Drying of Compact and Porous NCM Cathode Electrodes in Different Multilayer Architectures: Influence of Layer Configuration and Drying Rate on Electrode Properties

Julian Klemens,* David Burger, Luca Schneider, Sandro Spiegel, Marcus Müller, Nicole Bohn, Werner Bauer, Helmut Ehrenberg, Philip Scharfer, and Wilhelm Schabel

1. Introduction

The use of porous, nanostructured particles in electrodes for lithium-ion batteries (LIB) can significantly improve their electrochemical performance.\(^{[1-3]}\) Porous particles can be produced from conventional active materials when the compact material is milled and spray dried into secondary particles with an internal, accessible porosity. The open porosity ensures wetting of the electrolyte up to the particle core and shortens the diffusion path. As given in the literature, the diffusion coefficient in the electrolyte phase (LP30, e.g., \(10^{-6}\) cm\(^2\)/s\(^{-1}\))\(^{[4,5]}\) is much higher compared to the solid phase (NCM, e.g., \(10^{-10}-10^{-11}\) cm\(^2\)/s\(^{-1}\)).\(^{[6,7]}\) A similar hierarchical particle concept is used for cathode active materials of sodium-ion batteries (sodium–vanadium phosphate, NVP) to enable the electrolyte filling up to the core of the material.\(^{[8-11]}\)

However, electrodes with porous particles exhibit a lower adhesion force compared to electrodes produced of compact particles at the same mass fraction of binder in the electrodes. The solvent, and in particular the dissolved binder, penetrates the particles (intraparticle porosity) during slurry production and remains there after drying.\(^{[1]}\) This binder component is prevented to contribute to the adhesion to the current collector.\(^{[1,3]}\) The penetration and fixation of the binder within the particles result in less clogging of the pores in the pore network, which is responsible for the approximately constant C-rate capability\(^{[12]}\) and tortuosity\(^{[7]}\) at higher drying rates. In electrodes with compact particles, the binder and conductive additives are located only in the pore network between the active material particles (interparticle porosity)\(^{[1,3]}\) and is referred to as the carbon binder domain (CBD).

With increasing drying rate, the mobile binder fraction migrates in the interparticle pore network and leads to an accumulation at the top of the electrode and a depletion of binder at the current collector. Binder migration was observed for anodes and cathodes as well as for aqueous and solvent-based electrodes.\(^{[1,12-26]}\) An accumulation of binder toward the separator side increases the ionic and electrical resistance and reduces the C-rate capability.\(^{[1,17,23,25]}\) The ionic resistance is increased compared to electrodes with a homogeneous binder distribution or electrodes with a lower binder content.\(^{[23,27,28]}\)

The adhesion force is reduced at increasing drying rate and can possibly lead to delamination of electrode films.\(^{[12,20,25,26,29]}\) Electrodes produced of porous, nanostructured particles with an...
increased specific surface area also show binder migration at increasing drying rate, but with much less or no negative influence on the specific discharge capacity. This is because the binder is not highly concentrated between the particles clogging the pores, but a certain amount of binder is fixed in the particles and does not migrate during drying.\[1\]

To improve electrode properties and, in particular, the adhesion force, while maintaining or improving C-rate capability, multilayer electrodes can be produced with different formulations and particle morphologies.\[13,19,30–35\] For aqueous graphite electrodes made with carboxymethyl cellulose (CMC) and styrene–butadiene–rubber (SBR), it was shown that the adhesion force and the C-rate capability can be improved by a multilayer structure of the electrode. Electrodes made with simultaneously applied slurries of different SBR–binder content at the same total binder content, same wet and dry film thickness and viscosity were investigated at KIT.\[13\] The improvement was attributed to the concentration of the total amount of SBR in the bottom layer after the coating process, which is presumably homogeneously distributed over the entire electrode during drying by capillary transport.\[13\] For cathodes with the one-component binder polyvinylidene fluoride (PVDF) and the solvent N-methyl-2-pyrrolidone (NMP), a similar approach of multilayers with an increased binder content in the bottom layer and a decreased content in the top layer was investigated.\[34\] In contrast to the aqueous multilayers, binder migration at increased drying temperature resulted in an accumulation at the top and a depletion of binder at the bottom of the electrode.\[34\] For both binder systems, the distinct influence of viscosity, layer thickness ratio of top and bottom layer, and the solid content on binder migration has not been clarified and may vary depending on the binder–solvent system used.

It is not known from the literature how binder migration in multilayer electrodes behaves during drying of electrodes with different particle morphologies, binder contents, and drying rates. The aim of this study is to better understand the processing and, in particular, the drying behavior of simultaneously coated multilayer electrodes depending on the active particles and the overall binder content. The multilayer electrodes are intended to improve the properties of the electrodes compared to single-layer electrodes. They should improve both the adhesion of the active material to the collector for electrodes produced of porous, nanostructured particles and the C-rate capability compared to electrodes produced with compact active material.

The influence of multilayer electrodes produced of different particle morphologies on the adhesion force, electrical and ionic resistance, and the C-rate capability is investigated. This study is intended to extend the previous understanding of multilayer electrode processing and the use of porous, nanostructured battery active materials for LIB and postlithium batteries.

2. Results and Discussion

Multilayer electrodes were produced using two particle systems with different layer configurations and binder contents. For the multilayer coating, an intermixing of the slurries during simultaneous coating is to be avoided. Therefore, slurries are adjusted, that the viscosity of the upper layer has a lower viscosity than the lower layer by reducing the binder content, which also reduces the share of passive materials.

2.1. Multilayer Configuration

Porous NCM622 particles were produced using the same procedure as presented in the literature.\[13–3\] An overview of the particle properties can be found in Table 1. The density of the porous NCM with the intergranular porosity is calculated with Equation (1) (see Experimental Section).

According to the literature, it is known that because of the open-porous structure of the electrodes, both the binder and the solvent penetrate into the particles during slurry preparation.\[1,3\] Due to the internal porosity ($f_{\text{porous particles}} = 33\%$), other effective volume fractions act in the slurry. In contrast to the binder solution, the conductive additives remain in the outer pore volume around the active particles, which increases the flow resistance. For the same composition, mixing procedure, and solid content a slurry containing porous particles shows a much higher viscosity compared to a slurry with compact particles (Figure S1, Supporting Information). Therefore, the slurries for this study were prepared such that the dry electrode with the compact particles had a PVDF content of 4.5 wt% and the electrodes with the porous particles had a reduced binder content of 3 wt%. By that, the binder content was adjusted to achieve an overall reduction of the binder content compared to the single-layer configuration. The slurries were prepared with the same solid content (55 wt% solids) and mixing procedure (see Experimental Section). The rheological behavior of the slurries is shown in Figure 1.

With a reduced binder content of 3 wt%, the viscosity of NCM622–porous has been adjusted to be in the range and below the viscosity curve of the NCM622–compact (see Figure 1). With this flow behavior of the two slurries, we assume that intermixing will not occur during simultaneous coating.

These two slurries were used to produce electrodes with different multilayer architectures. The lower layer in the multilayer electrodes always consists of compact particles and the upper layer of porous particles. Layer configurations with different layer thickness proportions of layers with compact and porous particles are produced. Thus, the dried multilayer electrodes consist either of a higher proportion with porous particles (ML–2/3 porous) in the upper layer or a higher proportion with compact particles (ML–1/3 porous) in the lower layer. Figure 2 shows the

| Table 1. Overview of the particle size, specific surface area, density (measured by gas pycnometry), and internal porosity of the particles. |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Name | Secondary particle diameter x_{0} [µm] | Specific surface area [m2 g$^{-1}$] | Density [g cm$^{-3}$] | Open particle porosity [%] | Envelope density [g cm$^{-3}$] |
| NCM622-compact | 9.5 | 0.7 | 4.64 | – | 4.64 |
| NCM622-porous | 8.4 | 3.5 | 4.56 | 33 | 3.06 |
two single layers (SL compact, SL porous) and, as an example, the multilayer electrode with a larger proportion of porous particles in the upper layer (ML 2/3 porous).

As expected after reducing the viscosity by adjusting the binder content for the slurry with the porous particles, no intermixing was observed for the multilayer electrodes in Figure 2. This finding was expected, since the viscosity was adjusted via the binder content that the viscosity of the upper layer was lower than the bottom layer.

Since the coating thickness has an influence on the drying and the adhesion force, the electrodes were produced with approximately the same dry film thickness (Table 2). An overview of the dry film thickness, area weight, electrode porosity of the single- and multilayer electrodes is given in Table 2.

The density of NCM622-porous particles of 4.56 g cm$^{-3}$ (Table 1) was used to calculate the electrode porosity (see Experimental Section, Equation (1) and (2)). In addition, the porosity between the particles (interparticle porosity) is shown for the electrodes containing porous particles (see Experimental Section, Equation (1)–(3)). Due to the open porosity of the porous particles ($\varepsilon_{\text{porous particles}} = 33\%$) in the single-layer (SL porous) and the multilayer electrodes, the electrode porosity is increased compared to the single layer with compact particles. Ignoring the internal porosity of the porous particles, the porosity between the particles (interparticle porosity) for all electrodes is about 44%. This matches the presumption that the electrodes with porous particles would have the same interparticle porosity compared to electrodes with compact particles, since the particles have a similar particle size and the electrode composition contains the same proportions of conductive additives. The area weight of the multilayer electrode is increased compared to the area weight of the single-layer electrode with porous particles due to the combination with the compact particles.

2.2. Adhesion

The single- and multilayer electrodes were produced under isothermal drying conditions in a customized coating and drying apparatus.$^{[12,17,21]}$ The dryer as well as the temperature-controlled
coating plate were set to the temperature that a drying electrode would take as the adiabatic wet bulb temperature if dried in a convective roll-to-roll coating and drying machine. An isothermal drying temperature (film temperature) of 61 °C was set at the lower drying rate of 0.75 g m⁻² s⁻¹ and a temperature of 81 °C at the three times higher drying rate of 2.25 g m⁻² s⁻¹ with a heat transfer coefficient of 80 W m⁻² K⁻¹. It is considered, that drying rates higher than 1.5 g m⁻² s⁻¹ are relevant for industrial manufacturing.[21] With the area weights shown in Table 2 and the solids content of 55 wt%, the drying rate increase results in a reduction of drying time from 207 ± 33 s to 69 ± 11 s.

The adhesion force between the current collector and the coating (see Experimental Section) of the single- and multilayer electrodes was investigated as an indicator for binder migration at increasing drying rate (Figure 3). Cohesion failures due to the application of two different layers with different particles and binder contents did not occur.

The adhesion force of the two single-layer electrodes with porous particles shows very low values of 2.55 ± 0.45 N m⁻¹, as expected from the literature.[1,3] As a comparison, an electrode with compact particles and an identical binder content of 3 wt% would show an adhesive force of about 28 N m⁻¹ for the lower drying rate. The adhesion force of the single layer with compact particles decreases with increasing drying rate by adaption of the isothermal drying temperature, which is in agreement with the literature for both solvent- and water-based anodes and cathodes.[1,12,21,25,26]

For both layer configurations and both drying rates, the adhesion force of the multilayer electrodes decreases, although the adhesion force is higher with a larger proportion of compact particles (ML 1/3 porous) in the lower layer. The adhesion force of the multilayer electrode (ML 1/3 porous) is increased by a factor of 16 at lower drying rate and by a factor of 10 at higher drying rate compared to the single-layer electrode with porous particles. The result that the adhesion force of the multilayers is increased compared to the single layer with only porous particles was expected, since electrodes with compact particles generally show a higher adhesion force.[1,3] However, it has been expected that the adhesion force of the multilayers would be higher in accordance with the absolute values of the single layers with compact particles. The finding, that the adhesion force of the single-layer electrode with a binder content of 4.5 wt% is not achieved with the multilayer configuration, could be explained by the total binder content in the electrodes. Figure 4 shows the adhesion force as a function of the overall binder content for electrodes containing only compact particles. The overall binder content results from the mass ratio and the binder content of each layer.

An exponential relationship is observed between the adhesion force and the overall binder content in the single- and multilayer electrodes, with the bottom layer consisting of compact active material. With increasing drying rate, this relationship shifts to a lower adhesion force. The exponential behavior may be explained by a superposition of the total amount of binder and the intensity of binder migration, leading to a certain amount of contact between the current collector and the electrode layer. Increasing interactions of the binder with the current collector due to a higher amount of binder lead to an exponentially increasing adhesion force.

In the drying rate range investigated, the adhesion force of the single layer with compact particles (4.5 wt% PVDF) decreases by about 30%. In contrast to the single layer with compact particles, the adhesion force of the multilayers drops with increasing drying rate by 56% for the multilayer with 1/3 porous particles (4 wt% overall binder content) and 62% for the multilayer with 2/3 porous particles (3.5 wt% overall binder content). As shown,
the absolute value of the adhesion force decreases relatively more with lower total binder content of the electrode. This could also be described by the interaction of the binder amount at the current collector. If comparatively less binder is present in the formulation, binder migration leads to a stronger relative decrease in adhesion force.

As previously described, it was expected that the adhesion force of the multilayer is more oriented toward the adhesion force of the lower layer. The result that the behavior is dependent on the overall binder content in the electrode, although a binder gradient is imposed by the multilayer coating, could be explained by a diffusional concentration balancing process of the binder before the capillary transport occurs. However, intermixing of the slurries due to a mixing flow during coating was excluded, since the distribution of active particles in the cross section shows a clear separation of the two particle morphologies (Figure 1). A gradual alignment of the PVDF concentration in NMP by diffusion is conjecturable, as the homogenous shrinkage of a polymer film is based on diffusional solvent transport in the film.\cite{16,37} This reveals an important insight for the manufacturing of multilayers with PVDF/NMP.

In contrast, a linear relationship between the binder content in the bottom layer and the resulting adhesion force of the multilayer was found for aqueous anodes with the two-component CMC/SBR system.\cite{18}

The results in this study and the data from the literature indicate that there are different options for different binder systems to optimize electrode properties. For the two-component system of CMC/SBR, for example, it is possible to adjust the binder content (SBR) with only slight effects on the viscosity.\cite{18} For the one-component system with PVDF, this is not possible and there are less degrees of freedom for the formulation.

2.3. Resistivity

Resistivity measurements were carried out to investigate the influence of the coating configuration on the electrical conductivity as a function of the drying rate. The resistivity for the single- and multilayer electrodes with increasing drying rate is shown in Figure 5.

For all electrodes, the electrical resistivity increases with increasing drying rate, which could be related to the binder migration in all layers. The resistivity is significantly higher for the porous single layers, which is consistent with the literature.\cite{1,3} An electrode with compact particles in contact with the current collector and a binder content of 3 wt% (like the SL porous electrodes) shows a resistivity of \(\approx 7 \, \Omega \cdot \text{m} \) for the lower drying rate. The higher resistivity for electrodes with porous particles is attributed to the higher porosity of the electrodes with porous particles (Table 2). Since the binder is fixed in the particles, it contributes less to contact (lower adhesion force) the current collector. Assuming that the binder in the pore network outside the particles becomes conductive to some extent due to the conductive carbon black, lower contacting results in lower electrical connection to the current collector.\cite{1,2,7} The measured resistivity for the multilayer electrodes is more oriented toward the resistivity of the single layer with compact particles. This suggests that the measurement method between two plates is sensitive for the contact resistance between the dry coating and the current collector in the lower area of the electrode. The contact resistances seem to exceed the electrical resistance in the electrode layer and may match with the mechanical amount of contact indicated by the measurement of adhesion force (Figure 3).

Therefore, for electrodes where compact particles are in contact with the current collector, the resistivity increases more with lower total binder content. The resistivity increases by 26% for the single-layer electrode SL compact (4.5 wt% PVDF), 88% for multilayer ML 1/3 porous (4 wt% PVDF), and 160% for multilayer ML 2/3 porous (3.5 wt% PVDF). This is consistent with the observations from Section 2.2. Again, it can be seen that the property of electrodes with a lower total binder content is relatively more influenced by the influence of the binder migration due to a higher drying rate.

2.4. Electrochemical Characterization

The influence of the construction of multilayer electrodes and faster drying on the cell performance are investigated by coin-cell tests with increasing C-rate. Noncalendered electrodes as for the measurements of the adhesion force (Figure 3 and 4) and electrical resistance (Figure 5) are used for the cell tests. Figure 6 shows the specific capacity of the single- and multilayers dried at the lower drying rate.

It is shown that the single- and multilayer electrodes containing porous particles have higher specific discharge capacities compared to the single layer with compact particles, especially at higher C-rates. At 3C, the discharge capacity of the single-layer electrode with porous particles is about 118%, the multilayer ML
lower increase in C-rate capability at a higher drying rate than the ML 2/3 porous. This could be related to the lower proportion of porous particles.

Compared to the lower drying rate, a reduction in specific discharge capacity is shown for SL porous for 2 and 3 C of 4% and 9%, respectively. This confirms that electrodes with porous particles also show binder migration, but the negative effects on electrochemical performance are significantly reduced.[3] The findings from the studies on the adhesion force and resistivity support that if the total binder content decreases, the properties of the electrodes suffer relatively more at increasing drying rate. This can be partially confirmed by the cell tests. The electrodes show a reduction in specific capacity at a discharge rate of 3 C compared to electrodes dried at a lower drying rate of 23% (SL compact, 4.5 wt% PVDF), 32% (ML 1/3 porous, 4.5 wt% PVDF), and 28% (ML 2/3 porous, 3.5 wt% PVDF). Focusing alone on the overall binder content, it would have been expected that the multilayer ML 2/3 porous would have a lower specific capacity at higher drying rates. The deviation may be related to the superposition of the influences of the overall binder content and the higher share of the porous particles.

3. Conclusion

In this work, multilayer electrodes were produced simultaneously with compact and porous, nanostructured particles to optimize the electrode properties. The multilayer configuration was supposed to improve the adhesion force compared to a single layer with only porous particles, and the C-rate capability compared to a single layer with only compact particles. Thereby, the focus was to investigate the influence of drying on the electrode properties.

For the multilayer electrodes, different layer configurations were produced with different proportions of porous particles and with a reduced binder content in the top layer of the coating.
The multilayer electrodes (ML 1/3 porous and ML 2/3 porous) show a higher adhesion force than the single-layer electrodes with porous material (SL porous) at lower and higher drying rate, respectively. The multilayer electrode, which consists of 2/3 compact particles (ML 1/3 porous) toward the separator side, shows a 16-times higher adhesion force at the lower drying rate and a 10-times higher adhesion force at the higher drying rate - more oriented towards the adhesion force of the single-layer electrode with compact particles. It has been shown by half-cell tests that despite binder migration is occurring during drying with the higher drying rate, the C-rate capability of the multilayer and single-layer electrode with porous particles was increased compared to the single layer with compact particles. Compared to the single-layer electrode with compact particles, the multilayer electrode with a higher proportion of porous particles shows an increase in specific discharge capacity of 88% and of 67%, respectively, at the higher drying rate and a discharge rate of 3 C. For increasing drying rate, all investigated electrodes show a decrease in adhesion force. C-rate capability and an increase in resistivity. In particular, it was found that for the formulations and coating configurations used, the adhesion force correlates with the overall binder content of the electrodes.

The findings show that a selectivity accessible porosity and the overall binder content influence the binder migration during the drying of multilayer electrodes. However, a mechanistic understanding of the drying and binder migration of multilayer electrodes with the PVDF/NMP binder/solvent system is necessary for further optimization of electrode properties, as it is still a widespread binder-solvent system for NMC cathodes. Nevertheless, future studies will also investigate the processing of aqueous cathodes with different particle morphology in single-layer and for multilayer architectures at increasing drying rates.

4. Experimental Section

Slurry Materials and Cathode Mixing: Active Material Characterization. The specific surface was obtained by BET measurement using nitrogen adsorption gas (Gemini VII 2390, Micromeretics). The densities of the materials were measured by helium pycnometry (AccuPyc 1330, Porotec).

Slurry Materials and Cathode Mixing: Mixing. The slurry for NCM622-compact (NCM622, BASF) and NCM622-porous cathodes were mixed in a dissolver (Dispermat SN-10, VMA Getzmann/Germany). The conductive additives carbon black (C-Nergy Super C65, Imerys) and graphite (C-NERGY KS6L, Imerys), a PVDF (Solef S130, Solvay) binder-solvent solution (7.5 wt%) and about 50% of the required amount of NMP (Carl Roth) were dispersed at 1000 rpm for 30 min. The active material and the remaining NMP were added to adjust the solid content (55 wt%) and dispersed at 1000 rpm for further 30 min. The compositions of the dry electrodes are shown in Table 3. The viscosity was measured by a rotational viscometer (Physica MCR 101, Anton Paar) in a plate-plate system with 25 mm diameter measuring head from 0.1 to 1500 s⁻¹ at 25 °C. Before starting the measurement, the sample was sheared at 0.1 s⁻¹ for 60 s.

<table>
<thead>
<tr>
<th>Name</th>
<th>NCM</th>
<th>KS6L</th>
<th>C65</th>
<th>PVDF</th>
<th>Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCM622-compact</td>
<td>90.5</td>
<td>2.0</td>
<td>3.0</td>
<td>4.5</td>
<td>55</td>
</tr>
<tr>
<td>NCM622-porous</td>
<td>92.0</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>55</td>
</tr>
</tbody>
</table>

Cathode Coating and Drying. The coating and drying of the single-layer or multilayer-cathode electrodes was carried out in a discontinuous process. The aluminum foil (Schlenk, 20 μm) was attached to a temperature-controlled plate. The coating of the cathode slurries was applied by a doctor blade (ZUA 2000.60, Zehnder) and subsequently the coating was moved under the drying nozzles of an impingement dryer. For homogeneous drying, the coating was moved periodically under the dryer.

Electrodes Characterization: Porosity. The porosity of the electrodes was calculated with the area weight m_electrode divided by the density of the dry mixture ρ_mixtures and the dry electrode thickness h_dry (Equation (1)).

$$\epsilon_{\text{electrode}} = \frac{m_{\text{electrode}}}{\rho_{\text{mixtures}} h_{\text{dry}}} \quad (1)$$

The density of the dry mixture was calculated using Equation (2) with the mass fractions in the dry electrode and the densities of the components. ρ_NCM is the density from Table 1, measured by helium pycnometry.

$$\rho_{\text{mixtures}} = \frac{x_{\text{NCM}} \cdot \rho_{\text{NCM}} + x_{\text{C65}} \cdot \rho_{\text{PVDF}} + x_{\text{KS6L}} \cdot \rho_{\text{PVDF}}}{1}$$

To calculate the interparticle porosity, the envelope density according to Equation (3) is used instead of the density in Equation (2).

$$\rho_{\text{envelope}} = (\rho_{\text{NCM622- porous}} (1 - \text{Copper particle porosity}) \quad (3)$$

Electrodes Characterization: Resistivity. The resistivity was determined with an ohmmeter (HIOKI, RM3544). For this purpose, circular samples of the cathodes were placed between polished copper cylinders with a diameter of 14 mm and pressed by a force of 9.81 N.

Electrodes Characterization: SEM. A Zeiss Supra 55 from Carl Zeiss AG (Oberkochen, Germany) was used for SEM investigations.

Half-Cell Preparation and Cell Test. The cathodes (13 mm) were electrochemically examined in CR2032 coin cells against a lithium-metal (16 mm) counter electrode. The electrolyte used was 200 μL of LP30 (BASF) with the conductive salt 1M LiPF6 in an EC/DMC (1:1) mixture. The two separators made of a glass-microfiber fleece (CF/C, Whatman) had a diameter of 16 mm. The cells were assembled in an argon filled glovebox and sealed with a MSK-11 press (MTI, Kj Group).

The cycling was carried out in a BT2000 battery cycler (Arbin Instruments) in constant current mode inside a voltage range of 3–4.3 V. Identical C-rates were used for charging and discharging. After two formation cycles at a C-rate of C/20, the C-rate was gradually increased up to 5 C. Then additional steps were carried out at C/2 and 1 C. The standard deviation between different electrodes and different coin cells is given.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

This work contributes to the research performed at CELEST (Center for Electrochemical Energy Storage Ulm Karlsruhe) and Material Research Center for Energy Systems (MZE). It was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy – EXC 2154 – Project number 390874152 (POLiS Cluster of Excellence). The authors would like to thank the assistants involved in this work.

Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords

binder migration, electrode processing, hierarchical structured materials, lithium-ion batteries, microstructure optimizations, multilayer electrodes, NCM