is still visible, which indicates that the amorphization process is well advanced but not completed, while at that dose, the amorphization of AmVO₄ seems fully completed.

The SE micrographs presented in Figure 4 were recorded about 2 years after the synthesis. Even if the specimens had a relatively high level of self-irradiation at the time of the measurements, it can be observed that the microstructures are typical for solid state reactions, confirming the self-homogenization of the reaction mixture during heat treatment.

To assess the oxidation state of both americium and vanadium in the AmVO₃ and AmVO₄, XANES spectroscopy characterization was performed. Am M5 edge HR-XANES, Am L₃ edge XANES, and V K edge XANES spectra were collected. The HR-XANES data at the Am M5 edge reveals that Am atoms have an Am^{III} oxidation state for both AmVO3 and AmVO₄ compounds. The energy position of the main absorption resonance (white line, WL) maximum in the $AmVO_3$ and $AmVO_4$ spectra (Figure 5, blue and red solid lines) is located at about 3888.5 eV that is characteristic of the main absorption intensity of Am^{III}, consistent with previously reported data.^{14,15} Note that a very limited number of Am M₅ data are published to date. To be able to compare to published spectroscopic data on compounds containing Am^{III,} Am L₃ edge XANES experiments were also performed prior to collecting the V K-edge data. The AmVO₃, AmVO₄, and AmO₂ XANES spectra were obtained following background subtraction by fitting a linear polynomial to the pre-edge region of the absorption spectrum and normalized at the maximum (WL) intensity for Am M₅ (Figure 5) and at the high energy range for Am L₃ and V K edge data (Figures 6 and 7). The maxima of the WLs located at Am^{III}VO₃ (18,521 eV eV), $Am^{III}VO_4$ (18,521 eV), and $Am^{IV}O_2$ (18,525 eV) are

Figure 2. Evolution of the unit-cell volumes of MVO_3 and MVO_4 compounds as a function of the cationic radii. The unit-cell volume values are taken from the Inorganic Crystal Structure Database (https://icsd.fiz-karlsruhe.de) and the ionic radii from Shannon.²¹

pubs.acs.org/IC

A		

element	label	oxidation state	SOF	Wyckoff position	x	у	z	$U_{\rm iso}$, Å ²
	AmVO ₃ (<i>Pbnm</i> , perovskite)							
Am	Am1	+3	1	4c	0.9888(15)	0.0507(5)	1/4	0.004(1)
V	V1	+3	1	4b	1/2	0	0	0.004(1)
0	01	-2	1	4c	0.397(8)	-0.010(9)	1/4	0.008(2)
0	O2	-2	1	8d	0.745(12)	0.263(11)	0.037(6)	0.008(2)
$AmVO_4$ ($I4_1/amd$, zircon)								
Am	Am1	+3	1	4a	0	3/4	1/8	0.0074(6)
V	V1	+5	1	4b	0	1/4	3/8	0.0074(6)
0	01	-2	1	16h	0	0.4377(11)	0.2156(17)	0.0148(12)

Table 3. Atomic Coordinates and Displacement Parameters for AmVO₃ and AmVO₄ Compounds

Table 4. Lattice Parameter Variation of AmVO₃ and AmVO₄ under Self-Irradiation

a, Å	b, Å	<i>c,</i> Å	<i>V</i> , Å ³	volume variation, %	dose (α/g)	dpa ^a
		Am	VO ₃ (<i>Pbnm</i> , perovskite	e)		
5.444	5.590	7.755	235.982		0.01×10^{18}	0.0016
5.513	5.661	7.882	245.994	4.2	1.03×10^{18}	0.158
		An	nVO_4 (I4 ₁ /amd, zircon)		
7.294	7.294	6.428	341.952		0.02×10^{18}	0.0027
7.243	7.243	6.405	335.964	-1.8	1.02×10^{18}	0.134
				A 11		

^{*a*}Estimated from the SRIM2013 simulation of displacements produced by an ²⁴¹Am alpha-decay (*i.e.*, an alpha-particle of 5.486 MeV and a ²³⁷Np recoil nucleus of 92 keV) in AmVO₃ and AmVO₄ yielding dose multiplication factors, *d*, from dose to displacement per atom of 1700 and 1800, respectively.

Figure 3. Evolution of the XRD pattern of AmVO₃ and AmVO₄ over time showing the progressive amorphization of the material.

similar to $Am^{III}_2O_3$ and $Am^{IV}O_2$ reported elsewhere.²² The difference in the tail feature around 18,533 eV as well as smearing of the shape-resonance located at about 18,556 eV for $AmVO_3$ as compared to $AmVO_4$ suggests a different level of amorphization. Therefore, even though at this level of self-irradiation, both $AmVO_3$ and $AmVO_4$ are lacking a long-range order as observed by XRD, the degree of amorphization is somewhat different as revealed by Raman data (see below) and suggests that amorphization affects less the local structure in $AmVO_4$ as compared to $AmVO_3$.

To directly compare the electronic structure of vanadium, the background-subtracted and normalized V K-edge XANES spectra for $AmVO_3$ and $AmVO_4$ (blue and red solid lines, respectively) as well as reference V_2O_3 and V_2O_5 compounds (orange dotted and black dashed lines, respectively) are shown in Figure 7. As expected, for $AmVO_3$, vanadium has a V^{III}

oxidation state since all spectral features (A-D) match the spectral features of the V2O3 reference spectrum. The reduced intensity of the pre-edge feature A in AmVO₃ compared to V₂O₃ may indicate changes in the electronic structure of vanadium as a result of AmVO3 amorphization due to selfirradiation effects as well as the influence of Am-presence in the resulting AmVO₃ after reaction of AmO₂ and V₂O₅ at 1250 $^{\circ}$ C, which differs from the pure V₂O₅ structure. The V K-edge XANES spectrum of AmVO₄ exhibits a strong pre-edge feature (A) characteristic to V^V that is well known to be due to a formally forbidden (very weak) $1s \rightarrow 3d$ electronic transition, which is dipole-allowed when the local Ohh symmetry is distorted.²³⁻²⁵ Features B and B' seem to be smeared out for AmVO₄, indicating a change of the VO₅ square-pyramidal polyhedral configuration in V₂O₅ to tetrahedral in AmVO₄. The findings are consistent with previously reported data by

Article

Figure 4. SE images of the microstructure of AmVO₃ (left) and AmVO₄ (right) recorded at 660 days after synthesis ($5.1 \times 10^{18} \alpha$ decay events/g).

Figure 5. HR-XANES spectra acquired at the Am M₅ edge for AmO₂ (green, dash-dotted), AmVO₃ (red, solid, 4.7 × 10¹⁸ α /g), and AmVO₄ (blue, solid, 4.7 × 10¹⁸ α /g) materials. The maximum of the white line position is indicated for Am^{III} and Am^{IV} compounds, recorded at 3888.5 and 3890 eV, respectively.

Benzi *et al.*²⁶ for V_2O_5 and palenzonaite (natural V^V) compounds. In that study, feature C' in the tetrahedral geometry is located at about 5510 eV, matching the position of the shape-resonance C' observed for AmVO₄.

In conclusion, all the oxidation states probed through XANES and HR-XANES measurement are in perfect agreement with the expectations based on the initial crystallographic structure of the two materials. The effect of self-irradiation and amorphization has therefore no impact on their oxidation states.

The Raman spectrum of the aged AmVO₄ (Figure 8) suggests that the VO₄ tetrahedra in the zircon-like structure are intact despite the amorphization of AmVO₄ at this level of self-irradiation found by XRD. The five clearly identifiable internal modes of the $[V-O_4]$ tetrahedron, $\nu_1(A_{1g})$, $\nu_3(B_{1g}E_g)$, ν_4 (B_{1g}), $\nu_2(A_{1g})$, and ν_2 (B_{2g}), were found at very similar wavenumbers as for the lanthanide $LnVO_4$ zircon compounds,²⁷ as shown in Table 5, though somewhat lower than

Figure 6. XANES spectra acquired at the Am L₃ edge for AmO₂ (green, dash-dotted), AmVO₃ (red, solid, 4.7 × 10¹⁸ α /g), and AmVO₄ (blue, solid, 4.7 × 10¹⁸ α /g) materials. The shift of the WL maximum of 4 eV is consistent with the chemical shift between Am^{III} and Am^{IV}.

the orthovanadate of neodymium, whose ionic radius is closest to trivalent Am^{III}. The two clearly identifiable low-frequency external modes, which reflect the motion between the $[V-O_4]$ tetrahedron and the Am^{III} ion, were observed, of which the lowest is the $T(B_{1g})$ and the highest is assigned to the $R(E_g)$. The spectrum also shows a very weak mode at the position of one of the $T(E_g)$ modes. The $T(B_{1g})$ mode is substantially lower than that found for the lanthanide $LnVO_4$ compounds.²⁷ This can be explained by the observation by Moura *et al.*²⁸ that the $T(B_{1g})$ mode in the $Tb(V_{1-x}P_x)O_4$ solid solution shows a different broadening, indicating that it is related primarily to the Tb motion on the $[Tb-O_8]$ sublattice. The strong shift observed here thus supports that it is due to the mass effect between the actinide and lanthanide series.

The shifts of the modes in $AmVO_4$ compared to the $LnVO_4$ series are very similar to $AmPO_4^{5}$ and $LnPO_4^{29}$. However, the strong broadening of the modes after aging that was observed for $AmPO_4$ did not occur. This may be explained by

Figure 7. XANES spectra acquired at the V K edge for AmVO₃ (red, solid, 5.6 × 10¹⁸ α /g) and AmVO₄ (blue, solid, 5.6 × 10¹⁸ α /g) along with V^{III} (orange, dotted) and V^V (black, dashed) references.

Figure 8. Room-temperature Raman spectrum of AmVO₄ recorded at 450 days after synthesis $(3.3 \times 10^{18} \alpha \text{ decay events/g})$.

recrystallization of the amorphous $AmVO_4$ phase resulting from heating by the incident Raman laser. This would suggest relatively low critical amorphization temperatures, in line with the observations for the monazite and zircon $LnPO_4$ analogues.²⁹

Surprisingly, the Raman spectrum of the aged $AmVO_3$ sample was identical to that of $AmVO_4$, suggesting that oxidation took place. We exclude that the oxidation is related to the damage build-up since it is not observed in the XRD and XANES results at similar dose. We therefore conclude that it is triggered by heating the laser during the Raman measurement.

3.3. Closer Look at the α **Self-Irradiation Mechanism in AmVO₄.** Our results for AmVO₄ amorphization derived from XRD analysis differ significantly from the observations in the study of Goubard *et al.*,²⁰ who studied the radiation damage build-up in AmVO₄ during a much longer period of 5 years (14 × 10¹⁸ α /g). They reported that the structure remained at least partially crystalline during this period and became predominantly amorphous after 5 years, which is about 10 times slower than in our work. Moreover, Goubard *et al.*²⁰

Table 5. Raman Modes of $AmVO_4$ (in cm⁻¹) Compared to Some Lanthanide Analogues^{*a*}

	$AmVO_4$	$LaVO_4$	$CeVO_4$	$NdVO_4$	$SmVO_4$
	this work	Cheng et al. ³¹	Panchal et al. ³⁰	Nguyen et al. ³²	Santos et al. ²⁷
$\nu_1(A_{1g})$	850	859.0	864.3	871	877
$\nu_3(E_g)$	785	796.7	801.3	795	816
$\nu_3(B_{1g})$	785	783.3	789.1	808	816
$\nu_4 (B_{1g})$	457	462.3	468.9	472	477
$\nu_2(A_{1g})$				381	380
$\nu_4 (E_g)$	370	376.6	381.1		
$\nu_2 (B_{2g})$	255	262.9	261.9	375	
$T(B_{1g})$					261
$R(E_g)$	225	228.7	234.1	237	240
$T(E_g)$	[140]	141.8			
$T(B_{1g})$	95	119.7	124.4	123	123
$T(E_g)$		109.5		113	112

^{*a*}We follow the band assignment for CeVO₄ by Panchal *et al.*³⁰ that was supported by density functional theory (DFT) calculations.

did not observe a volume contraction under α self-irradiation like in the present study, but a moderate lattice expansion with a volume increase to a maximum of about $\Delta V/V_0 = 1.2\%$. At a comparable dose to our study $(1 \times 10^{18} \alpha/g)$, they found $\Delta V/V_0 = 0.15\%$.

The reasons for the discrepancies with the work of Goubard $et \ al.^{20}$ remain unclear, and one can only hypothesize the following:

- A different content of neptunium (daughter element of americium) in the initial material. Note that Goubard *et al.*²⁰ did not give details about the purity of the used Am. The exact quantity of Np that could be incorporated in AmVO₄ is not known, but we observed NpO₂ as the separate phase in this work. Moreover, uptake of Np^{IV} in the structure would require charge compensation, for example, by V^{III}, which was not observed by XANES in our work.
- The higher synthesis temperature in the current work (1000 °C vs 600 °C), which could have resulted in a more crystalline material and thus less initial disorder. As a result, a potential time span of contraction could have been absent or short in the study by Goubard *et al.*²⁰ It should be noted that their first data point at 0.7×10^{18} α/g is anomalous in their $\Delta V/V_0$ vs dose curve and indicates a minimal expansion ($\Delta V/V_0 = 0.03\%$) after approximately 90 days.
- The difference in production scale (hundreds of milligrams here versus 1 mg by Goubard *et al.*²⁰) and more probable methods (synthesis temperature and duration) could have resulted in substantially different crystallite sizes, powder morphologies, and densities, thus potentially affecting the impact of the alpha decay through annihilation of defects, in particular via diffusion to sinks (grain boundaries).³³
- Radiogenic helium can interact with defects (vacancies), but the effect of this will depend on the microstructure and crystallinity. The larger the grain size, the larger the helium fraction retained in the lattice, affecting the defect recombination kinetics. Similarly, the initial disorder (crystallinity) will affect the helium retention. Unfortunately, information on the microstructure of the material synthesized by Goubard *et al.*²⁰ is missing.

Our observations for zircon-type AmVO₄ are different from our results for the monazite-type AmPO₄.⁵ The zircon structure is closely related to the monazite $LnMO_4$ structure, both made of isolated tetrahedra of V or P, connected by trivalent metal ions in eight or nine coordinations, respectively. Under the influence of temperature and/or pressure, a transition can take place.^{30,31} For AmPO₄, a significant expansion of the unit cell was observed ($\Delta V/V_0 = 1.8\%$ at $0.6 \times 10^{18} \alpha/g$), whereas the AmVO₄ cell contracts with irradiation time. However, the dose at which the transition to a fully amorphous phase takes place is close in both studies, slightly higher for AmVO₄ compared to AmPO₄, which is in line with the observation of Meldrum *et al.*²⁹ that the critical amorphization temperature is slightly higher for zircon-type $LnPO_4$ compounds as well.

These contrasting observations are not easy to combine. Volume contraction due to α self-irradiation is known for $Am_2Zr_2O_7$ pyrochlore³⁴ and was attributed to the stability of the $[Zr-O_6]$ octahedra and their rotation in response to the increase in disorder around americium. Although Am₂Zr₂O₇ has a close-packed pyrochlore structure, which is very different from the open oxyanionic structures of zircon and monazite, this explanation may help understand. The volume in the LnVO₄ series is discontinuous, with the zircon (xenotime) structure (eight-coordinated $M^{\rm III}$) being larger than the monazite (nine coordination),³⁵ similar to the $LnPO_4$ series.³⁶ So, in case the radiation damage in zircon-type AmVO₄ affects predominantly the americium coordination sphere leading to a higher coordination with a concomitant rotation of the [V-O₄] tetrahedra, the volume will decrease, as we observed here. In AmPO₄, the Am ions are already nine-fold coordinated, resulting in prompt expansion of the lattice with increasing dose. Of course, also differences in the radiation resistance of the $[V-O_4]$ and $[P-O_4]$ tetrahedral entities may play a role.

4. CONCLUSIONS

Two americium vanadates were produced and characterized in terms of crystal structure, cation oxidation states, and chemical, thermal, and radiation stability. The XRD and XANES measurements demonstrate that americium stays in the oxidation state III in the material whatever the redox condition, while vanadium shows the oxidation state III in the perovskite-like $AmVO_3$ or V in the zircon-like $AmVO_4$.

After an accumulation of a dose of $10^{18} \alpha/g$, the closepacked AmVO₃ shows a volume expansion of 4.2% while the low density oxyanionic AmVO₄ contracts with 1.8% in volume (in contrast with other literature reports²⁰). With a fast amorphization behavior, large volume variation, and interchangeable structure as a function of the presence of the oxygen atmosphere and temperature, americium vanadates do not appear to be good candidates as Am forms for radioisotope power systems. Moreover, ²³⁷Np (the decay product of ²⁴¹Am) tends to segregate as a fluorite fcc secondary phase, creating interfaces and inducing stress in the material. Comparing the existing data on Am-containing ceramics with fluorite,³ pyrochlore,³⁴ zircon, monazite,⁵ and perovskite⁴ structures, the $(Am,U)O_2^{2,3}$ fluorite solid solution seems currently to be the most suitable form for space applications.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.3c00251.

Thermogravimetric behavior of $AmVO_3$ and $AmVO_4$; overview of the $AmVO_3$ and $AmVO_4$ specimens measured by SEM and EDX; XRD diffraction pattern of $AmVO_3$ after TGA measurement; Np L₃ XANES spectra of the $AmVO_3$ and $AmVO_4$; discussion on the difference in the experimental energy resolution leading to an energy shift of the main maxima of the An M_{4,5} edge HR-XANES spectra; discussion on the neptunium dioxide residual phase from XRD data (PDF)

Accession Codes

CCDC 2184177–2184178 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

- Jean-François Vigier European Commission, Joint Research Centre (JRC), Karlsruhe 76125, Germany; Ocid.org/ 0000-0002-3640-1098; Email: jean-francois.vigier@ ec.europa.eu
- Karin Popa European Commission, Joint Research Centre (JRC), Karlsruhe 76125, Germany; Occid.org/0000-0003-2759-6492; Email: karin.popa@ec.europa.eu

Authors

- Thierry Wiss European Commission, Joint Research Centre (JRC), Karlsruhe 76125, Germany
- Natalia Palina Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, D-76021 Karlsruhe, Germany
- Tonya Vitova Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, D-76021 Karlsruhe, Germany; occid.org/0000-0002-3117-7701
- Jean-Yves Colle European Commission, Joint Research Centre (JRC), Karlsruhe 76125, Germany
- Daniel Bouëxière European Commission, Joint Research Centre (JRC), Karlsruhe 76125, Germany
- Daniel Freis European Commission, Joint Research Centre (JRC), Karlsruhe 76125, Germany
- Rudy J. M. Konings European Commission, Joint Research Centre (JRC), Karlsruhe 76125, Germany

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.inorgchem.3c00251

Notes

The authors declare no competing financial interest.

J.-F.V.: Conceptualization, formal analysis, investigation, methodology, validation, and writing (original draft; review and editing); T.W.: Investigation and writing (review and editing); N.P.: Formal analysis, investigation, methodology, validation, and writing (original draft; review and editing); T.V.: Formal analysis, funding acquisition, project administration, validation, and writing (review and editing); J.-Y.C. and D.B.: Investigation; D.F.: Project administration, resources, and writing (review and editing); R.J.M.K.: Project administration, resources, supervision, and writing (review and editing); K.P.: Conceptualization, investigation, methodology, supervision, and writing (original draft; review and editing).

ACKNOWLEDGMENTS

The technical assistance and analytical support of Bert Cremer, Kathy Dardenne, Herwin Hein, Tim Prüßmann, Jörg Rothe, and Octavian Vălu are highly appreciated. N.P. and T.V. gratefully acknowledge funding from the European Research Council (ERC) Consolidator Grant 2020 under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 101003292). We acknowledge the KIT Light Source for provision of beamtime at the ACT- and INE-Beamline station operated by the Institute for Nuclear Waste Disposal and the Institute for Beam Physics and Technology (IBPT) for the operation of the storage ring, the Karlsruhe Research Accelerator (KARA). We acknowledge Kristina Aleksandrova for the design of the cover art.

REFERENCES

(1) Campbell, C.; Carrigan, C.; Carrott, M.; Maher, C.; McLuckie, B.; Mason, C.; Gregson, C.; Griffiths, T.; Holt, J.; Sarsfield, M.; Taylor, R.; Tinsley, T.; Stephenson, K. The separation of ²⁴¹Am from aged plutonium dioxide for use in radioisotope power systems. *Procedia Chem.* **2016**, *21*, 140–147.

(2) Ambrosi, R. M.; Williams, H.; Watkinson, E. J.; Barco, A.; Mesalam, R.; Crawford, T.; Bicknell, C.; Samara-Ratna, P.; Vernon, D.; Bannister, N.; Ross, D.; Sykes, J.; Perkinson, M.-C.; Burgess, C.; Stroud, C.; Gibson, S.; Godfrey, A.; Slater, R. G.; Reece, M. J.; Chen, K.; Simpson, K.; Tuley, R.; Sarsfield, M.; Tinsley, T. P.; Stephenson, K.; Freis, D.; Vigier, J.-F.; Konings, R. J. M.; Fongarland, C.; Liberssart, M.; Merrifield, J.; Kramer, D. P.; Byrne, J.; Foxcroft, B. European Radioisotope Thermoelectric Generators (RTGs) and Radioisotope Heater Units (RHUs) for space science and exploration. *Space Sci. Rev.* **2019**, *215*, 1–41.

(3) Vigier, J.-F.; Freis, D.; Pöml, P.; Prieur, D.; Lajarge, P.; Gardeur, S.; Guiot, A.; Bouëxière, D.; Konings, R. J. M. Optimization of uranium-doped americium oxide synthesis for space applications. *Inorg. Chem.* **2018**, *57*, 4317–4327.

(4) Vigier, J.-F.; Popa, K.; Martel, L.; Manara, D.; Dieste Blanco, O.; Freis, D.; Konings, R. J. M. Plutonium and americium aluminate perovskites. *Inorg. Chem.* **2019**, *58*, 9118–9126.

(5) Popa, K.; Vigier, J.-F.; Martel, L.; Manara, D.; Colle, J.-Y.; Dieste Blanco, O.; Wiss, T.; Freis, D.; Konings, R. J. M. Synthesis, characterization and stability of americium phosphate, AmPO₄. *Inorg. Chem.* **2020**, *59*, 6595–6602.

(6) Keller, C. Über die Festkörperchemie der Aktiniden-Oxide; Institut für Radiochemie, Kernforschungzentrum Karlsruhe, Gesellschaft für Kernforschung m.b.H, KFK-225, Karlsruhe, 1964.

(7) Keller, C.; Walter, K. H. Darstellung, gitterkonstanten und chemishe eigenschaften einiger ternärer oxide des plutoniums, americiums und curiums von typ $M^{III}X^VO_4$. J. Inorg. Nucl. Chem. **1965**, 27, 1253–1260.

(8) Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic computing system JANA2006: General features. *Z. Kristallogr.* **2014**, 229, 345–352.

(9) Oka, Y.; Yao, T.; Yamamoto, N. Hydrothermal synthesis of lanthanum vanadates: Synthesis and crystal structures of zircon-type $LaVO_4$ and new compound LaV_3O_9 . J. Solid State Chem. 2000, 152, 486–491.

(10) Pickardt, J.; Schendler, T.; Kolm, M. Röntgenuntersuchung von einkristallen ternärer lanthanoid-vanadium(III)-oxide $LnVO_3$ (Ln = Gd, Dy, Er). Z. Anorg. Allg. Chem. **1988**, 560, 153–157.

(11) Chakoumakos, B. C.; Abraham, M. M.; Boatner, L. A. Crystal structure refinements of zircon-type MVO_4 (M = Sc, Y, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu). J. Solid State Chem. **1994**, 109, 197–202. (12) Wiss, T.; Thiele, H.; Janssen, A.; Papaiannou, D.; Rondinella, V. V.; Konings, R. J. M. Recent results of microstructural

characterization of irradiated light water reactor fuels using scanning and transmission electron microscopy. *JOM* **2012**, *64*, 1390–1395.

(13) Zimina, A.; Dardenne, K.; Denecke, M. A.; Doronkin, D. E.; Huttel, E.; Lichtenberg, H.; Mangold, S.; Pruessmann, T.; Rothe, J.; Spangenberg, T.; Steininger, S.; Vitova, T.; Geckeis, H.; Grunwaldt, J.-D. CAT-ACT- A new highly versatile x-ray spectroscopy beamline for catalysis and radionuclide science at the KIT synchrotron light facility KARA. *Rev. Sci. Instrum.* **2017**, *88*, No. 113113.

(14) Vigier, J.-F.; Freis, D.; Walter, O.; Dieste Blanco, O.; Bouëxière, D.; Zuleger, E.; Palina, N.; Vitova, T.; Konings, R. J. M.; Popa, K. Synthesis and characterization of homogeneous $(U,Am)O_2$ and $(U,Pu,Am)O_2$ nanopowders. *CrystEngComm* **2022**, *24*, 6338–6348.

(15) Cross, J. N.; Su, J.; Batista, E. R.; Cary, S. K.; Evans, W. J.; Cozimor, S. A.; Mocko, V.; Scott, B. L.; Stein, B. W.; Windorff, C. J.; Yang, P. Covalency in americium(III) hexachloride. *J. Am. Chem. Soc.* **2017**, *139*, 8667–8677.

(16) Magnani, N.; Caciuffo, R.; Wilhelm, F.; Colineau, E.; Eloirdi, R.; Griveau, J.-C.; Rusz, J.; Oppeneer, P. M.; Rogalev, A.; Lander, G. H. Magnetic polarization of the americium J=0 ground state in AmFe₂. *Phys. Rev. Lett.* **2015**, *114*, No. 097203.

(17) Epifano, E.; Naji, M.; Manara, D.; Scheinost, A. C.; Hennig, C.; Lechelle, J.; Konings, R. J. M.; Guéneau, C.; Prieur, D.; Vitova, T.; Dardenne, K.; Rothe, J.; Martin, P. M. Extreme multi-valence states in mixed actinide oxides. *Commun. Chem.* **2019**, *2*, 59.

(18) Rothe, J.; Butorin, S.; Dardenne, K.; Denecke, M. A.; Kienzler, B.; Löble, M.; Metz, V.; Seibert, A.; Steppert, M.; Vitova, T.; Walther, O.; Geckeis, H. The INE-Beamline for actinide science at ANKA. *Rev. Sci. Instrum.* **2012**, *83*, No. 043105.

(19) Schacherl, B.; Prüssmann, T.; Dardenne, K.; Hardock, K.; Krepper, V.; Rothe, J.; Vitova, T.; Geckeis, H. Implementation of cryogenic tender X-ray HR-XANES spectroscopy at the ACT station of the CAT-ACT beamline at the KIT Light Source. *J. Synchrotron Radiat.* **2022**, *29*, 80–88.

(20) Goubard, F.; Griesmar, P.; Tabuteau, A. Alpha self-irradiation effects in ternary oxides of actinides elements: The zircon-like phases $Am^{II}VO_4$ and $A^{II}Np^{IV}(VO_4)_2$ (A = Sr, Pb). J. Solid State Chem. 2005, 178, 1898–1902.

(21) Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.* **1976**, A32, 751–767.

(22) Nishi, T.; Nakada, M.; Suzuki, C.; Shibata, H.; Itoh, A.; Akabori, M.; Hirata, M. Local and electronic structure of Am_2O_3 and AmO_2 with XAFS spectroscopy. *J. Nucl. Mater.* **2010**, 401, 138–142. (23) Giorgetti, M.; Berrettoni, M.; Passerini, S.; Smyrl, W. H. Absorption of polarized X-rays by V_2O_5 -based cathodes for lithium batteries: an application. *Electrochim. Acta* **2002**, 47, 3163–3169.

(24) Horrocks, G. A.; Braham, E. J.; Liang, Y.; De Jesus, L. R.; Jude, J.; Velázquez, J. M.; Prendergast, D.; Banerjee, S. Vanadium K-Edge X-ray Absorption spectroscopy as a probe of the heterogeneous lithiation of V_2O_5 : First-principles modelling and principal component analysis. *J. Phys. Chem. C* 2016, *120*, 23922–23932.

(25) Deng, S.; Yuan, Z.; Tie, Z.; Wang, C.; Song, L.; Niu, Z. Electrochemically induced metal—organic-framework-derived amorphous V_2O_5 for superior rate aqueous zinc-ion batteries. *Angew. Chem.*, *Int. Ed.* **2020**, *59*, 22002–22006.

(26) Benzi, F.; Giuli, G.; Della Longa, S.; Paris, E. Vanadium K-edge XANES in vanadium-bearing model compounds: a full multiple scattering study. *J. Synchrotron Radiat.* **2016**, *23*, 947–952.

(27) Santos, C. C.; Silva, E. N.; Ayala, A. P.; Guedes, I.; Pizani, P. S.; Loong, C. K.; Boatner, L. A. Raman investigations of rare earth orthovanadates. *J. Appl. Phys.* **200**7, *101*, No. 053511.

(28) Moura, M. R.; Ayala, A. P.; Guedes, I.; Grimsditch, M.; Loong, C. K.; Boatner, L. A. Raman scattering study of $Tb(V_{1-x}P_x)O_4$ single crystals. *J. Appl. Phys.* **2004**, 95, 1148.

(29) Meldrum, A.; Boatner, L. A.; Ewing, R. C. Displacive radiation effects in the monazite- and zircon-structure orthophosphates. *Phys. Rev. B* **1997**, *56*, 13805.

(30) Panchal, V.; Lopez-Moreno, S.; Santamaría-Pérez, D.; Errandonea, D.; Manjón, F. J.; Rodríguez-Hernandez, P.; Muñoz, A.; Achary, S. N.; Tyagi, A. K. Zircon to monazite phase transition in CeVO₄. *Phys. Rev. B* **2011**, *84*, No. 024111.

(31) Cheng, X.; Guo, D.; Feng, S.; Yang, K.; Wang, Y.; Ren, Y.; Song, Y. Structure and stability of monazite- and zircon-type LaVO₄ under hydrostatic pressure. *Opt. Mater.* **2015**, *49*, 32–38.

(32) Nguyen, A.-D.; Murdoch, K.; Edelstein, N.; Boatner, L. A.; Abraham, M. M. Polarization dependence of phonon and electronic Raman intensities in PrVO₄ and NdVO₄. *Phys. Rev. B* **1997**, *56*, 9794.

(33) Martínez, E.; Senninger, O.; Caro, A.; Soisson, F.; Nastar, M.; Uberuaga, B. P. Role of sink density in nonequilibrium chemical redistribution in alloys. *Phys. Rev. Lett.* **2018**, *120*, No. 106101.

(34) Belin, R. C.; Martin, P. M.; Valenza, P. J.; Scheinost, A. C. Experimental insight into the radiation resistance of zirconia-based americium ceramics. *Inorg. Chem.* **2009**, *48*, 5376–5381.

(35) Baglio, J. A.; Sovers, O. J. Crystal structures of the rare-earth orthovanadates. J. Solid State Chem. 1971, 3, 458-465.

(36) Ni, Y.; Hughes, J. M.; Mariano, A. N. Crystal chemistry of the monazite and xenotime structures. *Am. Mineral.* **1995**, *80*, 21–26.

Recommended by ACS

Solution Combustion Synthesis and Characterization of Magnesium Copper Vanadates

Abhishek Rawat, Krishnan Rajeshwar, *et al.* JUNE 01, 2023 INORGANIC CHEMISTRY

READ 🗹

Phosphates with Two Types of Isolated P–O Groups: Noncentrosymmetric $Na_6Sr_2Bi_3(PO_4)(P_2O_7)_4$ and Centrosymmetric Cs,CaBi₂(PO₄),(P₂O₇)

Yu Yan, Hongping Wu, et al. MAY 16, 2023 INORGANIC CHEMISTRY

pubs.acs.org/IC

READ 🗹

Na₂Ga₇: A Zintl–Wade Phase Related to "α-Tetragonal Boron"

Chia-Chi Yu, Yuri Grin, et al. MAY 25, 2023 INORGANIC CHEMISTRY

READ 🗹

Crystal Growth, Structural Transition, and Magnetic Properties of Ho_sPd₄Sn₁₂

Hong-Xiong Liu, You-Guo Shi, et al. OCTOBER 14, 2022 INORGANIC CHEMISTRY

READ 🗹

Get More Suggestions >