KIT | KIT-Bibliothek | Impressum | Datenschutz

High‐Throughput Screening of High‐Entropy Fluorite‐Type Oxides as Potential Candidates for Photovoltaic Applications

Kumbhakar, Mukesh; Khandelwal, Anurag 1; Jha, Shikhar Krishn; Kante, Monaha Veerraju 1; Keßler, Pirmin 2,3; Lemmer, Uli 2,3; Hahn, Horst 1; Aghassi-Hagmann, Jasmin ORCID iD icon 1; Colsmann, Alexander ORCID iD icon 4; Breitung, Ben ORCID iD icon 1; Velasco, Leonardo; Schweidler, Simon ORCID iD icon 1
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)
3 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)
4 Materialwissenschaftliches Zentrum für Energiesysteme (MZE), Karlsruher Institut für Technologie (KIT)

Abstract:

High-throughput (HT) synthesis and HT characterization techniques are becoming increasingly important due to the ever-increasing complexity of materials and applications of advanced functional compounds. This work reports on the high-throughput compilation of material libraries of high-entropy oxides with fluorite crystal structure and tunable band gaps to be used as, e.g., semiconductors for photovoltaic applications. The material libraries cover the high-entropy range of rare-earth oxides with 5, 6, and 7 different cations (Ce, La, Sm, Pr, Tb, Y, and Zr) in near equimolar concentrations, but also the medium entropy range with 4 cations. The atmosphere used during or after synthesis is found to have a large effect on the band gap of these materials. Multivalent rare-earth cations such as Ce/Pr/Tb enable reversible tuning of the band gap between 2.0 and 3.5 eV upon calcination under various oxidizing and reducing atmospheres. The high-entropy fluorite oxides with smaller band gaps exhibit high electron mobility and transport energy levels compatible with common solar cell architectures.


Verlagsausgabe §
DOI: 10.5445/IR/1000159952
Veröffentlicht am 29.06.2023
Originalveröffentlichung
DOI: 10.1002/aenm.202204337
Scopus
Zitationen: 6
Dimensions
Zitationen: 8
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Institut für Nanotechnologie (INT)
Lichttechnisches Institut (LTI)
Materialwissenschaftliches Zentrum für Energiesysteme (MZE)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 06.2023
Sprache Englisch
Identifikator ISSN: 1614-6832, 1614-6840
KITopen-ID: 1000159952
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Weitere HGF-Programme 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Advanced Energy Materials
Verlag Wiley-VCH Verlag
Band 13
Heft 24
Seiten Art.-Nr.: 2204337
Vorab online veröffentlicht am 04.05.2023
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page