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The far-field back-scattering amplitude of an electric field from a relativistically-moving sphere
is analyzed. Contrary to prior research, we do so by expressing the fields in the helicity basis, and
we highlight here its advantages when compared to the commonly-considered parity basis. With
the purpose of exploring specific scattering phenomena considering relativistic effects, we identify
conditions that minimize the back-scattered field, leading to a relativistic formulation of the first
Kerker condition. The requirements to be satisfied by the sphere are expressed in terms of Mie
angles, which constitute an effective parametrization of any possible optical response a sphere might
have. We are able to identify multiple combinations of Mie angles up to octupolar order via gradient-
based optimization that satisfy our newly formulated relativistic Kerker condition, yielding minima
for the back-scattered energy as low as 0.016 % of the average scattered energy. Our results can be
extended to involve multiple particles forming a metasurface, potentially having direct implications
on the design of light sails as considered by the Breakthrough Starshot Initiative.

I. INTRODUCTION

The scattering of light by a sphere is a canonical
problem in optics and electrodynamics and has been
investigated for many years, particularly for stationary
spheres [1–11]. The scattering of light by spheres is best
described using Mie theory, which involves expressing the
incident and scattered electromagnetic fields in terms of
vector spherical harmonics (VSHs). The amplitude co-
efficients that weight these VSHs are collected in a vec-
tor and are mutually linked by a matrix-vector product.
Moreover, all optical properties of the object are cap-
tured by the corresponding matrix, called the transition
or T-matrix. For an arbitrary object, the T-matrix can
be dense, but is diagonal for a sphere, and the diagonal
entries are the Mie coefficients [12, 13].

Controlling an object’s geometrical and material prop-
erties provides a unique way of tailoring the scattered
field on demand, and many intriguing aspects have been
explored, an example being the so-called Kerker condi-
tion [14–18]. The first Kerker condition contains the nec-
essary composition of multipolar excitations such that
the object exhibits zero back-scattering. A second Kerker
condition implies a vanishing scattering in the forward
direction, but this is considered less often, since optical
gain is necessary for its observation [19].

While initially formulated for objects that can be safely
described in dipolar approximation, it was soon realized
that similar effects are encountered while capitalizing on
higher-order multipole moments. This coined the notion
of generalized Kerker conditions [20], and Kerker effects
have been explored in a large variety of settings. These
studies are motivated by high-impact applications related
to nanoantennas, chiral molecules, and metamaterials, to
name a few [20–25].

This paper provides a further yet, to our knowledge,
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unexplored perspective on the Kerker effect. It consid-
ers the Kerker effect in the relativistic regime. The basic
setting of our exploration is that of a relativistically mov-
ing sphere illuminated with a monochromatic Gaussian
beam characterized by an incident angle Θi relative to the
direction of motion of the sphere. Of course, unlike the
case of a stationary sphere, one cannot assume that there
exists a combination of multipole excitations that yield
zero back-scattering with the inclusion of motion. How-
ever, one can aim to minimize the back-scattering, which
depends on the multipolar contribution to the scattering
response, for a given speed and incident electric field an-
gle. This leads to an approximate Kerker condition in
the case of a relativistically moving sphere.

Our work has clear implications for future technol-
ogy developments. For example, within the Break-
through Starshot Initiative [26, 27], micro-gram satellites
equipped with light sails, potentially made from metasur-
faces consisting of a tailored arrangement of scatterers,
are to be accelerated with an Earth-based laser system
up to a significant fraction of the speed of light. Using
these satellites, neighbouring galaxies shall be explored.
The design of such systems has many facets, and among
them is the accurate description of the optical response
from scattering objects in the form of metasurfaces. The
formulation of the light scattering by an isolated object
under relativistic conditions, as a pursuit in this contri-
bution, is an important prerequisite to study such more
advanced devices.

The structure of the paper is as follows. In Section II,
the physical setup is outlined, and all necessary coordi-
nate systems are defined. Moreover, the field of the con-
sidered incident beam is transformed from the lab frame
to the reference frame of the sphere based on the trans-
formation of each constitutive plane wave of its angular
spectrum representation. Afterwards, the scattered field
is obtained by solving an ordinary Mie problem in the
rest frame of the sphere. We rely on a parametrization
of its response using Mie angles [28]. These Mie angles
constitute a minimalist model to express all possible re-
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sponses from a sphere, which allows a generic analysis of
the back-scattering response. To conclude Section II, the
scattered field will be transformed back to the lab frame,
in which the back-scattering is observed.

In Section III, the back-scattering amplitude is visual-
ized with respect to some given Mie angles for a sphere
with a fixed velocity and a field with a fixed incident an-
gle. We implement all calculations using the Julia pro-
gramming language [29] and implement a gradient-based
optimization scheme by leveraging automatic differentia-
tion within the JuMP modelling framework [30], much
in the spirit of recent works on differentiable physics
solvers [31, 32]. Using this scheme, we design spheres
that provide minimum values for the back-scattering and
identify the corresponding combinations of Mie angles.
We find multiple suitable combinations, and minimize
the back-scattered energy to a negligible 0.016 % of the
average scattered energy. In Section IV, we conclude our
findings.

II. DESCRIPTION OF THE SCATTERING
SCENARIO

Before delving into the mathematical description of the
scattered field, it is first necessary to specify the geometry
and constraints of the system. We consider a spherical
particle moving at a relativistic velocity v = vẑ within
a pervading incident electric field Ei(r, t) with incident
angle Θi as observed by an external lab frame S. Al-
though an accompanying magnetic field will always ex-
ist, to avoid repetition, we omit explicit reference to this.
Two further frames are considered, namely the beam’s
frame S‖, which is the frame where the direction of mo-
tion of the beam moves parallel to its corresponding z‖-
axis, and the boosted frame S′, which represents the in-
ertial reference frame of the sphere (see Fig. 1). Accord-
ingly, the corresponding quantities are denoted without
a prime in S and with a prime in S′, while all quantities
in S‖ are denoted with a ‖ superscript.

A further quantity of interest is the polar angle Θi

between k̂i and v, i.e., the angle between the beam’s
propagation direction and the axis of movement of the
scatterer (see Fig. 1). Given the symmetry of the system,
we set the azimuthal angle of the incident field Φi to be
zero. Moreover, the direction of back-scattering is given

by k̂BS, the opposite direction to k̂i.
To determine the scattered field in S, we implement the

‘frame-hopping method’ (FHM) as described in Garner
et al. [33]. For reference, this process is outlined below:

1. Lorentz-boost the incident electric field from S to
S′.

2. Solve the scattering problem in S′.

3. Inverse Lorentz-boost the scattered field from S′

back to S.

The reason for computing the scattered field in S′ and
not S is a matter of mathematical simplicity. In S′, the
scattering calculation is analogous to a stationary system,
thus avoiding any superfluous variable transformations.

A. Lorentz-boosting the incident field into the
scatterer’s reference frame

First, we need to consider the incident field in the
beam’s reference frame S‖. As an incident field, we
consider a single monochromatic Gaussian beam of well-
defined helicity (i.e., handedness) expanded in terms of
circularly polarized plane waves, which are eigenstates of
the electromagnetic wave equation. We use the follow-
ing ket in abstract Dirac notation to denote such plane
waves as eigenstates of free space characterized by he-
licity λ‖ = ±1, temporal frequency ω‖, and direction of

propagation k̂‖:∣∣∣λ‖ k̂‖ ω‖
〉
.
= êλ(k̂‖) exp{iω‖[(k̂‖ · r/c)− t]} , (1)

where the symbol
.
= refers to the spatiotemporal repre-

sentation of the plane wave eigenstate. The quantity c is
the speed of light in vacuum, and the polarization unit

vector êλ‖(k̂‖) is given by

êλ‖(k̂‖) =
−λ‖θ̂(k̂‖)− iφ̂(k̂‖)√

2
, (2)

where λ‖ = ±1 corresponds to left/right circularly-

polarized waves. The quantities θ̂ and φ̂ are, respectively,
the polar and azimuthal spherical unit vectors perpendic-

ular to the direction of propagation k̂‖ that is character-
ized by the polar and azimuthal angles of propagation
θ‖, φ‖ of each constituent plane wave.

Denoting quantities that belong to the incident field
with the subscript ‘i’, we represent a general electric field
in terms of its angular spectrum, i.e., as a plane wave
expansion:∣∣∣E‖i 〉 =

∑
λ

∫ 2π

0

dφ‖
∫ π

0

dθ‖
∫ ∞

0+

dω‖

G‖
λ‖, i

(ω‖, θ‖, φ‖)
∣∣∣λ‖ k̂‖ ω‖

〉
+ c.c. , (3)

where the amplitudes for a monochromatic Gaussian
beam focused at the origin of S of waist w0 , frequency ωi

and helicity λi propagating along the +z-axis are given
by:

G‖
λ‖, i

(ω‖, θ‖, φ‖) = E0 sin
(

2θ‖
)

· exp

[
−ω

2
i w

2
0 sin2(θ‖)

4c2

]
· δλ‖λi

δ(ω‖ − ωi)H(π/2− θ‖) , (4)



3

Figure 1. Pictorial representation of the sphere in a) the beam’s frame S‖ and the rotated frame S containing an external
observer (represented by the eye) and b) the sphere’s inertial reference frame S′. In S, the sphere is seen to be moving with

velocity vẑ. The wave vector k̂i is incident on the sphere with angle Θi. In a), the direction of back-scattering k̂BS (denoted

by the red arrow) is in the opposite direction to k̂i and it is this direction that shall be considered when formulating a
relativistic Kerker condition. In b), the sphere is stationary (v = 0) while the Lorentz-boosted wave vector of the incident

field is given by k̂′i and is incident with angle Θ′i 6= Θi when Θi /∈ {0, π}, and Θ′i = Θi when Θi ∈ {0, π}. Moreover, the

direction of back-scattering k̂′BS in this frame is in general not opposite to k̂i or k̂′i.

where E0 is a constant, and H(π/2−θ‖) is the Heaviside
step function which eliminates all counter-propagating
waves. Moreover, we consider the waist w0 to be very

large, such that
∣∣∣E‖i 〉 approximates to a plane wave but

is nonetheless still finite in space. The reason for doing
this is that, for a regular plane wave infinitely extended
in space, the interaction of the incident wave with the
moving sphere would be incessant and, therefore, the
scattered power flux would have a cylindrical symmetry
with respect to the axis of movement of the scatterer.
That is, the scattered power flux would be translation-
ally invariant with respect to this axis and would only
vary azimuthally. On the other hand, an excitation of
finite spatial extent ensures that the interaction of light
with the scatterer is localized in space (around the ori-
gin of S), therefore, yielding a spherical-like scattering of
waves emanating from the region where the interaction
takes place.

To consider an electric field of arbitrary angle of in-
cidence Θi, we apply a rotation operator R̂y(Θi) about
the y-axis to Eqn. (3) to transit from a representation of
the beam with respect to the S‖ to one with respect to
S such that

|Ei〉 = R̂y(Θi)
∣∣∣E‖i 〉 , (5)

where

R̂y(Θi)
∣∣∣λ‖ k̂‖ ω‖

〉
=
∑
λ

∫ 2π

0

dφ

∫ π

0

dθ

∫ ∞
0+

dω

Rλ‖,λ(ω‖, θ‖, φ‖, ω, θ, φ; Θi)∣∣∣λ k̂ ω
〉

. (6)

The transformation coefficients are given by

Rλ‖,λ(ω‖, θ‖, φ‖, ω, θ, φ; Θi) = P(θ‖, φ‖,Θi)

· δλλ‖

· δ(ω − ω‖)

· δ
[
θ − arccos(k̂z)

]
· δ
[
φ− atan2(k̂y, k̂x)

]
,

(7)
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wherek̂xk̂y
k̂z

 =

 cos Θi 0 sin Θi

0 1 0

− sin Θi 0 cos Θi


k̂
‖
x

k̂
‖
y

k̂
‖
z



=

 sin θ‖ cosφ‖ cos Θi + cos θ‖ sin Θi

sin θ‖ sinφ‖

− sin θ‖ cosφ‖ sin Θi + cos θ‖ cos Θi

 ,

(8)

and P(θ‖, φ‖,Θi) is a prefactor corresponding to the ac-
quired phase due to the rotation:

P(θ‖, φ‖,Θi) = exp[ip(θ‖, φ‖,Θi)] , (9)

with

p(θ‖, φ‖,Θi) = atan2
[
− λ sin(Θi) sin

(
φ‖
)
,

cos
(
θ‖
)

sin(Θi) cos
(
φ‖
)

+ sin
(
θ‖
)

cos(Θi)
]

. (10)

After doing this, one can follow the first step of the
frame-hopping method and compute the Lorentz boost
of the incident electric field from S to S′. In App. A, we
calculate the Lorentz boost of plane waves. We denote
with L̂Bz(β) the operator that boosts fields along the
z-axis with speed v = βc, where 0 ≤ β < 1 from S to S′.
This operator acts on the eigenstates of monochromatic
plane waves with well-defined helicity in the following
way:

L̂Bz(β)
∣∣∣λ k̂ ω

〉
=
∑
λ′

∫ 2π

0

dφ′
∫ π

0

dθ′
∫ ∞

0+

dω′

Lλλ′(ω, θ, φ, ω′, θ′, φ′;β)∣∣∣λ′ k̂′ ω′
〉

, (11)

with the transformation coefficients given by

Lλλ′(ω, θ, φ, ω′, θ′, φ′;β) = C (β, θ)

· δλ′λ

· δ (ω′ − C (β, θ)ω)

· δ
[
θ′ − arccos

(
cos θ − β

1− β cos θ

)]
· δ (φ′ − φ) , (12)

where γ = 1/
√

1− β2, cos θ = k̂ · ẑ and

C (β, θ) = γ [1− β cos θ] , (13)

which is derived in App. A. We see from Eqn. (12) that

θ′ = arccos

(
cos θ − β

1− β cos θ

)
, (14)

and

ω′ = C (β, θ)ω (15)

correspond to the Lorentz boost of θ and ω, respectively.
Since the motion occurs solely along the z-axis, the az-
imuthal angle φ remains unchanged under the Lorentz
boost, that is,

φ′ = φ . (16)

Figure 2. a) The Doppler shift Θ′i of Θi as a function of Θi

and β determined using Eqn. (14). This demonstrates that
the direction of the incident wave as perceived in S′ is
different to that in S. b) The normalized Doppler-shifted
incident frequency ω′i/γωi as a function of Θi and β, where
ω′i is the Doppler-shifted incident frequency determined
using Eqn. (15). When Θi = 0 and β → 1, the object is
moving away from the field source, thus causing the incident
frequency in S′ to decrease (redshift). When Θi = π and
β → 1, the object is moving towards the field source, thus
causing the incident frequency in S′ to increase (blueshift).

When Θi = π/2, ω′i/γωi = 1 for all β. This is due to k̂i and
v being perpendicular to each other. The factor 1/γ is
necessary to eliminate the over-exaggeration of ω′i when
β → 1 and Θi → π. Without this factor, the other frequency
values would appear too suppressed.

The Lorentz boost θ′ of θ given by Eqn. (14) explains
the perceived change in direction of the beam in S′ com-

pared to S as shown by k̂i and k̂′i in Fig. 1. In Fig. 2 a),
this is visualized for the Lorentz boost Θ′i of the polar an-
gle of the incident field with respect to the incident angle
Θi as seen in S and speed ratio β. Moreover, the Doppler
shift ω′ of ω is displayed in Fig. 2 b) with the same func-
tional dependency. Note that, for an incident angle of
Θi = 0 and a speed ratio β → 1, the Doppler-shifted
frequency becomes zero. This corresponds to the sphere
moving away from the external observer in S at a speed
tending to that of light, thus exhibiting a complete red-
shift. In other words, the incident wave is perceived by
the sphere to be so stretched out that the frequency dis-
appears in its reference frame. Conversely, when Θi = π
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and β → 1, the wave is seen to be infinitely blueshifted
in S′, corresponding to a completely compressed wave
with infinite frequency. This corresponds to the sphere
moving towards the source of the incident field.

Note that the same expression for the scaling factor
C (β, θ) is given by Eqn. (27) in De Cupis et al. [34].
Importantly, we observe that for Eqn. (12) to be non-
zero, the helicity of the field must remain invariant upon
the Lorentz boost transformation due to the δλ′λ term.
This invariance demonstrates the power of expressing the
fields in the helicity instead of the parity basis, that
is, specifically making use of circularly-polarized plane
waves instead of TE/TM plane waves.

Generally speaking, the change in direction of the
beam upon boosting is given by the following transfor-
mation of the wavevectors:

k̂′ =
k̂ + [(γ − 1) cos θ − γβ] ẑ

C (β, θ)
. (17)

Finally, putting all the above together, and after some
straightforward algebra, we can get the following relation
between the amplitudes of the initially considered and
non-rotated incident beam in S‖ and the rotated one in
S′:

|E′i〉 = L̂Bz(β)R̂y(Θi)
∣∣∣E‖i 〉

=
∑
λ′

∫ 2π

0

dφ′
∫ π

0

dθ′
∫ ∞

0+

dω′

G′λ′, i(ω
′, θ′, φ′)

∣∣∣λ′i k̂′i ω
′
i

〉
+ c.c. , (18)

where ω′i and k̂′i are determined by Eqns. (15) and (17),
respectively and

G′λ′, i(ω
′, θ′, φ′) = J (θ′, φ′,Θi)

· G‖λ′, i

{
ω′

C
[
β, θ‖(θ′, φ′)

] ,
θ‖(θ′, φ′), φ‖(θ′, φ′)

}
, (19)

where θ‖(θ′, φ′) and φ‖(θ′, φ′) express θ‖ and φ‖ as viewed
from S′:

θ‖(θ′, φ′) = arccos

{
1

γ(1 + β cos θ′)

·
[

sin θ′ cosφ′ sin Θ

+ γ(cos θ′ + β) cos Θ
]}
, (20)

φ‖(θ′, φ′) = atan2[sin θ′ sinφ′,

sin θ′ cosφ′ cos Θ

− γ(cos θ′ + β) sin Θ] , (21)

with the Jacobian

J (θ′, φ′,Θi) =

∣∣∣∣∣∣∣
∂θ‖

∂θ′
∂θ‖

∂φ′

∂φ‖

∂θ′
∂φ‖

∂φ′

∣∣∣∣∣∣∣ (22)

that converts dφ‖dθ‖ to dφ′dθ′.
Recall that we do this since, for simplicity, we wish to

carry out the scattering calculation in S′, that is, where
it is equivalent to that in the stationary case. For a given
incident field described by Eqn. (4), we can use Eqn. (19)
to calculate the amplitudes that are needed to describe
the incident field in S′ in terms of the plane wave repre-
sentation given by Eqn. (18).

B. Solving the scattering problem in the sphere’s
reference frame

The approach taken to calculate the amplitude of the
scattered field begins by expressing the incident field |E′i〉
as a series of spherical waves with respect to the coordi-
nates describing S′ [12]:

|E′i〉 =
∑
λ′`′m′

∫ ∞
0+

dω′A′λ′`′m′(ω′) |ω′ λ′ `′m′〉(1)
+c.c. ,

(23)

where |ω′ λ′ `′m′〉(1)
signifies a regular VSH attached to

S′ with frequency ω′, helicity λ′, multipolar index `′

(`′ = 1 corresponds to dipoles, `′ = 2 corresponds to
quadrupoles etc.), and angular momentum along the z-
axis m′ = −`′,−(`′ − 1), ... , `′. The (1) superscript de-
notes that the VSH corresponds to a first-order spherical
Bessel function j`′(k

′r′), and the coefficients of the ex-
pansion are given by

A′λ′`′m′(ω′) =

∫ 2π

0

dφ′
∫ π

0

dθ′ G′λ′, i(ω
′, θ′, φ′)

· Sλ′`′m′(ω′, k̂′) , (24)

where the transformation coefficients between the plane
waves and the spherical waves (under which transforma-
tion the helicity and frequency of the waves remain un-
changed) are given by:

Sλ′`′m′(ω′, k̂′) = 4πi`
′+2m′+1 Ω`′m′

· τ (λ′)
`′m′ [θ

′(k̂′)]e−im′φ′(k̂′) , (25)

where Ω`′m′ is a normalization constant and τ
(λ′)
`′m′ [θ′(k̂′)]

is a function which we define in App. B. The expression
given in Eqn. (25) is derived by applying Eqn. (2) to
Eqn. (12) in Lamprianidis and Miroshnichenko [35].

For the case of monochromatic excitation (in S), like
the one we consider here, we have that

G‖
λ‖, i

(ω‖, θ‖, φ‖) = G‖,0
λ‖, i

(θ‖, φ‖)δ(ω‖ − ωi) . (26)
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Using this expression, we get the following simplified ex-
pression for the incident spherical amplitudes in S′:

A′λ′`′m′(ω′) = −4πi`
′+2m′+1 Ω`′m′τ

(λ′)
`′m′(θ

′
0)

· δ
(
ω′ ∈

[
ωi

γ(1 + β)
,

ωi

γ(1− β)

])
· (1 + β cos θ′0)

β sin θ′0

·
∫ 2π

0

dφ′ e−im′φ′

· P
[
θ‖(θ′0, φ

′), φ‖(θ′0, φ
′),Θi

]
· J (θ′0, φ

′,Θi)G‖,0λ′, i[θ
‖(θ′0, φ

′), φ‖] , (27)

where:

θ′0 = arccos

(
γωi − β2γωi − ω′

βω′

)
. (28)

Next, in conjunction with Step 2 of the FHM, we need
to express the scattered field |E′s〉 in a series of radiat-

ing VSHs in S′, denoted as |ω′ λ′ `′m′〉(3)
. Analogous to

Eqn. (23), this can be written as

|E′s〉 =
∑
λ′`′m′

∫ ∞
0+

dω′B′λ′`′m′(ω′) |ω′ λ′ `′m′〉(3)
+c.c. ,

(29)
where the (3) superscript denotes that the VSHs corre-
spond to a third-order spherical Bessel (Hankel) function
h`′(k

′r′). Specific expressions of the radiating and reg-
ular VSHs are given in App. B. Moreover, the ‘s’ sub-
script denotes quantities which correspond to the scat-
tered field.

Finally, the scattering coefficients B′λ′`′m′(ω′) can be
related to the incident coefficients A′λ′`′m′(ω′) by way of
the T-matrix formalism [12]:

B′ = THA′ , (30)

where A′ and B′ are vectors containing the incident and
scattering coefficients, respectively, and TH is the cor-
responding T-matrix expressed in the helicity basis (see
App. C). The T-matrix fully describes the scattering re-
sponse of the individual scatterer in the stationary case,
which we can safely use in the rest frame of the sphere.
Let us note that the time-invariance of the stationary
system implies a matrix that is diagonal with respect to
frequency ω′, whereas duality-symmetry implies a diag-
onal matrix with respect to helicity λ′, and the spherical
symmetry of the scatterer implies a diagonal matrix with
respect to the multipolar indices `′,m′.

Specifically, for a spherical scatterer, we can write

Bλ′`′m′(ω′) =
∑
λ0

Tλ′λ0,`′(ω
′)Aλ0`′m′(ω′) , (31)

where λ0 = ±1 is a dummy index representing helic-
ity and the term Tλ′λ0,`′ is defined at the end of App. C.

Moreover, in this work, we will make the assumption that
the T-matrix of the scatterer is non-dispersive, i.e., in-
variant with respect to frequency. This assumption is
logical as long as we are exciting with a monochromatic
beam with a narrow angular spectrum, i.e., a large waist.
One must consider this, since the plane-wave components
of the beam all Doppler-shift differently depending on
their polar angles of propagation. However, a small an-
gular width in S minimizes this difference, thus allowing
us to assume a non-dispersive T-matrix in S′. As we
will see, this assumption significantly simplifies the final
equations used for numerical computation.

Finally, we require an expression for the electric field in
the far-field region of S′. For this, we need to use the fol-
lowing asymptotic expression for the radiating spherical
waves:

lim
ω′r′/c→∞

|ω′ λ′m′ `′〉(3) ≡ (−i)`
′
fλ′,`′m′(r̂′)

· eiω′(r′/c−t′)

ω′r′/c
, (32)

which, from Eqn. (29), readily gives the following expres-
sion for the electric field in the far-field region of S′:

E
′ff
s (r′, t′) =

∑
λ′`′m′

∫ +∞

0+

dω′B′λ′`′m′(ω′)(−i)`
′

· fλ′,`′m′(r̂′)
eiω′(r′/c−t′)

ω′r′/c
+ c.c. , (33)

where fλ′,`′m′(r̂′) is a vector function defined in App. B.
As shown in Garner et al. [36], the angular density of

the total radiation energy flux in a given direction in S′

specified by θ′ and φ′, which we denote as U ′(θ′, φ′), is
calculated by integrating the amplitude of the electric
field E′ffs (r′, t′) in the far-field limit. As a result, we have

U ′(θ′, φ′) = lim
r′→∞

∫ ∞
−∞

(r′)2 |E′ffs (r′, t′)|2

η0
dt′ , (34)

where η0 is the impedance of free space. An expanded,
and numerically-efficient form of Eqn. (34) is given in
App. D.

At this point, the second step of the FHM is complete.

C. Solution to the scattering problem in the lab
frame

To investigate the back-scattering, we analyse the di-
rectivity D(θ, φ) of the sphere. This is defined as [37]

D(θ, φ) =
U(θ, φ)

Wtot/4π
, (35)

where U(θ, φ) =
∑
λs
Uλs

(θ, φ) is the angular density of
the total radiation energy in a given direction in S spec-
ified by θ and φ, Uλs

is the component of U(θ, φ) corre-
sponding to the scattered helicity λs = ±1, and Wtot is
the total scattered energy.
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Considering the directivity of the sphere allows us to
obtain a physically meaningful and intuitive formulation
from which the behaviour of the back-scattering can be
interpreted. Qualitatively speaking, the directivity is the
ratio of the total angular energy U(θ, φ) to the average
scattered energy Wtot/4π by an analogous isotropic scat-
terer. Consequently, a directivity >1 means that the con-
tribution of back-scattered energy outweighs that of the
average scattered energy. Conversely, a directivity <1
implies that the back-scattered energy is lower than the
average energy scattered by the sphere.

We are now in a position to carry out the final step
of the FHM, that is, transforming the directivity from
S′ back to S. The power of the FHM really becomes
apparent here, since the angular energy U(θ, φ) in S can
easily be related to quantities in S′. More specifically, we
have

Wtot =

∫ 2π

0

∫ π

0

U(θ, φ) sin θdθdφ , (36)

where, as we see from Eqn. (21) in Garner et al. [36],

U(θ, φ) = [γ (1 + βcos θ′)]3 U ′(θ′, φ′) , (37)

where θ′ and φ′ can be transformed using Eqns. (14)
and (16) to obtain an expression for U(θ, φ) in S. For
back-scattering, we have θ = ΘBS and φ = ΦBS, where

ΘBS = π −Θi and ΦBS = π , (38)

respectively.
The third step of the FHM is now complete, and the

back-scattered directivity DBS of the sphere in S can
be calculated by substituting Eqns. (36) and (37) into
Eqn. (35) such that

DBS = D(ΘBS,ΦBS) . (39)

III. RELATIVISTIC KERKER CONDITION

A. Visualizing the directivity

The final theoretical result of our work has been for-
mulated in Eqn. (39), which expresses the contribution
of the back-scattered energy compared to the average
scattered energy for a given scenario. While Eqn. (35) is
more general, for the sake of this discussion, we choose to
investigate a possible suppression of the back-scattering
(that is, the first Kerker condition) [38–40].

As an example, we consider a lossless dielectric sphere
and parametrize the multipolar response using what are
known as Mie angles [41, 42] (cf. App. E). Each Mie
angle is bounded between −π/2 and π/2, and we consider
them to be non-dispersive. A value of zero corresponds
to a resonance of the respective Mie coefficient.

Since the objective function describing DBS does not
have a clear analytical solution, we implement numerical

routines to identify properties for the sphere which min-
imize the back-scattering. More specifically, we wish to
seek the optimized combination of Mie angles such that
the back-scattering is minimized. Moreover, we carry out
the optimization when β and Θi are fixed values; as an
example we consider β = 0.2 and Θi = π

4 .
Before doing this, it makes sense to visualize how DBS

varies with respect to some chosen Mie angles. For this
purpose, we sweep across the possible electric quadrupole
(θEQ) and magnetic quadrupole (θMQ) angles while fixing
the dipole angles θED and θMD.

We visualize the λs = +1 and λs = −1 components
of log10DBS with θED = θMD = π/3 in Fig. 3 a) and
Fig. 3 b), respectively, followed by the corresponding to-
tal directivity in Fig. 3 c). In all cases, the helicity of the
incident field is λi = 1. One observes in Fig. 3 b) that
the diagonal representing θEQ = θMQ, that is, when the
sphere is a dual scatterer, displays values of below −30,
implying that the back-scattering is zero at these points.
This is expected since the incoming helicity is given by
λi = +1 and the scattered helicity in the dual case must
remain the same, so we are only left with non-zero values
when λs = +1. For comparison, Fig. 3 d) shows the total
directivity where θED = π/9 and θMD = −π/4.

B. Numerically minimizing the back-scattering

The fact that Fig. 3 b) provides a physically known
result is a justification of the numerical implementation
and allows us to proceed in minimizing the directivity. A
further verification is the fact that the directivity is inde-
pendent of the incident helicity λi. This is expected since
the system is both rotationally and mirror-symmetric
about the x-axis. From the mirror symmetry, λi would
flip sign [43]. However, when rotated to the same posi-
tion, λi would preserve its sign. These situations both
describe the same physical scenario, that is, a system
where the sphere moves in the opposite direction with
v → −vẑ and Θi → π + Θi. Therefore, the scattered
energy remains unchanged.

To minimize the back-scattering with respect to the
Mie angles, we implement the directivity calculation us-
ing the Julia programming language [29] and leverage
the automatic differentiation capabilities included in the
modelling toolkit JuMP [30] for gradient-based optimiza-
tion. This enables us to efficiently take derivatives of DBS

with respect to Mie angles up to arbitrary order. We then
formulate our optimization problem as the minimization
of DBS using the interior-point optimizer IPOPT [44].

Using this method, we find higher order combinations
of Mie angles which yield minima below our defined cut-
off point of DC = 10−3, that is, the value below which
we consider the back-scattering to be negligible. We con-
sider this value appropriate, since it corresponds to a
back-scattered energy which contributes a mere 0.1 % to
the average scattered energy. For a single optimization
run, we randomly initialize a set of Mie angles between
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Figure 3. Figures a) and b) represent the λs = +1 and λs = −1 components of log10DBS, respectively when θED = θMD = π
3

.
Note in b) the dark diagonal line, which means that the back-scattering vanishes when θEQ = θMQ. This corresponds to the
case where the sphere is a dual scatterer. Since the incident helicity is given by λi = +1, these vanishing components are to
be expected. Figure c) shows the total directivity log10DBS when combining Figs. a) and b), while Fig. d) shows for
comparison log10DBS when θED = π

9
and θMD = −π

4
. In all cases we have that β = 0.2 and Θi = π

4
.

(−π/2, π/2) and minimize DBS with respect to these an-
gles. Owing to quasi-analytical gradients, the optimiza-
tion quickly converges to high-quality minima one order
of magnitude lower than DC. Finding a single set of Mie
angles up to octupolar order takes less than a second on
average (measured over 100 optimization runs on Intel
Xeon Platinum 8368 CPU @ 2.4 GHz). A selection of
possible combinations up to octupolar order is given in
Table I.

Table I. Examples of optimized Mie angles for minimum back-
scattering up to octupolar order.

θED θMD θEQ θMQ θEO θMO DBS × 10−4

−0.18 1.21 1.38 1.23 1.54 1.55 1.57
−1.39 −1.32 −1.12 −1.44 −1.51 −1.57 1.95
−1.32 −1.32 −1.21 −1.21 −1.53 −1.53 2.02

These minimized values of DBS are all smaller than
DT = 10−3 and thus satisfy our cut-off criterion, pro-
viding evidence of the existence of the first Kerker con-
dition in the relativistic regime. The most pronounced
minimum located (DBS = 1.57 × 10−4) describes a case
where the back-scattered energy contributes a negligi-
ble 0.016 % to the average scattered energy. It must be
emphasized that there exist many combinations of Mie
angles that fulfil this condition, making those in Table I
just few of many.

IV. CONCLUSION

The main goal of this paper was to demonstrate the
utility of expressing incident and scattered fields in the
helicity basis for the case of a sphere moving at a rela-
tivistic speed. In doing this, we were able to transform
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fewer variables (namely the helicity) as opposed to the
same problem in the parity basis, thus greatly simplifying
calculations. Moreover, we obtained an expression for the
back-scattering amplitude of the scattered field observed
from an external lab frame in the form of the directiv-
ity of the sphere. Finally, the directivity was minimized
with respect to Mie angles, providing evidence for the
existence of the first Kerker condition in the relativistic
regime.

Opportunities for future work are plentiful. Since our
implementation can be differentiated with respect to all
continuous parameters of the considered system, it is, in
principle, possible to optimize not only for the Mie angles
but also for parameters beyond the scope of this work,
such as incident angle and velocity. Furthermore, the
current work could be extended to analyze a composi-
tion of particles describing a metasurface as opposed to
just a single particle. In this case, a cluster T-matrix
as described in Mishchenko et al. [12] would need to be
implemented. The motivation for considering a surface
of particles links to the future applications of light sails
proposed by the Breakthrough Starshot Initiative.

Of course, for this to be done, the current model would
have to be refined to consider the opposite case of maxi-
mum back-scattering, resulting in the ideal case of max-
imum momentum transfer to the sail [45].

DATA AVAILABILITY

The code used to produce the results in this manuscript
can be accessed via the following link: https://github.
com/tfp-photonics/Jorkle.jl.
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Appendix A: Lorentz boost of helical plane waves

As stated in Garner et al. [33], the Lorentz boost of
the electric field E(r, t) is given by

E′(r′, t′) = γ [E(r, t) + vv̂ ×B(r, t)]

+ (1− γ) [v̂ ·E(r, t)] v̂ , (A1)

where B(r, t) is the corresponding magnetic field and γ =

1/
√

1− β2 with β = v/c being the ratio of the boosting
speed to the speed of light and boosting takes place along
the direction v̂. For boosting along +ẑ, the coordinates of
the primed (boosted) and unprimed coordinate systems
are related with the following formulas:

x′ = x (A2)

y′ = y (A3)

z′ = γ(z − βct) (A4)

t′ = γ(t− βz/c) . (A5)

Here, we want to consider the boost of a monochro-
matic plane wave of well-defined helicity λ. Specif-
ically, its electric field is given by E(r, t) =

êλ(k̂) exp{iω[(k̂ · r/c)− t]} (see main text). By mak-
ing use of the above coordinate transformations we
can get the following transformation of the exponent:

{iω[(k̂ · r/c)− t]} = {iω′[(k̂′ · r′/c)− t′]}, with ω′, k̂′ be-
ing given by Eqs. (15,17) of the main text. Thus, we have
transformed the scalar part of the fields, which gave us
the transformed frequency and direction of propagation

of the boosted plane wave, ω′, k̂′, respectively.

Next, we need to transform the polarization vector.
For this we need to take into account that our considered
plane wave, being an eigenstate of the helicity operator
∇×
k with well-defined helicity λ [46], has the following

property:

∇×E(r, t) = λkE(r, t) , (A6)

and, therefore, we get the following for its corresponding
magnetic field from Maxwell’s equations:

B(r, t) =
λ

ic
E(r, t) . (A7)

Therefore, by substituting the right-hand-side of
Eqn. (A7) into Eqn. (A1), we find that

E′(r′, t′) = γ

[
E(r, t) +

λv

ic
ẑ×E(r, t)

]
+ (1− γ) [ẑ ·E(r, t)] ẑ . (A8)

What remains then, is to project the boosted helical po-

larization vector êλ(k̂) onto the boosted polarization ba-

sis êλ′(k̂′). That is to say, we need to find the coefficients

https://github.com/tfp-photonics/Jorkle.jl
https://github.com/tfp-photonics/Jorkle.jl
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Eλλ′(β, k̂) in the expansion bellow:

γ

[
êλ(k̂) +

λv

ic
ẑ× êλ(k̂)

]
+ (1− γ)

[
ẑ · êλ(k̂)

]
ẑ

=
∑
λ′

Eλλ′(β, k̂)êλ′(k̂′) . (A9)

By making use of the following orthogonality rela-
tion [43]:

êλ′(k′) · ê−λ′
0
(k′) = −δλ′λ′

0
, (A10)

we readily get after some algebra that Eλλ′(β, k̂) =
δλλ′Cλ(β, θ), with θ being the polar angle of the prop-

agation direction k̂ and Cλ(β, θ) being given by:

Cλ(β, θ) = γ [1− β cos θ] . (A11)

The same expression calculated using the parity basis is
given by Eqn. (27) in De Cupis et al. [34]. Note that
the helicity λ of massless particles (and hence, elecro-
magnetic fields) is invariant under Lorentz boosts [47].
Finally, summing up all the above, we get the Lorentz
boost transformation given by Eq. (11) in the main text.

Appendix B: Vector spherical harmonics of
well-defined helicity

We begin by using the following definition of the spher-
ical harmonics:

Ym
` (θ, φ) , Ω`mP

m
` (cosθ)eimφ , (B1)

where Pm` (cosθ) is the associated Legendre function of

the 1st kind, with Ω`m , im
√

(2`+1)(`−m)!
4π`(`+1)(`+m)! being the

corresponding normalization factor.

Then, the VSHs of well-defined parity, M
(j)
`mk and

N
(j)
`mk, are defined as follows [48]:

M
(j)
`mk (r) , ∇×

[
rz

(j)
M,`(kr)Y

m
` (θ, φ)

]
= iz

(j)
M,`(kr)m`m(r̂), (B2)

N
(j)
`mk (r) ,

1

k
∇×M

(j)
`mk (r)

= r̂
`(`+ 1)

k0r
z

(j)
M,`(kr)Y

m
` (θ, φ)

+ z
(j)
N,`(kr)n`m(r̂) , (B3)

where

m`m(r̂) = Ω`m

[
θ̂τ`m(θ) + iφ̂τ ′`m(θ)

]
eimφ, (B4)

n`m(r̂) = Ω`m

[
θ̂τ ′`m(θ) + iφ̂τ`m(θ)

]
eimφ . (B5)

The index ` stands for the angular momentum quantum
number that takes the values 1,2,. . . and corresponds

to dipoles, quadrupoles, etc., and the index m stands
for the angular momentum along the z-axis which takes
the values −`, ...,−2,−1, 0, 1, 2, ..., `. The superscript j
refers to the corresponding Bessel (j = 1) and Han-

kel (j = 3) functions, z
(j)
M,`(kr), of the first kind. The

functions z
(j)
N,`(kr) , 1

kr
d

d(kr) [krz
(j)
M,`(kr)] are the corre-

sponding Riccati functions and τ`m(θ) , m
Pm

` (cosθ)
sinθ and

τ ′`m(θ) , dPm
` (cosθ)

dθ are the generalized Legendre func-
tions.

The VSHs Λ
(j)
λ,`mk(r) of well-defined helicity λ = ±1

are defined with respect to the VSHs of well-defined par-
ity according to the formula:

Λ
(j)
λ,`mk(r) =

M
(j)
`mk(r) + λN

(j)
`mk(r)√

2
(B6)

=
λ√
2

`(`+ 1)

kr
z

(j)
M,`(kr)Y

m
` (θ, φ) r̂

+
∑
λ′=±1

[ iz
(j)
M,`(kr) + λλ′z

(j)
N,`(kr)

2

· fλ′,`m(r̂)
]

, (B7)

where we have defined:

fλ,`m(r̂) =
m`m(r̂) + λn`m(r̂)√

2

= Ω`mτ
(λ)
`m (θ)eimφ êλ(r̂) (B8)

and

τ
(λ)
`m (θ) = −τ ′`m(θ)− λτ`m(θ) , (B9)

which has the property Ω−`mτ
(λ)
−`m(θ) = Ω`mτ

(−λ)
`m (θ) =

(−1)`+m+1Ω`mτ
(λ)
`m (π − θ).

One can show that the functions Λ
(j)
λ,`mk have the prop-

erty [46]:

∇×
k

Λ
(j)
λ,`mk = λΛ

(j)
λ,`mk , (B10)

that is, Λ
(j)
λ,`mk is an eigenstate of the helicity operator

∇×
k with eigenvalue λ. For the functions fλ,`m, there

exists the orthogonality property:∫ 2π

0

dφ

∫ π

0

sinθdθ

fλ,`m(k̂) ·
[
fλ′,`′m′(k̂)

]∗
= δλλ′δ`′m′δ`′m′ . (B11)

Moreover, if we employ the large argument property of
the Hankel functions:

z
(3)
α,`(x)

x>>1−−−−→

{
eix

x (−i)` for α = N
eix

x (−i)`+1 for α = M ,
(B12)
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and also reject the O(1/r20) radial term as negligible,
for the radiating helical VSHs we can get the following
asymptotic form in the far field:[

Λ
(3)
λ,`mk (r)

]ff
= (−i)` fλ,`m(r̂)

eikr

kr
. (B13)

Appendix C: T-matrix in the helicity basis for a
sphere

In the parity basis, the T-matrix is given by

T =

(
TNN TMN

TNM TMM

)
, (C1)

where each element of Eqn. (C1) is a diagonal `max(2 +
`max)× `max(2 + `max) matrix and `max is the maximum
multipolar excitation order of the sphere.

This can be transformed to the T-matrix TH in the
helicity basis by using [49]

TH = P−1TP , (C2)

where, as can be seen from Eqn. (2), P is given by

P =
1√
2

(
1 1
1 −1

)
. (C3)

In the case of a dielectric sphere, we have that TMN =
TNM = 0, so Eqn. (C2) reduces to

TH =

(
T++ T+−
T−+ T−−

)
=

1

2

[
(TNN + TMM) (TNN −TMM)
(TNN −TMM) (TNN + TMM)

]
, (C4)

where

TNN =

a1 . . . 0
...

. . .
...

0 . . . a`max

 , (C5)

TMM =

b1 . . . 0
...

. . .
...

0 . . . b`max

 , (C6)

and the values a` and b` are respectively the electric and
magnetic Mie coefficients defined in App. E.

The components of the T-matrix TH are given by
Tλs,λi,`, and relate to the entries in TH corresponding
to the `’th multipolar order, along with an incident he-
licity λi and scattered helicity λs. That is,

Tλs,λi,` = a` + λiλsb`. (C7)

Appendix D: Computation-friendly expansion of
Eqn. (34)

By substituting Eqn. (33) into the Eqn. (34), and us-
ing the orthogonality relation given by Eqn. (B11), we
can express the angular energy density U ′(θ′, φ′) in the
following form that is suitable for efficient numerical eval-
uation:

U ′(θ′, φ′) =
∑
λ′

4πc2

η0

∫ ∞
0+

dω′
1

(ω′)2

·

∣∣∣∣∣∑
`′m′

Bλ′`′m′(ω′)(−i)`
′
Ω`′m′τ

(λ′)
`′m′(θ

′)ei`′φ′

∣∣∣∣∣
2

=
∑
λ′

∑
`′m′

∑
¯̀′m̄′

Q
¯̀′m̄′

λ′`′m′(θ′, φ′)

·
∑
λ0λ̄0

J λ̄0
¯̀′m̄′

λ0`′m′ Tλ′λ0,`′T
∗
λ′λ̄0,¯̀′

, (D1)

where the T-matrix elements Tλ′λ0,`′ are defined in
App. C. For the latter equation, we have assumed a non-
dispersive T-matrix and have also defined the integral:

J λ̄0
¯̀′m̄′

λ0`′m′ =

∫ ∞
0+

dω′
Aλ0`′m′(ω′)A∗

λ̄0
¯̀′m̄′(ω

′)

(ω′)2
, (D2)

and the quantity:

Q
¯̀′m̄′

λ′`′m′(θ′, φ′) =
4πc2

η0
(−i)`

′−¯̀′
Ω`′m′Ω∗¯̀′m̄′

· τ (λ′)
`′m′(θ

′)τ
(λ′)∗
¯̀′m̄′ (θ′)ei(m′−m̄′)φ′

, (D3)

where ∗ denotes the complex conjugate.
Furthermore, we can define express the total scattered

energy Wtot given by Eqn. (36) as follows:

Wtot =

∫ π

0

dθ

∫ 2π

0

dφ sin θU(θ, φ)

=
∑
λ′

∫ ∞
0+

dω′
1

(ω′)2

∑
`′m′;min{|m′|,1}≤`≤`′

Re
{
Bω′λ′`′m′B∗ω′λ′`m′I`λ′`′m′

}
=
∑
λ′

∑
`′m′;min{|m′|,1}≤`≤`′

∑
λ0λ̄0

Re
{
I`λ′`′m′J λ̄0m

′`
λ0m′`′Tλ′λ0,`′T

∗
λ′λ̄0,`

}
(D4)

with

I`λ′`′m′ = 24−δ``′ π
2c2

η0
(−i)`

′−`Ω`′m′Ω∗`m′∫ π

0

dθ sin θ {γ [1 + β θ′(β, θ)]}3

× τ (λ′)
`′m′ [θ′(β, θ)] τ

(λ′)∗
`m′ [θ′(β, θ)] , (D5)

where the expression for θ′(β, θ) is given by Eqn. (14).
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Figure 4. The absolute value of the dipole expansion
coefficients A10 (`′ = 1,m′ = 0) given by Eqn. (27) as a
function of the normalized frequency (ωi − ω′)/ωi when a):
β = 0.1 (blue line), β = 0.2 (orange line), β = 0.5 (yellow
line) and β = 0.9 (purple line). In all cases, Θi = π

4
, and

λi = +1 which, since helicity is conserved under Lorentz
boosts, means that λ′ = λi = +1. Note that the width of the
peak increases with speed. This is due to the increasing
effect of the Doppler shift ω′ of ωi. Since the incident beam
is monochromatic, |A10| tends to a delta-distribution-like
peak as the speed decreases. As the speed increases, the
plane wave components of the incident beam all Doppler
shift differently due to their differing angular orientations.
This leads to non-zero values for |A10| when ωi 6= ω′.

Note the importance of writing Eqn. (D1) as nested
integrals instead of a standard triple integral. Compu-
tationally speaking, we are able to determine Eqn. (D2)
with a very low tolerance, while using a higher toler-
ance for the other integrals, thus significantly reducing
computation time. The reason for this is because the ex-
pansion coefficients Aλ′`m(ω′) (and hence the integrand

in Eqn. (D2)) form Gaussian-like peaks centered about
ω′ which tend to a delta distribution as the speed of the
sphere decreases (see Fig. 4). If the tolerance is too high,
the numerical integration could miss this peak entirely,
thus ignoring vital non-zero values.

Moreover, by separating the integrals Eqn. (D4) we are
able to obtain 100×100 grids for the directivity (like those
used to generate Fig. 3) in as little as ∼40 s. The reason
for this is that, as the numerically-demanding integral

J λ̄0
¯̀′m̄′

λ0`′m′ is independent of the Mie angles, we only need to
compute it once for a given incident angle Θi and speed

parameter β. If the integrals were combined, J λ̄0
¯̀′m̄′

λ0`′m′

would be computed for each combination of Mie angles,
thus significanly increasing computation time.

Appendix E: Mie angles for a lossless sphere

The electric and magnetic Mie coefficients a` and b`, re-
spectively for each multipolar order ` can be represented
using Mie angles θE` and θM`. In the lossless case, one
can write [28, 42]

a` = −i sinα` exp(−iα`) (E1)

and

b` = −i sinβ` exp(−iβ`) , (E2)

where

α` =
π

2
− θE`, −π

2
≤ θE` ≤

π

2
, (E3)

and

β` =
π

2
− θM`, −π

2
≤ θM` ≤

π

2
. (E4)

Note that the convention used in Rahimzadegan et al.
[28] omits the use of the minus sign in Eqns. (E1)
and (E2). In our case, the minus sign is required for
energy conservation.
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