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Abstract

The transport of bacteria in river systems is a phenomenon which occurs on a multitude of length scales

ranging from the size of individual microbes up to the size of an entire estuary. At the same time the

understanding of the spreading of microbial populations after a localised contamination event such as

a combined sewer overflow is crucial for the prediction of the water quality downstream of the source,

which is in turn essential to managing public health. It is well-established that microbial populations

in fluvial systems may preferably be found on the surface of small particles rather than solely freely

suspended in the water body. The attachment to particles provides an environment beneficial to the

survival of bacteria due to the improved access to nutrients and the shielding from environmental stres-

sors, but also alters their dispersion characteristics as the transport of bacteria is then coupled to the

trajectories of heavy particles.

The importance in the distinction between the particle-attached and the freely-suspended mode of

transport has been recognised in the mechanistic modelling of bacteria fate and transport. However,

due to the multiscale nature of the problem, the mechanisms which govern the transport of particles in

river-like flows are never resolved explicitly, and hence, the models profoundly rely upon the availability

of accurate descriptions thereof. The associated problem of particles settling in a turbulent carrier flow

is an active topic of research by itself, and is rich in emerging phenomena such as the emergence of

spatial inhomogeneities or non-trivial modifications of the settling characteristics compared to quies-

cent environments. In particular, the transient settling of particles in horizontal open channels, which

serves as an abstraction of particle-attached bacteria transport in rivers, has hitherto received only little

attention in the literature. As a consequence, the knowledge on the impact of its defining features such

as boundedness, anisotropy and vertical inhomogeneity on the settling characteristics is limited and

needs to be addressed to enable the formulation of reliable models thereof.

The aim of this thesis is to fill the knowledge gap on the transport characteristics of heavy particles in

turbulent horizontal open channel flows, and to identify phenomena which may be of importance in the

context of bacteria transport modelling. For this purpose, the incompressible Navier–Stokes equations

and the momentum balance equations for dispersed particles are solved using direct numerical simu-

lations and the immersed boundary method. This approach resolves all relevant scales of turbulence

and the microscopic flow around each particle explicitly, and thus, describes the particle-fluid interac-

tion from fundamental principles of physics without the need of additional modelling. Apart from the

contaminated particles, which are introduced near the free surface of the flow, the simulation domain

includes approximately 100,000 fully resolved particles at the bottom of the domain, which form a real-

istic sediment bed, and enable the examination of the interaction between contaminated particles and

mobile sediments.

Concerning the parameter space, the value of the friction Reynolds number is varied within the range

Reτ ∈ [241,838], while the contaminant parameter space is chosen such that the resulting relative tur-

bulence intensities—defined as the ratio between the friction velocity and the undisturbed terminal
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velocity—lie within the range Iτ ∈ [0.47,2.88]. Moreover, two types of sediment bedforms are investi-

gated in order to assess their effect on contaminant transport, namely a macroscopically flat bed and a

bed featuring ripples.

The analysis of the simulation data shows that the settling velocity of the contaminant particles is en-

hanced in the ensemble-averaged sense, yet, the time from beginning of the settling until the initial

deposition is prolonged when compared to the ratio between the channel height and the terminal ve-

locity. The enhancement is demonstrated to be a result of the preferential sampling of turbulent sweep

events, which also implies that the streamwise component of the particle velocity is increased com-

pared to the mean fluid velocity at the same position. A closer examination of the spatial organisation of

contaminated particles reveals that they tend to accumulate in large-scale high-speed velocity streaks

in the outer region of turbulence. Due to this focusing mechanism, the mean-squared lateral displace-

ment of the settling particles stagnates in the lower half of the channel such that contaminants are not

further dispersed in cross-stream direction until shortly before deposition. The same behaviour could

be reproduced using a time-invariant exact coherent flow state resembling a hairpin vortex as a proxy

for turbulence, and an extended parameter sweep in this setup suggests that this transport barrier effect

persists even at high relative turbulence intensities. It is speculated that this phenomenon might con-

fine contaminated particles to a region close to the river bank over a considerable downstream distance

in the aftermath of a combined sewer overflow event, which might seriously impact decisions regarding

public health measures.

Near the sediment bed, the barrier effect of the large-scale motions is inactive and contaminants are

found to disperse laterally at a rate which presumably depends on the Shields parameter. The inter-

action between the sediment and the contaminants is distinct for the two bed topologies under inves-

tigation. In the case of macroscopically flat beds, the contaminated particles are transported towards

sediment ridges which are in turn known to be a result of the action of large-scale fluid motions, and

the mixing of contaminants and sediment particles is restricted to the thin layer of sediment near the

interface. In contrast, the presence of ripples leads to a capturing effect where contaminated particles

are preferentially deposited in the trough of the ripple, and subsequently buried by a thick layer of sedi-

ment due to the propagation of the bed feature. This mechanism temporarily immobilises a large share

of all contaminated particles until the displacement of the ripple has sufficiently progressed for them

to be eroded on the windward side. During the immobilisation, the associated bacteria are shielded

from solar radiation to a substantial degree, which likely has a significant impact on their inactivation,

especially in shallow waters. Moreover, the cyclic nature of this phenomenon may provide one of many

explanations for bacteria storages which are known to exist in river sediments and may cause bursts in

fecal bacteria indicator levels even in absence of immediate contamination events.

It is concluded that direct numerical simulation can be a valuable tool for the analysis of bacteria trans-

port, and recommendations are made on how the conjectures compiled in this thesis can be targeted in

laboratory experiments to examine their relevance.
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Kurzfassung

Der Transport von Bakterien in Flusssystemen ist ein Phänomen welches auf einer Vielzahl von Längen-

skalen auftritt, die von der Größe einzelner Mikroben bis hin zur Größe eines ganzen Ästuars reichen.

Zugleich ist die Ausbreitung mikrobieller Populationen nach einem lokal begrenztem Verschmutzungs-

ereignis wie es beispielsweise nach dem Überlauf eines Mischwasserkanalisationssystems auftritt ent-

scheidend für die Vorhersage der Wasserqualität flussabwärts der Eintrittsstelle, welche wiederum für

das Management der öffentlichen Gesundheit unerlässlich ist. Es ist allgemein bekannt, dass mikro-

bielle Populationen in Fließgewässern vorzugsweise auf der Oberfläche kleiner Partikel aufzufinden

sind und nicht ausschließlich frei schwebend im Gewässer. Die Anhaftung an Partikel bietet ein gün-

stiges Umfeld für das Überleben von Bakterien aufgrund des verbesserten Zugangs zu Nährstoffen und

der Abschirmung vor Umweltstressfaktoren, verändert aber auch ihre Ausbreitungseigenschaften, da

der Bakterientransport dann an die Trajektorie schwerer Partikel gekoppelt ist.

Die Bedeutsamkeit der Unterscheidung zwischen dem an Partikel gebundenen und dem frei schweben-

den Transportmodus ist bei der mechanistischen Modellierung des Schicksals und Transports von Bak-

terien bereits erkannt worden. Allerdings werden aufgrund des mehrskaligen Charakters des Problems

die Mechanismen, die den Transport von Partikeln in flussähnlichen Strömungen steuern nie explizit

dargestellt und daher sind die Modelle in hohem Maße von der Verfügbarkeit von genauen Beschrei-

bungen abhängig. Das damit verbundene Problem der Ablagerung von Partikeln in einer turbulen-

ten Trägerströmung ist selbst ein aktives Forschungsthema und ist reich an emergenten Phänomenen

wie z.B. dem Auftreten von räumlichen Inhomogenitäten oder nicht-triviale Veränderungen der Abset-

zcharakteristiken im Vergleich zu einer ruhenden Umgebung. Insbesondere die unstetige Ablagerung

von Partikeln in horizontalen offenen Kanälen, die als Abstraktion des partikelgebundenen Bakterien-

transports in Flüssen dient fand bisher in der Literatur nur wenig Beachtung. Infolgedessen ist das ver-

fügbare Wissen über die Auswirkungen der bestimmenden Merkmale wie Begrenztheit, Anisotropie und

vertikale Inhomogenität auf das Absetzungsverhalten limitiert und muss adressiert werden um die For-

mulierung von zuverlässigen Modellen zu ermöglichen.

Das Ziel dieser Arbeit ist es die Wissenslücke über die Transporteigenschaften von schweren Partikeln

in turbulenten offenen Kanälen zu füllen und Phänomene zu identifizieren, die im Kontext der Bak-

terientransportmodellierung von Bedeutung sein könnten. Zu diesem Zwecke werden die inkom-

pressiblen Navier–Stokes-Gleichungen und die Impulsbilanzgleichungen für dispergierte Partikel mit-

tels direkter numerischer Simulation und der Immersed Boundary-Methode gelöst. Dieser Ansatz löst

alle relevanten Skalen der Turbulenz und die mikroskopische Strömung um jeden Partikel explizit auf

und beschreibt so die Partikel-Fluid-Wechselwirkung auf der Grundlage fundamentaler physikalischer

Prinzipien ohne dass eine zusätzliche Modellierung erforderlich ist. Abgesehen von den kontaminierten

Partikeln, die in der Nähe der freien Oberfläche der Strömung eingebracht werden, umfasst der Simu-

lationsbereich etwa 100.000 vollständig aufgelöste Partikel am Boden des Strömungsgebiets, die ein

realistisches Geschiebe bilden und eine Untersuchung der Wechselwirkung zwischen kontaminierten

Partikeln und mobilen Sedimentpartikeln ermöglichen.
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Was den Parameterraum betrifft, so wird der Wert der Reynoldszahl basierend auf der Wandschub-

spannungsgeschwindigkeit im Bereich von Reτ ∈ [241,838] variiert während der Parameterraum für die

Verunreinigungen so gewählt wird, dass die resultierenden relativen Turbulenzintensitäten definiert als

das Verhältnis zwischen der Wandschubspannungsgeschwindigkeit und der ungestörten Endgeschwin-

digkeit innerhalb des Bereichs Iτ ∈ [0.47,2.88] liegen. Darüber hinaus werden zwei Arten von Sedi-

mentstrukturen untersucht um deren Auswirkungen auf den Schadstofftransport zu bewerten, nämlich

ein makroskopisch flaches Bett und ein Bett mit Rippeln.

Die Analyse der Simulationsdaten zeigt, dass der Ensemble-Mittelwert der Absetzgeschwindigkeit der

Schadstoffpartikel erhöht ist, aber die Zeit vom Beginn des Absetzens bis zur ersten Ablagerung ist

im Vergleich zum Verhältnis zwischen der Kanalhöhe und der Endgeschwindigkeit verlängert. Die Er-

höhung ist das Ergebnis des bevorzugten Aufsuchens von turbulenten Sweep-Ereignissen. Dies bein-

haltet auch, dass die Hauptströmungskomponente der Partikelgeschwindigkeit im Vergleich zur mit-

tleren Strömungsgeschwindigkeit an der gleichen Stelle erhöht ist. Eine genauere Untersuchung der

räumlichen Organisation der kontaminierten Partikel zeigt, dass sie dazu neigen sich in großskali-

gen Hochgeschwindigkeitsstreifen in der äußeren Region der Turbulenz zu sammeln. Aufgrund dieses

Fokussierungsmechanismus stagniert die mittlere quadratische Seitenverschiebung der sich absetzen-

den Partikel in der unteren Hälfte des Kanals, sodass die Verunreinigungen erst kurz vor der Ablagerung

weiter in Querstromrichtung dispergiert werden. Das gleiche Verhalten konnte reproduziert werden in-

dem ein zeitinvarianter, exakt kohärenter Strömungszustand, der einem Haarnadelwirbel ähnelt, als Er-

satz für Turbulenz verwendet wird. Eine erweiterte Parametervariation in dieser Anordnung deutet da-

rauf hin, dass dieser Transportbarriereeffekt auch bei hohen relativen Turbulenzintensitäten bestehen

bleibt. Es wird vermutet, dass dieses Phänomen feine kontaminierte Partikel über eine beträchtliche

Strecke flussabwärts in eine Region nahe des Flussufers eingrenzen kann, was Entscheidungen über

Maßnahmen für die öffentliche Gesundheit ernsthaft beeinflussen könnte.

In der Nähe des Sedimentbettes ist die Barrierewirkung der großskaligen Bewegungen inaktiv und die

Schadstoffe breiten sich seitlich mit einer Geschwindigkeit aus, die vermutlich vom Shields-Parameter

abhängt. Die Wechselwirkung zwischen dem Sediment und den Schadstoffen ist für die beiden un-

tersuchten Topologien des Geschiebes unterschiedlich. Bei makroskopisch flachen Sedimentbetten

werden die verunreinigten Partikel in Richtung der Sedimentgräte transportiert, die selbst ein Ergeb-

nis großskaliger Fluidbewegungen sind und die Vermischung von Schadstoffen und Sedimentpartikeln

ist auf die dünne Sedimentschicht nahe der Grenzfläche beschränkt. Im Gegensatz dazu führt das

Vorhandensein von Rippeln zu einem Einfang-Effekt bei dem kontaminierte Partikel bevorzugt im Tal

der Rippel abgelagert und anschließend von einer dicken Sedimentschicht verdeckt werden durch die

Bewegung des Geschiebes. Durch diesen Mechanismus wird ein großer Anteil an kontaminierten Par-

tikel vorübergehend immobilisiert bis die Bewegung der Rippel so weit vorangeschritten ist, dass sie

auf der Luvseite erodiert werden. Während der Immobilisierung werden die anhaftenden Bakterien

von der Sonneneinstrahlung abgeschirmt was wahrscheinlich einen erheblichen Einfluss auf ihre In-

aktivierung hat, insbesondere in flachen Gewässern. Darüber hinaus könnte die zyklische Eigenschaft

dieses Phänomens eine von mehreren Erklärungen für Bakterienspeicher sein, die bekanntermaßen in

Flusssedimenten vorhanden sind und zu Ausbrüchen der Indikatorwerte für fäkale Bakterien führen

können auch wenn keine unmittelbaren Verschmutzungsereignisse vorliegen.

Die Schlussfolgerung lautet, dass die direkte numerische Simulation ein wertvolles Instrument für die

Analyse des Bakterientransports sein kann, und es werden Empfehlungen gegeben, wie die in dieser Ar-

beit aufgestellten Vermutungen in Laborexperimenten auf ihre Relevanz hin überprüft werden können.
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1 Introduction

To this day, it has been around 200 years since Claude-Louis Navier published his seminal work on the

laws of viscous fluids (Navier 1823) in which he was the first to derive the equations nowadays referred to

as the Navier–Stokes equations. Perhaps it is delineative for the complexity which is comprised by these

equations that the existence and smoothness of its solutions in three dimensions is yet to be proven

and that such a proof constitutes one of the seven “Millennium Prize Problems” selected by the Clay

Mathematics Institute in 2000. The most prominent manifestation of this complexity is turbulence—

the chaotic state of motion where the fluid flow is characterized by the presence of eddies which emerge

on a wide continuous range of spatial and temporal scales. Turbulence is the norm rather than the

exception in natural and technical environments. In fact, it is safe to say that life as we know it would

not be able to exist without it, as turbulence is essential to virtually all ecosystems, for instance in the

form of large-scale phenomena such as the weather, the hydrological cycle and the carbon cycle, or

on a smaller scale in form of crop pollination and the locomotion of the majority of fish, birds and

flying insects to name but a few. This essentiality becomes immediately perceptible whenever the flow

activity is reduced, with prominent examples being the undesired growth of blue-green-algae in water

bodies (Thomas and Gibson 1990) or the lack of pollutant dispersion during smog events (Neiburger

1957). Presumably it is this combination of complexity, ubiquitousness and relevance which inveigles

scientists from various academic disciplines such as meteorology, oceanography, engineering, applied

mathematics, or perhaps less evidently, cosmology or philosophy, to entrain themselves into the study

of fluid motion, and which at the same time serves as an inspiration for various famous works of fine

art such as Leonardo Da Vinci’s “Studies of water”, Hokusai’s “The Great Wave off Kanagawa” or Vincent

van Gogh’s “The Starry Night” which all share a fascinating passion for detail regarding the inherent

features of turbulence (Colagrossi et al. 2021, Marusic and Broomhall 2021, Cartwright and Nakamura

2009, Aragón et al. 2008).

It may not have gone unnoticed from the previously provided examples that turbulence rarely arises

isolated in natural environments. In fact, more often than not, it is the interaction of a fluid flow with

its environment which is appreciated by the observer—think of the flickering of distance stars due to

chaotic variations in the density of the atmosphere or the rustling of leaves in the wind. While Navier’s

research was, inter alia, actuated by the search for a more accurate description of the interaction be-

tween a solid object and its surrounding fluid, it was an unfortunate stroke of fate that he was mis-

guided in the choice of appropriate boundary conditions for his equations, which left him ultimately

unsuccessful (Darrigol 2002). Motivated by the accurate description of pendulums used in geodesic

measurements, it was George Gabriel Stokes in 1845 who came to the conclusion that a vanishing ve-

locity near the solid-fluid interface is the most natural (Stokes 1845), introduced the concept of flow

instabilities and subsequently formulated a law for the flow resistance experienced by a sphere under

creeping flow conditions (Stokes 1851). With these findings, Stokes laid much of the groundwork for

today’s mathematical analysis of particle-laden flows—the study of the combined motion of particles

and their embedding fluid. Particle-laden flows are similarly to turbulence omnipresent in nature, and

frequently both go hand in hand. Phenomena such as precipitation in clouds, sand dunes in a desert or

the bed forms in rivers are all results of the multifarious interplay between a solid and a predominantly

1



1 Introduction

turbulent fluid phase, and besides their ability to inspire scientists and artists alike, many of these phe-

nomena remain far from being fully understood down to the present day.

1.1 Motivation

In a world rich of flow phenomena, researches kin to the field of fluid dynamics of the last two centuries

have been able to tackle increasingly complex problems involving fluid flows and their interactions.

While many studies are dedicated to the improvement of the fundamental understanding of turbulence

and particle-laden flows in the matter, the field has advanced sufficiently to address a multitude of prac-

tical problems, and on many occasions, progress in one aspect comes along with progress in the other

as well, just like with the discoveries of Navier and Stokes. The motivation of this thesis is rooted in the

numerical prediction of the propagation of solid contaminants in fluvial systems, and as will be elab-

orated in the following, the transport processes relevant to this problem are not yet comprehensively

understood neither with respect to their inferences on the practical application, nor in terms of the un-

derlying hydrodynamical phenomena.

The guiding theme of this thesis has its origin in the issue of the anthropogenic contamination of stream-

ing freshwater ecosystems which unfortunately still negatively affects the health and quality of life of

many people today. One substantial source of hazardous river pollution are combined sewer overflows

(CSOs), which are discharge events of sewage water into a nearby water body. As the name suggests,

CSOs predominantly occur in a combined sewer system—a unified waste water system for munici-

pal/industrial sewage and surface runoff. The load on such a system may fluctuate immensely due

to the amount of precipitation which is received, and it is at times of heavy rainfall that the capacity

of the infrastructure may be exceeded and the storm sewage is partially discharged without adequate

treatment.

Combined sewer systems are by no means rare. In the United Kingdom, France and Germany an esti-

mate of around 70% of the existing sewerage infrastructure by length are combined sewers (Butler and

Davies 2004) and this is especially the case for Europe’s major historic cultural centres such as London,

Madrid or Paris (Gasperi et al. 2008).1 The situation is similar in the Northeastern and in the Great Lakes

region of the United States of America where more than 40 million people are served by such systems

(USEPA 1995). In Canada, 890 million cubic meters of untreated sewage water has been discharged dur-

ing CSOs into 844 different water bodies between 2013 and 2017 (ECCC 2019),2 which highlights the fact

that this mode of pollution is still a common occurrence today even in industrialized countries. Com-

bined sewer overflows are also in no way restricted to the Western hemisphere, as some of the largest

metropolitan regions of East Asia—and thus the world—suffer from the very same problem with exam-

ples including Shanghai (Li et al. 2010), Shenzhen (Talamini et al. 2016), Tokyo (Ham et al. 2008) and

Osaka (Wada et al. 2002). Also, it should not go unnoticed that similar discharge events can take place

in separated sewer systems if the dedicated sewage system is allowed to be considerably infiltrated by

rainwater, which has been reported e.g. in the USA (USEPA 1970, 1971) or Brazil (Reda et al. 2014).

1 Although perhaps not of the same cultural importance, it can be noted that the city of Karlsruhe, where most of this thesis
was compiled, has both combined and separated sewer systems and is planning to convert the existing infrastructure into a
unified combined sewer in the future (City of Karlsruhe 2010).

2 To put this number into perspective, this corresponds to a mean yearly wastewater discharge of nearly four times the freshwa-
ter discharge of the small river Pfinz (LUBW 2009) located just outside the writer’s window.
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1.1 Motivation

The adverse effects of CSOs on general freshwater quality and human health have been known for more

than half a century (Palmer 1950, USPHS 1964). Although the effluent in CSOs is to a large portion com-

posed of storm water, its ability to pollute is substantial nonetheless as surface runoff itself is known

to be a non-negligible source of pollutants such as heavy metals, mineral oils, pesticides, but also co-

liform bacteria (Ellis 1986),3 and the intermittent nature of heavy storms may trigger a sudden release

of depositions held back in the sewers (Butler and Davies 2004). The composition of contaminants

found in the effluent varies depending on the origin of the wastewater and the runoff, but typically

includes pathogens, oxygen-demanding substances, nutrients, toxics and sanitary debris (House et al.

1993). The contamination may therefore impair the viability of aquatic habitats (eutrophication due

to nutrients; oxygen depletion; toxics), pose a potential threat to public health (pathogens) or lead to

a general degradation in aesthetics of the receiving waters (eutrophication; sanitary debris), cf. Butler

and Davies (2004). More recent studies suggest that the discharge of CSOs may also constitute an en-

vironmental source to pollutants whose long-term consequences are not yet well understood, such as

hormones and micropollutants (Phillips et al. 2012, Dittmer et al. 2020) or antibiotic resistance genes

(Brown et al. 2019, 2020).

Naturally, actions have been taken already in many countries to improve the environmental situation.

For instance, the city of Osaka was able to reduce their CSO loads by 75% by means of a storm water

reservoir which dampens the instantaneous peak loads on water treatment plants during heavy rainfall

events (Wada et al. 2002). While this certainly is an effective method to solve the problem and is em-

ployed worldwide at various scales, it is at the same time cost-intensive, and hence, not always a viable

solution. Moreover, the expanding urbanization and the associated sealing of soils increases the sur-

face runoff in many places, which leads to increasing peak loads on the sewer system, and hence, the

requirements on reservoir capacities are not static (Semadeni-Davies et al. 2008). There are also indica-

tions that climate change may exacerbate this situation in the future in regions where rainfall intensity

increases (Semadeni-Davies et al. 2008, Kleidorfer et al. 2009, Fortier and Mailhot 2015).

The severity of the adverse impacts of CSOs also depends on the engineering design of the outlet. The

major risk factor for public health are pathogens such as bacteria, which exhibit the tendency to at-

tach onto solids present in the wastewater (Gannon et al. 1983, Auer and Niehaus 1993, Characklis et al.

2005). For this reason, it is often attempted to separate these solids from the storm sewage before it is

discharged by the use of stilling ponds or other types of separators. The effectiveness of this separation

step depends heavily on the settling velocity of the individual solid particles. Particles which are large

or whose density differs considerably from that of water separate more rapidly from the effluent than

small or nearly neutrally-buoyant particles, and are thus more likely to be removed under high through-

put conditions. On the other hand, the concentration of fine suspended solids and dissolved material in

the spill flow is known not to differ considerably from that of the continuation flow to the treatment plant

(Butler and Davies 2004), while at the same time it is known that most enteric bacteria are attached to

small particles (Walters et al. 2014). The attachment of bacteria onto suspended particles also obstructs

disinfection measures which are at times applied to the effluent (Madge and Jensen 2006, Dickenson

and Sansalone 2012, Gibson et al. 2017).

The environmental impacts caused by CSOs are severe, highly relevant worldwide and difficult to fully

avoid in the near future. It is thus worthwhile to investigate the processes which occur when untreated

wastewater enters a natural fluvial system in order to assess the fate of the entering pollutants. Gener-

ally, these processes can be divided into two types—biotic and abiotic processes. Biotic processes are

3 The hazardousness of surface runoff is one of the reasons why separated sewer systems are not always the preferred solution,
as in these systems runoff is typically released with only little treatment (De Toffol et al. 2007).
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Figure 1.1: Schematic portrayal of abiotic processes associated to a localized contamination event in a fluvial environment. Image
adapted from Walters (2013).

directly related to the living nature of microorganisms and examples may include the growth of bacterial

populations, the natural inactivation thereof, predation by other organisms or competition with other

microbial populations. As pathogens are one of the major threats to public health, a comprehensive un-

derstanding of biotic processes is crucial for the assessment and prediction of water quality. However,

due to their living nature, these processes usually cannot be solely understood from first principles, and

thus, their mathematical description commonly relies on empirical findings. On the contrary, abiotic

processes are immediately subject to the laws of physics, and in many cases, to the laws of (hydro-

)mechanics. Prominent examples may include transport and mixing processes, the deposition of solids,

but also the attachment/detachment of bacteria onto/from solids. Moreover, both types of processes

regularly dependent on each other. For instance, the evolution of microbial populations is largely influ-

enced by the local availability of oxygen and nutrient which is a result of physical transport mechanisms.

Conversely, the presence of microorganisms modifies the concentration field of these substances, which

in turn affects the transport behaviour.

For the prediction of water quality after a spill event, it is crucial to know how the contamination prop-

agates downstream. In the case of dissolved pollutants, the spreading is in its essence a mixing problem

between freshwater and sewer effluent, which is rather well understood from the point of view of fluid

mechanics. However, the exclusive consideration of dissolved contamination is known to be insufficient

to adequately describe the characteristics of pollutant propagation, especially in regard to pathogens

(Gannon et al. 1983, Auer and Niehaus 1993, Wilkinson et al. 1995, Jamieson et al. 2005). This is for the

most part a result of the tendency of microorganisms to attach onto solid matter, which is thought to be

a major mode of bacteria transport in fluvial systems (Jamieson et al. 2004, Droppo et al. 2009, Walters

et al. 2014). For this reason, it is inevitable to also consider the transport of suspended solids within

the receiving water body in any detailed analysis or model of this phenomenon, which implies that a

turbulent particle-laden flow problem has to be studied.

The interactions of microbiologically contaminated particles with their surroundings are manifold and

not well understood. Compared to freely suspended bacteria, particle-associated bacteria are known

to survive over longer periods of time (Garcia-Armisen and Servais 2009), which is thought to be a

combined result of protection against detrimental environmental factors such as UV irradiation or pre-

dation, a better availability of nutrients, and, for some materials, an enhanced protection by biofilms

(Roper and Marshall 1974, Erkenbrecher 1981, Wright et al. 1995, Craig et al. 2004, Schultz-Fademrecht

et al. 2008). There are believed to be two mechanisms of bacterial adsorption—weak adsorption where
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van der Waals forces overcome repulsive forces, and strong adsorption due to cellular appendages or

extracellular polymers excreted from the cell (Jamieson et al. 2005). Whereas the latter is considered to

be irreversible, the former allows for a transition between the suspended and the particle-attached state

which constitutes a mass transfer problem in the framework of fluid mechanics.

Figure 1.1 shows an abstraction of the major abiotic processes which occur downstream of a contami-

nation event according to Walters (2013). Apart from the processes which were already elaborated on,

the graphic also indicates that contaminated particles may interact with the natural river sediment bed

present in a river. The ability of particles to be deposited and resuspended has striking implications on

water quality prediction, as it provides a way for pathogens to be stored and released at a later time,

possibly long after the primordial event occurred (Sherer et al. 1992). The release may be triggered by an

increase in discharge of the contaminated river, e.g. due to precipitation, which promotes the transport

of sediment, and increases in bacterial levels by a factor of 10 to 100 have been reported in literature

(McDonald and Kay 1981, McDonald et al. 1982, Sherer et al. 1988) which demonstrates the relevance of

this effect.

1.2 State of research in bacteria transport modelling

The prediction of water quality using models serves two major purposes—the issuance of public warn-

ings in the case of an acute contamination event, and the promotion of the general understanding of

pollutant spreading, e.g. to make informed engineering decisions. For the former purpose, real-time

forecasts (“nowcasts”) are typically obtained using empirical statistical models which traditionally rely

on ordinary least squares regression, but more recently also employ more advanced regression methods

from the field of machine learning, see Brooks et al. (2016) for an overview. For the latter purpose, a

physics-driven approach is more expedient, and hence, so-called deterministic or mechanistic models

which attempt to explicitly model the abiotic processes displayed in fig. 1.1 as well as biotic processes

are typically employed. In the following, the characteristics of these deterministic models will be sum-

marized largely based on the instructive review provided by de Brauwere et al. (2014).

The variable to be predicted by the vast majority of water-quality models is the total concentration of

fecal indicator bacteria (FIB). FIB concentrations are used as a proxy for the straightforward quantifica-

tion of all pathogens present in a natural water body in order to simplify regulations and analyses. In

order for FIB to be tracers of external contaminations, these indicators are selected such that they occur

e.g. in the faeces of humans or animals, do not grow naturally in water bodies, but are subject to simi-

lar processes as other pathogens. Nowadays, Escherichia coli is a commonly used FIB for water quality

regulations.

The fundamental principle behind all mechanistic models is a mass balance, which implies that the

concentration of bacteria is influenced by sources (the contamination event), sinks (internal processes

and reactions which lead to inactivation) and transport. The level of detail which is employed in the

mathematical modelling of these terms determines the complexity of the model.

Source terms may be either incorporated explicitly, which means that the drainage network is included

in the modelling domain, or implicitly by imposing, possibly varying, boundary conditions of the do-

main. The choice of the method greatly depends on what processes are to be subject of investigation.

Generally speaking, if the interest lies in an investigation of how pollutants enter the system, it would be

preferred to model the source explicitly, whereas for studies primarily concerned with the downstream

spreading, it is often sufficient to simply implement a boundary condition.
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Sink terms describe processes of bacteria decay. Experimental data usually suggest a first-order kinetic

of decay (Chick 1910), although an initial lag in response is often observed before exponential decay

is achieved (Darakas 2002). The decay rate may be a function of various external factors such as tem-

perature, sunlight intensity, salinity or predation, however, the constitutive equations describing their

influence are predominantly local, and thus, the level of detail at which the decay is described depends

on the resolution of the transport model. This is particularly the case for temperature and salinity whose

distribution is mostly determined by hydromechanics.

Hydromechanics is also the key factor to all transport processes. As outlined in the introductory words,

the flow inside a fluvial environment is eminently complex and the degrees of freedom a transport model

was to require in order to resolve all relevant scales exceeds the computational resources available today

and in the foreseeable future by far. For this reason, compromises have to be made in the mathemat-

ical description of the advection and dispersion of FIB concentration, and regularly, low-dimensional

models are employed.

Spatially-unresolved models

The simplest mechanistic models from a hydromechanics point of view do not consider any spatially-

resolved transport processes at all. As an example, Auer and Niehaus (1993) investigated the time-

evolution of bacteria concentration in lakes solely in terms of first-order loss kinetics with a decay rate

depending on temperature, UV irradiation levels, but also the sedimentation of particle-attached bacte-

ria. Such spatially homogeneous models have also been applied to river flows, where typically a second

balance equation is evaluated for bacteria deposited in the sediment. Resuspension and deposition

then act as a source or sink to the bacteria concentration in the stream, respectively, and the coupling

between the two balance equations is achieved by an ordinary differential equation relating the concen-

tration in the sediment to that in the flow (Jenkins et al. 1984, Wilkinson et al. 1995).

It should be noted that spatially-unresolved water-quality studies are not uncommon, as many of them

are conducted in the framework of hydrologic models, especially if they aim at simulating large geo-

graphical scales or a high level of geographical details. A widely used model is the “Soil & Water As-

sessment Tool” (SWAT) which is a public domain hydrological transport model capable of modelling

virtually any water or soil based process within a river basin. A module for bacteria transport was de-

veloped by Sadeghi and Arnold (2002) which essentially implements various sources for bacteria runoff

into receiving streams. However, the model does not consider any transport within the receiving water

body itself, but solely bacteria decay and resuspension of bacteria deposited in the sediment depending

on the local flow rate (Neitsch et al. 2011), which is calculated for each river section using Manning’s

equation for open-channel flows (Manning 1890).

1D transport models

Numerous studies use an approach where only the downstream coordinate is resolved. An early ex-

ample is Boehm (2003) who studied the spreading of a point-source contamination along the shoreline

of an ocean coast. In the study, the hydrodynamic reasoning of Inman et al. (1971) is followed to ar-

rive at a one-dimensional advection-reaction equation which governs the bacterial transport. A similar

approach was employed by Steets and Holden (2003) who studied the transport along the shoreline

of a coastal lagoon which, however, also required the recognition of dispersion yielding an advection-

diffusion-reaction (ADR) equation for their model. Moreover, their contamination originated from the
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sediment of the lagoon, and consequently, a second balance equation and a coupling term were em-

ployed similar to the spatially-unresolved models. The first study to explicitly distinguish between the

transport of particle-attached and freely-suspended FIB was Jamieson et al. (2005) who formulated an

ADR equation for each mode of transport, respectively. Moreover, their study was motivated by a con-

tamination event which is localized in space and time and subsequently propagates in a stream, and

hence, their boundary conditions were compatible to the investigation of CSOs in streaming water bod-

ies. However, the process of adsorption and desorption is not represented by their model which leaves

the two modes of transport uncoupled and is justified by the supposition that the attachment of bacteria

is predominantly irreversible.

Another class of one-dimensional transport models exclusively resolves the vertical direction. Vergeynst

et al. (2012) investigated decay processes in a storm water basin for a combination of particle-attached

and freely-suspended bacteria using a discretisation in vertically-stacked layers. The settling of parti-

cles was modelled for multiple size classes using a class-specific settling velocity. Their model explicitly

treated adsorption and desorption in each layer, and decay rates were set to be height-dependent, e.g.

due to the variation of light intensity with respect to the water depth. A methodologically similar study

was conducted by Qian et al. (2016) who reproduced the observations of the large-scale flume experi-

ment by Walters (2013) where turbidity was found to be a key factor. For this reason, the transport of the

concentration of all suspended solid matter was modelled using a one-dimensional advection-diffusion

equation, where the effect of vertical dispersion of particles by turbulence was the motivation of the dif-

fusive term. The study distinguished between particle-attached and freely-suspended bacteria, where

the former were subject to an ADR equation and the latter only to diffusion and decay, but no coupling

was implemented as irreversible attachment was assumed. Using this method, they were able to ac-

count for light attenuation by suspended solids at varying vertical position in the water body, which in

turn was deemed crucial in order to explain the decay rates observed in the flume experiments at high

levels of turbidity.

2D transport models

Two-dimensional transport models are typically based on the spatially-averaged Navier-Stokes equa-

tions under the justification that the flow is well mixed in the direction of averaging. Dewey and Palmer

(1984) solved the depth-averaged Navier-Stokes equations, commonly denoted as the shallow water

equations, using the method of Leendertse and Nelson (1978) in order to simulate the advection and

dispersion of untreated storm water and CSOs within a St. John’s harbour in Newfoundland. In a subse-

quent study for an urban beach on the Ottawa River, they extended their model to account for bacteria

decay (Palmer and Dewey 1984). Kashefipour et al. (2002) used a similar model, but included a time-

variant decay rate in order to accommodate radiative inactivation of FIB a bay. Schnauder et al. (2007)

evaluated the depth-averaged Navier-Stokes equations with a turbulence model based on Prandtl’s mix-

ing length hypothesis to study FIB transport in the Bristol Channel. Their hydrodynamic model was

sufficient to resolve some rather complex large-scale flow structures induced by the tides which were

shown to have a considerable impact on the distribution of FIB. In all of the aforementioned studies,

the tangible geographic occurrences and the dominance of transport processes were the main source

of motivation for the choice of a transport model with higher dimensionality. A more methodologically

motivated study was conducted by Gao et al. (2011) who extended the idea of Jamieson et al. (2005) to

distinguish between particle-attached and freely-suspended bacteria to two dimensions and modelled

the deposition and resuspension of particle-attached bacteria using a continuous Eulerian approach.
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Laterally-averaged variants of the Navier-Stokes equations are significantly less common in the predic-

tion of water-quality, with an early example being Kim et al. (1983) who applied the hydrodynamical

model described in Edinger and Buchak (1980) to the Cherokee reservoir in order to explain the ob-

served high FIB concentrations observed by means of circulation patterns. Regarding river flow, Liu and

Huang (2012) studied the concentration of salinity and FIB in a tidal estuarine system inter alia under

discharge conditions. Their streamwise-vertically resolved model used a mixing-length based turbu-

lence model and a single ADR equation for FIB concentration which takes into account both suspended

and particle-attached bacteria. The authors also remark the capability of vertically-resolved models to

incorporate the interaction between the sediment and FIB concentrations more explicitly.

3D transport models

Turbulence is an inherently three-dimensional phenomenon, and as such, lower dimensional transport

models inevitably neglect some of its defining features. Similar to their two-dimensional counterpart,

the emergence of 3D bacteria fate and transport models is widely expedited by the availability of ap-

propriate hydrodynamic models which are most commonly borrowed from coastal ocean modelling. In

fact, the bulk of published 3D models fall into two main categories.

The models of the first category use the internal/external mode decomposition described e.g. in Blum-

berg and Mellor (1987). In this method, the deformation of the free surface of the water body is com-

puted using the two-dimensional shallow water equations, whereas the internal flow is a solution to the

three-dimensional Navier-Stokes equations. Both sets of equations are coupled, as the latter depends

on the water surface computed by the former, but also provides bottom friction and vertical dispersion

terms to it (Cugier and Le Hir 2002). Furthermore, the equations are typically Reynolds-averaged, and

hence, a turbulence model is used in order to limit the range of scales which needs to be resolved. The

advantage of the decomposition lies in less stringent restrictions on the time-step as the stability cri-

terion of the 3D model becomes independent of the free surface waves (Cugier and Le Hir 2002). An

early study on water quality using this method was conducted by Connolly et al. (1999) who studied

the transport of three indicator organisms in Mamala Bay, Oahu. Their circulation model included the

entire island in order to account for the particular macroscopic flow conditions, was coupled to contam-

inant transport using ADR equations, and also included the transport of suspended solids using an ADR

equation where the reaction term corresponds to the settling of the solids. However, particle-attached

FIB were not considered in this study. Special care was taken in the modelling of the decay rates which

were depth-dependent in terms of light attenuation and scattering due to suspended solids, thus jus-

tifying the necessity of a three-dimensional model. Garcia-Armisen et al. (2006) conducted a similar

investigation in the Seine estuary in France within the framework of a multidisciplinary research pro-

gramme in which a comprehensive hydrodynamical model of this region has been developed by Cugier

and Le Hir (2002) using the external/internal mode decomposition. The study distinguished explicitly

between particle-attached and freely-suspended FIB where both concentrations were described by ADR

equations and deposition/resuspension was modelled for the former. It should, however, be noted that

the river Seine itself was represented one-dimensionally in their model and thus served the purpose of a

variable boundary condition to the three-dimensional discretisation of the bay (Cugier and Le Hir 2002).

The second category of models utilises the approach of Zhang and Baptista (2008) where the shallow

water equations are extended to three dimensions using the continuity equation. Therefore, in contrast

to the approach previously described, no momentum equation is solved for the vertical velocity compo-

nent, and thus, stricter assumptions on the flow conditions are made. The advantage is, however, that

the set of equations to be solved is less complex, as no decomposition between internal and external
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waves has to be employed. Again, the equations are solved in their Reynolds-averaged form and the im-

plementation of Zhang and Baptista (2008), which is employed by all studies mentioned in the following,

uses the turbulence model of Umlauf and Burchard (2003). Rodrigues et al. (2011) applied this hydro-

dynamic model to the Aljezur coastal stream in Portugal, and in opposition to the previously described

studies, the stream itself was discretised in three dimensions with the smallest resolved length scale be-

ing around 2 meter. Their bacteria model included particle-attached and freely-suspended bacteria in

a single ADR equation, but resuspension was not considered. Liu et al. (2015) employed an essentially

similar model to the Tamsui estuarine in Taiwan which also included the river system in the discretisa-

tion. Subsequently, Chen and Liu (2017) extended this study to include a continuous sediment transport

model where the rate of erosion was determined from the bottom shear provided by the hydrodynamical

model, thus accounting for deposition and resuspension of particle-attached FIB.

1.3 Research objectives

Bacteria fate and transport models have advanced significantly over the last decades. However, the range

of length scales which are typically relevant for the prediction of transport in water quality is immense,

reaching from the size of entire river systems down to the size of small suspended particles or less, i.e.

from several hundreds of kilometre down to several micrometres. For this reason, any hydrodynamical

model which aims at investigating tangible geographic situations is ought to rely on models to represent

the processes on the smallest scales, and will be in the foreseeable future. These small-scale processes

are at the same time by no means insignificant as becomes apparent from the efforts which have been

made in the past to parameterize processes such as turbulent dispersion, sediment resuspension or the

settling rate of particle-bound bacteria in transport models.

At the same time, the hydrodynamic processes at the smallest scales are far from being fully understood.

In fact, the sedimentation of solid particles in turbulent flows constitutes an active field of research with

a rich variety of emergent phenomena such as the formation of patterns, clustering and the interaction

with coherent fluid motions whose implications are not yet explicitly captured by simplified models. As

will become evident in the subsequent literature review on particle-laden flows, the transient process of

particles settling in wall-bounded turbulence has received only little attention in literature yet despite

its relevance. The goal of this thesis to contribute to the hydromechanical understanding of this process,

and to make inferences on the significance for bacteria transport.

It should be emphasized that the aspiration of this thesis is not to reproduce a specific contamination

problem, nor to provide a full bacteria fate and transport model. In fact, bacteria fate will only play a sub-

ordinate role, and the emphasis is laid for the greater part on turbulent transport processes. In contrast

to previous works in the field of deterministic bacteria transport models, the approach employed here

should be regarded as “bottom-up” in the sense that the goal is to resolve the smallest relevant scales

with as few assumptions as possible, with the endeavour to make inferences towards emergent phe-

nomena of relevance at larger scales. The drawback of this approach is that the domain of investigation

has to be kept general, and that the largest length scales which can be described using this method are

still smaller than the smallest length scales in more traditional “top-down” approaches. This inevitabil-

ity can be seen at a glance in fig. 1.2 where the disparity in the scales described by classical bacteria

transport models and the current work is outlined.

More specifically, the following key parameters and phenomena will be subject of investigation in this

thesis:
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flow

N 20 km N 4 km

Figure 1.2: Schematic depiction of scales involved in water-quality models. The majority of three-dimensional water-quality fate
and transport models have been applied on a mesoscale with the intention to describe entire estuaries, thus regions
with length scales of the order of 100 km. For this purpose, it is inevitable to model all processes which occur on a
microscale. The research objective of this thesis is to directly assess the effect of turbulence and sediment dynamics
on the transport of contaminations from first principles and on the smallest scales. As a consequence, the size of the
system which can be represented is many orders of magnitudes smaller than in previous studies. Illustrations: Top
row—Geba River estuary in Guinea-Bissau (USGS/NASA Landsat, public domain). Bottom right—Hunter River in New
South Wales, Australia (Rygel, M.C., CC BY-SA 3.0). Bottom left—Direct Numerical Simulation of ripple patterns.

Settling velocity during the transient The settling velocity of suspended particles is a paramount pa-

rameter for the modelling of particle-attached bacteria. In the bacteria transport models, this

quantity is frequently set to the value of the terminal velocity in a quiescent environment despite

hydromechanical studies suggesting that turbulence has a non-trivial significant effect on it.

Spatio-temporal inhomogeneity The dynamics of particles in turbulent flows are distinctly different

from the behaviour of solubles due to inertial effects, and this distinction is far too momentous to

be reduced solely to settling effects. In many cases particles exhibit the tendency to cluster and

de-mix, and the effect of such inhomogeneities on the environmental conditions encountered by

particle-attached bacteria lacks qualitative and quantitative analysis.

Sediment interaction It is well established that the interaction between bacteria and river sediment

plays a significant role in the spreading and storage of contaminations. A detailed analysis of the

interplay between natural river bedforms and entering solid contaminants may be beneficial for

its understanding.
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Identification of emergent phenomena Complex systems are often more than merely a combination

of their individual parts. Due to the large disparity in length scales, some emergent phenomena

of relevance might have been overlooked in the classical “top-down” approaches, and might be

more accessible by an investigation starting from the smallest scales.

1.4 Outline of this thesis

The content of this thesis is organized as follows: Chapter §2 provides an introduction to the relevant

principles of hydromechanics and particle-laden flows, and contains a literature review on the state of

research concerning the transient settling of particles in wall-bounded turbulent flows. In chapter §3 the

exact configuration to be simulated and investigated is introduced along with the mathematical frame-

work and numerical method which is employed. It further contains a summary of the major parameter

points which are discussed throughout the thesis and details on the determination of reference quan-

tities. Chapter §4 focuses on the velocity statistics of the solid particles during the phase of transient

settling, and chapter §5 aims at explaining these observations in terms of the interaction with the tur-

bulent carrier flow. In chapter §6 the spatial organization of the solid phase into clusters and voids, and

the interaction with sediment bedforms is examined, as well as the dispersion and displacement of the

contaminants from their initial position. A coarse-graining method is employed in chapter §7 in order

to determine the length scales of turbulence which are most relevant for the phenomena previously de-

scribed. Chapter §8 introduces a novel approach to the investigation of turbulent particle-laden flows

by assessing the interaction of settling particles with exact coherent structures, which are non-linear

flow states of significantly reduced complexity compared to turbulence, yet are thought to be closely

related to coherent fluid motions observed in turbulent flows. From these interactions, scaling laws are

derived with reduced computational effort. Chapter §9 transfers the knowledge gained from the hydro-

dynamical investigations towards bacteria transport models by summarizing and contextualising the

recognitions made in the preceding chapters. Finally, the thesis is concluded in chapter §10 by stating

the main findings.
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2 Wall-bounded turbulence and
particle dynamics

2.1 Fundamental principles of hydromechanics

2.1.1 Navier–Stokes and transport equations

The fundamental equations of hydromechanics are the Navier–Stokes equations (NSEs) for incompress-

ible flows which are deduced from the conservation of mass and the balance of linear momentum for a

fluid parcel with constant mass and constant volume, viz.

∇·uf = 0 (2.1)

∂uf

∂t
+∇· (uf ⊗uf

)=− 1

ρf
∇P +νf ∇2uf +

1

ρf

∑
f, (2.2)

where uf (x,t ) = (
uf , vf , wf

)T denotes the fluid velocity field, P (x,t ) the associated pressure field, ρf the

density of the fluid, νf the kinematic viscosity and f(x,t ) is a placeholder for the acceleration induced

by any external forces, or the sum thereof. Moreover, the three-dimensional spatial coordinates are

referred to by x = (
x, y, z

)T , the temporal coordinate by t , the unary spatial differential operator by ∇ ..=(
∂/∂x,∂/∂y,∂/∂z

)T , the binary tensor product operator by ⊗ and the binary inner product operator by ·.

The Navier–Stokes equations model the underlying fluid as a continuum rather than discrete molecules

and are therefore subject to the continuum hypothesis which starts from the premise that the length

scales of macroscopic motion are sufficiently separated from the length scales of molecular motion

such that an ensemble of molecules may be regarded as a fluid parcel of infinitesimal size. In fact,

the momentum equations shown in eq. (2.2) are a particular instance of the general Cauchy momen-

tum equations for any non-relativistic continuum, and are obtained by specifying the stress tensor for a

Newtonian fluid, viz.

σij
..=−δij P +ρf νf

(
∂uf,i

∂xj
+
∂uf, j

∂xi

)
(2.3)

where δij denotes the Kronecker delta. As a consequence, tangential stresses are proportional to the rate

of strain with a scalar constant of proportionality—the viscosity.

Generally, the suppositions of a continuous medium, an incompressible flow and Newtonian fluid prop-

erties are non-restrictive for the flows investigated in the context of water-quality prediction models.1

1 The flow of dense suspensions, which occurs for example in sediment transport problems, is sometimes described using a
non-Newtonian stress tensor if both the suspended solids and the carrying fluid are modelled as a single continuous phase.
In the context of this thesis, this is not necessary as both phases will be resolved properly.
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Therefore, eq. (2.1) and (2.2) may be regarded as the most fundamental description of the relevant hy-

drodynamic processes, and indeed, all higher-dimensional hydrodynamic models discussed in §1.2 are

simplifications of these equations.

The NSEs are sufficient in order to describe the evolution of the fluid velocity and pressure fields if ap-

propriate boundary and initial conditions are provided. If the transport of another continuous quantity

by the flow is to be described, the NSEs are oftentimes coupled to an advection-diffusion-reaction equa-

tion (ADR) for said quantity, viz.

∂ϕ

∂t
+∇· (uf ϕ

)=∇· (Dϕ∇ϕ
)+

∑
q, (2.4)

where ϕ(x,t ) is a placeholder for any transported quantity, Dϕ its diffusivity and q(x,t ) a placeholder for

its sources or sinks.2 Hereby, this coupling is denoted as passive if the influence of ϕ(x,t ) is insignificant

for the fluid momentum balance, or as active if the coupling is reciprocal and an external force fϕ(x,t )

which depends on ϕ is introduced in eq. (2.2). Common examples of transported quantities in the con-

text of water-quality prediction are salinity or temperature—both of which are typically modelled as

active—or the concentration of FIB which is typically regarded as passive.

Regarding the application of an ADR equation for the transport of bacteria, two clarifying remarks

should be made. Firstly, in the bacteria fate and transport models described in §1.2, ADR equations

are sometimes used for both freely-suspended and particle-attached bacteria, although the latter is dis-

crete at the smallest length scales of the flow. Here, the treatment of particle-attached bacteria as a

continuum is a result of the truncation of length scales, and is inadequate if the fluid movement at the

length scales of the suspended particles is resolved. Secondly, it should be kept in mind that bacteria are

capable of locomotion and should therefore be regarded as active matter (Ben-Jacob et al. 1994, Vicsek

et al. 1995). Therefore, an ADR equation is not the most fundamental way to describe bacteria transport

and a more appropriate model is to be employed whenever this effect is expected to be relevant.

2.1.2 Dimensional analysis

In the absence of external forces, the NSEs comprise three fundamental units—length, time and mass—

and four independent dimensional parameters—a characteristic velocity, a characteristic length, the

density and the viscosity. According to the Buckingham π theorem (Bertrand 1878, Buckingham 1914)

the equations can hence be parametrised by a single non-dimensional parameter, which is convention-

ally chosen to be the Reynolds number defined as

Re ..= UL

νf
, (2.5)

where U denotes a characteristic scale of velocity and L a characteristic length scale of the problem to

be investigated. The name of this non-dimensional number was given in honour of Osborne Reynolds

who famously studied the transition between laminar and turbulent fluid flow in a pipe (Reynolds 1883)

and later discovered that the criterion for this transition to occur is solely provided by this parameter

(Reynolds 1895). When non-dimensionalising the NSEs, the inverse of the Reynolds number emerges

as a prefactor to the diffusive term, and hence, its value is decisive for the relative importance of viscous

2 Indeed, the ADR equation also comprises the transport of fluid momentum as stated in eq. (2.2) for the particular case that ϕ
corresponds to a fluid velocity component, Dϕ to the viscosity and q includes the pressure-gradient.
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effects. The specification of the characteristic velocity and length scales are problem dependent and

generally not unique. In fact, as will be established when the phenomenon of turbulence is discussed,

the tangible definition of the Reynolds number may dependent on the aspect of the problem which is to

be assessed.

The amount of non-dimensional parameters which are required to fully describe a flow problem may

increase when external forces are considered. In the context of geophysical flows, one external force

which is ever-present is induced by gravity and enters eq. (2.2) by the force term fg
..= ρf g with g being

the gravitational acceleration. The non-dimensional number which determines the relevance of this

force is termed the Froude number in honour of William Froude3 and its definition is given by4

Fr ..= U2

gL
(2.6)

where g ..= |g| is the magnitude of the gravitational acceleration. The Froude number has its primary

relevance for free surface phenomena such as external waves.

Regarding transported quantities, a non-dimensionalisation of the ADR equation yields two dimension-

less numbers, namely the Péclet number, Pe ..= UL/Dϕ, which similarly to the Reynolds number de-

scribes the relative importance of diffusion, and a dimensionless number related to the reaction term

which is commonly referred to as the Damköhler number and whose definition depends on the details

of the reaction term. Due to the similarity of the Péclet and the Reynolds number, a different parametri-

sation is employed occasionally by defining the Schmidt number as their ratio, viz.

Sc ..= Pe

Re
=
νf

Dϕ

. (2.7)

The Schmidt number is an important indicator for mixing processes in turbulent flows and can be in-

terpreted as the separation in scales at which fluid momentum and variations in the transported field

are dissipated. In the case of active transport, the Schmidt number is also referred to as the Prandtl

number and an external force representing buoyancy effects is added to the NSEs. This buoyant force

is commonly formulated in terms of the Boussinesq approximation (Boussinesq 1897) which presumes

that variations in density sufficiently small such that they are negligible in terms of inertia, and yields

fϕ
..= ρf β(ϕ−ϕ0)g whereβ is the linear expansion coefficient andϕ0 is a characteristic value of the trans-

ported quantity. A non-dimensionalisation of this body force gives rise to the Richardson number which

is a measure for the relative importance of accelerations due to inhomogeneities in the specific weight

and reads

Ri ..= β∆ϕ0gL

U2 (2.8)

where ∆ϕ0 is a characteristic range in which ϕ may vary within the flow. The Richardson number may

be understood as a variant of the inverse Froude number for internal waves rather than external ones.

Further external forces may need to be considered in bacteria transport models if they aim to resolve

transport on a geographic mesoscale. For instance, the ocean circulation model of Zhang and Baptista

3 The attribution of the discovery of this non-dimensional parameter is disputed and arguments can be made that it is a mis-
nomer (Hager and Castro-Orgaz 2017), as Belanger (1828) formulated this non-dimensional group and de Saint-Venant (1871)
recognised its relevance for external wave regimes prior to Froude (1874).

4 The definition of the Froude number varies in the literature, and the current definition is chosen such that the prefactor of
the non-dimensionalised force term is equal to the inverse of the Froude number. A definition which is equivalent to the
square-root of the current definition is frequently encountered for historical reasons.
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2 Wall-bounded turbulence and particle dynamics

(2008) also includes the Coriolis force and tidal forces, which introduce the Rossby number and Love’s

number to the parametrisation, respectively. As this thesis is concerned with transport at a microscale,

these numbers are only mentioned for completeness.

2.1.3 Scales of turbulence

As mentioned in the introductory words, turbulence is a phenomenon which is characterised by the

presence of eddies which occur over a wide continuous range of scales. This understanding of turbu-

lence is has been strongly influenced by Lewis Fry Richardson who introduced the idea of a turbulent

cascade where energy is injected into the flow at the largest scales, transferred to subsequently smaller

scales in a quasi-inviscid process until viscosity is significant enough to dissipate the mechanical en-

ergy into heat (Richardson 1922). Richardson understood this process as a continuous breakdown of

eddies from large scales downwards, where eddy is a vague term for coherent packets of turbulent mo-

tion which exhibit an intrinsic length and time scale. From today’s understanding, this so-called energy

cascade is far more complex than what Richardson imagined, albeit the notion of the directional energy

transfer still withstands on average.

Nearly two decades later, Andrey Nikolaevich Kolmogorov elaborated on Richardson’s idea and formu-

lated hypotheses which allowed him to arrive at quantitative statement on the range of scales over which

turbulent motion occurs (Kolmogorov 1941). He postulated that turbulence at sufficiently small scales

and sufficiently far away from the boundaries is locally isotropic and homogeneous, which entails that

small-scale eddies are universal and independent from the particular geometry and nature of the large-

scale flow. Moreover, Kolmogorov argued that the statistics of these smallest scales are ought to be fully

determined by the rate of dissipation, in the following denoted by εf , and the viscosity. Dimensional

considerations then yield the so-called Kolmogorov microscales,

η ..= (
ν3

f

/
εf

)1/4
, uη

..= (
νf εf

)1/4 , (2.9)

where η is the Kolmogorov length scale and uη the corresponding velocity scale. The intrinsic Reynolds

number for eddies at this scale is unity by definition, which highlights their importance for dissipation

in the cascade.

In contrast, the fluid motion at the largest scale is not universal, as the corresponding eddies are typically

thought to be the result of inertial instabilities which are affected by the geometry and flow character-

istics. The kinetic energy carried by these eddies is of the order of u2
ℓ, and the time scale at which this

energy enters the cascade is similar to the eddy turnover time, which is of the order of ℓ/uℓ with ℓ and

uℓ denoting the length and velocity scales of the largest eddies, respectively. In order for energy cascade

to be statistically steady, the rate of energy input at the largest scales, u3
ℓ/ℓ, must match the rate of dissi-

pation at the smallest scales, νf u2
η

/
η2. As a consequence, the range of scales which is encountered in a

turbulent flow is quantified by

ℓ
/
η∝ Re3/4

ℓ , uℓ
/

uη∝ Re1/4
ℓ , (2.10)

and depends on the value of the intrinsic Reynolds number of the largest eddies, Reℓ
..= uℓℓ/νf . Since ℓ

and uℓ are essentially predetermined by the boundary conditions of the flow, eq. (2.10) suggests that the

smallest structures which can be observed in a turbulent flow decrease in size with increasing value of

the (integral) Reynolds number.
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2.1 Fundamental principles of hydromechanics

2.1.4 Reynolds decomposition

Apart from his contributions to the study of the onset of turbulent motion, Osborne Reynolds introduced

another crucial concept for the examination of turbulence—the decomposition of an arbitrary field ϕ

into its average value
〈
ϕ

〉
and a fluctuation ϕ′ about it, such that

ϕ(x,t ) = 〈
ϕ(x,t )

〉+ϕ′(x,t ). (2.11)

The definition of the averaging operator varies depending on the problem to be investigated, however,

it is required to be linear and to satisfy the identity
〈〈
ϕ

〉
ψ

〉 = 〈
ϕ

〉〈
ψ

〉
for all ϕ and ψ where the latter

denotes a second arbitrary field. Common examples for averaging operations include temporal averag-

ing of statistically stationary flows, ensemble averaging over multiple realisations, spatial averaging over

statistically homogeneous directions, or a combination thereof.

The Reynolds decomposition can be applied to the velocity and pressure field and substituted into the

NSEs in order to derive a set of equations which describes the evolution of the average quantities. These

so-called Reynolds equations are given by

∇·〈uf

〉= 0, (2.12)

∂〈uf 〉
∂t

+∇· (〈uf 〉⊗〈uf 〉
)=− 1

ρf
∇〈P〉+νf ∇2〈uf 〉−∇· (u′

f ⊗u′
f

)+ 1

ρf

∑
〈f〉 , (2.13)

and a comparison to eq. (2.2) reveals an additional term in the momentum equations—commonly de-

noted as the Reynolds stresses—which depends on the variances and covariances of the velocity fluctu-

ations. The appearance of this additional term has severe implications on the solvability of the system of

equations, as it causes it to be underdetermined, and hence further constitutive equations are required

in order to solve them. This constitutes the closure problem of turbulence which is inevitable as deriving

the required constitutive equations from first principles merely leads to the appearance of further terms

of higher order.

Despite this complication, it is desirable for various applications to search for solutions to the Reynolds-

averaged equations instead of the unmodified NSEs, especially if the primary subject of interest is the

mean flow. In fact, as was brought up in §1.2, most, if not all, higher-dimensional bacteria transport

models are based on variations of the Reynolds equations. The advantage in doing so lies in the consid-

erably lesser demand on the resolution of the flow problem—whereas solutions to the NSEs require the

model to fully resolve even the smallest scales of fluid motion in order to accurately capture the energy

cascade, the resolution requirement on the Reynolds equations is solely dictated by the spatio-temporal

variations in lower order statistics which generally occur at vastly larger scales. The disadvantage of

this approach, however, is that the Reynolds stresses have to be supplied by a model. A broad class

of turbulence models is based on the concept of a turbulent eddy viscosity which presumes that the

Reynolds stresses exhibit a similar net effect as an increased molecular viscosity, and indeed, all of the

discussed bacteria transport models seize on this idea, although the eddy viscosity is commonly cho-

sen to be anisotropic. However, generally speaking the Reynolds stresses are problem-dependent, as

the truncated turbulent motions which cause them are typically not sufficiently small to be considered

universal, and hence, the applicability of turbulence models routinely require adequate tuning and in-

troduced a substantial uncertainty for the prediction of the mean flow.
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2 Wall-bounded turbulence and particle dynamics

2.1.5 Vorticity and locality

One universal feature of turbulence is the ubiquitousness of vorticity, ωf = (
ωf,x ,ωf,y ,ωf,z

)T which is de-

fined as the curl of the fluid velocity, viz.

ωf
..=∇×uf , (2.14)

where × is the binary cross product operator. Vorticity is a measure for the local rotation of a fluid parcel,

and while it is indeed related to the general concept of a vortex, its presence does not demand a global

vortical motion.5 Taking the curl of eq. (2.2) in the absence of non-conservative body forces yields a

transport equation for the vorticity which reads

∂ωf

∂t
+ (

uf ·∇
)
ωf = νf ∇2ωf +

(
ωf ·∇

)
uf , (2.15)

and constitutes a classical advection-diffusion equation with an additional source term which depends

on the vorticity itself, as well as on the local velocity gradient. This so-called vortex stretching term de-

scribes the change in moment of inertia of a fluid parcel due to stretching, and, on average, provides the

coupling which transfers energy from the mean shear into turbulent vorticity as previously discussed.

An important feature of vorticity is that localised distributions of it can only spread locally. In fact, by

reverting eq. (2.14) using the law of Biot-Savart6,

uf (x,t ) = 1

4π

∫ ωf (x′,t )× (
x−x′

)
∣∣x−x′

∣∣3 dx′, (2.16)

it becomes apparent that the velocity field is induced by any vorticity within the domain, and while this

in turn will affect the evolution of existing vorticity globally, eq. (2.15) does not provide a way to generate

vorticity from a distance.

In contrast, the velocity field in incompressible flows is inherently non-local due to the role of pressure.

By taking the divergence of eq. (2.2), a Poisson equation for the pressure is obtained, viz.

∇2P = 1

ρf

(∑(∇· f
)−∇· (uf ⊗uf )

)
. (2.17)

Analogously to eq. (2.16), the solution of the Poisson problem depends on the velocity distribution ev-

erywhere in the domain. However, as the gradient of pressure directly enters eq. (2.2), linear momentum

can be redistributed instantaneously over any distance contrary to vorticity. For this reason, the vorticity

field may be considered as more fundamental to turbulence than the velocity field, and as the concept

of a turbulent eddy is intrinsically local, it should rather be understood in terms of vorticity.

Vorticity is inhomogeneously distributed within a turbulent flow and appears intermittent rather than

in an uncorrelated random manner (Batchelor et al. 1949). When the spatial distribution of intense

vorticity in turbulence is investigated, it is found to be organised in coherent vortices, which are termed

“worms” due to their shape often being cylindrical or ribbon-like (Siggia 1981, Jiménez et al. 1993). In

5 A prime example from the current context for a flow which contains vorticity, but no global vortical motion, is laminar channel
flow. For this reasons, some definitions of turbulence further specify the occurrence of vorticity to be random and at small
scales, see e.g. Corrsin (1961) or Mathieu and Scott (2000) for such a definition.

6 Equation (2.16) is formulated for an unbounded domain for the sake of simplicity, as formulations for bounded domains are
considerably more complex (Enciso et al. 2018). However, the inferences remain the same.
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2.2 Wall-bounded turbulence

general, coherency is an essential aspect of turbulence, and its significance will be discussed further for

the specific case of wall-bounded turbulence.

2.2 Wall-bounded turbulence

Hitherto, the discussion on turbulence was predominantly focused on its universal features. In this sec-

tion, the particular phenomena which are inherent to turbulent flows bounded by walls are reviewed.

The presence of a solid boundary is reflected in the hydromechanic equations by two boundary condi-

tions for the fluid velocity field on the wall—the impermeability condition and the no-slip condition—

which are given by

(uf −uw ) ·n = 0, (2.18)

uf −
(
(uf −uw ) ·n

)
n = uw , (2.19)

respectively, with uw being the velocity of the wall and n denoting its normal vector. In essence, the

combination of these boundary conditions implies that any relative motion between the fluid and the

solid phase vanishes exactly at the wall, which is an excellent supposition for most flows.7 The impli-

cation of these boundary conditions is that any bulk fluid motion relative to a wall forms a boundary

layer—a region where the mean relative fluid velocity decays from its undisturbed value to zero—where

the fluid is sheared on average.

It can be demonstrated that in the presence of a mean shear, the Reynolds stresses induce a global trans-

fer of energy from the mean flow towards turbulent eddies by means of stretching and intensification of

turbulent vorticity, see e.g. Davidson (2015). As a consequence, the presence of a mean gradient in fluid

velocity is one mechanism which generates and sustains turbulence. Vice versa, the mean flow itself is

modified by turbulent fluctuations as is suggested by the additional stresses introduced in the Reynolds

equations. Therefore, the overarching characteristic of all wall-bounded turbulent flows is the persistent

complex interplay between turbulent fluctuations and wall-induced shear.

The varieties in which walls may be arranged in a flow are sheer endless, as boundary layers may occur

at all scales and shapes—think of a rather flat canal lining versus the severely curved surface of a pebble.

For this reason, the study of wall-bounded turbulence is generally conducted in so-called canonical

flows, which denote a canon of well-defined, and often idealised, flow configurations which guarantee

the replicability and comparability of experiments. Examples of internal canonical flows include, but

are not limited to, the pressure-driven flows through a circular pipe or through a channel, or the flow

observed in the gap between two parallel moving plates, which all share certain similarities, but may

differ in their particularities.

7 The no-slip boundary condition may be an inaccurate supposition for flows with low densities or in domains with exception-
ally small dimensions, i.e. whenever the molecular density is sufficiently small. Hereby, the deviation commonly occurs before
the continuum hypothesis fails, and more adequate results may be achieved by imposing a slip velocity.
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2 Wall-bounded turbulence and particle dynamics

2.2.1 Open-channel flow

The canonical flow most relevant for fluvial systems is open-channel flow—a body-force-driven flow

bounded by a solid wall and a free surface in one direction, and unbounded in the two remaining per-

pendicular directions. Open-channel flow is typically horizontal, which means that the bounded direc-

tion is coaligned with the direction in which gravity is acting, and this direction will be referred to as the

vertical or wall-normal direction and denoted by y in the following. Moreover, without loss of generality,

the streamwise coordinate x is chosen to be coaligned with the primary flow direction and the spanwise

coordinate z is set to be perpendicular to both x and y .

The unboundedness of the streamwise and spanwise directions is an idealised concept which, in the

most cases, can only be achieved approximately, and therefore should rather be understood in the sense

that there is no influence exerted by any walls normal to these directions. Hence, unboundedness serves

as an approximation to the core of a river where the region of interest is within a reasonable distance to

the river shore such that its effect can be neglected. In terms of numerical modelling, unboundedness

can be achieved by enforcing a periodicity of the flow with periods of Lx and Lz in streamwise and span-

wise direction, respectively. However, this comes at the cost of introducing nonphysical self-interactions

if these periods are not chosen adequately.

Concerning the vertical direction, the bottom boundary8 of the domain is considered to be a stationary

solid wall which is subject to the no-slip boundary condition given in eq. (2.19). In numerical models,

the upper boundary is often considered to be non-deformable for the sake of simplicity, which cor-

responds to the limiting case of a vanishing Froude number, and thus prohibits the existence of any

external waves. As a result, the free surface may be treated as an impermeable wall which is not subject

to the no-slip boundary condition, but rather to the free-slip boundary condition,

∂

∂n

(
uf − (uf ·n)n

)= 0, (2.20)

which is of Neumann-type rather than of Dirichlet-type. For the specified coordinate system, the bound-

ary condition reads ∂uf /∂y = 0, vf = 0 and ∂wf /∂y = 0, and hence, allows for finite streamwise and

spanwise fluid velocities at the upper boundary.

Despite the difference in the upper boundary condition, open-channel flow is closely related to the flow

in closed channels, i.e. the configuration where no-slip is imposed at both walls. In fact, the free-slip

boundary condition can be interpreted as a mirror symmetry which is imposed on the centre line of a

closed channel, and hence, the structure of turbulence found in these configurations is generally com-

parable apart from some discrepancies which will be discussed at a later point (Calmet and Magnaudet

2003, Bauer et al. 2022).

8 To be precise, terms such as low/high and bottom/top are used with respect to the direction of gravity, i.e. the bottom is the
location an object would be moving towards, if it was solely subject to gravitational acceleration.
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2.2 Wall-bounded turbulence

2.2.2 Turbulence in channels

The flow in channels is statistically homogeneous in the two unbounded directions, and also in time

if the Reynolds number is kept constant and the flow is fully established. Therefore, the Reynolds-

averaging operator for this flow is conventionally defined as the streamwise-spanwise-temporal aver-

age,

〈
ϕ

〉
xzt (y) ..= 1

Lx Lz tobs

∫ Lx

0

∫ Lz

0

∫ tobs

0
ϕ(x,t ) dt dz dx, (2.21)

and as a consequence, the flow statistics only vary in the wall-normal direction. Here, tobs denotes

the observation time, and for the remainder of the discussion, it is assumed that the sample space{
ϕ(x,t ) : x ∈ [0,Lx ]∧ z ∈ [0,Lz ]∧ t ∈ [0, tobs ]

}
is sufficiently large to convey the converged statistics.

Due to the boundedness of the wall-normal coordinate and the definition of the spanwise coordinate,

the mean flow velocity in these two directions vanishes, i.e.
〈

vf

〉
xzt

= 〈
wf

〉
xzt

= 0, where the former

still holds if solely the instantaneous spatial-average is considered. A finite value of the mean velocity

therefore only exists in the streamwise direction, and an integral flow velocity scale can be obtained by

averaging in wall-normal direction, viz.

ub
..= 1

H

∫ H

0

〈
uf

〉
xzt

dy. (2.22)

The velocity ub is termed the bulk velocity, and H corresponds to the position of the free-slip boundary,

or to the position of the centreline if closed channel flow is considered, while the bottom boundary is set

to be located at y = 0.9 The bulk velocity and the channel height are integral scales and can be utilised

to define an integral Reynolds number—the bulk Reynolds number,

Reb
..= ub H

νf
, (2.23)

which is a principal parameter for the transition from the laminar to the turbulent flow regime. Chan-

nel flow is linearly unstable for Reb ⪆ 3848 which implies that any infinitesimal perturbation will trigger

transition if this value is exceeded (Orszag 1971). However, in practice the transition oftentimes occurs

subcritically by instability mechanisms which involve finite-amplitude perturbations (Chapman 2002).

In fact, turbulence may be sustained for Reb ⪆ 1350, although values of Reb ⪆ 3000 are required to ob-

serve universal scaling laws for the shear stress on the wall or the mean streamwise velocity (Patel and

Head 1969).

Using the averaging operator defined in eq. (2.21), the Reynolds-averaged streamwise momentum equa-

tion for channel flow is given by

d

dy

(
ρf νf

d〈uf 〉xzt

dy
−ρf

〈
u′

f v ′
f

〉
xzt

︸ ︷︷ ︸
..=τf (y)

)
= d〈P〉

dx
(2.24)

where τf (y) is the total fluid shear consisting of a viscous and a turbulent contribution. From the aver-

aged lateral momentum equation it can be deduced that the mean pressure gradient is uniform across

9 The distinction between open and closed channel flow is of little importance for the statistical analysis, as closed-channel flow
is statistically symmetric about the centreline, which is enforced instantaneously in the open-channel.
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2 Wall-bounded turbulence and particle dynamics

the flow (Pope 2000), and as a consequence, the fluid shear is required to vary linearly with the vertical

coordinate. At y = H , the fluid is ought to be stress-free, and hence, the fluid shear can be expressed in

terms of the tangential stress exerted on the no-slip wall, viz.

τf (y) =
(
1− y

H

)
τf (0). (2.25)

The wall shear can then be used to define another velocity scale—the friction velocity defined as

uτ
..=

√
τf (0)

/
ρf . (2.26)

In the vicinity of the wall, the intrinsic Reynolds number is necessarily small as the velocities must decay

to zero, and therefore, a viscous length scale,

δν
..= νf

/
uτ, (2.27)

can be established by a combination of the characteristic shear velocity and viscosity. The quantities uτ
and δν are commonly denoted as the inner scales, as opposed to the outer scales ub and H . From the

definition of the Kolmogorov scales, it can be demonstrated that

δν
/
η= (ε+f )1/4 (2.28)

with ε+f denoting the dissipation rate normalised by the inner scales (Pope 2000, Stumpf 2017).10 Al-

though the dissipation rate, and hence likewise the Kolmogorov scales, vary with the wall-normal posi-

tion, empirical data for the normalised dissipation rate suggests that the ratio of viscous and Kolmogorov

length scales is of the order of unity at all positions (Kim et al. 1987, Pope 2000). Therefore, the inner

scales may be regarded as a proxy for the smallest turbulent scales which appear in channel flow. The

Reynolds number based on the friction velocity is called the friction Reynolds number,

Reτ
..= uτH

νf
= H

δν
, (2.29)

and its value directly indicates the separation in length scales between the largest turbulent motions of

O(H) and the smallest eddies of O(δν).

Turbulent channel flow is statistically inhomogeneous in the wall-normal direction, and as a result, var-

ious regions with distinct scaling laws for the mean streamwise velocity can be observed. Traditionally,

the wall-normal coordinate is classified into three regions—the inner region where y ≪ H , the outer

region where y ≫ δν, and the overlap region where both conditions are satisfied. A sketch of this clas-

sification is provided in fig. 2.1(a), and it becomes immediately apparent that the overlap region can

10 The superscript “+” notation will henceforth be used to denote any non-dimensionalization by a proper combination of the
inner units.

22



2.2 Wall-bounded turbulence

y ≪ H

y ≫ δν

〈uf 〉

H

y

Overlap
region

Outer
region

Inner
region

5δ
ν

30
δ ν

0.
3H

viscous sublayer
buffer layer

logarithmic layer
wake layer

100 101 102
0

10

20

30

y/δν

〈u
f
〉/

u
τ

(a) (b)

Figure 2.1: (a) The regions of turbulent channel flow. (b) The layers within which different scaling laws for the mean streamwise
velocity can be applied. The dashed lines indicate the law of the wall in the viscous sublayer and the log-law respec-
tively. The solid lines shows data obtained by Bauer et al. (2022) for open-channel flow at Reτ = 900. The illustration is
inspired by Davidson (2015).

only exist at high friction Reynolds numbers where the inner and outer scales are sufficiently separated.

Using this regions, dimensional analysis suggests the following scaling laws,

〈uf 〉xzt

uτ
=ΦIR

(
y

δν

)
“law of the wall” of the inner region, (2.30)

〈uf 〉xzt

uτ
= 1

κ
ln

(
y

δν

)
+ A “log-law” of the overlap region, (2.31)

uH −〈uf 〉xzt

uτ
=ΦOR

(
y

H

)
“velocity defect law” of the outer region, (2.32)

where ΦIR and ΦOR are functions which require further specification, κ ≈ 0.41 is Kármán’s constant,

A is a constant of integration and uH
..= 〈uf 〉xzt

is the centreline velocity, see e.g. (Davidson 2015) for

derivations. As is suggested by Kolmogorov’s theory, the velocity defect law is generally not universal

among the canonical wall-bounded flows, and consequently, the scaling behaviour of the outer region

may constitute a difference between open- and closed-channel flow. In contrast, the law of the wall can

be further specified irrespective of the flow geometry as very close to the wall the flow is laminar to a

large degree, which yields (Prandtl 1925)

〈uf 〉xzt

uτ
= y

δν
for y ⪅ 5δν. (2.33)

Although the log-law has been derived from the premises of the overlap region, its validity extends con-

siderably into what is usually considered to be the outer layer. For instance, in the turbulent open-

channel flow at Reτ = 900 shown in fig. 2.1(b), the log-law accurately describes the mean streamwise

velocity in the region 30δν⪅ y ⪅ 0.3H . Therefore, the regions of channel flow may alternatively be clas-

sified into layers within which a associated scaling law holds—the viscous sublayer for which eq. 2.33

holds, the logarithmic layer within which eq. 2.31 is observed, the buffer layer which separates the pre-

vious two, and the wake layer which is subject to the non-universal velocity defect law.
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Figure 2.2: Schematic depiction of the self-sustained near-wall cycle as described by Hamilton et al. (1995). (a) The flow is com-
posed of high- and low-speed streaks of streamwise velocity fluctuations. (b) Unstable streamwise modes of the veloc-
ity streaks emerge. (c) Quasi-streamwise vortices are generated, which eventually create velocity streaks.

2.2.3 Coherency and structure of turbulence

The previously introduced layers of turbulence have been defined in terms of their statistics. As briefly

mentioned in §2.1.5, an essential feature of turbulence is that it comprises coherent packets of vorticity,

which may be localised, and in turn may induce coherent patches of flow velocities. As a consequence,

turbulent flows are by no means stochastic, but have an intrinsic structure which has interesting impli-

cations on transport processes.

In the vicinity of the wall, that is in the buffer layer, the most prominent coherent flow features as so-

called velocity streaks, which denote streamwise-aligned, elongated regions of streamwise velocity fluc-

tuations, and have first been described comprehensively by Kline et al. (1967). It is commonly distin-

guished between low-speed (u′
f < 0) and high-speed (u′

f > 0) streaks which are most often observed in

spanwise-alternating pairs. The dimensions of these streaks scale in inner units in agreement with the

arguments made on the inner region, and a spacing of approximately 100δν in spanwise-direction be-

tween two pairs and streamwise lengths of O(1000δν) are established values found in literature (Kline

et al. 1967, Smith and Metzler 1983, Kim et al. 1987, Waleffe 1991). The buffer-layer streaks contribute

significantly to the streamwise share of the turbulent kinetic energy which is reflected by a characteristic

peak in 〈u′2
f 〉

xzt
at y+ ≈ 12. Moreover, the streaks are linked to so-called Reynolds-stress events, namely

ejections (u′
f < 0, v ′

f > 0), which transport low-speed fluid away from the wall, and sweeps (u′
f > 0,

v ′
f < 0), which bring high-speed fluid towards the wall, and hence also contribute significantly towards

〈u′
f v ′

f 〉xzt
. Blackwelder and Eckelmann (1979) recognised that these “bursting events” are a result of the

act of coherent vortices which are quasi-aligned in streamwise direction. In fact, these quasi-streamwise

vortices are an instance of the “worms” described in §2.1.5 (Jiménez 2018), and form and breakdown

continuously in the near-wall region (Swearingen and Blackwelder 1987). By isolating a single velocity

streak in a minimal domain, Waleffe et al. (1993) observed that the constraint flow field exhibits a quasi-

periodic behaviour during which the streak undergoes a wavy instability, which dampens its intensity,

and subsequently reforms. This recognition lead to the formulation of a self-sustaining process—a

sketch of which is provided in fig. 2.2—which describes the alternating formation of velocity streaks and

streamwise vortices (Jiménez and Moin 1991, Hamilton et al. 1995). By artificially suppressing velocity

fluctuations from the outer region, Jiménez and Pinelli (1999) demonstrated that this near-wall cycle can

operate autonomously, and thus, constitutes one of the most fundamental processes in wall-bounded

turbulence.
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Figure 2.3: Conceptual cartoon of the formation of a hairpin vortex. (a) In undisturbed wall-bounded flow, or in the mean, vorticity
is aligned with the spanwise direction. (b) A perturbation causes vorticity to be transported away from the wall which
leads to a deformation. (c) Vortex stretching amplifies the intensity of the hairpin vortex. The illustration is inspired by
Davidson (2015).

At greater distances from the wall in the logarithmic layer, the occurrence of velocity streaks is often

linked to another class of coherent vortices—the hairpin or horseshoe vortex. This arch-shaped, loop-

like structure consists of a pair of counter-rotating streamwise-aligned “legs” which are inclined from

the neighbouring and connected by an approximately spanwise-aligned “head”, and was first described

by Theodorsen (1952). Its relevance was demonstrated experimentally by Head and Bandyopadhyay

(1981) and numerically by Wu and Moin (2009), who revealed that these structures are ubiquitous and

densely populate boundary layers. A potential mechanism for its formation is given by the advection

of spanwise vorticity—which is abundant in wall-bounded flow as it is the sole component of vorticity

which does not vanish in the mean—away from the wall by means of a velocity fluctuation (Davidson

2015). As the vortex filament is lifted from the wall, it is deformed by the gradient in streamwise velocity

and reorientates itself towards an streamwise inclination of approximately 45°, which causes the vortex

to be stretched and amplified due to its interaction with the mean shear. A sketch of this process is de-

picted in fig. 2.3. There are various potential causes for the initial perturbation. While some of them

involve the quasi-streamwise vortices of the buffer layer, others involve turbulent eddies originating

from the outer layer, though ultimately, turbulence is a chaotic organization of entangled vorticity and

a clear causality remains more often than not difficult to establish. A common denominator of all con-

ceptual ideas of hairpin vortices is, however, that the mean shear is responsible for the stretching and

intensification of vorticity in order to form elongated vortex structures which are inclined with respect

to the wall (Davidson 2015).

While it is certainly possible to observe isolated occurrences, hairpin vortices more frequently occur

in the form of packets which contain multiple instances of them (Adrian 2007). Indeed, Zhou et al.

(1996) and Zhou et al. (1999) exposed an autogeneration mechanism which may lead to the formation

of a vortex packet of streamwise-staggered hairpin vortices, and hence, it is worthwhile to assess the

implications of superimposed vortex structures. An important basis for most descriptions of multi-

vortex interactions is the attached eddy model introduced by Townsend (1976) based on his study of

equilibrium layers in wall turbulence (Townsend 1961). The attached eddy model distinguishes between

wall-attached motions whose length scale is consequently proportional to the wall-normal distance over

which they span, and wall-detached motions. While the latter is thought to be rather isotropic and to

contribute little to the Reynolds stress budget, the former is inevitably anisotropic due to its exposure to

wall shear, and is therefore regarded to be more active in terms of velocity scaling laws. Perry and Chong

(1982) utilised Townsend’s concept and the flow visualizations of Head and Bandyopadhyay (1981) to

conceptualise a model in which the wall-attached eddies are considered to be hairpin-like vortices. In a

related study, Perry et al. (1986) were able to derive the logarithmic law for the mean streamwise velocity,

as well as scaling laws for the spectral density of the fluctuating velocity components, from a continuous

random arrangement of such vortices, which emphasises the relevance of coherent motions, and in

particular hairpin vortices, to the understanding of turbulent motion.
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Figure 2.4: Conceptual sketch of hairpin vortex packets as described by Adrian et al. (2000). (a) Hairpin vortices organise in
streamwise-staggered packets and induce a coherent low-speed fluctuation in streamwise velocity. (b) Packets may
grow away from the wall and attain dimensions of O(H), and hence, constitute one potential explanation of large-scale
motion.

It has been established mainly through the work of Adrian et al. (2000) that vortex packets are common

in and essential for wall-bounded turbulence (Smits et al. 2011). The packets are relatively stable imply-

ing that they persists for the duration of several turnover times, and whenever the propagation velocity

of the individual vortices is similar they may be treated as a larger single coherent structure. The size and

propagation speed of this structure increases with its age, and it is not uncommon for them to protrude

into the wake layer of the flow in the later stages of their development causing their size and velocity

to be dictated by the outer units (Adrian 2007). Vortex packets are associated to the turbulent bulges

frequently perceived in flow visualization of the turbulent boundary layer, cf. Head and Bandyopad-

hyay (1981), and are therefore also denoted as large-scale motions (LSMs). When examining the local

flow field it is immediately apparent that a low-speed region is collectively induced by the ensemble of

hairpins Adrian et al. (2000), Ganapathisubramani et al. (2003), see fig. 2.4. In turbulent channel flow,

these features emerge as large-scale streaks of the streamwise velocity whose maximum dimensions are

2–3 H and 1–1.5 H in streamwise and spanwise direction, respectively, and thus scale in terms of outer

units (Brown and Thomas 1977, Kim and Adrian 1999, Zhou et al. 1999, Guala et al. 2006, Balakumar and

Adrian 2007), which clearly distinguishes them from the buffer-layer streaks discussed earlier. It should

be noted that not all LSMs fulfil Townsend’s criteria for attached eddies. In fact, experiments by Bailey

and Smits (2010) indicate that hairpin packets in the outer layer are frequently detached from the wall,

while those in the logarithmic layer are more likely to be attached.

Vortex packets are not the largest structures of wall-bounded turbulence as coherent streamwise ve-

locity fluctuations with length scales of O(3–100H) have been reported for both internal and external

wall-bounded flows (Kim and Adrian 1999, Guala et al. 2006, Monty et al. 2007, Balakumar and Adrian

2007, Lozano-Durán and Jiménez 2014a, Bauer 2020). These very large scale motions (VLSMs), which

are also known as superstructures, manifest themselves in the form of very long, but laterally confined,

meandering streamwise velocity streaks, and can be found in the logarithmic layer as well as the wake

layer, although indications exist that for external flows these motions are restricted to the former (Monty

et al. 2009). A popular theory on their origin interprets VLSMs as the streamwise organization of vortex

packets (Kim and Adrian 1999), though the similarities in lateral scaling suggests that exclusively de-

tached LSMs of the wake layer are responsible for their creation, whereas attached LSMs are located

too close to the wall, propagate too slowly and have too narrow lateral scales to be involved (Bailey and

Smits 2010, Smits et al. 2011).

Although the interpretation of LSMs and VLSMs as the (pen-)ultimate realization of a self-similar hairpin

vortex organization process is alluring, it should not go unnoticed that concurring theories on an under-

lying mechanism exist. An alternative model to vortex packets is the self-similar vortex cluster proposed
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by del Álamo et al. (2006), whose primary distinction is its reduced internal organization compared to

hairpin packets. Self-similar vortex clusters may be best described as a shell of enclosed small-scale

vorticity (worms), which exhibits little structure internally, but as an ensemble self-organises in a man-

ner which may resemble more traditional vortex loops. In accordance with Townsend’s postulations, del

Álamo et al. (2006) found these structures to occur detached from the wall as well as in tall attached clus-

ters, and indeed, the kinematics of these vortex clusters are sufficiently similar in character to use them

interchangeably to hairpin packets in the explanation of LSMs and VLSMs. However, a major disparity

between the two models is given in terms of the proposed mechanisms of their creation—while hair-

pin packets are required to form in the inner region of turbulence and subsequently grow to their final

size, del Álamo et al. (2006) ascertained that vortex clusters are too short-lived to be created in this way,

and hence, must be formed in terms of a sustained large-scale regeneration cycle akin to the near-wall

cycle, but far more complex. In fact, Flores and Jiménez (2006) and Flores et al. (2007) demonstrated

that the structures of the outer region are essentially independent from the details of the wall, which

provides strong evidence of the existence of such an autonomous cycle does not rely on the growth of

small near-wall structures.

Up to this point, the coherent eddies which have been discussed were predominantly characterised by

means of vorticity. However, a second kind of eddy which has been used in literature to assess coherency

in wall-bounded turbulence are connected regions of intense three-dimensional Reynolds stress events

(Lozano-Durán et al. 2012a, Jiménez 2013), with the particular focus on ejection and sweep events,

which are statistically and dynamically more relevant than their counterparts with a positive product

of u′
f v ′

f . As previously mentioned, sweeps and ejections are important mechanisms in the inner region,

though they also occur at larger scales in the outer region. Similar to vortex clusters, large-scale sweeps

and ejections may be classified into wall-attached or wall-detached structures, whereby detached struc-

tures are observed more frequently, but attached structures occupy a vastly larger region within the

flow and contribute considerably more towards the total Reynolds-stress budget (Lozano-Durán et al.

2012a). On average, large-scale sweeps and ejections appear side-by-side in spanwise direction as pairs,

and since their streamwise dimensions are typically long, continuity demands that a streamwise-aligned

large-scale roller structure connects the two in the conditionally-averaged point-of-view. In the instan-

taneous view, vortex clusters are typically observed to emerge in the space between sweeps and ejections

(Lozano-Durán and Jiménez 2014b), with a statistically significant tendency of being located closer to

the former (Jiménez 2013), and hence, vortex clusters are likely to be—at least partially—manifestations

of the roller (Lozano-Durán and Jiménez 2014b).

The coherent structures discussed so far are all associated to flows in the presence of walls with no-

slip boundary conditions. While this implies that all of these structures are also present in open-

channel flows, the additional free-slip boundary condition in this configuration gives rise to some pe-

culiarities caused by the dampening of vertical velocity fluctuations while simultaneously allowing for

non-vanishing velocity components in streamwise and spanwise direction. Nagaosa (1999) identified

two dominant types of vortical structures in the vicinity of the free surface—near-horizontal quasi-

streamwise vortices, and near-vertical surface-attached vortices. The former type of vortices induce re-

gions near the boundary where fluid impinges on (“splats”) or is transported away from (“antisplats”) the

surface, which where demonstrated to be of significance for heat and mass transfer across the boundary

(Nagaosa 1999, Nagaosa and Handler 2003, Pinelli et al. 2022). Concerning the interactions of structures

originating from the no-slip boundary with the free surface, Nagaosa and Handler (2003) demonstrated

via conditional averaging that hairpin-like vortices are morphed ring-like shapes as they approach the

free surface. Moreover, there exists evidence that the free surfaces promotes VLSMs (Duan et al. 2020),

27



2 Wall-bounded turbulence and particle dynamics

and indeed, Bauer et al. (2022) found that VLSMs in open channels are roughly twice as long and twice

as wide as to their counterpart in closed channels.

The literature on coherent structures in wall-bounded turbulence is vast, and consequently, the preced-

ing brief summary does not raise a claim on comprehensiveness. For more complete recapitulations on

the structural aspects of turbulence, the reader is referred to the renowned overview articles of Cantwell

(1981), Robinson (1991), Adrian (2007), Smits et al. (2011), Adrian and Marusic (2012), Jiménez (2013),

McKeon (2017), Jiménez (2018) and Marusic and Monty (2019).

2.2.4 Chaos and exact coherent states

The investigation of coherent structures in turbulence as discussed in the preceding section was pre-

dominantly driven by the availability of experimental data, observations and phenomenological mod-

elling. Nonetheless, the emergence of coherency and structure in turbulence is not an unforeseeable

event, as its existence must be contained within in the framework of the Navier–Stokes equations. While

the implications of coherent motions on the flow statistics are well-established by now, it can in fact

be argued that the understanding of turbulence remains incomplete as long as the emergence of these

structures cannot be explained from first principles, i.e. solely based on the fundamental equations

without any observation-based assumptions—or to put it in the words of Eberhard Hopf:

“The ultimate goal, however, must be a rational theory of statistical hydrodynamics where

[. . .] properties of turbulent flow can be mathematically deduced from the fundamental

equations of hydromechanics.”

— Hopf (1948)

The possibility of eventually obtaining such an understanding is closely connected to the fact that tur-

bulence is deterministic, and therefore follows a strict set of rules without any stochasticity. The “ran-

domness” which is commonly attributed to turbulence is hence by no means random in the stochastic

sense, but is rather a result of deterministic chaos—the state of a nonlinear dynamical systems where

“the present determines the future, but the approximate present does not approximately determine the

future”, as Edward Lorenz adequately phrased it—ergo the sensitivity of the evolution of a turbulent flow

with regards to the details of its initial condition.

Turbulence, or chaos, only occurs at sufficiently high values of a controlling parameter R, which in case

of channel flow is an integral Reynolds number such as Reb , cf. §2.2.1, but may correspond to another

nondimensional number depending on the flow scenario of interest. The route through which turbu-

lence is achieved with increasing values of R varies among the canonical flows, and can roughly be

divided into two general types of transition—supercritical and subcritical transition. In order for su-

percritical transition to occur, the flow must be linearly unstable above a critical value of the control

parameter, which is denoted by R∗ in the following. Transition may then occurs by a series of bifur-

cations, i.e. abrupt changes in the flow topology which become increasingly complex the further R∗ is

exceeded and may introduce time-periodic behaviour to the flow by means of a Hopf bifurcation, and

eventually becomes chaotic. While it was originally envisioned by Landau (1944) and Hopf (1948) that

the successive bifurcations introduce evermore frequencies to the flow which implies turbulence to be

quasi-periodic, Ruelle and Takens (1971) demonstrated that turbulence is in fact aperiodic, and is hence

initiated by a sudden transition as well. In the case of subcritical transition, bifurcations occur below the

critical value of the control parameter by means of finite-amplitude perturbations, and it is thus the only

scenario by which linearly stable flows such as plane Couette flow (Davey 1973, Romanov 1973) or pipe

flow (Salwen et al. 1980) may become turbulent. However, subcritical bifurcations are frequently also
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Figure 2.5: Examples of bifurcations as a function of the control parameter R in terms of a one-dimensional observable A. (a) The
new state bifurcates supercritical above a critical value R∗ for the control parameter. (b) Subcritical bifurcation in form
of a saddle-node bifurcation. Solid lines denote stable states, whereas dashed lines denote unstable ones. The dotted
vertical line in (b) marks the value of R above which a subcritical bifurcation may occur.

the dominant mechanism for the transition to turbulence in linearly unstable flows such as channel

flow (Sano and Tamai 2016, Shimizu and Manneville 2019, Gomé et al. 2020), cf. §2.2.1. While various

routes to chaos do exist, one route which is routinely observed for such flows is the intermittent ap-

pearance of spatially-confined turbulent regions which are denoted as spots, slugs, puffs or bands, and

add additional complexity to the analysis of transition due to their spatiotemporal character (Wygnanski

and Champagne 1973, Pomeau and Manneville 1980, Gollub and Benson 1980, Bottin and Chaté 1998,

Eckhardt et al. 2007, Sano and Tamai 2016, Gomé et al. 2020).

A more systematic view on flow topologies can be obtained by introducing the concept of a state space,

which denotes the space of all states that may be realised by the fluid flow, or consequently, the set of all

divergence-free velocity fields which satisfy the appropriate boundary conditions. The trajectories upon

which the flow evolves in this space are determined by eq. (2.2), and this temporal evolution of states is

called solution flow. The state space itself is vast as only little constraints are posed towards the states

which are comprised by it. However, it is straightforward to acknowledge that the subspace within which

the solution flow occurs is restricted by the values of the control parameter of system. For instance,

whenever the control parameter is sufficiently low, the solution flow will eventually converge towards

the laminar state irrespective of the initial state of the system, and hence, the subspace in which the

solution flow occurs at long times only comprises the laminar solution in this case. Such a characteristic

state towards which all sufficiently close solution flows converge is called an attractor (Lanford 1982).

It is apparent that attractors may emerge or disappear with changing values of the control parameter.

In fact, the bifurcation scenarios which have been describe previously in the context of transition to

turbulence can be viewed as a transformation of attractors in the system. Moreover, the existence of

subcritical bifurcations makes it obvious that multiple attractors may coexist for a given R, and thus,

that the solution flow may converge towards different states depending on the initial state or perturba-

tions. Various types of attractors exist and the most relevant for the present discussion are summarised

in the following. The time-invariant laminar attractor constitutes a so-called fixed point, which is a sin-

gular element in the set of states. In fact, laminar flow is the fixed point of lowest dimensionality, and

as will be elaborated at a later point, more complex fixed points may occur in fluid flows. The simplest

attractor with time-dependent behaviour are closed trajectories in the state space which are called limit

cycles with a well-known example being the Kármán vortex street. Limit cycles may consist of multi-

ple frequencies, and whenever the ratio between two of these frequencies is irrational, the cycle is no

longer closed, and the resulting quasi-periodic trajectories are denoted as a limit torus. Fixed points,

limit cycles and limit torii are geometrically simple objects in the state space, but more complex attrac-

tors also exist. An important instance is the strange attractor, a fractal object in the state space which

is neither periodic nor quasi-periodic (Guckenheimer and Holmes 1983, Strogatz 2018), and was first
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discovered by Edward Lorenz in his seminal work on simplified cellular convection (Lorenz 1963) and

given its name by Ruelle and Takens (1971). Strange attractors are often associated to chaotic behaviour,

and as such, it was only natural to assume that turbulence itself belongs into this category (Ruelle and

Takens 1971, Lanford 1982, Guckenheimer 1986). However, as turbulence is not necessarily persistent

and may decay to the laminar state, it cannot be an attractor, but is more adequately described by a

strange saddle—an object in state space which attracts solution flows from some directions, but also

possesses unstable directions which allow for decay (Eckhardt et al. 2007).

The fluid states which correspond to attractors or saddles of the dynamical system are termed invariant

solutions. The counterpart to a fixed point in physical space is called an equilibrium solution and fulfils

the requirement

uf (x, t ) = uEQ (x), (2.34)

which implies that the equilibrium state uEQ(x) is time-invariant.11 In streaming flows, non-trivial time-

invariant solutions take the form of a travelling wave, viz.

uf (x−ct , t ) = uTW (x), (2.35)

i.e. they are equilibrium solutions within a frame of reference which is comoving with the structure

which propagates with a constant propagation velocity c. The equivalent of limit cycles and torii are

periodic orbits, which are cyclic flow states where the initial condition is exactly recovered after a period

T , and are hence given by

uf (x, t +T ) = uPO(x, t ). (2.36)

It is not uncommon for a periodic orbit to not return to its exact original state, but rather to a possibly

translated or mirrored version of itself. If this is the case, the resulting invariant solution is termed a

relative periodic orbit. Since this subtle distinction is of little importance in the following, the notion of

periodic orbits will also include relative ones.

Aside from supercritical transition, invariant solutions are not commonly observed in their purest form

in real-life fluid flows. However, there exists compelling evidence that these characteristic states are

embedded in the turbulent subspace, and that the dynamics of turbulence can be at least partially un-

derstood in terms of trajectories around and between invariant saddles and attractors (Chandler and

Kerswell 2013, Suri et al. 2017, Budanur et al. 2017), i.e. in terms of homoclinic and heteroclinic connec-

tions in the state space, respectively. In fact, when the structure of some invariant solutions is examined,

similarities with the coherent structures discussed in §2.2.3 may be found. In literature, equilibrium so-

lutions resembling quasi-streamwise vortices (Nagata 1990, Waleffe 2001), hairpins (Itano and Generalis

2009, Shekar and Graham 2018), or attached eddies (Park and Graham 2015, Yang et al. 2019) have been

reported. Figure 2.6 provides a visual example of the former two in a channel flow. These similarities are

not solely restricted to the topology of the flows, but also manifest themselves in flow statistics which

may resemble those of turbulent flows (Kawahara et al. 2012).

Despite the similarities to known coherent structures, equilibrium solutions differ from turbulence in

that they do not possesses any temporal dynamics by themselves—they are static objects in the state

11 Although some solutions are indeed stable with respect to perturbations, it is generally more expedient to not demand stability
for the definition of invariant solutions. In fact, many of the invariant solutions which will be present in the following are
unstable, which implies that they correspond to saddles rather than pure attractors.
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Figure 2.6: Examples of travelling waves in (open-)channel flow. An isosurface of streamwise velocity is shown in green, whereas
vortical structures are depicted in grey in terms of the Q-criterion of Hunt et al. (1988). (a) The solution of Waleffe (2001)
which comprises a wavy velocity streak and quasi-streamwise vortices. (b) A hairpin-like structure first discovered by
Shekar and Graham (2018).

space. While this fact might be compensated to a degree by potential homoclinic and heteroclinic con-

nections (Halcrow et al. 2009), arguments have been made that periodic orbits might be dynamically

more relevant and their theoretical understanding might serve as the “rational theory of statistical hy-

drodynamics” that Eberhard Hopf was aiming at (Auerbach et al. 1987, Christiansen et al. 1997, Chandler

and Kerswell 2013, Cvitanović 2013). In fact, a periodic orbit in Couette flow with dynamics reflecting

the near-wall cycle portrayed in fig. 2.2 astonishingly well was famously identified by Kawahara and Kida

(2001). Other periodic orbits showcasing bursting dynamics have been detected by Toh and Itano (2003)

and Viswanath (2007), and it is subject to speculation that turbulence can indeed by understood as being

made up by “building blocks” of equilibrium solutions and periodic orbits which are recurrently visited

by the solution flow and are likely the origin of the coherent structures observed in turbulence. For this

reason, invariant solutions within the turbulent subspace are sometimes referred to as exact coherent

structures or exact coherent states.

Although the presence of exact coherent states can be detected in experiments (Hof et al. 2004), their

identification is almost exclusively achieved by a numerical procedures which are surprisingly straight-

forward. To begin with the Navier-Stokes momentum equations are formulated in terms of a generalised

dynamical system,

dq

dt
= f (q,p) , (2.37)

where f is a vector field stemming from the Navier–Stokes operator, q is the vector of unknowns, e.g.

the velocity field and parameters such as the propagation velocity for travelling waves or the period for

orbits, and p is the vector of parameters which fully describe the problem, e.g. the Reynolds number and

geometry of the flow domain. The vector space spanned by q is infinite-dimensional for the continuous

flow problem, and must hence be replaced by a finite dimensional manifold by means of discretisation

for numerical treatment, cf. Ruelle and Takens (1971) a discussion on the implications. The problem

then becomes are matter of finding solutions of eq. (2.37) for which ∂q
/
∂t = 0 to obtain equilibria, or

q(T ) = q(0) to obtain periodic orbits, which can be solved using standard root-finding algorithms such

as the Newton–Raphson method.

In order for root-finding algorithms to converge to a non-trivial invariant solution, an appropriate initial

guess needs to be provided which turns out to be the most intricate problem in obtaining exact coherent

states. An effective approach of generating initial guesses is homotopy—a successive variation of the

vector of parameters p starting from a pre-existing invariant solution. Naturally, the question arises

on how the initial condition for this procedure is obtained, and the answer is that homotopy may be

initiated from a supercritical bifurcation of a related linearly unstable flow geometry. The most seminal

example of this approach is likely the work of Nagata (1990) who continued the Taylor-vortex flow state
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between a set of co-rotating cylinders, which is readily obtained from a linear instability (Coles 1965,

Gollub and Swinney 1975), towards the limit of zero rotation which corresponds to the linearly stable

flow between two surfaces in relative motion (plane Couette flow). Based on Nagata’s solution, Waleffe

(1998, 2003) continued this solution even further to obtain exact coherent states for channel flow by

varying the pressure gradient and relative velocities of the boundaries. Evidently, homotopy can also be

employed to vary the control parameters for a fixed geometry which may result in further bifurcations,

and hence, large networks of related exact coherent states may be generated which are termed “families

of solutions”.

Initial guesses for the root-finding algorithm may also be obtained by a mindful inspection of turbulent

flow fields obtained by direct numerical simulation of the NSEs. As exact coherent states regularly pos-

sess intrinsic symmetries, it is often effective to restrain the numerical simulations by imposing sym-

metries or minimal periods of the simulation domain. A prominent example for this approach is the

periodic orbit of Kawahara and Kida (2001). Obtaining initial guess from restrained simulations is a pro-

tracted procedure, yet it has the advantage that new families of solutions may be discovered which are

inaccessible from homotopy. Recently, more efficient methods of searching turbulence for periodic or-

bits have emerged based on Koopman theory (Page and Kerswell 2020), which hopefully help pave the

path towards the achievement of Hopf’s ultimate goal.

2.3 Particles in turbulence

Whereas the preceding discussion on fluid flows was predominantly focused at the interaction of the

fluid phase with a stationary solid phase—the outer boundaries of the flow domain—the focus is now

shifted towards flows with mobile solid objects (particles) immersed in it, which are consequently de-

noted as particle-laden flows. Similar to the wall interaction in wall-bounded flows, the forces and

stresses on the fluid-solid interphase are a result of the impermeability and no-slip boundary condi-

tions, which are given by eq. (2.18) and eq. (2.19), respectively. In contrast to it, the solid phase may

exhibit dynamics on its own as the particles are mobile, and hence, interactions are reciprocal resulting

in a fluid-structure interaction problem. In order to describe this coupled system, equations of motion

for the solid phase need to be introduced. By balancing the linear and angular momentum attributed to

a singular rigid object, the Newton–Euler equations are obtained, which read

d
(
ρpVp up

)

dt
=

∮

Sp

(
σ ·n

)
dSp +ρpVp g+Fp,col , (2.38)

d
(
Ip ·ωp

)

dt
=

∮

Sp

(x−xp )× (
σ ·n

)
dSp +Tp,col . (2.39)

Here, xp is the centroid location of the particle, up its translational velocity, ωp its rotational velocity,

Vp its volume which is enclosed by the fluid-solid interphase Sp with n being the surface’s outward-

pointing normal vector and dSp being an infinitesimal surface element, ρp is the particle’s density, and

Ip its moment of inertia. The exchange of momentum between the two phases is governed by the surface

stresses with σ being the stress tensor defined in eq. (2.3) which includes buoyancy. The second term

on the right-hand side of eq. (2.38) reflects the force due to gravity, which is the only external force

considered in the following. Particles may collide with other solid objects such as the fluid domain’s

bounding walls or other immersed particles. The resulting collision force and torque are denoted by

Fp,col and Tp,col , respectively, and are yet to be defined.
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From the translational and angular velocities obtained by eq. (2.38) and eq. (2.39), the trajectory of the

particle is obtained by integrating the kinematic equations

dxp

dt
= up , (2.40)

dΩp

dt
=ωp , (2.41)

given adequate initial conditions, where Ωp denotes the angular position. For the important case of

spherical particles, which are described by a single length scale chosen to be the diameter dp in the

following, the volume of the particle is given by Vp =πd 3
p

/
6 and its moment of inertia reduces to a scalar

value which reads Ip =πρp d 5
p

/
60 if the mass is distributed homogeneously across its volume. Moreover,

since spherical bodies are rotationally symmetric, the angular position is irrelevant for the dynamics,

and hence, it is typically not required to advance eq. (2.41) in time.

Disregarding the nature of the collision forces and torques, the Newton–Euler equations comprise three

fundamental units—length, time and mass—and six independent dimensional parameters—the fluid

and particle densities, the viscosity and a characteristic magnitude of the gradients of the fluid velocity

which are both embedded in the stress tensor, the diameter of the spherical particle, and the magnitude

of gravity. The Buckingham π theorem, cf. §2.1.2, therefore demands three dimensionless groups to

fully parametrise the problem. One ad hoc parametrisation is achieved by the solid-to-fluid density

ratio, ρp

/
ρf , a ratio between the particle diameter and a characteristic length scale of the fluid flow, and

the Galileo number12

Ga ..=
dp vp,g

νf
, (2.42)

where vp,g
..=

√(
ρp

/
ρf −1

) |g|dp is a buoyancy-based velocity scale termed the gravitational velocity.

This parametrisation has the advantage of being solely dependent on parameters which are known a

priori, however, in the context of turbulent particle-laden flows, other parametrisation may be more

convenient and will be introduced whenever they are meaningful.

2.3.1 Sediment-laden open-channel flow

Let us consider a horizontal open-channel flow containing a sufficient number of particles to cover the

bottom wall, and for reasons of simplicity, assume that all particles are spherical and monodisperse

such that they can be parametrised by single values for Ga, ρp

/
ρf and dp

/
δν, respectively. When the

gravitational velocity of the particles is sufficiently high compared to the characteristic velocity scale

of the fluid flow, the particles will accumulate on the lower boundary of the flow domain and form a

sediment bed. The accumulation of particles effectively acts as a modified boundary to the flow domain,

which is rough, permeable and deformable in contrast to the actual wall, and this modification is not

without consequences for the structure and statistics of turbulence, as will be discussed in the following.

Sediment beds are widespread in natural fluvial environments, and thus, sediment-laden open-channel

12 The Galileo number is named in honour of the Italian polymath Galileo Galilei, who is commonly simply referred to as Galileo.
There exists some disagreement whether the nondimensional number should rather be termed “Galilei number” as the nam-
ing convention is generally based on surnames. In the context of chemical engineering, the square of the Galileo number is
also referred to as the Archimedes number.
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Figure 2.7: (a) Conceptual sketch of the mean flow over regular hemispherical roughness elements in open-channel flow. (b)
Classification of roughness regimes depending on the ratio of effective roughness ks and inner units of turbulence.
The layers within which different scaling laws for the mean streamwise velocity can be applied. The dashed lines
indicate the laws stated in eq. (2.44) and eq. (2.45), respectively. Experimental data ( ) was obtained by Nikuradse
(1933) for rough pipe flows.

flow may be regarded as a more sophisticated idealised description of rivers and canals than canonical

channel flow.

The effect of roughness depends predominantly on the size, shape and arrangement of the roughness

elements, see e.g. Jiménez (2004) for a discussion. A good consolidation of these effects can frequently

be achieved by determining an equivalent “sand” roughness ks , which in the case of spheres is of O(dp ),

cf. Chan-Braun et al. (2011) and references therein. The mean velocity profile is again found to be

described by a logarithmic law similar to eq. (2.31), but is now given by the length scale introduced by

the roughness rather than viscous units, viz.

〈uf 〉xzt

uτ
= 1

κ
ln

(
y

ks

)
+ Ã. (2.43)

The constant of integration Ã is depends on the size of the roughness elements with respect to the vis-

cous length scale, and in the limit where ks is small compared to δν, eq. (2.43) reduces to the log-law for

smooth walls, and hence Ã reads

Ã = A+ 1

κ
ln

(
ks

δν

)
for ks ≪ δν. (2.44)

On the other hand, when the roughness elements are large in comparison to the inner region, the fully

rough regime is approached where Ã is constant irrespective of the value of ks , that is,

Ã ≈ 8.5 for ks ≫ δν. (2.45)

The values of ks for which neither eq. (2.44) nor eq. (2.45) holds is termed transitionally rough regime.

The exact thresholds for which the flow is transitionally rough depend on the details of the rough surface

(Bradshaw 2000, Jiménez 2004, Shockling et al. 2006). A sketch of the roughness regimes observed by

Nikuradse (1933) for carefully sieved sand grain roughness in pipe flow is given in fig. 2.7.

Apart from some exceptional configurations, rough surfaces tend to increase the shear stress on the do-

main boundary, and hence, increase the value of the friction velocity. The modification of the wall shear

stress may be attributed to two mechanisms. First, the shape of the roughness elements increases the

viscous drag on the wall, and if the elements are sufficiently large, also induce an additional form drag
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2.3 Particles in turbulence

due to flow separation (Jiménez 2004, Chan-Braun et al. 2011). Second, when ks

/
δν is large enough to af-

fect the buffer layer, the turbulent near-wall cycle is modified up to until its breakdown in the fully rough

regime, which leads to a reduction in the wall shear and annihilates the peak of the streamwise velocity

fluctuations associated to the near-wall streaks (Jiménez 2004). In most flows, however, the former phe-

nomenon outweighs the latter resulting in a net increase in uτ. It has been subject to debate whether

roughness also affects the structure of turbulence in the outer layer (Bandyopadhyay and Watson 1988,

Jiménez 2004, Flack et al. 2005, Marusic et al. 2010), and while Jiménez (2004) suggested that universal-

ity is only achieved for ks ⪅ H/40, the study of Flack and Schultz (2014) indicates that modifications of

lower order statistics are only minor even for significantly protruding roughness elements.

Permeability is also known to increase the wall friction, even in the absence of roughness effects (Jiménez

et al. 2001). This increase originates in part directly from the additional dissipation introduced by the

non-zero fluid velocity at the wall, but is mainly attributed to the formation of large spanwise-aligned

flow structures which develop due to a shear layer instability of Kelvin–Helmholtz type (Jiménez et al.

2001, Suga et al. 2017). These spanwise rolls are found to significantly alter the distribution of Reynolds

stresses near the permeable wall, but also affect the outer layer of turbulence by introducing sweep and

ejection events with wavelengths of O(H) (Suga et al. 2018). The effect of spanwise rolls on the transfer

of heat and mass has been subject to recent investigations, and it was found that their presence en-

hances heat transfer in the same way as momentum transfer, unlike roughness were flow separation

only enhances the latter (Nishiyama et al. 2020, Motoki et al. 2022).

Regarding the mobility of the sediment, various modes of sediment transport can be distinguished (Bag-

nold 1956, van Rijn 1984a,b). In close vicinity to the stationary bed, particles predominantly stay in con-

tact with the bed and move along by rolling, sliding or saltation, i.e. the momentary lift-off of a particles

with subsequent redeposition upon the bed. These modes of transport are summarised as bedload,

and the region in which they are dominant is termed the bedload layer. Whenever the lift forces act-

ing on a particle are sufficiently high, particles may resuspend into the outer region of the flow and be

transported alongside other already suspended particle as suspended load. Although the suspended

load is sometimes further compartmentalised into a “washload” of particles which stay permanently

suspended, this distinction will not be made in the following as its definition comprises some arbitrari-

ness (Khullar et al. 2010) and is not of importance in the following. A sketch of the modes of sediment

transport and the definition of transport loads can be found in fig. 2.8(a).

The vertical concentration profile of particles in the quasi-steady state in a turbulent environment is

governed by the balance of fluid-induced vertical forces acting on the particles and gravitational forces.

The predominant parameter determining this distribution is the relative turbulence intensity, which is

defined as

Iτ
..= uτ

vp,∞
, (2.46)

where vp,∞ is the settling velocity of the particle in a quiescent environment. In the traditional theory

of Rouse (1937), which is derived from the balance of turbulent diffusion and settling effects, Iτ acts as

the exponent of a power law describing the particle concentration as a function of vertical position. Al-

though Rouse’s theory should be complemented by additional terms in horizontal wall-bounded turbu-

lence (Bragg et al. 2021a), it is plausible that any additional terms describing near-wall turbulent effects

should scale in inner units, hence upholding the significance of uτ as the relevant velocity scale.

River beds are seldomly flat, but rather self-organise in macroscopic patterns such as ripples, dunes

or antidunes (Engelund and Fredsoe 1982, van Rijn 1984c). Therefore, knowledge on such features is
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2 Wall-bounded turbulence and particle dynamics

essential to predict sediment transport and deposition in rivers, cf. Best (2005), Seminara (2010) or

Charru et al. (2013) for reviews on patterns in fluvial environments. The aforementioned features tend

to orientate themselves perpendicular to the flow direction and typically span many grain diameters in

vertical elevation. While they are understood to be caused by instabilities which depend only little on

the actual structure of the flow above, there exists a type of bedform which is most notably driven by

turbulent effects—the self-organization in long streamwise-aligned streaks of crests and troughs which

are known as ridges. Ridges are thought to be closely related to secondary currents of Prandtl’s second

kind which occur in laterally-bounded flows (Casey 1935, Ikeda 1981, Nezu and Nakagawa 1984, Colom-

bini 1993, Colombini and Parker 1995), and hence, their occurrence was long believed to be induced by

a knock-on effect beginning at the wall. However, it was already demonstrated by Colombini (1993) that

lateral boundaries are not required for their occurence and only recently it was shown by Scherer et al.

(2022) that ridges are indeed the footprints of long-lived large-scale velocity streaks, which as described

in §2.2.3 also occur in turbulent channel flows which lack a lateral confinement. While ridges can be

regularly observed if large-scale turbulent structures are present in the flow, their amplitude is typically

restricted to several particle diameters, which usually implies that ripples or dunes will be the dominant

pattern whenever they are able to form. The conditions under which this is the case are summarised in

fig. 2.8(b), and depend on the relative turbulence intensity, as well as on the size of the particles in terms

of viscous units, i.e.

d+
p =

dp

δν
=

dp uτ
νf

, (2.47)

which may also be understood as a particle Reynolds number based on the wall shear. It should be noted

that it is also common to parametrise the bedform regimes in terms of the Shields parameter (Shields

1936) given by

θ ..=
(

uτ
vp,g

)2

(2.48)

whose essential difference to Iτ is that it is based on the gravitational velocity rather than the terminal

settling velocity. However, it can be demonstrated (Jenny et al. 2004) that for sufficiently low Galileo

numbers, these two quantities are linked by the relation

vp,∞
vp,g

= 2√
3Cd

, (2.49)

where Cd is the steady-state drag coefficient of the particle, which has to be determined empirically in

the general case. Hence, the advantage of the Shields parameter over the relative turbulence intensity

lies in the ability to straightforwardly determine its value a priori.

Concerning the structure of turbulence over mobile beds, it has been demonstrated that at sufficiently

high rates of bedload transport, the near-wall regeneration cycle may be suppressed completely (Scherer

et al. 2022). In fact, while for stationary roughness elements this breakdown is expected to occur for

ks ≈ 50–100δν (Jiménez 2004), Scherer et al. (2022) found that a particle size of dp ≈ 30δν suffices if the

rate of bedload transport is considerable. Little is known so far about the differences in the behaviour of

LSMs and VLSMs over mobile beds compared to the smooth-wall theory discussed in §2.2.3, although

Peruzzi et al. (2020) suggests that the distinctions are only minor. Vice versa, these large-scale structures

have been identified to be relevant for the erosion of particles from the bed (Cameron et al. 2020, Scherer

et al. 2022), as this process is thought to be strongly driven by ejections and sweeps (Cellino and Lemmin

2004). In the presence of spanwise-aligned sediment patterns such as ripples or dunes, which may
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Figure 2.8: (a) Conceptual sketch of modes of sediment transport. The illustration is inspired by Dey (2014). (b) Classification of
bedforms as a function of the nondimensional particle size and relative turbulence intensity as proposed by Liu (1957)
and extended by Simons and Richardson (1961). The data is taken from Dey and Ali (2020) under the premise that
ks = dp .

extent vertically over a significant fraction of H , a turbulent free shear layer is formed behind the crest

which contains spanwise vorticity (Kadota and Nezu 1999, Cellino and Graf 2000, Kidanemariam 2016),

i.e. the bedform acts like an obstacle to the mean flow. Further discussions on the role of coherent

structures in sediment-laden flows are provided by García (2008) and Adrian and Marusic (2012).

2.3.2 Preferential concentration and clustering

The focus is now shifted towards particles suspended in turbulence, with an emphasis on those particle

parameter points for which only negligible gravitational effects are exhibited (Ga → 0), but still iner-

tial effects are important (ρp

/
ρf > 1). Under the assumption that there are no immediate length scale

effects, these inertial particles are fully parametrised by a single nondimensional number,

St ..= tp

/
tf , (2.50)

which is known as the Stokes number. In this definition, tp is a characteristic inertial time scale of the

particle, which under the aforementioned assumptions and in the case of vanishing relative velocities is

given by tp = ρp d 2
p

/(
18ρf νf

)
, and tf is a characteristic fluid time scale, such as the Kolmogorov time scale

η/uη. The time scale tp is also known as the particle response time, and hence, St may be interpreted as

the ability of a particle to adapt its motion to a varying fluid environment.

Within an apposite range of the Stokes number, the distribution of particles in turbulence is found to

be spatially intermittent even in the absence of statistical inhomogeneities within the turbulent flow

(Squires and Eaton 1991, Elghobashi and Truesdell 1992, Eaton and Fessler 1994, McLaughlin 1994).

This implies that even if particles are uniformly scattered across the flow domain initially, turbulence

will exert a de-mixing effect and create regions of preferential concentration or clusters. The earliest ex-

planation for this effect was provided by Maxey (1987), who, based on an earlier work on particle trajec-

tories in artificial cellular flows Maxey and Corrsin (1986), argued that heavy particles are expelled from

coherent vortices due to a centrifugal mechanism, and hence, preferentially concentrate in strained re-

gions as they tend to avoid regions of high vorticity. In fact, assuming that the fluid acceleration can be

approximated by the pressure gradient, it can be demonstrated that for St ≪ 1 the rate of accumulation
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2 Wall-bounded turbulence and particle dynamics

of particles in the Eulerian sense is negatively correlated to the local value of the second invariant of the

velocity gradient tensor (Maxey 1987), which is given by

Q(x,t ) ..= 1
2

(
Ω2 −S2)=−1

2

∂uf,i

∂xj

∂uf, j

∂xi
(2.51)

where S andΩ are the symmetric and antisymmetric part of ∇uf , respectively, and Einstein summation

notation has been employed. This so-called Q-criterion (Hunt et al. 1988) may be interpreted as the rel-

ative importance of vorticity versus strain with positive(negative) values indicating that vorticity(strain)

prevails, and thus, provides a quantification of the implications of the centrifugal mechanism.

The preceding inferences are only valid in the limit of very small values of the Stokes number, and as

preferential concentration can also be observed at significantly higher Stokes numbers, and moreover

also in randomly generated flow fields (Bec 2003, Duncan et al. 2005) where the centrifugal mechanism

is inactive (Bragg et al. 2015), extensions for the theory are required in order to fully explain the phe-

nomenon. A Lagrangian theory based on the interaction between pairs of particles was proposed and

expanded by Zaichik and Alipchenkov (2003, 2007, 2009) to predict radial distribution functions based

on the statistics of the turbulent flow. For St ≪ 1, this theory is in its essence an extension of the cen-

trifugal mechanism (Bragg and Collins 2014), however, for St =O(1) it predicts that the velocity dynamics

lose their locality, and suggest another non-local mechanism which leads to clustering—the inward drift

mechanism. Here, by non-locality it is referred to the fact that the inward drift mechanism does not de-

pend on a biased sampling of local regions of strain, but should rather be understood as a result of the

trajectory history and an asymmetry in the probability of converging and diverging trajectories of parti-

cle pairs. The validity of the Zaichik and Alipchenkov theory was corroborated empirically by Bragg and

Collins (2014) using numerical simulations, and it was subsequently recognised by Bragg et al. (2015)

that the intensity of the inward drift depends on the fluid velocity gradients previously experienced by

the particles, which explains the local accumulation of particles in high strain regions even for Stokes

numbers of O(1) as has been reported by e.g. Squires and Eaton (1991).

An alternative mechanism causing preferential concentration was introduced by Goto and Vassilicos

(2008) and Coleman and Vassilicos (2009) originating from similar arguments which lead to Maxey’s

centrifugal mechanism. The sweep-stick mechanism is based on the idea that particles are driven away

from regions of non-vanishing fluid acceleration, and subsequently get stuck in regions where

af (x,t ) ..=
∂uf

∂t
+∇· (uf ⊗uf

)
(2.52)

is nil, which themselves are coherent and swept away by the local fluid velocity. While these regions

are abundant in two-dimensional turbulence and preferential concentration is well explained by sam-

pling regions where af = 0 (Chen et al. 2006, Goto and Vassilicos 2006), they are rarely observed in

three-dimensional turbulence (Goto and Vassilicos 2008). However, the driving force of the convergence

mechanism has been shown to be proportional to the divergence of the fluid acceleration vector, and

thus, still acts even in the absence of regions where af vanishes. The sweep-stick mechanism has been

generalised recently by Oka and Goto (2021) using a coarse-graining method in order to account for the

fractal nature of the inhomogeneous particle distribution, which yields a self-similar mechanism over

multiple scales and extends the theory for St > 1.

The aforementioned theories have been formulated under the premise of small and heavy particles, and

therefore it is necessary to discuss potential deviations if this precondition is not satisfied. To begin with,
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2.3 Particles in turbulence

it is expedient to consider the asymptotic behaviour in terms of the Stokes number. For St = 0, the par-

ticles adapt instantaneously to any changes in the local fluid velocity and consequently behave as fluid

tracers which cannot preferentially concentrate in incompressible flows. For St →∞, the particle mo-

tion is decoupled from the fluid velocity, and thus, turbulence is unable to induce any accumulation of

particles. If the length scale of the particle is comparable to the length scales of the fluid flow, the Stokes

number is not the only relevant parameter anymore, as there is empirical evidence that variations in

size and density are not interchangeable (Qureshi et al. 2007, Lucci et al. 2011, Fiabane et al. 2012, 2013).

However, there are indications that the previously described mechanisms are nonetheless relevant for

particles of finite size (Uhlmann and Chouippe 2017). Indeed, in order perpetuate the concept of the

Stokes number as the only parameter of interest for clustering, various definitions have been proposed

for a particle time scale which accounts for finite size and nonlinear drag effects with one prominent

example being

tp =
1+2ρp /ρf

36

d 2
p

νf

24/Rep,∞
Cd

, (2.53)

introduced by Balachandar (2009), where

Rep,∞ ..=
dp vp,∞
νf

(2.54)

is the particle Reynolds number based on the terminal settling velocity in an ambient container, whose

value fully determined by the Galileo number and can be approximated by eq. (2.49).

While the terms clustering and preferential concentration have been used largely interchangeable in

the preceding discussion, both phenomena are not exactly the same. Preferential concentration de-

notes a spatially non-uniform distribution of the probability of individual particles to be located within

a certain region of the flow, whereas clustering describes the process of multiple particles approaching

each other. As a consequence, while preferential concentration can be observed in a single particle sys-

tem, clustering inherently involves multiple particles. As a consequence, clustering may be the result of

preferential concentration in multiparticle systems, but preferential concentration does not necessar-

ily lead to clustering, and clustering can occur without preferential concentration for instance through

non-local interactions.

For more information on the formation of preferential concentration and particle clustering in turbu-

lence, the reader is referred to the reviews of Balachandar and Eaton (2010), Monchaux et al. (2012) and

Gustavsson and Mehlig (2016).

2.3.3 Settling under turbulent conditions

In the discussion on turbulence-induced preferential concentration, the focus has been laid on cluster-

ing under microgravity conditions. The presence of a significant gravitational force demands the intro-

duction of an additional parameter which compares the characteristic particle settling velocity scale to

a fluid velocity scale. The former is typically chosen to be the terminal settling velocity of the particle in

an ambient fluid, which is linked to the particle response time by

vp,∞ =
(
ρp

/
ρf −1

ρp

/
ρf + 1

2

)
tp |g| (2.55)
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Figure 2.9: Conceptual sketch particle-vortex interactions in a cellular flow similar to Maxey and Corrsin (1986). The fluid flow
is indicated by grey arrows, while particle trajectories are drawn as black arrows. (a) The fast tracking mechanism
increases the particle settling velocity by preferentially sweeping the downward moving sides of vortices. (b) Vortex
trapping may keep a particle in suspension. (c) Loitering reduces the average settling velocity as a particle spends
more time facing a counteracting flow.

using eq. (2.53) as definition of tp .13 The latter is typically taken to be the velocity scale associated to tf ,

and hence, for the common choice of Kolmogorov scales, the resulting nondimensional parameter is the

relative turbulence intensity Iη = uη
/

vp,∞, or in the case of wall-bounded flows where viscous units are

more practical, Iτ defined in eq. (2.46). It is straightforward to acknowledge that in the case of vanishing

relative turbulence intensity, the particle motion is largely decoupled from the fluid motion, similar

to the behaviour at large Stokes numbers. On the contrary, for vp,∞ ≪ uη, particles can be expected

to behave similar to the microgravity case, though it has been argued by Bragg et al. (2021b) for wall-

bounded flows that as long as Iτ is finite, there always exists a region where settling cannot be neglected.

Regarding the centrifugal mechanism responsible for preferential concentration, gravity exhibits a sym-

metry breaking effect which has a striking implication on the interaction with vortices which are not

coaligned with the direction of gravity—particles tend to preferentially sweep the downward moving

side of vortices. This so-called fast tracking phenomenon was first noted by Maxey and Corrsin (1986)

and is a result of the particles’ tendency to avoid high vorticity regions and to adapt to the local fluid

motion, see fig. 2.9(a) for a simplified sketch of this effect. In a follow-up study, Maxey (1987) deduced

that a net increase of the average settling velocity compared to vp,∞ can be expected even if the flow is

less organised, and indeed, an increase of mean settling velocity due to preferential sweeping has since

been reported by various authors (Wang and Maxey 1993, Yang and Lei 1998, Aliseda et al. 2002, Yang

and Shy 2003, Cuthbertson and Ervine 2007, Baker et al. 2017, Petersen et al. 2019).

Under certain conditions, particles may become trapped in vortices and orbit on approximately closed

paths (Manton 1974, Tooby et al. 1977). This phenomenon is termed vortex trapping, and is rather com-

mon in fluvial systems with an example being the swirling of particles due to the leeside vortex of bed-

forms (Bijker et al. 1976). The mechanism itself depends only little on the specific vortex type (Nielsen

1984, 1992), and thus, it has been hypothesised to also occur for turbulent eddies (Nielsen 1993).

13 Please note that for a given value of the gravitational acceleration, vp,∞ can only be varied independently of the particle
response time by a change in the density ratio. In the context of a particle accelerating from rest to its terminal velocity in
an undisturbed environment, this statement may be interpreted as follows: For a given terminal velocity, the density ratio
controls the time scale of the particle velocity’s asymptotic approach towards the terminal velocity.

40



2.3 Particles in turbulence

When the mobility of the particle is insufficient to follow the variations in fluid velocity rapidly enough,

preferential sweeping does not occur and the particle will sample both downward and upward fluid mo-

tions. Nielsen (1993) argued that the particle will, on average, spend more time in regions of counteract-

ing flow than assisting flow, which consequently reduces the average settling velocity, see fig. 2.9(c) for a

sketch. This phenomenon is known as loitering, and its effect becomes most relevant when the particle

Reynolds number is in the nonlinear regime, such that nonlinear drag effects can contribute to a further

reduction of the settling speed (Murray 1970, Mei 1994, Ireland and Collins 2012).

In general, the various mechanisms of particle-turbulence interaction may be active concurrently, and

interactions may depend on the eddy scale under consideration. Both net increases and net reductions

of the average velocity have been reported (Kawanisi and Shiozaki 2008, Good et al. 2012, Ireland and

Collins 2012, Chouippe and Uhlmann 2019), and hence, it is not trivial to predict the net effect of tur-

bulence on settling for a given flow geometry and parameter point. Overview articles on the turbulent

effects on particle settling velocity have been provided by Nielsen (1993), and more recently, by Dey et al.

(2019).

2.3.4 Particle wakes and collective effects

So far the phenomena discussed were primarily caused by turbulence modulating the dynamics of par-

ticles, albeit the interaction is generally mutual, and hence, one also has to take into account the fluid

motion induced by particles and mutual interaction in between multiple particles. To put it more sys-

tematically, there are two primary mechanisms to inject kinetic energy into a turbulent particle-laden

flow—the direct forcing of the fluid flow in form of a pressure gradient or gravitational force acting on a

slope for instance, and the gravitational force acting on the solid particles which in turn transfers their

energy to the fluid by means of a boundary layer or wake. While in the former case the energy is injected

at the large scales and subsequently cascades towards the dissipation range, cf. §2.1.3, the latter injects

energy at scales at the order of the particle size which may lead to modifications of the cascade. In gen-

eral, these two aspects are thus not decoupled, and background turbulence can significantly alter the

characteristics of the particles’ wakes (Wu and Faeth 1994, 1995, Bagchi and Balachandar 2004, Legen-

dre et al. 2006, Amoura et al. 2010, Rind and Castro 2012), energy may be transferred between the two

phases (Dritselis and Vlachos 2011, Zhao et al. 2013), turbulence may be attenuated by additional dissi-

pation (Gore and Crowe 1989, Squires and Eaton 1990, Elghobashi and Truesdell 1993, Kulick et al. 1994),

and even the inherent mechanism of wall-bounded turbulence may be modulated by the presence of

particles (Wang et al. 2017, 2018a, Wang and Richter 2019, Scherer et al. 2022).

In order to fathom this interaction, it is beneficial to first ascertain the characteristic of the wakes of

freely settling mobile particles in the absence of background turbulence. For spherical particles with

ρp

/
ρf > 1, it can be distinguished between four wake regimes which emerge during the supercritical

transition to chaos of the flow around the sphere, with the controlling parameter being the Galileo num-

ber. At low Galileo numbers the wake is axisymmetric and steady, and correspondingly the direction of

falling and gravity are coaligned. This changes at Ga ≈ 155 where the first bifurcation is observed and

the wake becomes oblique which results in a nonvertical falling direction. The oblique state undergoes

a Hopf bifurcation at Ga ≈ 195, and hence, the wake begins to oscillate which induces periodically vary-

ing fluctuations in the vertical and lateral hydrodynamic forces on the particle leading to an oscillating

trajectory. Chaotic fluid motion occurs starting at Ga ≈ 240 where statistical symmetry of the wake is

recovered, and hence, particles settle vertically on average. The exact values of Ga at which the bifurca-

tions occur depend on the value of the solid-to-fluid density ratio, and a comprehensive study is given

by Jenny et al. (2004). The various regimes differ distinctly in their ability to transfer heat and mass, and
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Figure 2.10: Wake regimes of freely settling particles in undisturbed conditions. The illustrations depict the parameter points
Ga = [

150,170,200,300
]

at ρp
/
ρf = 10. Blue isosurfaces represent disturbances in terms of the vertical fluid velocity,

whereas red isosurfaces show the induced temperature field for a heated sphere. The critical Galileo numbers for
bifurcation depend on the density ratio (Jenny et al. 2004), and the values shown correspond to ρp

/
ρf = 10. The

illustrations have been first published in Chouippe et al. (2019).

a discussion thereof can be found in Chouippe et al. (2019). Figure 2.10 summarises the wake regimes

described and provides a visual clarification.

It should be noted that the wake is generally not turbulent until the critical transition occurs at Galileo

numbers of O(105), as the wake can still be considered quasi-periodic until this point (Clift et al. 1978).

Moreover, the four regimes previously introduced are not necessarily uniform which means that less

prominent changes in flow characteristics may still occur within a given regime. For instance, in case of

the steady axisymmetric regime, the flow gradually develops a front-rear asymmetry for finite values of

Ga which ushers into the formation of a toroidal vortex in the rear of the sphere which induces a zone of

recirculating flow where fluid is transported towards the rear stagnation point. The onset of recirculation

occurs around Ga ≈ 30 and the downstream extent of the zone of recirculation increases with increasing

Galileo number (Clift et al. 1978). Photographs of the formation and evolution of the toroidal vortex ring

can be found in Taneda (1956).

The modification of the fluid flow in the mediate vicinity provides a mechanism for multiple particles

to interact with each other. One prominent example for such a mechanism is the “drafting–kissing–

tumbling” interaction (Fortes et al. 1987, Wu and Manasseh 1998) in which the trailing particle of a

particle pair is attracted towards the position of the leading one, comes into (near) contact, and sub-

sequently positions itself alongside its partner. A consequence of this interaction is the possibility of

cluster formation even in the absence of background turbulence (Kajishima and Takiguchi 2002, Ka-

jishima 2004a), which is in the case of spherical particles further promoted by nonvertical settling at

sufficiently high Galileo numbers (Uhlmann and Doychev 2014). An interesting consequence of wake-

induced particle clusters is that the ensemble of particles may settle faster than the terminal velocity of

an individual particle (Uhlmann and Doychev 2014, Huisman et al. 2016). Moreover, since a cluster can

be essentially regarded as a coherent object itself, a mechanism is provided to inject energy into the fluid

flow at length scales significantly larger than the particles themselves (Kajishima and Takiguchi 2002).

Ensembles of particles may also interact in a way which reduces the average settling velocity. This hin-

drance effect was first described by Richardson and Zaki (1954) who derived a parametrisation for the

reduction in settling velocity for randomly distributed spheres at low Galileo numbers which implies an

approximately linear relationship with the inverse of the solid volume fraction. The hindrance is a result

of fluid being displaced from below the front of settling particles which induces a counteracting flow and
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consequently a hydrodynamic force opposed to gravity. For this reason, the hindrance is strongest if the

particles are arranged cross-stream, i.e. perpendicular to the falling direction, as the backflow then acts

most effectively (Yin and Koch 2007). Such a cross-stream orientation may result from drafting–kissing–

tumbling at low volume fractions, but the same mechanism may also promote vertical organization,

as has been previously discussed, which minimises hindrance. The considerable dependence of the

hindrance effect on the microstructure of particle orientation makes it difficult to judge its importance

under turbulent flow conditions, although Fornari et al. (2019) found that it may play a major role in

homogeneous isotropic turbulence at volume fractions of O(1–10%).

2.3.5 Suspended particles in horizontal channels

The majority of the aforementioned phenomena have been primarily investigated in the absence of

walls and in statistically homogeneous domains. While the inferences derived from these configura-

tions are certainly also relevant for flow configurations where these prerequisites are not given, it is

important to acknowledge that the settling of particles in horizontal wall-bounded flows differs from

that in domains which are unbounded in the direction of gravity due to three major properties:

Boundedness As the direction of gravity is bounded by walls, particles may only travel vertically over a

limited distance. As a result, three different scenarios of settling may be considered in such flows—

the quasi-steady state where particles are continuously removed from the bottom of the domain

and reseeded at the top resulting in a sustained net downward flux; the quasi-steady state where

resuspension and deposition are in equilibrium and the net flux is zero; the initial value problem

where particles are distributed out of equilibrium and transiently settle until a quasi-steady state

is obtained.

Anisotropy The presence of mean shear in the turbulent background flow leads to a preferred align-

ment of coherent structures with the streamwise directions. As gravity acts perpendicular to this

direction, particles are more likely to approach these structures from a preferred direction as com-

pared to isotropic turbulence. Moreover, characteristic structures such as Reynolds-stress events

do not occur in isotropic flows.

Inhomogeneity As the flow statistics depend on the wall-normal position, phenomena such as tur-

bophoresis and further turbulent dispersion effects based on gradients of flow statistics may be-

come relevant for the analysis of the problem (Reeks 1983, 1991, 2005, Bragg et al. 2012, 2021a).

Many of the early works on suspended particles were concerned with the statistics of dispersion by

sheared and turbulent flows. Based on his theory of turbulent diffusion (Taylor 1922), G.I. Taylor laid

the groundwork for this analysis with his contributions on the dispersion of soluble matter in pipe flows

(Taylor 1953, 1954) which were later applied to channel flow by Elder (1959). Using the moment transfor-

mation of Aris (1956), it was Sayre (1967) who first extended this continuous Eulerian treatment of mass

transport towards settling particles by applying Taylor’s approach to a modified transport equation. In-

deed, one of the motivations behind Sayre’s work was the prediction of dispersion and interaction of silt

particles with the sediment of rivers (Sayre and Hubbell 1965, Sayre 1969)—a problem which is akin to

the issue of bacteria transport (Jamieson et al. 2005) as discussed in §1.2. Utilizing the same approach

and assumptions on near-wall turbulence, Sumer (1974) was able to analytically determine the concen-

tration profile, mean velocity and longitudinal dispersion coefficient for heavy particles in smooth-wall

open-channel flow. With the application to settling basins in mind, Sumer (1977) subsequently applied

the method to particles transiently settling from the free surface of an open-channel and analytically
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obtained the equilibrium spatial distribution of particles, the distribution of retention time, as well as

the statistics of the longitudinal settling length under various assumptions.

The problem of transiently settling particles in channels has also been investigated using a Lagrangian

random walk model assuming normally distributed fluid velocities by Li and Shen (1975) who concluded

that the settling velocities of heavy particles in turbulent open-channel flow are likely different from

their corresponding value in a quiescent environment, and that the settling length follows a log-normal

distribution. Their work was extended by Hoyal et al. (1995) towards a higher range in relative turbulence

intensities and to model particle deposition by means of a fully absorbing lower boundary resulting in

a net particle flux. Their results indicate that the settling velocity is enhanced for relative turbulence

intensities larger than unity and are otherwise approximated well by the quiescent terminal velocity.

Experimental evidence for turbulent enhancement of the settling velocity during the transient was first

provided by Jobson and Sayre (1970) who studied the settling of sand particles of varying size by con-

tinuously injecting them from a spanwise-aligned line source at the free surface of a flume. For all sizes

investigated, they observed an enhancement in settling velocity compared to its still water value and

attributed it to clustering effects in case of small sand particles and to turbulent effects in case of larger

particles, although the enhancement in the latter case was significantly weaker. Cuthbertson (2001) and

Cuthbertson and Ervine (2007) experimentally studied the settling of fine sand particles with terminal

velocities of the order of unity over a porous bed, and observed that the particles accumulate on the

downward moving side of large vortical structures of the flow. This behaviour was attributed to the pref-

erential sweeping mechanism which also serves as an explanation for the observed enhancement in set-

tling velocities. Moreover, it was found that an enhancement of the settling velocity often coincides with

the sampling of fluid sweeps, whereas in contrast reduced settling velocities are observed in ejections.

The role of these Reynolds-stress events on the settling velocity has also been recognised by Breugem

and Uijttewaal (2007) who found downward moving particles during the transient phase preferentially

located in sweeps, whereas in the fully developed state upward moving particles sampled regions where

u′
f < 0 and downward moving particles regions of u′

f > 0. Wang et al. (2018b) conducted settling exper-

iments in a channel with grid-induced turbulence and focused on the role of turbulent length scale in

the settling process. They conjectured that large-scale eddies lead to an increase in the particle settling

velocity through preferential sweeping, whereas small-scale fluctuations have a counteracting effect.

Numerical simulations on the settling of particles in horizontal channel flow for the scenarios involving

a net downward flux are scarce. In fact, only the recent point-particle study of Bragg et al. (2021a) could

be identified to belong in this category. In their cases with net downward particle fluxes, the average

settling velocity was found to considerably exceed the ambient terminal velocity and this enhancement

could be attributed for the most part to the preferential sweeping mechanism, with the exception of the

near-wall region where turbophoresis was found to gain significance.

The literature on the quasi-steady regime with a zero net flux of particles is ample, and some of its key

characteristics are briefly summarised in the following: In the near wall region of smooth-wall channels,

particles which are small compared to the size of the inner region of turbulence are known to accumulate

in low-speed streaks as a result of their interaction with coherent structures of the buffer layer (Rashidi

et al. 1990, Kaftori et al. 1995a,b, Kiger and Pan 2002, Marchioli and Soldati 2002, Kidanemariam et al.

2013). As a result, their ensemble-averaged streamwise velocity lags behind the corresponding fluid

velocity due to preferential sampling (Kaftori et al. 1995b, Kiger and Pan 2002, Kidanemariam et al. 2013).

Concerning the resuspension, it has been conjectured that turbulent ejections are a major contributor

apart from wall- and shear-induced lift forces (Kiger and Pan 2002, Marchioli and Soldati 2002, Niño

et al. 2003, Vinkovic et al. 2011). Similar mechanisms are active over sediment beds and give rise to sand
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ridges, although the driving mechanisms may be due to large scale turbulent structures if the buffer

layer is nonexistent (Scherer et al. 2022), cf. §2.3.1.

The discussion on particles in channel turbulence is concluded by an outline of clustering effects and

turbulence interactions in the outer layer. Fessler et al. (1994) have experimentally studied the pref-

erential concentration of heavy particles near the centreline of a closed channel, and found that their

distribution is far from random and resembles that of homogeneous isotropic turbulence. They re-

lated the self-organization of the solid phase to the Stokes number and observed the strongest deviation

from randomness at St ≈ 1. This inferences was corroborated by Rouson and Eaton (2001) who stud-

ied a similar parameter point using numerical simulation of point particles, but also observed long

streamwise-aligned patterns. The recent microgravity simulations of Motoori et al. (2022) strikingly

demonstrated using a coarse-graining method that preferential concentration in channels is a multi-

scale phenomenon. They observed that vortices of all scales and types deplete particle concentrations

in their core in accordance with Maxey’s arguments, and that this depletion can be described by re-

spective scale-dependent Stokes numbers. Moreover, it was shown that wall-detached tubular vortices

lead to the formation of approximately isotropic clusters around them, whereas wall-attached vortices

transport particles predominantly into nearby low-speed streaks.

2.4 Knowledge gaps

For the river contamination problem which serves as a motivation for this thesis, the transient settling

of suspended particles in horizontal channels is a paramount problem. The hydrodynamic literature on

this configuration is scarce, and albeit the very relevant experimental study of Cuthbertson and Ervine

(2007) and the more idealised theoretical and numerical treatment of Bragg et al. (2021a) could be identi-

fied, various questions remain unanswered. Of particular interest are the interactions between coherent

flow structures and the settling particles which give rise to the enhancement in settling velocity reported

by both studies, but also collective mechanisms such as clustering which have not received much atten-

tion in this configuration yet. Up until this point, the transient settling problem has not been examined

using fully-resolved numerical simulations yet, which have the advantage over traditional experiments

that the full state of the system is easily accessible at all times, and over unresolved numerical simu-

lations that they do not require extensive modelling which deems the results more reliable and allows

for a more extensive variation in parameters. Moreover, little is known on the effect of bedforms on the

settling and long-term deposition of particles. While Cuthbertson and Ervine (2007) conducted their

experiment in the presence of a sediment bed, a systematic analysis of its influence is lacking and needs

to be addressed due to its relevance for fluvial systems Wilkinson et al. (1995).

45





3 Problem formulation and
methodology

3.1 Mathematical framework

While the fundamental equations used for this numerical study study were already introduced through-

out §2, their definite form describing the system to be numerically approximated will be summarised in

this section for the sake of convenience and completeness. Open-channel flow is considered within a

domainΩ ∈ R3 with periodic boundary conditions in x and z, a no-slip boundary condition (eq. (2.19))

for the lower wall and a free-slip boundary condition (eq. (2.20)) for the upper wall. Both walls are im-

permeable (eq. (2.18)) and non-deformable, thus corresponding to the Fr → 0 limit of free-surface flows.

The flow is particle-laden, and the problem domain can thus be divided into disjoint subdomains,

Ω=Ωf ∪
( Np⋃

i=1
Ω(i )

p

)
, (3.1)

where Ωf denotes the subdomain occupied by the fluid phase, Ω(i )
p is the subdomain occupied by the

i -th solid particle and Np is the total number of particles inΩ. The interfaces between the fluid and the

solid subdomains are treated by impermeable and no-slip boundary conditions.

Within the fluid domain, the system is described by the continuity and Navier–Stokes momentum equa-

tions displayed in eq. (2.1) and eq. (2.2). The fluid density is considered to be constant throughout the

flow, and the only external force considered is gravity which yields the definite form

∇·uf = 0, (3.2)

∂uf

∂t
+∇· (uf ⊗uf

)=− 1

ρf
∇p +νf ∇2uf . (3.3)

Here, the gravitational acceleration has been expressed as the gradient of the gravitational potential,

g =.. −∇Ψ, and a new pressure variable

p ..= P +ρf Ψ (3.4)

has been defined which signifies the pressure without its hydrostatic part.
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The linear and angular momentum balances for the particles are given by the Newton–Euler equations

displayed in eq. (2.38) and eq. (2.39). The particles are considered to be spherical and their density to be

distributed uniformly throughoutΩ(i )
p , which yields

ρ(i )
p πd (i )

p
3

6

du(i )
p

dt
= ρf

∮

S(i )
p

(
2νf S ·n

)
dS(i )

p −
∮

S(i )
p

(
pI ·n

)
dS(i )

p +
(
ρ(i )

p −ρf

)
πd (i )

p
3

6
g+F(i )

p,col , (3.5a)

ρ(i )
p πd (i )

p
5

60

dω(i )
p

dt
= ρf

∮

S(i )
p

(x−x(i )
p )× (

2νf S ·n
)

dS(i )
p +T(i )

p,col , (3.5b)

for the i -th particle with S being the rate-of-strain tensor defined as

Sij
..= 1

2

(
∂uf,i

∂xj
+
∂uf, j

∂xi

)
. (3.6)

Moreover, the surface integral for the hydrostatic pressure has been evaluated to yield Archimedes’s

principle for buoyancy,

∮

S(i )
p

(
ρfΨI ·n

)
dS(i )

p =−
ρf πd (i )

p
3

6
g. (3.7)

While the rate-of-strain and pressure distribution on the particles’ surface at the fluid-solid interface

is completely determined by eq. (3.2), eq. (3.3) and the boundary conditions, the interaction between

multiple particles or between a particle and the wall needs to be modelled using a collision model which

supplies the collision force F(i )
p,col and torque T(i )

p,col . The trajectory of the i -th particle is then obtained by

integrating the kinematic equation

dx(i )
p

dt
= u(i )

p , (3.8)

whereas it is not required to track the angular position of the spheres in time due to their rotational

symmetry.

The transport of suspended bacteria only plays a subordinate role in this thesis, however, whenever its

distribution inΩf is tracked it is modelled by the advection-diffusion equation

∂CSB

∂t
+uf ·∇CSB =DSB∇2CSB , (3.9)

which corresponds to eq. (2.4) with homogeneous diffusivity and in the absence of any mechanisms for

decay and growth for the sake of generality. Here, CSB is the concentration of suspended bacteria and

DSB its diffusion coefficient. Suspended bacteria are introduced to the flow by either the initial condi-

tion or by means of Dirichlet boundary conditions on the fluid-solid interface. In case of the former,

the particles are also occasionally modelled as inert with respect to CSB by imposing the Neumann-type

boundary condition ∂CSB

/
∂n = 0 on S(i )

p . The concentration of particle-attached bacteria is not mod-

elled explicitly as the primary focus of this thesis lies on bacteria transport and not their fate, and hence,

the knowledge of particle dynamics is sufficient for this purpose.

48



3.2 Computational method

3.2 Computational method

Although the mathematical framework previously described is in itself complete and only demands for

constitutive equations for the collision forces and torques, the nature of differential equations and the

lack of analytical solutions requires the framework to be solved numerically on a computer. For this

purpose, the system of equations needs to be discretised in space and time while keeping in mind the

range of scales of the particle-laden flow problem. This thesis utilises the approach of direct numerical

simulation (DNS) which means that all relevant spatial and temporal scales of the problem are captured

by the discretisation. Therefore, no further assumptions have to be made and the simulations can be

considered to be derived “from first principles”, i.e. directly from the most fundamental principles of

hydromechanics.

3.2.1 Immersed boundary method

While it is certainly possible to discretise Ωf using a computational mesh which excludes Ωp , such a

body-conforming approach is generally not feasible if a large number of mobile particles is immersed

into the fluid, as this would require the mesh to be continuously regenerated as the particles change

their position within Ω in time which comes at an immense computational cost (Prosperetti and Tryg-

gvason 2009). This dilemma can be resolved by the use of fictitious domain methods. Fictitious domain

methods take advantage of the lower geometric complexity of the complete domain and discretiseΩ by

a stationary and regular mesh which hence comprises both the fluid domain and the particle domains,

i.e. the equations (3.2), (3.3) and (3.9) are solved in Ω rather than Ωf . However, this comes at the cost

that the boundary conditions on the fluid-particle interface cannot be imposed directly as this interface

is not captured by the discretisation. Thus, in order to account for the presence of solid particles, an

artificial body force is introduced to the transport equations whose sole purpose lies in modifying the

fields in a manner which adequately reflectsΩp .

Various instances of the fictitious domain method exist and they can be categorised by the formulation

of the artificial force, the positions at which it is active, and the discretisation schemes within the method

is employed. The approach utilised in this thesis belongs to the group of immersed boundary methods

(IBMs), which are based on spatial discretisations of Ω in physical space and employ a localised force

field which is restricted to the boundaries of Ωp denoted as Γp in the following. The origin of IBMs can

be traced back to Peskin (1972) who numerically studied the flow through the mitral valve in the human

heart and modelled the interaction between the blood flow and the valve by this approach. Ever since,

this approach has been adapted for various fluid-structure interaction problems, and have been even-

tually applied to particle-laden flows, cf. Mittal and Iaccarino (2005) for a review on IBMs and Maxey

(2017) a review of fictitious domain methods for particle-laden flows.

The formulation of the IBM employed in this thesis is provided by Uhlmann (2005) and is now sum-

marised briefly for the Navier–Stokes momentum equation. Using a finite-difference approach on a

regular Cartesian staggered grid, the complete domain Ω is discretised to yield discrete nodes xijk =(
i∆x, j∆y,k∆z

)T on which the velocity and pressure fields are evaluated, with i , j ,k denoting the integer

indices of the nodes and ∆x = ∆y = ∆z being the mesh spacing in x, y, z direction, respectively, which
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is chosen to be uniform. For each particle, N (i )
m marker points are distributed as evenly as possible at

position x(i,m)
p,Γ on Γ(i )

p , and each marker point is attributed a volume of

∆V (i,m) = π∆x

3Nm

(
3d (i )

p
2 +∆x2

)
, (3.10)

where the superscript (i ,m) denotes the m-th marker point of the i -th particle. In the first step, the fluid

velocity at x(i,m)
p,Γ is gathered from the discretised velocity fields by means of interpolation, viz.

u(i,m)
f (t ) =

∑
ijk

uf

(
xijk , t

)
δibm

(
xijk −x(i,m)

p,Γ

)
∆x∆y∆z. (3.11)

Here, the interpolation kernel δibm is a regularised Delta function—a discrete version of the Dirac delta

function with finite support—introduced by Peskin (1972, 2002) in the variant of Roma et al. (1999)

which has a support of three grid points in each direction. The velocity which is to be imposed at the

position of the marker points is dictated by the state of motion of the individual particles, and is given

by

u(i,m)
p,Γ (t ) = u(i )

p +ω(i )
p × (

x(i,m)
p,Γ −x(i )

p

)
. (3.12)

By comparing the gathered fluid velocity u(i,m)
f to the value to be imposed u(i,m)

p,Γ , the volume force re-

quired at each marker point is determined by

f (i,m)
p,Γ (t ) =

u(i,m)
p,Γ −u(i,m)

f

∆t
, (3.13)

where ∆t is the time step of the temporal discretisation. In the second step, the gathered forces are

applied to the fluid and solid domains. In case of the former, f (i,m)
p,Γ is spread to the regular grid by

fibm

(
xijk , t

)=
Np∑
i

N (i )
m∑

m
f (i,m)
p,Γ δibm

(
xijk −x(i,m)

p,Γ

)
∆V (i,m), (3.14)

where fibm is the additional forcing term added to the momentum equation as previously stated. Con-

cerning the solid domains, the surface integrals in equations (3.5a) and (3.5b) which represent the hy-

drodynamic forces and torques are approximated by

ρf

∮

S(i )
p

(
2νf S ·n

)
dS(i )

p −
∮

S(i )
p

(
pI ·n

)
dS(i )

p ≈−ρf

N (i )
m∑

m
f (i,m)
p,Γ ∆V (i,m), (3.15a)

ρf

∮

S(i )
p

(
x−x(i )

p

)× (
2νf S ·n

)
dS(i )

p ≈−ρf

N (i )
m∑

m

(
x(i,m)

p,Γ −x(i )
p

)× f (i,m)
p,Γ ∆V (i,m) +

ρf πd (i )
p

5

60

dω(i )
p

dt
, (3.15b)

thus satisfying Newton’s third law of motion.

The DNS code employed in this thesis which implements the IBM of Uhlmann (2005) uses a standard

central finite-difference scheme for the spatial derivatives and a semi-implicit temporal discretisation

based on the Crank-Nicolson scheme for the viscous term and a three-step low-storage Runge-Kutta

scheme for the nonlinear term, similar to Verzicco and Orlandi (1996). Implicit coupling between the

continuity constraint and the pressure in the momentum equation is achieved by means of the fractional

step method (Kim and Moin 1985). A comprehensive description on how the IBM is implemented in this

framework can be found in Uhlmann (2005)
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3.2.2 Particle collision model

In order to supply collision forces and torques to equations (3.5a) and (3.5b), the framework needs to be

complemented by constitutive equations describing the collision process between pairs of particles and

particles with the walls. In this thesis, a soft-sphere approach is employed which resolves the collision

process by allowing for small overlaps and finite durations of contact, which will be outlined in the

following for the case of interparticle collisions.

The normal vector for the collision of particle (i ) and particle ( j ) is defined by the line connecting the

centre point locations of the two spheres, viz.

n(i,j )(t ) ..=
x( j )

p −x(i )
p∣∣x( j )

p −x(i )
p

∣∣ . (3.16)

The distance of overlap along this line is given by

δ
(i,j )
col (t ) ..= 1

2

(
d (i )

p +d ( j )
p

)−
∣∣x(i )

p −x( j )
p

∣∣ , (3.17)

which attains positive values when the two particles are currently in contact, and negative values oth-

erwise. The relative velocity at the point of contact is determined from the surface velocity of the solid

spheres on the line connecting the centre points and reads

u(i,j )
col (t ) ..= (

u(i )
p + 1

2 d (i )
p ω(i )

p ×n(i,j ))− (
u( j )

p − 1
2 d ( j )

p ω
( j )
p ×n(i,j )) . (3.18)

From the relative velocity and the normal direction, a tangential vector can be constructed by

t(i,j )(t ) ..=
u(i,j )

col − (
u(i,j )

col ·n(i,j ))n(i,j )

∣∣u(i,j )
col − (

u(i,j )
col ·n(i,j ))n(i,j )∣∣ , (3.19)

which remains undefined if u(i,j )
col solely possesses a normal component.

The collision forces are modelled by a spring-damper system. The normal component of the interparti-

cle collision force is given by

F(i,j )
p,norm(t ) ..=




−kelas

(
δ

(i,j )
col +∆col

)
n(i,j ) − cd,norm

(
u(i,j )

col ·n(i,j ))n(i,j ) if δ(i,j )
col ≥−∆col

0 otherwise
, (3.20)

where the kelas is the stiffness of the spring component, and cd,norm is the dissipation coefficient of the

damper component of the system. Moreover, the point of contact has been shifted by an offset such that

collision forces are active already at a small finite distance ∆col which reflects the smeared out nature of

the immersed boundary interface. This admitted gap is chosen to be O(∆x) similar to the support of the

regularised delta function. The tangential component of the collision force is given by

F(i,j )
p,tang (t ) ..=




−min

(
µ fric

∣∣F(i,j )
p,norm

∣∣ ,cd,tang

(
u(i,j )

col · t(i,j )))t(i,j ) if δ(i,j )
col ≥−∆col ∧ t(i,j ) is defined

0 otherwise
, (3.21)

and thus comprises only a dampening component with a dissipation coefficient cd,tang , which is limited

by the the condition of traction with the Coulomb friction coefficient µ fric . The overall interparticle
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collision force and torque acting on the i -th particle is then given by the sum of forces and torques of all

collision pairs, viz.

F(i )
p,col (t ) =

Np∑
j=1, j ̸=i

(
F(i,j )

p,norm +F(i,j )
p,tang

)
(3.22a)

T(i )
p,col (t ) = 1

2 d (i )
p

Np∑
j=1, j ̸=i

(
n(i,j ) ×F(i,j )

p,tang

)
(3.22b)

The collision between a particle and the wall is treated analogously to interparticle collisions, and, as

the region of contact for a sphere with a plane is also a single point, is formally very similar to the afore-

mentioned description. A more comprehensive description of the collision model in the same context

can be found in Kidanemariam and Uhlmann (2014b) and Kidanemariam (2016).

The collision model is parameterised by the four physical parameters
{
kelas ,cd,norm ,cd,tang ,µ fric

}
which

need to be supplied. In accordance with previous work on sediment transport using the same simulation

code (Kidanemariam 2016), the normal and tangential dissipation coefficients are set to be equal, and

their value can be related to the stiffness coefficient (Crowe et al. 1998) by

cd,norm = cd,tang =−2
√

m(i,j )kelas
ln

(
εrest

)
√
π2 + ln

(
εrest

)2
(3.23)

where the dry restitution coefficient εrest has been introduced, which describes the ratio between the

total linear momentum of the particle pair post- and pre-collision in a vacuum, and is therefore a mea-

sure for the dissipation due to collision. Moreover, the reduced mass m(i,j ) ..= m(i )m( j )/(
m(i ) +m( j )) of

the pair has been introduced, with m(i ),m( j ) being the masses of the collision partners. The alternative

parameterisation involving εrest is beneficial in the sense that it is easily accesible from experiments. For

the two main series which will be introduced at a later point (LR,HR), the collision parameters are given

by µ fric = {0.4,0.5}, εrest = {0.3,0.9} and kelas = 20
/(

d 2
p
π
6

(ρp

ρf
−1

))
.

From a numerical perspective, the time scale of collision is typically shorter than the required time step

for the advancement of the flow problem. In order retain a reasonable overall value of ∆t , the collisions

are resolved using a sub-stepping procedure, which, broadly speaking, implies that the hydrodynamic

forces are kept constant over Nsub sub-iterations of the Newton-Euler equations while the collision force

are reiterated. In this thesis, the number of sub-steps is chosen to be in the range Nsub ∈ [
150,240

]
in

accordance to previous studies, cf. Kidanemariam (2016) for more details.

3.2.3 Transport of suspended bacteria

Similar to the Navier–Stokes momentum equation, eq. (3.9) is solved onΩ rather than than solely onΩf ,

and the boundary conditions are imposed using the immersed boundary method. Two boundary con-

ditions for the bacteria concentration on the particles are investigated—a Dirichlet-type boundary con-

dition imposing a constant value effectively acting as a source of suspended bacteria, and a Neumann-

type boundary condition imposing zero bacteria flux homogeneously on Γp . In case of the former, a

constant, particle-dependent value is imposed at the location of the marker points, viz.

C (i,m)
SB ,Γ =C (i )

SB ,Γ. (3.24)
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For the latter, the value of the scalar field is evaluated at a normal distance of ∆ibm from the marker

points, and the values to be imposed on Γp are determined by a one-sided finite-difference approxima-

tion of the scalar flux, which yields

C (i,m)
SB ,Γ (t ) =

∑
ijk

CSB

(
xijk , t

)
δibm

(
xijk −x(i )

p − ( 1
2 d (i )

p +∆ibm

)
n(i,m)

)
∆x∆y∆z (3.25)

where

n(i,m) ..=
x(i,m)

p,Γ −x(i )
p

∣∣x(i,m)
p,Γ −x(i )

p

∣∣ . (3.26)

is the normal vector for marker point (m) of the i -th particle. An artificial flux is added to eq. (3.9)

analogous to the artificial forcing term in the momentum equations, and its value is determined by

qibm

(
xijk , t

)=
Np∑
i

N (i )
m∑

m
q (i,m)

p,Γ δibm

(
xijk −x(i,m)

p,Γ

)
∆V (i,m), (3.27)

q (i,m)
p,Γ (t ) =

C (i,m)
SB ,Γ −C (i,m)

SB

∆t
, (3.28)

C (i,m)
SB (t ) =

∑
ijk

CSB

(
xijk , t

)
δibm

(
xijk −x(i,m)

p,Γ

)
∆x∆y∆z. (3.29)

No balance equation is solved for the particles which implies that the flux of bacteria is small compared

to the number of bacteria attributed to the particle.

The nodes of the concentration field are collocated with the pressure field. A central finite-difference

scheme is employed to approximate the spatial derivatives, whereas the temporal derivative is treated

fully explicitly, as stability analysis suggests that the diffusive stability limit is typically abided by the

timesteps commonly chosen for the flow solver. It has been observed that the use of a central scheme

may lead to oscillations in the concentration field in the presence of steep gradients which can be

avoided by reducing the grid spacing, see Ferziger et al. (2002) for a simple one-dimensional analysis

of this problem. For this reason, a dual-mesh method similar to that of Kubrak et al. (2013) has been

implemented in which the computational mesh of the concentration field may be refined such that its

spacing corresponds to ∆x
/

Nref with Nref being the refinement factor which is set to Nref = 2 for the

concentration fields presented in §9.4. Regarding the advective term, trilinear interpolation is employed

for the fluid velocities. The implementation has been validated using various test cases, and a compre-

hensive description of the method and validation can be found in Uhlmann (2019).

3.3 Simulation setup

The underlying flow configuration of the primary series of simulations conducted within this thesis is

open-channel flow with a Cartesian coordinate system chosen such that x, y, z denote the streamwise,

wall-normal and spanwise direction, respectively. The alignment of the channel is horizontal implying

that g = (0,−g ,0)T , and hence, the wall-normal direction is commonly also referred to as the vertical

direction. The bottom of the domain, i.e. the location an object which is solely subject to gravity moves

towards, corresponds to the no-slip wall, whereas the top of the domain corresponds to the free-slip

wall. The domain periodically repeats in the streamwise and spanwise directions with the respective

periods being denoted by Lx and Lz . In the context of river flows, this is to be understood in the sense
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Figure 3.1: Sketch of the main numerical experiments which discussed and referenced throughout this thesis. The simulations
feature a turbulent open-channel flow over a fully-resolved mobile sediment bed. Additionally, contaminant particles
are added to the fully-developed flow at t = 0 and then transiently settle downwards in wall-normal direction.

that there is no influence exerted by any walls normal to these directions, and thus, as an approximation

to the core of a river where the region of interest is within a reasonable distance to the river shore such

that its effect can be neglected. The flow is driven by a constant mass flux in streamwise direction, which

is imposed by means of variable body force corresponding to the mean pressure gradient in eq. (3.3).

A sketch of the simulation setup is provided in fig. 3.1. Two sets of particles are considered in the

simulations—sediment particles which accumulate at the bottom of the domain to form a sediment bed,

and contaminant particles which represent the entering contaminating solids. All of these particles are

fully resolved with respect to the microscopic flow scales in their vicinity using the immersed boundary

method described in §3.2.1, and are subject to the collision model introduced in §3.2.2.

The sediment particles constitute a sediment bed with an average height of Hb which is already present

when the contamination is introduced to the flow. In fact, as a precursor for the main simulations, the

configuration is simulated in absence of contaminants until a quasi-steady state for the bedform and

turbulence is achieved, such that both are completely established before the contamination is intro-

duced to the flow. All sediment particles are fully mobile as described by eq. (3.8) with the exception

of a regularly distributed layer at the bottom of the domain which is kept immobile in order to prevent

collective sliding of the bed. The particles are monodisperse in the sense that they all share the same

diameter and density. The parameter point is chosen such that the bed is sufficiently mobile to exhibit a

significant streamwise particle flux and to freely develop natural patterns such as ripples or ridges, but

still heavy enough such that bedload transport stays confined to a layer close to the interface and sedi-

ment particles are only rarely ejected into the bulk flow. A thorough description of the parameter range

is provided in §3.5.

A contamination is introduced to the flow by means of an initial value problem: contaminant particles

which mimic the presence of dispersed solids are seeded close to the top boundary at the beginning

of the simulations (t = 0), and transiently settle downwards until a statistically steady state is reached,
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3.4 Definition of fluid-sediment interface

cf. §2.3.5. Again, the set of particles is monodisperse, however, their properties may differ from those of

the sediment particles. A summary of the contaminant parameter range is provided in §3.6.

3.4 Definition of fluid-sediment interface

Due to the presence of a sediment bed at the bottom of the domain, the near-wall behaviour of the fluid

is not primarily driven by the no-slip wall, but rather by the interactions with sediment particles. In fact,

the sediment bed constitutes an irregular virtual wall which is porous, rough and deformable, cf. §2.3.1,

and its interface position needs to be defined and characterised.

A straightforward approach of defining the fluid-sediment interface is based on the thresholding of the

solid indicator function

χp (x, t ) =




1 if inside solid phase

0 else
(3.30)

averaged over statistically homogeneous directions. As an example, Kidanemariam and Uhlmann

(2014a) used
〈
χp

〉
z
= 0.1 as a threshold to determine the x- and t-dependent interface of ripple bed-

forms, where
〈•〉z denotes the spanwise averaging operator defined analogously to eq. (2.21). While this

method certainly provides satisfactory results for the investigation of bedforms, its primary disadvan-

tage for the current work is that any instantaneous inhomogeneity is lost in the direction of averaging.

With regards to the solid-solid interactions between the contaminants and the sediment bed, it is desir-

able to have a two-dimensional definition of the interface in order to retain more details of the interface.

For this reason, a novel definition based on geometrical and physical considerations is employed in this

thesis, which has been developed together with Scherer (2022). Two-dimensional interfaces generated

by this method were already successfully utilised in the study of ripples (Scherer et al. 2020) as well as

ridge-type patterns (Scherer et al. 2022). In the remainder of this section, the algorithm to obtain such a

interfaces is outlined alongside the visual illustrations provided by fig. 3.2

In a first step, from the complete set of particles (fig. 3.2(a)), those particles which are either suspended

of belong to bedload, cf. §2.3.1 for definitions of these terms, are removed using the inclusive disjunction

of two criteria (fig. 3.2(b)). The first criterion is based on the vertical component of the contact force of

the particles, which is easily accessible from the collision model used the numerical simulations. In

order for a particle to belong to the bed, the vertical component of this force has to be non-negligible,

which implies that all particles for which the collision force is negligible as compared to their submerged

weight likely belong to the suspended load. For this reason, particles for which

∣∣Fp,col ·g
∣∣

(
ρp −ρf

)
π
6 d 3

p g 2 < 10−5, (3.31)

holds are disregarded for the determination of the interface. The second criterion aims to eliminate

particles which belong to the bedload, i.e. the region of vigorous sediment transport where particles

may still be in contact, and thus, not be captured by the force criterion. In this case, if a particle exhibits

an instantaneous kinetic energy larger than a given threshold, that particle is disregarded. In particular,

this criterion is formulated as

|up |2

v2
p,g

> 0.17, (3.32)
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Figure 3.2: Illustration of the individual steps of the algorithm used to extract the two-dimensional interface between the fluid
phase and the sediment bed. (a) The complete set of sediment particles. (b) The set of sediment particles after those
particles which have been classified as bedload or suspended load are removed. (c) The raw interface obtained by
concave shape extraction using the α-shape method by Edelsbrunner and Mücke (1994). The irregular locations of
the particle centres which form the surface nodes are indicated by black dots. (d) The final interface hb (x, z, t ) after
interpolation to a regular grid and smoothing. In all subfigures, the colouring indicates the height of the particles or
interface.

where the threshold may be interpreted as a critical value of the local and instantaneous Shields param-

eter, and its chosen value is motivated by the value of the global Shields parameter used in the simu-

lations. The thresholds have been varied within a reasonable range and only little sensitivity has been

detected for the quantities of interest in this thesis.

The second step requires a definition of the shape of the set of remaining sediment particles. Since this

set is generally non-convex—the bed will typically consist of various hills and troughs—and its concave-

ness is to be taken into account, the intended level of detail has to be prescribed in order to make the

solution unique. Here, the α-shape algorithm proposed by Edelsbrunner and Mücke (1994) is applied,

which introduces a single free parameter α that defines the minimum length scale for which concave-

ness is permitted. This algorithm is deployed on the centre point locations of the filtered set of sediment

particles, and α= 1.1ds is chosen to be slightly larger than the diameter of the sediment particles.1 The

result is a triangulation of the topmost and bottommost particles with irregularly distributed vertices

corresponding to the centre points of the particles which constitute the interface. Figure 3.2(c) provides

a visual example of such a triangulation.

In the last step, the result of theα-shape algorithm is postprocessed. The upper triangulation is interpo-

lated onto a regular grid for reasons of convenience, and additionally, a two-dimensional box filter with

a width equivalent to σbox = 5ds in each direction is employed in order to smoothen small fluctuations

1 The subscript “s” is used here and henceforth as a particularization of the subscript “p” and denotes a quantity which is specific
to the set of sediment particles, rather than particles in general.
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3.5 Flow over the sediment bed in the absence of contaminants

and reduce noise. The result of this procedure is the instantaneous, two-dimensional fluid-sediment

interface hb(x, z, t ) (fig. 3.2(d)).

For the major part of this thesis, it is sufficient to characterise the bed in terms of its statistics. Therefore,

the spatio-temporal average of the bed height,

Hb
..= 〈

hb

〉
xzt , (3.33)

and its standard deviation

〈
h′2

b

〉1/2
xzt

..= 〈
h2

b

〉
xzt −H 2

b (3.34)

are introduced. Correspondingly, the mean clear fluid height, which denotes the distance between the

sediment-interface and the top boundary of the domain, is given by

Hf
..= Ly −Hb (3.35)

and constitutes an adequate definition of the vertical extent of the flow domain. As for the transient

settling this distance is highly relevant, the coordinate system is chosen such that y ∈ [−Hb , H f

]
, and

hence, the mean position of the interface is located at y = 0.

3.5 Flow over the sediment bed in the absence of
contaminants

Now that the fluid-sediment interface has been defined, the base configurations to which contaminants

are added can be discussed. Due to the role of the sediment bed as a virtual wall, the statistics of the tur-

bulent flow in the open-channel are strongly tied to the characteristics of the sediment bed, and hence,

need to be discussed jointly. Henceforth, the combination of the turbulent flow and the associated sed-

iment bed will be denoted as background flow, and its description is crucial for the determination of

the contaminant parameter points. In this thesis, three distinct background flows are considered which

differ in their value of the bulk Reynolds number, which is now defined as2

Reb
..=

ub Hf

νf
, (3.36)

and the patterns exhibited by the sediment bed. For the lower Reynolds number of Reb = 3009, two bed-

forms are considered—one with a macroscopically flat bed which solely exhibits turbulence-induced

ridges (henceforth denoted by “LR”), and one with ripple features (henceforth denoted by “RP”). For

both background flows, the exact same physical parameters are imposed which enables a direct assess-

ment of the influence of bedforms on the spreading of contaminants. This was achieved by artificially

suppressing the formation of ripples in the LR background flow by reducing the streamwise period of the

simulation domain below the minimal value required to trigger the instability, see Kidanemariam and

Uhlmann (2017) for a detailed discussion on this procedure. Indeed, LR and RP have been initialised

from cases H3 and H6 presented in Kidanemariam and Uhlmann (2017) with the distinction that the

2 The current definition of the bulk Reynolds number is the same as eq. (2.23) with the newly defined clear fluid height used as
the length scale. It should be noted that the value of the clear fluid height is not known a priori as it depends on the interaction
between the flow and the sediment bed. It can, however, be estimated with reasonable accuracy.
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Table 3.1: Summary of the physical parameters associated with the turbulence and sediment bed which constitute the background
flow of the transient settling simulations.

case Reb Reτ Ga ρs

/
ρf Hf

/
ds Hb

/
ds

〈
h′2

b

〉1/2
xzt

/
ds d+

s θ bedform

LR 3009 241 28.4 2.5 27.4 11.0 0.34 8.8 0.10 flat

RP 3009 340 28.4 2.5 27.7 10.7 2.08 12.3 0.19 ripple

HR 9483 838 56.7 2.5 28.6 7.0 0.52 29.3 0.27 flat

Table 3.2: Summary of the numerical parameters concerning the computational domain and the resolution of the fluid discreti-
sation and sediment particles. The observation time corresponds to the time interval over which statistics on the back-
ground flow have been gathered. Nx , Ny , Nz denote the number of grid nodes in x, y, z direction, respectively, and Ns is
the total number of sediment particles.

case [Lx×Ly×Lz ]
/

Hf [Nx×Ny×Nz ] ∆x+ Ns ds

/
∆x tobs /tb

LR [2.80×1.40×2.80] [1152×576×1152] 0.58 65359 15 217

RP [5.60×1.40×2.80] [2304×576×1152] 0.82 127070 15 214

HR [2.49×1.24×2.49] [2560×1280×2560] 0.81 45612 36 28.3

mesh has been refined by a factor of 1.5 in all directions in order to accommodate a wider range of con-

taminant sizes. In contrast, the higher Reynolds number flow (HR) has been developed from scratch in

a high-performance computing project associated to this thesis (GCS 2021, Gedenk 2022). Its value of

the bulk Reynolds number is significantly higher at Reb = 9483, and consequently, only few experiments

could be performed for this background flow due to its high demand of computational resources. In par-

ticular, the contaminants are only seeded over a featureless sediment bed such that a direct comparison

of the Reynolds number effect is only possible for macroscopically flat beds.

For the purpose of defining the wall shear stress on the virtual wall, the method of Chan-Braun et al.

(2011) is applied in which the fluid shear τf defined in eq. (2.24) is extrapolated from the bulk of the

channel onto the mean position of the sediment-fluid interface at y = 0. The resulting wall shear stress

is then used to define the friction velocity from eq. (2.26) and the remaining inner scales. The friction

Reynolds number is then given by

Reτ
..=

uτHf

νf
(3.37)

in accordance with eq. (2.29) using Hf as the outer length scale, and its value reads Reτ =
{
241,340,838

}

for the LR, RP and HR background flows, respectively. The corresponding values of the Shields parame-

ter introduced in eq. (2.48) are θ = {
0.10,0.19,0.27

}
and bedload transport can be observed for all back-

ground flows considered. The particle diameters scaled in inner units read d+
p = {

8.8,12.3,29.3
}

for LR,

RP and HR such that the sediment particles are significantly larger than the smallest turbulent scales in

all cases. Summaries of relevant physical and numerical parameters regarding the turbulent flow and

the sediment bed are provided in table 3.1 and table 3.2, respectively.

In order to characterise the temporal evolution of the sediment bed topology, the instantaneous fluid-

sediment interface is presented in streamwise-averaged and spanwise-averaged form in the follow-

ing. The streamwise-averaged perspective enables an evaluation of turbulence-induced ridges, i.e. the

streamwise-aligned streaks of elevations and troughs with relatively low-amplitude, whose length is typ-

ically sufficiently long to span the entire streamwise length of the domains considered in this thesis. Fig-

ure 3.3 displays the spatio-temporal evolution of
〈

hb(x, z, t )
〉
x for the two macroscopically flat cases LR
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Figure 3.3: Temporal evolution of the streamwise-averaged fluid-sediment interface
〈

hb (x, z, t )
〉
x for the featureless background

flows. (a) LR, Reτ = 241. (b) HR, Reτ = 838. The dotted vertical lines mark the initial conditions for the transient settling
problem aside from t = 0, cf. §3.6. The evolution of the bed is shown in absence of contaminant particles.
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Figure 3.4: Temporal evolution of the averaged fluid-sediment interface for the background flow featuring ripples (RP). (a)
streamwise-average

〈
hb (x, z, t )

〉
x similar to fig. 3.3 indicating the presence of superimposed ridges. (b) spanwise-

average
〈

hb (x, z, t )
〉
z showing the propagation of the ripple. Contaminants are added to the flow at t = 0 as well at

the times marked by the dotted vertical lines, cf. §3.6. The evolution of the bed is shown in absence of contaminant
particles.
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Figure 3.5: Characterization of the sediment bedload layer. (a) Local solid volume fraction as a function of vertical position. (b)
Streamwise flux density of particles in inertial scaling and normalised by the expected scaling of

∫
qp,x dy

/
(vp,g ds )

according to the Wong and Parker (2006) version of the Meyer-Peter and Müller (1948) formula. The vertical grey
lines indicate the mean position of the sediment-fluid interface, whereas the dots on the curves indicate its standard
deviation. Legend: LR ( ), RP ( ), and HR ( ).
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and HR. Albeit the sediment ridges exhibit some dynamics, their spanwise position is relatively stable in

time—an attribute which is likely inherited from the large-scale fluid motion they are generated by. In

general, their time scale of meandering and their lifetime are substantially longer than the time scales

of the transient to be investigated in this work which are generally of O(10tb) as will be unveiled in §3.6.

Sediment ridges can also be observed in the presence of other bedforms as is suggested by fig. 3.4(a)

which displays the streamwise-averaged bed height for the case RP which features a single ripple. To

characterise the spanwise-aligned ripple,
〈

hb(x, z, t )
〉
z is shown in fig. 3.4(b). The amplitude of this fea-

ture is several times larger than that observed for ridges, and hence, ripples dominate the appearance

of the fluid-sediment interface. As indicated by the spatio-temporal evolution, the feature propagates

in streamwise direction with a nearly constant speed in the time interval under observation. This speed

can be quantified by defining the two-point, two-time correlation of the interface fluctuation (Kidane-

mariam and Uhlmann 2014a), viz.

Rhb
(δx,δt ) ..= 〈〈h′

b〉z (x, t ) 〈h′
b〉z (x +δx, t +δt )

〉
xt , (3.38)

and a subsequent linear regression of the streamwise shift δx for which Rhb
reaches its maximum at a

given temporal shift δt . The propagation velocity obtained for RP in the time interval shown in fig. 3.4(b)

reads

cRP = 0.023ub , (3.39)

which is somewhat lower than the value reported by Kidanemariam and Uhlmann (2017) for this case

(cRP = 0.032ub). One source of deviation lies in the method of interface extraction, as the method pro-

posed in §3.4 is observed to result in larger values of Hf compared to the method employed by Kidane-

mariam and Uhlmann (2017), which implies smaller values for ub at constant flow rate. However, this

scaling effect tends to reduce the observed deviation, and thus, the discrepancy still persists when the

same extraction method is used for both cases. Ruling out differences in scaling, the reduction of cRP is

presumably a result of the grid refinement, as all physical parameters and all other relevant numerical

parameters are matched between the simulations. In particular, the distance over which the particle

collision force acts before two particles overlap is set to ∆col = ∆x in both cases, and thus, the effective

diameter dp +2∆col of the particles in the refined simulation is approximately 5.5% smaller than that in

Kidanemariam and Uhlmann (2017). This results in a more compact bed3, for which it appears reason-

able that the mobility of particles, and hence cRP , is reduced.

As stated earlier, the shape of the virtual wall is only one way with which the sediment bed interacts with

the carrier flow. In the following, the bedload will be characterised in order to fathom how much the

direct influence of the sediment protrudes into the flow. To begin with, a local solid volume fraction is

defined as

φp (y, t ) ..= 〈
χp (x, t )

〉
xz

, (3.40)

which is a function of vertical position. Figure 3.5(a) provides the spatial evolution of φp and demon-

strates that for all background flows considered a fair amount of sediment particles can be still be found

at distances of O(0.1Hf ) from the interface. In accordance with their Shields number difference, HR

extends further into the flow than LR and sediment particles can regularly be found outside the inner

layer of turbulence. For RP, the increased variance in bedform height leads to a similar effect and causes

3 The refined simulations exhibit a mean bed height which is about 7.5% reduced compared to the unrefined simulations when
the extraction method of Kidanemariam and Uhlmann (2017) is used.
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Figure 3.6: Turbulence statistics of the sediment-laden background flows. (a) Mean streamwise velocity. (b) Mean shear induced
by the vertical gradient of the streamwise velocity. (c) Root-mean-square of the fluid velocity fluctuations u′

f ( ), v ′
f

( ) and w ′
f ( ). (d) The Reynolds stress u′

f v ′
f . Legend: LR ( ), RP ( ), and HR ( ).

the solid volume fraction to decrease more gradually in wall-normal position. Aside from the spatial

distribution of particles, it is also common to examine the momentum carried by the solid phase. For

this purpose, the sediment flux density is defined as

qp,x (y, t ) ..= 〈
up (x, t )χp (x, t )

〉
xz

, (3.41)

where up (x, t ) is the streamwise component of the particle velocity evaluated in the Eulerian frame. As

suggested by its name, integration of the sediment flux density in the vertical direction yields streamwise

sediment flux, and thus, it serves as an adequate proxy to assess bedload transport for the background

flows considered. Figure 3.5(b) shows qp,x normalised by the gravitational velocity and scaled across the

various background flows in terms of the scaling law of the total sediment flux according to the Wong

and Parker (2006) based on the formula of Meyer-Peter and Müller (1948). For all background flows

investigated, the bedload layer extends well into the buffer layer and beyond—a characteristic which is

ought to be kept in mind when analysing the settling of contaminants.

In §2.3.1, the effect of mobile sediments on the turbulence statistics was discussed in a general context.

To conclude the characterization of the background flow, the actual statistics of the turbulent flow are

presented for the three background flows. Figure 3.6(a) shows the mean streamwise fluid velocity as a

function of the wall-normal coordinate. Due to the porosity of the interface and the vagueness of its

location,
〈

uf

〉
xzt

does not strictly vanish at the virtual wall. This characteristic is especially pronounced

for RP where the considerable variability in bed height causes the velocity to be significantly greater

than zero. Another implication of the diffuseness of the interface is that the strongest gradient in
〈

uf

〉
xzt

is not observed directly at the (virtual) wall, but rather at a significant distance from it, see fig. 3.6(b).
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This effect is most pronounced for RP where the decay of
〈

uf

〉
xzt

with decreasing distance from the wall

is already initiated at y ≈ 0.3Hf , whereas the flows over macroscopically flat beds (LR,HR) decay more

abruptly starting around y ≈ 0.2Hf .

Regarding the second moments of the velocity statistics shown in fig. 3.6(c), it can first and foremost be

observed that the amplitude of the near-wall peak in
〈

u′2
f

〉
xzt

decreases with increasing Reynolds num-

ber, which indicates the absence of turbulent structures associated to the near-wall cycle, cf. §2.2.3 and

§2.3.1, and in particular, the velocity streaks of the buffer layer. In presence of ripples, the peak ampli-

tude is increased compared to the featureless case which is presumably due to the bedform itself. Just

like the streamwise fluctuations, the wall-normal and spanwise fluctuations differ only little across the

background flows above y ⪆ 0.3Hf . Significant vertical fluctuations protrude closest to the interface in

the presence of ripples, and the tendency to do so increases with increasing Reynolds number. Con-

cerning the spanwise fluctuations, the influence of bedforms appears to be more significant than that

of the Reynolds number.

The turbulent Reynolds stress is the primary contribution to the fluid shear stress above the height where

fluid shear becomes significant, see fig. 3.6(d). In the presence of particles, the balance of mean stream-

wise momentum formulated in eq. (2.24) is complemented by an additional stress term due to the body

forcing term related to the presence of particles (Uhlmann 2008, Kidanemariam et al. 2013). The pre-

mature decay of
〈

u′
f v ′

f

〉
xzt

in the presence of ripples can be in part attributed to the presence of this

term.

3.6 Description of the contaminants

The principal objective of this thesis is to study the spreading of contaminations which enter a flu-

vial system from the free surface. Two types of contaminations are distinguished in this thesis—solid

contaminants which are subject to the equations of motion of particles, and dissolved contaminants

whose transport is governed by the advection-diffusion equation. However, due to the paramount role

of particle-attached bacteria in the spreading of microbial contaminations (McDonald et al. 1982, Sherer

et al. 1992, Wilkinson et al. 1995, Jamieson et al. 2005) and the complexity of the dynamics of particles

in turbulent flows, the primary focus of this thesis lies in the investigation of the former type, and the

discussion of dissolved contaminations is restricted to §9.

As described in §2.3.3, the seeding of heavy particles near the top boundary of the flow domain results

in a transient settling problem. While there are endless possibilities for the initial distribution of con-

taminants, the only configuration considered in this work is the distribution in which all particles are

initially located at the same vertical position, see fig. 3.7 for a visualization. This choice was made due

to the homogeneous properties of this distribution in streamwise and spanwise direction which gives

it the advantage of generality over more localised distributions. Moreover, this initial condition may

be interpreted as an equivalent distribution to the line source used in the related experimental work of

Cuthbertson and Ervine (2007) for a periodic setup, and thus, enables a comparison to existing data.

The initial centre point location of all contaminant particles is yc,0 = 0.953Hf .4 For this location, all

contaminant particles considered in the following are fully immersed into the flow, which implies that

yc,0 < Hf −dc

/
2. Within this y-normal plane, the particles are distributed randomly while ensuring that

they do not overlap. For this purpose, a random Poisson process is implemented using the subsequently

4 Henceforth the subscript “c” is used to denote properties attributed to contaminant particles.
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Figure 3.7: Example of the initial distribution of contaminant particles (red spheres). (a) Lateral view of the simulation domain.
The contaminant particles are initially located at the exact same vertical position yc,0 = 0.953H f . (b) Top view of the
simulation domain. Within the xz-plane, the particles are distributed randomly using a random Poisson process while
avoiding overlaps. While the global solid volume fraction can be considered as dilute, the distribution in the initial
plane is rather dense. This exemplary parameter point corresponds to G30-D15-HR.

Table 3.3: Summary of all contaminant parameter points investigated in this chapter including all relevant physical and numerical
parameters. The table includes the value of the characteristic settling time tp,s = Hf /vp,∞ which is introduced at a later
point.

case Ga ρc

/
ρf d+

c Hf

/
dc Rep,∞ Iτ St+ Nc Nrun dc

/
∆x tp,s

/
tb tobs

/
tb

G30-D10-LR 28.4 2.5 8.8 27.4 18.7 0.47 5.4 1000 {5,1} 15 5.9 {8.3,436}

G15-D10-LR 16.4 1.5 8.8 27.4 8.1 1.08 4.7 1000 6 15 13.5 12.5

G15-D6-LR 15.4 2.5 5.8 41.2 7.3 0.80 3.1 3375 6 10 10.0 12.5

G10-D6-LR 10.9 1.75 5.8 41.2 4.2 1.40 2.7 3375 {5,1} 10 17.5 {12.5,435}

G30-D10-RP 28.4 2.5 12.3 27.7 18.7 0.66 10.5 2000 {3,1} 15 5.8 {12.2,428}

G10-D6-RP 10.9 1.75 8.2 41.5 4.2 1.96 5.3 6750 {3,1} 10 17.3 {12.2,427}

G30-D15-HR 27.1 2.5 17.9 46.8 17.9 1.00 23.4 3913 1 22 11.4 14.1

G10-D10-HR 10.8 1.75 12.2 68.6 4.2 2.88 12.2 12346 1 15 32.6 19.3

described algorithm which is repeated until the desired number of contaminants has been distributed.

First, a candidate for the horizontal centre point position is generated by drawing two uniformly dis-

tributed pseudorandom numbers from the intervals [0,Lx ) and [0,Lz ). Second, the distance from this

candidate to all previously distributed particles is computed, and if any of those distances is smaller

than dc +ε, a new candidate is generated until this criterion is fulfilled. Here, ε denotes a small distance

which is introduced to avoid high initial collision forces and numerical complications, which is set to

be of O(∆x). When the distance criterion is fulfilled, the contaminant particle is assigned the position

of the candidate and the algorithm is continued until all particles have been distributed. The contami-

nants’ initial velocity is set to the value of the fluid velocity at the position where the particle is placed.

Therefore, the mean velocity of the fluid and solid phase is approximately equal at initialization as the

contaminants sample the xz-plane randomly. In particular, this implies that the contaminants initially

have, on average, zero momentum in the vertical direction, and hence, start settling from rest.

Table 3.3 provides a summary of the contaminant particle parameter points examined in this thesis. The

naming convention of the cases consists of three compartments—an indication of the Galileo number,

the diameter in inner units, and the background flow—which are separated by hyphens. The input pa-

rameters are varied with respect to the Galileo number, the particle diameter, and the density ratio, and

the most extensive investigation has been performed in the background flow over a macroscopically flat
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bed at a low turbulent Reynolds number (LR). These cases are complemented by further simulations

involving ripple bedforms (RP) or at a higher Reynolds number (HR), which have been conducted ex-

clusively for the highest and lowest Galileo number under investigation, and are approximately matched

in input parameters to the LR simulations.

The total number of contaminant particles per simulation, denoted by Nc , is not constant across the

various cases. Instead, Nc is chosen such that the global solid volume fraction of contaminants defined

as

Φc =
1

H f

∫ Hf

−Hb

φc dy = πd 3
c Nc

6Lx Hf Lz
(3.42)

attains a value ofΦc = 3.2 ·10−3. In this definition, φc denotes the local solid volume fraction introduced

in eq. (3.40), but only applied to the set of contaminant particles. While the selected value of Φc is

generally low enough to classify the system as dilute, one has to keep in mind that the local solid volume

fraction in the plane of initialization is not small as φc (yc,0) ∈ [0.13,0.33], cf. fig. 3.7 for a visualization of

the case with an initial area coverage of φc = 0.23.

In order to ensure a sufficient number of samples to obtain converged statistics and to minimise the

influence of the specific flow conditions at initialization, multiple realizations of the numerical simu-

lations have been performed per parameter point whenever possible. In particular, all simulations at

LR have been realised six times and the simulations of the RP series four times. Figures 3.3 and 3.4

indicate the state of the sediment bed at the seeding times of the various realizations. While most re-

alizations only cover a relatively short observation time tobs which constitutes the transient, the LR and

RP runs for the highest and lowest Galileo numbers have also been simulated over substantially longer

time intervals in order to assess the long-term deposition behaviour. Letting Nrun denote the number of

realizations of the numerical experiment, the total number of samples available for a single parameter

point is given by

NcΣ
..= Nc Nrun , (3.43)

and its value varies in the range NcΣ ∈ [3913,27000].

All particles investigated in this thesis are situated in the axisymmetric wake regime, cf. §2.3.4, and for

all contaminant particles, the value of the Galileo is sufficiently low such that no noteworthy recircula-

tion can be observed in the rear. The choice of this parameter point is driven by the aim to represent

high relative turbulence intensities as the solid matter which is discharged into rivers in CSOs is often

pretreated in a manner that only particles with small settling velocities remain, cf. §1.1. In fact, the rela-

tive turbulence intensities under investigation vary within Iτ ∈
[
0.47,2.88

]
such that various regimes are

covered.

Regarding the particle size compromises had to be made as the limitation in Reynolds number range

for DNS restricts the separation between the smallest and largest scales of the flow. The diameter of

the particle was chosen such that it is larger than the viscous length scale in order to capture small

scale interactions and to avoid computational meshes whose resolution is dictated by the particle scales,

i.e. d+
c ≫ 1. At the same time the contaminant particles are ought to be small compared to the clear

fluid height in order to provide a reasonable vertical distance for the settling process, i.e. dc /Hf ≪ 1.

The ability to fulfil both of these demands simultaneously is directly linked to the value of the friction

Reynolds number, cf. §2.2.2, and thus, the longest available settling distance can be found for the HR
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Figure 3.8: Setup and results from the reference simulations to determine the terminal velocity. (a) Visualization of the compu-
tational domain showing G10-D6-LR as an example. (b) The resulting terminal velocity as a function of the Galileo
number for all parameter points (markers). Circles indicate parameter points with settling distance and numerical
resolution of the LR simulations, while squares correspond to the HR runs. The black line shows a reference curve
determined using eq. (2.49) and the empirical drag law of Schiller and Naumann (1933). (c) The settling velocity of the
isolated particles as a function of wall-normal position showing that the terminal velocity is reached well within the
finite settling distance. Legend: G30-D15-HR ( ), G10-D10-HR ( ), G30-D10-LR ( ), G10-D6-LR ( ), G15-D10-
LR ( ) and G15-D6-LR ( ).

Table 3.4: Numerical parameters of the auxiliary simulations conducted to determine a reference value for the ambient terminal
velocity.

case [Lx,a×Lz,a]/Ly,a [Lx,a×Ly,a×Lz,a]/dc [Nx,a×Ny,a×Nz,a] dc /∆xa

G30-D10-LR [0.333×0.333] [8.5×25.6×8.5] [128×384×128] 15

G15-D10-LR [0.333×0.333] [8.5×25.6×8.5] [128×384×128] 15

G15-D6-LR [0.333×0.333] [12.8×38.4×12.8] [128×384×128] 10

G10-D6-LR [0.333×0.333] [12.8×38.4×12.8] [128×384×128] 10

G30-D15-HR [0.267×0.267] [11.6×64.0×11.6] [256×960×256] 22

G10-D10-HR [0.267×0.267] [17.1×43.6×17.1] [256×960×256] 15

series of simulations, albeit one would expect considerably larger values of Hf /dc and Reτ in actual

rivers.

3.7 Determination of the ambient terminal velocity

The definition of some of the relevant particle parameters such as the relative turbulence intensity and

the particle Reynolds number require the knowledge of the terminal velocity of the particle in an undis-

turbed ambient container. The value of vp,∞ depends on the details of the flow developing around the

particle, and is thus not known a priori. In fact, it has already been stated in eq. (2.49) that knowledge

of the drag coefficient in the quasi-steady settling state is sufficient to derive its value from the grav-

itational velocity which is known at the outset. Various correlations exist to determine Cd for a given

Galileo number, however, in the following the terminal velocity will be determined directly from auxil-

iary simulations, which has the advantage of providing a more exact reference due to the avoidance of

inevitable inaccuracies in the correlations and gauging potential systematic errors related to the numer-

ical method employed here.
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The reference simulations contain a single isolated particle in a domain with the same boundary con-

ditions as the open-channel, but without any background flow, see table 3.4 for a summary of the nu-

merical parameters. Similar to the main simulations, the particle is initially located at yc,0 = 0.95Ly,a .

The lateral dimensions are kept short to reduce computational cost, but are generally larger than those

of Uhlmann and Dušek (2014) such that the results can be expected to be independent of the lateral

boundary conditions. The numerical resolution of the particle is matched with that of the turbulent sim-

ulation for each case, which entails that the parameter points in the RP background flow do not need to

be investigated separately as their relevant numerical parameters exactly match those of LR. This is done

in order to reduce systematic errors when normalizing the particle velocities later on, although the data

obtained for G10-D6-LR and G10-D10-HR, which approximately match in Galileo number and should

therefore attain the same terminal velocity, suggests that this is not a major concern, see fig. 3.8(b). How-

ever, the figure also suggests that the results differ from those obtained by an empirical drag law by a few

percent, highlighting the benefit of conducting auxiliary simulations.

The reference simulations are also beneficial to understand how quickly the terminal velocity is attained.

Generally, it appears favourable for the results to not be significantly affected by the initial acceleration

from rest. In order to estimate the significance of the initial transient, the settling distance in terms of

particle diameters, i.e. Ly,a/dc is matched approximately to that of the turbulent cases. Figure 3.8(c)

shows the particle velocity as a function of wall-normal position under quiescent conditions. For all

cases, terminal velocity is essentially attained in the upper quarter of the channel.

3.8 Computational resources

It should not go unnoticed that the direct numerical simulation of the Navier–Stokes equations requires

considerable resources in terms of computing and data storage for the problem sizes considered in

this work. As may be deduced from table 3.2, the number of grid points required for each field is of

O(109–1010), and even a factor of eight larger for each transported scalar field which is considered due

to the refined dual mesh approach. To put this into perspective, a snapshot of the velocity and pres-

sure fields for a single instance in time for the HR simulation series requires 282 GB of storage capacity,

and in order to analyse the flow conditions during the transient in postprocessing, several finely spaced

snapshots have to be stored. The total data size accumulated within the computational projects related

to this work is of O(100 TB), and consequently, most of the analyses which have been performed would

not have been realisable without the availability of appropriate data storage infrastructure. The storage

facilities utilised are namely the “Large Scale Data Facility” (LSDF)—a hot storage system with a capacity

of several petabytes—and the “bwDataArchiv”—a hybrid disk-and-tape-based system for cold storage

purposes. Both systems are maintained by the Steinbuch Centre for Computing (SCC) at the Karlsruhe

Institute of Technology.

Naturally, the generation of such immense numerical datasets demands the use of massively parallelised

supercomputers. The LR and RP simulation series have been for the most part conducted within the

computing project “DNS of transient particle settling in horizontal open-channel flow: investigating the

influence of initial conditions” on the machine ForHLR II at SCC within a budget of 8.3 million core-h

utilizing 324 cores (LR) and 648 cores (RP), respectively. For the HR series, a large-scale project funding

from the Gauss Centre for Supercomputing was acquired, and the corresponding project named “Finite-

size particle dynamics and scalar transport in turbulent open channel flow over a mobile sediment bed”

was conducted on Hazel Hen and Hawk at the High-Performance Computing Center Stuttgart (HLRS)
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within a budget of 50 million core-h utilizing 4000 cores for the HR series and 8000 cores for the de-

velopment of ripple features at high Reynolds number. The latter dataset is not immediately discussed

within this thesis, although it contributed to the recognitions made in Scherer et al. (2022) which are

referred to throughout this work. Aside from these computational projects, several other HPC systems

have been used primarily for postprocessing purposes, which includes bwUniCluster and bwUniClus-

ter 2.0 systems at SCC, and the internal clusters of the Institute for Hydromechanics.

The major computational costs are typically associated to solving the Poisson equation for the pressure

related to the problem stated in eq. (2.17), as it requires knowledge on the flow state in the entire domain,

and thus, gives rise to a large communication overhead on parallel computers. While the direct cost of

the treatment of particle motion itself is rather insignificant in most cases, the numerical methods which

can be employed for the particle-laden flow problem are generally less efficient than their singlephase

counterparts. As a consequence, the advancement in the field of DNS of particle-laden flows is strongly

tied to the advances in high-performance computing, and hence, the approach employed in this thesis

is not meant to provide a practical framework to model bacteria transport. Rather it should be regarded

as a campaign to provide a database for existing transport models and complement them by identifying

potentially unknown small-scale effects which might be of relevance in the bigger picture.
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transient

The velocity with which solid particles propagate in the receiving flow plays a paramount role for the

prediction of the spreading of particle-bound bacteria. The vertical velocity component is a parameter

which is frequently used in bacteria transport models, and in the majority of studies, its value is assumed

to equal the terminal velocity in stagnant water disregarding any interactions with the fluid flow. The

purpose of the current chapter is to examine the effect of turbulence on the particle velocity in a phe-

nomenological manner to provide a basis for subsequent more detailed discussions on the interaction

between the carrier flow and the dispersed phase.

4.1 Temporal evolution of the transient

In the initial state of the numerical experiment, the system is out of equilibrium. After release, the con-

taminants collectively settle towards the sediment bed under the action of gravity causing a net down-

ward contaminant flux. As time progresses and contaminants approach the sediment bed, an equilib-

rium between deposition and resuspension is achieved eventually. At this stage, the net contaminant

flux of particles is zero if a sufficient number of contaminant particle is considered, and their vertical

distribution is constant in time.

Without providing a formal definition of the global contaminant flux, this behaviour becomes observ-

able in terms of the average vertical position of the contaminants,

〈
yc

〉
T

(t ) ..= 1

NcΣ

NcΣ∑
i=1

y (i )
c (t ), (4.1)

where here and in the following 〈•〉T denotes the operation of ensemble-averaging over all contaminants

and realizations at a given instance in time. The statements made on the global flux then translate into

the following: initially, the average position is by definition located at the height of the plane of initializa-

tion, i.e. at yc,0, whereas at equilibrium,
〈

yc

〉
T

is a constant whose value depends on the characteristics

of the contaminants and the details of turbulence. The rate at which the equilibrium is approached is

given by the ensemble-averaged settling velocity of the contaminants,

〈
vc

〉
T

(t ) = d〈yc〉T
dt

. (4.2)

At initialization, the average settling velocity is approximately zero, since the contaminants randomly

sample a horizontal plane for which
〈

vf

〉
xz

= 0 holds. At equilibrium,
〈

vc

〉
T

is required to be zero for

sufficiently large samples. Under quiescent conditions and after an initial acceleration phase, this rate
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Figure 4.1: Ensemble-averaged (a) vertical position and (b) vertical velocity of the contaminant particles as a function of time
normalised by the characteristic settling time. Legend: G30-D10-LR ( ), G10-D6-LR ( ), G15-D10-LR ( ), G15-
D6-LR ( ), G30-D10-RP ( ), G10-D6-RP ( ), G30-D15-HR ( ), and G10-D10-HR ( ).
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Figure 4.2: The ratio of ensemble-averaged settling velocity of the contaminant particles to their terminal velocity as a function of
relative turbulence intensity, Iτ = uτ/vp,∞. Legend: G30-D10-LR ( ), G10-D6-LR ( ), G15-D10-LR ( ), G15-D6-LR ( ),
G30-D10-RP ( ), G10-D6-RP ( ), G30-D15-HR ( ), and G10-D10-HR ( ).

is equal to the terminal velocity. A characteristic time scale at which contaminants reach equilibrium

may therefore be defined in terms of the settling distance and the particles’ intrinsic velocity, viz.

tp,s
..= Hf

/
vp,∞. (4.3)

Figure 4.1 shows the ensemble-averaged vertical position and settling velocity for the time interval cov-

ering the longest common observation time of all realisations, cf. table 3.3. For all cases, the quasi-

steady equilibrium was not reached during the observation time, although the data suggests asymptotic

behaviour. More interestingly, the rate at which equilibrium is approached varies significantly between

the cases. While G30-D10-LR is the only case for which this rate is consistently slower than its quiescent

counterpart, the remaining cases all exhibit a phase where the instantaneous average settling velocity is

faster than terminal velocity.

The amplitude of the peak in settling velocity is shown as a function of relative turbulence intensity in

fig. 4.2. The degree of enhancement is quite significant: for G10-D10-HR—the parameter point with

strongest enhancement—an increase of approximately 70% is observed. This behaviour is notably dif-

ferent from unbounded turbulence (Chouippe and Uhlmann 2015, Fornari et al. 2016, Chouippe and

Uhlmann 2019), as well as vertical channel flow (Uhlmann 2008, García-Villalba et al. 2012), where the

settling velocity is normally found to be reduced. This discrepancy may be attributed to the substantially

higher relative turbulence intensity, anisotropy causing a preferential direction of flow structures, or the
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Figure 4.3: The local flux of contaminants (net number of crossings per unit time) as a function of vertical position and time. The
various cases are arranged in column-major order: (a) G30-D10-LR, (b) G15-D10-LR, (c) G15-D6-LR, (d) G10-D6-LR,
(e) G30-D15-HR and (f) G30-D10-HR.

boundedness of the flow. The finding of a strong enhancement is, however, consistent with the observa-

tions made by Cuthbertson and Ervine (2007) and Bragg et al. (2021a) in horizontal channel flows, as will

be elaborated in detail at a later point. For all cases under investigation, the settling velocity peak shows

the tendency to increase with increasing relative turbulence intensity, and the data points roughly col-

lapse on a single curve for all parameter points investigated. In particular, the effect of ripple bedforms

on the settling velocity appears to be captured well by merely considering the modification in uτ.

While the ensemble-averaged settling velocity is a suitable global indicator for the transient, a more

localised quantification may be desirable in order to track the progress. Therefore, the rate at which

contaminant particles cross a given wall-parallel plane is defined as

jc,X(y, t ) ..= 1

δt

∫ t+δt/2

t−δt/2

(
nc,X↑(y, t∗)−nc,X↓(y, t∗)

)
dt∗, (4.4)

where nc,X↑(y, t ) is the number of upwards crossing through such a plane per unit time gathered from

all realisations, nc,X↓(y, t ) the corresponding number of downward crossings, and δt ≈ 0.088tb the length

of the time interval under consideration. At equilibrium, upward and downward crossings are balanced
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Figure 4.4: The number of contaminant crossings of a given wall-parallel plane as a function of vertical position. The data is
normalised by the total number of contaminants, i.e. the number of contaminants per realization times the number
of realizations. The vertical grey line denoted the plane of initialization. (a) Only the first crossing of each particle
is considered. (b) All upward and downward crossings are considered. Legend: G30-D10-LR ( ), G10-D6-LR ( ),
G15-D10-LR ( ), G15-D6-LR ( ), G30-D10-RP ( ), G10-D6-RP ( ), G30-D15-HR ( ), and G10-D10-HR ( ).

aside from fluctuations, and thus, jc,X tends to vanish everywhere. Figure 4.3 displays the temporal

and spatial evolution of jc,X, and the inferences on the progress of the transient are in accordance to

those made based on the ensemble-averaged settling velocity, with the additional information that the

remaining fluctuations are restricted to the lower parts of the channel. Moreover, the data suggests

that no significant upward motion across the plane of initialization occurs, with the notable exception

of G10-D10-HR where a small upward flux can be perceived at early times due to the low submerged

weight.

4.2 Spatial-averaging operator and trajectory
crossings

When investigating the time evolution of ensemble-averaged quantities, one has to keep in mind that

the contaminants are generally located at various wall-normal positions for a given instance in time, as

can be deduced from fig. 4.3, and hence, some information is obfuscated by the averaging procedure.

For instance, the rapid decay of
〈

vc

〉
T

after the occurrence of the peak can be attributed to the arrival of

fast-paced particles in the near-wall region where they are decelerated. Moreover, spatial information

such as the variation in turbulence structure with wall-normal position becomes fuzzy in such a per-

spective. Therefore, a spatial ensemble-average is introduced in order to investigate position-dependent

behaviour with the definition

〈
ϕ

〉
X

..= 1

Nc,X

Nc,X∑
i=1

ϕ(i )(t (i )
c,X

)
, (4.5)

where ϕ(i )(t ) is a placeholder for any quantity attributed to an individual particle (such as its velocity)

and Nc,X(y) is the sample size of crossings through a wall-normal plane located at y in all realization

at any time. The time at which the i -th crossing occurs is denoted by t (i )
c,X, and hence,

〈•〉
X

ensemble-

averages a quantity irrespective of the time at which the particle is located at y .

In order to evaluate eq. (4.5), the cross-through time tc,X(y) has to be determined from the vertical tra-

jectories of the contaminant particles. In general, yc (t ) is not a bijective function, and thus, the number
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4.2 Spatial-averaging operator and trajectory crossings

of crossings does not necessarily correspond to the number of contaminants, i.e. particles may cross

a given plane more than once or not at all during the observation time. Therefore, it can be readily

acknowledged that averages obtained using this procedure are sensitive to the observation time. The

longer the period of observation endures, the more crossings may be attributed to events in the quasi-

steady equilibrium rather than the transient phase. This is especially true in the lower parts of the chan-

nel where particle concentration is the highest then. In order to avoid this peculiarity,
〈•〉

X
only consid-

ers the first crossing of a given particle through the control plane. This restriction has further advantages

which are discussed in §4.4. However, it is occasionally informative (or practical) to loosen this require-

ment, and whenever a different sample is used it will be denoted by either
〈•〉

X↑ (all upward crossings),〈•〉
X↓ (all downward crossings) or

〈•〉
X↑↓ (all up- and downward crossings), with Nc,X↑, Nc,X↓ and Nc,X↑↓

denoting the respective sample sizes.1 In fact, for the inferences made in the present work,
〈•〉

X↓ only

differs little from
〈•〉

X
as will be demonstrated in §5.2.1.

4.2.1 Number of crossings

The number of crossings provides valuable information on its own. When only the first crossing is con-

sidered, Nc,X

/
NcΣ becomes a measure for the sufficiency of the observation time under the assumption

that every particle crosses a given plane eventually, which is corroborated by the findings in the sub-

sequent section §4.4. If for a given vertical position its value equals one, then all contaminants have

settled through this layer at least once and the transient can be considered as completely captured

within the observation time. For Nc,X

/
NcΣ < 1, its value provides a quantitative measure for the suffi-

ciency of the observation time. Hence, fig. 4.4(a) implies that the cases G15-D10-LR, G10-D6-LR and

G10-D10-HR are somewhat truncated by the finite observation time at vertical positions roughly below

y = {
0.4,0.5,0.6

}
Hf , respectively, judging by a 90% percentile requirement. Therefore, possible implica-

tions of such a truncation need to be discussed.

It seems natural that an incomplete sample is biased towards faster moving particles, as these likely have

a higher probability to first cross a given plane within a shorter amount of time.2 Consequently, the

mean of the settling velocity is presumably overestimated and its variance underestimated for positions

where Nc,X/NcΣ≪ 1, and similar ramifications are to be expected for any quantity which is correlated to

the settling velocity. Nevertheless, it should be noted that Nc,X close to the sediment bed is also subject

to geometric constraints, as y = 0 corresponds to the spatio-temporal mean position of the interface and

irregularities in the bed will cause particles to be deposited before this position is reached, thus, limiting

the validity of this analysis for the near-bed region.

When the total number of crossings is considered, information on the extent of the region of quasi-

steady equilibrium can be inferred, see fig. 4.4(b). For the cases with relatively long observation times, a

peak in Nc,X↑↓ is visible in the vicinity of the sediment bed, whereas Nc,X↑↓ ≈ Nc,X above. The peak resem-

bles the streamwise flux of sediment particles in shape, cf. fig. 3.5(b), and is presumably correlated to

the streamwise flux of contaminants at equilibrium. Furthermore, its location coincides with the sudden

drop in Nc,X close to the lower boundary, indicating that resuspension acts as an apparent deposition

barrier at this point. The three cases with Ga ≈ 10 slightly deviate from the behaviour of the remaining

1 The sample size of crossings is linked to the previously defined number density of crossings by means of integration over the

entire observation time, e.g. Nc,X↓ =
∫ tobs

0 nc,X↓ dt .
2 While this statement might appear self-evident at a glance, it really depends on the definition of a “fast” particle and its accel-

eration history. The correlation between the initial crossing time of a given wall-normal and the corresponding instantaneous
settling velocity is examined in §4.3.5.
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Figure 4.5: Conceptual sketch of the bias in ensemble averaging when plain binning is employed. Slowly settling particles con-
tribute more samples ( ) to the average than fast ones, thus causing every ensemble-averaged quantity to be biased
towards slow particles. The spatial averaging procedure defined in eq. (4.5) circumvents this problem by only consid-
ering the crossings of a two-dimensional plane as samples (“plane of interest”).

cases in the sense that a perceivable number of upward crossing can already be observed well above the

near bed region. This is likely due to the high relative turbulence intensities in these cases, and is partly

concealed by the significant decrease in the total number of crossings in the lower half of the channel

and near absence of a near-bed peak. A comparison with fig. 4.4(a) suggests that this is a manifestation

of the shorter relative observation time, i.e. the footprint of the transient phase still dominates that of

the equilibrium phase for these parameter points.

Both the data for Nc,X and Nc,X↑↓ indicate that contaminants rarely move upwards directly after their

initial release, and thus, potential non-physical interactions with the upper boundary can safely be ne-

glected. Furthermore, for G10-D10-HR where these events are the most frequent, Nc,X↑↓ ≈ 2Nc,X which

suggests a parabola-like motion with little complexity.

4.2.2 Comparison to binned averaging

The spatial ensemble-average defined in eq. (4.5) is distinct from a plain binned averaging procedure,

which is often employed for other flow configurations or, more relevantly, in the relevant experimental

study by Cuthbertson and Ervine (2007). This is because binned averaging exhibits a bias with the set-

tling velocity: slowly moving particles spend more time in a given bin than fast moving ones, and thus,

for a given sampling frequencies, contribute more samples towards the average, see fig. 4.5 for a con-

ceptual sketch of this phenomenon. In fact, it is demonstrated in §5.2.1 that
〈•〉

X↑↓ can be approximated

by a weighted binned-averaging procedure where the weights correspond to the absolute value of the

instantaneous settling velocity, and other variations may be approximated as well in this manner using

straightforward adjustments.

In the following, averages will often be presented as a function of wall-normal position. The reader

should be aware that these can be interpreted in two different ways. First, since the flow is inhomo-

geneous in y , variations may be attributed to differences in the local structure of turbulence, e.g. due

to differences in the fluid-particle interaction within the buffer layer, logarithmic or wake region. Sec-

ond, yc,0 − y may also be treated as a time-like coordinate for the progress of the transient, and thus,

phenomena like acceleration from rest near the plane of initialization or inertia/response time effects

are superimposed. While the aim is to separate these effects eventually, a sharp distinction might not

always be possible.
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Figure 4.6: Ensemble-averaged vertical component of particle velocity, normalised by the corresponding ambient terminal veloc-
ity of an isolated particle, as a function of vertical position. On the right-hand sight, the relative turbulence velocity
Iτ = uτ

/
vp,∞ is indicated for the various cases shown. Legend: G30-D10-LR ( , ), G10-D6-LR ( , ), G15-D10-LR

( , ), G15-D6-LR ( , ), G30-D10-RP ( , ), G10-D6-RP ( , ), G30-D15-HR ( , ), and G10-D10-HR ( ,
).

4.3 Instantaneous particle velocity

Now that a spatial averaging procedure has been defined, the question “what is the contaminants’ in-

stantaneous velocity at a given vertical position?” is posed. The average particle velocity at position y is

given in accordance with eq. (4.5) by

〈
uc

〉
X

..= 1

Nc,X

Nc,X∑
i=1

u(i )
c

(
t (i )
c,X

)
. (4.6)

It should be noted that the definition of the sampling procedure gives cause to two peculiarities for sam-

pling the wall-normal component of the particle velocity. First, the velocity cannot be zero because for

the crossing of a wall-parallel plane to occur movement is required in its normal direction, and second,

the samples are strictly negative for positions below the plane of initialization. While the former is true

for all kinds of samples used in this work, the latter only applies to the original definition where solely

the first crossing is considered. Furthermore, one has to keep in mind that no precise time can be at-

tributed to
〈

uc

〉
X

as the arrival times generally differ, which gains relevance with increasing distance of

the plane of interest from the plane of initialization.

4.3.1 Mean velocity

When presented in terms of the ambient terminal velocity, it can be observed that the contaminants

reach, on average, instantaneous downward velocities which span from approximately unity to values

vastly larger than one when normalised by the reference settling velocity, see fig. 4.6. This observation is

in accordance with Cuthbertson and Ervine (2007) who experimentally studied a very similar parameter

range and likewise reported significant enhancements of the settling velocity for similar configurations.

As indicated on the right-hand side of the figure, the excess in velocity3 is correlated to the relative tur-

bulence intensity, i.e. the higher the value of Iτ, the stronger is the enhancement in settling velocity is,

and thus, it can be hypothesised that turbulent fluctuations are the dominant cause of enhancement.

3 The excess in settling velocity is given by vc +vp,∞ since the direction of gravity is pointing in negative y-direction, but vp,∞ is
positive because it has been defined as the absolute value of the converged settling velocity in the ambient case.
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Figure 4.7: Vertical component of the ensemble-averaged particle velocity, normalised by the root-mean-square of vertical fluid
velocity fluctuations (a) as a function of vertical position and (b) as a function of relative turbulence intensity at y =
0.3Hf . The difference from the terminal velocity under quiescent conditions is shown, where negative(positive) values
indicate settling at speeds faster(slower) than vp,∞. Legend: G30-D10-LR ( , ), G10-D6-LR ( , ), G15-D10-LR
( , ), G15-D6-LR ( , ), G30-D10-RP ( , ), G10-D6-RP ( , ), G30-D15-HR ( , ), and G10-D10-HR ( ,

).
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Figure 4.8: Streamwise component of the ensemble-averaged particle velocity normalised by the friction velocity (a) as a function
of vertical position and (b) as a function of relative turbulence intensity at y = 0.3Hf . Legend: G30-D10-LR ( , ),
G10-D6-LR ( , ), G15-D10-LR ( , ), G15-D6-LR ( , ), G30-D10-RP ( , ), G10-D6-RP ( , ), G30-D15-HR
( , ), and G10-D10-HR ( , ).

Figure 4.7(a) depicts the same data, albeit now scaled in terms of the root-mean-square of the vertical

component of the fluid velocity, which itself is a function of wall-normal position. For all cases apart

from G30-D10-LR, a plateau region exists where
〈

vc

〉
X

/〈
v2

f

〉1/2

xzt
is approximately constant. This indicates

that—after an initial phase of adaption—the contaminants are in balance with their turbulent environ-

ment, and—through a mechanism to be determined—utilise fluctuations in vertical fluid velocity in

order to enhance their mean settling velocity. Furthermore, this mechanism itself becomes more effec-

tive as the relative turbulence intensity increases, cf. fig. 4.7(b) where the excess settling velocity in the

plateau region is shown with respect to Iτ. In the limit of negligible (relative) turbulence intensity, the

enhancement mechanism appears to be inactive, whereas for high values, it can be hypothesised that

the effectiveness must be bounded, since the enhancement ought to be constraint by the intensity of

the turbulent fluctuations, i.e. it can at most be of the order of the extreme values of v ′
f . Evidence for

this hypothesis is provided by the apparent convergence seen in fig. 4.7(b) for high values of Iτ. Close

to the lower boundary
〈

v2
f

〉1/2

xzt
decreases rapidly, cf. fig. 3.6, and the relationship between vertical fluid

fluctuations and settling velocity cannot be sustained, causing a divergence to either large positive or

negative values.
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The streamwise component of the mean particle velocity exhibits a behaviour which is less universal

with respect to the background flow. In particular, the wall-normal evolution does not perceptibly cor-

relate with
〈

u′2
f

〉1/2

xzt
(figure omitted), and the curves suggest a dependence on the flow Reynolds number,

as well as on the bedforms even at greater distances from the bed (fig. 4.8). However, for a given back-

ground flow, the curves only differ quantitatively by a factor which is approximately constant for a wide

range of wall-normal positions. This factor is decidedly a function of relative turbulence intensity, albeit

fig. 4.8(b) suggests that other flow dependent parameters need to be considered.

In general, the contaminants travel faster than the mean fluid velocity at the corresponding height. One

plausible explanation is a persistent lag in adapting to the local conditions, as the contaminants move

from top to bottom, i.e. from regions of high to low average streamwise fluid momentum. Therefore, the

particles may keep their momentum attained at higher positions temporarily on their way downwards

similar to the fluid momentum transfer in Prandtl’s mixing length model. It is apparent that such a lag

ought to be proportional to the vertical gradient of
〈

uf

〉
xzt

, the average settling velocity and the particle

response time. Evaluating the product of these parameters yields a curve with a significant peak close to

the lower boundary—similar to what can be observed in fig. 4.8(a) at y ≈ 0.05Hf —but does not explain

neither the shape of the curve nor the specific order of the amplitudes for different cases in higher re-

gions (figure omitted). The shift in said order in the near-wall region might suggest that response time

effects gain significance very close to the wall where
〈

Sxy

〉
xzt

attains its highest values, as will be further

elaborated in §5.2.3.

Another potential mechanism which does not directly depend on the inhomogeneity of the mean flow

in vertical direction is a possible bias of the particles to preferentially visit regions of high streamwise

momentum while settling. Like for the vertical velocity component, where particles must preferentially

visit downward sweeping regions in order to enhance their mean settling velocity from turbulent fluc-

tuations around a zero mean, a similar phenomenon may occur for the streamwise component. In fact,

the scaling of both
〈

uf

〉
X

and
〈

vf

〉
X

with relative turbulence intensity possibly suggests that these phe-

nomena might be related, as will be investigated next.

4.3.2 Quadrant analysis

It is a well-established fact in wall-bounded turbulence that fluctuations of the streamwise and vertical

fluid velocity are negatively correlated, see e.g. Wallace et al. (1972) or Willmarth and Lu (1972), which

results in a negative sign of the tangential Reynolds stress
〈

u′
f v ′

f

〉
xzt

. In fact, fluctuations with a negative

value of the product u′
f v ′

f are about twice as likely to occur than those with a positive value (Pope 2000),

and these events are designated by the terms sweep (u′
f > 0, v ′

f < 0) and ejection (u′
f < 0, v ′

f > 0), cf. §2.2.3.

In regard to settling particles, sweep events are particularly interesting, as they combine downwashing

events and high streamwise momentum, and thus, are a promising candidate for providing the missing

link from the preceding paragraph.

In the following, an analogous analysis is conducted in terms of the particle velocity, however, the fluc-

tuations are in this context defined in terms of deviations from (〈uf 〉xzt
,−vp,∞). This enables a direct

comparison to the fluid fluctuations, as this formulation likewise corresponds to deviations from the

fluid mean while additionally accounting for the inherent gravity-driven velocity difference between the

solid and the fluid phase. Figure 4.9 shows the empirical joint probability density function of the velocity

of all downward(upward) crossing particles in blue(red), as well as that of fluid fluctuations (black lines).

Additionally, a black dashed line indicates the value vc = 0, which bisects the diagram, since no particle

crossings can occur at vc = 0, and hence, the joint PDF is required to be zero on this line. This implies
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Figure 4.9: Empirical joint probability density function of the streamwise and vertical fluctuations of the particle velocity (shaded
regions) and fluid velocity (contour lines) for y = 0.3Hf and all up-/downward crossings. For cases where upward
crossings occur, the joint PDF of the particle velocity is bimodal with two regions strictly separated by vc = 0 ( ).
Upward crossings occur above this bisecting line and are coloured in red, whereas downward crossings occur beneath
and are coloured in blue. The colouring corresponds to {0.1,0.3,0.5,0.7,0.9} times the respective maximum value of
the distribution. The joint PDF of fluid fluctuations, viz. jpdf(u′

f , v ′
f ), is superimposed with black contour lines which

correspond to [0.1 : 0.1 : 0.9] times the maximum value. The following cases are arranged in column-major order: (a)
G30-D10-LR, (b) G10-D6-LR, (c) G30-D15-HR and (d) G30-D10-HR.

that jpdf(uc , vc ) is bimodal if upward crossings occur. Therefore, the bisecting line defines a strict upper

bound for downward crossings to occur, as they require vc < 0 by definition. The opposite is true for

upward crossings.

The particle velocity fluctuations for downward crossings predominantly occur in the 4th quadrant

(uc > 〈uf 〉xzt
, vc < −vp,∞), which comes at no surprise when recalling the earlier findings regarding the

mean velocity. What is interesting, however, is that the range of particle velocity fluctuations is approx-

imately restricted by the range of fluid fluctuations, or in other words, the set of likely particle velocity

fluctuations seems to be a subset of all possible fluid fluctuations. Although a direct relationship be-

tween the local fluid velocity and the particle velocity is yet to be demonstrated, this observation cor-

roborates the hypothesis that the increase in
〈

uf

〉
X

and enhancement of
〈

vf

〉
X

are two manifestations

of the same phenomenon and driven by turbulent events rather than a lag in response.
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4.3 Instantaneous particle velocity

The position of the vc = 0 line provides an appealing heuristic on the subset of fluid fluctuations which

act on the downward and upward moving contaminants.4 As this position is given by vp,∞/uτ = Iτ
−1,

one can consider the limit behaviours of vanishing and prevailing relative turbulence intensity. For

vp,∞ ≫ uτ the bisector is located well above the space of probable fluid fluctuations, which causes all

occurring fluid fluctuations to act on downward moving particles and decreases the likelihood that fluid

fluctuations which are intense enough to move a particle upwards occur. Vice versa, for vp,∞ ≪ uτ the

range of fluctuations which can be visited by a downward moving particle is severely restricted, and

the probability to encounter a downward fluid fluctuation severely faster than its terminal velocity is

rather high. However, this comes at the expense that at the same time the number of upward crossings

will increase accordingly. This difference in limit behaviour is well demonstrated by G30-D10-LR and

G10-D10-HR shown in fig. 4.9(a,d).

While the effect of relative turbulence intensity on the instantaneous particle velocity conditioned to

the crossing direction may be obvious from this perspective, a further inference can be made which is

less trivial. Due to the fact that for vp,∞ ≪ uτ downward moving particles are essentially restricted to

quadrants 3 and 4, the probability of encountering u′
f > 0 is twice as high as that of encountering u′

f < 0

due to the dominance of sweep events. This implies that for a sufficiently high relative turbulence inten-

sity, a statistical bias towards positive streamwise velocity fluctuations exists simply because a particle is

moving downwards. Naturally, the opposite is true for upward moving particles. Nevertheless, it should

be appreciated that this bias is insufficient in fully explaining the excess in streamwise particle velocity

observed, as G30-D10-LR, where effectively no such quadrant restriction occurs, still exhibits a tendency

towards positive fluctuations. The boundedness of uc −
〈

uf

〉
xzt

by the range of u′
f still indicates that this

phenomenon is driven by turbulence, though its understanding likely requires an examination of the

dynamics.

Albeit this heuristic certainly neglects important details—primarily explicit particle-fluid interactions—

it provides a convenient way to determine solely from fluid data and apriori known particle attributes

whether significant upward particle motion is to be expected and what the approximate magnitude of

the average instantaneous velocity might be. Knowledge of both these quantities is essential whenever

the overall average settling velocity
〈

vc

〉
X↑↓ is to be estimated for a net flux of particles as it occurs in a

transient settling.

4.3.3 Velocity fluctuations

For some applications knowledge of the magnitude of variations in settling velocity around its mean

might be valuable. Using the standard deviation of the particle velocity as a measure, viz.

〈
u′2

c,α

〉1/2
X

..=
√〈

u2
c,α

〉
X
−〈

uc,α

〉2
X

, (4.7)

with uc,α being a component of the contaminant particle velocity, this variability is presented in fig. 4.10

as a function of vertical position.

For the wall-normal component of the velocity, the spatial trend can again be described well by the stan-

dard deviation of the fluid fluctuations, i.e. a normalisation by
〈

v2
f

〉1/2

xzt
once more yields a pronounced

plateau region. In contrast to the mean velocity, the amplitude is now negatively correlated with the

4 This formulation is not to be taken in the literal sense, since, so far, the only link between the particle velocity and the fluid
velocity is that they occupy similar regions in the (u′, v ′)-space.
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Figure 4.10: Standard deviation of the particle velocity as a function of vertical position. (a) Vertical component normalised by
standard deviation of local fluid fluctuations. (b) Streamwise component normalised by friction velocity. Legend:
G30-D10-LR ( ), G10-D6-LR ( ), G15-D10-LR ( ), G15-D6-LR ( ), G30-D10-RP ( ), G10-D6-RP ( ), G30-
D15-HR ( ), and G10-D10-HR ( ).

Table 4.1: Approximate parameter ranges of the experiments of Cuthbertson and Ervine (2007) and the numerical experiments
conducted within the current work.

Reτ Ga ρc

/
ρf d+

c Hf

/
dc Iτ

Cuthbertson and Ervine (2007) 14000–30000 10–45 2.5 8–20 160–640 0.75–2.25

Current work 241–838 10–30 1.5–2.5 6–18 25–70 0.5–3.0

relative turbulence intensity. While this behaviour perhaps seems counterintuitive at first, it can easily

be explained using the heuristic discussed in the context of the quadrant analysis. As previously stated,

Iτ ≫ 1 restricts the range of fluid fluctuations which can be experienced during downward motion, and

thus, the variability is reduced as long as only downward motion is considered or downward motion is

dominant due to a net flux of particles.

A negative correlation with turbulence intensity can be observed for the variability of the streamwise

component as well. The same argument as for the vertical component can be applied to arrive at the

conclusion that increased turbulence intensity decreases the subset of streamwise fluid fluctuations

which may be experienced because of the fact that uf and vf are correlated. Another observation to be

made is that the evolution of the standard deviation with y is akin to that of the mean, cf. fig. 4.8. Thus,

if a master curve can be identified for the mean, it likely also serves as a good description of the standard

deviation.

4.3.4 Comparison to experiments at high Reynolds numbers

In this paragraph, the data obtained from the present simulations are compared to the experiments

of Cuthbertson and Ervine (2007). Despite a considerable difference in the flow Reynolds number—

their experiments are conducted around Reτ ≈ 2.5 ·104 which is about 30 times as high as that of the HR

cases—many similarities exist between their experimental setup and the computational setup employed

here. In particular, the experiments are conducted in an open channel over a rough porous bed, settling

particles are added at the free surface and the particle parameters are varied within a similar range. A

juxtaposition of the fundamental parameters is provided in table 4.1.
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4.3 Instantaneous particle velocity
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Figure 4.11: Comparison of the average settling velocity obtained from the numerical experiments at Reτ ≈ 241 ( , LR), Reτ ≈ 340
( , RP) and Reτ ≈ 838 ( , HR), and the experiments conducted by Cuthbertson and Ervine (2007) at Reτ ≈ 25000
( ). Contrary to the convention usually employed in this thesis, the average is taken over an ensemble within the
finite-width bin 0.2 < y/Hf ≤ 0.5 as is done in Cuthbertson and Ervine (2007). Legend: G30-D10-LR ( ), G10-D6-
LR ( ), G15-D10-LR ( ), G15-D6-LR ( ), G30-D10-RP ( ), G10-D6-RP ( ), G30-D15-HR ( ), G10-D10-HR ( ), and
Cuthbertson and Ervine (2007) ( ).

In order to compare their findings to the current data, their figure 5(b), which displays the particle set-

tling velocity averaged over all of their experiments, has been rescaled using the information available

in the publication to be presented in terms of the relative turbulence intensity. Although they present

averages in three different regions, the comparison is solely made for the region 0.2 < y
/

Hf ≤ 0.5 as

the region above may be subject to a bias caused by differences in settling distance (initial acceleration

phase) and the region below is likely sensitive to the specifics of the sediment bed. Moreover, it has to

be taken into account that their velocity is obtained by binned averaging, and thus, subject to the bias

elaborated in §4.2 and dependent on the observation time. For the purpose of a fair comparison, the

numerical data is presented using their definition of the average.

As can be seen in fig. 4.11, the numerical and experimental data are generally in decent agreement, the

more so when consideration for the various potential sources of inaccuracies is shown. One conspicu-

ous feature of the data is that the excess in settling velocity appears to peak around Iτ ≈ 2. Since the only

simulation data point available in this parameter range is one exhibiting ripple features, it is unclear

whether or not the observed discrepancy in numerical and experimental data is caused by the presence

of bedforms or rather hints at a more substantial inconsistency. There is an argument to be made that a

peak in the settling velocity obtained by binned averaging is to be expected: as the turbulence intensity

increases, the region where upward and downward crossings are quasi-steady extends further away from

the wall to the point that a considerable number of samples in the bin are contributed from the equi-

librium phase rather than the transient. Evidence that this effect is indeed active is given by fig. 4.7(b)

where only the first crossing, i.e. only the contribution from the transient, is considered and no decline

in enhancement can be observed at high values of Iτ. Moreover, fig. 4.4 suggests that the quasi-steady

region extends significantly further into the outer flow in the presence of ripples, which reinforces the

presumption previously made about the outlier.

Apart from the assurance that the findings from the numerical simulations are in good agreement with

the physical world, the comparison discloses that the mechanism which enhances the settling particles’

instantaneous velocity is insensitive to variations in the flow Reynolds number over a wide range. It

further corroborates the hypothesis that the relative turbulence intensity is the major influencing factor.

This realization is highly relevant for the upscaling of the numerical results towards large fluvial systems.
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Figure 4.12: Correlation between instantaneous settling velocity and cross-through time. (a) Pearson correlation coefficient as
a function of vertical position. (b) Empirical joint probability density function for G10-D10-HR at y = 0.6Hf with
contour lines spaced at 0.1 times the maximum value. Legend: G30-D10-LR ( ), G10-D6-LR ( ), G15-D10-LR
( ), G15-D6-LR ( ), G30-D10-RP ( ), G10-D6-RP ( ), G30-D15-HR ( ), and G10-D10-HR ( ).

4.3.5 Consequences of truncated observation time

To conclude the discussion on the instantaneous particle velocity, the remark from §4.2 that a truncation

of the observation time could possibly lead to a bias in the average towards fast moving particles is

revisited. In order for such a bias to exist, the instantaneous particle velocities have to be correlated with

the crossing time, or in other words, particles which cross through the control plane at earlier times must

also do so generally at higher speeds. A simple measure for (linear) correlation is Pearson’s correlation

coefficient, which is defined as

ϱ
(
vc,X, tc,X

)
..= cov

(
vc,X, tc,X

)

std
(
vc,X

)
std

(
tc,X

) (4.8)

where cov
(
vc,X, tc,X

)
denotes the covariance of the particle velocity and time of crossing. When inspect-

ing this coefficient as a function of vertical position, it can be observed that both quantities are visibly

correlated near the plane of initialization, but the correlation is progressively lost with increasing dis-

tance to it, see fig. 4.12(a). The intuition behind this is that a greater travelling distance allows for more

variations in the acceleration history, i.e. it is more probable that a particle which is instantaneously fast

has experienced a phase of slow movement which delayed its cross-through time.

It should be noted that the higher the relative turbulence intensity is, the weaker the correlation is in

general. At the same time, the most truncated cases in this work are the ones with high values of Iτ,

cf. fig. 4.4. In particular, the most truncated case G10-D10-HR is at the same time the case which has

the lowest correlation coefficient. Figure 4.12(b) depicts the joint probability density of tc,X and vc,X at

y = 0.6Hf for this case. At this position the observation time of G10-D10-HR begins to be significantly

truncated. At the same time it can be deduced from the joint PDF that the value of the mean velocity

conditioned to late cross-through times is not substantially different from that for early cross-through

times. Consequently, no considerable systematic errors are to be expected in the estimation of the mean

settling velocity.

In conclusion, while it is indeed true that a truncation in observation time leads to an overestimation

of the average settling velocity, this effect is rather unimportant for the current analysis since the fac-

tors which benefit truncation are the same which benefit a decorrelation of the cross-through time and

instantaneous velocity.
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Figure 4.13: Empirical probability density functions of cross-through times at various heights (peaks from left to right: y/Hf ={
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4.4 Cross-through time

As was emphasised earlier, contaminants cross a given control plane at different times. Since the cross-

through time tc,X(y) can be interpreted as the (incomplete) inverse of the vertical particle trajectory

yc (t ), it provides a link between the temporal and spatial perspective on the settling data. Therefore, a

detailed analysis of its characteristic seems rewarding.

By means of a histogram, an empirical probability density function, epdf(tc,X), is constructed, and

fig. 4.13 displays the empirical PDFs for the cross-through times obtained at various wall-normal posi-

tions for the two HR cases. As might have been anticipated, the peak of the PDF shifts towards later times

and the width of the distribution increases as contaminants advance towards the lower sections of the

channel. Furthermore, the difference in characteristic settling time and susceptibility to dispersion is

also reflected when comparing the two cases shown. What is striking, however, is that the general shape

of the distributions shown varies only little, and hence, it can be hypothesised that they are self-similar.

4.4.1 Self-similarity

The shape of the empirical PDFs is approximated best by the three-parameter generalised Gamma dis-

tribution (Stacy 1962), which is defined as

pdf
(
tc,X

)
..= cba/c

Γ
( a

c

) t a−1
c,X exp

(−bt c
c,X

)
(4.9)

where a,b,c > 0 are the free parameters of the regression and Γ(s) = ∫ ∞
0 t s−1e−t dt is the gamma func-

tion. Eq. (4.9) fulfils the normalisation properties of a probability density function for any valid set of

parameters.

The set of free parameters are determined from the empirical PDF for each case and vertical position

using the method of least squares. As can be seen in fig. 4.13, some empirical PDFs are visibly truncated

due to the finite observation time. Therefore, in general,

∫ tobs

0
epdf(tc,X)dtc,X ̸=

∫ tobs

0
pdf(tc,X)dtc,X = cdf(tobs ) , (4.10)
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Figure 4.14: Exemplary results for two generalised Gamma distribution fits ( ) to the empirical probability density functions
( ). The shape fits well for vertical positions close to the plane of initialization ( : y = 0.8Hf ) as well as for positions
closer to the sediment bed ( : y = 0.2Hf ). The case shown is G10-D10-HR with a strong dispersion in cross-through
times where the truncation of the empirical PDF at the observation time (grey line) is clearly visible. The gamma
distribution fit enables a reasonable extrapolation of the values. The rescaled empirical PDF as explained in the
algorithm is depicted by solid markers ( ). Further examples for various cases and at various positions can be found
in fig. B.2 in the appendix.

and for this reason the optimization problem has to be formulated in terms of a rescaled empirical PDF.

Fortunately, since the data suggests that all contaminants cross a given plane eventually5 the rescaling

factor is known and corresponds to Nc,X

/
NcΣ presented in fig. 4.4. Applying this factor ensures that both

the resulting generalised Gamma distribution and the rescaled empirical distribution have an approxi-

mately equal value of their cumulative distribution function at the observation time. The curious reader

is referred to section §B in the appendix for details on the optimization problem and a summary of the

algorithm employed.

Figure 4.14 shows two resulting Gamma distributions fitted at different vertical positions for Ga10-D10-

HR in an exemplary manner. The generalised Gamma distribution describes the empirical PDF close

to the plane of initialization well without any need of renormalisation (blue, y = 0.8Hf ). For crossings

close to the sediment bed, the observational data is visibly truncated (orange, y = 0.2Hf ), but may still

be described well by the distribution if the empirical data is renormalised (solid markers). Further ex-

amples can be found in the appendix in fig. B.2 in conjunction with the residuals for all cases and vertical

positions (fig. B.1).

4.4.2 Estimation of required observation time

As has already been noted, the ratio Nc,X

/
NcΣ, which is approximately equal to cdf(tobs ), provides a mea-

sure for the sufficiency of the observation time. If for a given vertical position cdf(tobs ) = 1, then all con-

taminants have settled through this layer at least once and the transient can be considered as completely

captured within the observation time. For cdf(tobs ) < 1, its value provides a measure for the sufficiency

of the observation time. Conversely, given a fit of the Gamma distribution on truncated data, the cu-

mulative density function provides a method to estimate the observation time required to capture the

transient within a given accuracy. The reliability of such an estimation, however, is limited by the quality

of the empirical data and the uniqueness of the underlying optimization problem.

5 The integral of the generalised gamma distribution converges to unity, so as long as the assumption that the crossing time
follows this distribution holds, all contaminants must ultimately cross a given plane.
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Figure 4.15: Estimation of the required observation time in order to capture 95% of the contaminants’ principal crossings. (a)
normalised by the actual observation time. (b) normalised by the characteristic settling time. Legend: G30-D10-
LR ( ), G10-D6-LR ( ), G15-D10-LR ( ), G15-D6-LR ( ), G30-D10-RP ( ), G10-D6-RP ( ), G30-D15-HR
( ), and G10-D10-HR ( ).

A quantitative estimate on the observation time required to capture the transient to a satisfactory degree,

here arbitrarily chosen as the 95% percentile, is provided in fig. 4.15. When the data is presented in terms

of the actual observation time, it becomes apparent that the required observation time for the truncated

cases needs to be 20%–80% longer in order to capture the transient up until the bedload layer. More

interestingly, when the required observation time is normalised by the characteristic settling time, the

curves for all cases collapse to a reasonable degree, and it is suggested that tp,s is an adequate measure

to gauge the required length of the experiment.

4.4.3 Moments of cross-through time distribution

By evaluating the moments of the generalised Gamma functions, the mean and variance of the crossing

time distribution data may be estimated even for crossing planes which are truncated by insufficient ob-

servation time. This reconstruction requires no assumptions other than that the shape of the data is well

described by the generalised Gamma function, for which persuasive evidence from the completed cases

exists. Naturally, the quality of the reconstruction is confined by the uncertainty in fit parameters which

increases with decreasing amount of empirical data points. The n-th raw moment of the distribution

can be calculated explicitly from its parameters by

〈
t n
c,X

〉
Γ
= b−n/c Γ

( a+n
c

)

Γ
( a

c

) . (4.11)

Figure 4.16 shows the (reconstructed) mean of the crossing time and its standard deviation as a function

of vertical position. The curves are similar in shape to the 95% percentile (fig. 4.15(b)), which is unsur-

prising since all these quantities are a direct result of the increasing spread of the Gamma distribution

with decreasing height.
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Figure 4.16: The (a) mean and (b) standard deviation of the fitted generalised Gamma distributions of cross-through times as
function of vertical position. Legend: G30-D10-LR ( ), G10-D6-LR ( ), G15-D10-LR ( ), G15-D6-LR ( ), G30-
D10-RP ( ), G10-D6-RP ( ), G30-D15-HR ( ), and G10-D10-HR ( ).

4.5 Group velocity

Based on the preceding analysis of particle cross-through times as a function of vertical position, yet

another velocity scale can be defined as

v̄c,X

(
y
)

..= y − yc,0〈
tc,X

〉
Γ

(4.12)

where
〈

tc,X

〉
Γ

is the first raw moment of the generalised Gamma distribution as given by eq. (4.11).6 This

newly defined quantity will be denoted as group velocity of the contaminant particles in the following,

since it describes the (average) velocity with which the ensemble of particles settles. Although the de-

nomination is motivated by wave phenomena, it should not be understood literally in this sense, but

rather in the spirit of a propagation velocity of an envelope, i.e. here in the sense of propagation of the

mean of the generalised Gamma distribution. It might be debatable whether the mean or a different

measure like the median is of more practical relevance for such a definition, nonetheless, the inferences

remain the same. In fact, for all cases and positions, median(tc,X) ≈ 0.8
〈

tc,X

〉
Γ

is an apposite approxima-

tion.

The group velocity is defined as an integral quantity rather than a differential one, i.e. it should be

understood as the average velocity of the ensemble from its initial position yc,0 to its current position y .

In fact, for a fully captured transient, one can show that

v̄c,X = 1

NcΣ

NcΣ∑
i

1

t (i )
c,X

t (i )
c,X∫

0

v (i )
c (t )dt , (4.13)

while, in contrast, the spatially-averaged particle settling velocity as introduced in §4.3 reads

〈
vc

〉
X
= 1

NcΣ

NcΣ∑
i

v (i )
c (tc,X) . (4.14)

6 Note that
〈

tc,X
〉
Γ

is similar to
〈

tc,X
〉
X

if the transient has been fully captured, but differs from it if the observation time was too

short. The value of
〈

tc,X
〉
Γ

is likely a more accurate estimation of the true value, cf. §4.4.
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Figure 4.17: Group velocity of contaminant particles as a function of vertical position (a) scaled by the terminal velocity and (b)
scaled by the group velocity evaluated for a single particle settling in a quiescent environment. Legend: G30-D10-
LR ( ), G10-D6-LR ( ), G15-D10-LR ( ), G15-D6-LR ( ), G30-D10-RP ( ), G10-D6-RP ( ), G30-D15-HR
( ), and G10-D10-HR ( ).

under the same assumption. Thus,v̄c,X corresponds to the ensemble-average of the settling velocity

time-averaged until the first crossing of a given y-normal plane, whereas
〈

vc

〉
X

is merely the ensemble-

average of the settling velocity at the time of crossing. Therefore, the group velocity accounts for the

entire history of the particle trajectory—including temporary upward movements or other loitering

mechanisms—whereas the spatially-averaged settling velocity is an instantaneous measure.

Figure 4.17(a) shows the group velocity scaled by the corresponding terminal velocity as a function of

vertical position. Clearly, the initial acceleration of the ensemble from rest is observable in the upper

part of the channel. It then steadily increases with decreasing wall-normal position, but does not reach

a plateau within the distance available for settling. Since the value of the group velocity depends on

the entire acceleration history since release, comparing it quantitatively to the terminal velocity may be

elusive. More appropriately, it should be compared to v̄c,X evaluated for a single particle settling in a qui-

escent environment, i.e. the respective values obtained for the accompanying experiments described in

§3.7, since this allows for a point-wise, quantitative comparison of the propagation speed under ambi-

ent and turbulent conditions. This comparison is shown in fig. 4.17(b). At positions far from the plane

of initialization, the values differ only slightly from the simpler normalisation with the terminal veloc-

ity. In fact, for long settling distances, v̄c,X/vp,∞ → v̄c,X/
[
v̄c,X

]
amb due to the loss of significance of the

acceleration phase in ambient settling. Closer to the initial position, however, a small delay of all cases

compared to their ambient counterpart may be observed. It is only for Ga30-D10-LR that this delay per-

sists, and hence, for this case the ensemble of contaminant settles slower than one would expect judging

from ambient conditions.

Given that v̄c,X/vp,∞, and thus also v̄c,X/[v̄c,X]amb at a reasonable distance, is universal to some extent,

it is worthwhile to investigate the variation of its scaling factor. In fig. 4.18, the value of v̄c,X/[v̄c,X]amb

at y = 0.3Hf is presented as a function of the relative turbulence intensity, which has been identified as

the predominant scaling parameter.7 As turbulent fluctuations become more intense with respect to the

particles’ terminal velocity, the ensemble tends to settle faster. Interestingly, the transition from delayed

to enhanced settling appears to take place around Iτ ≈ 1. However, due to the limitation in data, the

functional dependency of the group velocity on Iτ is not clear. If only Reb ≈ 3000 (LR, RP) is considered,

a linear dependency seems to be appropriate. Yet, if data from both flow Reynolds numbers is consid-

ered, the enhancement appears to saturate for high relative turbulence intensities. It can be reasoned

7 It may be noteworthy that no trend can be observed when the data is presented in terms of the Stokes number.
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Figure 4.18: Group velocity of contaminant particles as a function of relative turbulence intensity at y = 0.3Hf normalised by its
respective value in a quiescent environment. Legend: G30-D10-LR ( ), G10-D6-LR ( ), G15-D10-LR ( ), G15-D6-LR
( ), G30-D10-RP ( ), G10-D6-RP ( ), G30-D15-HR ( ), and G10-D10-HR ( ).

that for a vanishing turbulence intensity, v̄c,X/[v̄c,X]amb should tend to unity under the assumption of

negligible collective effects, which reinforces the speculation on a nonlinear behaviour. So far it remains

unclear whether the relative turbulence intensity is sufficient to accurately parametrise the group veloc-

ity, or other major parameters need to be accounted for, especially in regard to the dependency on flow

Reynolds number.

4.6 Particle transport after the initial settling phase

The focus is now shifted towards the phase of quasi-steady deposition and resuspension which is as-

sumed to occur after the initial settling phase. Figure 4.19(a) presents the long-term temporal evolution

of the mean vertical particle position for the four cases for which a realisation with longer observation

time is available, cf. table 3.3. A distinct change in behaviour is observed at t ≈ 1–2tp,s in accordance

with the inferences made in §4.4.2, marking the end of the settling phase. However, a downward trend

of
〈

yc

〉
T

is still observed even for t ≫ tp,s which indicates that the particle transport has not yet entered

the quasi-steady phase. In fact, the sustained downward migration trend perceived for all cases under

investigation suggests a phase were contaminant particles are entrained into the sediment bed. For the

cases without sediment bedforms, this trend appears to be rather monotonous, and a more pronounced

entrainment is observed for G10-D6-LR compared to Ga30-D10-LR, which may be due to the difference

in particle size. In the presence of ripples, the mean vertical position oscillates in time while still main-

taining a net downward movement. Albeit the amplitude of these oscillations is more pronounced for

G10-D6-RP than for G30-D10-RP, the effectiveness of entrainment process does not appear to differ

considerably between the two parameter points as opposed to the observations which have just been

made for macroscopically flat beds. The local solid volume fraction defined in eq. (3.40) averaged over

the time interval t ∈ [
50tb , tobs

]
is shown in fig. 4.19(b). The results regarding the cases with Ga ≈ 30 are

unsurprising since their parameter points are matched with those of the sediment particles, and accord-

ingly the evolution of the solid volume fraction approximately overlap with that for the sediment. For

Ga ≈ 10, the profile extends significantly further into the bulk of the channel, which is expected due to

the higher value of the relative turbulence intensity. A comparison with the trend predicted by the Rouse

formula (not depicted) suggests that the spatial evolution is not significantly altered at a distance from

the interface. Yet, due to the vagueness of the virtual origin to be chosen, it is unclear whether the larger

sediment particles affect the profile close to the interface where the curve largely overlaps with that for

the sediment.
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Figure 4.19: (a) Mean vertical position of the contaminants as a function of time, similar to fig. 4.1(a), but displayed for a consider-
ably longer observation time which exceeds the initial transient. The inset shows a zoom into the quasi-steady regime.
(b) Local solid volume fraction as defined in eq. (3.40) evaluated exclusively for contaminant particles (coloured lines)
or sediment particles (black lines). A temporal average is shown over the time interval t ∈ [

50tb , tobs
]

which excludes
the initial settling phase. Regarding the sediment particles, the volume fraction is shown in absence of contaminants,
as the modification was found to be insignificant. Legend: G30-D10-LR ( ), G10-D6-LR ( ), G30-D10-RP ( ),
and G10-D6-RP ( ).

In regard to the propagation of contaminants, it is interesting to compare the streamwise particle flux

in the initial settling phase to that due to bedload transport. For this purpose, the overall particle flux is

defined as

Qp,x (t ) ..= 1

H f

∫ Hf

−Hb

qp,x dy, (4.15)

where qp,x (y, t ) denotes the particle flux density introduced in eq. (3.41). As fig. 4.20(a) suggests, the

particle flux is up to two orders of magnitude higher in the settling phase than in the bedload trans-

port phase, and decreases steadily as the contaminants approach the bed. This is easily explained by

the mean streamwise fluid velocity experienced by the contaminants which decreases with increasing

progress of the transient. During the settling phase, the influence of bedforms on the transport rate

appears to be marginal. The same is true for the monodisperse parameter points (Ga ≈ 30) in the bed-

load phase, yet, a significantly enhanced particle flux is observed for bidisperse contaminant transport

(Ga ≈ 10) in the presence of ripples. Although the particle flux oscillates similar to what has been ob-

served for the vertical particle position, the rate is on average two times as high as that over the macro-

scopically flat bed. When looking at the vertically-resolved contributions to the streamwise particle flux

displayed in fig. 4.20(b), it can be seen that the presence of ripple features significantly shifts the distri-

bution of streamwise particle momentum towards greater heights despite the low local volume fractions

previously observed away from the bed. This suggests that rather few particles significantly contribute

to the streamwise propagation of the contamination, namely those which are located within the sed-

iment transport layer or above, and that the ramp-up effect of ripples might help eject contaminants

with a higher Shields number into the wake region of the flow where significantly higher streamwise

momentum can be attained. In the monodisperse case, the contaminant transport is equivalent to that

of the sediment particles as might have been anticipated, and the observed shift in the peak location is

merely caused by the increased number of particles present.
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Figure 4.20: (a) Streamwise contaminant flux as defined in eq. (4.15) as a function of time. The flux is scaled in terms of outer
units and the global solid volume fraction which are consistent among the cases displayed and allow for an imme-
diate comparison. The inset shows a zoom into the quasi-steady regime. (b) Flux density of the streamwise particle
flux evaluated exclusively for contaminant particles (coloured lines) or sediment particles (black lines). A temporal
average is shown over the time interval t ∈ [

50tb , tobs
]

which excludes the initial settling phase. For the sediment
particles, the flux density is shown in absence of contaminants, as the modification was found to be insignificant.
Legend: G30-D10-LR ( ), G10-D6-LR ( ), G30-D10-RP ( ), and G10-D6-RP ( ).

4.7 Summary and concluding remarks

In this chapter, the phenomenology of the transient settling of contaminant particles in a sediment-

laden turbulent open-channel flow is presented in regard to the statistics of the solid phase. The simu-

lations are conducted either over a macroscopically flat bed (LR,HR) or in the presence of ripple features

(RP) at three distinct values of the friction Reynolds number, namely Reτ = {241,340,838} for LR, RP and

HR, respectively. In total, eight distinct parameter points for the contaminants have been investigated

and compared in regard to their settling velocity and streamwise transport behaviour.

The instantaneous velocity of the contaminants is investigated using an averaging procedure based on

crossings of a control plane which avoids an averaging bias towards slowly settling particles a binned av-

eraging procedure would exhibit. It is found that the instantaneous settling velocity is generally higher

than its counterpart in a isolated quiescent environment. The excess in settling velocity correlates well

with the standard deviation of the vertical fluid velocity for all cases, and the effectiveness of this mech-

anism is itself dependent on the relative turbulence intensity. No significant dependency on the flow

Reynolds number or bedforms could be detected. Regarding the streamwise component of particle ve-

locity, a lead was found in regard to the corresponding mean fluid velocity. In contrast to the settling

velocity, the magnitude of this excess is not solely a function of relative turbulence intensity, but also

at least Reynolds number dependent. A combined quadrant analysis of fluctuations in fluid and parti-

cle velocities suggests that the enhancement in particle velocity is driven by sweep events. The relative

turbulence intensity divides the (u′, v ′)-space into regions of upward and downward crossings, and this

distinction alone partly explains the prevalence of positive fluctuations in u′
p provided that fluid and

particle velocities are instantaneously and locally correlated, which is yet to be demonstrated. Trustwor-

thiness of the results of the numerical simulations is assured by a comparison with the akin experiments

of Cuthbertson and Ervine (2007) which yielded a good agreement. Furthermore, as these experiments

were conducted at a much higher value of the Reynolds number, confidence is gained that the excess in

instantaneous settling velocity is indeed independent of the Reynolds number.

By assessing the number of crossings which occur during the transient through a given control plane, it

is shown to be possible to estimate the sufficiency of the observation time of the numerical experiments.
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4.7 Summary and concluding remarks

An evaluation of the correlation between cross-through time and instantaneous settling velocity yields

that, although the transient is incompletely captured for some parameter points, the analysis on the

instantaneous particle velocity stands as is. Moreover, it is found that the distribution of cross-through

times follows a generalised Gamma distribution and this knowledge alone is sufficient to estimate the

observation time required to capture a given percentage of the full transient. It also enables the recon-

struction of quantities which would otherwise be biased by a truncated transient, first and foremost the

mean of the cross-through time distribution.

Using the combination of the local distance to the plane of initialization and the reconstructed mean

cross-through time, the group velocity of the contaminants is defined which allows a comparison of the

propagation speed of the ensemble of particles to its ambient reference. This comparison yields that for

Iτ ⪆ 1 the group velocity is enhanced, albeit to a much smaller degree than the instantaneous velocity.

The same is true for the temporal peak of the ensemble-averaged contaminant settling velocity at a given

time, which can also be understood as a measure of the global vertical contaminant flux. The group ve-

locity enables a spatially-resolved view on the net settling velocity, whereas the ensemble-averaged ve-

locity disregards any inhomogeneities in the instantaneous vertical distribution of contaminants. It was

ascertained that the presence of bedforms does not perceptibly alter the settling velocity if the induced

modification in the wall shear stress is accounted for.

The transport of contaminants beyond the initial settling phase has been investigated for Ga ≈ {10,30}

in the presence and absence of ripples, as for these cases substantially longer time series are avail-

able. Within approximately 500tb , no equilibrium behaviour was achieved, as the contaminants ap-

pear to get progressively entrained into the sediment bed. In the absence of ripples, the entrainment

is monotonous and its rate depends on the contaminant parameter point. In the presence of ripples,

the mean vertical particle position exhibits cycles of downward and upward movement, and the average

rate of entrainment does not vary substantially between the two cases investigated. The streamwise flux

of contaminant particles is similar to the sediment flux for all cases with the notable exception of the

bidisperse transport over ripples (G10-D6-RP), where the contaminant flux oscillates in time similar to

the mean vertical position and attains approximately twice the rate of sediment transport.

To conclude, this chapter has shown that many phenomena associated to contaminant settling appear

to be driven by fluid-particle interactions, and thus, the subsequent chapters will focus on different

aspects of this interaction. At first, it will be necessary to establish a direct correlation between fluid

and particle velocity fluctuations, since so far such a relationship is only hinted at by the overlap of

fluctuation statistics of both phases. Another aspect to be further investigated is the distinction of u′
c

and v ′
c in terms of Reynolds number dependence. Moreover, the interaction between contaminant and

sediment particles during the entrainment phase deserves further attention, especially in regard to the

cyclic behaviour exhibited in the presence of ripples.
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5 Preferential sampling of the fluid
flow

In the preceding chapter it has been assessed that the contaminant particles’ vertical velocity varies

substantially depending on the relative turbulence intensity. The reported scaling behaviours, and the

fact that fluctuations of the particle velocity are presumably linked to fluid velocity fluctuations and in

particular sweep events, suggest that an enhancement of the settling velocity is caused by interactions

with turbulent structures. The purpose of the current chapter is therefore to examine these interactions,

and more specifically, to assess the role of the preferential sweeping mechanism during the settling

phase, cf. §2.3.3. Moreover, since the lead in streamwise velocity by the contaminants cannot solely

be explained by a statistical bias, the effect of preferential sampling of intense high-momentum regions

is addressed. As the impact of bedforms on the settling velocity has been deemed insignificant, the

following analysis will predominantly focus on the settling over macroscopically flat beds, i.e. on the LR

and HR background flows.

5.1 Secondary motion and particle velocity

To begin with, the analysis from §4.3 concerning the localised particle velocity based on crossings of

wall-parallel planes is revisited. This time, however, the plane is further tessellated in the spanwise di-

rection such that the number of crossings and the spatial-averaged velocity are now also functions of

the spanwise position, i.e. Nc,X = Nc,X(y, z) and
〈

uc

〉
X
= 〈

uc

〉
X

(y, z) for the remainder of this section. Fur-

thermore, the mean secondary motion of the channel flow is introduced and defined as the streamwise-

temporal average of the cross-sectional fluid velocity, viz.
〈

vf

〉
xt

(y, z) and
〈

wf

〉
xt

(y, z). Although both〈
vf

〉
xt

and
〈

wf

〉
xt

vanish for sufficiently long domains or sufficiently long observation times, it is a well-

established phenomena that in finite domains and observation times secondary flow patterns can be

observed (e.g. Scherer (2022)). Moreover, regions for which
〈

vf

〉
xt

< 0 are associated to so-called high-

momentum pathways exhibiting
〈

u′
f

〉
xt

(y, z) > 0, which are complemented by low-momentum pathways

for which the opposite is true. Momentum pathways can be understood as the statistical footprint of

the large-scale sweeps and ejections described in §2.2.3, whereas the secondary flow is associated to

the roller structures connecting them. In the following, the time interval for averaging is taken to be the

observation time of the settling simulations, which is typically of O(10tb), and thus sufficiently short to

observe the secondary motion induced by large streamwise-aligned coherent structures. For the sake of

brevity, the analysis focuses on the case G10-D10-HR, yet, all observations are qualitatively similar for

the other cases.
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Figure 5.1: Histograms of the number of crossings per spanwise unit, presented in the form of one probability density function per
crossing plane. The secondary fluid motion in the yz-plane, averaged over the entire observation time and streamwise
direction, is shown by arrows whose thickness and opacity is proportional to the local magnitude of the secondary

motion, viz.
√〈
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〉2
xt

+〈
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〉2
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. The grey area at the bottom of the domain shows the spanwise-resolved average height

of the sediment bed,
〈

hb
〉
xt . The case G10-D10-HR is shown. (a) Only downward crossings. (b) Only upward crossings.
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Figure 5.2: Contaminant settling velocity averaged over all crossings of the corresponding y-normal plane within spanwise bins.
Secondary fluid motion is indicated by arrows as described in fig. 5.1. The case G10-D10-HR is shown. (a) Averaged
over all local downward crossings. (b) Averaged over all local up- and downward crossings.
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Figure 5.3: Streamwise component of (a) fluid velocity and (b) contaminant velocity at crossing averaged within spanwise bins
and presented as differences from the overall mean streamwise fluid velocity. Secondary fluid motion is indicated by
arrows as described in fig. 5.1. The case G10-D10-HR is shown.
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5.1 Secondary motion and particle velocity

The spanwise-resolved number of crossings is presented in form of the probability density of the num-

ber of crossings for each crossing plane, viz.

pdfz(Nc,X) ..=
Nc,X(y, z)Hf

∫ Lz
0 Nc,X(y, z)dz

, (5.1)

which is again a function of vertical and streamwise position and effectively normalises Nc,X(y, z) by the

total number of crossings detected for each vertical position, cf. fig. 4.4. A juxtaposition of this prob-

ability density and the secondary motion is given in fig. 5.1 for both downward and upward crossings,

separately. Under both conditions, the probability of crossings is inhomogeneous in lateral direction.

Furthermore, the probable regions of downward or upward crossings are complementary, i.e. a region

of high probability of downward crossings is at the same time a region of low probability of upward

crossings, and vice versa. The only exception to this observation is found close to the sediment bed,

where both regions predominantly overlap.

When comparing the crossing probabilities to the secondary motion, a clear correlation can be detected:

whenever the average cross-sectional fluid velocity is pointing upwards, fewer downward crossings oc-

cur and the probability of upward crossings is increased. The opposite is true for regions of downward

fluid motion. While it is certainly conceivable that the secondary motion is actually induced by the set-

tling contaminants themselves, this mechanism can quickly be discarded by comparing the secondary

flow pattern to a numerical simulation of the same setup in absence of contaminants, which differs only

little quantitatively (figure omitted). As a consequence, it is likely that the lateral organization of con-

taminants has its root in the same phenomenon which induces the secondary flow, and thus, it can be

hypothesised that particles preferentially sweep turbulent structures on a large scale.

The correlation between the secondary flow and contaminant distribution also affects the local average

particle velocity. Figure 5.2 displays the spanwise-resolved excess in settling velocity of the contami-

nants averaged over all downward crossings, as well as averaged over all up- and downward crossings.

For the downward-conditioned average, a strong enhancement in settling velocity is typically observed

in fluid downdrafts, whereas in updrafts the settling velocity is significantly slower in comparison. It

should be noted, however, that the settling velocity is still enhanced on average even in regions of mean

upward fluid motion, which indicates that the secondary flow is not sufficient to explain the enhance-

ment. This conclusion is supported by the results obtained for the average over all up- and downward

crossings. While here the correlation between the settling velocity and secondary motion is especially

obvious, as due to the inclusion of upward moving particles the average vertical velocity in updrafts is

significantly shifted towards high positive particle velocities, the magnitude of enhancement is inexpli-

cable by the large-scale motion alone since the variation in excess settling velocity is at least a factor

two higher than that of the mean vertical fluid velocity in terms of range as well as standard deviation

(not shown in the figure). Potential causes for this deviation could be inertial or collective effects for the

contaminant particles, but also the disregard of fluid motion on smaller—and thus shorter—scales.

In terms of the streamwise component, the discrepancy in velocity magnitude between the mean fluid

and contaminant velocity is much less significant for the most part, as shown in fig. 5.3. Here, the ve-

locities are in decent agreement with the only notable exception being the lower quarter of the clear

channel, where the solid phase generally possesses higher streamwise velocities than the fluid. The

conformity of this region with the occurrence of increased mean shear indicates that this discrepancy

may be explained by a delayed response of the contaminants to the rapidly changing mean streamwise

fluid momentum, cf. fig.3.6(b).
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Although the detailed mechanisms still need to be evaluated, both fig. 5.2 and fig. 5.3 suggest that the

enhancement of the contaminants’ vertical and streamwise components of momentum is indeed pre-

dominantly a result of preferential sampling of specific flow regions, as has been first hypothesised in

§4.3.1.

5.2 Particle-conditioned flow field

The juxtaposition of the secondary flow and the particle velocity gave a first hint on how the contami-

nants are redistributed within the flow and which mechanisms could potentially explain the enhance-

ment in contaminant velocity. However, this perspective does not take into account the instantaneous

and largely local nature of particle-fluid interactions, but rather correlates two quantities which have

been independently collapsed in space and time. Thus direct evidence for a connection between the

local fluid surrounding and the particle velocity is yet to be provided.

5.2.1 Particle-conditioned averaging operator

A new conditional averaging procedure is now defined to evaluate the three-dimensional flow field in

the vicinity of the contaminants averaged at the time of crossing a given wall-parallel plane. In order to

achieve this, the field is first translated such that the origin of the new coordinate system is centred at the

centroid of the particle to be sampled, and subsequently the spatial-averaging procedure introduced in

§4.2 is applied. Hence, the particle-conditioned averaging operator reads

〈
uf,α

〉
PX

(x̃, y) ..=
〈

uf,α(x−xc , t )χf (x−xc , t )
〉
X〈

χf (x−xc , t )
〉
X

, (5.2)

where χf
..= 1−χp is the indicator function of the fluid phase which has been introduced in order to dis-

regard the solid phase from the average. This operator maps a three-dimensional and time-dependent

input onto an output which is three-dimensional with respect to the transformed coordinates, x̃ ..= x−xc ,

but also depends on the y-coordinate of the crossing plane under investigation.1 By definition, the ori-

gin of the transformed coordinate system coincides with the centroid of the particle, and thus, in simple

terms, this operation averages the fluid field relative to the particle’s location whenever a sample particle

crosses a given xz-plane.

Whereas the definition of the particle-conditioned averaging operation is straightforward, its evaluation

for fluid data poses difficulties. For attributes intrinsic to the particles, that is, those which are stored

alongside the trajectories, the spatial-averaging operator
〈•〉

X
can readily be evaluated by interpolating

the finely sampled data onto the time of crossing in the same manner as in chapter §4. In principle,

the same procedure could be used for the fluid as well, however, in practice the sampling frequency of

fluid samples in time is orders of magnitude scarcer than that of attributes associated to the particle

trajectories because of the vastly larger demand on storage. This circumstance in conjunction with the

problematic nature of temporal interpolation of a highly nonlinear chaotic system demands the search

for an alternative way to evaluate the spatial-averaging operator which is more practical for fluid data.

1 As was stated before in §4.2, the y-coordinate of the crossing plane may be regarded as a time-like coordinate for the transient,
and hence, the time-dependency of the input is not discarded, but rather substituted such that the averaging is conducted at
the particle-dependent time where the fluid conditions for all samples are statistically homogeneous, i.e. at the time where
the particles are at the same wall-normal position.
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Figure 5.4: Assessment of the differences between the weighted-bin approximation of the spatial-averaging operator given in
eq. (5.3) and the corresponding evaluation using (4.5) and interpolation of finely sampled trajectory data. As an ex-
ample the vertical particle velocity is shown, cf. fig. 4.7. (a) Using the original definition (4.5) and considering only the
first crossing. (b) Same, but evaluated for all downward crossings. (c) Using the approximation (5.3) with trajectory
data at full temporal resolution and a bin width and spacing of ε = 0.01. (d) Same, but for bin width and spacing of
ε = 0.05 and temporal samples only considered where fluid data is available, i.e. the exact setup as used for the fluid
data in this work.

As demonstrated in §A in the appendix, the spatial-averaging operator defined in eq. (4.5) can be ap-

proximated by a weighted-binning method, viz.

〈
ϕ

〉
X

(y) ≈
∫ tobs

0

∑NcΣ
i ∆X

(
y (i )

c (t ), v (i )
c (t ), y

) ∣∣v (i )
c (t )

∣∣ϕ(i )(t )dt
∫ tobs

0

∑NcΣ
i ∆X

(
y (i )

c (t ), v (i )
c (t ), y

) ∣∣v (i )
c (t )

∣∣ dt
. (5.3)

Here, ∆X is a function which determines whether or not a particle is to be sampled. Whereas the defini-

tion of a binning function which approximates exclusively the first crossing of a particle is an intricate

task, the definition of a function which is specific to downward crossings is straightforward and reads

∆X↓(yp , vp , y) ..=




1 if yp ∈ [
y − δy

2 , y + δy
2

)
and vp < 0

0 otherwise
, (5.4)

and a variant specific to upward crossings can be constructed analogously. The free parameter δy de-

notes the width of the bin and its value is set to δy ..= 0.05Hf in the following. The spacing of the bins is

chosen as small as possible under the condition that the bins do not overlap, and hence, it is equivalent

to the bin width.

As a consequence, the approximation employed in the current chapter differs from the spatial-averaging

procedure employed in chapter §4 in two ways. First, uncertainty in the wall-normal position of sam-

ples is introduced as a result of finite-width bins. Second, the nature of samples is slightly different as all

downward moving particles are now included as samples by default as opposed to merely the first cross-

ing of a particle. Fortunately, it is straightforward to assess the impact of these differences by applying

the approximation to any intrinsic particle attribute where a reference value is known from trajectory
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5 Preferential sampling of the fluid flow

interpolation. Such an assessment can be found in terms of the contaminant settling velocity in fig. 5.4.

As can be seen, only minor differences in the results arise from the distinct ways of evaluating the oper-

ator, and therefore, results obtained in this chapter can without reservation be compared to the results

obtained in the previous chapter.

Finally, the approximation of the particle-conditioned averaged fluid velocity as employed in the follow-

ing is given by

〈
uf,α

〉
PX↓(x̃, y) ≈

∫ tobs
0

∑NcΣ
i ∆X↓

(
y (i )

c (t ), v (i )
c (t ), y

) ∣∣v (i )
c (t )

∣∣ uf,α(x−x(i )
c (t ), t )χf (x−x(i )

c (t ), t ) dt
∫ tobs

0

∑NcΣ
i ∆X↓

(
y (i )

c (t ), v (i )
c (t ), y

) ∣∣v (i )
c (t )

∣∣ χf (x−x(i )
c (t ), t ) dt

(5.5)

for the variant conditioned to downward crossing particles. For upward crossings, the procedure differs

merely with regards to the binning function employed.

5.2.2 Conditioned fluid velocity in the crossing plane

The averaging procedure previously described is now employed to examine the conditioned fluid ve-

locity. Figure 5.5 displays this quantity within the wall-parallel plane located at y = 0.3Hf . At this

position, the contaminants’ vertical and streamwise velocities are generally enhanced, cf. fig. 4.7 and

fig. 4.8. This enhancement is clearly reflected in the nearby fluid environment, as the conditioned verti-

cal(streamwise) fluid velocity fluctuations are biased towards negative(positive) values, thus establish-

ing a direct link between the velocities of both phases.2 This observation holds for both parameter points

shown.

At this point, it has not yet been finally resolved whether the nearby fluid velocity is induced by the

contaminants themselves or has its origin in a preferential sampling bias, though the analysis regarding

secondary motion hinted towards the latter. The preferential sampling hypothesis is further reinforced

for the streamwise velocity component by comparing the two cases shown, which mainly differ in their

relative turbulence intensity and particle mobility. If the excess in streamwise velocity was to be induced

solely by the finite response time of the contaminants at this position, one would expect G30-D15-HR

to exhibit higher values of
〈

u′
f

〉
PX↓ than G10-D10-HR, as these contaminants carry more streamwise

momentum per particle, settle faster in absolute terms and adapt more slowly to changes in the fluid

environment. This is not the case. In contrast, the short response time and higher relative turbulence

intensity of G10-D10-HR likely enables these contaminants to perform preferential sampling more ef-

fectively, which is in agreement with the actual trend observed for the two cases. However, this inference

is limited to the bulk of the fluid, for which fig. 5.5 is an adequate representative. It was noted already in

§4.3.1 that the near-wall behaviour of the streamwise contaminant velocity differs from that in the bulk,

and an analysis thereof in terms of the local fluid environment is subject of upcoming §5.2.3.

Regarding the vertical fluid motion, an assessment of the cause of the biased downward fluid velocity

is more intricate. This is mainly due to the intrinsic relative velocity between the two phases in the di-

rection of gravity whose value is difficult to quantify as it may deviate from its ambient value in either

direction due to turbulence interaction or collective effects. The direct effect of this velocity difference

is observable in fig. 5.5 at distances of O(10−1dp ) from the particle’s surface where the conditioned fluid

2 To be precise, the term “fluctuation” is used in the current context to denote deviations from the classical spatio-temporal
mean of the fluid flow, i.e. uf − 〈

uf
〉
xzt

, and not with respect to deviations from the particle-conditioned average which was

just introduced. This implies that spatio-temporal mean of these fluctuations is zero by definition, whereas the particle-
conditioned mean may be nonzero if a sampling bias exists.
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Figure 5.5: Particle-conditioned average of the fluid velocity in the vicinity of the contaminant particles for the cases (a,b) G30-
D15-HR and (c,d) G10-D10-HR. The xz-plane is located at y = 0.3Hf . The top row (a,c) shows the streamwise velocity

fluctuations 〈u′
f 〉PX↓, whereas the bottom row (b,d) depicts the vertical component 〈vf 〉PX↓.

velocity has its highest downward values. The difficulty lies, however, in determining the radial distance

at which this effect becomes negligible, as this distance could in principle be of the order of multiple par-

ticle diameters if the contaminants frequently form clusters. As will be shown in upcoming chapter §6,

clustering indeed occurs more frequently for G10-D10-HR than for G30-D15-HR, and hence, this phe-

nomenon may serve as an explanation for the slower radial decay of the vertical velocity observed at this

parameter point. Nonetheless, it can equally be argued that the difference in radial decay is caused by

the preferential sampling mechanism: due to the higher mobility for G10-D10-HR, these contaminants

likely sample downdrafts more effectively which potentially leads to a similar pattern in the conditional

average if the downdraft regions are of the size of multiple particle diameters.3 There is, however, an ar-

gument to be made in favour of the preferential sampling mechanism. For both cases, the conditioned

vertical fluid velocities are O(uτ). While for G30-D15-HR this information does not allow discrimination

between particle-induced and turbulence-induced motion as vp,∞ ≈ uτ, these velocity scales are clearly

separated for G10-D10-HR where vp,∞ ≈ 0.35uτ. Hence, a cluster of particles would be required to settle

3 The assumption that preferentially sampled downdrafts have a length scale of at minimum the particle diameter appears
obvious, as any fluctuations significantly smaller than the particle are experienced as noise as they are uncorrelated on the
particle scale, and thus, are unlikely to produce the directional effect required for preferential sampling.
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Figure 5.6: Particle-conditioned average of the fluid velocity as in fig. 5.5, but now showing the entire streamwise/spanwise extent
of the computational domain. The xz-plane is again located at y = 0.3Hf . The left column shows (a) the streamwise
and (b) the vertical component of the fluctuating fluid velocity for G30-D15-HR. The right column shows the same
quantities for G10-D10-HR, i.e. (c) 〈u′

f 〉PX↓ and (d) 〈vf 〉PX↓.

at around three times the speed of the isolated terminal velocity of an individual particle in order to be

the sole explanation of the observed velocity magnitude, a value which is well above those typically ob-

served for wake-induced clustering, see e.g. Uhlmann and Doychev (2014). Furthermore, the values of

the Galileo numbers at the parameter points currently discussed are—from the current understanding

of this phenomenon—insufficient to generate wake-induced particle clusters. A potential formation of

clusters is consequently more likely a byproduct from preferential sampling, and thus might correlate

with an enhancement in particle velocity without being the principal cause.

The insights which can be gained from the particle-conditioned fluid velocity are not restricted to the

near vicinity of the particle. In fact, as was already observed in §5.1, the contaminants interact with

large-scale flow structures with characteristic sizes of the order of the clear fluid height, and this be-

haviour is also reflected in the conditionally-averaged velocity field. Figure 5.6 presents the same data

as previously shown, but at a vastly larger scale. Here, the entire cross-section of the computational

domain is shown rather than just the immediate proximity of the particle. For both the streamwise

and the vertical component of the fluid velocity, alternating streamwise-aligned stripes of positive and

negative fluctuations are conspicuous. These stripes have an infinite extent in streamwise direction—

they connect to themselves across the periodic domain—and a spanwise spacing of the order of the
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Figure 5.7: Exemplary visualization of an instantaneous state of the background flow at y = 0.3Hf (HR, Reτ = 838). In this partic-
ular numerical experiment depicted, no contaminant particles are present in the flow. (a) Streamwise fluctuations of
the fluid velocity u′

f . (b) the corresponding wall-normal fluctuations v ′
f .

fluid height. It can be readily acknowledged that the conditionally-averaged field is complementary to

the observations from §5.1, as there the contaminants were seen to accumulate in regions of positive〈
u′

f

〉
xt

and negative
〈

vf

〉
xt

, which in the particle-conditioned perspective must be reflected in the form

of streamwise-aligned stripes.4 The advantage of the particle-conditioned average is, however, that it is

also resolved in streamwise direction and that the temporal average is weighted by the number of cross-

ings within a given time interval such that it more adequately reflects the flow field at the time at which

contaminants are actually affected by the flow.

Regarding the streamwise fluid velocity, the inferences differ only little from the ones made in §5.1. The

primary reason for this is that the large-scale streaks which leave their footprint in the streamwise mean

are indeed rather homogeneous in the streamwise direction, and their typical lifetime is significantly

longer than the observation time of the settling experiments. Therefore, the increased spatial resolution

and temporal accuracy of the particle-conditioned averaging procedure is not required for their detec-

tion. An example for the instantaneous state of a large-scale streak in the current setup is provided in

fig. 5.7(a). The structure exhibits only little variation in the streamwise direction even instantaneously,

and its streamwise extents fills the entire length of the computational domain. Indeed, an argument can

be made the the numerical domain is too short to capture the dynamics of these large-scale structures

accurately—a circumstance which originates from the artificial suppression of the ripple-instability in

the sediment bed. A discussion on the implications of the domain size with regards to contaminant

settling is subject of §5.5.

The instantaneous vertical fluid velocity is significantly more intermittent in streamwise direction than

uf , see fig. 5.7(b), albeit large-scale coherence may also be detected to some degree. In fact, it is this

4 Please keep in mind that if the contaminants were to sample the crossing plane randomly with respect to the (x, z)-position
and time, the particle-conditioned fluid fluctuations would be nil, as this would directly correspond to the classical spatio-
temporal fluid average. The obvious exception to this statement is the local flow modification caused by the particle itself.
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streamwise-coherent part which manifests itself in the secondary flow and as stripes in the particle-

conditioned average. With regards to
〈

vf

〉
PX↓ it may be observed that the bias in fluid velocity is notice-

ably stronger in the near vicinity of the particle compared to the large-scale coherent motion at greater

distances, which is much less the case for
〈

uf

〉
PX↓. This nearby zone of influence is exactly the one dis-

played in detail in fig. 5.5(b,d), and for the reasons stated in the discussion thereof, is presumably caused

by a preferential sampling of downward fluid motion. Recalling the findings up to this point that

1. the magnitude of
〈

vf

〉
xt

is significantly smaller than
〈

vc

〉
PX↓ at the same (y, z)-position

2. the nearby fluid velocity is unlikely to be induced by the contaminants themselves

3. the vertical fluid velocity is highly intermittent in streamwise direction

it can be hypothesised that the enhancement of the settling velocity is primarily caused by the prefer-

ential sampling of turbulent fluctuations of the vertical velocity in negative direction which occur at a

scale larger than the particle size, but considerably smaller than the coherent turbulent motion at the

largest scales. This hypothesis will be subject of further investigations.

5.2.3 Fluid velocity sampled by the contaminants

While the particle-conditioned averaging operator defined in eq. (5.2) proved to be useful for the as-

sessment of the average flow environment experienced by the contaminants, a similar quantity of lower

dimensionality would be more expedient to investigate trends between the various cases and at varying

wall-normal positions. For this reason, a virtual sphere of radius r is defined in the particle-attached co-

ordinate system whose centre is located at x̃ = (
0,0,0

)T . A reduction in dimensionality is then achieved

by averaging the values of the particle-conditioned field on the surface of the virtual sphere Sv with

radius r , viz.

〈
uf,α

〉
SX↓(r, y) ..= 1

4πr 2

∮

Sv (r )

〈
uf,α

〉
PX↓(x̃, y) dSv . (5.6)

This sphere-average
〈•〉

SX↓ depends on the vertical coordinate of the crossing plane under investigation

and its three-dimensionality in the particle-attached coordinate system is now reduced into a single

dimension—the radius of the virtual sphere. The idea behind this approach is to define a characteristic

velocity of the background turbulence which is experienced by the contaminants at the time of crossing.

In order to achieve this, the radius has to be chosen sufficiently large so that the self-induced velocity

fluctuations by the particle are negligible, but as small as possible such that the value of the average

accurately reflects the local conditions. Similar approaches have been used in literature by e.g. Kidane-

mariam et al. (2013) (on a segmented sphere) or Uhlmann and Doychev (2014) (on a full sphere) for the

same purpose, and in both studies, the radius has been set to r = 1.5dp . This value will be used in the fol-

lowing as well. Please note that the choice of this parameter does indeed influence the absolute values

of the obtained velocities, as one might readily assume by assessing fig. 5.5. However, the relative trend

among cases and vertical positions was found to be quite robust with respect to r within a reasonable

range, such that the particular choice is not decisive for the inferences made in the following.

In the following, an attempt is made to explain the finding of enhanced contaminant velocities from

chapter §4 in terms of the fluid velocity in the vicinity of the contaminants. To begin with, the focus is

placed on the vertical velocity component. Figure 5.8(a) shows the sphere-averaged vertical fluid veloc-

ity for all cases at varying vertical positions in the same scaling as the corresponding fig. 4.7(a) for the
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Figure 5.8: Sphere-averaged vertical fluid velocity experienced by the contaminants at the time of crossing of a given xz-plane. (a)
Normalised as in fig. 4.7(a) using the local unconditioned value of the standard deviation. (b) As normalisation of the
excess in contaminant settling velocity. Legend: G30-D15-HR ( ), G10-D10-HR ( ), G30-D10-LR ( ), G10-D6-LR
( ), G15-D10-LR ( ) and G15-D6-LR ( ).

particle velocity. A comparison of the two figures suggests that the excess in settling velocity is corre-

lated to the surrounding fluid velocity, which is to be expected if the enhancement is indeed a result of

the preferential sweeping mechanism. Interestingly, for some cases the velocity sampled by the con-

taminants appears to decrease with decreasing height when compared to the standard deviation of the

local vertical fluid velocity after a peak at the end of the initial transient phase. If the particles were to

sample fluctuations of the same length scale consistently, this observation may be related to the varia-

tion in turbulent length scales, i.e. small turbulent scales increase their contribution to
〈

v ′
f

〉
xzt

closer to

the lower boundary, but this contribution may be too small to be sampled by the contaminants. In fact,

one has to keep in mind that averaging over the surface of a sphere acts as an implicit filter for any vari-

ation whose length scales are smaller than the diameter of the virtual sampling sphere. A discussion on

the wall-normal dependence of the scales of turbulent fluctuations in the flow configuration of current

interest is provided in §5.5.

When the excess settling velocity is scaled by
〈

vf

〉
SX↓, an approximate plateau is reached—or at least

approached—by all cases, see fig. 5.8(b). In fact, the convergence towards the plateau exhibits similar-

ities to the initial acceleration in the ambient settling experiments, in particular, the distance travelled

until the particles reach an equilibrium of all acting forces as displayed in fig. 3.8(c). Perhaps, the re-

laxation observed in the turbulent environment can be interpreted in a similar way, in the sense that

some distance needs to be travelled until the interaction between the background turbulence and the

contaminants is approximately quasi-steady.5 If so, fig. 5.8(b) provides a potential explanation on why

G30-D10-LR exhibits a behaviour deviant from the other cases on some statistics—the available settling

distance may be too short for those contaminants to reach their equilibrium settling state. This realiza-

tion should be kept in mind whenever an anomaly concerning G30-D10-LR is to be interpreted.

Turning to the streamwise velocity, the wall-normal trend of the sphere-averaged fluid velocity por-

trayed in fig. 5.9(a) appears to explain the corresponding evolution of the particle velocity (fig. 4.8(a))

reasonably well in the bulk of the channel. Interestingly enough, the correlation gets lost below y ⪅

0.3Hf where the surplus in streamwise particle velocity with respect to the local fluid mean has its pro-

nounced peak. It was hypothesised in §4.3.1 that this peak is not due to preferential sampling, but rather

5 Certainly, no steady state in the proper sense can be reached during the transient as the background flow is inhomogeneous
in the direction of settling.
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Figure 5.9: Sphere-averaged streamwise fluid velocity experienced by the contaminants at the time of crossing of a given wall-
normal plane. (a) Normalised as in fig. 4.8(a) using the friction velocity. (b) Difference between the velocities of the
solid and fluid phase normalised by the product of mean shear in the channel, local settling velocity and particle
response time. Legend: G30-D10-LR ( ), G10-D6-LR ( ), G15-D10-LR ( ), G15-D6-LR ( ), G30-D10-RP ( ),
G10-D6-RP ( ), G30-D15-HR ( ), and G10-D10-HR ( ).

a result of the inability of the contaminants to adapt to the mean fluid velocity which is rapidly decreas-

ing towards the sediment bed. In order to reexamine this hypothesis, the surplus of the particle velocity

with respect to the sphere-average fluid velocity is shown in fig. 5.9(b) scaled by the three factors this

phenomenon ought to be proportional to—the mean shear (〈Sxy 〉xzt
), the velocity with which the con-

taminants travel along this gradient (〈vc〉X↓) and the particle response time (tp ). The surplus may be

interpreted as a particle velocity which adjusted to disregard preferential sampling effects, and it indeed

collapses reasonably well for a given background flow at around y ⪅ 0.3Hf . As a consequence, one can

conclude that the mean fluid shear needs to be taken into account in the lower quarter of the channel

in order to explain the surplus in
〈

uc

〉
X↓ with respect to

〈
uf

〉
xzt

.

5.2.4 Quadrant analysis of conditioned fluid velocity

Now that then enhancement in mean streamwise and vertical particle velocities was successfully ex-

plained by means of the particle-conditioned average fluid velocities, the more detailed quadrant anal-

ysis of §4.3.2 is revisited. As a reminder, the premise of the heuristic proposed in that analysis was that

the fluctuations in particle velocities directly reflect the turbulent fluctuations in close proximity to the

contaminants. This conjecture is the subject of this paragraph.

In order to construct a histogram of the fluid fluctuations in the vicinity of the contaminants at a given

vertical position, eq. (5.6) has to be generalised in the sense that the subset of instantaneous velocities

which gives rise to the sphere average needs to be defined. In a first step, the time-dependent set of fluid

velocities sampled by the i -th contaminant particle along its trajectory is defined as

[
uf,α

](i )
S

(r, t ) ..= {
uf,α(x̃(i ), t ) : x̃(i )∈ Sv (r ) ∧ χf (x̃(i ), t ) = 1

}
. (5.7)

Consequentially, the complete set of fluid velocities sampled for
〈

uf,α

〉
SX↓ is given by the union of

[
uf,α

](i )
S

evaluated at all instances in time where downward crossings at y occur for all contaminant

particles, viz.

[
uf,α

]
SX↓ (r, y) ..=

Nc,X↓⋃
j=1

[
uf,α

](i )
S

(
r, t ( j )

c,X↓(y)
)

(5.8)
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where i is the index of the particle to which the j -th downward crossing of the plane is attributed. The

arithmetic mean of
[
uf,α

]
SX↓ is equivalent to

〈
uf,α

〉
SX↓. A variant which considers only upward crossings

can be constructed analogously.

The primary quantity of interest for the current analysis is the joint probability density of the condi-

tioned streamwise and vertical fluid velocities. However, because of the scarce temporal resolution of

the samples, cf. §5.2.1, it is not feasible to construct the set defined in eq. (5.8) explicitly. Instead, the

probability distribution is approximated using a weighted histogram in a manner similar to the approx-

imation of the particle-conditioned average, cf. eq. (5.5). This weighted histogram is given by

hist
(
[uf ]

SX↓ , [vf ]
SX↓ , y

)
≈

∫ tobs
0

∑NcΣ
i ∆X↓

(
y (i )

c (t ), v (i )
c (t ), y

) ∣∣v (i )
c (t )

∣∣ hist
(
[uf ](i )

S
(t ), [vf ](i )

S
(t )

)
dt

∫ tobs
0

∑NcΣ
i ∆X↓

(
y (i )

c (t ), v (i )
c (t ), y

) ∣∣v (i )
c (t )

∣∣ dt
(5.9)

and normalisation yields the corresponding joint probability density function. Please note that the de-

pendency on the radius of the sampling sphere has been disregarded in this equation as it is not varied

in this study.

The resulting joint probability functions of the (uf , vf )-fluctuations experienced by downward moving

particles displayed in fig. 5.10 are strikingly similar to those of the corresponding particle velocity fluc-

tuations (fig. 4.9). This reinforces the conjecture that these quantities are closely related. Moreover, it

can be observed that the (uf , vf )-space also exhibits an approximate upper bounded dictated by the rel-

ative turbulence intensity as virtually no fluctuations faster than the terminal velocity of the particle are

sampled by the contaminants—at least for the vertical position under investigation. This observation is

remarkable as the analogous (rigorous) property with respect to the particle velocity fluctuations plays

a decisive role for the reasoning of §4.3.2, and many of the inferences made relied on the supposition

that the fluid velocity fluctuations behave equally, which indeed seems to be adequate assumption.

Interestingly enough, the joint PDFs of fluid fluctuations conditioned to upward crossings (fig. 5.11)

suggest that there is a fundamental difference between downward and upward particle movement. Here,

the fluctuations sampled by the contaminants show little to no indication of boundedness by the relative

turbulence intensity. One potential interpretation of this observation is that downward moving particles

are more effective at sampling regions of the flow which are favourable for their direction of movement

than upward moving particles.

As may be inferred from the conditioned mean statistics, the sampling bias towards specific quadrants

depends on the wall-normal position. For this reason, the contribution of the individual quadrants to

the (uf , vf )-space sampled by the contaminants is examined in the following. The probability of an

instantaneous fluctuation to belong to i -th quadrant, which will be denoted as XQi , is given by

∫ ∞

0

∫ ∞

0
jpdf(u′

f , vf )du′
f dvf

︸ ︷︷ ︸
..=XQ1

+
∫ ∞

0

∫ 0

−∞
jpdf(u′

f , vf )du′
f dvf

︸ ︷︷ ︸
..=XQ2

+

∫ 0

−∞

∫ 0

−∞
jpdf(u′

f , vf )du′
f dvf

︸ ︷︷ ︸
..=XQ3

+
∫ 0

−∞

∫ ∞

0
jpdf(u′

f , vf )du′
f dvf

︸ ︷︷ ︸
..=XQ4

= 1, (5.10)

respectively. In this definition, uf and vf may refer to either the conditioned and unconditioned sample

velocities alike, although in both cases u′
f is to be understood as the difference from the unconditioned

fluid mean
〈

uf

〉
xzt

.

105



5 Preferential sampling of the fluid flow

−4 −2 0 2 4

−2

0

2

�
uf −�

uf
�
xzt

��
uτ

v f
� u

τ

−4 −2 0 2 4

−2

0

2

�
uf −�

uf
�
xzt

��
uτ

v f
� u

τ

−4 −2 0 2 4

−2

0

2

�
uf −�

uf
�
xzt

��
uτ

v f
� u

τ

−4 −2 0 2 4

−2

0

2

�
uf −�

uf
�
xzt

��
uτ

v f
� u

τ

(a)

(b)

(c)

(d)

Ga30-D10-LR

Ga10-D6-LR

Ga30-D15-HR

Ga10-D10-HR

0.1 0.3 0.5 0.7 0.9

jpdf
�
u′

f , vf
�

Figure 5.10: Joint probability density function of the streamwise and vertical components of the fluid velocity conditioned to the
contaminants, jpdf

(
[u′

f ]
SX↓ , [vf ]

SX↓
)

(shaded regions) and the unconditioned fluid velocity, jpdf
(
u′

f , vf
)
, (contour

lines) at y = 0.3Hf for all downward crossings. The data is presented as a function of the velocity fluctuations, which
means that the mean unconditioned streamwise velocity at the position shown is subtracted from the conditioned
and unconditioned streamwise velocities alike. The colouring corresponds to {0.1,0.3,0.5,0.7,0.9} times the respec-
tive maximum value of the distribution. An indicator for the inverse of the relative turbulence intensity for each case
is given by the dashed line which is located at vf = vp,∞ ( ). The following cases are arranged in column-major
order: (a) G30-D10-LR, (b) G10-D6-LR, (c) G30-D15-HR and (d) G30-D10-HR.
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Figure 5.11: Same as fig. 5.10, but the conditioned fluid velocity is now considered for all upward crossings, i.e. the shaded regions
correspond to jpdf

(
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)
. Only the cases at Reτ = 838 are shown: (a) G30-D15-HR and (b) G30-D10-HR.
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Figure 5.12: Probability of a fluid fluctuation sampled by the contaminants to belong to the i -th quadrant as a function of vertical
position in the channel. The data is presented in form of stacked area curves to reflect the property

∑
i XQi = 1.

Therefore, XQ1 ( ), XQ2 ( ), XQ3 ( ) and XQ4 ( ) correspond to the vertical extent of the areas in the respective colour
at each y-position. The conditioned probabilities for the four cases at Reτ = 241 are shown in the upper row (a-d),
whereas those for the two simulations at Reτ = 838 are shown in the lower row (e,f) together with the values obtained
for the unconditioned fluid velocity for the (g) LR and (h) HR background flows. The conditioned probabilities are
ordered in increasing relative turbulence intensity for each flow Reynolds number.

0.2 0.4 0.6 0.8

1

1.5

2

2.5

y/Hf

[ X
Q

4
] S
X
↓/ X

Q
4

0.2 0.4 0.6 0.8

1

1.5

2

2.5

y/Hf

[ X
Q

3
] S
X
↓/ X

Q
3

(a) (b)
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G15-D10-LR ( ), G15-D6-LR ( ), G30-D10-RP ( ), G10-D6-RP ( ), G30-D15-HR ( ), and G10-D10-HR ( ).
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The resulting probabilities are shown in fig. 5.12. When comparing the conditioned values to the un-

conditioned ones, it becomes apparent that sweep-events (Q4) dominate, and that the prevalence in-

creases with increasing relative turbulence intensity. This increase largely happens at the expense of

Q1- and Q2-events, i.e. those for which vf > 0, whereas Q3-events are still likely, but are not as preva-

lent as Q4. The unconditioned probabilities suggest that the distribution among quadrants slightly

varies with respect to the wall-normal coordinate, and this variation is also reflected by the conditioned

probabilities—at times even in an amplified manner such as the excursion observed for Q4 at y ≈ 0.35

for LR. In order to gauge this effect and to display the relative shift in probabilities, fig. 5.13 provides

the conditioned probabilities of Q3- and Q4-events normalised by their corresponding unconditioned

values. While for a short initial period—the wall-normal position serves as a time-like coordinate of the

transient in this picture—the organization into preferentially sampled regions is rather irrespective of

the sign of u′
f , sweep events are clearly preferred at later times in most cases. A notable exception to

this observation is G30-D10-RP for which the probability of sampling either quadrant stays comparable

until close to the sediment bed. A major contributing factor for the preference is presumably the ac-

cumulation of contaminants in large-scale velocity streaks, which was observed and described in §5.1

and §5.2.2. In order to understand the connection between these observations, the mechanism which

causes preferential sampling in this configuration needs to be further understood, and an attempt at

gaining more insights is taken in chapter 7.

5.3 Particle wakes

The focus is now shifted towards the flow at the scale of the individual contaminant particles. In par-

ticular, the questions of how the wake of the particles interacts with the background flow and how it is

modified with respect to a suitable laminar reference state are raised.

5.3.1 Instantaneous fluid motion near the contaminants

To begin with, the instantaneous fluid motion in the vicinity of the contaminants is inspected on a sam-

ple basis. For this purpose, two orthogonal slices oriented normal to the spanwise and streamwise direc-

tion, respectively, and centred at the centroid of the contaminant particle of interest are extracted from

a snapshot of the fluid field at a time where the settling process is fully developed. Four distinctive sam-

ples are chosen under the consideration that their settling velocities at the time of inspection preferably

span the full extent of the range at this particular instance in time. The fluid motion is then inspected

from two perspectives. First, the vertical velocity is examined from the perspective of a steady observer,

i.e. a observer who is not moving with respect to the channel’s walls, which enables a straightforward

assessment of the background turbulence in the vicinity of the particle. Second, the velocity is inspected

in a frame of reference translating with the particle of interest and particular attention is drawn to ver-

tical velocities of the order of the terminal velocity of the contaminants. This perspective is especially

advantageous for the detection of particle-induced fluid motion as caused by a particle’s boundary layer

or wake.

It should perhaps be noted that in the range of Galileo numbers under investigation in this thesis (Ga ≤
30), no wake in the proper sense is to be expected, which means that no zone of recirculation exists

in the undisturbed flow around such particles. Nonetheless, the particle induced motion exhibits a

pronounced front-rear-asymmetry at all parameter points, and it is the velocity deficit in the rear of
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Figure 5.14: Instantaneous flow field around four selected contaminant particles for G30-D15-HR at t = 7.9tb . (a-d) Vertical fluid
velocity scaled by the friction velocity in a stationary reference frame centred at the particle of interest. (e-h) Vertical
fluid velocity scaled by the particles terminal velocity in a reference frame moving with and centred at the particle of
interest. The lines correspond to vf = [−0.9 : 0.1 : −0.1] vp,∞. Per subfigure, a cross-sectional xy/zy-plane is shown on
the left/right, respectively. The particles’ instantaneous vertical positions and velocities are (a,e) 0.48Hf , −2.0vp,∞,
(b,f) 0.36Hf , −1.3vp,∞, (c,g) 0.48Hf , −1.1vp,∞, (d,h) 0.48Hf , −0.2vp,∞, respectively.
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Figure 5.15: Same as fig. 5.14, but for G10-D10-HR at t = 13.1tb . The particles’ instantaneous vertical positions and velocities are
(a,e) 0.39Hf , −5.8vp,∞, (b,f) 0.25Hf , −1.7vp,∞, (c,g) 0.43Hf , −0.3vp,∞, (d,h) 0.24Hf , +2.7vp,∞, respectively.
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the particle which is referred to as wake in the following. Visualizations of the undisturbed wakes at

Ga = {
27.1,10.8

}
are provided at a later point in fig. 5.16(a) and fig. 5.17(a), respectively.

Figure 5.14 shows the instantaneous fluid motion in the vicinity of selected contaminant particles for

G30-D15-HR. From the point-of-view of a steady observer, it is obvious that the fluid environment ex-

perienced by the contaminants during settling is intermittent, as for all samples shown, patches of neg-

ative and positive vertical fluid velocity coexist within only few diameters distance from the particle.

Regarding the relative velocity between the solid and fluid phase, it can be noticed that the contami-

nants induce a fluid motion which resembles a wake, although these structures are visibly deformed by

the background flow, especially at greater distances. A decent example is given by fig. 5.14(f) where a

distinct velocity deficit can be observed in the rear of the sample particle.

The observations for G10-D10-HR are similar to those at the higher value of the Galileo number with

regards to the fluid environment experienced by the contaminants, see fig. 5.15. However, there is a

disparity regarding the relative fluid motion in the near vicinity of the particle. Whereas for Ga ≈ 30

structures resembling a particle boundary layer are still perceptible, it seems that for Ga ≈ 10 and the

corresponding higher relative turbulence intensity, fluctuations of the order of the terminal velocity are

mostly driven by—or at least severely distorted by—the background turbulence. This suggests that high

values of Iτ might reduce the difference in relative velocity between the two phases below the ambient

terminal velocity, or that the time scale at which a distortion by turbulent fluctuations occurs simply

becomes much shorter than the characteristic time scale of the particle-induced flow.

5.3.2 Comparison with undisturbed wake

The particle-conditioned average introduced in §5.2.1 is now used to investigate the vertical velocity

field in close proximity of the particle in order to understand how the boundary layer is modified by

the background turbulence. Of particular interest in this investigation are variations of the order of the

ambient terminal velocity in a reference frame moving with the particle, as fluid velocities of this order

of magnitude can be induced by the intrinsic relative velocity between the particle and its environment.

In order to have a reference to which the wake under the influence of turbulence can be compared

to, the undisturbed flow around a particle at the corresponding value of the Galileo number has to be

examined first. For this reason, the converged state of the reference simulations previously presented

in §3.7 is visualised in fig. 5.16(a) for Ga = 27.1. As previously stated, the boundary layer is steady and

axisymmetric and no recirculation occurs in the rear of the particle. However, a strong asymmetry of the

velocity deficit in the direction of movement can be observed with significant disturbances being still

noticeable at distances of the order of ten particle diameters from the rear.

In contrast, the velocity deficit decays within a considerably shorter distance in the averaged turbulent

case, see fig. 5.16(b-e). This result is consistent with e.g. Bagchi and Balachandar (2004) or Homann et al.

(2013), although only few data points at comparably low(high) values of the Reynolds number(relative

turbulence intensity), respectively, are available in literature. More interestingly, the general shape of

the boundary layer from the quiescent reference is somewhat maintained in the turbulent mean for the

vertical positions shown in the sense that it is approximately axisymmetric and slightly tapered at the

sides of the particle.

For Ga = 10.8, the undisturbed boundary layer is notably shorter and less confined in the horizontal

direction than at higher Galileo numbers, see fig. 5.17(a). In the presence of background turbulence
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Figure 5.16: Vertical component of particle-conditioned average fluid velocity 〈vf 〉PX↓ in the vicinity of the contaminant particle

for G30-D10-HR. The lines indicate isolines of velocity with values at [−0.1 : −0.1 : −0.9] times the ambient terminal
velocity. (a) The undisturbed axisymmetric boundary layer for Ga = 27.1 as a reference. (b) The averaged bound-
ary layer from the turbulent simulations at y = 0.8Hf in the streamwise-normal plane. (c) Same as before, but in
the spanwise-normal plane. (d) The averaged boundary layer from the turbulent simulations at y = 0.3Hf in the
streamwise-normal plane. (e) Same as before, but in the spanwise-normal plane.
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Figure 5.18: (a) Velocity deficit as a function of distance from the particles’ centroid for the cases G30-D15-HR ( , ) and G10-
D10-HR ( , ) at y = 0.8Hf ( ) and y = 0.3Hf ( ). Also shown are the curves obtained for the converged states
of the respective ambient settling simulations at Ga = 27.1 ( ) and Ga = 10.8 ( ) as well as black lines indicating

the slope of ỹ−1 (laminar decay) and ỹ−2 (decay in presence of background turbulence). (b) Length of the wake as
defined in the main text as a function of local relative turbulence intensity for the cases G30-D15-HR ( ) and G10-
D10-HR ( ). The samples are taken at vertical positions in the range y ∈ [0.2,0.85] Hf and the values are normalised
by the corresponding value for an undisturbed wake at the same value of the Galileo number. The black triangles ( )
indicate the relative length of the wake obtained by Homann et al. (2013) for a sphere towed in homogeneous isotropic
turbulence at Rep,∞ = 20. Please note that the reference data of Homann et al. (2013) is evaluated for a velocity deficit
of 0.5 as opposed to 0.1 for the simulations presented here.

(b-e), most of the defining features are lost, which is unsurprising given the virtual absence of particle-

induced motion in the instantaneous picture.

Both fig. 5.16 and fig. 5.17 depict the mean wake at two positions within the channel, and it can be noted

that the wake considerably differs between those positions. In order to quantify the length and decay of

the wake in the rear of the particles, the velocity deficit is defined as

vf ,def (ỹ , y) ..= 1−
〈

vf

〉
PX↓(x̃ = 0, ỹ , z̃ = 0, y)−〈

vc

〉
X↓(y)

vp,∞
. (5.11)

Please note that this deficit is defined with regards to the ambient terminal velocity—similar to the wakes

previously shown—and not with respect to a zero mean and also not with respect to an actual slip ve-

locity. The former is due to the fact that 〈vf 〉PX↓ does not decay to zero anywhere near the particles

due to preferential sampling, and the latter is avoided since the definition of an actual slip velocity is

ambiguous as will be discussed in §5.4.1.

Figure 5.18(a) shows the decay of the velocity deficit for the two undisturbed and four mean wakes dis-

played in fig. 5.16 and fig. 5.17. Whereas the undisturbed wakes follow the decay expected for a laminar

wake proportional to ỹ−1 (Wu and Faeth 1993) reasonably well, this regime can merely be observed over

a considerable distance for G30-D10-HR at y = 0.8Hf . In the presence of turbulence, the velocity deficit

decays significantly quicker, and especially at high relative turbulence intensities no clear power law

such as the quadratic decay proposed by Wu and Faeth (1994), Legendre et al. (2006) or Amoura et al.

(2010) for the wake of a sphere in a turbulent background could be identified over a significant extent.

A possible explanation for the distinct wake behaviour at a given Galileo number, but at different po-

sitions in the channel is given by the varying turbulence intensity experienced by the contaminants as

they move vertically through the channel. In particular, the intensity of the fluctuations in the direction

of gravity varies by approximately a factor of two for the two positions shown, cf. fig 3.6(c). For this
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reason, a local relative turbulence intensity is defined in terms of the standard deviation of the vertical

fluid velocity, viz.

Iv(y) ..=
〈

v2
f

〉1/2

xzt
(y)

vp,∞
. (5.12)

In order to examine the evolution of the velocity deficit as a function of Iv, the length of the wake is

defined as the smallest vertical distance on the centre axis originating from the particle’s centroid at

which the particle-conditioned mean flow is still disturbed by 10% of the value of the ambient terminal

velocity in the relative reference frame. In other words, Lw (y) is the distance in the particle-attached

coordinate system for which vf ,def (ỹ , y) = 0.1. The threshold is motivated by the varying decay rates for

different parameter points and the observation that for the selected threshold all wakes examined decay

proportionally to ỹ−2.

Figure 5.18(b) shows the length of the wake normalised by its ambient counterpart as a function of the

local relative turbulence intensity, i.e. at different vertical positions in the channel, for the two Galileo

numbers in the HR background flow. A consistent trend can be observed for G30-D15-HR, where for de-

creasing Iv the length of the wake approaches its ambient value as one would expect. Furthermore, the

ratios which are observed for Ga = 27.1 (Rep,∞ = 17.9) agree well with the results of Homann et al. (2013)

for a sphere (Rep,∞ = 20) towed through homogeneous isotropic turbulence in terms of the general trend

as well as the quantitative value within the short parameter range in which they overlap. When examin-

ing higher relative turbulence intensities, a saturation in wake length seems to occur around Iv ≈ 1 where

the vertical velocity fluctuations are of the same order as the ambient terminal velocity. The nearly con-

stant wake length observed for G10-D10-HR for which Iv ≫ 1 at all positions supports this observation.

This might correspond to what Amoura et al. (2010) describe as “a wake controlled by the incident tur-

bulence” for which the far wake results “from the distortion of the incident turbulence by the sphere”.

They state that the length of the attached wake in this regime is approximately 1.5dp and that as soon

as the wake is fully controlled by the incident turbulence, it ought to decay proportional to ỹ−2. Both of

these predictions agree well with what is shown in fig. 5.18.

5.3.3 Effect of shear on settling velocity

The wakes previously presented are all axisymmetric on average to a good estimation. This is generally

not the case when vertical positions closer to sediment bed are investigated where the fluid shear is

considerably higher in the space-time average, cf. fig 3.6(b). For this reason, the role of significant shear

on the averaged particle wakes will now be subject of discussion.

As the comparison with an undisturbed wake in §5.3.2 proved to be expedient, an extension of this

comparison with regards to shear may aid in the interpretation of the mean turbulent wakes as well. For

this reason, the ambient settling simulations of §3.7 are modified such that the particles now settle in the

presence of a linear velocity profile whose gradient is coaligned with the direction of gravity. To achieve

this, the free-slip upper boundary is substituted by a no-slip boundary which moves with a constant

speed of Uw in x-direction, and the background flow is initialised by its laminar profile, viz.

uf (y) = y

Ly,c
Uw , (5.13)

where Ly,c denotes the vertical extent of the simulation domain. This setup corresponds to plane Cou-

ette flow and a sketch and further information on the computational domain are provided in fig. 5.19(a).
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Figure 5.19: (a) Sketch of the computational setup used for the reference simulations to investigate the effects of shear on the
particle wakes. The setup is similar to that of the ambient settling reference cases described in §3.7. However, a
constant background shear of Uw /Ly,c is achieved throughout the domain by means of introducing a no-slip wall as
the upper boundary which moves at velocity Uw in x-direction. The numerical parameter are identical to those of the
ambient settling simulations of G30-D10-LR for Ga ≈ 30 and G10-D6-LR for Ga ≈ 10 except for a substantially larger
domain size of Lx,c ×Lz,c = 5Lx,a ×2Lz,a . (b) The value of the shear parameter based on the mean shear as a function
of vertical position for the turbulent cases G30-D15-HR ( ) and G10-D10-HR ( ). The constant values of S for the
reference simulations in laminar Couette flow are indicated by dashed lines: Ga ≈ 30 ( ) and Ga ≈ 10 ( ).

It should be noted that while laminar plane Couette flow is stable with regards to infinitesimal pertur-

bations (Davey 1973, Romanov 1973) independent of the Reynolds number, finite-amplitude perturba-

tions as introduced by the presence of the moving particle may trigger the transition to a turbulent state.

The value of the Reynolds number for the reference simulations reads

Rec
..=

Uw Ly,c

νf
= 4.5 ·103, (5.14)

and is indeed sufficiently large such that turbulence may be triggered by three-dimensional finite-

amplitude perturbations (Orszag and Kells 1980). However, during the time of observation, no signifi-

cant deviations from the laminar state apart from the wake of the particle were observed, indicating that

either the perturbation is too insignificant to trigger the transition or that its time-scale is significantly

longer than the observation time.

The presence of background shear introduces another particle-specific parameter which needs to be

matched between the reference and the turbulent simulation, see e.g. Bagchi and Balachandar (2002)

for the parameter space of a similar problem. Therefore, the shear parameter is introduced as

S ..=
2
〈

Sxy

〉
xzt

dc

vp,∞
. (5.15)

Please note that this parameter is typically defined with regards to the relative velocity between the two

phases, but in the spirit of the previous analysis it is assumed that the ambient terminal velocity is a

sufficiently good approximation instead. Figure 5.19(b) displays the local value of the shear parameter

for the cases of interest, G30-D15-HR and G10-D10-HR, as well as the corresponding values for the ref-

erence simulations. As indicated, the reference setup corresponds approximately to the conditions that

are experienced on average by the contaminants6 at y ≈ 0.15Hf .

6 As the shear parameter is based on the unconditioned spatio-temporal mean of the fluid shear, it is not taken into account
that due to preferential sampling the shear experienced by the contaminants might be different.
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Figure 5.20: Particle wakes in the presence of significant mean shear. The solid lines indicate isovalues of the vertical fluid velocity
〈vf 〉PX↓ for the values [−0.1 : −0.1 : −0.9] times the ambient terminal velocity in the particle-attached frame of refer-

ence. The coloured background shows the streamwise fluid velocity 〈uf 〉PX↓ in the relative frame. (a) Mean wake for

G30-D15-HR. (b) Mean wake for G10-D10-HR. (c) Same parameter point as G30-D15-HR, but for an isolated particle
settling in laminar Couette flow. (d) Same parameter point as G10-D10-HR, but for an isolated particle settling in
laminar Couette flow. The value of the shear parameter reads S= 0.71 for (a,c) and S= 1.37 for (b,d).

Figure 5.20 displays the mean particle wakes from the turbulent simulations and the corresponding

reference cases in laminar Couette flow. The normalised fluid shear in the rear of the particles is in good

agreement between the turbulent and laminar cases, however, a steeper gradient in the front can be

observed for the turbulent mean shear due to its nonlinear trend. Qualitatively, the wakes of the laminar

reference and the turbulent mean are rather similar in terms of their shear-induced deformation. Their

primary distinction is the considerably shorter wake in the turbulent case, which is in accordance with

the observations made in §5.3.2. Nonetheless, the near-particle region exhibits congenial modifications

caused by the shear, which suggests that the laminar reference might be a suitable proxy to assess its

effect. When evaluating the settling velocity under linear shear conditions, it is found that its value

remains unchanged for Ga ≈ 30,S = 0.71 and is reduced by approximately 4% for Ga ≈ 10,S = 1.37.

Under the conjecture that these inferences are transferable to the turbulent case, it can be concluded

that the effect of mean shear on the settling velocity is negligible in the current context.
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5.4 Relative velocity on a microscale

The preceding analysis regarding particle wakes was conducted under the supposition the relative ve-

locity between the fluid and solid phase is of the order of the ambient terminal velocity. In the following,

an attempt is made to quantify the actual slip velocity in order to justify this assumption and to gain

insights on the impact of wake modifications on the settling velocity under the influence of turbulence

on a microscale.

5.4.1 Slip velocity

Figure 5.8(b) suggests that the ratio between the settling velocity of the contaminants and the fluid

velocity experienced by them is approximately constant over a large vertical range for the majority of

parameter points under investigation. By subtracting a measure for the instantaneous fluid velocity

experienced by the particle from the particle velocity, the effect of preferential sampling is effectively

disregarded, and the flow conditions in the vicinity of the particles can be investigated on a microscale.

For this purpose, an instantaneous variant of the sphere-average is introduced, which reads

〈
uf,α

〉(i )
S

(r, t ) ..=
∮

Sv (r )uf,α(x̃(i ), t )χf (x̃(i ), t ) dSv
∮

Sv (r )χf (x̃(i ), t ) dSv

(5.16)

for the i -th contaminant particle. Here, the instantaneous fluid velocity field uf,α(x̃(i ), t ) is translated

such that the origin of the coordinate system coincides with the centroid of the i -th particle, and again,

the surface of the virtual sampling sphere Sv (r ) is defined in this coordinate system and its radius is set

to the same value as earlier.

Under the assumption that the interaction between the particle and the nearby fluid velocity—nearby

meaning of the order of the radius of the virtual sampling sphere—is invariant with regards to the flow

conditions at a larger scale, i.e. preferential sampling, the difference in uc,α and
〈

uf,α

〉
S

is not subject to

the bias described in §4.2.2 anymore, and hence, the spatial-averaging procedure can be replaced by an

unweighted binning approach for investigations at the microscale.7 Therefore, the instantaneous slip

velocity uc,α−〈uf,α〉S is averaged within a wall-parallel slab using a standard binned-averaging operation,

viz.

〈
uc,α−〈uf,α〉S

〉
∆

(y0, y1) ..=
∫ tobs

0

∑NcΣ
i ∆

(
y (i )

c (t ), y0, y1

) (
u(i )

c,α(t )−〈uf,α〉(i )
S

(t )
)

dt
∫ tobs

0

∑NcΣ
i ∆

(
y (i )

c (t ), y0, y1

)
dt

. (5.17)

with the binning kernel function

∆(yp , y0, y1) ..=




1 if yp ∈ [
y0, y1

)

0 otherwise
, (5.18)

where y0, y1 are the extents of the bin to be specified.

Figure 5.21 shows this slip velocity as a function of the relative turbulence intensity averaged in the

region y/Hf ∈ [0.3,0.8] where 〈vp〉X↓
/〈vf 〉SX↓ only varies little for the majority of cases. Its value is found

7 This assumption appears to be justified if the length scale of the regions which are preferentially sampled is considerably larger
than the particle diameter.
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Figure 5.21: Average relative particle velocity of the contaminants at the microscale as a function of relative turbulence intensity
and scaled by its ambient value. Reference data by Fornari et al. (2016) in sustained homogeneous isotropic turbu-
lence ( ) is shown for Ga = {200,145,60,19} (from left to right) at density ratios of ρp /ρf ∈ [1.0004,1.04] and a particle
diameter of twelve Kolmogorov length scales, where the relative turbulence intensity is defined as the ratio of the
root-mean-square of the turbulent velocity fluctuations to the ambient terminal velocity of the particles. Further ref-
erence points are available from vertical channel flow evaluated on the centre line, for which the parameters in terms
of the triplet (ρp /ρf ,Ga,d+

p ) are given by : (2.2, 115.4, 11.3), García-Villalba et al. (2012). : (2, 23, 19), Zhu et al.
(2020). : (2, 40, 18), Zhu et al. (2020). : (2, 99.5, 21), Yu et al. (2021). The solid lines indicate the reduction in settling
velocity expected from the non-linear drag model by Homann et al. (2013), evaluated for Ga = 30 ( ) and Ga = 10
( ). Legend: G30-D15-HR ( ), G10-D10-HR ( ), G30-D10-LR ( ), G10-D6-LR ( ), G15-D10-LR ( ) and G15-D6-LR
( ).

to be generally reduced in comparison to the ambient value. Keeping in mind the arbitrariness of the

definition of a local fluid velocity and the resulting uncertainty of the obtained relative velocity, the

general magnitude and trend of this observation conform reasonably well to the result of Fornari et al.

(2016) who found a reduction in the settling velocities of particles in sustained homogeneous isotropic

turbulence in a similar range of relative turbulence intensities, as well as data available from vertical

channels.

One potential explanation for the reduction of the settling velocity in a turbulent environment is the

nonlinear dependence of the drag coefficient on the particle Reynolds number (based on the slip veloc-

ity) for Rep ≫ 1, where a temporal variation in the slip velocity may result in an increased mean drag

force, cf. §2.3.3. Homann et al. (2013) derived an expression for this increase assuming a nonlinear drag

law and Gaussian fluctuations in the relative velocity. The resulting drag coefficient depends on the

relative turbulence intensity and is given by8

CHBG
d (Rep , Iτ) ..=

(
1+

0.1897Re0.687
p

1+0.15Re0.687
p

Iτ
2
)

CSN
d (Rep ). (5.19)

Here, CSN
d is the ambient drag coefficient as obtained from the empirical drag law of Schiller and Nau-

mann (1933), viz.

CSN
d (Rep ) = 24

Rep

(
1+0.15Re0.687

p

)
. (5.20)

It should be noted that the considerations of Homann et al. (2013) were made for a sphere translating

at a fixed velocity. Extending their argument towards freely moving particles, a variation in the drag

force naturally leads to a variation in the relative velocity, resulting in a feedback loop between these

8 Please note that the prefactor of the term involving Iτ differs from the one stated in Homann et al. (2013) as a numerical
evaluation of the underlying integral yielded a value differing from the one stated in the publication (private communication,
Uhlmann, 2015).
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5.4 Relative velocity on a microscale
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Figure 5.22: Probability density function of the instantaneous values of the particle Reynolds number based on the three-
dimensional slip velocity in the region y/Hf ∈ [0.3,0.8]. Legend: G30-D15-HR ( ), G10-D10-HR ( ), G30-D10-LR
( ), G10-D6-LR ( ), G15-D10-LR ( ) and G15-D6-LR ( ).

two quantities. If all other unsteady effects as well as lateral movement are neglected, CHBG
d can be

substituted into eq. (2.49) in order to obtain a solution for the modified slip velocity by solving

4
3 Ga2 = CHBG

d (Rep , Iτ)Re2
p (5.21)

given the Galileo number and the relative turbulence intensity. In fig. 5.21, two families of solutions

are shown for Ga = {10,30}, respectively. While the predictions for Iτ ≈ 1 are in the same range as the

numerical data, this simple model considerably overpredicts the reduction in relative velocity for Iτ≫ 1.

5.4.2 Particle Reynolds number

In the previous discussion on the slip velocity, the lateral components of the relative velocity were disre-

garded in order to simplify the argument. For some applications, and especially for the accurate mod-

elling of particle-laden flows using unresolved methods, it might, however, be of interest to be aware

of the range of particle Reynolds numbers which are reached instantaneously. For this purpose, the

probability density distributions of the particle Reynolds number based on the three-dimensional slip

velocity,

Rep =
∣∣uc −

〈
uf

〉
S

∣∣dp

νf
, (5.22)

are provided in fig. 5.22. While the instantaneous Reynolds number is most likely lower than that based

on the terminal velocity—an observation in accordance with the findings regarding only the vertical

component—it can occasionally be found to be increased by a factor of three.

In general, it is found that the particle velocity is severely correlated to the fluid velocity sampled on

the virtual sphere. Table 5.1 provides the Pearson correlation coefficients for each velocity component

and various parameter points. The most notable deviations from unity are observed for Ga ≈ 30, and

decorrelation is generally higher for the vertical and spanwise component than for the streamwise com-

ponent. It can be assumed that a high correlation between uc,α and
〈

uf,α

〉
S

is a prerequisite to obtain

similar probability distributions for the particle velocity fluctuations and the particle-conditioned fluid

velocities as presented in §4.3.2 and §5.2.4.
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5 Preferential sampling of the fluid flow

Table 5.1: Linear correlation coefficients defined in similar to eq. 4.8 for the individual components of the instantaneous particle
velocity and the corresponding sphere-averaged fluid velocity.

G30-D10-LR G15-D6-LR G15-D10-LR G10-D6-LR G30-D15-HR G10-D10-HR

ϱ
(
uc ,〈uf 〉S

)
0.98 0.99 0.99 1 0.98 1

ϱ
(
vc ,〈vf 〉S

)
0.95 0.98 0.98 0.99 0.95 0.99

ϱ
(
wc ,〈wf 〉S

)
0.96 0.99 0.98 0.99 0.95 0.99

5.5 Domain size effects

It was found in §5.2.2 that the preferential arrangement of the settling contaminants likely coincides

with the lateral position of large-scale high-speed streaks which are present throughout the outer layer

of the turbulent background flow. While the vertical length scale of these turbulent structures is of the

order of the clear fluid height, their streamwise extent was shown to be of as long as 3–100 Hf in closed

channels (Lozano-Durán and Jiménez 2014a). The lower end of this range corresponds to the struc-

tures known as large-scale motions (LSMs) while the upper range is known as very-large scale motions

(VLSMs), cf. §2.2.3. These structures are known to contribute substantially to the overall Reynolds stress

(Guala et al. 2006, Lozano-Durán et al. 2012b), and since contaminants were shown to preferentially

sample Q4-events during settling, it ought to be assumed that an adequate representation of these large-

scale structures is required for an accurate description of transient settling.

It is apparent that the streamwise period of the computational domains employed for all background

flows considered in this thesis are insufficiently long to adequately capture events at these length

scales—a circumstance which arises partly from the desired suppression of bedform instabilities, but

is also due to the large computational cost of particle-laden flow simulations. In fact, it was previously

noted in §5.2.2 that the velocity streaks of the outer layer self-connect across the periodic boundary,

and hence, constitute a coherent region of infinite length. Since no suitable reference data for turbulent

flow over a mobile sediment bed exists, the energy content of the various spatial scales of the turbu-

lent motion is in the following compared to an open-channel flow over a smooth wall at a comparable

friction Reynolds number in a computational domain with substantially larger streamwise and span-

wise periods. For this purpose, the velocity components are expanded as a Fourier series with discrete

coefficients û(k,l )
f,α (y, t ) which are defined under the convention that the backtransform reads

uf,α(x, y, z, t ) =
∞∑

k=−∞

∞∑
l=−∞

û(k,l )
f,α (y, t )exp

(
−i (κ(k)

x x +κ(l )
z z

))
. (5.23)

The l -th/k-th harmonics of the periodic system in x/z-direction are indicated by superscripts to the

Fourier coefficients, and the discrete wavenumbers are given by

κ(k)
x

..= 2πk

Lx
and κ(l )

z
..= 2πl

Lz
. (5.24)

The Fourier series expansion allows the overall energy of turbulent fluctuations to be expressed as sum

of the energy contained at each wavenumber (Parseval’s theorem), viz.

∞∑
k=−∞

∞∑
l=−∞

∣∣û(k,l )
f,α

∣∣2 = 〈
u2

f,α

〉
xz

(5.25)
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5.5 Domain size effects

Therefore, the variation of the absolute square of the Fourier coefficients with respect to the streamwise

and spanwise wavenumbers is referred to as the energy spectrum of the particular fluid velocity com-

ponent. Following common practice, these spectra will be presented in terms of the wavelengths which

are related to the corresponding wavenumbers by

λ(k)
x

..= 2π

κ(k)
x

= Lx

k
and λ(l )

z
..= 2π

κ(l )
z

= Lz

l
. (5.26)

The reference spectra for turbulent open-channel flow over a smooth wall are provided by Bauer et al.

(2022). Their domain size has a wall-parallel cross-sectional area of Lx×Lz = 12π×4π in terms of the fluid

height, which is approximately 75 times larger than that of the computational domain employed in the

transient settling simulations. As a consequence, the LSMs and VLSMs are resolved to a far greater extent

in their simulation. The value of the friction Reynolds number is Reτ = 596 which closely matches that

of HR when the bed is still at rest (Reτ ≈ 622). Indeed, the following discussion will be held exclusively

with regards to HR, as its domain is the shortest and LSMs and VLSMs are thought to be more relevant at

high Reynolds number due to their different scaling compared to other turbulent structures (del Álamo

and Jiménez 2003) and the growing separation between inner and outer turbulence scales.

Figure 5.23(a) shows a comparison between the two-dimensional spectra of the streamwise and span-

wise fluid velocities for the HR background flow in the absence of contaminant particles and for the

reference smooth open-channel flow at y = 0.5. The spectra are premultiplied by the corresponding

wavenumbers such that energy contribution over any wavenumber range is obtained from the area un-

der the curve, and thus, the most energetic modes can be identified by the peak locations in this repre-

sentation (Perry et al. 1986). As was expected, the spectrum of the streamwise velocity is considerably

truncated by the period of the domain. However, the resolved portion of the spectrum coincides rea-

sonably well with the reference data despite the notable differences in setup. It should be noted that

the contours are presented in absolute terms, i.e. they are scaled by their respective friction velocity

and not relative to their total energy
〈

u′
f u′

f

〉
xzt

. Furthermore, the total energy content agrees reasonably

well between the HR background flow and the reference data, and is thus not considerably affected by

the truncation. This type of behaviour was already described by Álamo et al. (2004) and Lozano-Durán

and Jiménez (2014a) for varying box sizes in smooth-wall closed channel flow, and Lozano-Durán and

Jiménez (2014a) argued that the truncated unresolved part of the spectrum is essentially captured by

the (k = 0, l > 0) harmonics, and that the interaction of these modes with the resolved part of the spec-

trum is well represented. If this is indeed the case, one might argue that the fluid-particle interaction is

likely not considerably different in a truncated domain compared to a flow with fully resolved LSMs and

VLSMs. This is because a direct interaction presumably occurs around the scale of the particle size, i.e.

within the fully resolved turbulent scales which are captured accurately, and large-scale organization of

particles is then a result of the interaction between fluid modes of different sizes which seems to be little

affected by the truncation according to the arguments of Lozano-Durán and Jiménez (2014a).

More evidence that the short streamwise length of the domain likely does not substantially alter the

observed settling behaviour is provided by the spectra of vertical fluid velocities—the component of

velocity which is directly linked to the contaminants’ settling velocity and plays a key role in preferential

sampling due to the turbulence intensity effect described in §4.3.2 and §5.2.4. As is demonstrated in

5.23(b), the fluctuations of vf generally occur at smaller scales which are captured for the most part by

the computational domain.9 This disparity in length scale may be explained in terms of the tall attached

9 The difference in length scale and anisotropy between the streamwise and wall-normal velocity component is already visually
evident in the instantaneous visualizations shown previously in fig.5.7
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Figure 5.23: Two-dimensional premultiplied energy spectra of the fluid velocity κ(k)
x κ

(l )
z

〈|û(k,l )
f,α |2〉

t
at y = 0.5Hf . The shaded re-

gions display the spectra obtained for HR in the absence of contaminant particles. The black lines represent the
corresponding spectra for open-channel over a smooth wall at Reτ = 596 in a considerably larger computational do-

main (Bauer et al. 2022). The fundamental wavelengths (λ(1)
x , λ(1)

z ) of the transient settling domain are indicated by

dashed lines ( ). (a) Streamwise component û(k,l )
f with contour levels at

{
0.1,0.2,0.3

}
κ

(1)
x κ

(1)
z u2

τ . (b) Vertical com-

ponent v̂ (k,l )
f with contour levels at

{
0.08,0.16,0.024

}
κ

(1)
x κ

(1)
z u2

τ . An average of all quadrants is shown exploiting the

symmetry of positive and negative wavenumbers.

10−1 100 101
0

0.2

0.4

0.6

0.8

1

λx /Hf

y/
H

f

10−1 100
0

0.2

0.4

0.6

0.8

1

λz /Hf

y/
H

f

10−1 100 101
0

0.2

0.4

0.6

0.8

1

λx /Hf

y/
H

f

10−1 100
0

0.2

0.4

0.6

0.8

1

λz /Hf

y/
H

f

(a)

(b)

(c)

(d)

Figure 5.24: Premultiplied spectra (a,b) summed over all spanwise modes κ(l )
z

∑∞
k=−∞

〈|û(k,l )
f,α |2〉

t
, and (c,d) summed over all

streamwise modes κ
(k)
x

∑∞
l=−∞

〈|û(k,l )
f,α |2〉

t
. The shaded regions display the spectra obtained for HR in the ab-

sence of contaminant particles. The black lines represent the reference data from Bauer et al. (2022). The re-

spective fundamental wavelength (λ(1)
x or λ(1)

z ) of the background flow is indicated by a dashed line ( ). (a,c)

Streamwise component with contours at
{
0.2,0.4,0.6,0.8,1.0

}
κ

(1)
z u2

τ . (b,d) Vertical component with contours at{
0.05,0.1,0.15,0.2

}
κ

(1)
z u2

τ . An average over positive and negative wavenumbers is shown.
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5.6 Summary and concluding remarks

vortex clusters described by del Álamo et al. (2006) where the cluster itself is relatively compact and a

contributor to large-scale vertical motion, whereas its “wake” is significantly longer and gives rise to the

very long anisotropic motions observed in the spectrum of uf (Jiménez 2012).

In order to inspect the wall-normal dependence of the energy distribution among the scales, the one-

dimensional spectra obtained by means of summation over one homogeneous direction are now con-

sidered. Figure 5.24(a,c) displays the one-dimensional spectrum of the streamwise velocity as a function

of y and the wavelength in the non-collapsed homogeneous direction. The first observation to be made

is the lack of the energy peak at small wavelengths close to the (virtual) wall which is associated to the

streaks of the buffer layer, which has already been discussed in §2.3.1. However, it is known that the ab-

sence of buffer layer structures has essentially no implications on the statistics of the logarithmic layer

(Flores and Jiménez 2006) nor on the properties of attached vortex cluster (Flores et al. 2007), which is

reflected by the fact that the remainder of the spectrum coincides reasonably well with the reference

data. The second observation to be made concerns the spanwise period of the computational domain.

When Flores and Jiménez (2010) investigated the minimal flow units of the logarithmic layer they found

that a minimal spanwise period of Lz ≈ 3Hf is required in order to have “healthy” unrestricted turbu-

lence. However, according to their analysis, a smaller value of the spanwise period does not lead to the

decay of turbulence, but rather restricts the region where the turbulence is described accurately close to

the wall. For the HR background turbulence, the spanwise period is Lz ≈ 2.5Hf and hence smaller than

the minimum width stated by Flores and Jiménez (2010). In terms of the one-dimensional spectra, this

manifests itself in terms of slightly compressed spectra of both uf and vf , see fig. 5.23(c,d), although the

remainder of the spectra does not show conclusive anomalous behaviour. According to the arguments

of Flores and Jiménez (2010), a subminimal domain restrict the healthy turbulence to a height of ap-

proximately 0.3Lz , which corresponds to 0.75Hf for HR, and thus, one should be keep this uncertainty

in mind when interpreting the simulation results.

On top of the restrictive properties of a small computational box on flow quantities, it should also

not be disregarded that a single realization of an initial value problem—such as the transient settling

discussed—may differ substantially based on the state of the flow during initialization. For example, the

large-scale streak in the minimal flow unit of the logarithmic layer is known to burst quasi-periodically

(Flores and Jiménez 2010), and hence, the flow on the largest scale considerably varies in time. As a con-

sequence, even if the amount of sample particles is plenty in a single realization, the obtained particle

statistics may exhibit a bias if the relevant flow characteristic are variant on a time scale comparable or

larger than the settling time. This is less likely to be a problem in a larger domain where different states

of the flow can coexist at a single instance in time. With regards to the current study, the LR and RP sim-

ulations presumably do not suffer from this problem as multiple initial conditions or a longer domain

have been simulated, while for the HR simulations the settling was only realised once because of the

high computational costs.

5.6 Summary and concluding remarks

In this chapter, the settling of contaminants was examined with regards to the regions of the background

flow which are predominantly visited by the particles. A comparison between the streamwise-time-

averaged flow and the spanwise-resolved crossing locations of wall-parallel planes suggests that the

contaminants accumulate in high-momentum pathways, and consequently in downdrafts of the sec-

ondary flow. By means of particle-conditioned averaging, it was deduced that this corresponds to an

accumulation in the high-momentum regions associated to large-scale streaks of the turbulent outer
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5 Preferential sampling of the fluid flow

layer in the instantaneous picture, which are thought to be a result of the vortex clusters described by

del Álamo et al. (2006).

While the locations of the large-scale streaks and the spanwise arrangement coincide well, this inter-

action at the length scales of O(Hf ) is deemed insufficient to fully explain the enhancement of settling

velocity described in chapter §4. In fact, the particle-conditioned average indicates that the contami-

nants also preferentially sample downward fluid motion at scales which are significantly smaller than

Hf , but must be larger than the particles themselves. Although it is a possibility that velocity fluctua-

tions at this scale are induced by the contaminants themselves, it is considered more likely that these

regions originate from the background turbulence as the magnitude of the average nearby fluid velocity

decreases with with increasing terminal velocity. However, this argument requires further refinement

regarding the analysis of clustering.

Given the importance of large-scale flow structures, the adequacy of the size of the computational do-

main is discussed regarding the ability to appropriately represent these features. It is argued that while

the LSMs are indeed truncated and the VLSMs remain unresolved, no substantial implications on the

settling behaviour are to be expected. This is largely due to the fact, that the energy of the unresolved

motion is properly captured by spanwise modes which are infinitely long in streamwise direction, and

that the interaction between these modes and the resolved portion of the spectrum is well represented

according to the arguments of Lozano-Durán and Jiménez (2014a).

A systematic analysis of the immediate surrounding of the contaminants reveals that the enhancement

in streamwise and vertical particle velocity can be explained adequately by the fluid velocity sampled

by the particles. It is found that the contaminants preferentially sample sweep events, and that the

tendency to do so increases with increasing relative turbulence intensity. Moreover, a quadrant analysis

of the sampled fluid velocity exhibits a striking similarity to that of the particle velocity fluctuations

which reinforces the heuristic inferences made in chapter §4 regarding the role of turbulence intensity.

On a microscale, the averaged wakes of the contaminants retain some similarities to their undisturbed

settling states. This similarity is progressively lost at increasing relative turbulence intensity until the

average wake is confined into a narrow region of O(dp ) in the rear of the particle which is consistent with

the predictions of Amoura et al. (2010). At low to moderate turbulence intensities, the observed length

of the wake is in good agreement with the observations of Homann et al. (2013) in a similar parameter

range for a towed sphere. The transition in behaviour is found to occur at a relative turbulence intensity

of around unity. Furthermore, the characteristics of the wake at a single value of the Galileo number

vary with respect to vertical channel coordinate in a trend which can be explained by a local value of the

relative turbulence intensity.

Mean shear plays a subordinate role for the settling in the bulk of the channel, but becomes increasingly

important as the contaminants approach the lower boundary. Close to the sediment, the wakes of the

particles are visibly sheared, albeit a comparison with a particle settling in a comparable laminar shear

flow suggests that the impact on the settling velocity is low. Nonetheless, shear is an important factor

in explaining the excess in mean streamwise particle velocity in the lower quarter of the channel where

preferential sampling loses its relevance in this regard.

An evaluation of the slip velocity, although not devoid from arbitrariness, indicates that it might be

reduced with respect to the ambient terminal velocity in a way which is consistent with the results of

Fornari et al. (2016). This suggests that the settling velocity is reduced on a microscale, whereas on a

macroscale preferential sampling is prevalent, and thus, overshadows this reduction.
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5.6 Summary and concluding remarks

In conclusion, the major observations of chapter §4 regarding the particle statistics are readily explicable

in terms of the fluid regions which are preferentially visited by the contaminants during the transient.

However, this raises the question of what mechanism promotes the particles to enter these regions and

at which scales it is active. Furthermore, the role of potential collective effects has not been discussed

extensively yet, and particularly the significance of clustering regarding the settling velocity still needs

to be addressed.
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6 Pattern formation in the
dispersed phase

The analyses of the collective settling of contaminants have indicated that contaminants preferentially

sample flow regions of enhanced streamwise and downward fluid momentum, which ought to be re-

flected in the relative arrangement of the particle positions. An assessment of the structure of the dis-

persed phase during the settling phase and beyond is subject of this chapter, and inferences will be

made regarding the role of self-organisation on the spreading behaviour.

6.1 Clustering

First of all, the contaminant trajectories are analysed with regards to the formation of particle clusters.

As discussed in §2.3.2 and §2.3.4, clustering may occur due to turbulent effects such as preferential

sweeping or may be self-induced, for instance by wake attraction effects. In the following, the emergence

of clusters will be assessed and quantified, especially with respect to its potential connection to the

enhancement in particle settling velocity.

6.1.1 Reference distribution

In order to detect and quantify particle clusters, a suitable reference distribution is required in order to

distinguish random fluctuations in the local particle density from accumulations which are induced by

physical mechanisms. In the study of homogeneous domains, the measured distribution of particles

is typically compared to random distributions with uniform probabilities in all directions, cf. e.g. Mon-

chaux et al. (2012). However, concerning the transient investigated in this thesis, the settling particles

are initially distributed inhomogeneously in the vertical direction. In fact, their initial distribution is a

state of maximum order with respect to y , and consequently, vertical dispersion will generally tend to

reduce the orderliness compared to a three-dimension uniform random arrangement with time which

complicates the detection of potential particle accumulations. For this reason, special care is to be taken

in the choice of a suitable reference distribution in order to quantify the formation of clusters.

For the purpose of familiarising oneself to the phenomenon which is to be quantified, fig. 6.1 displays

an example for the emergence of three-dimensional structures of the solid phase shortly after the start

of the transient. When comparing the contaminant arrangement to the initially homogeneous arrange-

ment in a single wall-parallel plane, cf. fig. 3.1, it becomes immediately obvious that a mechanism exists

which leads to the formation of accumulations and voids. While the portrayed arrangement evidently

possesses increased order in streamwise and spanwise directions, dispersion reduces the orderliness

in the wall-normal direction, and when the arrangement is compared to a three-dimensional uniform

random distribution, these effects counteract each other. Therefore, in order to avoid undesired effects
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flow

g

Figure 6.1: Exemplary visualisation of the formation of clusters shortly after the start of the transient settling. The contaminants
are coloured by their vertical positions indicating their vertical dispersion. The parameter point shown is G10-D10-HR
at t ≈ 2.2tb .

caused by the disorganisation in y , the reference arrangement needs to take into account the localised

nature with regards to this direction.

A potential resolution to this difficulty is to disregard the vertical component of the particle position

entirely, i.e. to only analyse accumulation effects solely in a projection onto the wall-parallel plane.

While this is a practical solution for early times where the vertical localisation is still prominent, it defies

the purpose of the clustering analysis with regards to collective effects at later times as the possibility for

particles to interact with each other predominantly depends on their instantaneous proximity in three

dimensions. The negligence of the vertical position at times where wall-normal localisation is mostly

lost does not necessarily quantify this proximity, and thus, complicates the interpretation of the results.

A more suitable solution is to construct a reference distribution which takes into account the confine-

ment of possible particle positions with respect to the vertical direction. In order to achieve this, the

probability density for the random distribution cannot be uniform with respect to y , but should rather

reflect the progressive dispersion which is observed in the settling simulations. This is accomplished by

extracting the time-varying probability distribution of the vertical contaminant positions from the sim-

ulation data, which is then randomly sampled to obtain non-uniformly distributed y-positions for the

randomly arranged reference particles, whereas uniformity is upheld in the perpendicular directions.

The resulting algorithm then reads as follows. To begin with, the vertical contaminant positions are

gathered for all realisations of the parameter point as a function of time passed since the initial release,

and from these positions, a time-dependent cumulative density function cdf(yc ) is constructed. Subse-

quently, Nc particles are distributed using a random Poisson process under the condition that particle

do not overlap, cf. §3.6. Therefore, a candidate for the centre point position is generated by drawing two

uniformly distributed pseudorandom numbers from the intervals [0,Lx ) and [0,Lz ) for the horizontal

components, and one pseudorandom number in accordance with cdf(yc ) for the vertical component.1

1 In practice, the non-uniform distribution is easily achieved by uniformly sampling the inverse of cdf(yc ).
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Figure 6.2: Visual sketch describing of the random distribution of contaminant particles which are used as a reference to identify
clustering in the following. From the simulation data, the vertical distribution of contaminants is extracted in order to
obtain the cumulative density function of yc as a function of time. The random sample particles are then generated
such that they follow a uniform distribution in x and z, whereas the distribution is non-uniform in y following cdf(yc ).
The advantage of this method is that the confinement of the wall-normal particle positions is accounted for and vertical
dispersion does not conceal the emergence of structures in the wall-parallel directions.

The candidate is examined with regards to overlaps with previously distributed particles. If it does over-

lap, the process is repeated until a suitable candidate is found and all reference particles have been

distributed. In practice, a multitude of such random reference distributions are generated to obtained

converged statistics, with the total number of sample particles being of O(107) in the subsequent analy-

ses. A visual sketch of this method of randomly distributing particles is provided in fig. 6.2.

6.1.2 Nearest neighbour analysis

Now that a suitable reference arrangement has been established, an appropriate way of quantifying

clustering needs to be defined. A straightforward way of characterising the spatial structure of the dis-

persed particles is the nearest neighbour analysis proposed by Kajishima (2004b) for this context. In this

method, the distance from the i -th particle to its nearest neighbour is computed by

R(i )
NN (t ) ..= min

{∣∣x( j )
c −x(i )

c

∣∣ : j ∈ {1,2, . . . , Nc }∧ j ̸= i
}

, (6.1)

and a global indicator for clustering can then be deduced by ensemble-averaging R(i )
NN and comparing

it to the reference arrangement. The choice of this approach was mainly motivated by its capability to

provide a meaningful value for the state of clustering for each individual particle in the current con-

text, which is for instance not the case for approaches based on local particle concentrations due to

the abrupt decline in this quantity at the front of the settling ensemble which introduces undesired be-

haviour.
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Figure 6.3: Ensemble-averaged distance to the nearest neighbouring contaminant particle normalised by the value obtained for
the random arrangement described in §6.1.1 and as a function of time. (a) Only capturing the transient phase and
time scaled by the characteristic settling time. (b) Extended temporal range for the cases with long observation times,
cf. table 3.3, showcasing the evolution in the bed-interaction phase. The time is scaled in bulk units. Legend: G30-D10-
LR ( ), G10-D6-LR ( ), G15-D10-LR ( ), G15-D6-LR ( ), G30-D10-RP ( ), G10-D6-RP ( ), G30-D15-HR
( ), and G10-D10-HR ( ).

Figure 6.3 displays the ensemble-averaged distance to the nearest neighbour defined analogously to

eq. (4.1). The data is normalised by the corresponding value RNN ,ref (t ) for the random arrangement

described in §6.1.1, and hence, values smaller than unity indicate that the contaminants tend to accu-

mulate more substantially than what is expected for random fluctuations. All parameter points under

investigation exhibit signs of clustering. When focusing on the transient settling phase, the time at which

clustering is found to be most intense coincides well with the time at which the contaminant settling ve-

locity is most enhanced, cf. fig. 4.1, suggesting a relationship between the two phenomena. Interestingly,

it can be noted that the behaviour for G30-D10-LR is qualitatively different from most other parameter

points at early times in the regard that clustering is only found to occur for t ⪆ 0.25tp,s . The correspond-

ing settling over ripple bedforms behaves similarly, albeit to a lesser degree. When inspecting on the

bed-interaction phase after the initial settling has concluded, a spatial organisation of contaminants is

found to be maintained. In fact, in the presence of ripple features, the contaminants are observed to

cluster for a second time around t ≈ 50–100tb , and the degree of accumulation is found to be of similar

magnitude or even more significant than during the settling phase for both parameters investigated.2

The time at which the second peak occurs coincides with the minimum of the streamwise contaminant

flux observed in fig. 4.20 for each case, and its origin will be subject of investigation of §6.5. In the ab-

sence of bedforms or at longer observation times for ripples, the level of organisation stays relatively

constant with a slow tendency to approach the random state.

The apparent correlation between
〈

RNN

〉
T

and
〈

vc

〉
T

will now be assessed. While there is a known mech-

anisms available which might give rise to a cause-effect relation between the two quantities—namely

the wake attraction discussed in §2.3.4—it was argued in §5.2.2 that both velocity enhancement and

clustering are more likely to be caused by preferential sweeping or similar turbulence-driven effects. In

order to clarify this, R(i )
NN is inspected from the spatially-resolved perspective by introducing the distance

to the nearest neighbor at the time of the initial crossing of a wall-parallel plane, viz.

R(i )
NN ,X

..= R(i )
NN

(
t (i )
c,X

)
(6.2)

2 The occurence of the first peak displayed in fig. 6.3(a) is hardly perceptible in fig. 6.3(b) as it occurs at around 5tb and the
resolution of the long-term evolution is of O(10tb ).
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Figure 6.4: (a) Distance to the nearest neighbouring contaminant particle averaged at the time of crossing a given wall-normal
plane. The absolute value scaled in multiples of the contaminant particle diameter is shown. (b) Linear correlation
coefficient between the nearest neighbour distance and instantaneous settling velocity at the crossing time. Legend:
G30-D10-LR ( ), G10-D6-LR ( ), G15-D10-LR ( ), G15-D6-LR ( ), G30-D10-RP ( ), G10-D6-RP ( ), G30-
D15-HR ( ), and G10-D10-HR ( ).

where t (i )
c,X(y) is the time at which the i -th contaminant particle first crosses the wall-parallel plane lo-

cated at y , cf. §4.2. When the wake attraction mechanism is active, the settling velocity is generally

enhanced for accumulations of particles. In fig. 6.4(a), the mean distance to the nearest neighbour is

shown as a function of vertical position and in absolute terms, i.e. not scaled with respect to a refer-

ence arrangement. As can be observed, the distance between particles generally increases with growing

distance from the plane of initialisation which does not align with the hypothesis that the settling ve-

locity enhancement is caused by a collective effect, as the enhancement becomes more significant with

growing distance from the initial position, cf. fig. 4.6. A more rigorous and direct evaluation of the cor-

relation between R(i )
NN ,X and v (i )

c,X at the time of crossing is achieved using a linear correlation coefficient

defined analogously to eq. (4.8). Figure 6.4(b) display the evolution of ϱ
(
RNN ,X, vc,X

)
with respect to the

vertical position. The correlation is rather weak for the most part, and is most significant close to the

plane of initialisation for the parameter points which exhibit only little clustering at early times. This

phenomenon will be subject of further investigations.

6.1.3 Conditionally averaged particle concentration

In order to examine the relative positioning of particles in clusters, the local solid volume fraction is

assessed in the particle-conditioned reference frame. For this purpose, the conditionally averaged solid

volume fraction is defined as

〈
φc

〉
PXϕ (r, ỹ , y) ..= 1

2πr

∫ 2π

0

〈
χc (r,ϕ, ỹ , t )

〉
X

dϕ, (6.3)

where χc (r,ϕ, ỹ , t ) is the solid indicator function applied exclusively to contaminant particles in a cylin-

drical coordinate system whose axis is aligned with the vertical direction and whose origin coincides

with the centroid of the particle considered. Hence, 〈•〉PXϕ denotes an azimuthal average in the particle-

attached frame of reference conditioned to the time when the contaminant particle first crosses a given

wall-parallel plane.

The conditionally averaged particle concentration is displayed in fig. 6.5 for y = 0.8Hf which approxi-

mately coincides with the position where the maximum of ϱ
(
RNN ,X, vc,X

)
occurs. Four parameter points

are shown which are selected such that they represent various degrees of correlations. The difference
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Figure 6.5: Conditionally averaged local solid volume fraction normalised by the total solid volume fraction at y = 0.8Hf . (a)
G30-D10-LR, (b) G15-D6-LR, (c) G10-D6-LR, and (d) G10-D6-HR. The parameter points are ordered according to the
correlation between
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T at this position of the wall-parallel plane in decreasing order, cf. fig. 6.4(b). The

circular grey lines indicate radial distances from the particle centroid in steps of 1dc .
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Figure 6.6: Same as fig. 6.5, but for y = 0.5Hf . (a) G30-D10-LR, (b) G15-D6-LR, (c) G10-D6-LR, and (d) G10-D6-HR.

in the relative arrangement of contaminant particles is striking: while for G30-D10-LR neighbouring

particles are preferentially located side by side, the relative positioning for G10-D6-HR is substantially

more homogeneous. The former arrangement resembles the arrangement of particles in the plane of

initialisation and is presumably a remnant thereof. Thus, it should be emphasised that this horizontal

alignment is not a cluster in the sense of §6.1.2, but rather a result of the lack of vertical dispersion,

which is also reflected by fig. 6.3(a). Moreover, it can be hypothesised that a predominantly horizontal

arrangement between particles is unfavourable regarding an enhancement of settling velocity as it is

likely subject to the hindrance effect described by Richardson and Zaki (1954), cf. §2.3.4. Evidence for

this supposition is provided by the trend of ϱ
(
RNN ,X, vc,X

)
in between the parameter points which sug-

gests that the positive correlation is proportional to the degree of horizontal alignment of
〈
φc

〉
PXϕ. With

advancing progress of the settling phase, all relative particle positionings tend to become more isotropic

as can be inferred from fig. 6.6. In fact, a radial peak in the local solid volume fraction indicates that clus-

tering occurs, but no elongated structures are formed in the direction of gravity as would be typical for
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6.2 Hindrance and self-organisation

Table 6.1: Numerical parameters of the auxiliary simulations conducted to determine the hindrance effect during collective set-
tling in a quiescent or laminar open channel.

case [Lx,h×Lz,h]/Ly,h [Nx,h×Ny,h×Nz,h] Ly,h/dp dp /∆xh Np Φp φp (yp,0)

G30-D10-HIN [1.67×0.67] [640×384×256] 25.6 15 123 3.5 ·10−3 0.13

G15-D10-HIN [1.67×0.67] [640×384×256] 25.6 15 123 3.5 ·10−3 0.13

G15-D6-HIN [1.67×0.67] [640×384×256] 38.4 10 417 3.5 ·10−3 0.20

G10-D6-HIN [1.67×0.67] [640×384×256] 38.4 10 417 3.5 ·10−3 0.20

wake attraction. In conclusion, there is little support for the hypothesis that the formation of clusters is

induced by the particles alone.

6.2 Hindrance and self-organisation

To study the consequences of horizontal alignment on the settling of particles, auxiliary simulations

regarding the collective settling in an open channel with smooth walls under initially quiescent and

laminar flow conditions are conducted. Similar to the shear analysis in §5.3.3, this approach attempts to

make qualitative inferences on the role of collective effects on the particle settling velocity by studying

proxy problems of reduced complexity for which the difficulties posed by turbulence are absent. The

domain within which the auxiliary simulations are conducted has the same dimensions and numeri-

cal resolution as the one described in §5.3.3, yet it differs from it in terms of the boundary conditions

(no-slip/free-slip) and the number of particles present. In addition to this, the numerical resolution of

the particles matches exactly that of the isolated settling simulations described in §3.7. To obtain rep-

resentative results, Np is chosen such that the total solid volume fraction is around the same as that for

the turbulent simulations. Moreover, the ratio between the vertical extent of the domain Ly,h and the

particle diameter is kept similar such that the local solid volume fraction in the plane of initialisation is

matched. Two flow states are examined for the channel—an initially quiescent environment similar to

§3.7, and a laminar flow at the same bulk Reynolds number as the turbulent simulations.3

Figure 6.7(a) shows an aggregation of the ensemble-averaged settling velocity, the standard deviation of

vertical particle position, and the normalised distance to the nearest neighbour as a function of time for

the initially quiescent environment. The occurrence of a hindrance effect is conspicuous. For all param-

eter points, the settling velocity is found to be significantly reduced compared to the terminal velocity

of an isolated particle. While for the cases with the larger particle diameter an approximate plateau is

reached and maintained, the cases with smaller particles initially exhibit a plateau with stronger reduc-

tion, but subsequently start to accelerate again until a second plateau at a faster velocity is approached.

The stronger reduction in case of the latter is in accordance with the finding of Richardson and Zaki

(1954) as the local volume fraction at yp,0 is higher for the smaller particles. This hindrance is essentially

a combined result of fluid displacement, vertical boundedness and incompressibility which demand

a fluid flow in the direction opposing the falling direction of the particles. The resulting resistant hy-

drodynamical force on the particles depends on the arrangement of the ensemble. While the initial

homogeneous arrangement in the wall-parallel plane is arguably a regime of high resistance, a reorgan-

isation which yields a vertically stacked arrangement of particles would exhibit a significantly reduced

3 Despite the obvious possibility for the flow to become turbulent and the perturbations introduced by the settling particles, it
has been verified that the flow retains its laminar velocity profile during the relatively short time of observation.
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Figure 6.7: Results of the collective settling simulations in (a) a quiescent environment and (b) laminar flow. From top to bottom,
the figure shows the settling velocity normalised by the terminal velocity of an isolated particle, the standard deviation
of vertical position, and the distance to the nearest neighbour normalised by the value of the corresponding reference
distribution. All quantities are given as a function of time scaled by the characteristic settling time. Legend: G30-D10-
HIN ( ), G10-D6-HIN ( ), G15-D10-HIN ( ), and G15-D6-HIN ( ).

effective frontal area such that it is presumably less affected by the counterflow. Therefore, it can be hy-

pothesised that the second acceleration phase observed for G15-D6-HIN and G10-D6-HIN is associated

to the breakup of the initial layer and a rearrangement of the particles. This hypothesis is corroborated

by the temporal evolution of the standard deviation of vertical particle position: for the smaller particles

the vertical spread increases alongside the particle velocity, whereas for G30-D10-HIN and G15-D10-

HIN the standard deviation does not increase substantially beyond one particle diameter indicating

that the two-dimensional arrangement stays intact. Similar inferences can be made from the distance

to the nearest neighbour normalised by the reference arrangement. Here, it can be observed that the

initially randomly distributed particles tend to reorder themselves such that their distance from each

other increases.

When comparing the spatial structure of the particle arrangement at initialisation and at a time where

the settling velocity has converged for G30-D10-HIN, the organisation into a more regularly spaced ar-

rangement becomes obvious, see fig. 6.8(a), and as a consequence, hindrance essentially exhibits an

effect which opposes clustering. It can also be observed that the quasi two-dimensional arrangement

eventually develops an instability during which the vertical distribution loses its uniformity. For G30-

D10-HIN this loss of uniformity occurs in form of a sinusoidal perturbation in streamwise direction,

yet, in a quiescent environment it does not develop rapidly enough to break up the layer within the set-

tling time. However, when the same parameter point is examined in a laminar flow, the layer indeed

does disperse vertically which is accompanied by an increase in the settling velocity of the ensemble,

see fig. 6.7(b). The flow-induced breakup mechanism appears rather straightforward to explain: any

irregularities in the vertical distribution lead to a streamwise motion of the settling particles relative to
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6.2 Hindrance and self-organisation

each other due to the fluid shear. While particles at higher positions get pushed forward, the ones with

negative fluctuations y ′
p from the mean position are driven backwards which leads to the formation of

the spanwise-aligned structures displayed in fig. 6.8(b). This new arrangement considerably reduces

the projected frontal area of the ensemble, and the consequential reduction in resistance manifests it-

self in an increased settling velocity. The breakup mechanism notably resembles the Kelvin–Helmholtz

instability at the interface of two sheared fluids, and it may be assumed that they are similar in their

nature.

The Kelvin–Helmholtz-like instability is indeed not the only breakup mechanism which arises. In fact,

as stated earlier, the settling ensembles with the smaller particle sizes disintegrate already in the absence

of a background flow, and the average settling velocity is not substantially altered when the settling oc-

curs in a laminar flow, see fig. 6.7. When examining the spatial structure shortly before the breakup of

the first plateau for G10-D6-HIN, it can be perceived that fluctuations in y ′
p emerge in compact spots

both in absence and presence of a background flow, see fig. 6.9. This behaviour is reminiscent of the

Rayleigh–Taylor instability which occurs at the unstable interface of two fluids with different densities

under the action of gravity. With time, the initial disturbances increase in amplitude and the layer dis-

perses vertically with little organization in the wall-parallel plane, even if it is sheared. Indeed, a closer

inspection of fig. 6.9(a) and a comparison between the initial condition and the state at t = 0.19tp,s yields

that the arrangement stays almost unaltered and that the fluctuations in vertical position coincide with

the random clusters occuring in the initialisation. The particles which are initially located in a random

cluster appear to settle slightly faster, and the resulting dispersion is sufficient to break up the layer be-

fore the opposing flow is capable of maximizing the distance between the particles. Thus, this breakup

mechanism is fundamentally different from the Kelvin–Helmholtz-like instability in the sense that no

substantially ordered state is achieved before the breakup, and that no shear is required for it to be active.

Furthermore, the nearest neighbour analysis presented in fig. 6.7 might indicate that the particles which

undergo the shear-driven instability show a stronger tendency to cluster after the disintegration of the

layer than those which undergo the random-cluster instability. If this is indeed the case, it is likely the

result of the tendency of shear to vertically stack particles creating intermediate voids in the xz-plane,

whereas the cluster-induced instability does not lead to nor require significant horizontal movement,

and hence, retains its random horizontal arrangement.

A substantial recognition from the examination of the proxy settling problems is that a strong reduc-

tion in settling velocity goes hand in hand with an increased order in the internal structure of the set-

tling ensemble of particles. In fact, when no effective breakup mechanism for the layer is available, the

induced resistant flow will actively maximise the horizontal spacing between the particles which es-

sentially counteracts the formation of clusters as indicated by the nearest neighbour analysis. In some

sense, clustering is antagonistic to the hindrance phenomenon as any reorganisation in the wall-parallel

plane towards spatial intermittency reduces the effective frontal area of the ensemble and may lead to a

bifurcation in settling behaviour through an induced breakup mechanism. As a consequence, the rele-

vance of hindrance on the settling velocity in the turbulent case is likely tied to the tendency of particles

to form clusters.

For the majority of the turbulent parameter points under investigation clusters are formed immediately

at the beginning of the transient, cf. fig. 6.3, and it is thus likely that the hindrance effect is minimal in

these cases. However, this is not the case for G30-D10-LR and G30-D10-RP where an initial reluctance

to form cluster is observed. Based on the observations made in the current section in conjunction with

the findings of §6.1.3, it stands to reason that hindrance is an important effect to be considered for

these cases at early times. This is reinforced by the temporal evolution of the standard deviation of the

vertical particle position for the turbulent cases, which is provided in fig. 6.10 and indicates especially

135



6 Pattern formation in the dispersed phase

x

z

x

z

x

z

x

z

−2 −1 0 1 2

y ′p
�

dp

t = 0

t = 1.0tp,s

t = 0

t = 1.0tp,s

(a) (b)
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Figure 6.9: Same as fig. 6.8, but for the parameter point G10-D6-HIN and at different times. (a) Quiescent environment, (b) lami-
nar open channel flow.
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small vertical dispersion for these cases. Consequentially, it is to be expected that a reduction in settling

velocity and a prolongation of the initial acceleration phase occurs for G30-D10-LR and G30-D10-RP

due to this collective effect. This may serve as an explanation for the deviant behaviour of these cases

observed in fig. 5.8. Moreover, the antagonistic relationship between order-inducing hindrance and

intermittency-inducing clustering may unveil part of the reason for the correlation between RNN ,X and

vc,X demonstrated in fig. 6.4(b)—particles which fall in clusters exhibit less resistance due to hindrance.

This is especially supported by the fact that the correlation is the highest for parameter points where

hindrance is expected to be most significant, and the fact that the correlation decreases with increasing

distance from the plane of initialisation.

6.3 Preferential concentration in the crossing plane

The previous analyses lead to the conclusion that clusters of contaminants are likely not self-induced,

but rather a result of turbulent interactions. Clustering in turbulence is often associated to preferen-

tial concentration. In particular, this connotes that clusters emerge due to a spatially inhomogeneous

distribution of the probability density of presence for a particle which dependents on the local flow con-

ditions in the simplest case, or on non-local effects in the more general case, cf. §2.3.2. Thus, in contrast

to the analysis of clustering, the analysis of preferential concentration does not necessarily require an

evaluation of the instantaneous relative arrangement of particles at a given instance in time. Instead,

the crossing locations of settling particles can be sampled over a finite time interval in order to obtain

a probability distribution which can be linked to flow features under the assumption that this sampling

time interval is sufficiently short compared to the intrinsic time scales of the structures which gives rise

to this effect.

6.3.1 Compensation for crossing time

In the following, the quantities of interest will be the streamwise and spanwise positions at which con-

taminants cross a given wall-parallel plane. In general, these crossings do not take place simultaneously,

but instead it was found in §4.4 that the cross-through times are distributed according to a generalised
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Gamma probability distribution. Since the particles possess a significant streamwise velocity compo-

nent on average, the streamwise position at which particles cross a given wall-parallel plane may sig-

nificantly differ between particles which interact with the same structure, but pass at different times

if viewed from the point of view of a steady observer. An appropriate frame of reference would be re-

quired to move with the propagation velocity of the structure of interest which is generally not known

or may not even be defined unambiguously. A viable alternative is to investigate the crossing locations

in a reference frame moving at a time-invariant velocity equal to the local value of the mean streamwise

contaminant velocity
〈

uc

〉
X

. Letting x(i )
c,X denote the streamwise crossing location of the i -th particle in

the steady frame of reference, the crossing location in the moving frame of reference is hence given by

x̃(i )
c,X(y) ..= x(i )

c,X−
〈

uc

〉
X

t (i )
c,X, (6.4)

while accounting for the periodicity of the domain during the shift, i.e. x̃(i )
c,X ∈ [

0,Lx

)
. It is important to

note that if x(i )
c,X was distributed randomly and independent of t (i )

c,X, the surrogate x̃(i )
c,X would be randomly

distributed as well. This increases the robustness of the procedure and ensures that patterns which are

detected in x̃(i )
c,X are not a result of the choice in propagation velocity of the moving frame, but rather

an outcome of spatial and/or temporal correlations in the contaminant dynamics. Furthermore, this

recognition provides a criterion for the evaluation of the appropriateness of the frame of reference—if

patterns emerge within the plane, the choice of a suitable propagation velocity should roughly maximise

their perceptibility.4 As a matter of fact, part of the motivation behind selecting
〈

uc

〉
X

was that the

resulting preferential concentration is more apparent than for other reasonable choices such as
〈

uf

〉
xzt

or ub . In accordance with chapter §4, the wall-parallel crossing location
(
x̃(i )

c,X, z(i )
c,X

)
is solely evaluated for

the first downward crossing of each particle in the following.

Figure 6.11 shows the time-compensated crossing locations through wall-parallel planes at various

heights for Ga10-D10-HR, the case which exhibits the strongest clustering according to the nearest

neighbour analysis of §6.1.2. While the initial condition only exhibits random fluctuations as expected,

intense organisation can already be observed at a small distance from the plane of initialisation at

y = 0.9Hf , i.e. when the particles have merely travelled less than four times their diameter downwards.

Following the argument made in §6.2, this arrangement likely minimises the hindrance effect at an

early stage. The shape of the arrangement strongly resembles the expirimental measurements of Fessler

et al. (1994) for small glass particles at the centreline of a vertical channel, and the simulation results

of Narayanan and Lakehal (2003) for point-particles near the free-surface of an open channel flow. In-

deed, it will be subject of §6.3.3 to demonstrate that the formation of this pattern is the outcome of the

interaction between the contaminants and near-surface vortices. While accumulations in the initial ar-

rangement are of rather small length scales with little preferential alignment in neither the streamwise

nor spanwise direction, the arrangement observed in the lower parts of the channel are considerably

different in their nature. In the lower half, the contaminants tend to align in long streamwise-aligned

stripes which resemble the large-scale streaks discussed in §5.2.2 which have already been proven to

play a primordial role in the enhancement of streamwise particle momentum.

The crossing locations for Ga30-D15-HR are qualitatively similar to the observations just described for

the other parameter point, see fig. 6.12. As both cases are started from the exact same initial flow field,

4 The concept of a single propagation velocity is owed to the demand of a preferably simple method of analysis. In general,
different structures at the same vertical position may propagate at distinct speeds, and as has been hinted at before, a rigorous
definition of such a speed is often impossible as eddies are not purely advected, but also continuously evolve in shape due to
diffusion and non-linear interactions.
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Figure 6.11: Visualisation of the time-compensated crossing locations
(
x̃(i )

c,X, z(i )
c,X

)
for Ga10-D10-HR at various wall-normal po-

sitions. Each dot represents a particle crossing where the diameter of the circle reflects the particle diameter. The
colouring represents the local density of crossings to facilitate the visual detection of regions of preferential concen-
tration. (a) The initial condition, (b-f) crossings at y = {

0.9,0.8,0.6,0.4,0.2
}

Hf , respectively.
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Figure 6.12: Same as fig. 6.11, but for Ga30-D15-HR. Note that both cases are initialised from the exact same flow field.

140



6.3 Preferential concentration in the crossing plane

0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

1

x/Hf

z/
H

f

0

0.5

1

1.5

2

AV
��

AV
�

Figure 6.13: Examplary visualisation of the cells obtained from the Voronoï tessellation and the area contained by them. The seeds
of the diagram which are depicted as black dots correspond to the crossing locations, i.e. the position of the particle
centroid at the time of crossing in the moving frame of reference. The black lines surrounding the seeds constitute
the boundaries of the corresponding Voronoï cell. The cells are coloured by their enclosed area. The figure shows a
subset of the data displayed in fig. 6.12(c).

the effect of individual turbulent structures and the difference in response between the particle param-

eter points becomes obvious. The visualisations indicate that both parameter points respond to struc-

tures of roughly the same characteristic size, and suggest that the differences in preferential concentra-

tion is mainly due to inertial effects.

6.3.2 Voronoï analysis

In both fig. 6.11 and 6.12 the local concentration of crossings has been indicated by the colour of the

dots. This colouring is based on the area AV contained by the Voronoï cells attributed to each crossing

point. The two-dimensional Voronoï tessellation partitions the wall-parallel plane into Nc,X cells each

of which is attributed to a single crossing. These cells are defined as the subset of the plane in which

the distance to the corresponding seed, i.e. the location of the crossing to which the cell is attributed,

is shorter than to any other seed. This tessellation has already been employed tacitly in fig. 6.8 and 6.9

where the cells were drawn to emphasise the regular arrangement, and is displayed exemplary for the

turbulent cases in fig. 6.13 to demonstrate how the area contained by the cell is representative for the

local accumulations and voids.

Indeed, the probability density function of the Voronoï areas comprises information on the level of or-

ganisation, and thus may be used to distinguish random fluctuations from more ordered or intermittent

configurations. In the following, the second moment of this distribution will be used as a characteristic

quantity of lower dimensionality to quantify preferential concentration. The mean area of the Voronoï

cells is dictated by the dimensions of the plane to be tessellated and the total number of seeds, and is

given by

〈
AV

〉= Lx Lz

Nc,X
(6.5)
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Figure 6.14: Second moment of the Voronoï cell area distribution
〈

A2
V

〉
where the contaminant crossing locations in the xz-plane

at various wall-normal distances constitute the seeds of the Voronoï diagram. The curves are normalised by the
corresponding value obtained for sets of points randomly distributed within the plane with uniform probability. Leg-
end: Ga30-D10-LR ( ), Ga10-D6-LR ( ), Ga15-D10-LR ( ), Ga15-D6-LR ( ), Ga30-D10-RP ( ), Ga10-D6-RP
( ), Ga30-D15-HR ( ) and Ga10-D10-HR ( ).

for the current analysis. In order to detect deviations from random behaviour, a reference value for the

second moment of the area distribution is required. Since for this analysis the directions of interest

are homogeneous, it is sufficient to generate random distributions with uniform probabilities. For a

uniformly distributed set of random points, the mean square of the Voronoï areas is given by

〈
A2

V,ref

〉= 1.28031
〈

AV

〉
, (6.6)

where the value of the coefficient has been determined numerically by Tanemura (2003). Note that this

value has been obtained for points which possess no length, width or thickness, whereas in this thesis

particles with a finite size are considered which are not allowed to overlap, and hence, maintain a min-

imum distance between their centre locations at all times. Regarding the analysis of crossing locations,

this distinction is most relevant for planes close to the plane of initialisation, as there particles will cross

at similar times, and consequently their instantaneous distance in y may be small. For planes well below

the plane of initial release, finite-size effects are expected to be negligible due to growing dispersion in

three dimensions and the resulting spread in crossing time. A detailed discussion of the effect of non-

overlapping and periodic domains on Voronoï statistics is provided by Uhlmann (2020). The deviation

from a random arrangement can be assessed by comparing the mean square of Voronoï areas obtained

for particle crossings to that obtained for the random distributions of points, whereby
〈

A2
V

〉 > 〈
A2

V,ref

〉

indicates an organisation into clusters and voids. For simulations with multiple realisations,
〈

A2
V

〉
is

evaluated for each realisation individually, and subsequently ensemble-averaged over all realisations.

When inspecting the ratio
〈

A2
V

〉/〈
A2

V,ref

〉
as a function of vertical position (fig. 6.14), it can be observed

that the initial arrangement is slightly more ordered than random points due to the initial distribution

of all contaminants at exactly the same vertical position, the finite particle size and the impossibility

of overlap. However, this order is lost already slightly below the plane of initialisation for most param-

eter points, and the rapidness of rearrangement is similar to what the cluster analysis suggested from

a temporal point of view, cf. fig. 6.3. Furthermore, the organisation into streamwise-aligned stripes at

y ⪅ 0.5Hf is reflected by the maintained relatively high values of
〈

A2
V

〉
at least for the HR simulations,

although the values generally decrease with increasing distance from yc,0. While it might be tempting

to interpret fig. 6.14 in terms of the response of particles to the particular turbulent structures found in

the various regions and layers of turbulence, such an interpretation is likely misleading. Apart from a

potential non-locality of the preferential concentration, this is due to the fact that the further the plane

of interest is located from the plane of initialisation, the higher the dispersion in cross-through times of
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Figure 6.15: Normalised second moment of the Voronoï cell area distribution averaged over the intervals y ∈ [0.4,0.5] Hf ( , , )
and y ∈ [0.8,0.9] Hf ( , , ) as a function of relative turbulence intensity. Legend: G30-D10-LR ( , ), G10-D6-LR
( , ), G15-D10-LR ( , ), G15-D6-LR ( , ), G30-D10-RP ( , ), G10-D6-RP ( , ), G30-D15-HR ( , ), and G10-D10-
HR ( , ).

the particles becomes, c.f. fig 4.13. This effectively acts as a filter for eddies with a lifetime significantly

shorter than the range of cross-through times: if at a given time a particle interacts with a short-lived

eddy and another particle passes through the same location at a later time after this eddy has vanished,

its footprint will be blurred. This effect alone likely leads to a reduction of
〈

A2
V

〉
with decreasing vertical

position, and thus, the values obtained at different vertical positions should only be directly compared

with caution.

Generally, all cases investigated exhibit signs of preferential concentration, albeit at different intensities.

In an attempt to further synthesise the results, fig. 6.15 shows the intensity of preferential concentra-

tion averaged over the two intervals y ∈ [0.8,0.9] corresponding to the initial clustering near the surface,

and y ∈ [0.4,0.5] corresponding to the phase of streamwise-alignment. A reasonable collapse may be

achieved when the data is scaled as a function of relative turbulence intensity, although some scattering

may be observed. The data has also been analysed with respect to a Stokes number dependence, how-

ever, St+ fails to capture the trend of
〈

A2
V

〉
, and in particular, fails to collapse the curves for the LR, RP

and HR cases (figure omitted).

6.3.3 Initial organisation

The rapid formation of accumulations and voids after the start of the settling process is now exam-

ined on the example of G10-D10-HR—the parameter point for which this phenomenon is the most pro-

nounced. Figure 6.16 displays an aggregation of the flow conditions and contaminant trajectories at

the onset of the settling process. The fluid flow at t = 0 in the plane of initialisation shows intermittent

regions of upward and downward fluid flow which are related to the splats and antisplats on the free

surface, cf. §2.2.3. The splats which impinge on the impermeable wall induce a diverging flow in the

horizontal plane which is perceptible in the superimposed streamlines. The instantaneous flow field

is characterised by two streamwise-aligned regions which differ regarding the intensity of fluid velocity

fluctuations and are likely indicators for the presence of large-scale motions in the outer layer. When the

contaminant trajectories in the horizontal plane are examined, see fig. 6.16(b), it becomes obvious that

the movement of the particles matches the streamlines of the fluid flow well within the short time in-

terval under investigation—the majority of the contaminants cross the plane at y = 0.94Hf at which the

trajectories are truncated within 2tb . As the streamlines predominantly diverge from regions of upward

fluid motion, the contaminants are transported away from these regions and cross the subjacent plane
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Figure 6.16: Flow conditions and particle trajectories at the very beginning of the transient settling phase. (a) Fluid flow at t = 0
in the plane of initialisation located at yc,0. The coloured regions indicate the vertical component of the fluid veloc-
ity. The streamlines indicate the horizontal velocity components in the moving frame of reference with streamwise
velocity

〈
uf

〉
xz

≈ 〈
uc

〉
T. The thickness and opacity of the streamlines indicate the magnitude of the horizontal fluid

velocity
√

u′2
f +w2

f . (b) Contaminant trajectories projected onto the wall-parallel plane starting from the initial posi-

tion at y ≈ 0.95Hf and truncated at the location where the plane located at y = 0.94Hf is crossed. The trajectories are
shown in the same moving frame of reference as the fluid data. The progressive change in colour along a trajectory
indicates the temporal evolution. (c) Horizontal locations of crossings through y = 0.94Hf coloured by the cross-
through time. The dots correspond to the endpoints of the trajectories previously shown and are likewise displayed
in the moving frame of reference. The parameter point on display is G10-D10-HR.
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Figure 6.17: (a) Vortical structures near the upper boundary of the open channel visualised by the isosurfaces Q+ = 5 ·10−5 just
before contaminants are seeded into the flow. Only the region where y > 0.875Hf is shown. The colouring indicates
the direction of rotation of the vortices by showing the local vertical fluid velocity. (b-f) Vortical structures as before,
but in the presence of settling contaminants at various times. Crossing locations through y = 0.94Hf within 0.25tb
before and after the indicated time are displayed by black dots. The trajectories of the crossing particles for 1tb before
the crossing occurs are shown by black lines. The data is presented in a frame of reference moving with
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(
yc,0

)
.
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6 Pattern formation in the dispersed phase

at locations where the vertical fluid velocity is small or negative. The result is the occurence of prefer-

ential concentration in downdrafts, and clustering in the form of three-dimensional accumulations—

the particles which initially travel across the wall-parallel plane become vertically stacked behind those

which spawned in a downdraft—and voids. The cross-through positions displayed in fig. 6.16(c) suggest

that particles which cross at later times due to the rearrangement process predominantly do so near the

edges between positive and negative vf which manifests itself in well-defined edges in the distribution

of cross-through locations. Similar sharp concentration fronts have been observed experimentally e.g.

by Fessler et al. (1994).

As discussed in §2.2.3, splats and antisplats are understood to be manifestations of surface-parallel vor-

tices which are located below the upper boundary of the open channel. Figure 6.17(a) portrays the

vortical structures by means of isosurfaces of the Q-criterion introduced in eq. (2.51) at the time when

contaminants are seeded into the flow. The vortices are preferentially located in the regions where in-

tense fluid up- and downdrafts occur and the majority of them are aligned horizontally with the excep-

tion of few surface-attached vertical vortices. The trajectories of the contaminant particles are visualised

in fig. 6.17(b-f) in batches for different time intervals alongside the evolving fluid flow. At all times it is

evident that the particle motion is driven by the preferential sweeping mechanism. Virtually all contam-

inants are transported towards the downward facing side of nearby surface-parallel vortices and cross

the subjacent wall-normal plane in downdraft regions, which explains the sampling bias in the fluid

velocity sampled by the contaminants shown in fig. 5.8, and consequently, the rush enhancement in

settling velocity. Moreover, since the particles are focused in the interstitial regions between the vor-

tices, the origin of clustering and preferential concentration observed becomes evident, and indeed,

these phenomena are driven by the interactions of the contaminants with turbulent structures.

6.3.4 Migration into large-scale streaks

While the interaction of the contaminants with vortical structures at early times was relatively straight-

forward to visualise due to the brevity of the time interval of interest, things become more complicated

when the interaction with large-scale structures are concerned. In the following, the evolution of the

scales of preferential concentration is analysed in a manner similar to the Fourier analysis presented in

§5.5 for the fluid flow. For this purpose, the discrete crossing locations through a plane at height y are

converted to an Eulerian field by introducing the probability density PX(x, z, t , y) of the crossing loca-

tions in the frame of reference moving with
〈

uc

〉
X

(y) as introduced in §6.3.1. The crossing probability

density fulfils the normalisation property

∫ Lx

0

∫ Lz

0

∫ tobs

0
PXdt dz dx = 1, (6.7)

and it should be acknowledged that the wall-normal position y serves a different purpose from the other

two spatial dimensions in the sense that it defines the position of the plane under investigation rather

than contributing to the definition of a three-dimensional probability of presence. For the analysis in

this section, the temporal dependence is not of importance, and thus, as time-collapsed variant of PX is

introduced as

PX,t (x, z, y) ..=
∫ tobs

0
PXdt . (6.8)

In its essence, PX,t comprises the information visualised in fig. 6.11, but in terms of a Eulerian con-

centration field which is in practice constructed using a two-dimensional binning method. In order to
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Figure 6.18: Evolution of the amplitudes of selected Fourier coefficients of the time-collapsed probability density of crossing lo-
cations as a function of the vertical position of the wall-normal plane. The number pairs (k, l ) in the legend indicate
the corresponding harmonics of the periodic system. (a) G10-D10-HR and (b) G30-D15-HR.
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Figure 6.19: Spatial evolution of the amplitudes of selected Fourier coefficients of the (a) streamwise fluid velocity and (b) vertical
fluid velocity. The number pairs (k, l ) in the legend indicate the corresponding harmonics of the periodic system.

extract the spatial scales of preferential concentration, PX,t is expanded by a Fourier series analogously

to eq. (5.23) such that the backtransform reads

PX,t (x, z, y) =
∞∑

k=−∞

∞∑
l=−∞

P̂(k,l )
X,t exp

(
−i (κ(k)

x x +κ(l )
z z

))
. (6.9)

Here, P̂(k,l )
X,t (y) is the discrete Fourier coefficient, andκ(k)

x ,κ(l )
z are the wavenumbers introduced in eq. (5.24)

for l-th/k-th harmonics of the periodic system.

Figure 6.18 present the amplitudes of selected Fourier coefficients of PX,t as a function of vertical po-

sition whereby the selection aims at representing the modes which most significantly contribute to〈
P2
X,t

〉
xz throughout the various positions. The tendency of the accumulations to grow into larger pat-

terns is well observed for the both cases presented. For positions close to the plane of initialisations,

harmonics with wavelengths of a small integer fraction of the domain size contribute the most to the

variations observed in the preferential concentration field. These modes subsequently lose importance

in favour of the long streamwise modes which in the domain sizes investigated in this thesis span the

entire streamwise length of the domain (k = 0). While for G10-D10-HR the (0,2)-mode clearly dominates

below y ⪅ 0.6Hf (infinitely long, two spanwise undulations), the result is less conclusive for G30-D15-

HR, but exhibits a similar tendency. These observations align well with the visual information provided

by fig. 6.11 and 6.12.
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An interesting question to be answered is whether the progressive migration into large-scale streaks

is a result of particle inertia or rather driven by the inhomogeneity of turbulence in the wall-normal

direction. In order to answer this, fig. 6.19 shows the same selection of modes as for fig. 6.18(a), but for

the squared amplitudes of the Fourier coefficients of uf and vf . The similarity in the spatial evolution

between the (0,2)-mode of uf and PX,t is striking, and suggests, that the progressive pattern formation is

mainly driven by the inhomogeneous structure of wall-bounded turbulence. Yet, it may be observed that

the progression of PX,t lacks behind that for the large-scale streak which may imply non-locality in the

mechanism responsible for preferential concentration. It is to be assumed that the driving mechanism

for the migration of contaminants into large-scale streaks is the same mechanism which generates these

structures in the first place. As it now stands, the interaction of particles with vortex clusters (del Álamo

et al. 2006) or with packets of hairpin vortices (Kim and Adrian 1999) appear to be the prime candidates

for the cause of this phenomenon.

6.4 Large-scale organisation and velocity
enhancement

It was demonstrated quantitatively in §6.3.4 that contaminants arrange themselves mainly in structures

of infinite streamwise length in the computational domains investigated. In the discussion on secondary

flow patterns and spanwise-resolved crossing locations in §5.1 it was concluded that the streamwise-

temporal averaged flow field is insufficient to explain the magnitude of particle velocity enhancement,

especially in the direction of gravity. The introduction of the probability density of crossing locations

enables a more detailed investigation using time-resolved flow fields which are solely collapsed in the

streamwise direction in order to assess whether the discrepancy is caused a disregardance of time scales

or length scales or both. To achieve this, a streamwise-collapsed variant of PX is defined as

PX,x (z, t , y) ..=
∫ Lx

0
PXdx, (6.10)

and an example of the temporal evolution of this quantity is shown in fig. 6.20 which clearly reflects the

migration of contaminants into the preferred spanwise locations during the settling process. A compar-

ison with the deviations of
〈

uf

〉
x

from the full spatio-temporal average shown in the same figure elu-

cidates that this preferred location coincides with high-momentum pathways as expected. Essentially,

fig. 6.20 depicts the time-resolved combination of fig. 5.1(a) and 5.3(a).

A simple estimation of the fluid velocity experienced by the contaminants under the assumption that

only length scales with infinite extent in x are relevant is given by

〈
uf,α

〉est
SX

..=
∫ Lz

0

∫ tobs

0
PX,x

〈
uf,α

〉
x

dt dz. (6.11)

Figure 6.21 depicts a juxtaposition of the value obtained by this estimation and the actual value sampled

by the contaminants, cf. §5.2.3. While for the streamwise velocity component, the disregardance of

streamwise variations only results in a discrepancy by a factor of two, the vertical velocity is severely

underpredicted by a factor of O(10). This again suggests that the sampling of fluid downdrafts of length

scales smaller than Hf is essential in order to explain the enhancement in settling velocity, whereas the

enhancement in streamwise velocity is predominantly a large-scale phenomenon.

148



6.4 Large-scale organisation and velocity enhancement

t

yz

PX,x = 0.06H−1
f t−1

b

�
uf

�
x
= �

uf
�
xzt

+�−1.5uτ,+1.5uτ
�

Figure 6.20: Visualisation of the streamwise-collapsed probability density of crossing locations (upper left) and the streamwise-
averaged fluid velocity

〈
uf

〉
x

(lower right). For PX,x the colour scheme indicates the vertical position, while for
〈

uf
〉
x

the sign of the deviation from
〈

uf
〉
xzt

is shown. The parameter point on display is G10-D10-HR.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

y
/

Hf

( 〈
u

f
〉 S
X
−

〈 u
f
〉 xz

t) /
u
τ

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

y/Hf

〈 v f
〉 S
X

/ u
τ

(a) (b)
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only long streamwise modes contribute. (a) Streamwise fluid velocity and (b) vertical fluid velocity. The line colours
represent the cases G30-D15-HR ( ) and G10-D10-HR ( ), whereas the line styles indicate the actual value ob-
tained from the DNS data using spherical-averaging
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SX↓ ( ) and the estimate from the streamwise-collapsed

consideration
〈

uf,α
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SX
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6 Pattern formation in the dispersed phase

6.5 Interactions with the sediment bed

The focus is now placed on the long-term interactions between the contaminant particles and the pre-

established sediment bed, especially with regards to the influence of bedforms. It was already observed

in §4.6 and §6.1.2 that the transport characteristics and clustering behaviour depends considerably on

the presence or absence of bedforms, and an evaluation of the cause of this discrepancy will be subject

of this section.

Figure 6.22 portrays the positions of the contaminants relative to the featureless bed at various times

for G10-D6-LR. During the settling phase and in the early interaction phase shown in fig. 6.22(a-c), the

contaminants tend so align in streamwise stripes which concide with the location of sediment ridges. In

fact, when the footprint of the large-scale roller structures is examined, i.e. the fluid velocities
〈

vf

〉
x

and〈
wf

〉
x

in the zy-plane, it stands to reason that the contaminants are pushed beneath the large-scale low-

speed streaks on the bed where they accumulate. An interesting observation to be made is that for long

observation times this pattern becomes less perceptible, see fig. 6.22(d), although the nearest neighbour

analysis of fig. 6.3(b) does not indicate that the clusters disappear. This peculiarity may be tied to the

trend of the contaminant ensemble to slowly decrease its mean vertical position, cf. fig 4.19, as it ap-

pears that contaminants get buried beneath a layer of sediment particles, although this process not very

clear in the visualisations. If this is indeed the case, contaminants which arranged themselves beneath

a low-speed streak may eventually become trapped by other particles above them, which reduces their

mobility and maintains their packed and clustered state. As can be deduced from fig. 6.22(a-d), the foot-

print of the large-scale rollers which presumably agitate the bed particles varies substantially within the

time scales of interest in this analysis. Thus, the contaminants which have not been captured by the

bed will tend to accumulate in different regions at different times, and as a result, the particle distribu-

tion may appear to become random in the projected view, albeit some clusters may be preserved due to

immobilisation.

The deposition behaviour in the presence of ripples is vastly different from what has just been discussed.

A visualisation of the contaminant-sediment interaction for the same parameter point as before, but in

the presence of ripples (G10-D6-RP) is provided in fig. 6.23. While the arrangement of contaminants

is rather homogeneous in the lateral direction, a marked inhomogeneity in the streamwise direction is

developed. In fact, from the time series it becomes obvious that the contaminants tend to be deposited

in the trough of the ripple bedform, likely due to the persistent zone of recirculation which is known

to develop behind the crest of such bedforms, cf. Kidanemariam (2016) or Kidanemariam et al. (2022)

for a detailed discussion on the flow patterns and hydrodynamic forces on particles for this exact con-

figuration. After the deposition took place, a pronounced trapping phenomenon occurs: as the ripple

propagates in the streamwise direction, the newly deposited contaminants are buried underneath a

layer of particles which is much thicker compared to what has been observed for macroscopically flat

beds due to the markedly larger variance in bed height which arises for the ripple bedform. Therefore,

the captured contaminants are essentially immobilised until the overhead layer of particles has prop-

agated far enough such that the trailing trough approaches them, which increases the probability of

erosion. This observation satisfactorily explains the oscillating trend of the ensemble-averaged vertical

position of the contaminants in time (fig. 4.19). Furthermore, the capturing effect appears to be very

efficient: when the first contaminants have already been trapped, the remaining contaminants which

are transported in the bedload or suspended load eventually also end up in the trough (fig. 6.23(b-d)).

As a result, nearly all contaminants are immobilised at t ≈ 100tb for this parameter point (fig. 6.23(d)).

This recognition provides a sound explanation of the strong temporary decrease in the streamwise con-

taminant flux observed in fig. 4.20. Since not all contaminants are trapped at the same time, the time of
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Figure 6.22: Visualisation of the interaction between contaminant particles (dark) and sediment particles (light, translucent) in
the absence of bedforms. The upper part of each subfigure shows a top view, whereas the lower part depicts the same
data from a frontal perspective. In the frontal view, the streamwise-averaged flow in the cross-section is shown in
terms of streamlines whose thickness and opacity is scaled by the corresponding velocity magnitude. The simulation
on display is the long realisation of G10-D6-LR at the times (a) t = 25tb , (b) t = 100tb , (c) t = 200tb , and (d) t = 400tb .
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Figure 6.23: Visualisation of the interaction between contaminant particles (dark) and sediment particles (light, translucent) in
the presence of ripple features. The upper part of each subfigure shows a top view, whereas the lower part depicts the
same data from a lateral perspective. The simulation on display is the long realisation of G10-D6-RP at the times (a)
t = 10tb , (b) t = 25tb , (c) t = 50tb , (d) t = 100tb , (e) t = 150tb , (f ) t = 200tb , (g) t = 300tb , and (h) t = 400tb .
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Figure 6.24: Visualisation of the classification of particles concerning their instantaneous positioning with respect to the bed. All
contaminant and sediment particles which are not disregarded by the criteria stated in §3.4 are classified as bed par-
ticles (yellow & blue), while the dismissed particles constitute the bedload and suspended load (white, translucent).
From the set of bed particles, those which constitute the fluid-bed interface are additionally classified as interface
particles (blue).

resuspension also varies substantially, and for this reason, the cycle of deposition and release becomes

blurred in time. However, at t = 400tb the impact of this mechanism is still perceptible.

It was demonstrated in fig. 4.19 that ripples are more effective at entraining contaminants beneath the

mean position of the sediment-fluid interface, which is certainly at least partially a result of the vary-

ing height of the interface itself in conjunction with the capturing mechanism just described. In order

to quantify when and where contaminants are deposited with respect to the instantaneous interface, a

classification of the particle position is introduced based on the algorithm used to extract the interface.

As described in §3.4, the set of particles which form the bed is defined by disregarding all particles which

belong to the bedload or suspended load using criteria on the collision force and instantaneous particle

velocity, and subsequently, the set of particles which form the interface is identified using geometric

considerations. As this method is completely based on the positions of discrete particles, a classifica-

tion can be introduced which attributes to each individual particle whether or not it belongs to the bed

and/or the interface at a given time. A visual explanation of this classification is provided in fig. 6.24.

From this classification, the number of particles which belong to the bed, Np,bed (t ), and to the interface,

Np,if (t ), are obtained. The classification takes into account both sediment and contaminant particles,

and hence, these numbers can be further partitioned into contributions from each type of particles, viz.

Np,bed = Nc,bed +Ns,bed and Np,if = Nc,if +Ns,if . (6.12)

The temporal evolution of the fraction of contaminants which are attributed to the bed and/or inter-

face is shown in fig. 6.25(a) for the macroscopically flat bed. While shortly after the settling phase all

deposited contaminants belong to the interface, a plateau is established quickly for Nc,if at distinct val-

ues for each parameter point, whereas the number of bed particles increases. Generally, a high number

of contaminants of around 90% is categorised as belonging to the bed at long observation times, and

this number does not vary significantly between the two cases. What does vary, however, is the fraction

of contaminants which belong to the interface, which is significantly higher for G30-D10-LR than for

G10-D6-LR. This implies that the smaller and lighter particles are entrained deeper into the bed. More-

over, for this parameter point, Nc,bed maintains a slowly increasing trend, whereas Nc,if simultaneously
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Figure 6.25: Temporal evolution of the number of particles which are classified as belonging to the bed and/or interface. (a,c)
The share of contaminant particles belonging to the interface ( ) or bed ( ). (b,d) Number of sediment particles
constituting the interface relative to the respective number before contaminants are introduced to the flow. The cases
shown in (a,b) are G30-D10-LR ( ) and G10-D6-LR ( ) which both feature a macroscopically flat bed. The data for
ripples is given in (c,d) for G30-D10-RP ( ) and G10-D6-RP ( ). The interval shown in (c) indicates the duration
it takes for the ripple to propagate over half its wavelength.

decreases. This may suggest that the contaminants are covered by sediment particles, which corrobo-

rates the hypothesis regarding the homogenisation of the arrangement in the wall-parallel plane stated

earlier. Indeed, fig. 6.25(b) indicates that sediment particles restore their role as interface particles for

G10-D6-LR.

Regarding the ripple bedform, the share of contaminants which become incorporated into the bed is of

similar magnitude as before, yet, much fewer of these particles are part of the interface. This observa-

tion is clearly linked to the burying mechanism of the propagating ripple which is evidently much more

effective at immobilising contaminants. The initial capturing after the settling phase is markedly per-

ceptible, and the duration of the undulation between maximum deposition and maximum resuspension

is slightly shorter than the time it takes the ripple to propagate over half its wavelength. Interestingly, al-

though the amount of captured contaminants is substantially higher in the presence of ripples, it should

be kept in mind that the streamwise flux is still comparable to or even higher than the flux in absence of

bedforms, cf. fig 4.20. This is presumably a joint effect of the deposition and resuspension cycle and the

increased likelihood of contaminants to be ejected into the outer flow due to the ramp-like shape of the

ripple.

6.6 Settling length

A quantity of practical interest regarding the settling problem is the streamwise distance travelled by the

contaminants before they are first deposited—often referred to as the settling length. In order to examine
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Figure 6.26: (a) Emsemble-average settling length of contaminant particles as a function of the ratio between bulk fluid velocity
and contaminant terminal velocity in a quiescent environment. The two solid lines ( ) display 1.25ub

/
vp,∞ and

1.35ub
/

vp,∞, respectively, where the slopes are chosen to represent the range of
〈

tc,d
〉/

tp,s observed across the pa-
rameter points presented. The shaded region indicates this range. (b) Normalised mean-squared displacement in
streamwise direction until contaminants are deposited for the first time presented in terms of the relative turbulence
intensity. The solid line ( ) shows the fit of Li and Shen (1975) obtained by regression of the experimental data

presented in Bayazit (1972), which is given by 0.1Iτ
1.532 in the current representation. Legend: G30-D10-LR ( ), G10-

D6-LR ( ), G30-D10-RP ( ), and G10-D6-RP ( ).

the settling length from the simulation data, the particle trajectories need to be expanded across the

periodic boundary, viz.

−→x (i )
c (t ) ..= x(i )

c +N (i )
Lx

Lx , (6.13)

where −→x (i )
c (t ) ∈ (−∞,∞) is the expanded streamwise position of the i -th particle, and N (i )

Lx
(t ) ∈ Z the

difference between the number of forward and backward crossings through the periodic boundary. The

streamwise displacement of the i -th particle from its initial position x(i )
c,0 is then given by

−→
δx(i )

c (t ) ..=−→x (i )
c −x(i )

c,0 . (6.14)

In order to evaluate the settling length from the displacement, a deposition time tc,d needs to be defined

which reflects the time at which a contaminant particle is first deposited into the bed. For this purpose,

the classification procedure of §6.5 is employed, and the deposition time is then obtained from

t (i )
c,d

..= min
{

t :χ(i )
c,bed (t ) > 0

}
, (6.15)

whereχ(i )
c,bed (t ) is an indicator function whose value is zero when a contaminant particle is not part of the

bed and unity if it is. In principle, t (i )
c,d may be undefined if a contaminant never gets deposited within the

observation time, however, for the four extended simulation runs discussed in this thesis this is never

the case. Finally, the settling length
−→
δxc,d is given by the streamwise displacement at the time of the

initial deposition, viz.

−→
δx(i )

c,d
..=−→
δx(i )

c

(
t (i )
c,d

)
. (6.16)
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Figure 6.27: Comparison of normalised empirical data for (a) the settling length and (b) the deposition time to the normalised
log-normal distribution. The corresponding parameters µln and σln have been obtained by calculating the sample
mean and standard deviation of the logarithm of the sample data for each parameter point. Legend: G30-D10-LR ( ),
G10-D6-LR ( ), G30-D10-LR ( ), and G10-D6-LR ( ).

As suggested by Li and Shen (1975) for smooth-wall open channel flows, the ensemble-averaged settling

length

〈−→
δxc,d

〉
..= 1

NcΣ

NcΣ∑
i=1

−→
δx(i )

c,d (6.17)

is described well by the ratio between the bulk velocity in the channel and the ambient terminal velocity

of the contaminants, see fig. 6.26(a), albeit only little variation in ub

/
vp,∞ is at disposal from the present

datasets. The available data may be approximated by a linear relationship with zero intercept and a slope

given by the ratio of mean deposition time to characteristic settling time, which is found to not exhibit a

clear scaling behaviour and to fluctuate in the relatively confined range of
〈

tc,d

〉/
tp,s = 1.25–1.35 for the

four parameter points. In fact, the inverse of this ratio ought to be related to the group velocity near the

bed interface, which can be deduced from fig. 4.17 to be in a similar value range. This suggests that the

average time until deposition is indeed longer than the naïve estimate of Hf

/
vp,∞, despite particles set-

tling considerably faster individually and as an ensemble in the bulk of the channel. It can moreover be

recognised that the presence of ripples does not substantially alter
〈−→
δxc,d

〉
despite the distinct difference

in the deposition mechanism compared to macroscopically flat beds.

Regarding the spread around the mean, the mean-squared displacement is found to adhere to the em-

pirical relationship

〈−→
δx2

c,d

〉

〈−→
δxc,d

〉2 ≈ 0.1Iτ
1.532 +1 (6.18)

established by Li and Shen (1975) based on the regression of experimental data from Bayazit (1972) for

the settling length in turbulent smooth-wall open channel flows, see fig. 6.26(b). Interestingly, the afore-

mentioned authors were able to reproduce this dependency using a stochastic model which assumes

a random walk for the settling particles and a Gaussian distribution of turbulent velocity fluctuations,

which suggests that the statistics of the settling length are rather robust with respect to the details of the

settling problem.
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To advance the comparison with this simplified model even further, Li and Shen (1975) discovered that

the probability density distribution of the settling length follows a log-normal shape, which is given by

pdf(X ) = 1

Xσln

p
2π

exp

(
−

(
ln(X )−µln

)2

2σ2
ln

)
, (6.19)

where X is a placeholder for any random variable. This distribution describes a Gaussian distribution in

logarithmic scaling, and consequently its parameters are given by the mean and standard deviation of

the logarithm of X , viz.

µln(X ) ..= E
(
ln(X )

)
, (6.20a)

σln(X ) ..=
√

E
(
ln(X 2)

)−E
(
ln(X )

)2, (6.20b)

where E
(•) is the expected value operator.

Figure 6.27(a) depicts the empirical probability density of ln
(−→
δxc,d

/
Hf

)
scaled by the corresponding log-

arithmic mean and standard deviation obtained from the samples, i.e.

E
(
ln(

−→
δxc,d

/
Hf )

)= 〈
ln

(−→
δxc,d

/
Hf

)〉
, (6.21a)

E
(
ln(

−→
δxc,d

/
Hf )2)= 〈

ln
(−→
δxc,d

/
Hf

)2〉
. (6.21b)

The simulation data follows the normalised log-normal distribution to a reasonable degree corrobating

the recognition of Li and Shen (1975) and the results from their simple statistical model. Moreover,

the distribution of deposition times exhibits an equivalent behaviour as can be seen in fig. 6.27(b), and

indeed, the scaling applied to the mean in fig. 6.26(a) can be used to approximately obtain the settling

length distribution from that of the deposition time, i.e.

pdf
(−→
δxc,d

/
Hf

)≈ pdf
(
tc,d ub

/
Hf

)
. (6.22)

It should be noted that all parameter points depicted in fig. 6.27 appear to exhibit a slight skewness to-

wards smaller values, whereas the skewness of the transformed Gaussian vanishes. Moreover, it stands

to reason that the probability density of tc,d ought to be related to that of the cross-through times during

the settling phase discussed in §4.4. For the latter a generalised Gamma distribution was employed to

describe the data, which indeed yielded a more accurate representation of the data than a log-normal

distribution, presumably due to its increased number of degrees of freedom. In fact, it can be demon-

strated that the log-normal distribution is a specialisation of this distribution (Prentice 1974) raising

the question whether the higher complexity of the generalised Gamma distribution is justified, or one

should prefer the simpler log-normal distribution following the principle of Occam’s razor (of Ockham

1495). 5

5 Apart from pure aesthetic considerations, the advantages of choosing a model of lower complexity lies in the better ability
to potentially falsify its assertions (Popper 1935), and in its increased “informativeness” (Sober 1975) in the sense that the
ratio of the required ad hoc information to its explanatory capabilities is minimised. The difficulty of choosing an appropriate
representation of the data is a manifestation of the fundamental problem of underdetermination (Mill 1856) in the philosophy
of science.
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The expressiveness of the log-normal distribution conveys itself by recognising that its parameterisation

can be deduced solely from the knowledge of the mean and mean square of the distribution in the non-

transformed sample space, viz.

µln(X ) = ln
(
E(X )

)− 1
2 ln

(
E(X 2)

E(X )2

)
, (6.23a)

σln(X ) =
√

ln

(
E(X 2)

E(X )2

)
, (6.23b)

albeit it should be acknowledged that an estimation using these relations differs from that obtained by

eq. (6.20) for data which does not perfectly follow the distribution. Thus, the information required to

reconstruct the complete probability distribution of deposition times (and settling lengths) is contained

in fig. 6.26, which in conjuction with the evidently robust scaling laws provide a large predictive power.

6.7 Lateral displacement and long-term dispersion

In accordance with its definition, the discussion on the settling length in §6.6 was limited to the stream-

wise displacement of contaminants in the time interval between their release and their first deposition.

In the context of river pollution events other characteristics such as the lateral displacement and the

long-term transport beyond the first deposition are also of interest, and their characterisation is the

subject of this section.

To begin with, the lateral displacement of the i -th contaminant particle from its initial spanwise position

z(i )
c,0 is defined analogously to eq. (6.14) as

−→
δz(i )

c (t ) ..=−→z (i )
c − z(i )

c,0 , (6.24)

where −→z (i )
c (t ) ∈ (−∞,∞) is the instantaneous spanwise position expanded across the periodic boundary,

cf. eq. (6.13) for the streamwise analogue. The lateral displacement at deposition is then given by

−→
δz(i )

c,d
..=−→
δz(i )

c

(
t (i )
c,d

)
. (6.25)

The lateral dispersion differs from that in the streamwise direction in the sense that no advection in the

direction of interest occurs, and theoretical considerations suggest a normal distribution around a zero

mean (Fischer 1973) after an initial transient phase, i.e. the probability density distribution is given by

pdf(X ) = 1

σnd

p
2π

exp

(
− X 2

2σ2
nd

)
, (6.26)

σnd (X ) ..=
√

E
(
X 2)−E

(
X

)2. (6.27)

A comparison of the normalised empirical distribution of
−→
δzc,d obtained from the numerical simulations

with a normal distribution confirms this supposition for the displacement at deposition, see fig. 6.28(a),

as well as the displacement at crossings of the wall-parallel planes during the preceding transient settling

phase as shown in fig. 6.28(b) for a variety of vertical positions and parameter points.

The lateral dispersion during the settling phase is displayed in fig. 6.28(c) in terms of the spatial evolu-

tion of the standard deviation of the spanwise particle locations at cross-through. In fact, as the data is
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Figure 6.28: (a) Lateral contaminant displacement at deposition normalised by the sample standard deviation and assuming sym-
metry around a zero mean. (b) Same as before, but for crossings of wall-parallel planes during the settling. All cases

with Ga ≈ 10 (LR, RP, HR) are displayed for y = {
0.3,0.5,0.7

}
Hf . (c) Sample standard deviation 〈−→δz2

c 〉
1/2
X as a function

of vertical position during the initial settling process before deposition ( , , ). Also shown is the standard

deviation of the displacement at deposition
〈−→
δz2

c,d
〉1/2

for the runs where an extended observation time is available
( , ). (d) Same data as before at y = 0.2Hf for the spatially-averaged data as a function of relative turbulence in-
tensity ( , , ). Also shown is the standard deviation at deposition ( , ). Legend: G30-D10-LR ( , , ), G10-D6-
LR ( , , ), G15-D10-LR ( , ), G15-D6-LR ( , ), G30-D10-RP ( , , ), G10-D6-RP ( , , ), G30-D15-HR
( , ), and G10-D10-HR ( , ).

normally distributed and no mean drift occurs,
〈−→
δz2

c

〉1/2

X
is the sole parameter characterising the lateral

spread. Interestingly, virtually the entire lateral dispersion during the transient occurs in the upper two-

thirds of the channel, with little to no increase in variance close to the sediment bed. This is presumably

a result of the migration into large-scale fluid streaks described in §6.3.4 which is supported by the spa-

tial trend observed in fig. 6.18. Moreover, since the lateral wavelength of these structures is of O(Hf ), the

magnitude of the standard deviation—which stays consistently below Hf /2—may indicate that contam-

inants seldom travel across these structures, but rather converge towards a streak in their initial periph-

ery. Thus, turbulent large-scale motions can be hypothesised to act as lateral transport barriers during

the settling. Nevertheless, there exists evidence that this effect is not absolute: when the lateral distribu-

tion at deposition is investigated, it is found that for Ga ≈ 10 the contaminants may spread significantly

further in lateral direction before deposition than what is suggested by the settling data, whereas for

Ga ≈ 30 the values approximately coincide. A potential explanation for this discrepancy may be related

to the tendency of the particles with higher relative turbulence intensity to be transported as bedload

before deposition. In this case, it may be speculated that the large-scale roller structures whose foot-

print is depicted in fig. 6.22 push the contaminants into the neighbouring low-speed streak before they

are deposited, resulting in additional dispersion in the near-bed region. Figure 6.28(d) depicts the stan-

dard deviation of the lateral displacement for crossings at y = 0.2Hf and at the time of deposition as a

function of the relative turbulent intensity. For the crossings during the settling where the stagnation in

dispersion has been observed, the increasing trend with Iτ appears to level off for Iτ ≫ 1. In case of the
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Figure 6.29: Temporal evolution of the mean-squared displacement in lateral direction. (a) During the transient settling phase and
scaled in inner units. (b) Long-term evolution for the extended simulation runs in outer units. The grey lines ( )
indicate the result of the linear regression performed to obtain the lateral particle diffusion coefficient. Legend: G30-
D10-LR ( , ), G10-D6-LR ( , ), G15-D10-LR ( ), G15-D6-LR ( ), G30-D10-RP ( , ), G10-D6-RP ( , ),
G30-D15-HR ( ), and G10-D10-HR ( ).
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Figure 6.30: Particle diffusion coefficient in lateral direction in the bed-interaction phase as a function of the Shields parameter of
the contaminants. The value has been obtained by linear regression of the mean-squared displacement in the time
interval t ∈ [

80tb , tobs
]
. Legend: G30-D10-LR ( ), G10-D6-LR ( ), G30-D10-LR ( ), and G10-D6-LR ( ).

displacement at deposition, a different trend is observed in accordance with the previous recognitions,

and an approximately linear increase is found. This discrepancy may suggest a change in the disper-

sion behaviour in the near-bed region in the sense that the lateral mobility is restricted during the initial

settling, but not for the bedload transport.

From a temporal perspective, a marked change in dispersion behaviour is perceptible between the set-

tling phase and the sediment-interaction phase. The mean-squared lateral displacement of the contam-

inants during the settling phase is depicted in fig. 6.29(a). In the viscous scaling, the various parameter

points exhibit a similar trend, albeit no complete collapse is achieved. The primary distinction between

the cases is the time at which the increase in displacement commences to slow down. This transition

in behaviour corresponds to the onset of contaminant deposition on the sediment bed, and thus, the

time of transition is approximately given by t+p,s . The long-term displacement is shown in fig. 6.29(b) for

the extended simulation runs, and a marked difference in the rate of dispersion compared to the initial

phase is evident for all cases.

Given the Gaussian distribution of the samples and the absence of advection in lateral direction, a diffu-

sion coefficient may be defined which characterises the spreading rate. Assuming a constant diffusivity

Dc,z , the diffusion equation solved for a Gaussian yields (Crank 1975)

σ2
nd = 2Dc,z t , (6.28)
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and hence, the lateral diffusion coefficient of the particles may readily be obtained from linear regres-

sion of the data presented in fig. 6.29(b). As the diffusivity is clearly not constant within the entire ob-

servation time, the time interval for regression is constraint to t ∈ [
80tb , tobs

]
in order to determine its

value exclusively for the bed-interaction phase. Figure 6.30 displays Dc,z scaled by the fluid viscosity as a

function of the Shields parameter. In this scaling, the data collapses satisfactorily across the cases, and

a dependency on Shields parameter is not unreasonable due to its role of describing the tendency of

particles to stay in suspension. However, as the availability of data is scarce, further input is required to

judge the conclusiveness of the detected scalings, especially with regards to the characterisation of the

sediment particles in the polydisperse case.

6.8 Summary and concluding remarks

The overarching topic of this chapter was the investigation of particle organisation, collective effects,

and the formation of patterns within the dispersed phase. An investigation of cluster formation has been

performed by means of a nearest neighbour analysis, and a quantification of clustering could be estab-

lished by comparing the statistics obtained from the simulation data to a random reference distribution

which takes into account the inherent spatial inhomogeneity of the ensemble of contaminants. It was

found that intermittent accumulations of contaminant particles are formed at all parameter points un-

der investigation, and that the temporal evolution of this organisation correlates well with the increase

in mean settling velocity reported in §4. A causal relation between the two phenomena was investigated,

but it was concluded that it is more likely that both phenomena are caused by the preferential sampling

phenomenon described in §5. By examining the microstructure of particle accumulations, it was noted

that for the cases with the lowest level of relative turbulence intensity the horizontally aligned arrange-

ment imposed as the initial condition may persist over significant time and settling distance. Using

auxiliary settling simulations at similar parameter points, but in absence of turbulence, it was deduced

that such arrangements likely cause a hindrance effect similar to the effect described by Richardson and

Zaki (1954). The auxiliary simulations also suggested that the significance of this hindrance is tied to

tendency of the contaminants to form clusters, i.e. that the level of retardation considerably reduces

when the horizontal alignment breaks apart. The formation of clusters can therefore be regarded as

essential for the contaminants to obtain the observed enhancement in vertical velocity, but due to a

mechanism which avoids retardation rather than one which actively promotes an enhancement.

The effect of preferential sampling on the arrangement of contaminants was studied by assessing the

preferential concentration of crossing positions through wall-parallel planes. A visual examination as

well as a quantification based on two-dimensional Voronoï tessellation indicated that the spatial dis-

tribution of crossing locations in a suitable frame of reference exhibits marked patterns. The clarity

of these patterns depend on the contaminant parameters, and it was found to be most intense for high

relative turbulence intensities. Close to the plane of initialisation, the accumulations and voids are of in-

termediate scales compared to Hf forming sharp fronts in the horizontal directions with little indication

of preferential alignment. A comparison with the vortical structures present near the free surface yielded

that the preferential concentration at this position is a result of the preferential sweeping mechanism,

and in particular, the interaction with surface-aligned vortices. As a consequence, contaminants are

found to settle predominantly in fluid downdrafts already at an early stage of the transient. In the lower

half of the channel, the dominant accumulation patterns are streamwise-aligned stripes which coincide

with the large-scale streaks. The progressive reorganisation into this arrangement was recognised to be

a result of the wall-normal inhomogeneity of the turbulent flow rather than caused by inertial effects,

although a lag in adaption of the contaminants to changes in the experienced flow conditions could be
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6 Pattern formation in the dispersed phase

perceived. It was suggested that the cause for the accumulation in high-speed regions is the same as

the cause for the existence of the latter, and hence, the interaction of particles with vortex clusters (del

Álamo et al. 2006) or with packets of hairpin vortices (Kim and Adrian 1999) appear to be the prime can-

didates to explain this phenomenon. Moreover, it was ascertained once again that the enhancement in

settling velocity ought to be caused by interactions which exhibit length scales significantly smaller than

Hf .

Regarding the deposition of contaminants at the end of the settling phase, distinct phenomena are ob-

served depending on the bedform. For a macroscopically flat bed, the contaminants tend to be de-

posited below the large-scale high-speed streaks of the outer layer, and subsequently tunnel the large-

scale rollers to accumulate near the sediment ridges which are associated to the large-scale low-speed

streaks. For high relative turbulence intensities, evidence exists that this mechanism may also act while

the contaminants are transported in the bedload layer without prior deposition. While shortly after

the settling phase distinct streamwise-aligned stripes of contaminants are perceivable on the bed, the

distribution becomes more random in the projected view on the horizontal plane, although the degree

of clustering is not found to be reduced. It was conjectured that some clusters of contaminants are

immobilised by being buried by sediment particles, whereas the remaining mobile particles tend to ac-

cumulate in varying positions in the long term due to the lifecycle of the large-scale motions. When a

ripple feature is present in the sediment bed, the contaminants are efficiently captured on its leeward

side to be deposited into the trough. As the ripple propagates, the contaminants are immobilised by a

thick layer of sediment particles to be finally released by erosion on the windward side when the pattern

has been displaced sufficiently far downstream. Not all contaminants are captured at the same time.

However, as the ripple continuously removes them from the bedload and stores them for a time roughly

equivalent to half the ratio between its wavelength and its propagation speed, it may occur that a large

share of contaminants is temporarily removed from the flow, resulting in a burst in suspended contami-

nant concentration after they are released again. This storage phenomenon serves as an explanation for

the oscillating behaviour of the streamwise contaminant flux observed in chapter §4. While the ripple-

induced cycle of deposition and erosion appears to continue indefinitely, the flux tends to stabilise as

the time at which the particles get captured becomes more diffuse.

The displacement of contaminants from their initial position until they are first deposited into the bed

was quantified in terms of the probability distribution of the settling length. A log-normal distribution is

detected in accordance with the proposition by Li and Shen (1975), and its mean and standard deviation

is found to be well predicted by their scaling arguments and the empirical fit obtained from experimen-

tal data in a smooth-wall open channel flow. In the lateral direction, the displacement follows a normal

distribution around a zero mean whose variance increases in the upper parts of the channel during the

settling, but stagnates in the lower third. This stagnation is conjectured to be related to the convergence

into high-speed streaks which might act as a transport barrier during the settling phase. The rate of dis-

persion is significantly lower in the bed-interaction phase than in the settling phase. From the evolution

of the mean-squared displacement, a lateral particle diffusion coefficient could be determined for the

former which enables an estimation of the long-term spreading. The obtained values of this diffusion

coefficient are of the same order as the kinematic viscosity. The data might indicate a scaling propor-

tional to St+Iτ
2, however, more evidence is required to make a judgement on its conclusiveness.
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7 Scales of particle-turbulence
interaction

It was speculated at several points throughout this thesis that a disparity exists in the characteristic

length scales of the turbulent structures which cause streamwise or vertical enhancement of the in-

stantaneous particle velocity. The purpose of this chapter is to gain more insights on this interaction,

and to quantify the flow scales which contribute the most to the preferential sampling phenomenon.

To achieve this, a method of scale decomposition is employed which is largely based on the work of

Lozano-Durán et al. (2016), Motoori and Goto (2021) and Motoori et al. (2022).

7.1 Scale decomposition

For the purpose of isolating ranges of scales of velocity fluctuations, the three-dimensional instanta-

neous flow field is filtered using a Gaussian filter kernel which is given by

Kσ
(
x′,x,σ,ℓ

)
..= exp


−1

2

(
(x ′−x)2

(ℓxσ)2 + (y ′− y)2

(ℓyσ)2 + (z ′− z)2

(ℓzσ)2

)
 , (7.1)

where σ > 0 is the standard deviation of the kernel which acts as the free parameter determining the

cut-off scales of the filtering procedure, and

ℓ= (
ℓx ,ℓy ,ℓz

)T (7.2)

with ℓx ,ℓy ,ℓz > 0 is the aspect ratio of the effective standard deviation in three dimensions which pro-

vides the possibility of having an anisotropic kernel. A low-pass filtered fluctuating fluid velocity field is

obtained by convoluting the kernel with u′
f,α(x, t ), viz.

L
{
u′

f,α,σ,ℓ
}(

x, t
)

..= 1

Cσ

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
u′

f,α(x′, t )Kσ dz ′ dy ′ dx ′, (7.3)

where the normalisation prefactor is determined from the condition that the kernel integrates to unity,

viz.

Cσ (σ,ℓ) ..=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Kσdz ′ dy ′ dx ′ = (2π)

3
2 ℓxℓyℓzσ

3. (7.4)

While in principle Kσ has an infinite support, it is in practice truncated at a distance of three standard

deviations while upholding its scaling properties. The convolution is evaluated for the entire simula-

tion domain Ω, and in particular does not distinguish between the solid or fluid phase, i.e. the filter

is employed on the full field as obtained by the immersed boundary method described in §3.2.1. In

the wall-bounded direction, the velocity field is extended by reflecting the velocity field about the wall,
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7 Scales of particle-turbulence interaction

Table 7.1: The properties of the scale decomposition using high-/band-/low-pass filters with a Gaussian kernel which is employed
in this chapter.

m σ(m)/Hf filter type λσ/Hf ℓxλσ/Hf ℓzλσ/Hf λσ/dc (G30-D15-HR) λσ/dc (G10-D10-HR)

1 0.008 high-pass 0.03 0.10 0.05 1.5 2.2

2 0.008 band-pass 0.05 0.16 0.08 2.5 3.6

3 0.016 band-pass 0.11 0.32 0.16 4.9 7.2

4 0.032 band-pass 0.21 0.63 0.32 9.8 14.4

5 0.064 band-pass 0.42 1.26 0.63 19.7 28.8

6 0.129 band-pass 0.84 2.52 1.26 39.3 57.6

7 0.257 low-pass 1.68 5.04 2.52 78.6 115.2

which requires the sign of the vertical component vf to be inverted to fulfil incompressibility (Lozano-

Durán et al. 2016). This extension is natural for the free-slip wall at the upper boundary, as its boundary

condition can be understood as an imposed mirror symmetry about the centreline of a closed channel,

cf. §2.2.1. In case of the lower no-slip boundary, the treatment of the boundary is of little significance

due to the presence of the sediment bed which essentially behaves like an extension of the fluid domain

with vanishing u′
f,α with the difference that momentum is conserved throughout the domain.1

The low-pass filtered field is complemented by a residuum which comprises all length scales smaller

than the cut-off. In fact, the residuum may be understood as a high-pass filtered velocity field given by

H
{
u′

f,α,σ,ℓ
}(

x, t
)

..= u′
f,α−L

{
u′

f,α,σ,ℓ
}

. (7.5)

As a result, u′
f,α has essentially been decomposed into two fields which contain either large-scale (L{u′

f,α})

or small-scale (H{u′
f,α}) fluid fluctuations. The decomposition procedure can be repeated to isolate in-

termediate scales which yields the band-pass filtered field

B
{
u′

f,α,σ(m),σ(n),ℓ
}(

x, t
)

..=L
{
u′

f,α,σ(m),ℓ
}−L

{
u′

f,α,σ(n),ℓ
}

, (7.6)

where σ(m) <σ(n) are the values of the filter parameter which restrict the range of the band. The gener-

alised decomposition containing Nσ subdivisions is given by

H
{
u′

f,α,σ(1),ℓ
} +

Nσ−1∑
m=1

B
{
u′

f,α,σ(m),σ(m+1),ℓ
} + L

{
u′

f,α,σ(Nσ),ℓ
}= u′

f,α (7.7)

and requires Nσ−1 values of σ to be specified.

In order to enable an informed choice for the values of σ, the kernel defined in eq. (7.1) is analysed for

an idealised setup using the Fourier transformation in order to obtain its wavelength spectrum, see §C

in the appendix for details. Since the Fourier transform of a Gaussian distribution in physical space

also yields a Gaussian distribution in spectral space, the wavelengths comprised by each subdivision

generally overlap. This is indeed desired behaviour, as one of the motivations behind the choice of a

1 The Gaussian filter behaves similar to a diffusion problem in the sense that with increasing σ gradients are progressively
equalised. In fact, this analogy has been exploited in §6.7 to define a diffusion coefficient for Gaussian-like dispersion. The
mirror-reflection boundary condition is thereby equivalent to a zero-flux boundary condition in the diffusion analogue, and
thus, the quantity to be filtered is conserved and merely redistributed. If the domain is extended using a vanishing field, a sink
is introduced to the diffusion problem in the form of a Dirichlet-type boundary condition. However, as the sediment bed is
part of the simulation domain, the conservation property is maintained. Moreover, this distinction is of little significance in
the current context as the velocity field is filtered in terms of its fluctuations around an approximately zero mean.
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Figure 7.1: Support of a one-dimensional Fourier-tranformed Gaussian filter kernel F
{
Kσ

}
in spectral space under idealised con-

ditions for the decomposition employed in this chapter. Each band contains a weighted distribution of wavelengths
with overlapping content. The characteristic wavelengths for each subdivision are indicated by vertical lines in the cor-
responding colours. The solid black vertical lines indicate the fundamental wavelength and the smallest wavelength
captured by the numerical discretisation of the HR simulation runs. The black dashed lines state the relative size of the
contaminant particles for the parameter points G30-D15-HR and G10-D10-HR.

Gaussian kernel was that it provides the most balanced trade-off between localisation in physical space

and spectral space, which makes it suitable for the investigation of local flow conditions (in the vicinity

of particles) with regards to the scales involved (due to coherent motions which are not strictly localised).

Nonetheless, one has to acknowledge that length scales derived from the following analyses are diffuse

in their nature.

Figure 7.1 depicts the spectral properties of the decomposition described in table 7.1 which is employed

in the following exclusively for the two HR parameter points. For this decomposition, a doubling of the

filter parameter between each subdivision was employed, i.e. σ(m+1) = 2σ(m), as this ensures a uniform

distribution of information among the bands. The value of σ(1) was chosen such that the high-pass fil-

tered field contains most of the fluid scales which are smaller than the particle sizes under investigation.

Consequently, the number of subdivisions which can be accomodated is bounded by the fundamental

wavelength of the simulation domain, and for the current choice of parameters, Nσ = 7 results in a low-

pass field which predominantly contains global deviations from the spatio-temporal mean. In addition,

it should be acknowledged that an anisotropic kernel with ℓ = (
3,1,1.5

)T is utilised, which results in a

variation in the cut-off frequency depending on the direction. This choice was motivated by the typical

aspect ratio reported for the bounding box of vortex clusters (del Álamo et al. 2006), as these structures

have been conjectured to play a dominant role in contaminant organisation in high-speed streaks.

Regarding the characterisation of scales which are comprised by each band, the characteristic wave-

length in case of the band-pass filter is defined as the corresponding position of the peak portrayed in

fig. 7.1 which is given by

λσ =πσ
√

6

ln(4)
≈ 6.54σ. (7.8)

In case of the low-pass and high-pass filters, the wavelength at which the power spectrum is attenuated

by half is selected, which reads

λσ =πσ
√

2

ln(
p

2)
≈ 7.55σ (7.9)
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for the low-pass filter and

λσ =πσ
√
− 2

ln(1−
p

2/2)
≈ 4.01σ (7.10)

for the high-pass filter. Using these definitions, the characteristic wavelengths are approximately evenly

distributed in the logarithmic scaling as can be seen in fig. 7.1.

7.2 Description of the decomposed velocity field

As this analysis aims at explaining the enhancement of the streamwise and vertical contaminant veloc-

ity, the focus is laid on the two corresponding fluid velocity components. The filtered variants of these

fields are denoted as ǔf (x, t ) and v̌f (x, t ), and both are to be understood as fluctuating fields about their

respective spatio-temporal mean since they are derived from u′
f,α.

Figure 7.2 provides visualisations of the streamwise velocity fluctuations for HR just before contami-

nants are seeded into the flow. The unfiltered field clearly depicts the long streamwise-aligned streaks

which the contaminants were found to preferrentially sample for u′
f > 0. When the decomposition is

applied, these structures are only observable for the filter levels with high characteristic wavelengths as

expected. Their footprint begins to be perceivable at around λσℓ≈ (
0.6,0.2,0.3

)T Hf which is in reason-

able agreement with the results of the Fourier analysis presented in fig. 5.23. As suggested by the same

reference, the fluctuations of the vertical velocity at the same filter levels exhibit much less anisotropy

as can be deduced from fig. 7.3.

For the high-pass filtered field and the lowest bands, the fluctuations are considerably less aligned with

the flow direction, and regularly emerge in long thin tubes which presumably indicates that they are the

result of the small-scale vorticity referred to as “worms”, cf. §2.1.5. The visibly increased randomness

and isotropy of the small scales is in good agreement with the expectations from classical turbulence

theory, cf. §2.1.3, which increases faith in the plausibility and utility of the decomposition strategy.

In the visualisations, the values of the isosurfaces were selected based on the variance of the fluctua-

tions for each filter level. Indeed, the intensity of the fluctuations may differ considerably in absolute

terms among the various scales, and thus, ought to be quantified in order to correctly judge the rele-

vance of the observed motion. In fig. 7.4 the root-mean-square of ǔf and v̌f at each level is provided

in terms of the friction velocity. Generally, large scales are found to be of high relative significance in

the upper parts of the channel, whereas small scales dominate near the sediment bed as one would

expect from Townsend’s attached eddy hypothesis, cf. §2.2.3. A substantial difference between ǔf and

v̌f is given by the fact that for the streamwise component the root-mean-square generally increases

with increasing length scale in the bulk, whereas for the vertical component a peak can be observed at

around λσ ≈ 0.2Hf which again is in accordance with the Fourier spectra presented earlier in fig. 5.24.

The low-pass filtered streamwise velocity exhibits a peculiar trend which demands further investigation:

as suggested by fig. 7.2(h), this level represents the turbulent motion at the largest scales which is not

accurately captured by the short streamwise length of the computational domain. As discussed in §5.5,

the unresolved portion of the energy spectrum which usually resides in the very-large scale motions

is contained by the modes of infinite streamwise length for the current cases, which is predominantly

contained by the low-pass portion of the decomposition. At the same time, the domain is sufficiently

wide to capture the characteristic pattern of alternating streaks in which this energy is arranged, which
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Figure 7.2: Visualisation of the decomposition of the streamwise fluid velocity at t = 0 for the HR simulations. (a) Unfiltered field.
(b) High-pass filter with λσ = 0.03Hf . (c-g) Band-pass filter with λσ = {

0.05,0.1,0.2,0.4,0.8
}

Hf . (h) Low-pass filter
with λσ = 1.7Hf . The unfiltered field shown in (a) corresponds to the sum of (b-h). Blue isosurfaces depict negative

fluctuations and red positive ones. Isosurfaces with ǔf
/〈

ǔf
〉
xyzt

= {−1.25,1.25
}

are displayed.

167



7 Scales of particle-turbulence interaction

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

λσ
Hf

= 0.03

λσ
Hf

= 0.05

λσ
Hf

= 0.1

λσ
Hf

= 0.2

λσ
Hf

= 0.4

λσ
Hf

= 0.8

λσ
Hf

= 1.7

z

y
x

Figure 7.3: Visualisation of the decomposition of the vertical fluid velocity at t = 0 for the HR simulations. (a) Unfiltered field.
(b) High-pass filter with λσ = 0.03Hf . (c-g) Band-pass filter with λσ = {

0.05,0.1,0.2,0.4,0.8
}

Hf . (h) Low-pass filter
with λσ = 1.7Hf . The unfiltered field shown in (a) corresponds to the sum of (b-h). Blue isosurfaces depict negative

fluctuations and red positive ones. Isosurfaces with v̌f
/〈
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〉
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= {−1.25,1.25
}

are displayed.
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2 f
� 1/

2

xz
t

� u
τ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

y/Hf

� v̌
2 f
� 1/

2

xz
t

� u
τ

0.03

0.05

0.1

0.2

0.4

0.8

1.7

λσ/Hf(a) (b)

Figure 7.4: Root-mean-square of the filtered velocity field at different scales. (a) Streamwise component ǔf . (b) Wall-normal
component v̌f . The characteristic wavelength of each scale can be inferred from the colourbar.

results in a spanwise variance of ǔf at λσ ≈ 1.7Hf . Moreover, the input to the decomposition is the fluc-

tuating field with respect to the spatio-temporal average, such that temporal fluctuations of the spatial

mean also contribute to the low-pass portion of the decomposition. The presence of the velocity struc-

ture shown in fig. 7.2(h) can be identified from the two-dimensional visualisation of the same flow field

previously presented in fig. 6.16. The distinct spatial evolution of
〈

v̌2
f

〉1/2

xzt
might then be a result of the

distinct location of LSMs and VLSMs at higher positions in the channel.

7.3 Quantification of the scales of enhancement

The main concern of the current chapter is the identification of the scales of fluid motion which con-

tribute the most to the enhancement of uc and vc . In order to achieve this, the concept of the sphere-

averaged fluid velocity in the vicinity of particles introduced in §5.2.3 is applied to the decomposed fields

resulting in a characteristic velocity experienced by each particle at each individual scale. The explana-

tory power of this procedure originates partly from the additivity of the decomposition and the linearity

of the sphere-averaging operator: the property that the sum of contributions from all decomposed fields

adds up to the value obtained for the unfiltered field is maintained for 〈ǔf,α〉(i )
S

. For this reason, the ratio

of 〈ǔf,α〉(i )
S

/〈uf,α〉(i )
S

immediately reflects the contribution of the corresponding filter scale to the overall

value.

In fig. 7.5(a,b) this ratio is shown ensemble-averaged over all downward crossings through the y = 0.3Hf

wall-parallel plane as a function of λσ for the two HR parameter points. The hypothesis that the en-

hancement is induced at distinct scales for streamwise and vertical components is corroborated: while

the peak contribution to 〈ǔf 〉SX↓ occurs around λσ = 0.4–0.8Hf , the maximum of 〈v̌f 〉SX↓ is found at

λσ = 0.1–0.2Hf .2 Consequently, the scales of enhancement differ from each other by roughly a factor

of four. One arrives at a similar conclusion when the correlation between the particle velocity and the

nearby decomposed fluid velocity is examined, see fig. 7.5(c,d). While the previously shown contribu-

tions to the overall sampled value are certainly also affected by the intensity of velocity fluctuations

available at this particular position, the correlation coefficient disregards this effect due to its normali-

sation properties, and hence, presumably more accurately reflects the actual response of contaminants

2 Due to the anisotropy of the filter kernel, these numbers have to be multiplied by ℓ to obtain the three-dimensional charac-
teristic wavelengths.
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Figure 7.5: Evaluation of the contribution of different flow scales to the enhancement of streamwise and vertical momentum of
settling contaminant particles. All statistics are obtained from samples gathered from all downward crossings of the
wall-parallel plane at y = 0.3Hf . (a) Ratio of the sphere-averaged streamwise velocity evaluated on a filtered scale
to that obtained for the unfiltered field. As the decomposition is additive and the sphere-averaging operation linear,
this ratio immediately expresses the contribution of a given scale to the overall value. (b) Same as before, but for the
vertical velocity. (c) Linear correlation coefficient between the streamwise particle velocity and the sphere-averaged
streamwise fluid velocity at a given scale. (d) Same as before, but for the vertical velocity. Legend: G30-D15-HR ( )
and G10-D10-HR ( ).

to fluid motions at a given scale. Interestingly, the correlation suggests that the two particle parameter

points behave very similar except for a slightly decreased overlap of the relevant streamwise and vertical

scales for G10-D10-HR.

The spatial evolution of the sphere-averaged velocity is depicted in fig. 7.6. Concerning the stream-

wise component, the general trend and distribution of momentum across the various scales resembles

that observed in the fluid statistics shown in fig. 7.4(a). Significant deviations can be observed close

to the bed where effects other than preferential sampling gain importance, and close to the plane of

initialisation where the sphere-average velocity is governed by the initial condition and the initial or-

ganisation. In particular, the only scale which does not vanish at initialisation is that obtained from the

low-pass filter which also contains the temporal fluctuations of the xz-averaged momentum. Therefore,

it is likely that the initial field happens to contain higher streamwise momentum than the temporal av-

erage in the plane of initialisation, which also explains the offset previously observed in fig. 5.9(a). This

peculiarity demonstrates the benefit of ensemble averaging the result over multiple realisations at dif-

ferent instances in time if small domains are investigated as has been done for the simulations at lower

Reynolds numbers. Regarding the vertical component displayed in fig. 7.6(b), it can again be noted

that the amplitude of enhancement for a given scale appears to be proportional to the corresponding

root-mean-square of v̌f at the same height which suggests that the scale of enhancement is predomi-

nantly determined by the distribution of the fluid momentum rather than by properties of the particles

themselves—at least for the parameter points currently under investigation.

In contrast to the sampled velocity, the correlation coefficient between the particle velocity and the fil-

tered fluid velocity is relatively constant at all vertical positions, see fig. 7.7. This indicates that the scales
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Figure 7.6: Evolution of the sphere-averaged fluid velocity as a function of vertical position for each filter scale. (a) Streamwise
component. (b) Wall-normal component. The parameter point on display is G10-D10-HR.
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responding sphere-averaged fluid velocity. The data is shown as a function of vertical position for each filter scale. (a)
Streamwise component. (b) Wall-normal component. The parameter point on display is G10-D10-HR.

at which particle-turbulence interactions occur are not solely dependent on the share of fluid momen-

tum carried by that scale (as this proportion varies with y), but are rather linked to the specific particle

parameter point, which ought to be represented by a quantity which quantifies the relative response

time of a particle to a structure such as the scale-local Stokes number proposed by Motoori et al. (2022).

However, the difference in particle diameter, density and Galileo number appears to be too insignificant

to assess this hypothesis from the current dataset.

7.4 Summary and concluding remarks

The aim of this chapter was to quantify the characteristic length scales of the turbulent velocity struc-

tures which are preferentially sampled by the contaminants and lead to the enhancement in streamwise

and wall-normal particle velocity. In order to do so, a decomposition method was introduced based

on Gaussian filters which subdivides the fluid velocity field into ranges of scales which can be exam-

ined individually, but possesses the property that the complete flow field can be reconstructed from the

sum of its subdivisions. Using this method, the velocity experienced by the particles characterised by

the sphere-averaging procedure introduced in chapter §5 is decomposed into the contributions from

various flow scales. The result corroborates the hypothesis that the enhancement in streamwise and
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7 Scales of particle-turbulence interaction

vertical particle velocity occurs on different length scales. Regarding the streamwise velocity, struc-

tures with spatial dimensions of (1.2,0.4,0.6)T Hf to (2.4,0.8,1.2)T Hf in (x, y, z)T were found to be most

significant, whereas for the vertical velocity the cardinal size range lies between (0.3,0.1,0.15)T Hf and

(0.6,0.2,0.3)T Hf . These ranges coincide approximately with the length scales which are the most active

for the respective fluid velocity component in terms of their root-mean-square as obtained from Fourier

analysis. Nonetheless, it was shown that the particle velocity exhibits an approximately constant cor-

relation to each decomposed flow scale throughout the entire channel, which might suggest that there

exist structures of preferred scales with which the contaminants interact.
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8 Investigation of settling using an
exact coherent state

Throughout this thesis, coherent vortical motions have been identified to be the root of phenomena

such as clustering, preferential concentration and settling velocity enhancement ocurring in the tran-

sient settling problem through mechanisms such as preferential sweeping. Hereby, the interactions take

place on a multitude of scales: while particles were demonstrated to interact directly with individual vor-

tices (§6.3.3), the self-organised vorticity at larger scales such as vortex clusters or hairpin packets was

hypothesised to play a key role in the explanation of organisation of contaminants into large-scale ve-

locity streaks (§6.3.4) which leads to an anisotropy in the scales which cause the streamwise and vertical

velocity enhancement observed for the contaminants (§7). The interactions which lead to the large-

scale organisation and enhancement are difficult to describe as they are likely the collective result of

many smaller-scale interactions with vortices and eddies which evolve over time, and in the case of

transient settling, meaningful observations of these interactions are difficult to obtain as the number

of particles which interact with a structure at a given time is limited and the effects may be non-local.

However, a thorough description of this process might also not be required for most purposes, as the net

effect on the ensemble of particles appears to be well described by the macroscopic emergent features

of the organised vorticity.

In a pursuit of simplicity, the question arises whether or not the essential features of transient settling

in a turbulent channel can be reproduced—qualitatively and perhaps even quantitatively—in a simpler

surrogate system which facilitates a more systematic study of the scaling of the various phenomena

identified with respect to the particle parameters. Such “ruthless simplifications”1 were employed al-

ready in the discussion on the effect of shear on the settling velocity (§5.3.3) and regarding the collective

hindrance effect at the beginning of the settling process (§6.2), where they have contributed consider-

ably to the understanding of the full system. It is needless to say that the laminar flows investigated in

these contexts are incapable of reproducing the defining features of turbulent settling. Nonetheless, the

dynamical systems approach to turbulence has provided access to non-trivial flow states which contain

some essentials of turbulent flows, while at the same time being substantially easier to analyse due to

their defined behaviour in space and time—the exact coherent states described in §2.2.4. So far, the

usage of these exact solutions as a simplification of turbulence in particle-laden flows is limited to the

pioneering study of Pestana et al. (2020), who were able to reproduce the near-wall migration of parti-

cles into low-speed streaks utilising the solution of Nagata (1990) in Couette flow. The objective of the

current chapter is to assess whether or not the transient settling in an open channel can be examined in

the same manner, and if new knowledge can be gained from this approach.

1 The writer’s usage of this term has been coined by Steven Strogatz who in an interview stated that his preferred method to
tackle a problem is to “keep simplifying the problem—actually fairly ruthlessly—until it’s minimal. Until it’s the simplest
problem that contains the nugget of the difficulty—the essential difficulty.”
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8 Investigation of settling using an exact coherent state

8.1 Description of a hairpin-like exact coherent state

Regarding channel flows, various exact coherent states (ECS) have been identified and extracted in liter-

ature in the form of travelling waves (TWs) and relative periodic orbits (POs), see e.g. Waleffe (2001), Toh

and Itano (2003), Park and Graham (2015), Wall and Nagata (2016), Shekar and Graham (2018) and Yang

et al. (2019). Thereby, not every structure is equally relevant to turbulent flows, or more specifically in

the current context, does not reflect the properties of developed turbulence equally well. One exact co-

herent state which is especially appealing for the use in this thesis is the travelling wave first published

by Shekar and Graham (2018) as its topology resembles that of a hairpin vortex—or more precisely, a

pair of staggered hairpins—which in the theory of Adrian (2007) plays an important role in the explana-

tion of LSMs and VLSMs. Indeed, hairpin vortices are found to occur in the turbulent simulations with

fig. 8.1 showing two examples of such structures in the initial fields of the HR run obtained by apply-

ing the Q-criterion to the decomposed fields presented in §7. Apart from its topological relevance, this

ECS is favourable because it emerges at a relatively high value of the friction Reynolds number and its

domain-averaged statistics reflect that of a turbulent flow rather well.

For the use in this thesis, the hairpin TW has been obtained independently from Shekar and Graham

(2018) by conducting constrained DNSs in a closed channel from randomly perturbed initial fields us-

ing the publicly available pseudo-spectral solver CHANNELFLOW (Gibson et al. 2008, Gibson 2014). In

particular, the constraints consisted of imposing instantaneous symmetries which are equal to the sym-

metries which are exhibited by the target solution: a mirror symmetry about the xy-plane at the periodic

boundary, a mirror symmetry about the xz-plane at the centreline, and a shift symmetry with respect

to a shift of [Lx /2,Lz /2]. Here, the mirror symmetry about the centre plane plays a crucial role in the

current context as it ensures that the TW is indeed also a solution to open channel flow. The simula-

tions were conducted in the same domain size for which the original solution was identified, namely

[Lx ×Lz ]/H = [π×π/2], and at a bulk Reynolds number of Reb = 1600. After a suitable recurrent state

has been identified, the invariant state was obtained using the Newton-Krylov-hookstep algorithm of

Viswanath (2007) which was readily available in the DNS code. In fact, the state which was first identi-

fied by this procedure is a previously unreported relative periodic orbit which is connected to the family

of travelling waves by a Hopf-type bifurcation which occurs at Reb ≈ 1304. This orbit shares most of the

defining features of the TW and its dynamics are limited to a weakly pulsating behaviour.

For technical reasons, the extracted TW has been transferred to a domain size of [Lx ×Lz ]/H = [3×1.5]

by means of homotopy as this aspect ratio is more favourable for the particle-laden flow solver. More-

over, the bulk Reynolds number was reduced to its corresponding value at the inflection point (Reb =
960.8) which results in a friction Reynolds number of Reτ = 91.1, see fig. 8.2 for a visualisation of the

structure and fig. 8.3 for the bifurcation diagram of the ECS in the new domain. Although the TW was

found to be linearly stable in some regions of the parameter space if the aforementioned symmetries

are imposed, it is generally unstable in the important case of a sole symmetry about the centre plane

(unconstrained open channel flow). However, the number of unstable directions remains low, such that

the TW is maintained for O(100tb) for small random perturbations before relaminarisation occurs. The

propagation velocity of the TW in streamwise direction reads

cTW = 1.116ub , (8.1)

and consequently, the solution is time-invariant in a frame of reference which moves at this velocity.

Figure 8.4 shows a comparison of the velocity statistics obtained for the TW to those obtained for a tur-

bulent smooth-wall open channel flow at Reτ = 200. While the mean streamwise velocity scaled in inner
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Figure 8.1: Examples of hairpin vortices found in the initial field of the HR simulation series. The vortices are visualised by apply-

ing the Q-criterion on the band-pass filtered fluctuating velocity fields. Isosurfaces at Q̌ ′+ = 1.1 ·10−5 are depicted and
the colouring indicates the local value of the band-pass filtered vertical fluid velocity. (a) Band-pass filtered field with
λσ = 0.2Hf . (b) Band-pass filtered field with λσ = 0.4Hf .
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Figure 8.2: Visualisation of the travelling wave solution employed in this chapter. (a) Regions of prevailing vorticity as indicated

by the Q-criterion with a threshold of Q+ = 1 ·10−3. The colouring corresponds to the local value of the vertical fluid
velocity. (b) A slice at y = 0.5H showing the fluctuations of the streamwise fluid velocity. The isosurfaces of the Q-
criterion are overlayed translucently to indicate the influence of the vortices.

175



8 Investigation of settling using an exact coherent state

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

50

100

150

turbulent state

laminar state

exact coherent state

Reb

R
e τ

Figure 8.3: Bifurcation diagram of the hairpin travelling wave in the domain [Lx ×Lz ]/H = [3×1.5] in terms of the bifurcation
parameter Reb and the observable Reτ. The solid line ( ) indicates the region where the TW is linearly stable in the
symmetric subspace, whereas the dashed lines ( ) show unstable regions. A stable periodic orbit bifurcates from the
lower branch at Reb = 1349.6 as indicated by the grey line ( ). All states in this family of solutions are unstable if any

of the imposed symmetries is revoked. As a reference, the curve Reτ = 2
3
√

8Reb /3 for laminar Poiseuille flow is shown,

as well as Reτ = 0.09Re0.88
b for turbulent flows according to the empirical correlation of Dean (1978).

units deviates quantitatively from the standard log-law and the turbulent data in the outer region, the

scaling in outer units indicates similar behaviour for both types of flows. A similar observation can be

made for the Reynolds stress. In fact, all second order statistics suggest that the near-wall behaviour is

similar for the ECS and the turbulent flow if the data is examined as a function of y+, while the trend

in the outer region is reflected more appropriately in a y/H scaling. This prompts the conclusion that

many of the discrepancies which may be observed in either scaling are a result of a reduced separa-

tion of inner and outer units due to the inherently small value of Reτ for the TW. Aside from this lack of

scale separation, the root-mean-square of the velocity fluctuations in streamwise and vertical direction

exhibit a good qualitative, and at times even quantitative, agreement. This is especially true for 〈v2
f 〉

1/2

whose deviation seems to be almost entirely explained by the lower value of the friction Reynolds num-

ber, and which plays a vital role for the settling velocity enhancement phenomenon, cf. §4.3.1. Regarding

the spanwise fluctuations, the statistics deviate rather significantly apart from close to the centre plane,

however, so far the role of 〈w2
f 〉

1/2
is unclear concerning the particle settling phenomena to be discussed.

8.2 Sampling method and particle parameters

Now that the basic ECS to be employed in the settling simulations has been characterised, the procedure

of seeding particles into the flow will be delineated. To begin with, the spectral flow field obtained by

the CHANNELFLOW solver is interpolated onto a uniform staggered mesh as required by the immersed

boundary simulation code, cf. §3.2.1. Here, the target mesh only comprises half of the closed channel

since open channel boundary conditions are to be imposed in the particle-laden simulations which are

satisfied due to the centre line mirror symmetry of the TW solution. No further symmetries are enforced

in the presence of particles such that the flow remains unconstrained.

Similar to the turbulent simulations, the settling particles are seeded near the top boundary of the do-

main at yp,0 = 0.95H . However, in contrast to them, the wall-parallel plane is sampled systematically
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Figure 8.4: Comparison of the velocity statistics between the hairpin travelling wave in the domain used for the settling simula-
tions at Reτ = 91.1 ( ) and a turbulent open channel flow at Reτ = 200 ( ) as computed by Bauer et al. (2022). For
the TW, only the lower half of the full channel is displayed with y = 0 corresponding to the lower wall and y = H to the
centre plane (the free-slip boundary of the equivalent open channel). (a) Mean streamwise velocity in outer units. The
inset shows the same data in inner units with dotted lines indicating the law of the wall and the log-law. (b) Reynolds
stress u′

f v ′
f as a function of y/H . The inset shows the same data as a function of y+. (c) Root-mean-square of the fluid

velocity fluctuations as a function of y
/

H for u′
f ( ), v ′

f ( ) and w ′
f ( ). (d) Same as before, but as a function

of y+. As the TW is time-invariant in an appropriate frame of reference, its statistics correspond to the spatial average
within the simulation domain.

due to the widely reduced sample space of the ECS compared to the full turbulent simulations.2 To be

precise, the plane of initialisation is discretised by a regular grid with a uniform spacing of hp,0 whose

nodes mark the initial horizontal positions (xp,0, zp,0) of the sample particles. Due to the spanwise mirror

symmetry and the streamwise-spanwise shift symmetry of the initial flow condition, only a quarter of

the xz-plane is unique, and hence, it is sufficient to only sample the domain x ∈ [0,Lx /2), z ∈ [0,Lz /2)

in order to reconstruct any initial condition from the symmetries. Under these preconditions, the total

number of sample particles is given by

NpΣ =
Lx Lz

4h2
p,0

, (8.2)

2 The outcome of the experiment is only a function of the initial x and z position of the particles under the aforementioned
preconditions and under the assumption that interparticle interactions are negligible. Thus, in contrast to turbulent settling,
the outcome is not a function of the seeding time as the initial velocity field is time-invariant. Nonetheless, the particle tra-
jectories are still anticipated to be chaotic in the sense that initially neighbouring particles may exhibit diverging trajectories.
However, due to the reduced range of scales in the ECS it can be hypothesised that this divergence occurs at a slower rate, and
hence, due to the limited observation time less samples might be required to form an adequate estimate of the sample space.
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8 Investigation of settling using an exact coherent state

Table 8.1: Summary of the common physical and numerical parameters of all simulations conducted within this chapter.

Reb Reτ [Lx ×Lz ]/H [Nx ×Ny ×Nz ] H/dp d+
p dp /∆x Np NpΣ

960.8 91.1 [3.0×1.5] [576×192×288] 16 5.7 12 16 288
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Figure 8.5: Initial distribution of sample particles. (a) Visualisation of all NpΣ = 288 initial particle positions to be sampled on a
regular grid with a uniform spacing of hp,0 = dp . Due to the symmetric properties of the TW, only a quarter of the
wall-parallel plane needs to be sampled in order to reconstruct all possible trajectories. The colouring of the parti-
cles indicates the vertical particle velocity at initialisation which corresponds to the value of the fluid velocity at the
centroid of each particle. (b) An example for the actual arangement of Np = 16 particles for a single realisation of the
numerical experiment. The initial positions are chosen such that the distance between the particles is approximately
maximised in order to avoid collective effects and a destabilisation of the TW. The particles are spread within the entire
domain, and hence, care has to be taken in order to avoid duplicate positions. The mirror symmetry about the xy-
plane is indicated by the dashdotted line ( ), whereas the dotted line ( ) indicates the streamwise-spanwise-shift
symmetry. The minimal unique subdomain is marked by Ωz

sym , and Ω−z
sym denotes its spanwise-mirrored duplicate.

(c) The same positions as before, but mapped into the region x ∈ [0,Lx /2), z ∈ [0,Lz /2). The colours of the dots are
matched with those of (b) in order to reveal the unmapped positions.

where hp,0 is set to be equal to the particle diameter in the following. The choice of dp is an intricate task

as one would generally like the ratio H/dp to be sufficiently large to evade a strong influence of the initial

particle acceleration on the result, but also avoid an all too small value of d+
p in order to not disregard

finite size effects and to keep the computational costs minimal as for these simulations the resolution

of the numerical mesh is dictated by the ratio dp /∆x. For the current study, a diameter of dp
..= H/16

was deemed to be an adequate compromise and yields a total number of sample particles of NpΣ = 288

per parameter point. The distribution of the initial positions in the manner previously elaborated is

visualised in fig. 8.5(a) and a summary of the relevant base parameters of the simulations is provided in

table 8.1.

Not all particles are introduced to the domain within a single simulation, but rather multiple indepen-

dent realisations are performed for two major reasons. First, the primary aim of this study is to assess

the interaction between individual particles and the vortical structure of the ECS, and therefore collec-

tive effects resulting from interparticle interaction or particle-induced modifications of the flow field

are generally undesired. Second, as previously mentioned, the TW solution is linearly unstable which

necessitates that perturbations are kept to a minimum in order to avoid a significant deviation of the

flow from its initial state during the observation time. For these reasons, only Np particles are added to

the flow at once and Nrun = NpΣ/Np realisations are required to obtain all samples. There are numerous

ways to distribute these Np particles in the plane of initialisation, though it seems natural to arrange
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Figure 8.6: Summary of the particle parameter points which are investigated in this chapter. (a) Variation of the input parameters.
(b) The resulting values of the relative turbulence intensity and the Stokes number.

them in a manner that approximately maximises the distance between them for the aforementioned

reasons. Figure 8.5(b) displays an example of the distribution of Np = 16 particles in a four-by-four ar-

rangement which is employed henceforth. As can be seen, the entire cross-section of the simulation

domain has been exploited, and thus, care needs to be taken in order to avoid duplicate samples due to

the symmetric properties of the domain. In fig. 8.5(c), the initial positions are mapped back into the re-

gion x ∈ [0,Lx /2), z ∈ [0,Lz /2) which corresponds to the minimal unique subdomainΩsym . As suggested

by the mapped positions, the remaining sample distributions are obtained by repeatedly shifting this

distribution by 2hp,0 in streamwise and hp,0 in spanwise direction.

The choice of Np = 16 is based on a supplementary study outlined in §D in the appendix which com-

pares the results obtained with this arrangement to those obtained from 288 realisations of isolated

settling particles sampling the same initial conditions for a single particle parameter point. The results

were contrasted with respect to the robustness of key quantities such as the mean settling velocity, the

deviations of the TW from its initial state, and the divergence of particle trajectories for the same initial

condition due to the presence of other particles. While the outcome was indeed still acceptable for 32

particles per simulation, the selected setup was deemed to provide the best compromise between the

computational effort and the prevention of undesired secondary effects. Generally, the preservation of

the ECS was not found to be problematic for any of the investigated parameter points.

Finally, the parameter points which are investigated in the following are presented. The major advantage

of studying this simplified problem as opposed to fully turbulent flows is the severly reduced computa-

tional effort required for the simulations which enables an extensive parameter sweep. Consequently,

if the outcome of this study is qualitatively comparable to the preceding observations made in turbu-

lence, the extended parameter range may possibly lead to conjectures on scaling laws which can sub-

sequently be tested with targeted fully turbulent simulations. A comprehensive summary of the simu-

lated parameter points is provided in fig. 8.6. The input parameters are varied in the range Ga ∈ [5,80],

ρp

/
ρf ∈ [1.75,10], which results in a range of Iτ ∈ [0.07,5.15] for the relative turbulence intensity and

St+ ∈ [0.9,15.0] for the Stokes number.

8.3 Settling velocity

To begin with, the ensemble-averaged settling velocity discussed in §4.1 for the turbulent settling is

evaluated for the current setup. For this purpose, the temporal evolution of this quantity for three of the

LR parameter points is compared to that for the TW settling at matched densities and approximately
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Figure 8.7: Ensemble-averaged settling velocity as defined in eq. (4.1). (a) Direct juxtaposition of the three turbulent parameter
points G30-D10-LR ( ), G15-D6-LR ( ), and G10-D6-LR ( ) with their respective counterparts for settling in the
ECS ( , , ). The parameter points are matched in their density and are approximately matched with respect
to their relative turbulence intensity. The legend summarises the parameter quadruplet

{
Ga,ρp

/
ρf ,d+

p , Iτ
}
. (b) Quan-

tification of the peak enhancement as in fig. 4.2 showing all turbulent parameter points as well as the values obtained
from the TW for the density ratios ρp

/
ρf = 1.75 ( ), ρp

/
ρf = 2.5 ( ), and ρp

/
ρf = 10 ( ). The data is presented

as a function of the relative turbulence intensity and scaled by the respective ambient terminal velocity. (c) Same as
before, but presented as the excess in vertical velocity with respect to the terminal velocity and scaled by the friction
velocity.

matched values of the relative turbulence intensity. As can be observed in fig. 8.7(a), the similarity be-

tween the settling in the ECS and the fully turbulent flow is extraordinary: not only does the simplified

system reproduce the qualitative trend remarkably well, but in the cases of G15-D6-LR and G10-D6-

LR, the evolution is moreover reproduced with outstanding quantitative accuracy. For G30-D10-LR, the

agreement is markedly inferior, however, it was elaborated in §6.2 that this case is most prominently

subject to the collective hindrance effect which is not present in the simplified system, and hence, there

is reason to believe that this phenomenon might be the major source of the discrepancy.

Figure 8.7(b) provides a more extensive comparison between all available turbulent cases and the ECS

by extracting the peak values of
〈

vp

〉
T

and presenting them as a function of Iτ. The general agreement

is reasonable and the quantitative behaviour is reflected well, albeit the turbulent parameter point at

the highest value of the relative turbulence intensity (G10-D10-HR) deviates rather significantly from

the corresponding line. As the predictions of the simplified system turned out to be adequate, the more

extensive and densely populated parameter range may be exploited to make an educated guess on how

the peak value of
〈

vp

〉
T

evolves in regard to Iτ. Interestingly, for low values of Iτ the settling velocity is

found to be reduced with respect to its ambient value even in absence of collective effects. The explana-

tion for this observation is readily obtained by examining the trajectories of the particles for a respective

parameter point as is portrayed in fig. 8.8. Due to the low relative turbulence intensity, the particles
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Figure 8.8: Visualisation of particle trajectories for a parameter point which exhibits a reduced mean settling velocity (Ga = 35,
ρp

/
ρf = 1.75, Iτ ≈ 0.23). Particle positions are shown at an arbitrary point in time for which the transient has pro-

gressed enough to judge its characteristics. The colouring of the particles indicates their current vertical position, and
the preceding trajectory of each particle over a limited time interval is indicated by a black line. A frame of reference
is employed which moves with the propagation velocity of the TW, and the isosurfaces of the Q-criterion indicating
the vortical structure corresponds to the undisturbed ECS which is steady in this perspective. Furthermore, all initial
positions are aggregated from the individual realisations and mapped onto the minimal unique subdomain.
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Figure 8.9: Visualisation of particle trajectories for a parameter point which exhibits an enhanced mean settling velocity (Ga = 10,
ρp

/
ρf = 1.75, Iτ ≈ 1.54). The details of the depiction are given in the caption of fig. 8.8.

do not preferentially sweep the vortex, but rather cross it even in the presence of a counteracting flow

which leads to the loitering effect described in §2.3.3. Concerning the trend towards high value of Iτ, it is

more suitable to analyse the excess in settling velocity with respect to the terminal velocity scaled by uτ,

see fig. 8.7(c). As can be extracted from this figure, the excess does not increase indefinitely, but rather

saturates at a value which appears to be a function of the particle density—at least in the simplified sys-

tem. Consequently, the ratio between the mean settling velocity and the ambient terminal velocity is

linearly proportional to Iτ at sufficiently high values thereof. In order to promote the understanding of

this behaviour, the trajectories for a case with enhanced settling velocity are portrayed in fig. 8.9. As may

be anticipated, the enhancement is a result of the preferential sweeping of the vortical structure, and

hence, it might be hypothesised that the plateau in enhancement might be a result of particles sampling

the optimal trajectory around the vortex for the current setup.
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Figure 8.10: Normalised second moment of the Voronoï cell area distribution at y = 0.5H as a function of relative turbulence
intensity for ρp

/
ρf = 1.75 ( ), ρp

/
ρf = 2.5 ( ), and ρp

/
ρf = 10 ( ). Also shown are the turbulent data points

averaged over the interval y ∈ [0.4,0.5] Hf , cf. fig 6.15, which are denoted by the following markers: G30-D10-LR ( ),
G10-D6-LR ( ), G15-D10-LR ( ), G15-D6-LR ( ), G30-D10-RP ( ), G10-D6-RP ( ), G30-D15-HR ( ), and G10-D10-HR
( ).

8.4 Preferential concentration

The preferential concentration in wall-parallel plane is now revisited in order to examine the scaling of

the mean square of the Voronoï cell areas. From the turbulent data previously presented in §6.3.2, it

was conjectured that this quantity is a non-linear function of the relative turbulence intensity, albeit the

scattering of the data points impeded any conclusions on other dependecies. In order to potentially im-

prove the understanding, the same analysis is repeated for the settling in the ECS. For this purposes, the

locations of crossings through a given plane have been determined according to §4.2 and are analysed

in the frame of reference described in §6.3.1.3 The Voronoï cells are subsequently obtained from the

time-compensated crossing locations taking into account all duplicate positions due to symmetries.

Figure 8.10 shows the evolution of the normalised mean square of AV with respect to Iτ at three distinct

values of the density ratio, as well as the data points obtained for the turbulent simulations. The trend of

the turbulent data is reflected reasonably well by the TW data, especially in consideration of the fact that

the simplified system comprises much more structure since the initial placement of particles takes place

on a regular grid and, due to the lack of temporal dynamics and existence of spatial symmetries, the

horizontal displacement of this initial condition is significantly less complex. In fact, it can be observed

that the order of the initial arrangement is maintained far beyond the plane of initialisation for Iτ → 0

due to the inability of the flow to efficiently disperse the particles within the wall-parallel plane, cf. fig. 8.8

for a visual example of this behaviour. Interestingly, both the turbulent and TW data suggest that the

increase in
〈

AV

〉2 levels off for Iτ⪆ 1.5. Moreover, the TW data prompts the conjecture that the ultimate

degree of organisation depends quite considerably on the density ratio in a way that for the currently

discussed parameter points an increase in particle intertia—which is also reflected by the respective

value of St+ as can be deduced from fig. 8.6—indeed leads to a more intermittent spatial distribution of

the particles.

3 In the original discussion it was mentioned that the propagation velocity of the frame of reference is motivated by the advec-
tion speed of coherent structures with which the particles interact. As this speed cannot be ultimately defined in turbulence,
the reference velocity was set to the streamwise particle velocity averaged over all crossings. It should be noted, that for the
TW the exact propagation velocity of the structure is known and given by cTW . However, for the sake of comparability, the
Voronoï analysis is performed using the original definition.
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Figure 8.11: Mean-squared lateral displacement at the time of crossing the wall-parallel plane located at y = 0.2H as a function
of relative turbulence intensity for ρp

/
ρf = 1.75 ( ), ρp

/
ρf = 2.5 ( ), and ρp

/
ρf = 10 ( ). Also shown are the

corresponding turbulent data points, cf. fig 6.28(d), which are denoted by the following markers: G30-D10-LR ( ),
G10-D6-LR ( ), G15-D10-LR ( ), G15-D6-LR ( ), G30-D10-RP ( ), G10-D6-RP ( ), G30-D15-HR ( ), and G10-D10-HR
( ).

As the enhancement in settling velocity is driven by the ability of particles to sample downdrafts, it

stands to reason that the evolution of
〈

AV

〉2 is linked to that of the peak velocity enhancement, and in-

deed, when fig. 8.10 is compared to fig. 8.7 similarities can be noted in the convergence behaviour for

high values of Iτ. This corroborates the hypothesis formulated in §8.3 that the ultimate level of enhance-

ment is the outcome of particles sampling the most optimal preferential sweeping trajectories at a given

value of ρp

/
ρf . Interestingly, the data suggests that a stronger focusing of trajectories (as observed for

ρp

/
ρf = 10) does not necessarily lead to faster settling, or in other words, increased inertia may increase

the likelihood of converging trajectories, but this convergence might not necessarily occur in the most

intense downdrafts. Nonetheless, while the foregoing inferences appear to be conclusive for the settling

in the ECS, their applicability to the turbulent problem remains to be demonstrated.

8.5 Lateral displacement

Regarding the mean-squared displacement in the lateral direction, it was hypothesised in §6.7 that the

value of 〈−→δz2
c 〉

1/2

X is bounded by the spacing between the large-scale structures which might act as lateral

transport barriers for particles during the settling phase. The aim of this section is to assess this phe-

nomenon in the TW as the legs of the hairpin-like vortices essentially act similar to large streamwise-

aligned roller structures, cf. fig. 8.2, and therefore potentially induce a likewise effect.

The standard deviation of the lateral displacement is depicted in fig. 8.11 in comparison to the turbulent

cases. The data for the TW is in agreement with the turbulent data, and in particular, with the LR and RP

simulations. Moreover, the deviating values for HR suggest that the expected value significantly depends

on the details of the flow which justifies the discrepancies. The trend observed for the settling in the ECS

reinforces the hypothesis that particles are seldomly transported across multiple rollers even at high

values of Iτ. Since the hairpin-like ECS does not feature laterally isolated velocity streaks as is the case

for the turbulent cases in short domains, but rather exhibits interconnected wavy streaks due to the

staggered nature of the hairpins, see fig. 8.2(b), this recognition aids the speculation that this barrier

effect is still relevant in turbulent flows even when the streamwise extent of the LSMs and VLSMs is

accurately captured.
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8 Investigation of settling using an exact coherent state

8.6 Summary and concluding remarks

In this chapter, the feasibility of investigating the turbulent settling of particles in an open channel using

a simplified proxy system based on the family of exact coherent states described in Shekar and Graham

(2018) is examined. The selected ECS corresponds to a travelling wave whose topology resembles stag-

gered hairpin vortices, i.e. the vortical structures which are abundant in wall-bounded turbulence and

which were hypothesised by Adrian (2007) to play a substantial role in the explanation of LSMs and

VLSMs—the large-scale turbulent features which were conjectured in this thesis to propel preferential

concentration and velocity enhancement.

The TW solution was retrieved independently of Shekar and Graham (2018) and transferred by means

of homotopy to a parameter point which is suitable for the investigation of particle dynamics using

the immersed boundary method. In particular, the domain size was reduced to achieve a favourable

aspect ratio and the value of the bulk Reynolds number was decreased to its value at the inflection point

(Reb = 960.8, Reτ = 91.1). The low-order fluid velocity statistics of the TW at this parameter point were

compared to a turbulent open channel at Reτ = 200 (Bauer et al. 2022) and found to be in reasonable

agreement, especially if the reduced separation between inner and outer scales is taken into account.

This is especially true for the vertical velocity component which is known to be relevant in regard to the

enhancement in particle settling velocity.

Similar to the settling in sediment-laden turbulent flow, particles were seeded near the free-slip bound-

ary of the flow domain in order to let them settle transiently. However, in contrast to it, the sampling of

initial positions was done systematically (rather than in random arrangements) since the set of all possi-

ble initial positions is greatly reduced due to symmetric properties and the lack of temporal dynamics in

the TW solution. Moreover, particles were added in batches over multiple realisations in order to avert

collective effects.

The temporal evolution of the ensemble-averaged settling velocity was compared between the simpli-

fied and the turbulent system for three parameter points, and an outstanding agreement was found

when the relative turbulence intensity and the density ratio are matched. Due to the considerably

smaller computational effort required for the simplified system, an extensive parameter sweep could

be performed mainly in terms of the relative turbulence intensity. It was found that for Iτ → 0 a regime

exists where loitering can be observed and the peak settling velocity is attenuated compared to the am-

bient terminal velocity. For Iτ ≫ 1, the enhancement was found to saturate when scaled in terms of uτ,

or correspondingly, to increase linearly with Iτ when scaled in terms of vp,∞.

The saturation of the enhancement was conjectured to be caused by the settling particles to preferen-

tially sample the path of maximum enhancement, i.e. an increase of Iτ beyond its critical value does not

lead to significantly different trajectories relative to the TW anymore. Evidence for this behaviour was

provided by a Voronoï analysis of the crossing locations of a given wall-normal plane which yielded that

the mean-squared area also levels off for sufficiently high values of Iτ. The ultimate value for both the

settling velocity enhancement and the spatial intermittency of the crossing locations was found to be

dependent on the density ratio.

Ultimately, the existence of lateral transport barriers during the settling phase was assessed for the sim-

plified system. It was found that the mean-squared lateral displacement evaluated in the lower part

of the channel does not increase indefinitely with Iτ which suggests that settling particles rarely cross

through the large-scale roller structures within which they tend to focus. A similar trend was indicated

by the turbulent datasets, although in this case the parameter range was insufficient to make a definite
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statement. It remains to be demonstrated whether the inferences made from the simplified system are

transferable to high-Reynolds-number turbulent flows.

In conclusion, this chapter demonstrated that ECS may be employed as a valuable numerical laboratory

to study particle-turbulence interactions to a degree that valuable quantitative predictions can be con-

jectured based on observations of the simplified system. These conjectures may assist in the choice of

the parameter range to be investigated in more complex simulations or experiments in order to corrob-

orate or falsify the inferences. Moreover, the use of ECS enables analyses which are difficult to realise, or

even inaccessible, in the fully turbulent setup. In particular, since the complete velocity field is known

a priori, a velocity experienced by the particle at any given position, and even at previous times, may be

obtained unambiguously even for finite-size particles. In the future, this knowledge may be exploited to

gain more insights on particle-vortex interactions, especially in regard to non-local effects.
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9 Implications on bacteria
transport modelling

While the preceding chapters predominantly focused on hydrodynamic details of the abstracted particle

settling and dispersion problem, the purpose of this chapter is to discuss selected results in regard to

their implication on bacteria transport, or the modelling thereof.

9.1 Evaluation of a one-dimensional transport model

The first model which explicitly distinguished between the suspended and particle-attached mode of

bacteria transport is the stream model by Jamieson et al. (2005). In this one-dimensional streamwise-

resolved model both modes of transport are described by a respective advection-diffusion-reaction

equation. The equations remain uncoupled given the argument that in freshwater streams bacteria ad-

sorption to particles is predominantly irreversible due to the low-ionic strength environment (Jamieson

et al. 2005), and thus, may be solved individually. Therefore, only the particle-attached transport will be

discussed in the following.

The ADR equation for the suspended sediments which carry the attached bacteria is given by

∂CPB

∂t
+ub

∂CPB

∂x
=DPB

∂2CPB

∂x2 +qPB , (9.1)

where CPB (x) is the number concentration of suspended particles per unit streamwise length,1 ub is

the bulk velocity corresponding to the discharge of the stream divided by its cross-sectional area, DPB

the dispersion coefficient of the particles, and qPB the net rate of particle removal due to deposition.

Regarding the sink term, the authors follow the approach of Thomann and Mueller (1987) who suggest

the first-order kinetic equation, viz.

qPB =−
vp

Hf
CPB (9.2)

where the rate constant is equivalent to the negative inverse of characteristic settling time tp,s which

was introduced in eq. (4.3). The value of the dispersion coefficient is treated as a free parameter and is

calibrated to best reflect available measurements. In the original study, a possibly time-varying Dirich-

let boundary condition is imposed at the upstream boundary, whereas at the downstream boundary a

zero-flux Neumann boundary condition is employed which allows for bacteria to be advected out of the

domain, but prevents a diffusive flux. Generally the location of the downstream boundary was chosen

1 In the original publication, CPB is defined as a mass concentration. However, in the current context where the contami-
nants/suspended solids are monodisperse, a number concentration can be used equivalently and will be more convenient in
the following.
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Figure 9.1: Comparison between the DNS data for G10-D10-HR and the predictions of the stream model by Jamieson et al. (2005)
in the case of negligible deposition (qPB = 0). The data is shown for the time interval t ∈ [0,10] tb within the transient
settling phase during which no significant deposition may be observed in the DNS. (a) Concentration profiles as a func-
tion of streamwise distance from the origin of the localised contamination. Solid lines depict the DNS data ( ), while
dashed lines show the Gaussian distributions ( ) obtained from eq. (9.4). The line colours indicate the time at which
the concentration is evaluated, namely t = 2tb ( ), t = 4tb ( ), t = 7tb ( ), and t = 10tb ( ). (b) Ensemble-mean
of the streamwise contaminant position as a function of time. (c) Variance of the streamwise contaminant position.
The dispersion coefficient of the stream model was calibrated such that the variance matches at t = 10tb .

in their study such that it has little influence on the simulation results. As an initial condition, CPB is set

to zero everywhere within the domain.

The stream model assumes that suspended particles are removed from the flow at all times, i.e. qPB is

constant in space and time. However, in the case of combined sewer overflows where the contamination

enters the stream near the free surface, deposition only occurs after the initial settling phase, and thus,

qPB is neither homogeneous in space nor time. Therefore, for the sake of comparison, the streamwise

transport of particle-attached bacteria as predicted by the model in absence of qPB is contrasted with

the DNS data restricted to the settling phase in the following. In order to compare the transport, the

domain of the stream model is set to be unbounded with a localised initial condition in space in time,

viz.

C∗
PB (x,0) = δ(x), (9.3)

where C∗
PB (x, t ) ..=CPB (x, t )

/∫ ∞
−∞CPB (x,0)dx is the normalised concentration and δ(x) is the Dirac delta

distribution. For the unbounded domain, the pure advection-diffusion problem exhibits a simple ana-

lytic solution (Crank 1975, Lehnigk 1976) of the form

C∗
PB (x, t ) = 1

2
√
πDPB t

exp

(
−1

2

(x −ub t )2

2DPB t

)
, (9.4)

which corresponds to a normal distribution whose mean position propagates at a constant speed of ub

and whose variance increases linearly with time and is proportional to the dispersion coefficient, cf.

eq. (6.27) and (6.28). In order to emulate a streamwise-localised initial condition for the DNS data, the

data is henceforth analysed in terms of the displacement from the initial position, i.e. the trajectory

unrolling described in §6.6 is employed, cf. eq. (6.14).
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Figure 9.2: Evaluation of the global deposition behaviour as predicted by the stream model of Jamieson et al. (2005) ( ) and
evaluated for G10-D6-LR ( , macroscopically flat bed) and G10-D6-RP ( , ripple features). The DNS data has been
shifted in time by t0 which corresponds to the time at the onset of deposition. (a) Linear axes for the full time interval
covered by the DNS. (b) Semi-logarithmic scale with emphasis on the initial deposition.

Figure 9.1(a) shows a comparison between the temporal evolution of the streamwise dispersion of par-

ticles obtained from the stream model and the DNS for the parameter point G10-D10-HR within a time

interval during which no significant deposition occurs, i.e. where the disregardance of qPB is justified.

First, it can readily be acknowledged, that the streamwise distribution of particles is not Gaussian, but

exhibits significant skewness. In fact, the concentration profile approaches a distribution which re-

sembles that for a vertical line source of dissolved tracers at early times after injection as shown e.g.

in Fischer (1973). Thus, the distribution is likely the result of the wall-normal inhomogeneity of the

streamwise fluid velocity, and the distribution of cross-through times of the contaminants as presented

in §4.4. Second, the propagation velocity of the distribution is significantly faster than ub , see fig. 9.1(b).

Again, this discrepancy may be partly explained by the vertical distribution of contaminants. How-

ever, aside from this effect, the tendency of contaminants to accumulate in high-speed velocity streaks

also contributes to this effect, cf. §5.2.2, §5.2.3 and §6.3.4. Third, the variance in particle position does

not increase linearly in time, and thus, does not follow the diffusion process described by eq. (9.1), see

fig. 9.1(c). For the comparison, the dispersion coefficient has been calibrated to arrive at the same vari-

ance as the DNS data at the end of the time interval under investigation. The actual variance increases

approximately quadratic in time, and hence, the rate of diffusion is overpredicted over the entire obser-

vation time. As a result, the localisation of the contamination is maintained for longer times than the

stream model suggests.

In order to assess the accuracy of the deposition term qPB , eq. (9.1) is reformulated into its conservative

form. Recognising that there is no advective or diffusive flux across the boundaries for the unbounded

domain yields

∂Nc,sus

∂t
=− 1

tp,s
Nc,sus , (9.5)

where Nc,sus (t ) = ∫ ∞
−∞CPB dx is the total number of suspended contaminant particles within the domain.

Using the classification procedure introduced in §6.5, this number is given by Nc,sus = 1−Nc,bed which

is readily evaluated from the DNS. Given that all contaminants are initially suspended, the solution of

eq. (9.5) describes an exponential decay of the form

Nc,sus

Nc
= exp

(
− t

tp,s

)
. (9.6)
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A juxtaposition of this decay model and the DNS data in absence and presence of ripples is displayed in

fig. 9.2. Here, the empirical data has been shifted in time such that the origin of the abscissa corresponds

to the onset of deposition to enable a fair comparison. When the entire observation interval is evaluated,

the exponential decay qualitatively describes the rapid decrease in the number of suspended particles

in an adequate manner. However, the nature of the sink term causes all particles to be removed from

the suspended mode of transport in the long term, which is naturally not the case for the DNS data as

particles still propagate streamwise due to bedload transport and resuspension, cf. §4.6 and §6.5. Con-

sequently, the stream model is only capable of reproducing the initial transient and does not adequately

capture the long-term transport of particle-attached bacteria in the vicinity of a river bed. Moreover,

when the initial deposition of the contaminants is examined in detail (fig. 9.2(b)), it can be noticed that

the exponential decay greatly overpredicts the rate of deposition at early times. In fact, the first-order

kinetic demands that the removal rate of the highest at early times (when the concentration is still maxi-

mum), while it was demonstrated in §6.6 that the times of initial deposition actually follow a log-normal

distribution, i.e. the peak deposition rate occurs significantly after the first particle arrived at the bed.

This distinction is found to be rather significant as, for instance, the DNS data suggests a half-life which

is twice as long as what is predicted by the model. In addition to the difference in the distribution of

deposition times, the exponential decay rate is likely overpredicted when the ambient settling velocity

is employed to compute the characteristic settling time, since it was reported in §4.5 and §6.6 that the

net deposition time is reduced by roughly 20% across all cases as compared to the value obtained by

Hf

/
vp,∞.

It is self-evident that a minimal model such as the stream model of Jamieson et al. (2005) cannot capture

all subtleties of suspended particle transport in the same way a fully-resolved simulation does. Nonethe-

less, the comparison with the empirical data obtained within this thesis provides two major suggestions

on how this particular model could be improved significantly in its ability to capture the streamwise

spreading of particle-attached bacteria. First, it would be beneficial to consider a third mode of trans-

port which depicts the bedload transport of settled contaminated particles which may be formulated

in terms of a classical sediment transport formula (e.g. Meyer-Peter and Müller 1948).2 Second, the de-

position term, which would act as a sink in the suspended solid concentration and as a source for the

bedload, should be modified to reflect the log-normal distribution of the settling length. In fact, §6.6

provides relatively robust empirical relationships which facilitate an adequate estimation of this distri-

bution which only requires additional knowledge on the relative turbulence intensity as compared to

the current requirements.

9.2 Solar irradiance

A physical process which may play a decisive role in the fate of bacteria is the exposure to sunlight,

especially with regard to its ultraviolet components, cf. §1.1. For a given ambient intensity of ultraviolet

irradiance IUV,0 at the surface of a water body, the intensity to which particle-bound bacteria immersed

inside a water body are exposed to is prevailingly a function of the distance covered by a ray inside the

water body (absorption) and the turbidity (scattering). A widespread description of light attenuation

2 Indeed, the inclusion of sediment transport in bacteria fate and transport models is not a new idea and has been implemented
in various studies, see §2. However, it is rare that both settling particles and sediment transport are described separately within
a single model.
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Figure 9.3: Proportion of the contaminant surface area which is not shaded by other particles, and hence, is directly exposed to
solar radiation. (a) During the initial transient settling phase portraying the impact of clustering. (b) The long-term
trend which displays the effect of sediment bedforms and contaminant entrainment into the sediment bed. Legend:
G30-D10-LR ( ), G10-D6-LR ( ), G15-D10-LR ( ), G15-D6-LR ( ), G30-D10-RP ( ), G10-D6-RP ( ), G30-
D15-HR ( ), and G10-D10-HR ( ).

inside a medium is given by Beer’s law (Beer 1852) which reads under the assumption that the sunlight

enters the water body from a strictly vertical direction

IUV

IUV,0
= exp

(−katt (Hf − y)
)

, (9.7)

where IUV (y) is the local UV intensity and katt is the attenuation coefficient. As this law states that the

UV intensity decays exponentially with the distance to the surface, the rate at which particles settle in

the initial phase may be an important factor to consider under conditions where sunlight exposure is

a dominant inactivation mechanism.3 In fact, §4.5 suggests that for high relative turbulence intensities

the contaminants generally exhibit an increased collective settling velocity until they are in the vicinity

of the sediment bed.

Concerning the scattering of light by suspended solids in the water column, Qian et al. (2016) found that

turbidity can be a decisive factor for the prediction of inactivation rates in the aftermath of a combined

sewer overflow. Turbidity reduces the exposure to irradiance due to scattering or blockage of light by

particles which are located in between the light source and the position of interest. Typically, this ef-

fect is parametrised by the concentration of total suspended solids present in the water column. This

approach implicitly assumes that these solids are homogeneously distributed which was demonstrated

not to be the case in this thesis. In order to highlight the effect of spatial intermittency on the exposure

to sunlight, an exposure factor β is defined as the ratio between the cross-sectional surface area of con-

taminant particles which is directly exposed to radiation to the corresponding total area. Accordingly,

1−β is the share of the cross-sectional area of contaminant particles which is in the shade of other con-

taminant or sediment particles assuming that the ray direction is strictly vertical. Figure 9.3(a) depicts

this exposure factor during the transient settling phase for various parameter points which all share the

same concentration of suspended solids. While the exposed surface area is reduced by around 20% for

the case with the highest relative turbulence intensity, it is found to decrease only slowly for more in-

ert particles. A comparison of the evolution of β with the findings of §6.1.2 strongly suggests that the

3 The discussion on UV inactivation of bacteria is not limited to the exposure to sunlight, but may also be of relevance for
technical disinfection procedures using UV radiation which are at times applied to the storm sewage before it is released into
rivers, cf. §1.1.
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reduction in sunlight exposure is proportional to the tendency of contaminants to form clusters. A spa-

tially inhomogeneous distribution of particles may hence lead to higher effective concentrations of total

suspended solids with regards to the modelling of turbidity.

Regarding the long-term exposure to sunlight, sediment bedforms are decisive. As might have been an-

ticipated from the findings of §6.5, the trapping phenomenon observed in the presence of ripples which

buries contaminants under a thick layer of sediment is very efficient at shielding particle-attached bac-

teria from radiation. In fact, fig. 9.3(b) indicates that the exposed surface area is reduced to merely 20%

during the first trapping cycle, and stays consistently around 30% in the long-term. In contrast to this,

the exposure factor is found to stay within the range of 60–80% if the sediment bed is macroscopically flat

with a tendency to decrease if the contaminants tend to get covered by the turbulent deposition of sed-

iment particles. Irrespective of the details of the bedform, a tendency of contaminants to be entrained

into the sediment bed appears to provide favourable conditions for the survival of particle-attached

bacteria. It also serves as a plausible explanation of the spontaneous increase of FIB concentrations in

rivers observed in the absence of immediate contamination events which is hypothesised to be caused

by storages of bacteria associated to river beds (McDonald et al. 1982, Sherer et al. 1988, 1992, Wilkinson

et al. 1995).

9.3 Lateral dispersion barriers during settling

It was observed in §6.7 that the mean-squared displacement of contaminants during the settling does

not increase indefinitely with the distance travelled, but rather saturates during the settling phase.

Moreover, when the converged value is inspected across the various cases, it appears to level off past

a certain value of the relative turbulence intensity. A similar trend is observed in a simplified proxy

system where particles settle within an exact coherent state of the fluid flow, and for this system it was

indeed demonstrated that the lateral displacement during the settling does not considerably increase

anymore if the relative turbulence intensity exceeds a value of Iτ⪆ 2, cf. §8.5.

It has been hypothesised that the saturation in displacement is linked to the tendency of contaminants

to accumulate in large-scale high-speed streaks of the streamwise fluid velocity, which appears plau-

sible as the maximum standard deviation of the lateral displacement is approximately Hf /2 while the

spanwise wavelength of the large-scale streak is in the range of 1–2Hf , cf. §5.5. A potential physical

mechanism which gives rise to this phenomenon may then be outlined as follows: In the beginning of

the settling process, contaminants are driven towards an adjacent high-momentum region due to the

preferential sampling of coherent vortices which presumably occurs on multiple scales. The focusing of

particles in these regions can be considered as stable since on average the fluid flow only diverges from

it laterally close to the sediment bed, cf. §5.1. As a consequence contaminants do not tend to exhibit a

net spanwise movement once they are focused until they are close to deposition.

On the contrary, the diverging averaged flow near the sediment bed encourages the spanwise movement

towards a large-scale low-speed streak, and thus, drives contaminants away from their spanwise posi-

tion which they obtained during the initial settling, which tends to increase dispersion. In the bedload

transport phase, contaminants are observed to accumulate near sediment ridges which thus constitute

the region of convergence in the near bed region, cf. §6.5. Here, it is important to note that no disper-

sion barrier phenomenon occurs in the phase of near-bed transport: While the sediment ridges are a

stable position on the bed, contaminants will occasionally be uplifted by resuspension events which

predominantly occur in low-speed streaks. However, due to the symmetry breaking effect of gravity, the

upward movement is unstable unlike the initial downward movement, and thus encourages spanwise
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Figure 9.4: Conceptual sketch of the conjectured lateral dispersion barrier during the transient settling phase. The turbulent chan-
nel flow contains long streamwise-aligned streaks of streamwise velocity fluctuations with alternating signs which
are associated to vortex clusters or packets. In the conditionally-averaged picture, these structures are separated by
large-scale rollers which cause contaminants to accumulate in one of the large-scale high-speed streaks/downwellings
which are closest to their initial position by means of multiscale interactions. Moreover, the analysis of lateral disper-
sion indicates that contaminants rarely cross low-speed streaks ( ) during the settling phase. It may hence be spec-
ulated that contaminants which are introduced near the bank of a river stay contained in a region with a the width of
1–2Hf as long as they are suspended, and only spread further in lateral direction once they are deposited onto the bed.
Since the streamwise contaminant flux is considerably higher during the settling phase, this implies that contaminants
might stay confined to the near-shore region over significant downstream distances from the source.

dispersion. Contaminants may then again be transport towards a neighbouring high-speed streak, and

so forth. In this idealised depiction, the spanwise transport of an individual contaminant particle thus

consists of discrete jumps between flow features with spanwise dimensions of the order of the clear fluid

height.

It may be speculated that the attenuation of lateral dispersion during the initial settling of contami-

nants has interesting consequences on the spreading of bacteria in rivers. Regarding combined sewer

overflow events, the relief system from which the waste water is discharged is usually located near the

river bank. As discussed in §4.6, the streamwise contaminant flux is considerably higher during the

settling phase than at later stages, which implies that contaminants may be transported over a consid-

erable streamwise distance until they start to disperse away from the shoreline. This recognition might

therefore have significant impact on the near-shore water quality, as well as the prediction thereof, as it

suggests that the spanwise distribution of contaminants remains inhomogeneous even at considerable

distances from the source of pollution. In terms of modelling, this conjectured phenomenon especially

casts doubt on the common assumption of well-mixedness of pollutants in the lateral direction if they

enter the stream from a point source. A conceptual sketch of the transport barrier mechanism is pro-

vided in fig. 9.4.

In order to assess the relevance of this phenomenon in the real-world application, one might also specu-

late on the implications of a variation in the parameter point regarding the spreading, especially in view

of particles smaller or lighter than the ones investigated in this thesis. A reduction in particle size or

density implies that the terminal velocity of the contaminant particle reduces, which in turn increases

the relative turbulence intensity Iτ = uτ/vp,∞ and the characteristic settling time tp,s = Hf /vp,∞. Since

evidence was presented that the limitation in lateral dispersion becomes independent of the relative

turbulence intensity for Iτ ≫ 1 and only depends on the depth of the water body, and particularly not

directly on the particle diameter and presumably only weakly on the density, the upper bound of the
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Table 9.1: Details on the initial conditions and boundary conditions on the particles’ surface for the concentration fields which are
employed to mimic the spreading of freely-suspended bacteria. In all cases the boundary conditions at the free-surface
as well as at the bottom bounding wall are zero flux conditions.

scalar initial condition BC contaminants BC sediment Sc

S1 layer CSB = 1 CSB = 0 1

S2 layer
∂CSB
∂n = 0

∂CSB
∂n = 0 1

SB layer –
∂CSB
∂n = 0 1

mean-squared displacement remains approximately unmodified in terms of Hf . At the same time, the

increase in the characteristic settling time in conjunction with the observation of §6.6 that the ratio

between the actual deposition time and tp,s is not considerably dependent on Iτ implies that smaller

particles will be transported over longer streamwise distances before they enter the near-bed region. As

a consequence, the ratio between the streamwise-travelled distance (which was argued to increases with

decreasing particle size/density) and the spanwise-travelled distance (which is speculated to be inde-

pendent of the particle size/density at high relative turbulence intensities) before deposition might in-

crease for smaller/lighter particles which further emphasises the point that contaminants might remain

confined to the near-shore region over considerable downstream distances. Unfortunately an assess-

ment of this conjecture requires a parameter sweep with respect to the Galileo number in a range which

is outside the scope of this thesis and for which Iτ≫ 1 in order to be in the presumed asymptotic regime

of lateral dispersion. It should also be emphasised that the lateral dispersion in the near-bed region is

expected to behave qualitatively different as the dispersion coefficient is conjectured to be proportional

to the Shields number in this regime, cf. §6.7, and thus, the contamination will not stay confined as soon

as the initial settling phase is concluded.

Self-evidently, the description of the mechanism is in a sense idealised, and in reality the alleged barrier

should be not be understood as an absolute fact, but rather in a statistically-averaged sense. Influencing

factors which need to be considered when assessing the relevance of this phenomenon in the bigger

picture are the lifetime and evolution of LSMs and VLSMs, as the cyclic burst of large-scale streaks or

their meandering characteristics at very-large scales might weaken their ability to obstruct dispersion.

Moreover, the transport of contaminants near the bed in the later stages is subject to a great variety of

phenomena aside from the ridge accumulation, such as the interaction with ripples or other trapping

effects (§6.5) which require further investigations since they might play a leading role in the spanwise

homogenisation of contaminant concentrations.

9.4 Effect of particles on freely-suspended bacteria

The content of this thesis was focused on the transport of bacteria in the particle-attached mode due

to its beneficial characteristics regarding the survival of bacteria on one hand, and the complexity of

the particle-laden flow problem which serves as an abstraction on the other hand. Most bacteria trans-

port models which explicitly treat the particle-attached transport also consider the transport of sus-

pended bacteria, although regularly both modes remain uncoupled which is justified by irreversible

bonding. In this section, a brief primer is provided on the coupled transport of particle-attached and

freely-suspended bacteria.

The accurate modelling of the transport of suspended bacteria is an intricate task even in the absence

of particles. This is mainly caused by the low diffusivity of bacteria in comparison to the viscosity which
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results in high values of the Schmidt number, and consequently, in fluctuations in the concentration

field significantly smaller than the Kolmogorov scales (Pinelli 2022). This intricacy poses high demands

on the numerical method and the mesh resolution, and is avoided in the following by setting Sc = 1. The

combined particle and scalar transport problem is treated using the method described in §3.2.3. The

concentration of suspended bacteria is assumed to have no effect on the specific weight of the fluid, and

thus, its transport is treated equivalently to that of a passive scalar. In fact, the tracking of suspended

bacteria was included in the HR simulation series presented regularly throughout this thesis, where the

pure particle-laden flow problem could be discussed independently of the mass transfer problem due to

its passivity which implies that the evolution of the fluid flow and the particle trajectories are completely

unaffected by the transport of suspended bacteria under the current assumptions. In contrast, the effect

of particles on suspended bacteria is two-fold as particles may modify the concentration of suspended

bacteria directly by means of their boundary condition for the scalar transport problem, but also mod-

ify the fluid velocity field which affects the advective term in the advection-diffusion equation even in

the case of no mass transfer (irreversible attachment). These two effects are examined systematically

by imposing two distinct types of scalar boundary conditions at the surface of the contaminants in the

following. In the first case, a Dirichlet boundary condition of C∗
SB = 1 is imposed to emulate a simple

detachment process where particles act as a source of suspended bacteria (“S1”), where C∗
SB denotes a

normalised concentration. Here, it is assumed that the particle-attached and freely-suspended modes

are in equilibrium in the discharged sewage, and that the dilution with freshwater causes bacteria to

be primarily detached from contaminant particles. Furthermore, it is assumed that the number of at-

tached bacteria remains large compared to the number of bacteria which are detached during the time

interval such that no balance equation for the bacteria concentration on the particles’ surface needs to

be solved. In the second case, a zero-flux Neumann boundary condition of
∂CSB
∂n = 0 is imposed which

makes the particles inert with respect to the scalar field (“S2”). In both cases the initial condition for the

concentration field is a layer that embeds the contaminant particles which is given by the equation

C∗
SB (y,0) = 1

2

(
erf

(p
π

y − ySB

ςSB

)
+1

)
(9.8)

and constitutes a sigmoid function where C∗
SB = 1 for y ≫ ySB and C∗

SB = 0 for y ≪ ySB . In particular,

erf(x) = 2p
π

∫ x
0 exp(−t 2)dt denotes the Gauss error function. In order to avoid a discontinuity at the

edge of the layer, the transition occurs within a finite vertical region whose extent is determined by ςSB .

Henceforth, these two parameters are set to ySB = 0.9Hf and ςSB = 0.025Hf . The domain is hermetic and

the sediment particle boundary conditions are C∗
SB = 0 for S1 and

∂CSB
∂n = 0 for S2. To characterise the ef-

fect of the presence of settling particles on the transport of suspended bacteria in the case without mass

transfer, a reference simulation "SB" is conducted which does not contain any contaminant particles,

but has the same initial condition for the scalar field. A summary of the imposed boundary conditions

is provided in table 9.1.

Figure 9.5 provides the vertical profile of the xz-averaged concentrations of suspended bacteria at two

instances in time in presence and absence of contaminant particles. If bacteria may detach from the

particles (S1), the mean concentration is observed to be enhanced over the entire flow depth. In par-

ticular, the rapid rise in C∗
SB in the lower parts of the channel can be entirely attributed to the detach-

ment of bacteria from particles as a comparison with the evolution of S2 immediately suggests. The

rate of downward propagation is thereby mainly determined by the settling velocity of the contaminant

particles as a comparison between G30-D15-HR and G10-D10-HR suggests. If bacteria are bonded ir-

reversibly to particles (S2) the profile of the scalar field remains much closer to the reference curve for

the spreading in absence of contaminant particles. However, the inert particles clearly lead to a faster

mixing of the freely-suspended layer by manipulating the fluid velocity field. Regarding this effect, the
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Figure 9.5: Mean concentration of suspended bacteria averaged in wall-parallel planes as a function of the vertical position. Two
instances in time are displayed, namely (a) t = 7.2tb and (b) t = 12tb . The line colours and styles denote different cases
and boundary/initial conditions for the concentration field. Legend: G30-D15-HR-S1 ( ), G10-D10-HR-S1 ( ),
G10-D10-HR-S2 ( ), and HR-SB ( ).
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Figure 9.6: Exemplary visualisation of the concentration of suspended bacteria in the wall-normal plane at y ≈ 0.92Hf and t ≈
2.8tb . Contaminant particles which are currently located in this plane are displayed as white dots. (a) G10-D10-HR-S1
showing detaching bacteria, (b) G10-D10-HR-S2 showing irreversibly attached bacteria.

difference between the two particle parameter points investigated is miniscule, and thus, the curve for

G30-D15-HR-S2 has been omitted in the figure. It should be noted that while the disparity in the ob-

served concentration profiles for S1 and S2 appears drastic, these profiles certainly dependent on the

actual rate of detachment of bacteria which has only been modelled crudely and is likely to be overpre-

dicted. Therefore, the recognitions just made should be understood in a qualitative sense.

An exemplary depiction of the instantaneous structure of C∗
SB is provided in fig. 9.6. The wall-parallel

plane which is located at a position inside the layer of initialisation highlights the intermittent nature

of the scalar field. In fact, both the freely-suspended and particle-attached bacteria are transported

away from the free surface in fluid downwellings, although it can be noted that contaminant particle are

located near the edges of high concentration regions, which is in accordance with the recognitions of

§6.3.3. For this reason, the detachment of bacteria may be relevant even at early stages of the settling

phase due to the early segregation between the two modes of transport.
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9.5 Summary and concluding remarks

The purpose of this chapter was to transfer the newly obtained knowledge from the predominantly hy-

drodynamic analyses of this thesis to bacteria transport modelling, and to speculate on emerging phe-

nomena which may have received only little attention in the water quality community so far.

To begin with, a simple but popular one-dimensional model for the streamwise spreading of bacte-

ria was analysed with respect to its predictions on the transport of particle-attached bacteria. It was

demonstrated by means of juxtaposition with the DNS data that the streamwise contaminant flux is un-

derpredicted by the model, whereas the rate of dispersion and deposition are generally overpredicted.

Practical modifications have been proposed based on the recognitions of §6 which likely eliminate some

of the flaws of the model with only a marginal increase in complexity.

The organisation of particles into spatially intermittent structures has been discussed in the context of

bacteria inactivation due to the exposure to ultraviolet radiation. The formation of clusters while parti-

cles are still in suspension was determined to reduce the exposure to sunlight due to shading effects. For

this reason, the attenuation of sunlight is not only a function of the concentration of total suspended

solids, but also depends on the degree of spatial inhomogeneity exhibited by the solid phase, which

in turn depends primarily on the relative turbulence intensity. A similar phenomenon occurs due to

the interaction of contaminants with the sediment bed. The trapping mechanism which immobilises

contaminants under a thick layer of sediment in the presence of ripples was determined to reduce the

exposure to solar irradiance dramatically. A similar effect, but to a weaker degree, can be observed for

macroscopically flat beds if the parameter point enables an entrainment of contaminants into the sedi-

ment bed. The shielding from UV irradiance likely provides a favourable environment for the survival of

bacteria, and it was hypothesised that the observed burying process is one of the storage mechanisms

which is related to intermittent bursts in FIB concentrations observed in rivers even in the absence of

immediate contamination events.

The tendency of contaminant particles to accumulate in large-scale streaks of high streamwise fluid mo-

mentum was speculated to lead to transport barriers which inhibit the lateral dispersion during the ini-

tial settling phase. This supposition is substantiated by the observed stagnation in lateral mean-squared

displacement and the saturation of the ultimate displacement in regard to increasing relative turbulence

intensity. As contaminants are introduced near river banks in combined sewer overflow events, this find-

ing suggests that a strong spanwise inhomogeneity in FIB concentration might persist even at significant

downstream distances from the source of pollution, which again has important implications on water

quality near the shoreline of a river if this phenomenon proves to be relevant. Once the contaminants

are deposited or close enough to the sediment bed to experience flow conditions which diverge laterally

on average, the dispersion mechanism changes its nature due to the symmetry breaking effect of gravity,

and consequently, no transport barriers are to be expected in this phase.

Finally, the effect of the presence of particles on the spreading of freely-suspended bacteria was outlined

for the cases of detaching bacteria and the modification of the flow field by inert particles. If bacteria

are not bound irreversibly, the tendency of particles to move downwards at faster velocities than the

fluid causes mass transfer which increases the concentration of freely-suspended bacteria more rapidly

at the bottom of the channel than in absence of settling particles. Moreover, it was found that the mere

presence of particles facilitates the vertical dispersion of suspended bacteria, since the settling particles

enhance vertical fluid momentum even if they are inert with respect to the scalar field.
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The mechanistic modelling of bacteria fate and transport typically operates by successively decompos-

ing the complex problem into separate processes, which are modelled individually based on empiri-

cal and theoretical knowledge, and are refined in steps according to the shortcomings in their predic-

tions. While this procedure has proven to be successful for the description of tangible water-pollution

problems and promotes the understanding of the empirical observations due to its decomposed na-

ture, it offers little possibility for inductive reasoning as the model parameters and assumptions are

generally tuned to the problem of interest. The transport components of these frameworks are either

low-dimensional or based on recent advances in the modelling of flows on a geographic scale, i.e. on

the scale of entire estuaries for instance, and thus, rely substantially on the modelling of hydrodynam-

ical processes which occur on length scales of the order of the water depth and below. This is espe-

cially problematic in the context of bacterial contaminations as it is known that bacteria tend to attach

to particles, which is of great significance as they provide a favourable environment for their survival,

and which couples their spreading to the dynamics of particles. Indeed, particle-attached transport is

thought to be vital in the explanation of various emerging phenomena such as the delayed release of en-

teric bacteria stored in river sediment even in absence of immediate contamination events (McDonald

et al. 1982, Wilkinson et al. 1995).

There is a strong discrepancy between the sizes of the particles of interest (around 10–100 µm) and the

smallest length scales which are resolved by any higher-dimensional transport model (several meters)

that could be identified in the literature. It is therefore inevitable to rely on models for the description

of the dynamics of particles. At the same time, from a hydrodynamics point of view, the interaction be-

tween particles and turbulence is not sufficiently understood to reliably capture all of its peculiarities.

This is especially true in the case of the transient settling problem of particles in a turbulent horizontal

channel flow, which can be thought to be an abstraction of the settling processes occurring after a com-

bined sewer overflow event, and which has hitherto received only little attention in the hydrodynamic

literature, especially in regard to high-fidelity simulation methods from first principles. Moreover, de-

spite the recent advances in experimental and numerical methods in the study of sediment-laden flows,

the mixing of contaminants with mobile river beds has so far been overlooked. There is thus a knowl-

edge gap to be filled to promote the fundamental understanding of the abstracted particle-laden flow

problem, as well as to assess the impact of the specific features of particle transport at the unresolved

scales on the understanding of the spreading of bacteria as a whole.

In regard to advancing the understanding of bacteria transport, fully-resolved direct numerical simu-

lations constitute a novel approach to the problem which describes the abstracted contamination sce-

nario originating from the smallest relevant scales. In particular, the current approach isolates the sub-

problem of particle-bound bacteria transport, and formulates it based on fundamental physical princi-

ples from the bottom up under the avoidance of modelling assumptions until it contains all elements

required to emulate the river contamination problem (settling particles, sediment bed, turbulence). Us-

ing this approach, the interaction between particles and turbulence can be described from first princi-

ples which gives the simulation results similar credibility to laboratory experiments with the advantage
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that the full state of the system is known at all times. Consequently, the simulated system provides an

opportunity for inductive reasoning, and should be regarded as complementary to the traditional ap-

proaches to bacteria transport modelling with the aim of raising awareness on the relevance of typically

unresolved phenomena.

In the following, the major findings of this thesis will be summarised from a hydrodynamic standpoint

and in the context of bacteria transport. Subsequently, the thesis is concluded by a statement of the

limitations of the current work and suggestions on aspects which require further research.

10.1 Summary of hydrodynamic findings

For this thesis, eight distinct parameter points have been investigated concerning the settling of parti-

cles from the free surface of turbulent horizontal open channel flows in the presence of a pre-existing

sediment bed consisting of O(105) individual particles. The parameter space includes two distinct bed

topologies (ripples, ridges), two values of the bulk Reynolds number (Reb = {3009,9483}), and a sweep

in the contaminant parameters (Ga = 10–30, ρp /ρf = 1.5–2.5, d+
p = 8–18). The contaminant parame-

ters have been selected to cover a wide range of relative turbulence intensities which is given by Iτ =
0.47–2.88. The simulation method is based on the immersed boundary method in the formulation of

Uhlmann (2005), and every relevant scale of turbulence, as well as the microscopic flow around every

contaminant and sediment particle is fully resolved by the method. Similar setups have only been in-

vestigated experimentally (Cuthbertson and Ervine 2007) or numerically for unresolved particles and in

absence of a sediment bed (Bragg et al. 2021a) before, and thus, the simulations of this thesis are first to

simulate this problem from first principles, even if the context of bacteria transport is disregarded.

The instantaneous settling velocity of the contaminant particles was found to be enhanced on average

in comparison to the terminal velocity of a corresponding isolated particle for most parameter points

under investigation, which is in accordance with the experimental findings of Cuthbertson and Ervine

(2007) over a similar parameter range. It was determined that the prevalent scaling parameter which

describes this enhancement is the relative turbulence intensity, and that enhancement generally occurs

when its value is of the order of unity or above. Here, the term “instantaneous settling velocity” can be

interpreted in two ways, with the first one being the ensemble-average over all contaminant particles

at a given instance in time—an indicator of how fast the system approaches its equilibrium state—and

the second one being the ensemble-average over all contaminants at their respective time of crossing

a given wall-parallel plane, which in general does not occur simultaneously. The latter is also denoted

as the “spatial-average” within this thesis and provides a way to assess the role of wall-normal inhomo-

geneity in the channel. It was found that the excess in settling velocity is well described by the local

standard deviation of the vertical fluid velocity once the initial acceleration phase of the contaminants

has concluded.

The streamwise component of the contaminant was also found to be increased with respect to the local

mean fluid velocity. A quadrant analysis of particle velocity fluctuations with respect to the fluid mean

and the ambient terminal velocity suggested that positive fluctuations in uc regularly go hand in hand

with negative fluctuations in vc . An evaluation of the fluid velocities in the immediate surrounding

of the contaminants indicated that this behaviour is caused by the preferential sampling of turbulent

sweep events—a phenomenon which has already been postulated by Cuthbertson and Ervine (2007)

and Breugem and Uijttewaal (2007), but has now been confirmed by direct measurements of the fluid

velocity.
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In contrast to the vertical particle velocity, the enhancement in the streamwise component was found

to be explicitly dependent on the details of the flow, i.e. it cannot be solely parametrised by the rela-

tive turbulence intensity, but rather also depends on the flow Reynolds number and the topology of the

sediment bed. A detailed investigation on the cause of the enhancement revealed that contaminants

tend to accumulate in large-scale high-speed streaks of the streamwise fluid velocity, which are associ-

ated to the LSMs and VLSMs in wall-bounded turbulence. It is known that the details of these coherent

structures vary in the flow Reynolds number range under investigation, which explains the difference

in scaling behaviour among cases with a different background flow. In comparison, the enhancement

in vc is predominantly driven by coherent fluctuations in vf at significantly smaller scales, which is in

accordance with the anisotropy in length scales between u′
f and vf as is suggested by the premulti-

plied spectra of these quantities. In fact, a novel scale decomposition method based on the Gaussian

band-pass filtering proposed by Motoori and Goto (2021) and Motoori et al. (2022) enabled a quan-

tification of the contributions of fluid velocity fluctuations at a given scale to the velocity experienced

by the contaminant particles. The decomposition indicated that structures with spatial dimensions of

(1.2,0.4,0.6)T Hf to (2.4,0.8,1.2)T Hf in (x, y, z)T are most significant regarding the enhancement of the

streamwise particle velocity, whereas for the vertical particle velocity the characteristic size range lies

between (0.3,0.1,0.15)T Hf and (0.6,0.2,0.3)T Hf . These results coincide approximately with the length

scales which are the most active for the respective fluid velocity component in terms of their root-mean-

square as obtained from the Fourier analysis.

It was hypothesised that the mechanism which transports contaminant particles into sweeps is related

to the preferential sweeping mechanism of Maxey and Corrsin (1986). Indeed, shortly after the intro-

duction of contaminants, this effect was demonstrated to be active and to immediately produce a sig-

nificant spatial intermittency in the distribution of contaminants which are initially randomly seeded

within a wall-parallel plane close to the free surface of the open channel. Regarding the arrangement

into large-scale streaks, a determination of the primary mechanism which leads to the organisation is

more intricate. It was conjectured that it is the result of the interactions of particles with the vortical

structures which give rise to LSMs and VLSMs with prime candidates being vortex clusters (del Álamo

et al. 2006) or packets of hairpin vortices (Kim and Adrian 1999).

The preferential sampling phenomenon also leads to the formation of particle clusters. The tendency of

particles to accumulate increases with the relative turbulence intensity. Although it could be excluded

that clusters are the cause of the enhanced settling velocity, they were determined to play a major role

for the avoidance of a collective hindrance effect similar to the effect described by Richardson and Zaki

(1954). By investigating non-turbulent proxy simulations of collective settling, it was found that this

effect may substantially reduce the ensemble-averaged settling velocity if particles cannot escape the

horizontal alignment imposed by their initial arrangement, and that a formation of clusters reduces its

relevance due to the reduction in the cross-sectional area blocked by the ensemble. By investigating

the conditionally averaged particle concentration in the vicinity of the settling contaminants, it was

detected that hindrance is indeed a factor which needs to be considered during turbulent settling when

the relative turbulence intensity is insufficient to efficiently break up the layer arrangement. In fact,

the parameter points for which this phenomenon occurs are the only ones which exhibit a reduction

in settling velocity and a perceptibly altered temporal and spatial evolution thereof, which both can be

attributed to this collective effect.

While clusters are relevant in the period immediately after the settling commences, the contaminants

tend to disperse in the vertical direction as the transient progresses such that their instantaneous dis-

tance grows with time. However, pattern formation can still be detected when the preferential con-

centration of crossing locations in wall-parallel planes is examined in a suitable frame of reference. A
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Fourier analysis of the preferential concentration thereby reveals that the successive organisation of par-

ticles into large-scale streaks is not primarily controlled by the inertia of particles, but is rather driven by

the spatial inhomogeneity of turbulence as these streaks only become dominant in the lower half of the

channel. Nonetheless, a lag in the evolution of the dominant mode can be perceived which suggests a

finite response time of the contaminants to changes in the flow environment.

The wall-normal inhomogeneity of wall-bounded turbulence also affects the averaged wake of the set-

tling particles. For the current parameter points a mean wake which resembles the respective undis-

turbed state is only observed for low relative turbulence intensities. For a set of particle parameters,

the mean wake changes substantially depending on the vertical position which could be ascribed to

the spatial variation in
〈

v2
f

〉
xzt

. In fact, when the length of the wake is quantified and evaluated as a

function of a local relative turbulence intensity based on the root-mean-square fluid velocity in vertical

direction, a clear trend can be observed which quantitatively matches the data reported by Homann

et al. (2013) for a sphere towed through isotropic turbulence at a similar particle Reynolds number. The

downstream length of the wake was found to saturate at a value of O(dp ) when the relative turbulence

intensity exceeds unity. Although the flow in the channel is sheared on average, the effect of shear on the

wake was deemed to be negligible in the bulk of the channel. At vertical positions closer to the sediment

bed, the mean wake exhibits signs of distortion. A comparison with a particle settling in laminar Cou-

ette flow under comparable conditions to the turbulent mean suggested that although the distortion is

considerable, the settling velocity is only altered marginally. Regarding the streamwise particle velocity,

the rapid decrease in the mean streamwise fluid velocity encountered by the contaminants manifests

itself in strong positive values for the difference between uc and
〈

uf

〉
xzt

due to the fact that particles sus-

tain part of their streamwise momentum from higher positions. In fact, this phenomenon becomes the

dominant cause for the enhancement in streamwise particle momentum near the wall as preferential

sampling loses its relevance in the same region.

Regarding the deposition of contaminants, it was found that the time until deposition is log-normally

distributed. The mean of the distribution is increased compared to the naïve estimate given by the ratio

of the clear fluid height and the ambient terminal velocity. This implies that contaminants settle slower

on average over the full settling distance despite moving at significantly faster speeds compared to the

ambient terminal velocity instantaneously, which is a result of the fact that at high turbulence intensi-

ties particles also have an increased tendency to move upwards. The concept of deposition time can be

generalised by evaluating the distribution of crossing times through any wall-parallel plane. In this case,

a generalised Gamma distribution was found to provide the best fit, although a log-normal distribution

is likely to be the preferred choice at least close to the sediment bed due to the principle of parsimony.

This generalisation enables the definition of a velocity which quantifies the propagation speed of the

ensemble of contaminants denoted as the group velocity, and indicates that the ensembles propagates

to the centre of the open channel at a rate faster than the terminal velocity at sufficiently high relative

turbulence intensities, but significantly slows down shortly before deposition. Similar to the deposition

times, the streamwise distance covered before deposition also follows a log-normal distribution, as was

previously suggested by Li and Shen (1975) based on a simple random-walk settling model. Interest-

ingly, the variance of the settling length obtained from the DNS data follows an empirical fit based on

experimental data provided by the same authors remarkably well, which suggests that the mechanisms

responsible for the distribution are rather robust.

The spanwise displacement follows a Gaussian distribution around a zero mean at virtually all wall-

normal positions. Its variance increases initially but saturates in the lower half of the channel, which

implies that the distribution remains constant past a certain vertical position and no net dispersion

occurs afterwards. This intriguing behaviour was linked to the accumulation of contaminants in the
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large-scale streaks which essentially determines the ultimate lateral position before deposition occurs.

In the near-bed region contaminants are found to disperse laterally again, but the rate of dispersion

is significantly slower than during the settling presumably due to frequent interparticle interactions.

A dispersion coefficient was derived from the approximately linear increase of the mean-squared dis-

placement in time during this phase, and its value is hypothesised to scale with the value of the Shields

parameter, albeit too few data points are available to obtain conclusive evidence.

The interaction between contaminants and the sediment bed heavily depends on the topology of the

bed. In case of a macroscopically flat bed, contaminants are transported onto the pre-existing sediment

ridges by the footprints of the large-scale turbulent structures such that they position themselves below

a large-scale low-speed streak (Scherer et al. 2022). Despite the fact that most of this transport occurs

on a thin interface layer of particles, the contaminants may become buried by other particles such that

they are immobilised. The efficiency of this process was found to be increased for smaller particles. In

addition, the combined outcome of this partial immobilisation and the cyclic bursting and reformation

or meandering of streaks appears to lead to a randomisation of the horizontal positions of the contami-

nants despite their tendency to accumulate in certain regions. When ripple features are considered, the

contaminants become trapped in the trough of the ripple where they are subsequently buried beneath

a thick sediment layer due to the propagation of the feature. This immobilises the contaminants until

the ripple has been displaced far enough downstream that they may be eroded again on the windward

side. Immediately after the initial settling, nearly all contaminants are buried at the same time such that

the number of suspended contaminants is severely depleted. The ensuing erosion releases numerous

contaminants at similar times which manifests itself in a burst in suspended contaminants. This phe-

nomenon repeats itself cyclically, however, due to the increasing spread in the times of immobilisation,

the oscillations in contaminant position and streamwise particle flux become attenuated in the long

term.

Finally, motivated by the pursuit of a system of minimal complexity which can be utilised to study the

particle-vortex interactions during the settling phase of contaminants, the settling of particles in a trav-

elling wave solution to the Navier–Stokes equations was investigated. This travelling wave belongs to

the group of exact coherent states which are non-trivial flow states which derive from the dynamical

systems approach to turbulence and constitute attractors or saddles in the phase space. These exact

coherent states have been demonstrated to be of relevance for turbulent flows, and are hypothesised

to be blueprints for the coherent structures observed in fully turbulent flows. The particular travelling

wave which is investigated in this thesis exhibits topological resemblance to a hairpin vortex (Shekar

and Graham 2018), and indeed, the choice of this solution was partially motivated by the presumed rel-

evance of hairpin vortices for LSMs. Moreover, the wall-normal evolution of the flow statistics of this

flow are in good agreement with that obtained for turbulent flows, especially with regard to the ver-

tical velocity fluctuations, and despite the fact that the travelling wave is time-invariant in a suitable

frame of reference. When the ensemble-averaged settling velocity is assessed for contaminants settling

in this simplified system, an extraordinary agreement to the turbulent evolution is obtained if the rel-

ative turbulence intensity and the density ratio are matched. An advantage of this novel approach is

that the computational cost is significantly reduced such that a finely meshed parameter sweep can be

performed. From this parameter sweep it was deduced that for Iτ⪅ 0.25 the ensemble-averaged settling

velocity is reduced due to the loitering effect where particles are delayed because of their inability to

avoid counteracting flows. Meanwhile, when Iτ ≫ 1, the excess in settling velocity due to preferential

sweeping converges towards a constant which is of O(uτ) and whose exact value depends on the den-

sity ratio. This implies that the settling velocity normalised by its ambient value varies linearly with Iτ
at sufficiently high relative turbulence intensities. It was moreover ascertained that the mean-squared
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lateral displacement indeed levels off at high relative turbulence intensities, which implies that particles

seldom cross multiple roller structures during the initial settling phase, as has been hypothesised for the

turbulent scenario.

10.2 Summary of implications on bacteria transport

As has been stated in the research objectives in the introduction to this thesis, the goals of this study in

the context of bacteria transport were multifarious and can, broadly speaking, be summarised by 1) the

examination of quantities which directly enter existing models, 2) the detailed analysis of phenomena

which are known to be relevant, and 3) the detection of emergent phenomena which have not been

considered in this context hitherto.

Concerning the first point on the list, the evaluation of the deposition time and the settling length are

two major factors which could directly be related to the popular one-dimensional stream model by

Jamieson et al. (2005). A comparison between the DNS data and the model revealed that the streamwise

contaminant flux is generally underpredicted by the model, whereas the rate of dispersion and depo-

sition are overpredicted. Moreover, the nature of the deposition term was shown to result in a wrong

distribution of deposition times, and practical modifications have been proposed to improve the simple

model with only a marginal increase in complexity.

Regarding the second point, the major phenomenon to be discussed is the interaction between contam-

inant particles and the sediment bed. One of the justifications for the (almost) exclusive consideration

of particle-attached bacteria in this thesis was the fact that solid matter provides a beneficial environ-

ment for bacteria to survive even under harsh conditions, which increases the relevance of particle-

bound bacteria from the long-term perspective on the spreading. A significant factor of influence for

the fate of bacteria is the exposure to ultraviolet irradiance. While the opaque nature of particles or their

surface characteristics may themselves be advantageous, a more dynamical aspect to consider is the

shade which is provided by other suspended or deposited particles. The direct numerical simulations

provided evidence that contaminated particles may be efficiently removed from suspension by being

buried underneath a layer of sediment. This entrainment is especially pronounced in the presence of

ripple features due to the capturing mechanism previously described. A simple quantification method

regarding the exposure to sunlight estimated that in case of ripples, the surface area of contaminant

particles which is exposed to sunlight is drastically reduced to around 30% of the value observed at the

beginning of the transient in the long-term. Even in the absence of bed features, shading was detected

to be a significant factor since contaminants still exhibit a tendency to become buried by other particles,

especially if they are small. Nonetheless, for macroscopically flat beds the exposure factor was found to

be closer to 60%, albeit it might further reduce for longer observation intervals. The immobilisation of

contaminants by river sediment and their simultaneous shielding from inactivation by sunlight may be

speculated to be related to the occurrence of bacteria storages in river beds, which are thought to be

responsible for surges in the concentration of enteric bacteria even in absence of immediate contami-

nation events (McDonald et al. 1982, Wilkinson et al. 1995). If this is indeed the case, the data obtained

within this thesis might be helpful to develop a better understanding of this process.

Shading effects were also found to play a role during the initial settling of contaminants due to their

tendency to form clusters, albeit in this case the effect is less pronounced compared to the deposition-

induced shading. Nonetheless, this phenomenon has the interesting implication that turbidity effects

are not merely a function of the concentration of suspended solids, but rather also dependent on the
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relative turbulence intensity as this quantity is the primary parameter which governs the spatial inho-

mogeneity of the particle distribution which in turn manipulates the effective turbidity locally.

To address the third point, one of the striking recognitions of this thesis is that there appears to be a fun-

damental distinction in the ability of particle-attached bacteria to spread in lateral direction between

the initial settling phase and the phase of long-term transport in the bedload or by resuspension. The

tendency of settling particles to accumulate in large-scale flow features with a spacing of 1–2 Hf during

the settling limits the mean-squared spanwise displacement to values which are smaller than this dis-

tance. At the same time, the initial settling phase exhibits a streamwise contaminant flux which is con-

siderably larger than that in the near-bed region due to the exposure of contaminants to faster stream-

wise fluid velocities. The consequence is that a contamination which is introduced at the free surface

near the river bank, such as in the case of combined sewer overflow events, may be transported along

the shoreline over a considerable downstream distance with limited dispersion in the lateral direction.

In particular, there is an argument to be made that the lateral confinement becomes more significant

the smaller the contaminant particles are, or more precisely, the lower the corresponding value of the

Galileo number is for a given background flow. This is due to the reason that the upper-bound observed

for the mean-squared lateral displacement is hypothesised to be independent of the relative turbulence

intensity, whereas the settling length is not. Nevertheless, it should be acknowledged that these alleged

transport barriers are only active during the initial settling phase as they are a result of the symmetry

breaking effect of gravity. Regarding the spanwise dispersion in the near-bed region, it was found that

the lateral dispersion coefficient scales with the value of the Shields number of the contaminant parti-

cles, and is in particular not subject to any confinement effect.

Another point which is to the best of the author’s knowledge not yet fully addressed in bacteria transport

models is the effect of contaminant particles on the spreading of freely-suspended bacteria. The interac-

tion between the two modes of transport was determined to be twofold: contaminant particles may act

as a source of freely-suspended bacteria if the attachment is not irreversible, but also affect the transport

characteristics by modifying the fluid velocity field in the irreversibly-attached case. If a simple detach-

ment model is considered based on the concentration gradient of bacteria between the surface of the

particle and the fluid phase, a high detachment rate can be expected even if the contaminant particles

are initially in equilibrium with their surrounding, since the settling process tends to separate the two

phases which leads to steeper gradients. However, this effect becomes less relevant as the relative tur-

bulent velocity increases. The particle-induced modification of the velocity field increases the vertical

spreading rate of freely-suspended bacteria as compared to the reference case in absence of contami-

nant particles. Here, the significance of the effect was not found to be strongly dependent on the particle

parameter point for the cases considered.

10.3 Limitations of the present work

Naturally, the approach employed in this thesis suffers from several constraints, the most significant

of which will be summarised in the following. To begin with, the use of direct numerical simulations

and the aspiration to simulate the smallest scales of the contamination problem from first principles

comes at the cost of limitations for the largest scales which can be included in the simulations due to

the immense computational effort and the availability of computing resources at the time. However, the

separation of scales is not unimportant for the current work as it restricts the friction Reynolds number

(which is considerably smaller than the parameter point found in actual rivers), and arguably more

importantly, the relative size of contaminant particles in comparison to the water depth. While the ratio
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Hf /dp may easily reach values beyond O(104) when particles with diameters in the upper micrometre

range and water depths of the order of metres are considered, a maximum value of Hf /dp ≈ 70 is studied

in this thesis. While the inferences can be argued to be relatively robust with respect to this ratio—at

least for the range considered in this thesis and corroborated by the good agreement for the settling in

the travelling wave solution where this ratio is minimal—it may be worthwhile to test this assumption

or the inferences made on large fluvial systems using a different approach.

Moreover, the simulation domain can also be considered small in the horizontal directions even for

DNS standards. This shortcoming was mainly owed to the desire of studying the direct influence of

sediment bed topologies by suppressing the ripple bedform instability using a truncated domain, but is

also a result of the vast computational costs of the method. However, as has been discussed in the main

text, the short streamwise extent also truncates the size of LSMs and VLSMs which were in hindsight

found to be important phenomena for the current treatise. Hence, the consequences of these structures

exhibiting a finite length stay unknown and uncertainties remain concerning the accurate description

of their dynamics.

While the original plan for this thesis included the incorporation of bacteria fate and a more tightly cou-

pled analysis of the interaction between the particle-attached and freely-suspended bacteria transport

modes, this ambition was discarded in favour of a more universal setup of the numerical simulations.

One of the major motives for this decision was the lack of availability of well-founded models for the de-

tachment behaviour of bacteria as well as inactivation models which take inhomogeneities at the scales

considered into account. At the same time a more detailed analysis would eventually need to consider

initial temperature differences between the discharged effluent and the river (Pinelli 2022) which leads

to scalar-induced buoyancy effects which in turn might alter the transport characteristics of embedded

particles. Due to the knowledge gap on the settling problem even in absence of this effect, the active

coupling between scalar fields and the fluid velocity field was rejected in order to increase the relevancy

of this work for the hydrodynamical literature.

A ubiquitous limitation on any research which is often not explicitly addressed is the limitation in time

that a researcher can allocate to post-process the data. In regard to this thesis, the interaction between

particles and scalar fields ought to be more thoroughly investigated then what was finally included in

the main text. In fact, an appreciable amount of research time was invested to set up this problem and

to manage the excessive volume of data generated by the dual mesh approach. Still, the majority of this

data is yet to be assessed, and hopefully, further inferences can be made from its empirical content in

the future.

10.4 Recommendations for future research

To conclude this thesis, some recommendations for future research will be suggested which go beyond

the improvement of the limitations discussed in the preceding section.

As has been elaborated numerous times at this point, the conjectured lateral transport barriers might

exhibit a relevant macroscopic effect for which the awareness in the bacteria transport community is

still low. However, due to the limitations in the parameter points which were able to be investigated, the

upscaling towards large fluvial systems remains speculative. For this reason, purposeful laboratory ex-

periments should be conducted to look for empirical evidence of this phenomenon. These experiments

need to be conducted at relative turbulence intensities significantly above unity and in a channel with

a streamwise length which is sufficient for the particles to settle into the near-wall region. Moreover, it
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would be beneficial to be able to measure the spanwise distribution at any given vertical position since

at high relative turbulence intensities particles may be displaced considerably in lateral direction im-

mediately before deposition. While the possibility of simultaneously measuring the fluid flow would be

beneficial to correlate the observations to LSMs and VLSMs, it does not appear to be a requirement for

a first assessment of the transport barrier effect. In order to reduce the uncertainty in the instantaneous

lateral position of the large-scale streak it might furthermore be helpful to design the bottom wall of the

channel such that the position of the mean secondary flow becomes locked in place (e.g. Stroh et al.

2020).

If empirical evidence for the transport barriers can be found, it would be interesting to examine the

role of secondary effects, such as the finite lifetime or meandering motion of these structures. Such

an analysis could again be conducted in laboratory experiments, but may also be tackled by simpler

simulation methods. In particular, it seems worthwhile to assess whether this effect can be reproduced

using unresolved particles in order to benefit from the use of spectral flow solvers. If this is the case, an

adequate parameter space appears to be accessible at a reasonable computational effort.

In regard to lateral dispersion in the near-bed region, a detailed study stating dispersion coefficients

could not be identified apart from the study of Seizilles et al. (2014) which, however, considers the lam-

inar flow regime within which the dispersion mechanism is likely to be dominated by particle colli-

sions rather than by the interaction with flow structures. A larger number of parameter points would

be helpful to draw conclusions on the scaling law, and to possibly confirm the Shields number scaling

postulated in this thesis. For this purpose, it may be sufficient to analyse existing DNS data for sedi-

ment transport in terms of the displacement of the interface particles to assess the displacement in the

monodisperse scenario. However, an investigation of bidisperse particle size distributions is also highly

relevant, and may contribute to the knowledge on the insertion of contaminants into deeper layers of

the bed by the burying mechanisms described within the current work. Furthermore, the details of the

contaminant-sediment interaction are likely influenced by further influencing factors which have not

been considered so far, such as cohesive effects or non-spherical particle shapes. An elaborate study on

this topic seems to be justified by the fact that this interaction is also relevant in the more general context

of pollutants, for instance regarding the deposition of microplastics and its long-term consequences.

Returning to the original overarching research question of bacteria transport in river systems, it appears

to be required to fill the gap in intermediate length scales between traditional models and the current

approach by a method which accurately resolves turbulent structures of the order of the fluid depth, but

is also capable of depicting the entire cross-section of a river and to account for particle transport. A

potential candidate for a simulation technique which is suitable for this investigation is the large eddy

simulation coupled to a transport model for discrete particles (e.g. Elghannay and Tafti 2018). Yet, this

method comes at the cost of the need to model the hydrodynamic forces on the particles, and it remains

to be demonstrated that this does not lead to inadequate simplifications in the current context. The

availability of data for the spreading on intermediate scales benefits the transfer of knowledge from the

observations made using DNS to the coarse-grained traditional models.

From the hydrodynamical point of view, an in-depth analysis of the interactions which transport parti-

cles into high-speed streaks during the settling would benefit the understanding of this phenomenon.

Such an investigation would likely require a suitable criterion to identify the coherent structures with

which the contaminants interact, and conditioned statistics of said interactions. The analysis is com-

plicated by the facts that the settling is transient, that the structure of turbulence is inhomogeneous in

wall-normal direction, and that the interactions presumably occur on multiple scales and may even be

non-local.
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Speaking of non-local interactions, it was demonstrated in this thesis that exact coherent structures

are an excellent tool for the investigation of particle-vortex interactions. An interesting question which

could be tackled directly with the available dataset is the role of non-locality in these interactions and

that of the role of particle response time. This examination is considerably simpler for the travelling

wave compared to fully turbulent flows due to the lack of temporal dynamics in the underlying flow

state and the complete knowledge of the undisturbed flow field even at the positions were a particle is

currently located. The investigation of particle dynamics using exact coherent states is still in its infancy,

and it is exciting to see what contributions this novel approach will bring to the field of multiphase flows.
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A Spatial-averaging procedure

The time-dependent ensemble average can be expressed using the Dirac delta function as

〈
ϕ

〉
T

(t ) ..=
∑NcΣ

i

∫ ∞
0 ϕ(i )(t̃ )δ(t̃ − t )dt̃

∑NcΣ
i

∫ ∞
0 δ(t̃ − t )dt̃

(A.1)

where δ(t ) is the Dirac delta function. It is important to note that the equation is dimensionally consis-

tent due to the scaling property δ(ax) = δ(x)/|a|, and thus, the dimension of δ(t ) is one over time. Using

the definition of the Dirac delta function, the integral in the denominator evaluates to

∫ ∞

0
δ(t̃ − t )dt̃ = 1 (A.2)

for t ∈ [0,∞). Furthermore, using the mean value theorem, the integral in the numerator is equivalent

to
∫ ∞

0
ϕ(i )(t̃ )δ(t̃ − t )dt̃ =ϕ(i )(t ), (A.3)

and hence, the simpler definition of the ensemble average is recovered, viz.

〈
ϕ

〉
T

(t ) = 1

NcΣ

NcΣ∑
i
ϕ(i )(t ). (A.4)

From this, a discrete-in-time formula can readily be derived.

Similarly, the spatial ensemble average defined in eq. (4.5) can be expressed in terms of the Dirac delta

function as

〈
ϕ

〉
X↑↓(y) ..=

∑NcΣ
i

∫ ∞
0 ϕ(i )(t̃ )δ

( y (i )
p (t̃ )−y

v (i )
p (t̃ )

)
dt̃

∑NcΣ
i

∫ ∞
0 δ

( y (i )
p (t̃ )−y

v (i )
p (t̃ )

)
dt̃

, (A.5)

given an infinite observation time.1 Here, the argument of the Dirac delta function has been scaled such

that the temporal integration produces a unit time interval. Since the scaling is only relevant at yp = y ,

the scaling property of the Dirac delta function can be exploited without loss of generality, i.e.

〈
ϕ

〉
X↑↓(y) =

∑NcΣ
i

∫ ∞
0 ϕ(i )(t̃ ) |v (i )

p (t̃ )| δ(
y (i )

p (t̃ )− y
)

dt̃
∑NcΣ

i

∫ ∞
0 |v (i )

p (t̃ )| δ(
y (i )

p (t̃ )− y
)

dt̃
. (A.6)

Possible methods of evaluating the ensemble average are presented in the following.

1 Strictly speaking, the definition given in eq. (4.5) restricts itself to the first crossing of a given particle, whereas eq. A.5 considers
all crossings. However, it is straightforward to impose a similar restriction by adjusting the upper bound of the integral.
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A.1 Trajectory interpolation

In general, the function yp(t ) is not invertible. However, that set of times where the (i )-th particle crosses

the plane located at y is given by

T (i ) ..= {
t ∈R : y (i )

p (t ) = y
}

(A.7)

and the members of it are the cross-through times of the (i )-th particle. Using this set, eq. (A.6) can be

rewritten as

〈
ϕ

〉
X↑↓(y) =

∑NcΣ
i

∑
tc,X∈T (i ) ϕ

(i )(tc,X)

∑NcΣ
i |T (i )|

, (A.8)

where |T (i )| is the cardinality of the set, i.e. the number of crossings of the (i )-th particle. The cross-

through times can be determined from the zero-crossings of the discrete trajectory data. With the knowl-

edge of T (i ), the value of ϕ(i )(tc,X) is readily determined using linear interpolation.

A.2 Binned approximation

When the time resolution of the discrete data is insufficient for trajectory interpolation—as is the case for

the more coarsely sampled fluid data in this thesis—equation A.6 can be approximated by a weighted-

binning approach. For this purpose, the Dirac delta function is approximated using a rectangle function,

viz.

δ(y (i )
p (t )− y) ≈

H
(
y (i )

p (t )− y + δy
2

)−H
(
y (i )

p (t )− y − δy
2

)

δy
=..
∆(i )
X↑↓(y)

δy
, (A.9)

where H(y) is the Heaviside step function and ∆X↑↓(y) is the binning function defined as

∆X↑↓(y) ..=




1 if y (i )
c ∈ [

y − δy
2 , y + δy

2

)

0 otherwise
. (A.10)

Here, the parameter δy denotes the width of the bin. Substitution of the Dirac delta function by this

approximation in eq. (A.6) yields

〈
ϕ

〉
X↑↓(y) ≈

∑NcΣ
i

∫ ∞
0 ∆(i )

X↑↓(y) |v (i )
p (t̃ )|ϕ(i )(t̃ ) dt̃

∑NcΣ
i

∫ ∞
0 ∆(i )

X↑↓(y) |v (i )
p (t̃ )| dt̃

. (A.11)

A variation of this formulation is given in (5.3) and is used to approximate the spatial average for fluid

data where the time resolution is significantly coarser than for the particle trajectories.
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B Gamma distribution fit of
cross-through times

The three-parameter generalised Gamma distribution for the probability density is given by

pdf
(
tc,X

)
..= cba/c

Γ
( a

c

) t a−1
c,X exp

(−bt c
c,X

)
, (B.1)

where a,b,c > 0 are the three parameters to be fitted to the data and

Γ(s) =
∫ ∞

0
t s−1e−t dt (B.2)

is the gamma function. Eq. (B.1) is formulated such that normalization properties of a probability den-

sity function are fulfilled automatically, i.e.
∫ ∞

0 pdf
(
tc,X

)
dtc,X = 1 for any valid set of parameters.

The free parameters are determined from an empirical PDF with a bin size of approximately 0.4tb by

finding a minimum of the loss function

R j (a,b,c) =
∑

i

(
pdf j (τi )−cdf j (tobs )epdf j (τi )

)2
∆τ, (B.3)

where τi is the center of the i -th sampling bin, ∆τ the (constant) width of the bins and the subscript

j denotes evaluation at the discrete vertical position yj of the crossing plane. Note that the prefactor

cdf j (tobs ) to the empirical data depends on the free parameters and provides a progressive renormaliza-

tion such that

∑
i

cdf(tobs )epdf(τi )∆τ≈ cdf(tobs ) (B.4)

after optimization. The prefactor corresponds to the value of the cumulative distribution function eval-

uated at the observation time. The distribution has a closed form and can be evaluated from the current

values of the free parameters by

cdf
(
τ
)=

γ
( a

c ,bτc)

Γ
( a

c

) (B.5)

where

γ(s, x) =
∫ x

0
t s−1 e−t dt (B.6)

is the lower incomplete gamma function.

For the given empirical data, multiple local minima of R j exist, and thus, without a proper choice for an

initial guess for a,b,c, the resulting coefficients and renormalization constants fluctuate substantially
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with wallnormal position. In order to reduce noise, initial guesses are generated based on the coeffi-

cients obtained for a neighboring crossing plane. For this, a regularised version of the loss function is

minimised,

R∗
j (a,b,c) =

∑
i

(
pdf(τi )−epdf(τi )cdf(tobs )

)2
∆τ

+θ
(( aj

aj−1
−1

)2
+

( bj

bj−1
−1

)2
+

( cj

cj−1
−1

)2
)

, (B.7)

where large deviations of aj ,bj or cj at the current position yj from its corresponding values at the pre-

viously evaluated position yj−1 are penalised. A value of θ = 1 has been found to provide satisfactory

results.

The full algorithm is summarised in the following:

0. Using an arbitrary initial guess, fit aj ,bj ,cj for the first crossing plane to be processed by minimiz-

ing R j (a,b,c).

1. Proceed to the next plane.

2. Using aj−1,bj−1,cj−1 as starting values, minimise R∗
j (a,b,c) to obtain a new initial guess.

3. Minimise R j (a,b,c) to obtain aj ,bj ,cj .

4. If this was the last plane, stop. Otherwise repeat from step 1.

It is more suitable to commence the algorithm from a plane close to the plane of initialization of the

contaminants rather than from the bottom of the domain. This is because there it is reasonable to as-

sume that the transient is fully captured, and thus, the constraint cdf j (tobs ) = 1 may be enforced. Con-

sequently, the algorithm has been employed from top to bottom in this work.

This simple algorithm yielded satisfactory results for all cases and vertical positions with the notable

exceptions of G30-D10-LR for y > 0.8Hf where large discontinuities for the fit coefficients were obtained

presumably due to the large width of the sampling bins and narrow peak of the Gamma distribution, and

G10-D10-HR fot y < 0.1Hf where difficulties in determining the rescaling factor occured presumably

due to the significant truncation of the empirical data. The obtained parameters of the generalised

Gamma distribution as well as the residuals are summarised in fig. B.1. A comparison of the empirical

PDF and Gamma distributions for various cases and heights is shown in fig. B.2
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C.1 Low-pass filter

The one-dimensional Gaussian filter kernel is commonly defined as

K L
σ = 1p

2πσ
exp

(
− x2

2σ2

)
, σ> 0 (C.1)

Applying this filter to a function φ(x) in the following way

L
{
φ

}
(x) = K L

σ(x)∗φ(x) ..=
∫ ∞

−∞
K L
σ(x −x ′) ·φ(x ′)dx ′ (C.2)

Applying the Fourier transformation and utilizing the convolution theorem yields

L
{
φ

}
(k) = K̂ L

σ(k) ·φ(k) (C.3)

where

K̂ L
σ(k) ..=F

[
K L
σ(x)

]
, (C.4)

φ̂(k) ..=F
[
φ(x)

]
(C.5)

are the Fourier transforms of the filter kernel and the function to be filtered, respectively, which is here

defined using the transform pair

g (k) =F
[

f (x)
]

..=
∫ ∞

−∞
f (x)exp(−i kx)dx, (C.6)

f (x) =F−1 [
g (k)

]
..= 1

2π

∫ ∞

−∞
g (k)exp(i kx)dk, (C.7)

(C.8)

and the angular wavenumber k = 2π/λ with λ being the wavelength.

The Fourier transform of the filter kernel is again a Gaussian in spectral space and reads

K̂ L
σ(k) = exp

(
−σ

2k2

2

)
. (C.9)

In this work, the characteristic wavenumber of the filter is defined as the wavenumber at which the

power spectrum is attenuated by half, i.e.

L
{
φ

}
(kc )/φ(kc ) = K L

σ,c ≜ 1/
p

2, (C.10)
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Figure C.1: Spectral support of the low-pass filters (left) and the derived band-pass filters (right).

and thus

kc =
√

2ln
p

2

σ2 ≈ 0.833/σ. (C.11)

C.2 Band-pass filter

It was suggested by Motoori and Goto (2021) to educe turbulent structures of a given size range using a

Gaussian bandpass filter constructed by the difference of two Gaussian lowpass filter, i.e.

B
{
φ

}
(x) ..= K B

σ (x)∗φ(x) = (K L
σ(x)−K L

2σ(x))∗φ(x), (C.12)

where K L
2σ is a lowpass filter with filter width 2σ. The spectral properties of the bandpass kernel can be

analyzed analogous to the kernel of the lowpass filter. The Fourier transform yields

K̂ B
σ (k) = exp

(
−σ2k2/2

)
−exp

(
−2σ2k2

)
. (C.13)

For each band, a characteristic wavenumber can be defined as the wavenumber for which K̂ B
σ reaches

its maximum, i.e.

dK̂ B
σ

dk

∣∣∣∣
kc

= 4σ2kc exp
(
−2σ2k2

c

)
−σ2kc exp

(
−σ2k2

c /2
)
≜ 0. (C.14)

which leads to

kc =
√

2ln4

3σ2 ≈ 0.961/σ (C.15)

and a corresponding peak value of K B
σ,c = 3 3p2/8 ≈ 0.472.

Due to the infinite support of the Gaussian kernel, the width of the spectral band is also infinite in prin-

ciple. It decays rapidly however and is generally of the order of kc for attenuation values of interest.

Figure C.2 shows the normalised bandwidth as a function of attenuation w.r.t. the peak transmission.

216



C.3 High-pass filter

0.2 0.4 0.6 0.8 1
0

1

2

3

4

KB
σ /KB

σ,c

∆
k
/
k
c

0 kc

0

KB
σ,c

∆k

k

K
B σ

Figure C.2: Normalised bandwidth of the band-pass filter as a function of the attenuation with respect to the peak transmission.

It is certainly possible to construct bands using other differences in filter widths as factor 2 used in

this work and Motoori and Goto (2021). By choosing a larger spacing between the two lowpass filters,

the characteristic frequency gets less attenuated at the cost of a larger bandwidth, i.e. the filter is less

selective in the scales to be extracted, while the opposite is true for narrower bands.

C.3 High-pass filter

A high-pass filter can be constructed by subtracting the low-pass filtered field from the full field, i.e.

H
{
φ

}
(x) =φ(x)−K L

σ(x)∗φ(x) = (1−K L
σ(x))∗φ(x) ..= K H

σ (x)∗φ(x) (C.16)

and thus the Fourier transform of the kernel is given by

K̂ H
σ (k) = 1−exp

(
−σ

2k2

2

)
. (C.17)

The characteristic wavenumber is defined in the same way as for the low-pass filter and is given by

kc =
√

2ln(1−
p

2/2)−1

σ2 ≈ 1.567/σ. (C.18)
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D Stability of the exact coherent
state

The exact coherent state primarily discussed in §8 is unstable, even with respect to infinitesimal per-

turbations. Nonetheless, the analysis of the characteristics of settling particles greatly relies on the pre-

sumption that the flow state is not considerably altered by the presence of fully resolved particles, al-

though their presence naturally introduces finite-amplitude perturbations. The purpose of this chapter

is to explore this hypothesis and to quantify the disturbance for examplary parameter points.

In order to assess a typical time scale over which the flow state diverges from its exact coherent state un-

der ideal conditions, direct numerical simulations have been performed using the same pseudo-spectral

solver which has been used to obtain the ECS. No initial perturbations were added to the flow, and

hence, the instability solely occurs due to round-off errors in the numerical description of the ECS and

numerical errors in its time integration. Figure D.1(a) shows the temporal evolution of the instability

using the friction Reynolds number as an observable under the conditions previously described. The

value of Reτ indicates that the ECS is maintained for around 250tb before relaminarisation can be ob-

served. This time significantly exceeds the observation times of the multiphase simulations, which are

tobs = {15,30,45} tb depending on the parameter point. However, as this characterisation does not take

into account finite-amplitude perturbations, further assessments have to be made.

In fig. D.1(b), the temporal evolution of the change in turbulent kinetic energy (TKE)—defined using the

variance based on the instantaneous domain-average—relative to the TKE of the ECS is presented for

a singlephase DNS and three multiphase simulations at Ga = 10, ρp /ρf = 1.75 with a varying number

of particles per run (Np = {1,16,32}). In this analysis, all simulations have been conducted using the

immersed boundary method DNS code for comparability. Within the entire observation interval of tobs ≈
220tb , the change in TKE for the singlephase run is only of O(1%), which indicates that the time until

relaminarisation does not reduce significantly when interpolation errors and changes in the numerical

integration method are introduced. When particles are introduced to the flow, the variation in TKE is still

less than 1% for all investigated values of Np in the relevant observation interval. This suggests that no

rapid destabilisation is triggered even if multiple particles are added at once. In general, the deviation

from singlephase behaviour grows with increasing number of particles per simulation. However, this

does not necessarily imply an alteration in the destabilising mechanism, but might rather be attributed

to local flow modifications in the vicinity of particles.

In order to get a more intuitive perspective on the perturbation of the ECS, fig. D.2 displays the vortical

structure of the final state of three multiphase simulations, which have been previously included in the

discussion in §8 and contain Np = 16 particles per run. These cases (fig. D.2(b-d)) have been selected

such that they cover a wide range of values of the Galileo number and the density ratio, and a singlephase

simulation using the same method is shown alongside as a reference (fig. D.2(a)). There are deviations

from the ECS observable besides the boundary layers introduced by the particles themselves, such as the

introduction of spanwise asymmetry presumably caused by the asymmetric initial distribution of the
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Figure D.1: (a) Instantaneous friction Reynolds number as a function of simulation time ( ). Dashed lines ( ) indicate the
values expected for the exact coherent state (Reτ ≈ 91) and the corresponding laminar state at the same value of the
bulk Reynolds number (Reτ ≈ 54). The data is shown for a singlephase simulation using the pseudo-spectral solver
CHANNELFLOW (Gibson et al. 2008, Gibson 2014) under ideal conditions, i.e. the initial perturbation solely arises from
finite precision arithmetic. (b) Relative change in turbulent kinetic energy (TKE) as a function of time for a singlephase
simulation ( ), and three multiphase simulations at Ga = 10, ρp /ρf = 1.75 with varying numbers of particles per
simulation run: Np = 1 ( ), Np = 16 ( ), Np = 32 ( ). The simulations were conducted using the immersed
boundary DNS code.
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Figure D.2: Visualisation of vortical structures using the Q-criterion defined in eq. (2.51). (a) Unperturbed singlephase simulation
using the immersed boundary DNS code as a reference. (b) Ga = 10, ρp /ρf = 1.75. (c) Ga = 10, ρp /ρf = 10. (d) Ga = 50,

ρp /ρf = 1.75. Isocontours of Q+ = 2.7 ·10−3 are shown by translucent gray surfaces for t = 30tb . For the multiphase
simulations, 16 particles were introduced to the flow which are depicted as black spheres.

settling particles. Nonetheless, the overall flow topology is reasonably conserved. The initial hypothesis

of negligible deviations from the ECS during the observation period is thus acceptable.

Since most of the quantities presented in §8 are associated to particle trajectories—and thus only indi-

rectly associated to the flow state of the fluid—it is worthwhile to further explore their sensitivity on the

number of particles per run. Figure D.3(a) shows the ensemble-averaged particle velocity for a single

physical parameter point, but for a varying number of particles per run. Within the investigated range

of Np ∈ [
1,32

]
only few deviations can be observed between the simulation setups. This is especially

true in the early phase when most particles are still settling, i.e. when they did not make contact with

the bottom boundary yet. A similar conclusion can be drawn for the deviation of the trajectories from

the reference trajectory (Np = 1), which is quantified in fig. D.3(b) by the instantenous root-mean square
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Figure D.3: (a) Ensemble-averaged particle settling velocity, as defined in eq. (4.2), as a function of time. The coloured lines show〈
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of simulated particles kept constant at NpΣ = 288, i.e. the smaller the value of Np , the more realisations had to be
performed. The solid black line indicates a reference for vp for a single particle in the same domain in absence of
a background flow. (b) Ensemble-averaged difference between the observed particle positions xp for multi-particle
setups ( , Np = 16; , Np = 32) and the reference position xp,ref for the setup with a single particle per run (Np = 1)
at a given time. The physical parameter point is the same as the one shown in fig. D.1 (Ga = 10, ρp /ρf = 1.75).

of the difference in observed particle positions x(i )
p (for Np = {16.32}) and the reference position x(i )

p,ref

(for Np = 1). As is typical for chaotic systems, small perturbations amplify substantially over time, but

statistical properties appear to stay mostly unaffected. In fact, the flucatuations in
〈

vp

〉
T

at times where

fig. D.3(b) indicates considerable divergences in trajectories may well be attributed to a low total sample

size NpΣ.
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backbone of turbulent pipe flow. Journal of Fluid Mechanics, 833:274–301, Dec. 2017. doi: 10.1017/jf

m.2017.699. (cited on page 30)

D. Butler and J. W. Davies. Urban Drainage. CRC Press, second edition, 2004. ISBN 978-0-429-21735-7.

(cited on pages 2 and 3)

I. Calmet and J. Magnaudet. Statistical structure of high-Reynolds-number turbulence close to the free

surface of an open-channel flow. Journal of Fluid Mechanics, 474:355–378, Jan. 2003. doi: 10.1017/

S0022112002002793. (cited on page 20)

S. M. Cameron, V. I. Nikora, and M. J. Witz. Entrainment of sediment particles by very large-scale mo-

tions. Journal of Fluid Mechanics, 888, Apr. 2020. doi: 10.1017/jfm.2020.24. (cited on page 36)

B. J. Cantwell. Organized Motion in Turbulent Flow. Annual Review of Fluid Mechanics, 13(1):457–515,

Jan. 1981. doi: 10.1146/annurev.fl.13.010181.002325. (cited on page 28)

J. H. Cartwright and H. Nakamura. What kind of a wave is Hokusai’s Great wave off Kanagawa? Notes and

Records of the Royal Society, 63(2):119–135, June 2009. doi: 10.1098/rsnr.2007.0039. (cited on page 1)

H. J. Casey. Über Geschiebebewegung, volume 19. Preußische Versuchsanstalt für Wasserbau und Schiff-

bau, 1935. (cited on page 36)

M. Cellino and W. Graf. Experiments on suspension flow in open channels with bed forms. Journal of

Hydraulic Research, 38(4):289–298, July 2000. doi: 10.1080/00221680009498328. (cited on page 37)

M. Cellino and U. Lemmin. Influence of Coherent Flow Structures on the Dynamics of Suspended Sed-

iment Transport in Open-Channel Flow. Journal of Hydraulic Engineering, 130(11):1077–1088, Nov.

2004. doi: 10.1061/(ASCE)0733-9429(2004)130:11(1077). (cited on page 36)

C. Chan-Braun, M. García-Villalba, and M. Uhlmann. Force and torque acting on particles in a tran-

sitionally rough open channel flow. Journal of Fluid Mechanics, 684:441–474, Oct. 2011. doi:

10.1017/jfm.2011.311. (cited on pages 34, 35, and 58)

234



Bibliography

G. J. Chandler and R. R. Kerswell. Invariant recurrent solutions embedded in a turbulent two-

dimensional Kolmogorov flow. Journal of Fluid Mechanics, 722:554–595, May 2013. doi: 10.1017/jf

m.2013.122. (cited on pages 30 and 31)

S. J. Chapman. Subcritical transition in channel flows. Journal of Fluid Mechanics, 451:35–97, Jan. 2002.

doi: 10.1017/S0022112001006255. (cited on page 21)

G. W. Characklis, M. J. Dilts, O. D. Simmons, C. A. Likirdopulos, L.-A. H. Krometis, and M. D. Sobsey.

Microbial partitioning to settleable particles in stormwater. Water Research, 39(9):1773–1782, May

2005. doi: 10.1016/j.watres.2005.03.004. (cited on page 3)

F. Charru, B. Andreotti, and P. Claudin. Sand Ripples and Dunes. Annual Review of Fluid Mechanics, 45

(1):469–493, 2013. doi: 10.1146/annurev-fluid-011212-140806. (cited on page 36)

L. Chen, S. Goto, and J. C. Vassilicos. Turbulent clustering of stagnation points and inertial particles.

Journal of Fluid Mechanics, 553:143–154, Apr. 2006. doi: 10.1017/S0022112006009177. (cited on

page 38)

W.-B. Chen and W.-C. Liu. Investigating the fate and transport of fecal coliform contamination in a tidal

estuarine system using a three-dimensional model. Marine Pollution Bulletin, 116(1):365–384, Mar.

2017. doi: 10.1016/j.marpolbul.2017.01.031. (cited on page 9)

H. Chick. The Process of Disinfection by Chemical Agencies and Hot Water. Epidemiology & Infection,

10(2):237–286, Aug. 1910. doi: 10.1017/S0022172400042959. (cited on page 6)

A. Chouippe and M. Uhlmann. Forcing homogeneous turbulence in direct numerical simulation of

particulate flow with interface resolution and gravity. Physics of Fluids, 27(12):123301, Dec. 2015. doi:

10.1063/1.4936274. (cited on page 70)

A. Chouippe and M. Uhlmann. On the influence of forced homogeneous-isotropic turbulence on the

settling and clustering of finite-size particles. Acta Mechanica, 230(2):387–412, Feb. 2019. doi: 10.

1007/s00707-018-2271-7. (cited on pages 41 and 70)

A. Chouippe, M. Krayer, M. Uhlmann, J. Dušek, A. Kiselev, and T. Leisner. Heat and water vapor transfer

in the wake of a falling ice sphere and its implication for secondary ice formation in clouds. New

Journal of Physics, 21(4):043043, Apr. 2019. doi: 10.1088/1367-2630/ab0a94. (cited on page 42)

F. Christiansen, P. Cvitanovic, and V. Putkaradze. Spatiotemporal chaos in terms of unstable recurrent

patterns. Nonlinearity, 10(1):55–70, Jan. 1997. doi: 10.1088/0951-7715/10/1/004. (cited on page 31)

City of Karlsruhe. The urban wastewater management of Karlsruhe, 2010. (cited on page 2)

R. Clift, J. R. Grace, and M. E. Weber. Bubbles, Drops, and Particles. Academic Press, Inc., New York, 1978.

(cited on page 42)

A. Colagrossi, S. Marrone, P. Colagrossi, and D. Le Touzé. Da Vinci’s observation of turbulence: A French-

Italian study aiming at numerically reproducing the physics behind one of his drawings, 500 years

later. Physics of Fluids, 33(11):115122, Nov. 2021. doi: 10.1063/5.0070984. (cited on page 1)

S. W. Coleman and J. C. Vassilicos. A unified sweep-stick mechanism to explain particle clustering in

two- and three-dimensional homogeneous, isotropic turbulence. Physics of Fluids, 21(11):113301,

Nov. 2009. doi: 10.1063/1.3257638. (cited on page 38)

D. Coles. Transition in circular Couette flow. Journal of Fluid Mechanics, 21(3):385–425, Mar. 1965. doi:

10.1017/S0022112065000241. (cited on page 32)

235



Bibliography

M. Colombini. Turbulence-driven secondary flows and formation of sand ridges. Journal of Fluid Me-

chanics, 254:701–719, Sept. 1993. doi: 10.1017/S0022112093002319. (cited on page 36)

M. Colombini and G. Parker. Longitudinal streaks. Journal of Fluid Mechanics, 304:161–183, Dec. 1995.

doi: 10.1017/S0022112095004381. (cited on page 36)

J. P. Connolly, A. F. Blumberg, and J. D. Quadrini. Modeling Fate of Pathogenic Organisms in Coastal

Waters of Oahu, Hawaii. Journal of Environmental Engineering, 125(5):398–406, May 1999. doi: 10.

1061/(ASCE)0733-9372(1999)125:5(398). (cited on page 8)

S. Corrsin. Turbulent flow. American Scientist, 49(3):300–325, 1961. (cited on page 18)

D. Craig, H. Fallowfield, and N. Cromar. Use of microcosms to determine persistence of Escherichia

coli in recreational coastal water and sediment and validation with in situ measurements. Journal of

Applied Microbiology, 96(5):922–930, 2004. doi: 10.1111/j.1365-2672.2004.02243.x. (cited on page 4)

J. Crank. The Mathematics of Diffusion. Dover Publications, 1975. (cited on pages 160 and 188)

C. Crowe, M. Sommerfeld, and Y. Tsuji. Multiphase Flows with Particles and Droplets. CRC Press, New

York, 1998. (cited on page 52)

P. Cugier and P. Le Hir. Development of a 3D Hydrodynamic Model for Coastal Ecosystem Modelling.

Application to the Plume of the Seine River (France). Estuarine, Coastal and Shelf Science, 55(5):673–

695, Nov. 2002. doi: 10.1006/ecss.2001.0875. (cited on page 8)

A. J. Cuthbertson and D. A. Ervine. Experimental Study of Fine Sand Particle Settling in Turbulent Open

Channel Flows over Rough Porous Beds. Journal of Hydraulic Engineering, 133(8):905–916, Aug. 2007.

doi: 10.1061/(ASCE)0733-9429(2007)133:8(905). (cited on pages 40, 44, 45, 62, 71, 74, 75, 80, 81, 90,

200, 224, and 229)

A. J. S. Cuthbertson. The Motion of Fine Sand Particles in Turbulent Open Channel Shear Flows over

Porous Bed Conditions. PhD thesis, University of Glasgow, 2001. (cited on page 44)
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