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ABSTRACT
In order to achieve the worldwide set ambitious climate goals, the

identification and characterization of flexibility in city districts can

reduce grid loads and avoid grid congestion. Unlike other flexibility

indicators in the literature, the present paper introduces a new

flexibility indicator that uses a data-driven approach to determine

flexibility from actual measured load profiles. We present this new

indicator by considering flexibility in the context of planning charg-

ing infrastructure with a valley filling approach. For this use case,

we introduce a data-analysis workflow to apply the presented flexi-

bility indicator. The described data-analysis workflow is applied to

data from a real-world city district.

Based on the results from the real-world data, we show that the

highest peak load and the least flexible peak are not always identi-

cal. Therefore, it is not sufficient to consider only the highest peak

loads to adequately describe flexibility. Furthermore, we discuss

that additional flexibility can be used as another degree of freedom

to optimize the charging power or the charging duration. In the

presented real-world data, we show that the maximum required

charging power is determined by the most inflexible peak and can

be the same or smaller for all peaks with a higher flexibility. More-

over, we highlight the difference between considering buildings

individually and combining them as a district.
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1 INTRODUCTION
Governments around the world set ambitious goals on carbon re-

duction to combat climate change. For example, the German federal

government aims at reducing carbon emissions by 55% until the

year 2030 compared to 1990 [1]. Worldwide, the residential sector

contributes 20%, the service sector 14% and the transport sector

35 % to the primary energy consumption [2]. Since those sectors all

come together in city districts, city districts play a significant role

in the transformation of the energy sector.

In view of advancing energy transition, the exploitation of flexi-

bility potential in city districts becomes crucial, in order to reduce

grid loads and avoid grid congestions [3]. To identify and quan-

tify the flexibility potential, suitable methodology and flexibility

indicators are needed. A variety of papers like [4–8] and [9–11]

address the description and quantification of flexibility. Further-

more, recently published meta analyses like [12], [13] or [14] give

a holistic overview of all kinds of different methods and indicators

describing flexibility. Those indicators, for example, consider the

spread of key figures, e.g. emissions or costs, between low and

high load periods (see flexibility factor in [14]), the self-sufficiency

and self-consumption indicator [14] or the capacity of controllable

loads, in order to reduce energy consumption in case of a demand

response measure [14].

As those papers present a high number of different indicators,

it can be concluded that no single indicator fits all applications

and research questions. Papers like [15] show that flexibility is

always in some form linked to physical devices, that can either

reduce or shift their demand in time. As governments accelerate

the transition towards a sustainable transport system, electric ve-

hicles (EVs) and charging infrastructure (CI) become increasingly

significant devices for flexibility provision. For example, according

to the ’Klimaschutzprogramm 2030’ [1] of the German federal state,

one million charging points shall be installed until the year 2030

from which, less than 7 % was reached in September 2022 [16].

With those high numbers of CI still in the planning phase, there

is an urgent need for flexibility indicators, that do not only de-

scribe the operation but also help in the planning phase of new

CI. However, most flexibility indicators are centered around the

building heating, ventilation, and air conditioning (HVAC) sphere

and are not applicable on CI. Further, these flexibility indicators

are not primarily based on measurement data and require detailed

modelling [14].

Paper that cover planning of CI like [6, 7, 17, 18] all approach

the planning from the perspective of expected charging behavior,

considering different vehicle types and usage characteristics and
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concluding the required size of CI to fulfill this demand. This as-

sumes that the on-site conditions in a city are ideally adaptable to

the identified charging demand. In reality, however, CI is part of

the superordinate, already existing city infrastructure (like parking

spaces or the distribution grid with other existing energy con-

sumers). Therefore, a suitable flexibility indicator needs to take

the characteristics of the existing superordinate infrastructure into

account.

The relevant aspects of the superordinate infrastructure are to

some degree of physical and to some of legal nature. From the

hierarchical perspective, a city consists of different districts, that

themselves consist of different buildings (see Figure 1). From a

legal standpoint, the connection point between the building and

the superordinate grid, i.e. the grid connection point (GCP) is of

interest (e.g. ’Kundenanlage’ in the German law [19]). The GCP can

be associated with a single building or aggregate multiple buildings

in other cases (see Figure 1). In the private grid, subordinate to the

GCP, energy can be exchanged without the supplier being regulated

as a utility company, leading to reduced costs and bureaucracy [19].

Also, the energy billing is carried out on the load profile of each

GCP individually [20]. While papers like [21], [22] or [23] describe

the demand for flexibility in the energy market and how to quantify

flexibility of existing flexible plants, we focus on characterizing

the potential for future supply through future CI. Our approach

makes different GCPs comparable. This information can then be

used to be matched against the flexibility needs of the market and

the superordinate grids to make a planning decision.

Figure 1: Hierarchy of superordinate infrastructure: Multiple
buildings at one GCP (left) or one building only per GCP and
coupling of buildings only through public grid (right)

Therefore, suppliers of local renewable energy and operators of

the private grid in one GCPs only optimize the internal consump-

tion inside their single GCP and do not consider the other GCPs

in the district. Therefore, a suitable flexibility indicator needs to

make the different GCPs comparable. Furthermore, research like

[5] or [24] suggest, that aggregation of buildings to a district leads

to advantages in flexibility and grid support. Since the aggregation

at district level faces multiple legal problems in the current system

(e.g., for Germany see [25]), the advantages of combining multiple

GCPs to a district also need to be critically examined.

Besides grid congestion, cost reduction is a main motive for ex-

ploiting flexibility [14]. In countries like Germany, billing periods

can not only be on a yearly, but also on a monthly basis, according

to StromNEV § 19 [20]. The charged prices are composed of an

energy related share (¢/kWh) and a power related share (€/kW). A

monthly billing period, in this case, means, that the power compo-

nent is charged for each month individually on its highest monthly

consumption peak. Therefore, a suitable flexibility indicator should

also be able to characterize flexibility regarding monthly power

peaks.

To avoid new and even higher peaks, charging needs to take place

during off-peak times. In the context of load shaping approaches as

defined in [14], this means a valley filling approach. Valley filling

is widely examined in literature [26–34]. Those works all present

different algorithm and control strategies, like decentralized coor-

dination [26, 27], control through price signals [27, 31, 32, 34] or

further grid friendly behavior, like reduced power ramps [27, 33]

or the consideration of the limits of the local power transformer or

a local grid [29, 34].

However, [26–35] all target at optimizing the operation of CI

during everyday production usage. Therefore, they do not focus on

providing indicators that quantify the flexibility in a way to make

GCPs comparable to support the planning phase of new CI.

Since, as [14] points out, valley filling aims at increasing the

consumption in off-peak hours and those are characterized by a

baseline load profile
1
the assumed baseline load profile is of high

relevance. The baseline load profile in [27] is based on data of a

Californian system operator, [30] uses measured data from a trans-

former in Shenzhen and [29] utilizes the load profile of the IEEE

14-bus system. However, only single load profiles with a limited

time range are used by [27, 29, 30] and a comparison of multiple

load profiles over a whole year is missing. In other paper like [26, 28,

31, 34] it is not even clear, what the baseline load profile is based on.

A study and comparison of several measured real-world baseline

load profiles and their difference or suitability for valley filling is

missing. To conclude, a data-driven approach for quantifying CI

flexibility of measured baseline load profiles of existing buildings

or districts regarding the suitability for valley filling is needed.

When considering a data-driven approach, it should be based on

features used for flexibility description, like proposed in [4]. One

main feature is the time for which a flexibility source is available

[4]. For example, a charging session of an EV lasts from 20min to

6 h depending on the location type [6]. The limitation on available

charging power is highest around peaks of the baseline load profile.

Therefore, the flexibility indicator must be able to reflect the limited

availability in the surroundings of a load peak.

To sum up, a suitable flexibility indicator needs to consider char-

acteristics of charging infrastructure like limited availability of

vehicles and limited charging power. Furthermore, it must support

the planning phase of new CI. In addition, the flexibility indicator

should make different GCPs comparable. And lastly, it needs to

consider monthly and yearly consumption peaks and be extractable

from existing baseline load profiles without further assumptions

needed for vehicle or user behavior. Instead, it should only quantify

the suitability of a GCP for the future installation of grid friendly CI

1
Baseline meaning the measured load profile under current consumption and behav-

ioral conditions without the newly planned CI.
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(that does not produce additional peaks besides the existing ones)

through a data-analysis of baseline load profiles.

The remainder of the paper is organized as follows: Section 2

presents our methodology to calculate the flexibility indicator. In

section 3, we present a real-world district that contains four differ-

ent GCPs. In section 4, we discuss the application of our methodol-

ogy on the real-world data. Additionally, subsection 4.2 presents the

comparison of the different GCPs, subsection 4.3 examines the cor-

relation of flexibility and peak height, and subsection 4.4 discusses

flexibility on a district level compared to each GCP individually.

Section 5 closes the present article, giving relevant conclusions and

an outlook for future work.

2 METHODOLOGY
In section 2 we present the data-driven approach, fulfilling the

requirements laid out in section 1. The full workflow of the data-

analysis process is depicted in Figure 2. Since the approach is based

on analyzing a baseline load profile regarding power peaks, a first

step is to acquire and prepare the baseline load profiles of each

GCP (subsection 2.1) and to identify the different types of peaks

(subsection 2.2). In the next step, the flexibility indicator is defined

and calculated for each GCP (subsection 2.3). Afterward, a filtering

step is included to select only the relevant peaks of each GCP for

further analysis and comparison (subsection 2.4). Furthermore, the

power limitation aspect of CI is considered in subsection 2.5. The

obtained results are then used to compare the different GCPs in

order to answer the further research questions posed in section 1.

Figure 2: Overview of data-analysis workflow for all GCPs
individually with a final comparison of the different GCPs

2.1 Preprocessing of input data
When considering preprocessing, features of interest are: time zone,

temporal resolution, value resolution and time frame of available

data. The resolution is relevant for both the temporal and the value

axis, since measured values are usually both time discrete and

value discrete. The temporal resolution (Δ𝑡 ) is assumed as 15min

equidistant. The value resolution (Δ𝑝) depends on the quality of

the power measurement and can greatly influence the results. For

example, at Δ𝑝 , it might appear that multiple 15min power values

have the same magnitude, resulting in multiple peaks that appear

to be equally important but exhibit potentially quite different load

profile shapes before and after the peak. Because billing of peaks

is carried out on a time frame of a month or a year, the available

data needs to cover at least one year per GCP. Further research is

needed to investigate, whether the relevant key figures could also

be extrapolated on a data basis of a smaller time frame.

2.2 Identification of peaks
Firstly, all potentially relevant peak data points need to be identified.

These are power maxima at the level:

• 𝑝𝑔𝑦 : global year (calendar feature)

• 𝑝𝑔𝑚 : global month (calendar feature)

• 𝑝𝑙 : local (in given number of neighboring data points)

The set of local maxima includes themonthlymaximawhich include

the yearly maxima:

𝑝𝑔𝑦 ⊂ 𝑝𝑔𝑚 ⊂ 𝑝𝑙 (1)

The yearly maxima (𝑝𝑔𝑦 ) and monthly maxima (𝑝𝑔𝑚) are defined

as the highest 15min power value in a given yearly or monthly

time frame. If the power value resolution is low in relation to the

absolute power level, more than one data point may have the same

global power level in the given time frame. In this case, both data

points are classified as yearly/monthly peaks.

The local maxima are identified by finding the highest (or equal)

power value in a given surrounding of each data point (order) for
the entire load profile. With a 15min temporal resolution, a single

day has 96 data points that result in an order of 48. This makes

it possible to identify approximately one local maximum per day

without being limited through calendar features (e.g., a maximum

right around midnight, that would be counted twice if identified by

the day as a calendar feature).

2.3 Calculation of flexibility indicator
As discussed in section 1, the flexibility is characterized by the

baseline load profile during a certain time frame 𝑡𝑓 around any

peaks specified in subsection 2.2. The main function of the time

frame 𝑡𝑓 is to have a comparable metric for each load profile. The

size of the time frame influences the expressiveness of the flexibility

indicator. Regarding CI, the longest expected charging duration is

6 h (see section 1). Therefore, it can be assumed that 𝑡𝑓 of 6 h is the

best suite as a starting point for this paper. A 𝑡𝑓 of 6 h leads to an

evaluated range from −3 h to 3 h around each peak time (𝑡𝑙 ). With

a Δ𝑡 = 15min resolution, that leads to 12 values before and after 𝑡𝑙 ,

resulting in: 𝑡𝑓 = {𝑡𝑙 + 𝑘 · Δ𝑡 |𝑘 ∈ [−12, 12] ∩ Z}.
The flexibility indicator is calculated for every local peak. In a

first step, the flexible energy around each peak (𝑒𝑙,𝑓 𝑙𝑒𝑥 ) is calculated

as:

𝑒𝑙,𝑓 𝑙𝑒𝑥 =

𝑡𝑙+12∑︁
𝑖=𝑡𝑙−12

(𝑝𝑔 − 𝑝𝑖 ) · Δ𝑡 (2)

Figure 3 shows the baseline load profile (gray) and for the relevant

time frame 𝑡𝑓 in the surrounding of 𝑡𝑙 also 𝑒𝑙,𝑓 𝑙𝑒𝑥 in red.

The global peak power 𝑝𝑔 can either be the yearly maximum 𝑝𝑔𝑦
or the monthly maximum, 𝑝𝑔𝑚 depending on the billing system

for the individual GCP. To compare also the suitability of the two

different billing methods for the different GCPs, both, the monthly

and the yearly billing system are evaluated in this paper. The value

of 𝑒𝑙,𝑓 𝑙𝑒𝑥 is calculated for every local power maximum (𝑝𝑙 ) and
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Figure 3: Examples for one peak with low flexibility (left)
and one peak with high flexibility (right)

therefore, for each timestamp, 𝑡𝑙 of a local power maximum. We

define the inflexible energy 𝑒𝑙,𝑓 𝑖𝑥 by:

𝑒𝑙,𝑓 𝑖𝑥 =

𝑡𝑙+12∑︁
𝑖=𝑡𝑙−12

𝑝𝑖 · Δ𝑡 (3)

The flexibility indicator 𝑓 is then defined as the share of flexible

energy 𝑒𝑙,𝑓 𝑙𝑒𝑥 of the overall energy (𝑒𝑙,𝑓 𝑙𝑒𝑥 + 𝑒𝑙,𝑓 𝑖𝑥 ) in a given time

frame 𝑡𝑓 . It ranges from 0.96 as an ideal peak with the highest

flexibility to zero as the worst peak with the lowest flexibility
2
:

𝑓 =
𝑒𝑙,𝑓 𝑙𝑒𝑥

(𝑒𝑙,𝑓 𝑙𝑒𝑥 + 𝑒𝑙,𝑓 𝑖𝑥 )
∈ [0, 0.96] (4)

As mentioned, both billing methods (𝑝𝑔𝑦 and 𝑝𝑔𝑚) are evaluated,

leading to 𝑓𝑦 (yearly billing period) and 𝑓𝑚 (monthly billing period).

2.4 Filtering for relevant peaks
The peak with the lowest flexibility 𝑓𝑚𝑖𝑛 limits and characterizes

the whole GCP. In addition, the second and third most inflexible

peaks characterize the GCP. However, below a certain threshold, the

peaks are too low to be representative of the characteristics of the

GCP. This threshold is defined using normalizes local peaks 𝑝𝑛,𝑙 =

𝑝𝑙/𝑝𝑔𝑦 (yearly) and 𝑝𝑛,𝑙 = 𝑝𝑙/𝑝𝑔𝑚 (monthly) and the characteristic

flexibility 𝑓𝑚𝑖𝑛 (min(𝑓𝑦 ) or min(𝑓𝑚) correspondingly) as:

if (𝑝𝑛,𝑙 + 𝑓𝑚𝑖𝑛 > 1) then → relevant (5)

This assumption filters out all peaks, allowing for permanent charg-

ing with average charging power without the need for load shifting.

𝑓𝑚𝑖𝑛 also depends on the billing period as described in subsec-

tion 2.3. The rating is therefore also carried out on a yearly and a

monthly basis.

2
For the 𝑡𝑓 used in this paper, the best case are 24 Δ𝑡 with 100% 𝑒𝑙,𝑓 𝑙𝑒𝑥 and the peak

Δ𝑡 with 100% 𝑒𝑙,𝑓 𝑖𝑥 leading to 𝑓 = 24/25 = 0.96.

2.5 Calculation of charging power
Subsection 2.4 discusses the filtering for relevant peaks. The peaks

that required some sort of load shifting were identified as the rele-

vant peaks. However, as the other relevant peaks all show a higher

flexibility than 𝑓𝑚𝑖𝑛 , they exhibit a certain surplus of flexibility and

therefore a further degree of freedom. Figure 4 shows two different

ways to use the surplus flexibility: for charging power optimization

or for charging time optimization. Due to costs, it is of interest

to minimize the charging power needed to exploit the maximum

flexibility. Consequently, the minimum required charging power is

calculated as a further indicator to characterize the GCP.

Figure 4: Example for utilization of flexibility with charging
limit: Utilization of flexibility for power optimization (left)
and for charging duration optimization (right)

The following paragraph describes the algorithm to calculate the

minimal required charging power (see Algorithm 1). The reference

is the energy that can be charged at the most inflexible peak (𝑒𝑚𝑖𝑛 =

𝑒𝑙,𝑓 𝑙𝑒𝑥 (𝑓𝑚𝑖𝑛)). At least this amount should be chargeable at all

other peaks as well. Therefore, during the calculation, the charging

power 𝑝𝑐ℎ𝑎 is gradually increased, until the integral over all time

steps (𝑡 ∈ 𝑡𝑓 ) matches the energy chargeable at the most inflexible

peak. For timestamps, where a charging power limitation is needed

(𝑡 ∈ 𝑡𝑙𝑖𝑚), the maximum power reserve until the peak power is used

for charging.We use the normalized (on the year peak) baseline load

profile 𝑝𝑛 [𝑡]. The charging power during 𝑡𝑙𝑖𝑚 is then given as (1 −
𝑝𝑛 [𝑡]). For the remaining timestamps (𝑡 ∈ 𝑡𝑢𝑛𝑙𝑖𝑚), charging with

the maximum charging power 𝑝𝑐ℎ𝑎 is assumed. The algorithm tries

to find a data point with the next higher charging power 𝑝𝑐ℎ𝑎,𝑡𝑚𝑝

until the required energy 𝑒𝑚𝑖𝑛 is met. Since Δ𝑡 and 𝑡𝑓 are fixed

values for all peaks, and Δ𝑒 = 𝑝 · Δ𝑡 , the term Δ𝑡 can be set to one

and the energy can be determined by 𝑒 =
∑
Δ𝑒 =

∑
𝑝 as a sum of

the powers of the individual time intervals. The charged energy 𝑒𝑐ℎ𝑎
consists of a part during limited 𝑒𝑙𝑖𝑚 and a part during unlimited

𝑒𝑢𝑛𝑙𝑖𝑚 charging. The charging power during the unlimited time per

definition needs to be higher or the same as the power during the

limited times. Therefore, if the energy requirement is fulfilled, the

maximum charging power can be calculated as the energy charged

during unlimited charging (𝑒𝑢𝑛𝑙𝑖𝑚 = 𝑒𝑚𝑖𝑛 − 𝑒𝑙𝑖𝑚) divided by the

number of time steps of unlimited charging (len(𝑡𝑢𝑛𝑙𝑖𝑚)).
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Algorithm 1 Identifying maximum required charging power

𝑒𝑚𝑖𝑛 ← 𝑙𝑒𝑛(tf ) ·min(fy)
while 𝑒𝑐ℎ𝑎 < 𝑒𝑚𝑖𝑛 do
punlim ← pn where 𝑝𝑛 < (1 − 𝑝𝑐ℎ𝑎)
𝑝𝑐ℎ𝑎,𝑡𝑚𝑝 ← (1 −max(punlim))
for 𝑡 ∈ tf do

if 𝑡 ∈ tlim then
𝑒𝑙𝑖𝑚 ← 𝑒𝑙𝑖𝑚 + (1 − pn [𝑡])

else if 𝑡 ∈ tunlim then
𝑒𝑢𝑛𝑙𝑖𝑚 ← 𝑒𝑢𝑛𝑙𝑖𝑚 + (1 − 𝑝𝑐ℎ𝑎,𝑡𝑚𝑝 )

end if
end for
𝑒𝑐ℎ𝑎,𝑡𝑚𝑝 ← 𝑒𝑙𝑖𝑚 + 𝑒𝑢𝑛𝑙𝑖𝑚
if 𝑒𝑐ℎ𝑎,𝑡𝑚𝑝 < 𝑒𝑚𝑖𝑛 then
𝑝𝑐ℎ𝑎 ← 𝑝𝑐ℎ𝑎,𝑡𝑚𝑝

𝑒𝑐ℎ𝑎 ← 𝑒𝑐ℎ𝑎,𝑡𝑚𝑝

else if 𝑒𝑐ℎ𝑎,𝑡𝑚𝑝 >= 𝑒𝑚𝑖𝑛 then
𝑝𝑐ℎ𝑎 = (𝑒𝑚𝑖𝑛 − 𝑒𝑙𝑖𝑚)/len(tunlim)
break

end if
end while

3 REAL-WORLD DISTRICT AND DATA BASE
In section 3, we present the real-world district in the city of Karl-

sruhe, Germany, and present the data base.

3.1 Real-world district
The district is of a mixed residential-commercial type. Regarding

charging profiles, charging at work is present as well as the charging

of car-sharing vehicles and charging by residents. Since it is an

urban district, the potential for further renewable energy generation

is limited. The district consists of four GCPs with a multitude of

buildings subordinate to each GCP (see Figure 5; compare Figure 1).

The GCPs are coupled through the public 20 kV grid. Regarding

the construction year, the district is quite heterogeneous. It reaches

from buildings constructed less than 5 years ago to ones constructed

more than 120 years ago.

Figure 5: Buildings of the four GCPs in the real-world district
in Karlsruhe, Germany [36]

Asmentioned in section 1, the GCP is a relevant billing boundary.

Energy supplier within the GCPs are not regulated as utility com-

panies. Furthermore, within the GCPs in this specific district, local

generation and consumption is further subsidized
3
. The advantages

of reduced regulation and subsidies are omitted, when utilizing

the public grid for energy exchange. Therefore, the advantages of

considering the whole district versus the single GCPs need to be

critically examined in subsection 4.4.

3.2 Data base
The real-world load profiles used in the present paper were mea-

sured by the utility company for billing purposes. The temporal

resolution (compare subsection 2.1) of the load profiles is equidis-

tant 15min and the data is available for the whole year of 2021. All

load profiles were converted in UTC with the start timestamps of

each period and the power consumption for each GCP. For plots of

the load profiles, see Appendix A.

As mentioned in subsection 2.1 the value resolution Δ𝑝 signif-

icantly influences the number of identified local peaks 𝑝𝑙 . The 𝑝𝑙
values were obtained following the method described in subsec-

tion 2.2 with an order of 48. The Δ𝑝 of the real-world load profiles

ranges from 0.001 % to 2.128 % given in percent of the peak power

𝑝𝑔𝑦 as shown in Table 1. GCPs with a lower value resolution (higher

Δ𝑝) present a significantly higher number of 𝑝𝑙 (compared Table 1).

For example, for GCP 2, 1372 𝑝𝑙 were identified instead of the ex-

pected average of 365 per year (resp. 366 in 2021 due to leap year).

The number of additionally identified 𝑝𝑙 can be characterized by the

occurrence of adjacent maxima or several maxima in one calendar

day. Of GCP 2’s total of 1372 𝑝𝑙 , 670 have directly adjacent 𝑝𝑙 with

the same value. In 1013 cases of the 1372 𝑝𝑙 , more than one 𝑝𝑙 per

calendar day was identified due to an indistinguishable peak level.

However, since they do represent real world power maxima and it

is not possible to extract a more precise peak value, all data points

at the peak level were treated as equally relevant in this work. In

future work, other methods like filtering according to flexibility

indicator or peak slope could be examined.

Table 1: Lower value resolution Δ𝑝 leads to a lower number of
distinguishable peak power levels andmultiple values, either
directly neighboring or within the same day exhibiting an
identical peak level and therefore leads to more peak values
(number of identified 𝑝𝑙 ) than the ideal 365-366 per year

GCP 1 GCP 2 GCP 3 GCP 4

(Δ𝑝/𝑝𝑔𝑦 ) 0.001 % 2.128 % 0.049 % 0.901 %

number of identified

local peaks 𝑝𝑙
375 1372 430 501

number of peaks with

immediate neighbor at

same power level

22 670 74 110

number of additional

peaks per calendar day

22 1013 117 153

3
’Mieterstromzuschlag’ according to EEG 2021 §21 3.2 and reduced grid fees according

to StromNEV §18 1.1.
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4 RESULTS AND DISCUSSION
In section 4, we discuss the results obtained from applying the

methodology presented in section 2 to the data base presented in

section 3.

4.1 Application of data-analysis workflow
Since the data-analysis workflow has already been described in

detail in section 2, only the specifics of the results are discussed

in the following. Besides the quality of the data base, which was

described in subsection 3.2, the results of the filtering process and

the determined flexibility indicators are the main factors to be

examined.

Peaks are in their nature outliers and extreme values. In average,

only 1.93% of all peaks of the real-world validation dataset are

relevant for flexibility characterization on a yearly basis. Signifi-

cantly more data points, 29 % of all peaks, characterize the monthly

flexibility (compare Table 2). Future work also needs to examine

the sensitivity of the percentage of relevant peaks toward 𝑡𝑓 (that

was chosen as a 6 h time frame in this work, see subsection 2.3).

The other results of the analysis workflow are presented in the

Table 2: In contrast to 𝑝𝑙 , the absolute number of relevant
peaks on a yearly basis (𝑓𝑦) or a monthly basis (𝑓𝑚) is not
significantly influenced by Δ𝑝 for the data basis used in this
work. The additional peaks are irrelevant for the characteri-
zation of the GCP (see subsection 2.4)

GCP 1 GCP 2 GCP 3 GCP 4

number of identified 𝑝𝑙 375 1372 430 501

relevant on yearly basis 2 15 9 20

relevant on monthly basis 112 128 221 129

irrelevant 263 1244 209 372

following directly in the form of a comparison of the four GCPs.

4.2 Comparing the data-analysis results for the
four GCPs

The monthly and yearly flexibility show the same characteristics of

the GCPs for the given dataset. Meaning, the higher the flexibility

on a yearly basis, the higher it is also on a monthly basis (see Table 3

and Figure 6).

Table 3: Characteristic flexibility 𝑓𝑚𝑖𝑛 and corresponding
normalized power 𝑝𝑛

GCP 1 GCP 2 GCP 3 GCP 4

𝑓𝑚𝑖𝑛,𝑦 0.14 0.07 0.14 0.13

𝑝𝑛,𝑦 at 𝑓𝑚𝑖𝑛,𝑦 1.000 0.957 1.000 0.964

mean 𝑓𝑚𝑖𝑛,𝑚 0.44 0.08 0.23 0.16

mean 𝑝𝑛,𝑚 at 𝑓𝑚𝑖𝑛,𝑚 0.959 0.998 0.893 0.953

GCP 1 and GCP 3 exhibit the highest and GCP 2 the lowest flex-

ibility. This indicates that information on the flexibility of different

GCP 1 GCP 2 GCP 3 GCP 40.0
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Figure 6: Comparison of 𝑓𝑦 and 𝑓𝑚 show similar tendencies
regarding the minimum exhibited flexibility and the flexi-
bility distribution for all GCPs

GCPs could be extracted even of less than a year of data. Future

research should further examine this relation and take an in-depth

look at monthly billing systems and conduct a more detailed analy-

sis of single months.

On a yearly basis, one single peak data point may exhibit a

significantly lower flexibility than all other relevant peaks. In the

presented data, this was the case for GCP 1 and GCP 3 (see Fig-

ure 6). In those cases, allowing underfulfillment for a single peak

could significantly increase the flexibility. The CI could be planned

according to the next higher flexibility by only under fulfilling a

single 6 h time frame. The presented approach explicitly does not

have the aim to describe operating strategies or control algorithms

and should only support the planning of new CI. However, includ-

ing analysis of the sensitivity towards underfulfillment could lead

to further understanding and better planning in future works.

As shown in Table 4 and Figure 7, to achieve the flexibility dis-

played in Table 3 at some time steps, the charging power needs to

be higher than the mean value to compensate the missing energy

of reduced charging periods around the peaks. At all four GCPs the

maximum charging power is reached at the most inflexible peak.

In average, more than the double (2.2 times) of the mean charging

power is needed to achieve the before mentioned flexibility. While

in average a power of 11.83 % of the peak consumption in CI can be

installed, some GCPs (GCP1 and GCP 3) allow significantly higher

charging power than the others.

Table 4: Charging power mean and max values

values as % of 𝑝𝑔𝑦 GCP 1 GCP 2 GCP 3 GCP 4

worst case max 𝑝𝑐 95.6 % 40.4 % 60.5 % 80.2 %

optimal max 𝑝𝑐 37.3 % 8.5 % 33.3 % 28.8 %

mean 𝑝𝑐 13.8 % 6.6 % 14.4 % 12.5 %

CI oversizing reg. mean 2.7 1.3 2.3 2.3
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Figure 7 shows the required charging power in relation to the

available flexibility. The displayed ’worst case’ means the maximum

charging power in 𝑡𝑓 is used, meaning charging at a total power

consumption of 𝑝𝑔𝑦 for any time, charging is active and only stop-

ping, if the energy requirement is met or the power needs to be

reduced due to a peak. In the ’optimal case’, the charging power is

at most the highest charging power from the most inflexible peak.
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fy0.0
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Figure 7: The most inflexible peak determines the maximum
charging power, as shown here for GCP 4 (for all GCPs see
Appendix C). In the unoptimized case (red o), higher charging
powers occur at all peaks exhibiting greater flexibility. The
excess flexibility can be used to reduce the charging power
(blue x) down to the mean charging power (black line).

The charging power can in average be chosen more than 60%

lower when exploiting the surplus flexibility than in the unopti-

mized case. Still, the installed charging power needs to be about 2.2

times higher than the average charging power to take advantage of

the flexibility potential. The mean proposed charging power lies at

11.83 % of the peak power for the sum of the GCPs (see Table 4). The

oversizing of power is characteristic of all plants with flexibility.

Otherwise, flexibility provision would not be possible at all. A big

advantage of CI is that oversizing is possible at low cost, since in

the case discussed it is not necessary to reinforce the supply line to

the GCP or the transformer, since new peaks are prevented. Only

the plug, and therefore the charging point and the car, have to be

able to handle correspondingly higher power.

Since the charging power can be reduced significantly below

the charging power from the most inflexible peak, not even all

flexibility is used for charging power optimization. This still leaves

a margin for safety or other purposes.

4.3 Correlation of flexibility and peak power
Among other things, it was noted in subsection 4.2 that the peak

with the highest power peak is not necessarily identical with the

most inflexible peak (for example see Figure 8. This finding is ex-

amined in more detail in the following.

As shown in Table 5 and Figure 9, peak power and 𝑓 are strongly

negatively correlated. This correlation is statistically significant

(p-value lower than 5%) for the unfiltered values on a yearly and

monthly basis and the filtered values on amonthly basis, see Table 5).

However, this is not true for the yearly basis due to some short

but high peaks. Because of their shortness, those high peaks also

exhibit a high flexibility indicator. And because of the reduced

number of relevant data points for the yearly basis, those outliers
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Figure 8: For GCP 4 the peak with the highest power is not
the one with the lowest flexibility (all GCPs, see Appendix C)

have a relevant impact. Therefore, a key finding is, that the highest

peak cannot be assumed to also be the most inflexible one.

Table 5: On a monthly basis, the peak height and flexibility
show a statistically significant negative correlation for all
GCPs. On a yearly basis, GCP 1 and GCP 2 show no statis-
tically significant correlation, GCP 3 shows a statistically
significant negative and GCP 4 a statistically significant pos-
itive correlation

GCP 1 GCP 2 GCP 3 GCP 4

𝑓 𝑦 (filtered)

PCC -1.00 0.15 -0.92 0.64

p-value 1 0.59 0.00038 0.0026

𝑓𝑚 (filtered)

PCC -0.55 -0.82 -0.55 -0.82

p-value 3.5e-10 6.6e-32 3.5e-19 1.6e-32

(a) GCP 3: Significant negativ
correlation
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(b) GCP 4: Significant positive
correlation
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Figure 9: Two examples of the correlation of 𝑝𝑦 and 𝑓𝑦 of
filtered values (red x) that can be significantly different for
different GCPs (for a complete overview, see Appendix B)

Table 3 shows the peaks with the lowest flexibility. On a yearly

basis, those occur at peaks with a proportion of 95.7 % to 100 % of the

yearly peak value. In six out of eight of the combinations of GCPs

and billing methods, the lowest flexibility does not correlate with

the highest peak. On a yearly basis, the lowest flexibility occurs in

average at a peak with around 98 % of the yearly peak power. This

imposes the need to include suitable characterization methods for

flexibility for all use cases or data-analysis methods. For example, a
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control algorithm for operating a charging infrastructure should

not only be based on a peak forecast but also, at least implicitly,

include a flexibility forecast. Meaning, the most critical day for an

optimization may not be those with the highest predicted peak

but those with a slightly lower but for longer time constantly high

baseline profile.

4.4 Single GCP versus district
As mentioned in section 1, the advantages of combining multiple

GCPs to a district need to be critically examined. For this purpose,

the flexibility indicator was calculated for three different scenarios

(A, B and C). The parameters of interest are the total peak power

and the flexibility indicator values.

4.4.1 Scenario A. In the state-of-the-art scenario, billing is carried

out for each GCP separately. Therefore, the least flexible peak of

each individual GCP is of interest. The relevant baseline load profile

in scenario A is the sum of the individual load profiles around these

most inflexible peaks. The peak height is defined by the sum of the

peak height of allGCPs around these peaks.

4.4.2 Scenario B. In the district scenario, all GCP’s baseline load

profiles are summed up before applying the analysis workflow.

The whole district is thus considered as one large single consumer.

Therefore, the flexibility of the district is calculated on the newly

formed maxima of the newly calculated load profile. This would

require the law to allow billing on a district level. The advantage

of district billing in contrast to GCP based billing is the reduction

in required peak power. In the real-world data at hand, the district

peak is 23.48 % lower than the peak in scenario A (additional plot,

see Figure 14). The flexibility in scenario B (0.089), however, is

also reduced by almost 25% compared to scenario A (0.152). The

reduction in peak power also led to a reduction in flexibility. Further

evaluation is needed to examine, how much the power can be

reduced through a district while still keeping the same flexibility

as scenario A. It should be examined what the relationship of peak

reduction and flexibility provision on a district level looks like.

4.4.3 Scenario C. To bring the reduced peak power and the

reduced flexibility in perspective, as a third scenario C, the district

is also evaluated with the maximum power of the sum of the GCPs.

In the scenario C, the flexibility (0,245) increases by almost 107%

compared to scenario A (0.152). This means, if the same power

maxima than in scenario A is assumed, the district outperforms

the state-of-the-art. However, if the full peak power reduction

potential of 23.48 % should be utilized, the flexibility is also reduced.

There appears to be a tradeoff of peak reduction versus flexibility.

Further, since flexibility is always defined relative to the peak,

for a fair comparison, also the different absolute peak height should

be considered. Therefore, also the comparison of the mean charg-

ing power regarding scenario A is included in Figure 10. In the

district scenario B, the mean charging power is reduced by more

than 40%. In scenario C the mean charging power is 3.61 times

higher than in scenario A. Moreover, the mean available charging

power is reduced alongside the peak power. This likewise shows

the presumed tradeoff of peak reduction versus flexibility. Data for

additional districts is needed to further examine the relationship of

peak reduction and flexibility provision on a district level.

Figure 10: Comparison of characteristic flexibility 𝑓𝑦 and
mean charging power 𝑝𝑐ℎ𝑎𝑟𝑔𝑒,𝑚𝑒𝑎𝑛 scaled to the current states
of separate GCPs

5 CONCLUSION AND OUTLOOK
The present paper shows that flexibility is not a natural inherent and

fixed value of an energy system, but rather describes the suitability

of an energy system in performing optimal under specific use cases

or boundary conditions.

We present a new flexibility indicator that considers characteris-

tics of charging infrastructure, like limited availability of vehicles

and limited charging power, which supports the planning phase of

new charging infrastructure. Furthermore, we present the whole

data-analysis workflow on how to apply the flexibility indicator.

We apply the workflow on a data base from a real-world district

and examine the monthly and yearly flexibility and compared the

different grid connection points of the district.

The data-analysis in the present paper confirms that peak charac-

teristics are highly influencing the suitability for valley filling. We

further demonstrate that it is incorrect to assume that the highest

peak during a particular time period is also the most inflexible one.

The monthly and yearly flexibility show the same characteristics

for the given data base. Furthermore, we show that a surplus in

flexibility can be utilized to reduce and optimize the maximum

required charging power.

Future work should examine the feasibility of extrapolating flex-

ibility on less than one year of data and validate the results on more

than one year of data as well as further real-world datasets. Fur-

thermore, different approaches on dealing with lower measurement

resolution could be looked into. Moreover, the identified tradeoff

of flexibility versus peak reduction on the district level needs to be

further investigated, as well as the potential of flexibility increase

when allowing underfulfillment of charging demand in a limited

time frame. Finally, since we pointed out that the most inflexible

peak is not always the one with the highest peak power, this im-

poses the need to at least implicitly include flexibility in future

works on forecasts and optimizations, and it is not sufficient to only

use the highest peak power values as key indicators.
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A REAL-WORLD BASELINE LOAD PROFILES
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Figure 11: Baseline load profiles of all GCPs
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B CORRELATION OF FLEXIBILITY (𝑓 ) AND PEAK POWER (𝑝)
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Figure 12: Correlation of flexibility (𝑓 ) and peak power (𝑝) of all GCPs on a yearly and a monthly basis black lines marking
linear regression of correlation of filtered values, 𝑥 marking relevant and 𝑜 marking irrelevant peaks
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C MOST INFLEXIBLE PEAKS AND CHARGING POWER
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Figure 13: For GCP1 and GCP3 the highest year peak corresponds with the most inflexible peak. Regarding GCP2 and GCP4,
the year peak is significantly more flexible, than other peaks
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Figure 14: Sum of the most inflexible peaks of all GCPs (sce. A) versus the most inflexible peak of the district profile (sce. B)
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Figure 15: The most inflexible peak determines the maximum charging power. In the unoptimized case (red o), higher charging
powers occur at all peaks exhibiting greater flexibility. The excess flexibility can be used to reduce the charging power (blue x)
down to the mean charging power (black line).
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