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Abstract

The transport of bacteria in river systems is a phenomenon which occurs on a multitude of length scales
ranging from the size of individual microbes up to the size of an entire estuary. At the same time the
understanding of the spreading of microbial populations after a localised contamination event such as
a combined sewer overflow is crucial for the prediction of the water quality downstream of the source,
which is in turn essential to managing public health. It is well-established that microbial populations
in fluvial systems may preferably be found on the surface of small particles rather than solely freely
suspended in the water body. The attachment to particles provides an environment beneficial to the
survival of bacteria due to the improved access to nutrients and the shielding from environmental stres-
sors, but also alters their dispersion characteristics as the transport of bacteria is then coupled to the
trajectories of heavy particles.

The importance in the distinction between the particle-attached and the freely-suspended mode of
transport has been recognised in the mechanistic modelling of bacteria fate and transport. However,
due to the multiscale nature of the problem, the mechanisms which govern the transport of particles in
river-like flows are never resolved explicitly, and hence, the models profoundly rely upon the availability
of accurate descriptions thereof. The associated problem of particles settling in a turbulent carrier flow
is an active topic of research by itself, and is rich in emerging phenomena such as the emergence of
spatial inhomogeneities or non-trivial modifications of the settling characteristics compared to quies-
cent environments. In particular, the transient settling of particles in horizontal open channels, which
serves as an abstraction of particle-attached bacteria transport in rivers, has hitherto received only little
attention in the literature. As a consequence, the knowledge on the impact of its defining features such
as boundedness, anisotropy and vertical inhomogeneity on the settling characteristics is limited and
needs to be addressed to enable the formulation of reliable models thereof.

The aim of this thesis is to fill the knowledge gap on the transport characteristics of heavy particles in
turbulent horizontal open channel flows, and to identify phenomena which may be of importance in the
context of bacteria transport modelling. For this purpose, the incompressible Navier—Stokes equations
and the momentum balance equations for dispersed particles are solved using direct numerical simu-
lations and the immersed boundary method. This approach resolves all relevant scales of turbulence
and the microscopic flow around each particle explicitly, and thus, describes the particle-fluid interac-
tion from fundamental principles of physics without the need of additional modelling. Apart from the
contaminated particles, which are introduced near the free surface of the flow, the simulation domain
includes approximately 100,000 fully resolved particles at the bottom of the domain, which form a real-
istic sediment bed, and enable the examination of the interaction between contaminated particles and
mobile sediments.

Concerning the parameter space, the value of the friction Reynolds number is varied within the range
Re, € [241,838], while the contaminant parameter space is chosen such that the resulting relative tur-
bulence intensities—defined as the ratio between the friction velocity and the undisturbed terminal
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velocity—lie within the range I, € [0.47,2.88]. Moreover, two types of sediment bedforms are investi-
gated in order to assess their effect on contaminant transport, namely a macroscopically flat bed and a
bed featuring ripples.

The analysis of the simulation data shows that the settling velocity of the contaminant particles is en-
hanced in the ensemble-averaged sense, yet, the time from beginning of the settling until the initial
deposition is prolonged when compared to the ratio between the channel height and the terminal ve-
locity. The enhancement is demonstrated to be a result of the preferential sampling of turbulent sweep
events, which also implies that the streamwise component of the particle velocity is increased com-
pared to the mean fluid velocity at the same position. A closer examination of the spatial organisation of
contaminated particles reveals that they tend to accumulate in large-scale high-speed velocity streaks
in the outer region of turbulence. Due to this focusing mechanism, the mean-squared lateral displace-
ment of the settling particles stagnates in the lower half of the channel such that contaminants are not
further dispersed in cross-stream direction until shortly before deposition. The same behaviour could
be reproduced using a time-invariant exact coherent flow state resembling a hairpin vortex as a proxy
for turbulence, and an extended parameter sweep in this setup suggests that this transport barrier effect
persists even at high relative turbulence intensities. It is speculated that this phenomenon might con-
fine contaminated particles to a region close to the river bank over a considerable downstream distance
in the aftermath of a combined sewer overflow event, which might seriously impact decisions regarding
public health measures.

Near the sediment bed, the barrier effect of the large-scale motions is inactive and contaminants are
found to disperse laterally at a rate which presumably depends on the Shields parameter. The inter-
action between the sediment and the contaminants is distinct for the two bed topologies under inves-
tigation. In the case of macroscopically flat beds, the contaminated particles are transported towards
sediment ridges which are in turn known to be a result of the action of large-scale fluid motions, and
the mixing of contaminants and sediment particles is restricted to the thin layer of sediment near the
interface. In contrast, the presence of ripples leads to a capturing effect where contaminated particles
are preferentially deposited in the trough of the ripple, and subsequently buried by a thick layer of sedi-
ment due to the propagation of the bed feature. This mechanism temporarily immobilises a large share
of all contaminated particles until the displacement of the ripple has sufficiently progressed for them
to be eroded on the windward side. During the immobilisation, the associated bacteria are shielded
from solar radiation to a substantial degree, which likely has a significant impact on their inactivation,
especially in shallow waters. Moreover, the cyclic nature of this phenomenon may provide one of many
explanations for bacteria storages which are known to exist in river sediments and may cause bursts in
fecal bacteria indicator levels even in absence of immediate contamination events.

It is concluded that direct numerical simulation can be a valuable tool for the analysis of bacteria trans-
port, and recommendations are made on how the conjectures compiled in this thesis can be targeted in
laboratory experiments to examine their relevance.
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Kurzfassung

Der Transport von Bakterien in Flusssystemen ist ein Phinomen welches auf einer Vielzahl von Langen-
skalen aulftritt, die von der GroRe einzelner Mikroben bis hin zur GroRe eines ganzen Astuars reichen.
Zugleich ist die Ausbreitung mikrobieller Populationen nach einem lokal begrenztem Verschmutzungs-
ereignis wie es beispielsweise nach dem Uberlauf eines Mischwasserkanalisationssystems auftritt ent-
scheidend fiir die Vorhersage der Wasserqualitédt flussabwérts der Eintrittsstelle, welche wiederum fiir
das Management der 6ffentlichen Gesundheit unerldsslich ist. Es ist allgemein bekannt, dass mikro-
bielle Populationen in FlieBgewdssern vorzugsweise auf der Oberflache kleiner Partikel aufzufinden
sind und nicht ausschlielllich frei schwebend im Gewésser. Die Anhaftung an Partikel bietet ein giin-
stiges Umfeld fiir das Uberleben von Bakterien aufgrund des verbesserten Zugangs zu Néhrstoffen und
der Abschirmung vor Umweltstressfaktoren, verdndert aber auch ihre Ausbreitungseigenschaften, da
der Bakterientransport dann an die Trajektorie schwerer Partikel gekoppelt ist.

Die Bedeutsambkeit der Unterscheidung zwischen dem an Partikel gebundenen und dem frei schweben-
den Transportmodus ist bei der mechanistischen Modellierung des Schicksals und Transports von Bak-
terien bereits erkannt worden. Allerdings werden aufgrund des mehrskaligen Charakters des Problems
die Mechanismen, die den Transport von Partikeln in flussdhnlichen Strémungen steuern nie explizit
dargestellt und daher sind die Modelle in hohem Mafe von der Verfiigbarkeit von genauen Beschrei-
bungen abhidngig. Das damit verbundene Problem der Ablagerung von Partikeln in einer turbulen-
ten Tragerstromung ist selbst ein aktives Forschungsthema und ist reich an emergenten Phinomenen
wie z.B. dem Auftreten von rdumlichen Inhomogenitidten oder nicht-triviale Verdnderungen der Abset-
zcharakteristiken im Vergleich zu einer ruhenden Umgebung. Insbesondere die unstetige Ablagerung
von Partikeln in horizontalen offenen Kanélen, die als Abstraktion des partikelgebundenen Bakterien-
transports in Fliissen dient fand bisher in der Literatur nur wenig Beachtung. Infolgedessen ist das ver-
fligbare Wissen tiber die Auswirkungen der bestimmenden Merkmale wie Begrenztheit, Anisotropie und
vertikale Inhomogenitét auf das Absetzungsverhalten limitiert und muss adressiert werden um die For-
mulierung von zuverldssigen Modellen zu ermdglichen.

Das Ziel dieser Arbeit ist es die Wissensliicke iiber die Transporteigenschaften von schweren Partikeln
in turbulenten offenen Kanilen zu fiillen und Phdnomene zu identifizieren, die im Kontext der Bak-
terientransportmodellierung von Bedeutung sein konnten. Zu diesem Zwecke werden die inkom-
pressiblen Navier-Stokes-Gleichungen und die Impulsbilanzgleichungen fiir dispergierte Partikel mit-
tels direkter numerischer Simulation und der Immersed Boundary-Methode geldst. Dieser Ansatz 16st
alle relevanten Skalen der Turbulenz und die mikroskopische Stromung um jeden Partikel explizit auf
und beschreibt so die Partikel-Fluid-Wechselwirkung auf der Grundlage fundamentaler physikalischer
Prinzipien ohne dass eine zusitzliche Modellierung erforderlich ist. Abgesehen von den kontaminierten
Partikeln, die in der Ndhe der freien Oberfldche der Stromung eingebracht werden, umfasst der Simu-
lationsbereich etwa 100.000 vollstdndig aufgeloste Partikel am Boden des Stromungsgebiets, die ein
realistisches Geschiebe bilden und eine Untersuchung der Wechselwirkung zwischen kontaminierten
Partikeln und mobilen Sedimentpartikeln ermdoglichen.
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Kurzfassung

Was den Parameterraum betrifft, so wird der Wert der Reynoldszahl basierend auf der Wandschub-
spannungsgeschwindigkeit im Bereich von Re, € [241,838] variiert wiahrend der Parameterraum fiir die
Verunreinigungen so gewahlt wird, dass die resultierenden relativen Turbulenzintensitdten definiert als
das Verhiltnis zwischen der Wandschubspannungsgeschwindigkeit und der ungestdrten Endgeschwin-
digkeit innerhalb des Bereichs I, € [0.47,2.88] liegen. Dariiber hinaus werden zwei Arten von Sedi-
mentstrukturen untersucht um deren Auswirkungen auf den Schadstofftransport zu bewerten, ndmlich
ein makroskopisch flaches Bett und ein Bett mit Rippeln.

Die Analyse der Simulationsdaten zeigt, dass der Ensemble-Mittelwert der Absetzgeschwindigkeit der
Schadstoffpartikel erhéht ist, aber die Zeit vom Beginn des Absetzens bis zur ersten Ablagerung ist
im Vergleich zum Verhiltnis zwischen der Kanalh6he und der Endgeschwindigkeit verldngert. Die Er-
hoéhung ist das Ergebnis des bevorzugten Aufsuchens von turbulenten Sweep-Ereignissen. Dies bein-
haltet auch, dass die Hauptstromungskomponente der Partikelgeschwindigkeit im Vergleich zur mit-
tleren Stromungsgeschwindigkeit an der gleichen Stelle erhoht ist. Eine genauere Untersuchung der
rdaumlichen Organisation der kontaminierten Partikel zeigt, dass sie dazu neigen sich in grof3skali-
gen Hochgeschwindigkeitsstreifen in der &uleren Region der Turbulenz zu sammeln. Aufgrund dieses
Fokussierungsmechanismus stagniert die mittlere quadratische Seitenverschiebung der sich absetzen-
den Partikel in der unteren Halfte des Kanals, sodass die Verunreinigungen erst kurz vor der Ablagerung
weiter in Querstromrichtung dispergiert werden. Das gleiche Verhalten konnte reproduziert werden in-
dem ein zeitinvarianter, exakt kohdrenter Stromungszustand, der einem Haarnadelwirbel dhnelt, als Er-
satz fiir Turbulenz verwendet wird. Eine erweiterte Parametervariation in dieser Anordnung deutet da-
rauf hin, dass dieser Transportbarriereeffekt auch bei hohen relativen Turbulenzintensitidten bestehen
bleibt. Es wird vermutet, dass dieses Phidnomen feine kontaminierte Partikel tiber eine betrdchtliche
Strecke flussabwirts in eine Region nahe des Flussufers eingrenzen kann, was Entscheidungen tiber
Malnahmen fiir die 6ffentliche Gesundheit ernsthaft beeinflussen kénnte.

In der Ndhe des Sedimentbettes ist die Barrierewirkung der grofskaligen Bewegungen inaktiv und die
Schadstoffe breiten sich seitlich mit einer Geschwindigkeit aus, die vermutlich vom Shields-Parameter
abhédngt. Die Wechselwirkung zwischen dem Sediment und den Schadstoffen ist fiir die beiden un-
tersuchten Topologien des Geschiebes unterschiedlich. Bei makroskopisch flachen Sedimentbetten
werden die verunreinigten Partikel in Richtung der Sedimentgréte transportiert, die selbst ein Ergeb-
nis grof3skaliger Fluidbewegungen sind und die Vermischung von Schadstoffen und Sedimentpartikeln
ist auf die diinne Sedimentschicht nahe der Grenzflaiche beschriankt. Im Gegensatz dazu fiihrt das
Vorhandensein von Rippeln zu einem Einfang-Effekt bei dem kontaminierte Partikel bevorzugt im Tal
der Rippel abgelagert und anschliefend von einer dicken Sedimentschicht verdeckt werden durch die
Bewegung des Geschiebes. Durch diesen Mechanismus wird ein groBer Anteil an kontaminierten Par-
tikel voriibergehend immobilisiert bis die Bewegung der Rippel so weit vorangeschritten ist, dass sie
auf der Luvseite erodiert werden. Wahrend der Immobilisierung werden die anhaftenden Bakterien
von der Sonneneinstrahlung abgeschirmt was wahrscheinlich einen erheblichen Einfluss auf ihre In-
aktivierung hat, insbesondere in flachen Gewdssern. Dariiber hinaus konnte die zyklische Eigenschaft
dieses Phinomens eine von mehreren Erkldrungen fiir Bakterienspeicher sein, die bekanntermallen in
Flusssedimenten vorhanden sind und zu Ausbriichen der Indikatorwerte fiir fikale Bakterien fithren
konnen auch wenn keine unmittelbaren Verschmutzungsereignisse vorliegen.

Die Schlussfolgerung lautet, dass die direkte numerische Simulation ein wertvolles Instrument fiir die
Analyse des Bakterientransports sein kann, und es werden Empfehlungen gegeben, wie die in dieser Ar-
beit aufgestellten Vermutungen in Laborexperimenten auf ihre Relevanz hin tiberpriift werden kénnen.
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Nomenclature

Acronyms

BC boundary condition

CSO combined sewer overflow

DEM discrete element method

ECS exact coherent state / exact coherent structure
EQ equilibrium solution

HBG Homann et al. (2013)

HR high Reynolds number (case acronym)
IBM immersed boundary method

KIT Karlsruhe Institute for Technology

LR low Reynolds number (case acronym)
LSM large-scale motion

PB particle-attached bacteria

PO periodic orbit

RP ripple (case acronym)

SB suspended bacteria

SN Schiller and Naumann (1933)

™ travelling wave

uv ultraviolet radiation

VLSM very-large-scale motion

Averaging operators and conditioned sets

S NN N SN N SN SN N
= (Q@‘ﬁb'—lx%

P N N N e e T e
el

>

ensemble-average at a given instance in time (eq. (4.1))

ensemble-average at the time of first crossing of a wall-parallel plane (eq. (4.5))
average of the Gamma distribution

binned average

particle-conditioned average

average over virtual sphere

average over virtual sphere at the time of first crossing of a wall-parallel plane
spatial average over streamwise direction

spatial average over spanwise direction

temporal average



Acronyms and symbols

() streamwise-temporal average

(e streamwise-spanwise average

(Dear streamwise-spanwise-temporal average

(*)ye  averageoverall spatial directions and in time

[*]s set of samples on virtual sphere

[*]ex set of samples on virtual sphere at the time of first crossing of a wall-parallel plane
5111 indicates evaluation of at the time of upward, downward or all crossings

Latin symbols and variables

ar fluid acceleration with components (ap,x, Ay ap,z) r
Ay Voronoi cell area

c propagation velocity

Crp propagation velocity of ripple

Crw propagation velocity of travelling wave

Canorm  collision dissipation coefficient (normal)

Ca,tang collision dissipation coefficient (tangential)

Cy drag coefficient

Csp, Cpp  concentration of suspended/particle-attached bacteria

Dep, Dpp  dispersion coefficient of suspended/particle-attached bacteria
iz lateral particle dispersion coefficient

d,, d., ds particle diameter

E, col particle collision force

Fr Froude number

88 gravitational acceleration (vector, magnitude)

Ga Galileo number

hy, instantaneous and spatially-resolved bed height

0 spacing of particle for initial condition of settling in travelling wave
H channel height in case of open channel, centreline position for closed channel
Hp mean clear fluid height

H, mean bed height

Ip, Ip particle moment of inertia (vector, magnitude)

I, relative turbulence intensity based on u,,

I relative turbulence intensity based on u,

I, relative turbulence intensity based on { vf )i/zzt

Iy intensity of ultraviolet irradiance

Jex number flux of particles through wall-parallel plane

ke attenuation coefficient of Beer’s law

k, sand roughness

Koias collision force stiffness coefficient

l filter aspect ratio
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L, L, domain size

X0 =y

L, wake length

my, particle mass

N, number of particles per realisation

N, bed number of particles classified as bed

N, if number of particles classified as interface
N,s number of particles over all realisations
Npep refinement factor

Noum number of realisations

Noup number of sub-steps of collision model

N, Ny, N, number of grid points

N, number of filter levels
N, x number of crossings
Py probability density of crossing
Pe Péclet number
Pr Prandtl number
dprp deposition flux of particle-attached bacteria in the stream model of Jamieson et al. (2005)
Apx local streamwise particle flux
Qpx streamwise particle flux
Ry, two-point, two-time correlation of bed interface fluctuation
Ryn distance to nearest neighbouring particle
Re Reynolds number
Rey, bulk Reynolds number
Re, Couette Reynolds number
Re, friction Reynolds number
Re, particle Reynolds number
Re,, o, particle terminal Reynolds number
shear parameter
Sp particle surface
Y surface of virtual sphere
Sy fluid mean shear
Sc Schmidt number
St Stokes number
St* Stokes number based on viscous scales
led deposition time
[ particle response time
by characteristic settling time
lex time at contaminant particle crossing a given wall-parallel plane
I characteristic fluid time scale
1, bulk time unit

L viscous time scale

Xiii
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p,col

X)) X,

Xc

particle collision torque

bulk velocity

centreline velocity

friction velocity

Kolmogorov velocity scale

fluid velocity with components (uf, Up, wf) T
Fourier-transformed fluid velocity

Fourier mode of fluid velocity field

velocity deficit

particle velocity with components (up, Up» wp) r

velocity of wall

group velocity of contaminant particles

velocity of contaminant particle while crossing a given wall-parallel plane
gravitational velocity

terminal velocity under quiescent and isolated conditions
particle volume

particle position with components (x,,, y,, 2,) T

contaminant trajectory extended across periodic boundary

xp,O’ yp,O’ Zp,O

Xe,Xr Ze,X

Vs

initial position of settling particle
horizontal particle position at time of crossing

lower boundary of layer of suspended bacteria

Greek symbols and variables
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Ax,Ay, Az
At

Erest

Pr
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Xiv

fraction of surface area which is exposed to sunlight
viscous length scale

width of box filter

collision force range

collision overlap

Kolmogorov length scale

displacement from initial position

displacement from initial position at deposition
mesh spacing (Ax = Ay = Az)

time step

coefficient of restitution

boundary of solid subdomain

Pearson correlation coefficient

fluid density

particle density

gravitational potential
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GsB
H fric
Ky, K,

Ao Ay

smoothing length of layer of suspended bacteria
Coulomb friction coefficient

wavenumber

wavelength

Shields parameter

fluid shear stress

solid volume fraction

local solid volume fraction

solid indicator function

fluid viscosity

fluid vorticity with components (wy., @y, wy,) r
particle angular velocity

particle angular position

simulation domain






1 Introduction

To this day, it has been around 200 years since Claude-Louis Navier published his seminal work on the
laws of viscous fluids (Navier 1823) in which he was the first to derive the equations nowadays referred to
as the Navier-Stokes equations. Perhaps it is delineative for the complexity which is comprised by these
equations that the existence and smoothness of its solutions in three dimensions is yet to be proven
and that such a proof constitutes one of the seven “Millennium Prize Problems” selected by the Clay
Mathematics Institute in 2000. The most prominent manifestation of this complexity is turbulence—
the chaotic state of motion where the fluid flow is characterized by the presence of eddies which emerge
on a wide continuous range of spatial and temporal scales. Turbulence is the norm rather than the
exception in natural and technical environments. In fact, it is safe to say that life as we know it would
not be able to exist without it, as turbulence is essential to virtually all ecosystems, for instance in the
form of large-scale phenomena such as the weather, the hydrological cycle and the carbon cycle, or
on a smaller scale in form of crop pollination and the locomotion of the majority of fish, birds and
flying insects to name but a few. This essentiality becomes immediately perceptible whenever the flow
activity is reduced, with prominent examples being the undesired growth of blue-green-algae in water
bodies (Thomas and Gibson 1990) or the lack of pollutant dispersion during smog events (Neiburger
1957). Presumably it is this combination of complexity, ubiquitousness and relevance which inveigles
scientists from various academic disciplines such as meteorology, oceanography, engineering, applied
mathematics, or perhaps less evidently, cosmology or philosophy, to entrain themselves into the study
of fluid motion, and which at the same time serves as an inspiration for various famous works of fine
art such as Leonardo Da Vinci’s “Studies of water”, Hokusai’s “The Great Wave off Kanagawa” or Vincent
van Gogh's “The Starry Night” which all share a fascinating passion for detail regarding the inherent
features of turbulence (Colagrossi et al. 2021, Marusic and Broomhall 2021, Cartwright and Nakamura
2009, Arag6n et al. 2008).

It may not have gone unnoticed from the previously provided examples that turbulence rarely arises
isolated in natural environments. In fact, more often than not, it is the interaction of a fluid flow with
its environment which is appreciated by the observer—think of the flickering of distance stars due to
chaotic variations in the density of the atmosphere or the rustling of leaves in the wind. While Navier’s
research was, inter alia, actuated by the search for a more accurate description of the interaction be-
tween a solid object and its surrounding fluid, it was an unfortunate stroke of fate that he was mis-
guided in the choice of appropriate boundary conditions for his equations, which left him ultimately
unsuccessful (Darrigol 2002). Motivated by the accurate description of pendulums used in geodesic
measurements, it was George Gabriel Stokes in 1845 who came to the conclusion that a vanishing ve-
locity near the solid-fluid interface is the most natural (Stokes 1845), introduced the concept of flow
instabilities and subsequently formulated a law for the flow resistance experienced by a sphere under
creeping flow conditions (Stokes 1851). With these findings, Stokes laid much of the groundwork for
today’s mathematical analysis of particle-laden flows—the study of the combined motion of particles
and their embedding fluid. Particle-laden flows are similarly to turbulence omnipresent in nature, and
frequently both go hand in hand. Phenomena such as precipitation in clouds, sand dunes in a desert or
the bed forms in rivers are all results of the multifarious interplay between a solid and a predominantly
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turbulent fluid phase, and besides their ability to inspire scientists and artists alike, many of these phe-
nomena remain far from being fully understood down to the present day.

1.1 Motivation

In a world rich of flow phenomena, researches kin to the field of fluid dynamics of the last two centuries
have been able to tackle increasingly complex problems involving fluid flows and their interactions.
While many studies are dedicated to the improvement of the fundamental understanding of turbulence
and particle-laden flows in the matter, the field has advanced sufficiently to address a multitude of prac-
tical problems, and on many occasions, progress in one aspect comes along with progress in the other
as well, just like with the discoveries of Navier and Stokes. The motivation of this thesis is rooted in the
numerical prediction of the propagation of solid contaminants in fluvial systems, and as will be elab-
orated in the following, the transport processes relevant to this problem are not yet comprehensively
understood neither with respect to their inferences on the practical application, nor in terms of the un-
derlying hydrodynamical phenomena.

The guiding theme of this thesis has its origin in the issue of the anthropogenic contamination of stream-
ing freshwater ecosystems which unfortunately still negatively affects the health and quality of life of
many people today. One substantial source of hazardous river pollution are combined sewer overflows
(CSOs), which are discharge events of sewage water into a nearby water body. As the name suggests,
CSOs predominantly occur in a combined sewer system—a unified waste water system for munici-
pal/industrial sewage and surface runoff. The load on such a system may fluctuate immensely due
to the amount of precipitation which is received, and it is at times of heavy rainfall that the capacity
of the infrastructure may be exceeded and the storm sewage is partially discharged without adequate
treatment.

Combined sewer systems are by no means rare. In the United Kingdom, France and Germany an esti-
mate of around 70% of the existing sewerage infrastructure by length are combined sewers (Butler and
Davies 2004) and this is especially the case for Europe’s major historic cultural centres such as London,
Madrid or Paris (Gasperi et al. 2008).1 The situation is similar in the Northeastern and in the Great Lakes
region of the United States of America where more than 40 million people are served by such systems
(USEPA 1995). In Canada, 890 million cubic meters of untreated sewage water has been discharged dur-
ing CSOs into 844 different water bodies between 2013 and 2017 (ECCC 2019),? which highlights the fact
that this mode of pollution is still a common occurrence today even in industrialized countries. Com-
bined sewer overflows are also in no way restricted to the Western hemisphere, as some of the largest
metropolitan regions of East Asia—and thus the world—suffer from the very same problem with exam-
ples including Shanghai (Li et al. 2010), Shenzhen (Talamini et al. 2016), Tokyo (Ham et al. 2008) and
Osaka (Wada et al. 2002). Also, it should not go unnoticed that similar discharge events can take place
in separated sewer systems if the dedicated sewage system is allowed to be considerably infiltrated by
rainwater, which has been reported e.g. in the USA (USEPA 1970, 1971) or Brazil (Reda et al. 2014).

Although perhaps not of the same cultural importance, it can be noted that the city of Karlsruhe, where most of this thesis
was compiled, has both combined and separated sewer systems and is planning to convert the existing infrastructure into a
unified combined sewer in the future (City of Karlsruhe 2010).

To put this number into perspective, this corresponds to a mean yearly wastewater discharge of nearly four times the freshwa-
ter discharge of the small river Pfinz (LUBW 2009) located just outside the writer's window.
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The adverse effects of CSOs on general freshwater quality and human health have been known for more
than half a century (Palmer 1950, USPHS 1964). Although the effluent in CSOs is to a large portion com-
posed of storm water, its ability to pollute is substantial nonetheless as surface runoff itself is known
to be a non-negligible source of pollutants such as heavy metals, mineral oils, pesticides, but also co-
liform bacteria (Ellis 1986),% and the intermittent nature of heavy storms may trigger a sudden release
of depositions held back in the sewers (Butler and Davies 2004). The composition of contaminants
found in the effluent varies depending on the origin of the wastewater and the runoff, but typically
includes pathogens, oxygen-demanding substances, nutrients, toxics and sanitary debris (House et al.
1993). The contamination may therefore impair the viability of aquatic habitats (eutrophication due
to nutrients; oxygen depletion; toxics), pose a potential threat to public health (pathogens) or lead to
a general degradation in aesthetics of the receiving waters (eutrophication; sanitary debris), cf. Butler
and Davies (2004). More recent studies suggest that the discharge of CSOs may also constitute an en-
vironmental source to pollutants whose long-term consequences are not yet well understood, such as
hormones and micropollutants (Phillips et al. 2012, Dittmer et al. 2020) or antibiotic resistance genes
(Brown et al. 2019, 2020).

Naturally, actions have been taken already in many countries to improve the environmental situation.
For instance, the city of Osaka was able to reduce their CSO loads by 75% by means of a storm water
reservoir which dampens the instantaneous peak loads on water treatment plants during heavy rainfall
events (Wada et al. 2002). While this certainly is an effective method to solve the problem and is em-
ployed worldwide at various scales, it is at the same time cost-intensive, and hence, not always a viable
solution. Moreover, the expanding urbanization and the associated sealing of soils increases the sur-
face runoff in many places, which leads to increasing peak loads on the sewer system, and hence, the
requirements on reservoir capacities are not static (Semadeni-Davies et al. 2008). There are also indica-
tions that climate change may exacerbate this situation in the future in regions where rainfall intensity
increases (Semadeni-Davies et al. 2008, Kleidorfer et al. 2009, Fortier and Mailhot 2015).

The severity of the adverse impacts of CSOs also depends on the engineering design of the outlet. The
major risk factor for public health are pathogens such as bacteria, which exhibit the tendency to at-
tach onto solids present in the wastewater (Gannon et al. 1983, Auer and Niehaus 1993, Characklis et al.
2005). For this reason, it is often attempted to separate these solids from the storm sewage before it is
discharged by the use of stilling ponds or other types of separators. The effectiveness of this separation
step depends heavily on the settling velocity of the individual solid particles. Particles which are large
or whose density differs considerably from that of water separate more rapidly from the effluent than
small or nearly neutrally-buoyant particles, and are thus more likely to be removed under high through-
put conditions. On the other hand, the concentration of fine suspended solids and dissolved material in
the spill flow is known not to differ considerably from that of the continuation flow to the treatment plant
(Butler and Davies 2004), while at the same time it is known that most enteric bacteria are attached to
small particles (Walters et al. 2014). The attachment of bacteria onto suspended particles also obstructs
disinfection measures which are at times applied to the effluent (Madge and Jensen 2006, Dickenson
and Sansalone 2012, Gibson et al. 2017).

The environmental impacts caused by CSOs are severe, highly relevant worldwide and difficult to fully
avoid in the near future. It is thus worthwhile to investigate the processes which occur when untreated
wastewater enters a natural fluvial system in order to assess the fate of the entering pollutants. Gener-
ally, these processes can be divided into two types—biotic and abiotic processes. Biotic processes are

3 The hazardousness of surface runoff is one of the reasons why separated sewer systems are not always the preferred solution,

as in these systems runoff is typically released with only little treatment (De Toffol et al. 2007).
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Figure 1.1: Schematic portrayal of abiotic processes associated to a localized contamination event in a fluvial environment. Image
adapted from Walters (2013).

directly related to the living nature of microorganisms and examples may include the growth of bacterial
populations, the natural inactivation thereof, predation by other organisms or competition with other
microbial populations. As pathogens are one of the major threats to public health, a comprehensive un-
derstanding of biotic processes is crucial for the assessment and prediction of water quality. However,
due to their living nature, these processes usually cannot be solely understood from first principles, and
thus, their mathematical description commonly relies on empirical findings. On the contrary, abiotic
processes are immediately subject to the laws of physics, and in many cases, to the laws of (hydro-
)mechanics. Prominent examples may include transport and mixing processes, the deposition of solids,
but also the attachment/detachment of bacteria onto/from solids. Moreover, both types of processes
regularly dependent on each other. For instance, the evolution of microbial populations is largely influ-
enced by the local availability of oxygen and nutrient which is a result of physical transport mechanisms.
Conversely, the presence of microorganisms modifies the concentration field of these substances, which
in turn affects the transport behaviour.

For the prediction of water quality after a spill event, it is crucial to know how the contamination prop-
agates downstream. In the case of dissolved pollutants, the spreading is in its essence a mixing problem
between freshwater and sewer effluent, which is rather well understood from the point of view of fluid
mechanics. However, the exclusive consideration of dissolved contamination is known to be insufficient
to adequately describe the characteristics of pollutant propagation, especially in regard to pathogens
(Gannon et al. 1983, Auer and Niehaus 1993, Wilkinson et al. 1995, Jamieson et al. 2005). This is for the
most part a result of the tendency of microorganisms to attach onto solid matter, which is thought to be
a major mode of bacteria transport in fluvial systems (Jamieson et al. 2004, Droppo et al. 2009, Walters
et al. 2014). For this reason, it is inevitable to also consider the transport of suspended solids within
the receiving water body in any detailed analysis or model of this phenomenon, which implies that a
turbulent particle-laden flow problem has to be studied.

The interactions of microbiologically contaminated particles with their surroundings are manifold and
not well understood. Compared to freely suspended bacteria, particle-associated bacteria are known
to survive over longer periods of time (Garcia-Armisen and Servais 2009), which is thought to be a
combined result of protection against detrimental environmental factors such as UV irradiation or pre-
dation, a better availability of nutrients, and, for some materials, an enhanced protection by biofilms
(Roper and Marshall 1974, Erkenbrecher 1981, Wright et al. 1995, Craig et al. 2004, Schultz-Fademrecht
et al. 2008). There are believed to be two mechanisms of bacterial adsorption—weak adsorption where
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van der Waals forces overcome repulsive forces, and strong adsorption due to cellular appendages or
extracellular polymers excreted from the cell Jamieson et al. 2005). Whereas the latter is considered to
be irreversible, the former allows for a transition between the suspended and the particle-attached state
which constitutes a mass transfer problem in the framework of fluid mechanics.

Figure 1.1 shows an abstraction of the major abiotic processes which occur downstream of a contami-
nation event according to Walters (2013). Apart from the processes which were already elaborated on,
the graphic also indicates that contaminated particles may interact with the natural river sediment bed
present in a river. The ability of particles to be deposited and resuspended has striking implications on
water quality prediction, as it provides a way for pathogens to be stored and released at a later time,
possibly long after the primordial event occurred (Sherer et al. 1992). The release may be triggered by an
increase in discharge of the contaminated river, e.g. due to precipitation, which promotes the transport
of sediment, and increases in bacterial levels by a factor of 10 to 100 have been reported in literature
(McDonald and Kay 1981, McDonald et al. 1982, Sherer et al. 1988) which demonstrates the relevance of
this effect.

1.2 State of research in bacteria transport modelling

The prediction of water quality using models serves two major purposes—the issuance of public warn-
ings in the case of an acute contamination event, and the promotion of the general understanding of
pollutant spreading, e.g. to make informed engineering decisions. For the former purpose, real-time
forecasts (“nowcasts”) are typically obtained using empirical statistical models which traditionally rely
on ordinary least squares regression, but more recently also employ more advanced regression methods
from the field of machine learning, see Brooks et al. (2016) for an overview. For the latter purpose, a
physics-driven approach is more expedient, and hence, so-called deterministic or mechanistic models
which attempt to explicitly model the abiotic processes displayed in fig. 1.1 as well as biotic processes
are typically employed. In the following, the characteristics of these deterministic models will be sum-
marized largely based on the instructive review provided by de Brauwere et al. (2014).

The variable to be predicted by the vast majority of water-quality models is the total concentration of
fecal indicator bacteria (FIB). FIB concentrations are used as a proxy for the straightforward quantifica-
tion of all pathogens present in a natural water body in order to simplify regulations and analyses. In
order for FIB to be tracers of external contaminations, these indicators are selected such that they occur
e.g. in the faeces of humans or animals, do not grow naturally in water bodies, but are subject to simi-
lar processes as other pathogens. Nowadays, Escherichia coli is a commonly used FIB for water quality
regulations.

The fundamental principle behind all mechanistic models is a mass balance, which implies that the
concentration of bacteria is influenced by sources (the contamination event), sinks (internal processes
and reactions which lead to inactivation) and transport. The level of detail which is employed in the
mathematical modelling of these terms determines the complexity of the model.

Source terms may be either incorporated explicitly, which means that the drainage network is included
in the modelling domain, or implicitly by imposing, possibly varying, boundary conditions of the do-
main. The choice of the method greatly depends on what processes are to be subject of investigation.
Generally speaking, if the interest lies in an investigation of how pollutants enter the system, it would be
preferred to model the source explicitly, whereas for studies primarily concerned with the downstream
spreading, it is often sufficient to simply implement a boundary condition.
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Sink terms describe processes of bacteria decay. Experimental data usually suggest a first-order kinetic
of decay (Chick 1910), although an initial lag in response is often observed before exponential decay
is achieved (Darakas 2002). The decay rate may be a function of various external factors such as tem-
perature, sunlight intensity, salinity or predation, however, the constitutive equations describing their
influence are predominantly local, and thus, the level of detail at which the decay is described depends
on the resolution of the transport model. This is particularly the case for temperature and salinity whose
distribution is mostly determined by hydromechanics.

Hydromechanics is also the key factor to all transport processes. As outlined in the introductory words,
the flow inside a fluvial environment is eminently complex and the degrees of freedom a transport model
was to require in order to resolve all relevant scales exceeds the computational resources available today
and in the foreseeable future by far. For this reason, compromises have to be made in the mathemat-
ical description of the advection and dispersion of FIB concentration, and regularly, low-dimensional
models are employed.

Spatially-unresolved models

The simplest mechanistic models from a hydromechanics point of view do not consider any spatially-
resolved transport processes at all. As an example, Auer and Niehaus (1993) investigated the time-
evolution of bacteria concentration in lakes solely in terms of first-order loss kinetics with a decay rate
depending on temperature, UV irradiation levels, but also the sedimentation of particle-attached bacte-
ria. Such spatially homogeneous models have also been applied to river flows, where typically a second
balance equation is evaluated for bacteria deposited in the sediment. Resuspension and deposition
then act as a source or sink to the bacteria concentration in the stream, respectively, and the coupling
between the two balance equations is achieved by an ordinary differential equation relating the concen-
tration in the sediment to that in the flow (Jenkins et al. 1984, Wilkinson et al. 1995).

It should be noted that spatially-unresolved water-quality studies are not uncommon, as many of them
are conducted in the framework of hydrologic models, especially if they aim at simulating large geo-
graphical scales or a high level of geographical details. A widely used model is the “Soil & Water As-
sessment Tool” (SWAT) which is a public domain hydrological transport model capable of modelling
virtually any water or soil based process within a river basin. A module for bacteria transport was de-
veloped by Sadeghi and Arnold (2002) which essentially implements various sources for bacteria runoff
into receiving streams. However, the model does not consider any transport within the receiving water
body itself, but solely bacteria decay and resuspension of bacteria deposited in the sediment depending
on the local flow rate (Neitsch et al. 2011), which is calculated for each river section using Manning’s
equation for open-channel flows (Manning 1890).

1D transport models

Numerous studies use an approach where only the downstream coordinate is resolved. An early ex-
ample is Boehm (2003) who studied the spreading of a point-source contamination along the shoreline
of an ocean coast. In the study, the hydrodynamic reasoning of Inman et al. (1971) is followed to ar-
rive at a one-dimensional advection-reaction equation which governs the bacterial transport. A similar
approach was employed by Steets and Holden (2003) who studied the transport along the shoreline
of a coastal lagoon which, however, also required the recognition of dispersion yielding an advection-
diffusion-reaction (ADR) equation for their model. Moreover, their contamination originated from the
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sediment of the lagoon, and consequently, a second balance equation and a coupling term were em-
ployed similar to the spatially-unresolved models. The first study to explicitly distinguish between the
transport of particle-attached and freely-suspended FIB was Jamieson et al. (2005) who formulated an
ADR equation for each mode of transport, respectively. Moreover, their study was motivated by a con-
tamination event which is localized in space and time and subsequently propagates in a stream, and
hence, their boundary conditions were compatible to the investigation of CSOs in streaming water bod-
ies. However, the process of adsorption and desorption is not represented by their model which leaves
the two modes of transport uncoupled and is justified by the supposition that the attachment of bacteria
is predominantly irreversible.

Another class of one-dimensional transport models exclusively resolves the vertical direction. Vergeynst
et al. (2012) investigated decay processes in a storm water basin for a combination of particle-attached
and freely-suspended bacteria using a discretisation in vertically-stacked layers. The settling of parti-
cles was modelled for multiple size classes using a class-specific settling velocity. Their model explicitly
treated adsorption and desorption in each layer, and decay rates were set to be height-dependent, e.g.
due to the variation of light intensity with respect to the water depth. A methodologically similar study
was conducted by Qian et al. (2016) who reproduced the observations of the large-scale flume experi-
ment by Walters (2013) where turbidity was found to be a key factor. For this reason, the transport of the
concentration of all suspended solid matter was modelled using a one-dimensional advection-diffusion
equation, where the effect of vertical dispersion of particles by turbulence was the motivation of the dif-
fusive term. The study distinguished between particle-attached and freely-suspended bacteria, where
the former were subject to an ADR equation and the latter only to diffusion and decay, but no coupling
was implemented as irreversible attachment was assumed. Using this method, they were able to ac-
count for light attenuation by suspended solids at varying vertical position in the water body, which in
turn was deemed crucial in order to explain the decay rates observed in the flume experiments at high
levels of turbidity.

2D transport models

Two-dimensional transport models are typically based on the spatially-averaged Navier-Stokes equa-
tions under the justification that the flow is well mixed in the direction of averaging. Dewey and Palmer
(1984) solved the depth-averaged Navier-Stokes equations, commonly denoted as the shallow water
equations, using the method of Leendertse and Nelson (1978) in order to simulate the advection and
dispersion of untreated storm water and CSOs within a St. John’s harbour in Newfoundland. In a subse-
quent study for an urban beach on the Ottawa River, they extended their model to account for bacteria
decay (Palmer and Dewey 1984). Kashefipour et al. (2002) used a similar model, but included a time-
variant decay rate in order to accommodate radiative inactivation of FIB a bay. Schnauder et al. (2007)
evaluated the depth-averaged Navier-Stokes equations with a turbulence model based on Prandtl’s mix-
ing length hypothesis to study FIB transport in the Bristol Channel. Their hydrodynamic model was
sufficient to resolve some rather complex large-scale flow structures induced by the tides which were
shown to have a considerable impact on the distribution of FIB. In all of the aforementioned studies,
the tangible geographic occurrences and the dominance of transport processes were the main source
of motivation for the choice of a transport model with higher dimensionality. A more methodologically
motivated study was conducted by Gao et al. (2011) who extended the idea of Jamieson et al. (2005) to
distinguish between particle-attached and freely-suspended bacteria to two dimensions and modelled
the deposition and resuspension of particle-attached bacteria using a continuous Eulerian approach.
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Laterally-averaged variants of the Navier-Stokes equations are significantly less common in the predic-
tion of water-quality, with an early example being Kim et al. (1983) who applied the hydrodynamical
model described in Edinger and Buchak (1980) to the Cherokee reservoir in order to explain the ob-
served high FIB concentrations observed by means of circulation patterns. Regarding river flow, Liu and
Huang (2012) studied the concentration of salinity and FIB in a tidal estuarine system inter alia under
discharge conditions. Their streamwise-vertically resolved model used a mixing-length based turbu-
lence model and a single ADR equation for FIB concentration which takes into account both suspended
and particle-attached bacteria. The authors also remark the capability of vertically-resolved models to
incorporate the interaction between the sediment and FIB concentrations more explicitly.

3D transport models

Turbulence is an inherently three-dimensional phenomenon, and as such, lower dimensional transport
models inevitably neglect some of its defining features. Similar to their two-dimensional counterpart,
the emergence of 3D bacteria fate and transport models is widely expedited by the availability of ap-
propriate hydrodynamic models which are most commonly borrowed from coastal ocean modelling. In
fact, the bulk of published 3D models fall into two main categories.

The models of the first category use the internal/external mode decomposition described e.g. in Blum-
berg and Mellor (1987). In this method, the deformation of the free surface of the water body is com-
puted using the two-dimensional shallow water equations, whereas the internal flow is a solution to the
three-dimensional Navier-Stokes equations. Both sets of equations are coupled, as the latter depends
on the water surface computed by the former, but also provides bottom friction and vertical dispersion
terms to it (Cugier and Le Hir 2002). Furthermore, the equations are typically Reynolds-averaged, and
hence, a turbulence model is used in order to limit the range of scales which needs to be resolved. The
advantage of the decomposition lies in less stringent restrictions on the time-step as the stability cri-
terion of the 3D model becomes independent of the free surface waves (Cugier and Le Hir 2002). An
early study on water quality using this method was conducted by Connolly et al. (1999) who studied
the transport of three indicator organisms in Mamala Bay, Oahu. Their circulation model included the
entire island in order to account for the particular macroscopic flow conditions, was coupled to contam-
inant transport using ADR equations, and also included the transport of suspended solids using an ADR
equation where the reaction term corresponds to the settling of the solids. However, particle-attached
FIB were not considered in this study. Special care was taken in the modelling of the decay rates which
were depth-dependent in terms of light attenuation and scattering due to suspended solids, thus jus-
tifying the necessity of a three-dimensional model. Garcia-Armisen et al. (2006) conducted a similar
investigation in the Seine estuary in France within the framework of a multidisciplinary research pro-
gramme in which a comprehensive hydrodynamical model of this region has been developed by Cugier
and Le Hir (2002) using the external/internal mode decomposition. The study distinguished explicitly
between particle-attached and freely-suspended FIB where both concentrations were described by ADR
equations and deposition/resuspension was modelled for the former. It should, however, be noted that
the river Seine itself was represented one-dimensionally in their model and thus served the purpose of a
variable boundary condition to the three-dimensional discretisation of the bay (Cugier and Le Hir 2002).

The second category of models utilises the approach of Zhang and Baptista (2008) where the shallow
water equations are extended to three dimensions using the continuity equation. Therefore, in contrast
to the approach previously described, no momentum equation is solved for the vertical velocity compo-
nent, and thus, stricter assumptions on the flow conditions are made. The advantage is, however, that
the set of equations to be solved is less complex, as no decomposition between internal and external
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waves has to be employed. Again, the equations are solved in their Reynolds-averaged form and the im-
plementation of Zhang and Baptista (2008), which is employed by all studies mentioned in the following,
uses the turbulence model of Umlauf and Burchard (2003). Rodrigues et al. (2011) applied this hydro-
dynamic model to the Aljezur coastal stream in Portugal, and in opposition to the previously described
studies, the stream itself was discretised in three dimensions with the smallest resolved length scale be-
ing around 2 meter. Their bacteria model included particle-attached and freely-suspended bacteria in
a single ADR equation, but resuspension was not considered. Liu et al. (2015) employed an essentially
similar model to the Tamsui estuarine in Taiwan which also included the river system in the discretisa-
tion. Subsequently, Chen and Liu (2017) extended this study to include a continuous sediment transport
model where the rate of erosion was determined from the bottom shear provided by the hydrodynamical
model, thus accounting for deposition and resuspension of particle-attached FIB.

1.3 Research objectives

Bacteria fate and transport models have advanced significantly over the last decades. However, the range
of length scales which are typically relevant for the prediction of transport in water quality is immense,
reaching from the size of entire river systems down to the size of small suspended particles or less, i.e.
from several hundreds of kilometre down to several micrometres. For this reason, any hydrodynamical
model which aims at investigating tangible geographic situations is ought to rely on models to represent
the processes on the smallest scales, and will be in the foreseeable future. These small-scale processes
are at the same time by no means insignificant as becomes apparent from the efforts which have been
made in the past to parameterize processes such as turbulent dispersion, sediment resuspension or the
settling rate of particle-bound bacteria in transport models.

At the same time, the hydrodynamic processes at the smallest scales are far from being fully understood.
In fact, the sedimentation of solid particles in turbulent flows constitutes an active field of research with
arich variety of emergent phenomena such as the formation of patterns, clustering and the interaction
with coherent fluid motions whose implications are not yet explicitly captured by simplified models. As
will become evident in the subsequent literature review on particle-laden flows, the transient process of
particles settling in wall-bounded turbulence has received only little attention in literature yet despite
its relevance. The goal of this thesis to contribute to the hydromechanical understanding of this process,
and to make inferences on the significance for bacteria transport.

It should be emphasized that the aspiration of this thesis is not to reproduce a specific contamination
problem, nor to provide a full bacteria fate and transport model. In fact, bacteria fate will only play a sub-
ordinate role, and the emphasis is laid for the greater part on turbulent transport processes. In contrast
to previous works in the field of deterministic bacteria transport models, the approach employed here
should be regarded as “bottom-up” in the sense that the goal is to resolve the smallest relevant scales
with as few assumptions as possible, with the endeavour to make inferences towards emergent phe-
nomena of relevance at larger scales. The drawback of this approach is that the domain of investigation
has to be kept general, and that the largest length scales which can be described using this method are
still smaller than the smallest length scales in more traditional “top-down” approaches. This inevitabil-
ity can be seen at a glance in fig. 1.2 where the disparity in the scales described by classical bacteria
transport models and the current work is outlined.

More specifically, the following key parameters and phenomena will be subject of investigation in this
thesis:
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Figure 1.2: Schematic depiction of scales involved in water-quality models. The majority of three-dimensional water-quality fate
and transport models have been applied on a mesoscale with the intention to describe entire estuaries, thus regions
with length scales of the order of 100 km. For this purpose, it is inevitable to model all processes which occur on a
microscale. The research objective of this thesis is to directly assess the effect of turbulence and sediment dynamics
on the transport of contaminations from first principles and on the smallest scales. As a consequence, the size of the
system which can be represented is many orders of magnitudes smaller than in previous studies. Illustrations: Top
row—Geba River estuary in Guinea-Bissau (USGS/NASA Landsat, public domain). Bottom right—Hunter River in New
South Wales, Australia (Rygel, M.C., CC BY-SA 3.0). Bottom left—Direct Numerical Simulation of ripple patterns.

Settling velocity during the transient The settling velocity of suspended particles is a paramount pa-
rameter for the modelling of particle-attached bacteria. In the bacteria transport models, this
quantity is frequently set to the value of the terminal velocity in a quiescent environment despite
hydromechanical studies suggesting that turbulence has a non-trivial significant effect on it.

Spatio-temporal inhomogeneity The dynamics of particles in turbulent flows are distinctly different
from the behaviour of solubles due to inertial effects, and this distinction is far too momentous to
be reduced solely to settling effects. In many cases particles exhibit the tendency to cluster and
de-mix, and the effect of such inhomogeneities on the environmental conditions encountered by
particle-attached bacteria lacks qualitative and quantitative analysis.

Sediment interaction It is well established that the interaction between bacteria and river sediment
plays a significant role in the spreading and storage of contaminations. A detailed analysis of the
interplay between natural river bedforms and entering solid contaminants may be beneficial for
its understanding.
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Identification of emergent phenomena Complex systems are often more than merely a combination
of their individual parts. Due to the large disparity in length scales, some emergent phenomena
of relevance might have been overlooked in the classical “top-down” approaches, and might be
more accessible by an investigation starting from the smallest scales.

1.4 Outline of this thesis

The content of this thesis is organized as follows: Chapter §2 provides an introduction to the relevant
principles of hydromechanics and particle-laden flows, and contains a literature review on the state of
research concerning the transient settling of particles in wall-bounded turbulent flows. In chapter §3 the
exact configuration to be simulated and investigated is introduced along with the mathematical frame-
work and numerical method which is employed. It further contains a summary of the major parameter
points which are discussed throughout the thesis and details on the determination of reference quan-
tities. Chapter §4 focuses on the velocity statistics of the solid particles during the phase of transient
settling, and chapter §5 aims at explaining these observations in terms of the interaction with the tur-
bulent carrier flow. In chapter §6 the spatial organization of the solid phase into clusters and voids, and
the interaction with sediment bedforms is examined, as well as the dispersion and displacement of the
contaminants from their initial position. A coarse-graining method is employed in chapter §7 in order
to determine the length scales of turbulence which are most relevant for the phenomena previously de-
scribed. Chapter §8 introduces a novel approach to the investigation of turbulent particle-laden flows
by assessing the interaction of settling particles with exact coherent structures, which are non-linear
flow states of significantly reduced complexity compared to turbulence, yet are thought to be closely
related to coherent fluid motions observed in turbulent flows. From these interactions, scaling laws are
derived with reduced computational effort. Chapter §9 transfers the knowledge gained from the hydro-
dynamical investigations towards bacteria transport models by summarizing and contextualising the
recognitions made in the preceding chapters. Finally, the thesis is concluded in chapter §10 by stating
the main findings.

11






2 Wall-bounded turbulence and
particle dynamics

2.1 Fundamental principles of hydromechanics

2.1.1 Navier-Stokes and transport equations

The fundamental equations of hydromechanics are the Navier-Stokes equations (NSEs) for incompress-
ible flows which are deduced from the conservation of mass and the balance of linear momentum for a
fluid parcel with constant mass and constant volume, viz.

V~uf=0 (2.1)
ou
7 1 2 1
— +V-(u®up)=——VP+v,Vur+— ) f (2.2)
5tV (ureuy) PR A pr

where uy x,1) = ( Us, Uy, wf)T denotes the fluid velocity field, P(x,t) the associated pressure field, Py the
density of the fluid, vy the kinematic viscosity and f(x,?) is a placeholder for the acceleration induced
by any external forces, or the sum thereof. Moreover, the three-dimensional spatial coordinates are
referred to by x = (x, y, z) T the temporal coordinate by #, the unary spatial differential operator by V :=
(0/0x,0/0y,0/0z) T the binary tensor product operator by ® and the binary inner product operator by -.

The Navier-Stokes equations model the underlying fluid as a continuum rather than discrete molecules
and are therefore subject to the continuum hypothesis which starts from the premise that the length
scales of macroscopic motion are sufficiently separated from the length scales of molecular motion
such that an ensemble of molecules may be regarded as a fluid parcel of infinitesimal size. In fact,
the momentum equations shown in eq. (2.2) are a particular instance of the general Cauchy momen-
tum equations for any non-relativistic continuum, and are obtained by specifying the stress tensor for a
Newtonian fluid, viz.

Our; OUy;
b +—f") 2.3)

Ojj = _6ijp + pf’Vf (a aXi

where §;; denotes the Kronecker delta. As a consequence, tangential stresses are proportional to the rate
of strain with a scalar constant of proportionality—the viscosity.

Generally, the suppositions of a continuous medium, an incompressible flow and Newtonian fluid prop-
erties are non-restrictive for the flows investigated in the context of water-quality prediction models.!

1 The flow of dense suspensions, which occurs for example in sediment transport problems, is sometimes described using a

non-Newtonian stress tensor if both the suspended solids and the carrying fluid are modelled as a single continuous phase.
In the context of this thesis, this is not necessary as both phases will be resolved properly.

13



2 Wall-bounded turbulence and particle dynamics

Therefore, eq. (2.1) and (2.2) may be regarded as the most fundamental description of the relevant hy-
drodynamic processes, and indeed, all higher-dimensional hydrodynamic models discussed in §1.2 are
simplifications of these equations.

The NSEs are sufficient in order to describe the evolution of the fluid velocity and pressure fields if ap-
propriate boundary and initial conditions are provided. If the transport of another continuous quantity
by the flow is to be described, the NSEs are oftentimes coupled to an advection-diffusion-reaction equa-
tion (ADR) for said quantity, viz.

)
O_‘f +V-(49) =V (D, V) + Y q, (2.4)

where ¢(x,1) is a placeholder for any transported quantity, D,, its diffusivity and ¢(x,) a placeholder for
its sources or sinks.” Hereby, this coupling is denoted as passive if the influence of ¢ (x,1) is insignificant
for the fluid momentum balance, or as active if the coupling is reciprocal and an external force fq, x,1)
which depends on ¢ is introduced in eq. (2.2). Common examples of transported quantities in the con-
text of water-quality prediction are salinity or temperature—both of which are typically modelled as
active—or the concentration of FIB which is typically regarded as passive.

Regarding the application of an ADR equation for the transport of bacteria, two clarifying remarks
should be made. Firstly, in the bacteria fate and transport models described in §1.2, ADR equations
are sometimes used for both freely-suspended and particle-attached bacteria, although the latter is dis-
crete at the smallest length scales of the flow. Here, the treatment of particle-attached bacteria as a
continuum is a result of the truncation of length scales, and is inadequate if the fluid movement at the
length scales of the suspended particles is resolved. Secondly, it should be kept in mind that bacteria are
capable of locomotion and should therefore be regarded as active matter (Ben-Jacob et al. 1994, Vicsek
etal. 1995). Therefore, an ADR equation is not the most fundamental way to describe bacteria transport
and a more appropriate model is to be employed whenever this effect is expected to be relevant.

2.1.2 Dimensional analysis

In the absence of external forces, the NSEs comprise three fundamental units—length, time and mass—
and four independent dimensional parameters—a characteristic velocity, a characteristic length, the
density and the viscosity. According to the Buckingham 7 theorem (Bertrand 1878, Buckingham 1914)
the equations can hence be parametrised by a single non-dimensional parameter, which is convention-
ally chosen to be the Reynolds number defined as

UL
Re:= —, (2.5)

vy
where U denotes a characteristic scale of velocity and £ a characteristic length scale of the problem to
be investigated. The name of this non-dimensional number was given in honour of Osborne Reynolds
who famously studied the transition between laminar and turbulent fluid flow in a pipe (Reynolds 1883)
and later discovered that the criterion for this transition to occur is solely provided by this parameter
(Reynolds 1895). When non-dimensionalising the NSEs, the inverse of the Reynolds number emerges
as a prefactor to the diffusive term, and hence, its value is decisive for the relative importance of viscous

2 Indeed, the ADR equation also comprises the transport of fluid momentum as stated in eq. (2.2) for the particular case that ¢

corresponds to a fluid velocity component, Dq) to the viscosity and ¢ includes the pressure-gradient.
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2.1 Fundamental principles of hydromechanics

effects. The specification of the characteristic velocity and length scales are problem dependent and
generally not unique. In fact, as will be established when the phenomenon of turbulence is discussed,
the tangible definition of the Reynolds number may dependent on the aspect of the problem which is to
be assessed.

The amount of non-dimensional parameters which are required to fully describe a flow problem may
increase when external forces are considered. In the context of geophysical flows, one external force
which is ever-present is induced by gravity and enters eq. (2.2) by the force term f, := p,g with g being
the gravitational acceleration. The non-dimensional number which determines the relevance of this
force is termed the Froude number in honour of William Froude® and its definition is given by4

uZ

Fri=—
r gL

(2.6)
where g := |g| is the magnitude of the gravitational acceleration. The Froude number has its primary
relevance for free surface phenomena such as external waves.

Regarding transported quantities, a non-dimensionalisation of the ADR equation yields two dimension-
less numbers, namely the Péclet number, Pe:= UL/ D(p, which similarly to the Reynolds number de-
scribes the relative importance of diffusion, and a dimensionless number related to the reaction term
which is commonly referred to as the Damkdhler number and whose definition depends on the details
of the reaction term. Due to the similarity of the Péclet and the Reynolds number, a different parametri-
sation is employed occasionally by defining the Schmidt number as their ratio, viz.

Pe Vr
Sci=—=—.
Re D,

(2.7)

The Schmidt number is an important indicator for mixing processes in turbulent flows and can be in-
terpreted as the separation in scales at which fluid momentum and variations in the transported field
are dissipated. In the case of active transport, the Schmidt number is also referred to as the Prandtl
number and an external force representing buoyancy effects is added to the NSEs. This buoyant force
is commonly formulated in terms of the Boussinesq approximation (Boussinesq 1897) which presumes
that variations in density sufficiently small such that they are negligible in terms of inertia, and yields
f, = prBl@—¢o)g where f is the linear expansion coefficient and ¢, is a characteristic value of the trans-
ported quantity. A non-dimensionalisation of this body force gives rise to the Richardson number which
is a measure for the relative importance of accelerations due to inhomogeneities in the specific weight
and reads

_ BApygL

Ri=—75 (2.8)

where Ag, is a characteristic range in which ¢ may vary within the flow. The Richardson number may
be understood as a variant of the inverse Froude number for internal waves rather than external ones.

Further external forces may need to be considered in bacteria transport models if they aim to resolve
transport on a geographic mesoscale. For instance, the ocean circulation model of Zhang and Baptista

The attribution of the discovery of this non-dimensional parameter is disputed and arguments can be made that it is a mis-
nomer (Hager and Castro-Orgaz 2017), as Belanger (1828) formulated this non-dimensional group and de Saint-Venant (1871)
recognised its relevance for external wave regimes prior to Froude (1874).

The definition of the Froude number varies in the literature, and the current definition is chosen such that the prefactor of
the non-dimensionalised force term is equal to the inverse of the Froude number. A definition which is equivalent to the
square-root of the current definition is frequently encountered for historical reasons.
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2 Wall-bounded turbulence and particle dynamics

(2008) also includes the Coriolis force and tidal forces, which introduce the Rossby number and Love’s
number to the parametrisation, respectively. As this thesis is concerned with transport at a microscale,
these numbers are only mentioned for completeness.

2.1.3 Scales of turbulence

As mentioned in the introductory words, turbulence is a phenomenon which is characterised by the
presence of eddies which occur over a wide continuous range of scales. This understanding of turbu-
lence is has been strongly influenced by Lewis Fry Richardson who introduced the idea of a turbulent
cascade where energy is injected into the flow at the largest scales, transferred to subsequently smaller
scales in a quasi-inviscid process until viscosity is significant enough to dissipate the mechanical en-
ergy into heat (Richardson 1922). Richardson understood this process as a continuous breakdown of
eddies from large scales downwards, where eddy is a vague term for coherent packets of turbulent mo-
tion which exhibit an intrinsic length and time scale. From today’s understanding, this so-called energy
cascade is far more complex than what Richardson imagined, albeit the notion of the directional energy
transfer still withstands on average.

Nearly two decades later, Andrey Nikolaevich Kolmogorov elaborated on Richardson’s idea and formu-
lated hypotheses which allowed him to arrive at quantitative statement on the range of scales over which
turbulent motion occurs (Kolmogorov 1941). He postulated that turbulence at sufficiently small scales
and sufficiently far away from the boundaries is locally isotropic and homogeneous, which entails that
small-scale eddies are universal and independent from the particular geometry and nature of the large-
scale flow. Moreover, Kolmogorov argued that the statistics of these smallest scales are ought to be fully
determined by the rate of dissipation, in the following denoted by &, and the viscosity. Dimensional
considerations then yield the so-called Kolmogorov microscales,

1/4 1/
) )"

n::(vf‘/ef ouy=(veg) (2.9)

where 7 is the Kolmogorov length scale and u,, the corresponding velocity scale. The intrinsic Reynolds
number for eddies at this scale is unity by definition, which highlights their importance for dissipation
in the cascade.

In contrast, the fluid motion at the largest scale is not universal, as the corresponding eddies are typically
thought to be the result of inertial instabilities which are affected by the geometry and flow character-
istics. The kinetic energy carried by these eddies is of the order of u?, and the time scale at which this
energy enters the cascade is similar to the eddy turnover time, which is of the order of ¢/u, with ¢ and
u, denoting the length and velocity scales of the largest eddies, respectively. In order for energy cascade
to be statistically steady, the rate of energy input at the largest scales, u?/ ¢, must match the rate of dissi-
pation at the smallest scales, vy u% / nz. As a consequence, the range of scales which is encountered in a
turbulent flow is quantified by

¢/n o ReJ4, ug/un o~ Rel*, (2.10)

and depends on the value of the intrinsic Reynolds number of the largest eddies, Re, := u,¢/v;. Since £
and u, are essentially predetermined by the boundary conditions of the flow, eq. (2.10) suggests that the
smallest structures which can be observed in a turbulent flow decrease in size with increasing value of
the (integral) Reynolds number.
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2.1 Fundamental principles of hydromechanics

2.1.4 Reynolds decomposition

Apart from his contributions to the study of the onset of turbulent motion, Osborne Reynolds introduced
another crucial concept for the examination of turbulence—the decomposition of an arbitrary field ¢
into its average value (¢) and a fluctuation ¢ about it, such that

Px,0) = {(px,1))+¢ (x0). (2.11)

The definition of the averaging operator varies depending on the problem to be investigated, however,
it is required to be linear and to satisfy the identity ((@)w) = (@) (y) for all ¢ and y where the latter
denotes a second arbitrary field. Common examples for averaging operations include temporal averag-
ing of statistically stationary flows, ensemble averaging over multiple realisations, spatial averaging over
statistically homogeneous directions, or a combination thereof.

The Reynolds decomposition can be applied to the velocity and pressure field and substituted into the
NSEs in order to derive a set of equations which describes the evolution of the average quantities. These
so-called Reynolds equations are given by

V-(us) =0, (2.12)
6<uf> 1 2 ! l 1
+V- ((up) ® (up)) = —— V(P + v,V (up) = V- (up@up) + — Y (D), (2.13)
= () ® wp)) o Y uy) = V- (up o uy) pr

and a comparison to eq. (2.2) reveals an additional term in the momentum equations—commonly de-
noted as the Reynolds stresses—which depends on the variances and covariances of the velocity fluctu-
ations. The appearance of this additional term has severe implications on the solvability of the system of
equations, as it causes it to be underdetermined, and hence further constitutive equations are required
in order to solve them. This constitutes the closure problem of turbulence which is inevitable as deriving
the required constitutive equations from first principles merely leads to the appearance of further terms
of higher order.

Despite this complication, it is desirable for various applications to search for solutions to the Reynolds-
averaged equations instead of the unmodified NSEs, especially if the primary subject of interest is the
mean flow. In fact, as was brought up in §1.2, most, if not all, higher-dimensional bacteria transport
models are based on variations of the Reynolds equations. The advantage in doing so lies in the consid-
erably lesser demand on the resolution of the flow problem—whereas solutions to the NSEs require the
model to fully resolve even the smallest scales of fluid motion in order to accurately capture the energy
cascade, the resolution requirement on the Reynolds equations is solely dictated by the spatio-temporal
variations in lower order statistics which generally occur at vastly larger scales. The disadvantage of
this approach, however, is that the Reynolds stresses have to be supplied by a model. A broad class
of turbulence models is based on the concept of a turbulent eddy viscosity which presumes that the
Reynolds stresses exhibit a similar net effect as an increased molecular viscosity, and indeed, all of the
discussed bacteria transport models seize on this idea, although the eddy viscosity is commonly cho-
sen to be anisotropic. However, generally speaking the Reynolds stresses are problem-dependent, as
the truncated turbulent motions which cause them are typically not sufficiently small to be considered
universal, and hence, the applicability of turbulence models routinely require adequate tuning and in-
troduced a substantial uncertainty for the prediction of the mean flow.
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2 Wall-bounded turbulence and particle dynamics

2.1.5 Vorticity and locality

One universal feature of turbulence is the ubiquitousness of vorticity, wp = (wﬁx, Wry» wﬁz) T which is de-
fined as the curl of the fluid velocity, viz.

Wy = V x uy, (2.14)

where x is the binary cross product operator. Vorticity is a measure for the local rotation of a fluid parcel,
and while it is indeed related to the general concept of a vortey, its presence does not demand a global
vortical motion.” Taking the curl of eq. (2.2) in the absence of non-conservative body forces yields a
transport equation for the vorticity which reads

6wf 2

W +(llfV) (l)f =’va wf+(wfV)uf, (2.15)
and constitutes a classical advection-diffusion equation with an additional source term which depends
on the vorticity itself, as well as on the local velocity gradient. This so-called vortex stretching term de-
scribes the change in moment of inertia of a fluid parcel due to stretching, and, on average, provides the

coupling which transfers energy from the mean shear into turbulent vorticity as previously discussed.

An important feature of vorticity is that localised distributions of it can only spread locally. In fact, by
reverting eq. (2.14) using the law of Biot-Savart®,

wp (0 x (x=x)
Uf(X 1= —f dx, (2.16)
pe-x

it becomes apparent that the velocity field is induced by any vorticity within the domain, and while this
in turn will affect the evolution of existing vorticity globally, eq. (2.15) does not provide a way to generate
vorticity from a distance.

In contrast, the velocity field in incompressible flows is inherently non-local due to the role of pressure.
By taking the divergence of eq. (2.2), a Poisson equation for the pressure is obtained, viz.
vzpzi(Z(Vf)—v-(uf@uf)). (2.17)
Pr
Analogously to eq. (2.16), the solution of the Poisson problem depends on the velocity distribution ev-
erywhere in the domain. However, as the gradient of pressure directly enters eq. (2.2), linear momentum
can be redistributed instantaneously over any distance contrary to vorticity. For this reason, the vorticity
field may be considered as more fundamental to turbulence than the velocity field, and as the concept
of a turbulent eddy is intrinsically local, it should rather be understood in terms of vorticity.

Vorticity is inhomogeneously distributed within a turbulent flow and appears intermittent rather than
in an uncorrelated random manner (Batchelor et al. 1949). When the spatial distribution of intense
vorticity in turbulence is investigated, it is found to be organised in coherent vortices, which are termed
“worms” due to their shape often being cylindrical or ribbon-like (Siggia 1981, Jiménez et al. 1993). In

A prime example from the current context for a flow which contains vorticity, but no global vortical motion, is laminar channel
flow. For this reasons, some definitions of turbulence further specify the occurrence of vorticity to be random and at small
scales, see e.g. Corrsin (1961) or Mathieu and Scott (2000) for such a definition.

Equation (2.16) is formulated for an unbounded domain for the sake of simplicity, as formulations for bounded domains are
considerably more complex (Enciso et al. 2018). However, the inferences remain the same.
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2.2 Wall-bounded turbulence

general, coherency is an essential aspect of turbulence, and its significance will be discussed further for
the specific case of wall-bounded turbulence.

2.2 Wall-bounded turbulence

Hitherto, the discussion on turbulence was predominantly focused on its universal features. In this sec-
tion, the particular phenomena which are inherent to turbulent flows bounded by walls are reviewed.
The presence of a solid boundary is reflected in the hydromechanic equations by two boundary condi-
tions for the fluid velocity field on the wall—the impermeability condition and the no-slip condition—
which are given by

(ur—u,) -n=0, (2.18)
us—((uy—u,) -n)n=u,, (2.19)

respectively, with u,, being the velocity of the wall and n denoting its normal vector. In essence, the
combination of these boundary conditions implies that any relative motion between the fluid and the
solid phase vanishes exactly at the wall, which is an excellent supposition for most flows.” The impli-
cation of these boundary conditions is that any bulk fluid motion relative to a wall forms a boundary
layer—a region where the mean relative fluid velocity decays from its undisturbed value to zero—where
the fluid is sheared on average.

It can be demonstrated that in the presence of a mean shear, the Reynolds stresses induce a global trans-
fer of energy from the mean flow towards turbulent eddies by means of stretching and intensification of
turbulent vorticity, see e.g. Davidson (2015). As a consequence, the presence of a mean gradient in fluid
velocity is one mechanism which generates and sustains turbulence. Vice versa, the mean flow itself is
modified by turbulent fluctuations as is suggested by the additional stresses introduced in the Reynolds
equations. Therefore, the overarching characteristic of all wall-bounded turbulent flows is the persistent
complex interplay between turbulent fluctuations and wall-induced shear.

The varieties in which walls may be arranged in a flow are sheer endless, as boundary layers may occur
at all scales and shapes—think of a rather flat canal lining versus the severely curved surface of a pebble.
For this reason, the study of wall-bounded turbulence is generally conducted in so-called canonical
flows, which denote a canon of well-defined, and often idealised, flow configurations which guarantee
the replicability and comparability of experiments. Examples of internal canonical flows include, but
are not limited to, the pressure-driven flows through a circular pipe or through a channel, or the flow
observed in the gap between two parallel moving plates, which all share certain similarities, but may
differ in their particularities.

7 The no-slip boundary condition may be an inaccurate supposition for flows with low densities or in domains with exception-

ally small dimensions, i.e. whenever the molecular density is sufficiently small. Hereby, the deviation commonly occurs before
the continuum hypothesis fails, and more adequate results may be achieved by imposing a slip velocity.
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2 Wall-bounded turbulence and particle dynamics

2.2.1 Open-channel flow

The canonical flow most relevant for fluvial systems is open-channel flow—a body-force-driven flow
bounded by a solid wall and a free surface in one direction, and unbounded in the two remaining per-
pendicular directions. Open-channel flow is typically horizontal, which means that the bounded direc-
tion is coaligned with the direction in which gravity is acting, and this direction will be referred to as the
vertical or wall-normal direction and denoted by y in the following. Moreover, without loss of generality,
the streamwise coordinate x is chosen to be coaligned with the primary flow direction and the spanwise
coordinate z is set to be perpendicular to both x and y.

The unboundedness of the streamwise and spanwise directions is an idealised concept which, in the
most cases, can only be achieved approximately, and therefore should rather be understood in the sense
that there is no influence exerted by any walls normal to these directions. Hence, unboundedness serves
as an approximation to the core of a river where the region of interest is within a reasonable distance to
the river shore such that its effect can be neglected. In terms of numerical modelling, unboundedness
can be achieved by enforcing a periodicity of the flow with periods of L, and L, in streamwise and span-
wise direction, respectively. However, this comes at the cost of introducing nonphysical self-interactions
if these periods are not chosen adequately.

Concerning the vertical direction, the bottom boundary8 of the domain is considered to be a stationary
solid wall which is subject to the no-slip boundary condition given in eq. (2.19). In numerical models,
the upper boundary is often considered to be non-deformable for the sake of simplicity, which cor-
responds to the limiting case of a vanishing Froude number, and thus prohibits the existence of any
external waves. As a result, the free surface may be treated as an impermeable wall which is not subject
to the no-slip boundary condition, but rather to the free-slip boundary condition,

6 —
which is of Neumann-type rather than of Dirichlet-type. For the specified coordinate system, the bound-
ary condition reads 6uf/ 0y =0, vp = 0 and wa/ 0y = 0, and hence, allows for finite streamwise and
spanwise fluid velocities at the upper boundary.

Despite the difference in the upper boundary condition, open-channel flow is closely related to the flow
in closed channels, i.e. the configuration where no-slip is imposed at both walls. In fact, the free-slip
boundary condition can be interpreted as a mirror symmetry which is imposed on the centre line of a
closed channel, and hence, the structure of turbulence found in these configurations is generally com-
parable apart from some discrepancies which will be discussed at a later point (Calmet and Magnaudet
2003, Bauer et al. 2022).

8 Tobe precise, terms such as low/high and bottom/top are used with respect to the direction of gravity, i.e. the bottom is the

location an object would be moving towards, if it was solely subject to gravitational acceleration.
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2.2 Wall-bounded turbulence

2.2.2 Turbulence in channels

The flow in channels is statistically homogeneous in the two unbounded directions, and also in time
if the Reynolds number is kept constant and the flow is fully established. Therefore, the Reynolds-
averaging operator for this flow is conventionally defined as the streamwise-spanwise-temporal aver-
age,

1 Ly pLy (lons

Q)  (y)=—"— f f @(x,1) dtdzdx, (2.21)
< >XZt LyL tops Jo Jo Jo

and as a consequence, the flow statistics only vary in the wall-normal direction. Here, f,,, denotes

the observation time, and for the remainder of the discussion, it is assumed that the sample space

{(p(x, 1):x€l0,LAze[0,L]ALE]O, tobs]} is sufficiently large to convey the converged statistics.

Due to the boundedness of the wall-normal coordinate and the definition of the spanwise coordinate,
the mean flow velocity in these two directions vanishes, i.e. (vf) = (ws)_. =0, where the former
still holds if solely the instantaneous spatial-average is considered. A finite value of the mean velocity
therefore only exists in the streamwise direction, and an integral flow velocity scale can be obtained by
averaging in wall-normal direction, viz.

1 H
= fo (), dy. (2.22)

The velocity u, is termed the bulk velocity, and H corresponds to the position of the free-slip boundary,
or to the position of the centreline if closed channel flow is considered, while the bottom boundary is set
to be located at y = 0.7 The bulk velocity and the channel height are integral scales and can be utilised
to define an integral Reynolds number—the bulk Reynolds number,

Lth
Rey:= -2, (2.23)

Wi

which is a principal parameter for the transition from the laminar to the turbulent flow regime. Chan-
nel flow is linearly unstable for Re;, £ 3848 which implies that any infinitesimal perturbation will trigger
transition if this value is exceeded (Orszag 1971). However, in practice the transition oftentimes occurs
subcritically by instability mechanisms which involve finite-amplitude perturbations (Chapman 2002).
In fact, turbulence may be sustained for Re;, £ 1350, although values of Re;, £ 3000 are required to ob-
serve universal scaling laws for the shear stress on the wall or the mean streamwise velocity (Patel and
Head 1969).

Using the averaging operator defined in eq. (2.21), the Reynolds-averaged streamwise momentum equa-
tion for channel flow is given by

d( &y, I I
o\ ey P = T (2.24)

=1p(y)

where 7;(y) is the total fluid shear consisting of a viscous and a turbulent contribution. From the aver-
aged lateral momentum equation it can be deduced that the mean pressure gradient is uniform across

9 The distinction between open and closed channel flow is of little importance for the statistical analysis, as closed-channel flow

is statistically symmetric about the centreline, which is enforced instantaneously in the open-channel.
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2 Wall-bounded turbulence and particle dynamics

the flow (Pope 2000), and as a consequence, the fluid shear is required to vary linearly with the vertical
coordinate. At y = H, the fluid is ought to be stress-free, and hence, the fluid shear can be expressed in
terms of the tangential stress exerted on the no-slip wall, viz.

L) 7 0. (2.25)

7 (y) = (1 T

The wall shear can then be used to define another velocity scale—the friction velocity defined as

Uy =1/14(0)/ py. (2.26)

In the vicinity of the wall, the intrinsic Reynolds number is necessarily small as the velocities must decay
to zero, and therefore, a viscous length scale,

8, = v/ uy, (2.27)

can be established by a combination of the characteristic shear velocity and viscosity. The quantities u,
and 9, are commonly denoted as the inner scales, as opposed to the outer scales 1, and H. From the
definition of the Kolmogorov scales, it can be demonstrated that

8,/n=EH" (2.28)

with 5; denoting the dissipation rate normalised by the inner scales (Pope 2000, Stumpf 2017).10 Al-
though the dissipation rate, and hence likewise the Kolmogorov scales, vary with the wall-normal posi-
tion, empirical data for the normalised dissipation rate suggests that the ratio of viscous and Kolmogorov
length scales is of the order of unity at all positions (Kim et al. 1987, Pope 2000). Therefore, the inner
scales may be regarded as a proxy for the smallest turbulent scales which appear in channel flow. The
Reynolds number based on the friction velocity is called the friction Reynolds number,

uH H
Re_[ = = -,
Vf 61/

(2.29)

and its value directly indicates the separation in length scales between the largest turbulent motions of
O(H) and the smallest eddies of O(6,).

Turbulent channel flow is statistically inhomogeneous in the wall-normal direction, and as a result, var-
ious regions with distinct scaling laws for the mean streamwise velocity can be observed. Traditionally,
the wall-normal coordinate is classified into three regions—the inner region where y < H, the outer
region where y > §,, and the overlap region where both conditions are satisfied. A sketch of this clas-
sification is provided in fig. 2.1(a), and it becomes immediately apparent that the overlap region can

10 The superscript “+” notation will henceforth be used to denote any non-dimensionalization by a proper combination of the

inner units.
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Figure 2.1: (a) The regions of turbulent channel flow. (b) The layers within which different scaling laws for the mean streamwise
velocity can be applied. The dashed lines indicate the law of the wall in the viscous sublayer and the log-law respec-
tively. The solid lines shows data obtained by Bauer et al. (2022) for open-channel flow at Re; = 900. The illustration is
inspired by Davidson (2015).

only exist at high friction Reynolds numbers where the inner and outer scales are sufficiently separated.
Using this regions, dimensional analysis suggests the following scaling laws,

<uf>XZ[ _ q) .y ul »” . .
. Oy aw of the wall” of the inner region, (2.30)
T 4%
(ug) 1
et =—In l) +A “log-law” of the overlap region, (2.31)
u, k \d,
U — (Ug)
ZH M e =Dpop (Fl]) “velocity defect law” of the outer region, (2.32)
uT

where ®;p and @y are functions which require further specification, x = 0.41 is Kd&rman’s constant,
A is a constant of integration and uy; == (uf)m is the centreline velocity, see e.g. (Davidson 2015) for
derivations. As is suggested by Kolmogorov’s theory, the velocity defect law is generally not universal
among the canonical wall-bounded flows, and consequently, the scaling behaviour of the outer region
may constitute a difference between open- and closed-channel flow. In contrast, the law of the wall can
be further specified irrespective of the flow geometry as very close to the wall the flow is laminar to a
large degree, which yields (Prandtl 1925)

Ul _ ¥
u 6,

v

fory < 56,. (2.33)
T
Although the log-law has been derived from the premises of the overlap region, its validity extends con-
siderably into what is usually considered to be the outer layer. For instance, in the turbulent open-
channel flow at Re; = 900 shown in fig. 2.1(b), the log-law accurately describes the mean streamwise
velocity in the region 306, < y < 0.3 H. Therefore, the regions of channel flow may alternatively be clas-
sified into layers within which a associated scaling law holds—the viscous sublayer for which eq. 2.33
holds, the logarithmic layer within which eq. 2.31 is observed, the buffer layer which separates the pre-
vious two, and the wake layer which is subject to the non-universal velocity defect law.
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Figure 2.2: Schematic depiction of the self-sustained near-wall cycle as described by Hamilton et al. (1995). (a) The flow is com-
posed of high- and low-speed streaks of streamwise velocity fluctuations. (b) Unstable streamwise modes of the veloc-
ity streaks emerge. (c) Quasi-streamwise vortices are generated, which eventually create velocity streaks.

2.2.3 Coherency and structure of turbulence

The previously introduced layers of turbulence have been defined in terms of their statistics. As briefly
mentioned in §2.1.5, an essential feature of turbulence is that it comprises coherent packets of vorticity,
which may be localised, and in turn may induce coherent patches of flow velocities. As a consequence,
turbulent flows are by no means stochastic, but have an intrinsic structure which has interesting impli-
cations on transport processes.

In the vicinity of the wall, that is in the buffer layer, the most prominent coherent flow features as so-
called velocity streaks, which denote streamwise-aligned, elongated regions of streamwise velocity fluc-
tuations, and have first been described comprehensively by Kline et al. (1967). It is commonly distin-
guished between low-speed (u} < 0) and high-speed (u]’c > 0) streaks which are most often observed in
spanwise-alternating pairs. The dimensions of these streaks scale in inner units in agreement with the
arguments made on the inner region, and a spacing of approximately 1006, in spanwise-direction be-
tween two pairs and streamwise lengths of O(10006,) are established values found in literature (Kline
et al. 1967, Smith and Metzler 1983, Kim et al. 1987, Waleffe 1991). The buffer-layer streaks contribute
significantly to the streamwise share of the turbulent kinetic energy which is reflected by a characteristic
peakin (u}z)xzt at y* = 12. Moreover, the streaks are linked to so-called Reynolds-stress events, namely
ejections (u} <0, vf' > 0), which transport low-speed fluid away from the wall, and sweeps (u]’c >0,
v; < 0), which bring high-speed fluid towards the wall, and hence also contribute significantly towards
(u} v})xzt. Blackwelder and Eckelmann (1979) recognised that these “bursting events” are a result of the
act of coherent vortices which are quasi-aligned in streamwise direction. In fact, these quasi-streamwise
vortices are an instance of the “worms” described in §2.1.5 (Jiménez 2018), and form and breakdown
continuously in the near-wall region (Swearingen and Blackwelder 1987). By isolating a single velocity
streak in a minimal domain, Waleffe et al. (1993) observed that the constraint flow field exhibits a quasi-
periodic behaviour during which the streak undergoes a wavy instability, which dampens its intensity,
and subsequently reforms. This recognition lead to the formulation of a self-sustaining process—a
sketch of which is provided in fig. 2.2—which describes the alternating formation of velocity streaks and
streamwise vortices (Jiménez and Moin 1991, Hamilton et al. 1995). By artificially suppressing velocity
fluctuations from the outer region, Jiménez and Pinelli (1999) demonstrated that this near-wall cycle can
operate autonomously, and thus, constitutes one of the most fundamental processes in wall-bounded
turbulence.
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Figure 2.3: Conceptual cartoon of the formation of a hairpin vortex. (a) In undisturbed wall-bounded flow, or in the mean, vorticity
is aligned with the spanwise direction. (b) A perturbation causes vorticity to be transported away from the wall which
leads to a deformation. (c) Vortex stretching amplifies the intensity of the hairpin vortex. The illustration is inspired by
Davidson (2015).

At greater distances from the wall in the logarithmic layer, the occurrence of velocity streaks is often
linked to another class of coherent vortices—the hairpin or horseshoe vortex. This arch-shaped, loop-
like structure consists of a pair of counter-rotating streamwise-aligned “legs” which are inclined from
the neighbouring and connected by an approximately spanwise-aligned “head”, and was first described
by Theodorsen (1952). Its relevance was demonstrated experimentally by Head and Bandyopadhyay
(1981) and numerically by Wu and Moin (2009), who revealed that these structures are ubiquitous and
densely populate boundary layers. A potential mechanism for its formation is given by the advection
of spanwise vorticity—which is abundant in wall-bounded flow as it is the sole component of vorticity
which does not vanish in the mean—away from the wall by means of a velocity fluctuation (Davidson
2015). As the vortex filament is lifted from the wall, it is deformed by the gradient in streamwise velocity
and reorientates itself towards an streamwise inclination of approximately 45°, which causes the vortex
to be stretched and amplified due to its interaction with the mean shear. A sketch of this process is de-
picted in fig. 2.3. There are various potential causes for the initial perturbation. While some of them
involve the quasi-streamwise vortices of the buffer layer, others involve turbulent eddies originating
from the outer layer, though ultimately, turbulence is a chaotic organization of entangled vorticity and
a clear causality remains more often than not difficult to establish. A common denominator of all con-
ceptual ideas of hairpin vortices is, however, that the mean shear is responsible for the stretching and
intensification of vorticity in order to form elongated vortex structures which are inclined with respect
to the wall (Davidson 2015).

While it is certainly possible to observe isolated occurrences, hairpin vortices more frequently occur
in the form of packets which contain multiple instances of them (Adrian 2007). Indeed, Zhou et al.
(1996) and Zhou et al. (1999) exposed an autogeneration mechanism which may lead to the formation
of a vortex packet of streamwise-staggered hairpin vortices, and hence, it is worthwhile to assess the
implications of superimposed vortex structures. An important basis for most descriptions of multi-
vortex interactions is the attached eddy model introduced by Townsend (1976) based on his study of
equilibrium layers in wall turbulence (Townsend 1961). The attached eddy model distinguishes between
wall-attached motions whose length scale is consequently proportional to the wall-normal distance over
which they span, and wall-detached motions. While the latter is thought to be rather isotropic and to
contribute little to the Reynolds stress budget, the former is inevitably anisotropic due to its exposure to
wall shear, and is therefore regarded to be more active in terms of velocity scaling laws. Perry and Chong
(1982) utilised Townsend’s concept and the flow visualizations of Head and Bandyopadhyay (1981) to
conceptualise a model in which the wall-attached eddies are considered to be hairpin-like vortices. In a
related study, Perry et al. (1986) were able to derive the logarithmic law for the mean streamwise velocity,
as well as scaling laws for the spectral density of the fluctuating velocity components, from a continuous
random arrangement of such vortices, which emphasises the relevance of coherent motions, and in
particular hairpin vortices, to the understanding of turbulent motion.
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Figure 2.4: Conceptual sketch of hairpin vortex packets as described by Adrian et al. (2000). (a) Hairpin vortices organise in
streamwise-staggered packets and induce a coherent low-speed fluctuation in streamwise velocity. (b) Packets may
grow away from the wall and attain dimensions of O(H), and hence, constitute one potential explanation of large-scale
motion.

It has been established mainly through the work of Adrian et al. (2000) that vortex packets are common
in and essential for wall-bounded turbulence (Smits et al. 2011). The packets are relatively stable imply-
ing that they persists for the duration of several turnover times, and whenever the propagation velocity
of the individual vortices is similar they may be treated as a larger single coherent structure. The size and
propagation speed of this structure increases with its age, and it is not uncommon for them to protrude
into the wake layer of the flow in the later stages of their development causing their size and velocity
to be dictated by the outer units (Adrian 2007). Vortex packets are associated to the turbulent bulges
frequently perceived in flow visualization of the turbulent boundary layer, cf. Head and Bandyopad-
hyay (1981), and are therefore also denoted as large-scale motions (LSMs). When examining the local
flow field it is immediately apparent that a low-speed region is collectively induced by the ensemble of
hairpins Adrian et al. (2000), Ganapathisubramani et al. (2003), see fig. 2.4. In turbulent channel flow,
these features emerge as large-scale streaks of the streamwise velocity whose maximum dimensions are
2-3 H and 1-1.5 H in streamwise and spanwise direction, respectively, and thus scale in terms of outer
units (Brown and Thomas 1977, Kim and Adrian 1999, Zhou et al. 1999, Guala et al. 2006, Balakumar and
Adrian 2007), which clearly distinguishes them from the buffer-layer streaks discussed earlier. It should
be noted that not all LSMs fulfil Townsend’s criteria for attached eddies. In fact, experiments by Bailey
and Smits (2010) indicate that hairpin packets in the outer layer are frequently detached from the wall,
while those in the logarithmic layer are more likely to be attached.

Vortex packets are not the largest structures of wall-bounded turbulence as coherent streamwise ve-
locity fluctuations with length scales of O(3-100H) have been reported for both internal and external
wall-bounded flows (Kim and Adrian 1999, Guala et al. 2006, Monty et al. 2007, Balakumar and Adrian
2007, Lozano-Durdn and Jiménez 2014a, Bauer 2020). These very large scale motions (VLSMs), which
are also known as superstructures, manifest themselves in the form of very long, but laterally confined,
meandering streamwise velocity streaks, and can be found in the logarithmic layer as well as the wake
layer, although indications exist that for external flows these motions are restricted to the former (Monty
et al. 2009). A popular theory on their origin interprets VLSMs as the streamwise organization of vortex
packets (Kim and Adrian 1999), though the similarities in lateral scaling suggests that exclusively de-
tached LSMs of the wake layer are responsible for their creation, whereas attached LSMs are located
too close to the wall, propagate too slowly and have too narrow lateral scales to be involved (Bailey and
Smits 2010, Smits et al. 2011).

Although the interpretation of LSMs and VLSMs as the (pen-)ultimate realization of a self-similar hairpin
vortex organization process is alluring, it should not go unnoticed that concurring theories on an under-
lying mechanism exist. An alternative model to vortex packets is the self-similar vortex cluster proposed
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by del Alamo et al. (2006), whose primary distinction is its reduced internal organization compared to
hairpin packets. Self-similar vortex clusters may be best described as a shell of enclosed small-scale
vorticity (worms), which exhibits little structure internally, but as an ensemble self-organises in a man-
ner which may resemble more traditional vortex loops. In accordance with Townsend’s postulations, del
Alamo et al. (2006) found these structures to occur detached from the wall as well as in tall attached clus-
ters, and indeed, the kinematics of these vortex clusters are sufficiently similar in character to use them
interchangeably to hairpin packets in the explanation of LSMs and VLSMs. However, a major disparity
between the two models is given in terms of the proposed mechanisms of their creation—while hair-
pin packets are required to form in the inner region of turbulence and subsequently grow to their final
size, del Alamo et al. (2006) ascertained that vortex clusters are too short-lived to be created in this way,
and hence, must be formed in terms of a sustained large-scale regeneration cycle akin to the near-wall
cycle, but far more complex. In fact, Flores and Jiménez (2006) and Flores et al. (2007) demonstrated
that the structures of the outer region are essentially independent from the details of the wall, which
provides strong evidence of the existence of such an autonomous cycle does not rely on the growth of
small near-wall structures.

Up to this point, the coherent eddies which have been discussed were predominantly characterised by
means of vorticity. However, a second kind of eddy which has been used in literature to assess coherency
in wall-bounded turbulence are connected regions of intense three-dimensional Reynolds stress events
(Lozano-Durdan et al. 2012a, Jiménez 2013), with the particular focus on ejection and sweep events,
which are statistically and dynamically more relevant than their counterparts with a positive product
of u} vf/. As previously mentioned, sweeps and ejections are important mechanisms in the inner region,
though they also occur at larger scales in the outer region. Similar to vortex clusters, large-scale sweeps
and ejections may be classified into wall-attached or wall-detached structures, whereby detached struc-
tures are observed more frequently, but attached structures occupy a vastly larger region within the
flow and contribute considerably more towards the total Reynolds-stress budget (Lozano-Durén et al.
2012a). On average, large-scale sweeps and ejections appear side-by-side in spanwise direction as pairs,
and since their streamwise dimensions are typically long, continuity demands that a streamwise-aligned
large-scale roller structure connects the two in the conditionally-averaged point-of-view. In the instan-
taneous view, vortex clusters are typically observed to emerge in the space between sweeps and ejections
(Lozano-Durédn and Jiménez 2014b), with a statistically significant tendency of being located closer to
the former (Jiménez 2013), and hence, vortex clusters are likely to be—at least partially—manifestations
of the roller (Lozano-Durdn and Jiménez 2014b).

The coherent structures discussed so far are all associated to flows in the presence of walls with no-
slip boundary conditions. While this implies that all of these structures are also present in open-
channel flows, the additional free-slip boundary condition in this configuration gives rise to some pe-
culiarities caused by the dampening of vertical velocity fluctuations while simultaneously allowing for
non-vanishing velocity components in streamwise and spanwise direction. Nagaosa (1999) identified
two dominant types of vortical structures in the vicinity of the free surface—near-horizontal quasi-
streamwise vortices, and near-vertical surface-attached vortices. The former type of vortices induce re-
gions near the boundary where fluid impinges on (“splats”) or is transported away from (“antisplats”) the
surface, which where demonstrated to be of significance for heat and mass transfer across the boundary
(Nagaosa 1999, Nagaosa and Handler 2003, Pinelli et al. 2022). Concerning the interactions of structures
originating from the no-slip boundary with the free surface, Nagaosa and Handler (2003) demonstrated
via conditional averaging that hairpin-like vortices are morphed ring-like shapes as they approach the
free surface. Moreover, there exists evidence that the free surfaces promotes VLSMs (Duan et al. 2020),
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and indeed, Bauer et al. (2022) found that VLSMs in open channels are roughly twice as long and twice
as wide as to their counterpart in closed channels.

The literature on coherent structures in wall-bounded turbulence is vast, and consequently, the preced-
ing brief summary does not raise a claim on comprehensiveness. For more complete recapitulations on
the structural aspects of turbulence, the reader is referred to the renowned overview articles of Cantwell
(1981), Robinson (1991), Adrian (2007), Smits et al. (2011), Adrian and Marusic (2012), Jiménez (2013),
McKeon (2017), Jiménez (2018) and Marusic and Monty (2019).

2.2.4 Chaos and exact coherent states

The investigation of coherent structures in turbulence as discussed in the preceding section was pre-
dominantly driven by the availability of experimental data, observations and phenomenological mod-
elling. Nonetheless, the emergence of coherency and structure in turbulence is not an unforeseeable
event, as its existence must be contained within in the framework of the Navier—Stokes equations. While
the implications of coherent motions on the flow statistics are well-established by now, it can in fact
be argued that the understanding of turbulence remains incomplete as long as the emergence of these
structures cannot be explained from first principles, i.e. solely based on the fundamental equations
without any observation-based assumptions—or to put it in the words of Eberhard Hopf:

“The ultimate goal, however, must be a rational theory of statistical hydrodynamics where
[...] properties of turbulent flow can be mathematically deduced from the fundamental
equations of hydromechanics.”

— Hopf (1948)

The possibility of eventually obtaining such an understanding is closely connected to the fact that tur-
bulence is deterministic, and therefore follows a strict set of rules without any stochasticity. The “ran-
domness” which is commonly attributed to turbulence is hence by no means random in the stochastic
sense, but is rather a result of deterministic chaos—the state of a nonlinear dynamical systems where
“the present determines the future, but the approximate present does not approximately determine the
future”, as Edward Lorenz adequately phrased it—ergo the sensitivity of the evolution of a turbulent flow
with regards to the details of its initial condition.

Turbulence, or chaos, only occurs at sufficiently high values of a controlling parameter R, which in case
of channel flow is an integral Reynolds number such as Re, cf. §2.2.1, but may correspond to another
nondimensional number depending on the flow scenario of interest. The route through which turbu-
lence is achieved with increasing values of R varies among the canonical flows, and can roughly be
divided into two general types of transition—supercritical and subcritical transition. In order for su-
percritical transition to occur, the flow must be linearly unstable above a critical value of the control
parameter, which is denoted by R* in the following. Transition may then occurs by a series of bifur-
cations, i.e. abrupt changes in the flow topology which become increasingly complex the further R* is
exceeded and may introduce time-periodic behaviour to the flow by means of a Hopf bifurcation, and
eventually becomes chaotic. While it was originally envisioned by Landau (1944) and Hopf (1948) that
the successive bifurcations introduce evermore frequencies to the flow which implies turbulence to be
quasi-periodic, Ruelle and Takens (1971) demonstrated that turbulence is in fact aperiodic, and is hence
initiated by a sudden transition as well. In the case of subcritical transition, bifurcations occur below the
critical value of the control parameter by means of finite-amplitude perturbations, and it is thus the only
scenario by which linearly stable flows such as plane Couette flow (Davey 1973, Romanov 1973) or pipe
flow (Salwen et al. 1980) may become turbulent. However, subcritical bifurcations are frequently also
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Figure 2.5: Examples of bifurcations as a function of the control parameter R in terms of a one-dimensional observable A. (a) The
new state bifurcates supercritical above a critical value R* for the control parameter. (b) Subcritical bifurcation in form
of a saddle-node bifurcation. Solid lines denote stable states, whereas dashed lines denote unstable ones. The dotted
vertical line in (b) marks the value of R above which a subcritical bifurcation may occur.

the dominant mechanism for the transition to turbulence in linearly unstable flows such as channel
flow (Sano and Tamai 2016, Shimizu and Manneville 2019, Gomé et al. 2020), cf. §2.2.1. While various
routes to chaos do exist, one route which is routinely observed for such flows is the intermittent ap-
pearance of spatially-confined turbulent regions which are denoted as spots, slugs, puffs or bands, and
add additional complexity to the analysis of transition due to their spatiotemporal character (Wygnanski
and Champagne 1973, Pomeau and Manneville 1980, Gollub and Benson 1980, Bottin and Chaté 1998,
Eckhardt et al. 2007, Sano and Tamai 2016, Gomé et al. 2020).

A more systematic view on flow topologies can be obtained by introducing the concept of a state space,
which denotes the space of all states that may be realised by the fluid flow, or consequently, the set of all
divergence-free velocity fields which satisfy the appropriate boundary conditions. The trajectories upon
which the flow evolves in this space are determined by eq. (2.2), and this temporal evolution of states is
called solution flow. The state space itself is vast as only little constraints are posed towards the states
which are comprised by it. However, it is straightforward to acknowledge that the subspace within which
the solution flow occurs is restricted by the values of the control parameter of system. For instance,
whenever the control parameter is sufficiently low, the solution flow will eventually converge towards
the laminar state irrespective of the initial state of the system, and hence, the subspace in which the
solution flow occurs at long times only comprises the laminar solution in this case. Such a characteristic
state towards which all sufficiently close solution flows converge is called an attractor (Lanford 1982).

It is apparent that attractors may emerge or disappear with changing values of the control parameter.
In fact, the bifurcation scenarios which have been describe previously in the context of transition to
turbulence can be viewed as a transformation of attractors in the system. Moreover, the existence of
subcritical bifurcations makes it obvious that multiple attractors may coexist for a given R, and thus,
that the solution flow may converge towards different states depending on the initial state or perturba-
tions. Various types of attractors exist and the most relevant for the present discussion are summarised
in the following. The time-invariant laminar attractor constitutes a so-called fixed point, which is a sin-
gular element in the set of states. In fact, laminar flow is the fixed point of lowest dimensionality, and
as will be elaborated at a later point, more complex fixed points may occur in fluid flows. The simplest
attractor with time-dependent behaviour are closed trajectories in the state space which are called limit
cycles with a well-known example being the Karmdn vortex street. Limit cycles may consist of multi-
ple frequencies, and whenever the ratio between two of these frequencies is irrational, the cycle is no
longer closed, and the resulting quasi-periodic trajectories are denoted as a limit torus. Fixed points,
limit cycles and limit torii are geometrically simple objects in the state space, but more complex attrac-
tors also exist. An important instance is the strange attractor, a fractal object in the state space which
is neither periodic nor quasi-periodic (Guckenheimer and Holmes 1983, Strogatz 2018), and was first
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discovered by Edward Lorenz in his seminal work on simplified cellular convection (Lorenz 1963) and
given its name by Ruelle and Takens (1971). Strange attractors are often associated to chaotic behaviour,
and as such, it was only natural to assume that turbulence itself belongs into this category (Ruelle and
Takens 1971, Lanford 1982, Guckenheimer 1986). However, as turbulence is not necessarily persistent
and may decay to the laminar state, it cannot be an attractor, but is more adequately described by a
strange saddle—an object in state space which attracts solution flows from some directions, but also
possesses unstable directions which allow for decay (Eckhardt et al. 2007).

The fluid states which correspond to attractors or saddles of the dynamical system are termed invariant
solutions. The counterpart to a fixed point in physical space is called an equilibrium solution and fulfils
the requirement

u(x, 1) = upo(X), (2.34)

which implies that the equilibrium state ug(x) is time-invariant.'' In streaming flows, non-trivial time-
invariant solutions take the form of a travelling wave, viz.

uy x—ct, ) =upry ), (2.35)

i.e. they are equilibrium solutions within a frame of reference which is comoving with the structure
which propagates with a constant propagation velocity ¢. The equivalent of limit cycles and torii are
periodic orbits, which are cyclic flow states where the initial condition is exactly recovered after a period
T, and are hence given by

uy &, t+T) =upp(x,1). (2.36)

It is not uncommon for a periodic orbit to not return to its exact original state, but rather to a possibly
translated or mirrored version of itself. If this is the case, the resulting invariant solution is termed a
relative periodic orbit. Since this subtle distinction is of little importance in the following, the notion of
periodic orbits will also include relative ones.

Aside from supercritical transition, invariant solutions are not commonly observed in their purest form
in real-life fluid flows. However, there exists compelling evidence that these characteristic states are
embedded in the turbulent subspace, and that the dynamics of turbulence can be at least partially un-
derstood in terms of trajectories around and between invariant saddles and attractors (Chandler and
Kerswell 2013, Suri et al. 2017, Budanur et al. 2017), i.e. in terms of homoclinic and heteroclinic connec-
tions in the state space, respectively. In fact, when the structure of some invariant solutions is examined,
similarities with the coherent structures discussed in §2.2.3 may be found. In literature, equilibrium so-
lutions resembling quasi-streamwise vortices (Nagata 1990, Waleffe 2001), hairpins (Itano and Generalis
2009, Shekar and Graham 2018), or attached eddies (Park and Graham 2015, Yang et al. 2019) have been
reported. Figure 2.6 provides a visual example of the former two in a channel flow. These similarities are
not solely restricted to the topology of the flows, but also manifest themselves in flow statistics which
may resemble those of turbulent flows (Kawahara et al. 2012).

Despite the similarities to known coherent structures, equilibrium solutions differ from turbulence in
that they do not possesses any temporal dynamics by themselves—they are static objects in the state

u Although some solutions are indeed stable with respect to perturbations, it is generally more expedient to not demand stability
for the definition of invariant solutions. In fact, many of the invariant solutions which will be present in the following are
unstable, which implies that they correspond to saddles rather than pure attractors.
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(a)

N,

X

Figure 2.6: Examples of travelling waves in (open-)channel flow. An isosurface of streamwise velocity is shown in green, whereas
vortical structures are depicted in grey in terms of the Q-criterion of Hunt et al. (1988). (a) The solution of Waleffe (2001)
which comprises a wavy velocity streak and quasi-streamwise vortices. (b) A hairpin-like structure first discovered by
Shekar and Graham (2018).

space. While this fact might be compensated to a degree by potential homoclinic and heteroclinic con-
nections (Halcrow et al. 2009), arguments have been made that periodic orbits might be dynamically
more relevant and their theoretical understanding might serve as the “rational theory of statistical hy-
drodynamics” that Eberhard Hopfwas aiming at (Auerbach et al. 1987, Christiansen et al. 1997, Chandler
and Kerswell 2013, Cvitanovi¢ 2013). In fact, a periodic orbit in Couette flow with dynamics reflecting
the near-wall cycle portrayed in fig. 2.2 astonishingly well was famously identified by Kawahara and Kida
(2001). Other periodic orbits showcasing bursting dynamics have been detected by Toh and Itano (2003)
and Viswanath (2007), and it is subject to speculation that turbulence can indeed by understood as being
made up by “building blocks” of equilibrium solutions and periodic orbits which are recurrently visited
by the solution flow and are likely the origin of the coherent structures observed in turbulence. For this
reason, invariant solutions within the turbulent subspace are sometimes referred to as exact coherent
structures or exact coherent states.

Although the presence of exact coherent states can be detected in experiments (Hof et al. 2004), their
identification is almost exclusively achieved by a numerical procedures which are surprisingly straight-
forward. To begin with the Navier-Stokes momentum equations are formulated in terms of a generalised
dynamical system,

% =f(q,p), (2.37)
where f is a vector field stemming from the Navier—Stokes operator, q is the vector of unknowns, e.g.
the velocity field and parameters such as the propagation velocity for travelling waves or the period for
orbits, and p is the vector of parameters which fully describe the problem, e.g. the Reynolds number and
geometry of the flow domain. The vector space spanned by q is infinite-dimensional for the continuous
flow problem, and must hence be replaced by a finite dimensional manifold by means of discretisation
for numerical treatment, cf. Ruelle and Takens (1971) a discussion on the implications. The problem
then becomes are matter of finding solutions of eq. (2.37) for which dq/dt = 0 to obtain equilibria, or
q(T) = q(0) to obtain periodic orbits, which can be solved using standard root-finding algorithms such
as the Newton-Raphson method.

In order for root-finding algorithms to converge to a non-trivial invariant solution, an appropriate initial
guess needs to be provided which turns out to be the most intricate problem in obtaining exact coherent
states. An effective approach of generating initial guesses is homotopy—a successive variation of the
vector of parameters p starting from a pre-existing invariant solution. Naturally, the question arises
on how the initial condition for this procedure is obtained, and the answer is that homotopy may be
initiated from a supercritical bifurcation of a related linearly unstable flow geometry. The most seminal
example of this approach is likely the work of Nagata (1990) who continued the Taylor-vortex flow state
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between a set of co-rotating cylinders, which is readily obtained from a linear instability (Coles 1965,
Gollub and Swinney 1975), towards the limit of zero rotation which corresponds to the linearly stable
flow between two surfaces in relative motion (plane Couette flow). Based on Nagata’s solution, Waleffe
(1998, 2003) continued this solution even further to obtain exact coherent states for channel flow by
varying the pressure gradient and relative velocities of the boundaries. Evidently, homotopy can also be
employed to vary the control parameters for a fixed geometry which may result in further bifurcations,
and hence, large networks of related exact coherent states may be generated which are termed “families
of solutions”.

Initial guesses for the root-finding algorithm may also be obtained by a mindful inspection of turbulent
flow fields obtained by direct numerical simulation of the NSEs. As exact coherent states regularly pos-
sess intrinsic symmetries, it is often effective to restrain the numerical simulations by imposing sym-
metries or minimal periods of the simulation domain. A prominent example for this approach is the
periodic orbit of Kawahara and Kida (2001). Obtaining initial guess from restrained simulations is a pro-
tracted procedure, yet it has the advantage that new families of solutions may be discovered which are
inaccessible from homotopy. Recently, more efficient methods of searching turbulence for periodic or-
bits have emerged based on Koopman theory (Page and Kerswell 2020), which hopefully help pave the
path towards the achievement of Hopf’s ultimate goal.

2.3 Particles in turbulence

Whereas the preceding discussion on fluid flows was predominantly focused at the interaction of the
fluid phase with a stationary solid phase—the outer boundaries of the flow domain—the focus is now
shifted towards flows with mobile solid objects (particles) immersed in it, which are consequently de-
noted as particle-laden flows. Similar to the wall interaction in wall-bounded flows, the forces and
stresses on the fluid-solid interphase are a result of the impermeability and no-slip boundary condi-
tions, which are given by eq. (2.18) and eq. (2.19), respectively. In contrast to it, the solid phase may
exhibit dynamics on its own as the particles are mobile, and hence, interactions are reciprocal resulting
in a fluid-structure interaction problem. In order to describe this coupled system, equations of motion
for the solid phase need to be introduced. By balancing the linear and angular momentum attributed to
a singular rigid object, the Newton-Euler equations are obtained, which read

d(p, V,u,) =

W) f G nas, oy 2
d(1, w,) —
2 ﬁ,, (X—X,) x (@-1) dS, + T, - (2.39)

Here, x;, is the centroid location of the particle, u, its translational velocity, w), its rotational velocity,
V}, its volume which is enclosed by the fluid-solid interphase S, with n being the surface’s outward-
pointing normal vector and dS,, being an infinitesimal surface element, p,, is the particle’s density, and
I, its moment of inertia. The exchange of momentum between the two phases is governed by the surface
stresses with o being the stress tensor defined in eq. (2.3) which includes buoyancy. The second term
on the right-hand side of eq. (2.38) reflects the force due to gravity, which is the only external force
considered in the following. Particles may collide with other solid objects such as the fluid domain’s
bounding walls or other immersed particles. The resulting collision force and torque are denoted by

E, .o and T, ), respectively, and are yet to be defined.
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2.3 Particles in turbulence

From the translational and angular velocities obtained by eq. (2.38) and eq. (2.39), the trajectory of the
particle is obtained by integrating the kinematic equations

dx

d_: —u,, (2.40)
o,
L —w, (2.41)

given adequate initial conditions, where Q,, denotes the angular position. For the important case of
spherical particles, which are described by a single length scale chosen to be the diameter d,, in the
following, the volume of the particle is given by V, = ndg /6 and its moment of inertia reduces to a scalar
value which reads I, = wp), dg /60 if the mass is distributed homogeneously across its volume. Moreover,
since spherical bodies are rotationally symmetric, the angular position is irrelevant for the dynamics,
and hence, it is typically not required to advance eq. (2.41) in time.

Disregarding the nature of the collision forces and torques, the Newton-Euler equations comprise three
fundamental units—length, time and mass—and six independent dimensional parameters—the fluid
and particle densities, the viscosity and a characteristic magnitude of the gradients of the fluid velocity
which are both embedded in the stress tensor, the diameter of the spherical particle, and the magnitude
of gravity. The Buckingham 7 theorem, cf. §2.1.2, therefore demands three dimensionless groups to
fully parametrise the problem. One ad hoc parametrisation is achieved by the solid-to-fluid density
ratio, p,, / py, aratio between the particle diameter and a characteristic length scale of the fluid flow, and
the Galileo number'?

d,v
Ga:= 228 (2.42)

r

where v, o =4/ (pp / pr— 1)lgl d,, is a buoyancy-based velocity scale termed the gravitational velocity.
This parametrisation has the advantage of being solely dependent on parameters which are known a

priori, however, in the context of turbulent particle-laden flows, other parametrisation may be more
convenient and will be introduced whenever they are meaningful.

2.3.1 Sediment-laden open-channel flow

Let us consider a horizontal open-channel flow containing a sufficient number of particles to cover the
bottom wall, and for reasons of simplicity, assume that all particles are spherical and monodisperse
such that they can be parametrised by single values for Ga, p,, / pr and d,, /8, respectively. When the
gravitational velocity of the particles is sufficiently high compared to the characteristic velocity scale
of the fluid flow, the particles will accumulate on the lower boundary of the flow domain and form a
sediment bed. The accumulation of particles effectively acts as a modified boundary to the flow domain,
which is rough, permeable and deformable in contrast to the actual wall, and this modification is not
without consequences for the structure and statistics of turbulence, as will be discussed in the following.
Sediment beds are widespread in natural fluvial environments, and thus, sediment-laden open-channel

12" The Galileo number is named in honour of the Italian polymath Galileo Galilei, who is commonly simply referred to as Galileo.

There exists some disagreement whether the nondimensional number should rather be termed “Galilei number” as the nam-
ing convention is generally based on surnames. In the context of chemical engineering, the square of the Galileo number is
also referred to as the Archimedes number.
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Figure 2.7: (a) Conceptual sketch of the mean flow over regular hemispherical roughness elements in open-channel flow. (b)
Classification of roughness regimes depending on the ratio of effective roughness ks and inner units of turbulence.
The layers within which different scaling laws for the mean streamwise velocity can be applied. The dashed lines
indicate the laws stated in eq. (2.44) and eq. (2.45), respectively. Experimental data (x) was obtained by Nikuradse
(1933) for rough pipe flows.

flow may be regarded as a more sophisticated idealised description of rivers and canals than canonical
channel flow.

The effect of roughness depends predominantly on the size, shape and arrangement of the roughness
elements, see e.g. Jiménez (2004) for a discussion. A good consolidation of these effects can frequently
be achieved by determining an equivalent “sand” roughness k;, which in the case of spheres is of O(d,,),
cf. Chan-Braun et al. (2011) and references therein. The mean velocity profile is again found to be
described by a logarithmic law similar to eq. (2.31), but is now given by the length scale introduced by
the roughness rather than viscous units, viz.

1n(kl) +A (2.43)

S

Sy _ 1

U, K

The constant of integration A is depends on the size of the roughness elements with respect to the vis-
cous length scale, and in the limit where k; is small compared to §,, eq. (2.43) reduces to the log-law for
smooth walls, and hence A reads

1 k

A=A+ —ln(—s) for k,<é,. (2.44)
Kk \6,

On the other hand, when the roughness elements are large in comparison to the inner region, the fully

rough regime is approached where A is constant irrespective of the value of k;, that is,

A=8.5 for k;>¢,. (2.45)

The values of k; for which neither eq. (2.44) nor eq. (2.45) holds is termed transitionally rough regime.
The exact thresholds for which the flow is transitionally rough depend on the details of the rough surface
(Bradshaw 2000, Jiménez 2004, Shockling et al. 2006). A sketch of the roughness regimes observed by
Nikuradse (1933) for carefully sieved sand grain roughness in pipe flow is given in fig. 2.7.

Apart from some exceptional configurations, rough surfaces tend to increase the shear stress on the do-
main boundary, and hence, increase the value of the friction velocity. The modification of the wall shear
stress may be attributed to two mechanisms. First, the shape of the roughness elements increases the
viscous drag on the wall, and if the elements are sufficiently large, also induce an additional form drag
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2.3 Particles in turbulence

due to flow separation (Jiménez 2004, Chan-Braun et al. 2011). Second, when k, /§, is large enough to af-
fect the buffer layer, the turbulent near-wall cycle is modified up to until its breakdown in the fully rough
regime, which leads to a reduction in the wall shear and annihilates the peak of the streamwise velocity
fluctuations associated to the near-wall streaks (Jiménez 2004). In most flows, however, the former phe-
nomenon outweighs the latter resulting in a net increase in u,. It has been subject to debate whether
roughness also affects the structure of turbulence in the outer layer (Bandyopadhyay and Watson 1988,
Jiménez 2004, Flack et al. 2005, Marusic et al. 2010), and while Jiménez (2004) suggested that universal-
ity is only achieved for k; < H/40, the study of Flack and Schultz (2014) indicates that modifications of
lower order statistics are only minor even for significantly protruding roughness elements.

Permeability is also known to increase the wall friction, even in the absence of roughness effects (Jiménez
et al. 2001). This increase originates in part directly from the additional dissipation introduced by the
non-zero fluid velocity at the wall, but is mainly attributed to the formation of large spanwise-aligned
flow structures which develop due to a shear layer instability of Kelvin-Helmholtz type (Jiménez et al.
2001, Suga et al. 2017). These spanwise rolls are found to significantly alter the distribution of Reynolds
stresses near the permeable wall, but also affect the outer layer of turbulence by introducing sweep and
ejection events with wavelengths of O(H) (Suga et al. 2018). The effect of spanwise rolls on the transfer
of heat and mass has been subject to recent investigations, and it was found that their presence en-
hances heat transfer in the same way as momentum transfer, unlike roughness were flow separation
only enhances the latter (Nishiyama et al. 2020, Motoki et al. 2022).

Regarding the mobility of the sediment, various modes of sediment transport can be distinguished (Bag-
nold 1956, van Rijn 1984a,b). In close vicinity to the stationary bed, particles predominantly stay in con-
tact with the bed and move along by rolling, sliding or saltation, i.e. the momentary lift-off of a particles
with subsequent redeposition upon the bed. These modes of transport are summarised as bedload,
and the region in which they are dominant is termed the bedload layer. Whenever the lift forces act-
ing on a particle are sufficiently high, particles may resuspend into the outer region of the flow and be
transported alongside other already suspended particle as suspended load. Although the suspended
load is sometimes further compartmentalised into a “washload” of particles which stay permanently
suspended, this distinction will not be made in the following as its definition comprises some arbitrari-
ness (Khullar et al. 2010) and is not of importance in the following. A sketch of the modes of sediment
transport and the definition of transport loads can be found in fig. 2.8(a).

The vertical concentration profile of particles in the quasi-steady state in a turbulent environment is
governed by the balance of fluid-induced vertical forces acting on the particles and gravitational forces.
The predominant parameter determining this distribution is the relative turbulence intensity, which is
defined as

ILo=—1, (2.46)

where v, , is the settling velocity of the particle in a quiescent environment. In the traditional theory
of Rouse (1937), which is derived from the balance of turbulent diffusion and settling effects, I, acts as
the exponent of a power law describing the particle concentration as a function of vertical position. Al-
though Rouse’s theory should be complemented by additional terms in horizontal wall-bounded turbu-
lence (Bragg et al. 2021a), it is plausible that any additional terms describing near-wall turbulent effects

should scale in inner units, hence upholding the significance of u, as the relevant velocity scale.

River beds are seldomly flat, but rather self-organise in macroscopic patterns such as ripples, dunes
or antidunes (Engelund and Fredsoe 1982, van Rijn 1984c). Therefore, knowledge on such features is
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essential to predict sediment transport and deposition in rivers, cf. Best (2005), Seminara (2010) or
Charru et al. (2013) for reviews on patterns in fluvial environments. The aforementioned features tend
to orientate themselves perpendicular to the flow direction and typically span many grain diameters in
vertical elevation. While they are understood to be caused by instabilities which depend only little on
the actual structure of the flow above, there exists a type of bedform which is most notably driven by
turbulent effects—the self-organization in long streamwise-aligned streaks of crests and troughs which
are known as ridges. Ridges are thought to be closely related to secondary currents of Prandtl’s second
kind which occur in laterally-bounded flows (Casey 1935, Ikeda 1981, Nezu and Nakagawa 1984, Colom-
bini 1993, Colombini and Parker 1995), and hence, their occurrence was long believed to be induced by
a knock-on effect beginning at the wall. However, it was already demonstrated by Colombini (1993) that
lateral boundaries are not required for their occurence and only recently it was shown by Scherer et al.
(2022) that ridges are indeed the footprints of long-lived large-scale velocity streaks, which as described
in §2.2.3 also occur in turbulent channel flows which lack a lateral confinement. While ridges can be
regularly observed if large-scale turbulent structures are present in the flow, their amplitude is typically
restricted to several particle diameters, which usually implies that ripples or dunes will be the dominant
pattern whenever they are able to form. The conditions under which this is the case are summarised in
fig. 2.8(b), and depend on the relative turbulence intensity, as well as on the size of the particles in terms
of viscous units, i.e.

d, d,u
dy=2L=-"2, (2.47)
61/ Vf

which may also be understood as a particle Reynolds number based on the wall shear. It should be noted
that it is also common to parametrise the bedform regimes in terms of the Shields parameter (Shields
1936) given by

2
0= (U”f ) (2.48)
1224

whose essential difference to I, is that it is based on the gravitational velocity rather than the terminal
settling velocity. However, it can be demonstrated (Jenny et al. 2004) that for sufficiently low Galileo
numbers, these two quantities are linked by the relation

Vpoo 2
Upg V3G

where C; is the steady-state drag coefficient of the particle, which has to be determined empirically in

(2.49)

the general case. Hence, the advantage of the Shields parameter over the relative turbulence intensity
lies in the ability to straightforwardly determine its value a priori.

Concerning the structure of turbulence over mobile beds, it has been demonstrated that at sufficiently
high rates of bedload transport, the near-wall regeneration cycle may be suppressed completely (Scherer
et al. 2022). In fact, while for stationary roughness elements this breakdown is expected to occur for
ks = 50-1000, (Jiménez 2004), Scherer et al. (2022) found that a particle size of dp = 309, suffices if the
rate of bedload transport is considerable. Little is known so far about the differences in the behaviour of
LSMs and VLSMs over mobile beds compared to the smooth-wall theory discussed in §2.2.3, although
Peruzzi et al. (2020) suggests that the distinctions are only minor. Vice versa, these large-scale structures
have been identified to be relevant for the erosion of particles from the bed (Cameron et al. 2020, Scherer
etal. 2022), as this process is thought to be strongly driven by ejections and sweeps (Cellino and Lemmin
2004). In the presence of spanwise-aligned sediment patterns such as ripples or dunes, which may
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Figure 2.8: (a) Conceptual sketch of modes of sediment transport. The illustration is inspired by Dey (2014). (b) Classification of
bedforms as a function of the nondimensional particle size and relative turbulence intensity as proposed by Liu (1957)
and extended by Simons and Richardson (1961). The data is taken from Dey and Ali (2020) under the premise that
ky=d,.

P

extent vertically over a significant fraction of H, a turbulent free shear layer is formed behind the crest
which contains spanwise vorticity (Kadota and Nezu 1999, Cellino and Graf 2000, Kidanemariam 2016),
i.e. the bedform acts like an obstacle to the mean flow. Further discussions on the role of coherent
structures in sediment-laden flows are provided by Garcia (2008) and Adrian and Marusic (2012).

2.3.2 Preferential concentration and clustering

The focus is now shifted towards particles suspended in turbulence, with an emphasis on those particle
parameter points for which only negligible gravitational effects are exhibited (Ga — 0), but still iner-
tial effects are important (p,, / pr > 1). Under the assumption that there are no immediate length scale
effects, these inertial particles are fully parametrised by a single nondimensional number,

St:=1t,/t, (2.50)

which is known as the Stokes number. In this definition, L, is a characteristic inertial time scale of the
particle, which under the aforementioned assumptions and in the case of vanishing relative velocities is
givenby 1, = p,, d; / (18pfvf), and f; is a characteristic fluid time scale, such as the Kolmogorov time scale
n/u,. The time scale , is also known as the particle response time, and hence, St may be interpreted as
the ability of a particle to adapt its motion to a varying fluid environment.

Within an apposite range of the Stokes number, the distribution of particles in turbulence is found to
be spatially intermittent even in the absence of statistical inhomogeneities within the turbulent flow
(Squires and Eaton 1991, Elghobashi and Truesdell 1992, Eaton and Fessler 1994, McLaughlin 1994).
This implies that even if particles are uniformly scattered across the flow domain initially, turbulence
will exert a de-mixing effect and create regions of preferential concentration or clusters. The earliest ex-
planation for this effect was provided by Maxey (1987), who, based on an earlier work on particle trajec-
tories in artificial cellular flows Maxey and Corrsin (1986), argued that heavy particles are expelled from
coherent vortices due to a centrifugal mechanism, and hence, preferentially concentrate in strained re-
gions as they tend to avoid regions of high vorticity. In fact, assuming that the fluid acceleration can be
approximated by the pressure gradient, it can be demonstrated that for St <« 1 the rate of accumulation
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of particles in the Eulerian sense is negatively correlated to the local value of the second invariant of the
velocity gradient tensor (Maxey 1987), which is given by

— =. _lauﬁi 6uﬁ]

—1(02_]2)\ -
Qx,1):= 5 (0Q°-87) 2 3%, o (2.51)

where S and Q are the symmetric and antisymmetric part of Vuy, respectively, and Einstein summation
notation has been employed. This so-called Q-criterion (Hunt et al. 1988) may be interpreted as the rel-
ative importance of vorticity versus strain with positive(negative) values indicating that vorticity(strain)
prevails, and thus, provides a quantification of the implications of the centrifugal mechanism.

The preceding inferences are only valid in the limit of very small values of the Stokes number, and as
preferential concentration can also be observed at significantly higher Stokes numbers, and moreover
also in randomly generated flow fields (Bec 2003, Duncan et al. 2005) where the centrifugal mechanism
is inactive (Bragg et al. 2015), extensions for the theory are required in order to fully explain the phe-
nomenon. A Lagrangian theory based on the interaction between pairs of particles was proposed and
expanded by Zaichik and Alipchenkov (2003, 2007, 2009) to predict radial distribution functions based
on the statistics of the turbulent flow. For St <« 1, this theory is in its essence an extension of the cen-
trifugal mechanism (Bragg and Collins 2014), however, for St = O(1) it predicts that the velocity dynamics
lose their locality, and suggest another non-local mechanism which leads to clustering—the inward drift
mechanism. Here, by non-locality it is referred to the fact that the inward drift mechanism does not de-
pend on a biased sampling of local regions of strain, but should rather be understood as a result of the
trajectory history and an asymmetry in the probability of converging and diverging trajectories of parti-
cle pairs. The validity of the Zaichik and Alipchenkov theory was corroborated empirically by Bragg and
Collins (2014) using numerical simulations, and it was subsequently recognised by Bragg et al. (2015)
that the intensity of the inward drift depends on the fluid velocity gradients previously experienced by
the particles, which explains the local accumulation of particles in high strain regions even for Stokes
numbers of O(1) as has been reported by e.g. Squires and Eaton (1991).

An alternative mechanism causing preferential concentration was introduced by Goto and Vassilicos
(2008) and Coleman and Vassilicos (2009) originating from similar arguments which lead to Maxey’s
centrifugal mechanism. The sweep-stick mechanism is based on the idea that particles are driven away
from regions of non-vanishing fluid acceleration, and subsequently get stuck in regions where

ouy

ar(x,0)= == +V- (ur @uy) (2.52)
is nil, which themselves are coherent and swept away by the local fluid velocity. While these regions
are abundant in two-dimensional turbulence and preferential concentration is well explained by sam-
pling regions where a; = 0 (Chen et al. 2006, Goto and Vassilicos 2006), they are rarely observed in
three-dimensional turbulence (Goto and Vassilicos 2008). However, the driving force of the convergence
mechanism has been shown to be proportional to the divergence of the fluid acceleration vector, and
thus, still acts even in the absence of regions where a; vanishes. The sweep-stick mechanism has been
generalised recently by Oka and Goto (2021) using a coarse-graining method in order to account for the
fractal nature of the inhomogeneous particle distribution, which yields a self-similar mechanism over
multiple scales and extends the theory for St > 1.

The aforementioned theories have been formulated under the premise of small and heavy particles, and
therefore it is necessary to discuss potential deviations if this precondition is not satisfied. To begin with,
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it is expedient to consider the asymptotic behaviour in terms of the Stokes number. For St = 0, the par-
ticles adapt instantaneously to any changes in the local fluid velocity and consequently behave as fluid
tracers which cannot preferentially concentrate in incompressible flows. For St — oo, the particle mo-
tion is decoupled from the fluid velocity, and thus, turbulence is unable to induce any accumulation of
particles. If the length scale of the particle is comparable to the length scales of the fluid flow, the Stokes
number is not the only relevant parameter anymore, as there is empirical evidence that variations in
size and density are not interchangeable (Qureshi et al. 2007, Lucci et al. 2011, Fiabane et al. 2012, 2013).
However, there are indications that the previously described mechanisms are nonetheless relevant for
particles of finite size (Uhlmann and Chouippe 2017). Indeed, in order perpetuate the concept of the
Stokes number as the only parameter of interest for clustering, various definitions have been proposed
for a particle time scale which accounts for finite size and nonlinear drag effects with one prominent
example being

1+2p,/ps dj 24/ Rey,
t,= —

R 2.53
P 36 Vf Cd ( )
introduced by Balachandar (2009), where
d,v
_ “p"poo
Rep'oo = T (254)

is the particle Reynolds number based on the terminal settling velocity in an ambient container, whose
value fully determined by the Galileo number and can be approximated by eq. (2.49).

While the terms clustering and preferential concentration have been used largely interchangeable in
the preceding discussion, both phenomena are not exactly the same. Preferential concentration de-
notes a spatially non-uniform distribution of the probability of individual particles to be located within
a certain region of the flow, whereas clustering describes the process of multiple particles approaching
each other. As a consequence, while preferential concentration can be observed in a single particle sys-
tem, clustering inherently involves multiple particles. As a consequence, clustering may be the result of
preferential concentration in multiparticle systems, but preferential concentration does not necessar-
ily lead to clustering, and clustering can occur without preferential concentration for instance through
non-local interactions.

For more information on the formation of preferential concentration and particle clustering in turbu-
lence, the reader is referred to the reviews of Balachandar and Eaton (2010), Monchaux et al. (2012) and
Gustavsson and Mehlig (2016).

2.3.3 Settling under turbulent conditions

In the discussion on turbulence-induced preferential concentration, the focus has been laid on cluster-
ing under microgravity conditions. The presence of a significant gravitational force demands the intro-
duction of an additional parameter which compares the characteristic particle settling velocity scale to
a fluid velocity scale. The former is typically chosen to be the terminal settling velocity of the particle in
an ambient fluid, which is linked to the particle response time by

pp/ P =1
%w=(41147)%m| (2.55)
pp/pf+§
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Figure 2.9: Conceptual sketch particle-vortex interactions in a cellular flow similar to Maxey and Corrsin (1986). The fluid flow
is indicated by grey arrows, while particle trajectories are drawn as black arrows. (a) The fast tracking mechanism
increases the particle settling velocity by preferentially sweeping the downward moving sides of vortices. (b) Vortex
trapping may keep a particle in suspension. (c) Loitering reduces the average settling velocity as a particle spends
more time facing a counteracting flow.

using eq. (2.53) as definition of tp.13 The latter is typically taken to be the velocity scale associated to f,
and hence, for the common choice of Kolmogorov scales, the resulting nondimensional parameter is the
relative turbulence intensity [, = u,, / Upoo» O in the case of wall-bounded flows where viscous units are
more practical, I, defined in eq. (2.46). It is straightforward to acknowledge that in the case of vanishing
relative turbulence intensity, the particle motion is largely decoupled from the fluid motion, similar
to the behaviour at large Stokes numbers. On the contrary, for v, , < u,, particles can be expected
to behave similar to the microgravity case, though it has been argued by Bragg et al. (2021b) for wall-
bounded flows that as long as I, is finite, there always exists a region where settling cannot be neglected.

Regarding the centrifugal mechanism responsible for preferential concentration, gravity exhibits a sym-
metry breaking effect which has a striking implication on the interaction with vortices which are not
coaligned with the direction of gravity—particles tend to preferentially sweep the downward moving
side of vortices. This so-called fast tracking phenomenon was first noted by Maxey and Corrsin (1986)
and is a result of the particles’ tendency to avoid high vorticity regions and to adapt to the local fluid
motion, see fig. 2.9(a) for a simplified sketch of this effect. In a follow-up study, Maxey (1987) deduced
that a net increase of the average settling velocity compared to v, can be expected even if the flow is
less organised, and indeed, an increase of mean settling velocity due to preferential sweeping has since
been reported by various authors (Wang and Maxey 1993, Yang and Lei 1998, Aliseda et al. 2002, Yang
and Shy 2003, Cuthbertson and Ervine 2007, Baker et al. 2017, Petersen et al. 2019).

Under certain conditions, particles may become trapped in vortices and orbit on approximately closed
paths (Manton 1974, Tooby et al. 1977). This phenomenon is termed vortex trapping, and is rather com-
mon in fluvial systems with an example being the swirling of particles due to the leeside vortex of bed-
forms (Bijker et al. 1976). The mechanism itself depends only little on the specific vortex type (Nielsen
1984, 1992), and thus, it has been hypothesised to also occur for turbulent eddies (Nielsen 1993).

13 please note that for a given value of the gravitational acceleration, v, can only be varied independently of the particle

response time by a change in the density ratio. In the context of a particle accelerating from rest to its terminal velocity in
an undisturbed environment, this statement may be interpreted as follows: For a given terminal velocity, the density ratio
controls the time scale of the particle velocity’s asymptotic approach towards the terminal velocity.
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2.3 Particles in turbulence

When the mobility of the particle is insufficient to follow the variations in fluid velocity rapidly enough,
preferential sweeping does not occur and the particle will sample both downward and upward fluid mo-
tions. Nielsen (1993) argued that the particle will, on average, spend more time in regions of counteract-
ing flow than assisting flow, which consequently reduces the average settling velocity, see fig. 2.9(c) for a
sketch. This phenomenon is known as loitering, and its effect becomes most relevant when the particle
Reynolds number is in the nonlinear regime, such that nonlinear drag effects can contribute to a further
reduction of the settling speed (Murray 1970, Mei 1994, Ireland and Collins 2012).

In general, the various mechanisms of particle-turbulence interaction may be active concurrently, and
interactions may depend on the eddy scale under consideration. Both net increases and net reductions
of the average velocity have been reported (Kawanisi and Shiozaki 2008, Good et al. 2012, Ireland and
Collins 2012, Chouippe and Uhlmann 2019), and hence, it is not trivial to predict the net effect of tur-
bulence on settling for a given flow geometry and parameter point. Overview articles on the turbulent
effects on particle settling velocity have been provided by Nielsen (1993), and more recently, by Dey et al.
(2019).

2.3.4 Particle wakes and collective effects

So far the phenomena discussed were primarily caused by turbulence modulating the dynamics of par-
ticles, albeit the interaction is generally mutual, and hence, one also has to take into account the fluid
motion induced by particles and mutual interaction in between multiple particles. To put it more sys-
tematically, there are two primary mechanisms to inject kinetic energy into a turbulent particle-laden
flow—the direct forcing of the fluid flow in form of a pressure gradient or gravitational force acting on a
slope for instance, and the gravitational force acting on the solid particles which in turn transfers their
energy to the fluid by means of a boundary layer or wake. While in the former case the energy is injected
at the large scales and subsequently cascades towards the dissipation range, cf. §2.1.3, the latter injects
energy at scales at the order of the particle size which may lead to modifications of the cascade. In gen-
eral, these two aspects are thus not decoupled, and background turbulence can significantly alter the
characteristics of the particles’ wakes (Wu and Faeth 1994, 1995, Bagchi and Balachandar 2004, Legen-
dre et al. 2006, Amoura et al. 2010, Rind and Castro 2012), energy may be transferred between the two
phases (Dritselis and Vlachos 2011, Zhao et al. 2013), turbulence may be attenuated by additional dissi-
pation (Gore and Crowe 1989, Squires and Eaton 1990, Elghobashi and Truesdell 1993, Kulick et al. 1994),
and even the inherent mechanism of wall-bounded turbulence may be modulated by the presence of
particles (Wang et al. 2017, 2018a, Wang and Richter 2019, Scherer et al. 2022).

In order to fathom this interaction, it is beneficial to first ascertain the characteristic of the wakes of
freely settling mobile particles in the absence of background turbulence. For spherical particles with
op / py > 1, it can be distinguished between four wake regimes which emerge during the supercritical
transition to chaos of the flow around the sphere, with the controlling parameter being the Galileo num-
ber. At low Galileo numbers the wake is axisymmetric and steady, and correspondingly the direction of
falling and gravity are coaligned. This changes at Ga = 155 where the first bifurcation is observed and
the wake becomes oblique which results in a nonvertical falling direction. The oblique state undergoes
a Hopf bifurcation at Ga = 195, and hence, the wake begins to oscillate which induces periodically vary-
ing fluctuations in the vertical and lateral hydrodynamic forces on the particle leading to an oscillating
trajectory. Chaotic fluid motion occurs starting at Ga = 240 where statistical symmetry of the wake is
recovered, and hence, particles settle vertically on average. The exact values of Ga at which the bifurca-
tions occur depend on the value of the solid-to-fluid density ratio, and a comprehensive study is given
by Jenny et al. (2004). The various regimes differ distinctly in their ability to transfer heat and mass, and
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Figure 2.10: Wake regimes of freely settling particles in undisturbed conditions. The illustrations depict the parameter points
Ga= [150, 170,200, 300] at Pp / pr= 10. Blue isosurfaces represent disturbances in terms of the vertical fluid velocity,
whereas red isosurfaces show the induced temperature field for a heated sphere. The critical Galileo numbers for
bifurcation depend on the density ratio (Jenny et al. 2004), and the values shown correspond to Pp / pr = 10. The
illustrations have been first published in Chouippe et al. (2019).

a discussion thereof can be found in Chouippe et al. (2019). Figure 2.10 summarises the wake regimes
described and provides a visual clarification.

It should be noted that the wake is generally not turbulent until the critical transition occurs at Galileo
numbers of O(105), as the wake can still be considered quasi-periodic until this point (Clift et al. 1978).
Moreover, the four regimes previously introduced are not necessarily uniform which means that less
prominent changes in flow characteristics may still occur within a given regime. For instance, in case of
the steady axisymmetric regime, the flow gradually develops a front-rear asymmetry for finite values of
Gawhich ushers into the formation of a toroidal vortex in the rear of the sphere which induces a zone of
recirculating flow where fluid is transported towards the rear stagnation point. The onset of recirculation
occurs around Ga = 30 and the downstream extent of the zone of recirculation increases with increasing
Galileo number (Clift et al. 1978). Photographs of the formation and evolution of the toroidal vortex ring
can be found in Taneda (1956).

The modification of the fluid flow in the mediate vicinity provides a mechanism for multiple particles
to interact with each other. One prominent example for such a mechanism is the “drafting-kissing—
tumbling” interaction (Fortes et al. 1987, Wu and Manasseh 1998) in which the trailing particle of a
particle pair is attracted towards the position of the leading one, comes into (near) contact, and sub-
sequently positions itself alongside its partner. A consequence of this interaction is the possibility of
cluster formation even in the absence of background turbulence (Kajishima and Takiguchi 2002, Ka-
jishima 2004a), which is in the case of spherical particles further promoted by nonvertical settling at
sufficiently high Galileo numbers (Uhlmann and Doychev 2014). An interesting consequence of wake-
induced particle clusters is that the ensemble of particles may settle faster than the terminal velocity of
an individual particle (Uhlmann and Doychev 2014, Huisman et al. 2016). Moreover, since a cluster can
be essentially regarded as a coherent object itself, a mechanism is provided to inject energy into the fluid
flow at length scales significantly larger than the particles themselves (Kajishima and Takiguchi 2002).

Ensembles of particles may also interact in a way which reduces the average settling velocity. This hin-
drance effect was first described by Richardson and Zaki (1954) who derived a parametrisation for the
reduction in settling velocity for randomly distributed spheres at low Galileo numbers which implies an
approximately linear relationship with the inverse of the solid volume fraction. The hindrance is a result
of fluid being displaced from below the front of settling particles which induces a counteracting flow and
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2.3 Particles in turbulence

consequently a hydrodynamic force opposed to gravity. For this reason, the hindrance is strongest if the
particles are arranged cross-stream, i.e. perpendicular to the falling direction, as the backflow then acts
most effectively (Yin and Koch 2007). Such a cross-stream orientation may result from drafting—kissing—
tumbling at low volume fractions, but the same mechanism may also promote vertical organization,
as has been previously discussed, which minimises hindrance. The considerable dependence of the
hindrance effect on the microstructure of particle orientation makes it difficult to judge its importance
under turbulent flow conditions, although Fornari et al. (2019) found that it may play a major role in
homogeneous isotropic turbulence at volume fractions of O(1-10%).

2.3.5 Suspended particles in horizontal channels

The majority of the aforementioned phenomena have been primarily investigated in the absence of
walls and in statistically homogeneous domains. While the inferences derived from these configura-
tions are certainly also relevant for flow configurations where these prerequisites are not given, it is
important to acknowledge that the settling of particles in horizontal wall-bounded flows differs from
that in domains which are unbounded in the direction of gravity due to three major properties:

Boundedness As the direction of gravity is bounded by walls, particles may only travel vertically over a
limited distance. As a result, three different scenarios of settling may be considered in such flows—
the quasi-steady state where particles are continuously removed from the bottom of the domain
and reseeded at the top resulting in a sustained net downward flux; the quasi-steady state where
resuspension and deposition are in equilibrium and the net flux is zero; the initial value problem
where particles are distributed out of equilibrium and transiently settle until a quasi-steady state
is obtained.

Anisotropy The presence of mean shear in the turbulent background flow leads to a preferred align-
ment of coherent structures with the streamwise directions. As gravity acts perpendicular to this
direction, particles are more likely to approach these structures from a preferred direction as com-
pared to isotropic turbulence. Moreover, characteristic structures such as Reynolds-stress events
do not occur in isotropic flows.

Inhomogeneity As the flow statistics depend on the wall-normal position, phenomena such as tur-
bophoresis and further turbulent dispersion effects based on gradients of flow statistics may be-
come relevant for the analysis of the problem (Reeks 1983, 1991, 2005, Bragg et al. 2012, 2021a).

Many of the early works on suspended particles were concerned with the statistics of dispersion by
sheared and turbulent flows. Based on his theory of turbulent diffusion (Taylor 1922), G.I. Taylor laid
the groundwork for this analysis with his contributions on the dispersion of soluble matter in pipe flows
(Taylor 1953, 1954) which were later applied to channel flow by Elder (1959). Using the moment transfor-
mation of Aris (1956), it was Sayre (1967) who first extended this continuous Eulerian treatment of mass
transport towards settling particles by applying Taylor’s approach to a modified transport equation. In-
deed, one of the motivations behind Sayre’s work was the prediction of dispersion and interaction of silt
particles with the sediment of rivers (Sayre and Hubbell 1965, Sayre 1969)—a problem which is akin to
the issue of bacteria transport (Jamieson et al. 2005) as discussed in §1.2. Utilizing the same approach
and assumptions on near-wall turbulence, Sumer (1974) was able to analytically determine the concen-
tration profile, mean velocity and longitudinal dispersion coefficient for heavy particles in smooth-wall
open-channel flow. With the application to settling basins in mind, Sumer (1977) subsequently applied
the method to particles transiently settling from the free surface of an open-channel and analytically

43



2 Wall-bounded turbulence and particle dynamics

obtained the equilibrium spatial distribution of particles, the distribution of retention time, as well as
the statistics of the longitudinal settling length under various assumptions.

The problem of transiently settling particles in channels has also been investigated using a Lagrangian
random walk model assuming normally distributed fluid velocities by Li and Shen (1975) who concluded
that the settling velocities of heavy particles in turbulent open-channel flow are likely different from
their corresponding value in a quiescent environment, and that the settling length follows a log-normal
distribution. Their work was extended by Hoyal et al. (1995) towards a higher range in relative turbulence
intensities and to model particle deposition by means of a fully absorbing lower boundary resulting in
a net particle flux. Their results indicate that the settling velocity is enhanced for relative turbulence
intensities larger than unity and are otherwise approximated well by the quiescent terminal velocity.

Experimental evidence for turbulent enhancement of the settling velocity during the transient was first
provided by Jobson and Sayre (1970) who studied the settling of sand particles of varying size by con-
tinuously injecting them from a spanwise-aligned line source at the free surface of a flume. For all sizes
investigated, they observed an enhancement in settling velocity compared to its still water value and
attributed it to clustering effects in case of small sand particles and to turbulent effects in case of larger
particles, although the enhancement in the latter case was significantly weaker. Cuthbertson (2001) and
Cuthbertson and Ervine (2007) experimentally studied the settling of fine sand particles with terminal
velocities of the order of unity over a porous bed, and observed that the particles accumulate on the
downward moving side of large vortical structures of the flow. This behaviour was attributed to the pref-
erential sweeping mechanism which also serves as an explanation for the observed enhancement in set-
tling velocities. Moreover, it was found that an enhancement of the settling velocity often coincides with
the sampling of fluid sweeps, whereas in contrast reduced settling velocities are observed in ejections.
The role of these Reynolds-stress events on the settling velocity has also been recognised by Breugem
and Uijttewaal (2007) who found downward moving particles during the transient phase preferentially
located in sweeps, whereas in the fully developed state upward moving particles sampled regions where
uji < 0 and downward moving particles regions of u} > 0. Wang et al. (2018b) conducted settling exper-
iments in a channel with grid-induced turbulence and focused on the role of turbulent length scale in
the settling process. They conjectured that large-scale eddies lead to an increase in the particle settling
velocity through preferential sweeping, whereas small-scale fluctuations have a counteracting effect.

Numerical simulations on the settling of particles in horizontal channel flow for the scenarios involving
a net downward flux are scarce. In fact, only the recent point-particle study of Bragg et al. (2021a) could
be identified to belong in this category. In their cases with net downward particle fluxes, the average
settling velocity was found to considerably exceed the ambient terminal velocity and this enhancement
could be attributed for the most part to the preferential sweeping mechanism, with the exception of the
near-wall region where turbophoresis was found to gain significance.

The literature on the quasi-steady regime with a zero net flux of particles is ample, and some of its key
characteristics are briefly summarised in the following: In the near wall region of smooth-wall channels,
particles which are small compared to the size of the inner region of turbulence are known to accumulate
in low-speed streaks as a result of their interaction with coherent structures of the buffer layer (Rashidi
et al. 1990, Kaftori et al. 1995a,b, Kiger and Pan 2002, Marchioli and Soldati 2002, Kidanemariam et al.
2013). As a result, their ensemble-averaged streamwise velocity lags behind the corresponding fluid
velocity due to preferential sampling (Kaftori et al. 1995b, Kiger and Pan 2002, Kidanemariam et al. 2013).
Concerning the resuspension, it has been conjectured that turbulent ejections are a major contributor
apart from wall- and shear-induced lift forces (Kiger and Pan 2002, Marchioli and Soldati 2002, Nifio
etal. 2003, Vinkovic et al. 2011). Similar mechanisms are active over sediment beds and give rise to sand
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ridges, although the driving mechanisms may be due to large scale turbulent structures if the buffer
layer is nonexistent (Scherer et al. 2022), cf. §2.3.1.

The discussion on particles in channel turbulence is concluded by an outline of clustering effects and
turbulence interactions in the outer layer. Fessler et al. (1994) have experimentally studied the pref-
erential concentration of heavy particles near the centreline of a closed channel, and found that their
distribution is far from random and resembles that of homogeneous isotropic turbulence. They re-
lated the self-organization of the solid phase to the Stokes number and observed the strongest deviation
from randomness at St = 1. This inferences was corroborated by Rouson and Eaton (2001) who stud-
ied a similar parameter point using numerical simulation of point particles, but also observed long
streamwise-aligned patterns. The recent microgravity simulations of Motoori et al. (2022) strikingly
demonstrated using a coarse-graining method that preferential concentration in channels is a multi-
scale phenomenon. They observed that vortices of all scales and types deplete particle concentrations
in their core in accordance with Maxey’s arguments, and that this depletion can be described by re-
spective scale-dependent Stokes numbers. Moreover, it was shown that wall-detached tubular vortices
lead to the formation of approximately isotropic clusters around them, whereas wall-attached vortices
transport particles predominantly into nearby low-speed streaks.

2.4 Knowledge gaps

For the river contamination problem which serves as a motivation for this thesis, the transient settling
of suspended particles in horizontal channels is a paramount problem. The hydrodynamic literature on
this configuration is scarce, and albeit the very relevant experimental study of Cuthbertson and Ervine
(2007) and the more idealised theoretical and numerical treatment of Bragg et al. (2021a) could be identi-
fied, various questions remain unanswered. Of particular interest are the interactions between coherent
flow structures and the settling particles which give rise to the enhancement in settling velocity reported
by both studies, but also collective mechanisms such as clustering which have not received much atten-
tion in this configuration yet. Up until this point, the transient settling problem has not been examined
using fully-resolved numerical simulations yet, which have the advantage over traditional experiments
that the full state of the system is easily accessible at all times, and over unresolved numerical simu-
lations that they do not require extensive modelling which deems the results more reliable and allows
for a more extensive variation in parameters. Moreover, little is known on the effect of bedforms on the
settling and long-term deposition of particles. While Cuthbertson and Ervine (2007) conducted their
experiment in the presence of a sediment bed, a systematic analysis of its influence is lacking and needs
to be addressed due to its relevance for fluvial systems Wilkinson et al. (1995).
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3 Problem formulation and
methodology

3.1 Mathematical framework

While the fundamental equations used for this numerical study study were already introduced through-
out §2, their definite form describing the system to be numerically approximated will be summarised in
this section for the sake of convenience and completeness. Open-channel flow is considered within a
domain Q € R® with periodic boundary conditions in x and z, a no-slip boundary condition (eq. (2.19))
for the lower wall and a free-slip boundary condition (eq. (2.20)) for the upper wall. Both walls are im-
permeable (eq. (2.18)) and non-deformable, thus corresponding to the Fr — 0 limit of free-surface flows.
The flow is particle-laden, and the problem domain can thus be divided into disjoint subdomains,

N,

P .
U Q,f,”), (3.1)

i=1

Q:QfU

where Q; denotes the subdomain occupied by the fluid phase, Q’(,i) is the subdomain occupied by the
i-th solid particle and N,, is the total number of particles in Q. The interfaces between the fluid and the
solid subdomains are treated by impermeable and no-slip boundary conditions.

Within the fluid domain, the system is described by the continuity and Navier-Stokes momentum equa-
tions displayed in eq. (2.1) and eq. (2.2). The fluid density is considered to be constant throughout the
flow, and the only external force considered is gravity which yields the definite form

Voup=0, (3.2)
aﬁ+V‘(u ®u):—in+vV2u. (3.3)
5 pouy) = =0 Py Ty

Here, the gravitational acceleration has been expressed as the gradient of the gravitational potential,
g=:—VV¥, and a new pressure variable

pi=P+ps¥ (3.4)

has been defined which signifies the pressure without its hydrostatic part.
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The linear and angular momentum balances for the particles are given by the Newton-Euler equations
displayed in eq. (2.38) and eq. (2.39). The particles are considered to be spherical and their density to be

distributed uniformly throughout Q' which yields

pl’gi)an’(’i)sd:_l? =Pr ?gsu‘) (vag-n) dsy’ _ﬁii) (pT-m)ds; + M‘%— Fr(zfiol’ (3.52)
P P
%dﬁ;—? =pr fs(” (x—x,(f)) x (va§-n) dS,(,i) +T'(]f)wl, (3.5b)
p
for the i-th particle with S being the rate-of-strain tensor defined as
Sij Z%(%+0:—;;]) (3.6)

Moreover, the surface integral for the hydrostatic pressure has been evaluated to yield Archimedes’s
principle for buoyancy,

()3
= . prrd
. (i _ _ P
fs},” (of¥I-n)ds,’ = — & 3.7)
While the rate-of-strain and pressure distribution on the particles’ surface at the fluid-solid interface
is completely determined by eq. (3.2), eq. (3.3) and the boundary conditions, the interaction between
multiple particles or between a particle and the wall needs to be modelled using a collision model which
supplies the collision force F’(?flol and torque T’(Jf)wl. The trajectory of the i-th particle is then obtained by
integrating the kinematic equation
dx(l') '
P (i)
— =1, , 38
ar b 3.8)
whereas it is not required to track the angular position of the spheres in time due to their rotational
symmetry.

The transport of suspended bacteria only plays a subordinate role in this thesis, however, whenever its
distribution in Q; is tracked it is modelled by the advection-diffusion equation

0C.
—6;B + Uf . VCSB = DSBVZCSB’ (39)

which corresponds to eq. (2.4) with homogeneous diffusivity and in the absence of any mechanisms for
decay and growth for the sake of generality. Here, Cgg is the concentration of suspended bacteria and
Dgp its diffusion coefficient. Suspended bacteria are introduced to the flow by either the initial condi-
tion or by means of Dirichlet boundary conditions on the fluid-solid interface. In case of the former,
the particles are also occasionally modelled as inert with respect to Cgz by imposing the Neumann-type
boundary condition dCgz /dn = 0 on S,(f). The concentration of particle-attached bacteria is not mod-
elled explicitly as the primary focus of this thesis lies on bacteria transport and not their fate, and hence,
the knowledge of particle dynamics is sufficient for this purpose.
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3.2 Computational method

Although the mathematical framework previously described is in itself complete and only demands for
constitutive equations for the collision forces and torques, the nature of differential equations and the
lack of analytical solutions requires the framework to be solved numerically on a computer. For this
purpose, the system of equations needs to be discretised in space and time while keeping in mind the
range of scales of the particle-laden flow problem. This thesis utilises the approach of direct numerical
simulation (DNS) which means that all relevant spatial and temporal scales of the problem are captured
by the discretisation. Therefore, no further assumptions have to be made and the simulations can be
considered to be derived “from first principles”, i.e. directly from the most fundamental principles of
hydromechanics.

3.2.1 Immersed boundary method

While it is certainly possible to discretise ¢ using a computational mesh which excludes ,,, such a
body-conforming approach is generally not feasible if a large number of mobile particles is immersed
into the fluid, as this would require the mesh to be continuously regenerated as the particles change
their position within Q in time which comes at an immense computational cost (Prosperetti and Tryg-
gvason 2009). This dilemma can be resolved by the use of fictitious domain methods. Fictitious domain
methods take advantage of the lower geometric complexity of the complete domain and discretise Q by
a stationary and regular mesh which hence comprises both the fluid domain and the particle domains,
i.e. the equations (3.2), (3.3) and (3.9) are solved in Q rather than Qf. However, this comes at the cost
that the boundary conditions on the fluid-particle interface cannot be imposed directly as this interface
is not captured by the discretisation. Thus, in order to account for the presence of solid particles, an
artificial body force is introduced to the transport equations whose sole purpose lies in modifying the
fields in a manner which adequately reflects Q,,.

Various instances of the fictitious domain method exist and they can be categorised by the formulation
of the artificial force, the positions at which it is active, and the discretisation schemes within the method
is employed. The approach utilised in this thesis belongs to the group of immersed boundary methods
(IBMs), which are based on spatial discretisations of Q in physical space and employ a localised force
field which is restricted to the boundaries of (3, denoted as I', in the following. The origin of IBMs can
be traced back to Peskin (1972) who numerically studied the flow through the mitral valve in the human
heart and modelled the interaction between the blood flow and the valve by this approach. Ever since,
this approach has been adapted for various fluid-structure interaction problems, and have been even-
tually applied to particle-laden flows, cf. Mittal and Iaccarino (2005) for a review on IBMs and Maxey
(2017) a review of fictitious domain methods for particle-laden flows.

The formulation of the IBM employed in this thesis is provided by Uhlmann (2005) and is now sum-
marised briefly for the Navier-Stokes momentum equation. Using a finite-difference approach on a
regular Cartesian staggered grid, the complete domain € is discretised to yield discrete nodes x;;; =
(iAx, jAy, kAz) " on which the velocity and pressure fields are evaluated, with i, j, k denoting the integer
indices of the nodes and Ax = Ay = Az being the mesh spacing in x, y, z direction, respectively, which
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is chosen to be uniform. For each particle, N,(,? marker points are distributed as evenly as possible at

position X; }m on F(i ), and each marker point is attributed a volume of

TAX
SNm

AV M — ( d(” +Ax ) (3.10)

where the superscript (i, m) denotes the m-th marker point of the i-th particle. In the first step, the fluid

(@, m)

velocity at X, is gathered from the discretised velocity fields by means of interpolation, viz.

uj(,i'm)(t) :Zkuf(xijk, 1) i (Xijie =Xy ) AxAyAz. 3.11)
1

Here, the interpolation kernel §;;,,,, is a regularised Delta function—a discrete version of the Dirac delta
function with finite support—introduced by Peskin (1972, 2002) in the variant of Roma et al. (1999)
which has a support of three grid points in each direction. The velocity which is to be imposed at the
position of the marker points is dictated by the state of motion of the individual particles, and is given
by

w0 =u) +wp) x (x1 - x). (3.12)

By comparing the gathered fluid velocity u}i’m) to the value to be imposed u;’ f"), the volume force re-

quired at each marker point is determined by

u’ m) _(i,m)

£ = , (3.13)

At

where At is the time step of the temporal discretisation. In the second step, the gathered forces are

(i,m) :

applied to the fluid and solid domains. In case of the former, fp} is spread to the regular grid by

N, N(t)

P Vm
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i m

where f;;,,, is the additional forcing term added to the momentum equation as previously stated. Con-

cerning the solid domains, the surface integrals in equations (3.5a) and (3.5b) which represent the hy-

drodynamic forces and torques are approximated by

(t)
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S(l)
thus satisfying Newton’s third law of motion.

The DNS code employed in this thesis which implements the IBM of Uhlmann (2005) uses a standard
central finite-difference scheme for the spatial derivatives and a semi-implicit temporal discretisation
based on the Crank-Nicolson scheme for the viscous term and a three-step low-storage Runge-Kutta
scheme for the nonlinear term, similar to Verzicco and Orlandi (1996). Implicit coupling between the
continuity constraint and the pressure in the momentum equation is achieved by means of the fractional
step method (Kim and Moin 1985). A comprehensive description on how the IBM is implemented in this
framework can be found in Uhlmann (2005)

50



3.2 Computational method

3.2.2 Particle collision model

In order to supply collision forces and torques to equations (3.5a) and (3.5b), the framework needs to be
complemented by constitutive equations describing the collision process between pairs of particles and
particles with the walls. In this thesis, a soft-sphere approach is employed which resolves the collision
process by allowing for small overlaps and finite durations of contact, which will be outlined in the
following for the case of interparticle collisions.

The normal vector for the collision of particle (i) and particle (j) is defined by the line connecting the
centre point locations of the two spheres, viz.

y () _ (D)
()= (3.16)
I =%y
The distance of overlap along this line is given by
Gy L(g® . g0 M _ W)
600! (1):= z(dp +dP )_|Xp —Xp |» (3.17)

which attains positive values when the two particles are currently in contact, and negative values oth-
erwise. The relative velocity at the point of contact is determined from the surface velocity of the solid
spheres on the line connecting the centre points and reads

Gf) gy o (4D 1 400, (D) GDY _ (D _ 1 40D () (i)
u (0= (u, +3d) w,” xn") ~ (0" - 5d;" w,” xn"7). (3.18)

From the relative velocity and the normal direction, a tangential vector can be constructed by

(i,)) ( (@,)) (i,j)) (@,))
s - -n'"’n
0= 75— @ )|’ 519
ucol - (ucol e )n Y |
which remains undefined if ug){ ) solely possesses a normal component.

The collision forces are modelled by a spring-damper system. The normal component of the interparti-
cle collision force is given by

(i,j) (i) (A )R (A ) NN CH) BN
- -k 0+ A, In —¢ u ¥ -n n ifo ' =—-A
B (1) = las ( col col) dnorm ( col ) col col , (3.20)

p,norm .
0 otherwise

where the k,, is the stiffness of the spring component, and ¢, ,,,,,, is the dissipation coefficient of the
damper component of the system. Moreover, the point of contact has been shifted by an offset such that
collision forces are active already at a small finite distance A,,; which reflects the smeared out nature of
the immersed boundary interface. This admitted gap is chosen to be O(Ax) similar to the support of the
regularised delta function. The tangential component of the collision force is given by

—min (pfriC|Fl(,f;{(),,m| »Cd, tang (ug){) -t(i'f))) @) iféc(é'lj) = —Ay A t%/is defined

(i,))
F (1) := , (3.21)
prang 0 otherwise

and thus comprises only a dampening component with a dissipation coefficient ¢ ¢, which is limited
by the the condition of traction with the Coulomb friction coefficient p ;.. The overall interparticle
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collision force and torque acting on the i-th particle is then given by the sum of forces and torques of all
collision pairs, viz.

N,
p - .
(@) _ (2,) (2,
prcol(t) - Z (Fp,norm + Fp, mng) (3.22a)
j=1,j#i
N,
(i) _ 140 (i,)) (@,))
Tp,col(t) - fdlﬂ Z# (n x Fp,mng) (3.22b)
Jj=1,j#i

The collision between a particle and the wall is treated analogously to interparticle collisions, and, as
the region of contact for a sphere with a plane is also a single point, is formally very similar to the afore-
mentioned description. A more comprehensive description of the collision model in the same context
can be found in Kidanemariam and Uhlmann (2014b) and Kidanemariam (2016).

The collision model is parameterised by the four physical parameters {k 4, €4 norm» €a, tang> 1 f,ic} which
need to be supplied. In accordance with previous work on sediment transport using the same simulation
code (Kidanemariam 2016), the normal and tangential dissipation coefficients are set to be equal, and
their value can be related to the stiffness coefficient (Crowe et al. 1998) by

[ In(e
Cdnorm = Cd,tang = -2 m(lyj)kelm& (3.23)

7[2 + ln (Erest)z

where the dry restitution coefficient ¢,,,; has been introduced, which describes the ratio between the
total linear momentum of the particle pair post- and pre-collision in a vacuum, and is therefore a mea-
sure for the dissipation due to collision. Moreover, the reduced mass m*/ := m? m/ / (m(i) +mY ) of
the pair has been introduced, with m(i), m\ being the masses of the collision partners. The alternative
parameterisation involving €, is beneficial in the sense that it is easily accesible from experiments. For
the two main series which will be introduced at a later point (LR,HR), the collision parameters are given

bY L frie = 10.4,0.5), £, = {0.3,0.9} and ko = 20/ (d32 (Z—; -1)).

From a numerical perspective, the time scale of collision is typically shorter than the required time step
for the advancement of the flow problem. In order retain a reasonable overall value of At, the collisions
are resolved using a sub-stepping procedure, which, broadly speaking, implies that the hydrodynamic
forces are kept constant over N, sub-iterations of the Newton-Euler equations while the collision force
are reiterated. In this thesis, the number of sub-steps is chosen to be in the range N, € [150,240] in
accordance to previous studies, cf. Kidanemariam (2016) for more details.

3.2.3 Transport of suspended bacteria

Similar to the Navier-Stokes momentum equation, eq. (3.9) is solved on Q rather than than solely on Qy,
and the boundary conditions are imposed using the immersed boundary method. Two boundary con-
ditions for the bacteria concentration on the particles are investigated—a Dirichlet-type boundary con-
dition imposing a constant value effectively acting as a source of suspended bacteria, and a Neumann-
type boundary condition imposing zero bacteria flux homogeneously on I',. In case of the former, a
constant, particle-dependent value is imposed at the location of the marker points, viz.

ctim) _ o)

'SB,I SB,I'* (3.24)
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3.3 Simulation setup

For the latter, the value of the scalar field is evaluated at a normal distance of A;,,, from the marker
points, and the values to be imposed on T, are determined by a one-sided finite-difference approxima-
tion of the scalar flux, which yields

Co (0 =Y Cop (Xijicr £) Gipm ( Xk =%y = (5 + i) ﬂ(i’m)) AxAyAz (3.25)
ijk
where
(i,m) _x(i)
(i, m) 128
n —.. (3.26)
|x(’ ,m) _ (l)|

is the normal vector for marker point (m) of the i-th particle. An artificial flux is added to eq. (3.9)
analogous to the artificial forcing term in the momentum equations, and its value is determined by

N, NO
Qi (X2 7) Z Z ap" Sipm (e =X ) AVE, (3.27)
(i,m) _ C(z,m)
a0 = %, (3.28)
CS(EM)(t)=ZkCSB[Xiij) Bipm (Xijk = xgr'"))AxAyAz. (3.29)
i

No balance equation is solved for the particles which implies that the flux of bacteria is small compared
to the number of bacteria attributed to the particle.

The nodes of the concentration field are collocated with the pressure field. A central finite-difference
scheme is employed to approximate the spatial derivatives, whereas the temporal derivative is treated
fully explicitly, as stability analysis suggests that the diffusive stability limit is typically abided by the
timesteps commonly chosen for the flow solver. It has been observed that the use of a central scheme
may lead to oscillations in the concentration field in the presence of steep gradients which can be
avoided by reducing the grid spacing, see Ferziger et al. (2002) for a simple one-dimensional analysis
of this problem. For this reason, a dual-mesh method similar to that of Kubrak et al. (2013) has been
implemented in which the computational mesh of the concentration field may be refined such that its
spacing corresponds to Ax/ Nyr with N being the refinement factor which is set to N,,¢ = 2 for the
concentration fields presented in §9.4. Regarding the advective term, trilinear interpolation is employed
for the fluid velocities. The implementation has been validated using various test cases, and a compre-
hensive description of the method and validation can be found in Uhlmann (2019).

3.3 Simulation setup

The underlying flow configuration of the primary series of simulations conducted within this thesis is
open-channel flow with a Cartesian coordinate system chosen such that x, y, z denote the streamwise,
wall-normal and spanwise direction, respectively. The alignment of the channel is horizontal implying
that g =(0,—g, 0)”, and hence, the wall-normal direction is commonly also referred to as the vertical
direction. The bottom of the domain, i.e. the location an object which is solely subject to gravity moves
towards, corresponds to the no-slip wall, whereas the top of the domain corresponds to the free-slip
wall. The domain periodically repeats in the streamwise and spanwise directions with the respective
periods being denoted by L, and L,. In the context of river flows, this is to be understood in the sense
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Figure 3.1: Sketch of the main numerical experiments which discussed and referenced throughout this thesis. The simulations
feature a turbulent open-channel flow over a fully-resolved mobile sediment bed. Additionally, contaminant particles
are added to the fully-developed flow at ¢ = 0 and then transiently settle downwards in wall-normal direction.

that there is no influence exerted by any walls normal to these directions, and thus, as an approximation
to the core of a river where the region of interest is within a reasonable distance to the river shore such
that its effect can be neglected. The flow is driven by a constant mass flux in streamwise direction, which
is imposed by means of variable body force corresponding to the mean pressure gradient in eq. (3.3).

A sketch of the simulation setup is provided in fig. 3.1. Two sets of particles are considered in the
simulations—sediment particles which accumulate at the bottom of the domain to form a sediment bed,
and contaminant particles which represent the entering contaminating solids. All of these particles are
fully resolved with respect to the microscopic flow scales in their vicinity using the immersed boundary
method described in §3.2.1, and are subject to the collision model introduced in §3.2.2.

The sediment particles constitute a sediment bed with an average height of H; which is already present
when the contamination is introduced to the flow. In fact, as a precursor for the main simulations, the
configuration is simulated in absence of contaminants until a quasi-steady state for the bedform and
turbulence is achieved, such that both are completely established before the contamination is intro-
duced to the flow. All sediment particles are fully mobile as described by eq. (3.8) with the exception
of a regularly distributed layer at the bottom of the domain which is kept immobile in order to prevent
collective sliding of the bed. The particles are monodisperse in the sense that they all share the same
diameter and density. The parameter point is chosen such that the bed is sufficiently mobile to exhibit a
significant streamwise particle flux and to freely develop natural patterns such as ripples or ridges, but
still heavy enough such that bedload transport stays confined to a layer close to the interface and sedi-
ment particles are only rarely ejected into the bulk flow. A thorough description of the parameter range
is provided in §3.5.

A contamination is introduced to the flow by means of an initial value problem: contaminant particles
which mimic the presence of dispersed solids are seeded close to the top boundary at the beginning
of the simulations (¢ = 0), and transiently settle downwards until a statistically steady state is reached,

54



3.4 Definition of fluid-sediment interface

cf. §2.3.5. Again, the set of particles is monodisperse, however, their properties may differ from those of
the sediment particles. A summary of the contaminant parameter range is provided in §3.6.

3.4 Definition of fluid-sediment interface

Due to the presence of a sediment bed at the bottom of the domain, the near-wall behaviour of the fluid
is not primarily driven by the no-slip wall, but rather by the interactions with sediment particles. In fact,
the sediment bed constitutes an irregular virtual wall which is porous, rough and deformable, cf. §2.3.1,
and its interface position needs to be defined and characterised.

A straightforward approach of defining the fluid-sediment interface is based on the thresholding of the
solid indicator function

1 ifinside solid phase
Xp (X, 1) = (3.30)
0 else

averaged over statistically homogeneous directions. As an example, Kidanemariam and Uhlmann
(2014a) used ( Xp )Z = 0.1 as a threshold to determine the x- and ¢-dependent interface of ripple bed-
forms, where ( >z denotes the spanwise averaging operator defined analogously to eq. (2.21). While this
method certainly provides satisfactory results for the investigation of bedforms, its primary disadvan-
tage for the current work is that any instantaneous inhomogeneity is lost in the direction of averaging.
With regards to the solid-solid interactions between the contaminants and the sediment bed, it is desir-
able to have a two-dimensional definition of the interface in order to retain more details of the interface.
For this reason, a novel definition based on geometrical and physical considerations is employed in this
thesis, which has been developed together with Scherer (2022). Two-dimensional interfaces generated
by this method were already successfully utilised in the study of ripples (Scherer et al. 2020) as well as
ridge-type patterns (Scherer et al. 2022). In the remainder of this section, the algorithm to obtain such a
interfaces is outlined alongside the visual illustrations provided by fig. 3.2

In a first step, from the complete set of particles (fig. 3.2(a)), those particles which are either suspended
of belong to bedload, cf. §2.3.1 for definitions of these terms, are removed using the inclusive disjunction
of two criteria (fig. 3.2(b)). The first criterion is based on the vertical component of the contact force of
the particles, which is easily accessible from the collision model used the numerical simulations. In
order for a particle to belong to the bed, the vertical component of this force has to be non-negligible,
which implies that all particles for which the collision force is negligible as compared to their submerged
weight likely belong to the suspended load. For this reason, particles for which

|Fp,col 'g|

— PO <1077, (3.31)
(0 —py) 2y g*

holds are disregarded for the determination of the interface. The second criterion aims to eliminate
particles which belong to the bedload, i.e. the region of vigorous sediment transport where particles
may still be in contact, and thus, not be captured by the force criterion. In this case, if a particle exhibits
an instantaneous kinetic energy larger than a given threshold, that particle is disregarded. In particular,
this criterion is formulated as

lu, |

—— >0.17, (3.32)

Up.g
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Figure 3.2: [llustration of the individual steps of the algorithm used to extract the two-dimensional interface between the fluid
phase and the sediment bed. (a) The complete set of sediment particles. (b) The set of sediment particles after those
particles which have been classified as bedload or suspended load are removed. (c) The raw interface obtained by
concave shape extraction using the a-shape method by Edelsbrunner and Miicke (1994). The irregular locations of
the particle centres which form the surface nodes are indicated by black dots. (d) The final interface hy,(x, z, f) after
interpolation to a regular grid and smoothing. In all subfigures, the colouring indicates the height of the particles or
interface.

where the threshold may be interpreted as a critical value of the local and instantaneous Shields param-
eter, and its chosen value is motivated by the value of the global Shields parameter used in the simu-
lations. The thresholds have been varied within a reasonable range and only little sensitivity has been
detected for the quantities of interest in this thesis.

The second step requires a definition of the shape of the set of remaining sediment particles. Since this
set is generally non-convex—the bed will typically consist of various hills and troughs—and its concave-
ness is to be taken into account, the intended level of detail has to be prescribed in order to make the
solution unique. Here, the a-shape algorithm proposed by Edelsbrunner and Miicke (1994) is applied,
which introduces a single free parameter « that defines the minimum length scale for which concave-
ness is permitted. This algorithm is deployed on the centre point locations of the filtered set of sediment
particles, and a = 1.1d is chosen to be slightly larger than the diameter of the sediment particles.1 The
result is a triangulation of the topmost and bottommost particles with irregularly distributed vertices
corresponding to the centre points of the particles which constitute the interface. Figure 3.2(c) provides
avisual example of such a triangulation.

In the last step, the result of the a-shape algorithm is postprocessed. The upper triangulation is interpo-
lated onto a regular grid for reasons of convenience, and additionally, a two-dimensional box filter with
a width equivalent to oy, = 5d; in each direction is employed in order to smoothen small fluctuations

1 The subscript “s” is used here and henceforth as a particularization of the subscript “p” and denotes a quantity which is specific

to the set of sediment particles, rather than particles in general.
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3.5 Flow over the sediment bed in the absence of contaminants

and reduce noise. The result of this procedure is the instantaneous, two-dimensional fluid-sediment
interface hy(x, z, ) (fig. 3.2(d)).

For the major part of this thesis, it is sufficient to characterise the bed in terms of its statistics. Therefore,
the spatio-temporal average of the bed height,

Hy = () (3.33)
and its standard deviation
20172 2 2
(M Vear = My )eee = Hy (3.34)

are introduced. Correspondingly, the mean clear fluid height, which denotes the distance between the
sediment-interface and the top boundary of the domain, is given by

Hp=L,~H, (3.35)

and constitutes an adequate definition of the vertical extent of the flow domain. As for the transient
settling this distance is highly relevant, the coordinate system is chosen such that y € [-H,, H f], and
hence, the mean position of the interface is located at y = 0.

3.5 Flow over the sediment bed in the absence of
contaminants

Now that the fluid-sediment interface has been defined, the base configurations to which contaminants
are added can be discussed. Due to the role of the sediment bed as a virtual wall, the statistics of the tur-
bulent flow in the open-channel are strongly tied to the characteristics of the sediment bed, and hence,
need to be discussed jointly. Henceforth, the combination of the turbulent flow and the associated sed-
iment bed will be denoted as background flow, and its description is crucial for the determination of
the contaminant parameter points. In this thesis, three distinct background flows are considered which
differ in their value of the bulk Reynolds number, which is now defined as’
upHy

Rey, = , (3.36)
v

and the patterns exhibited by the sediment bed. For the lower Reynolds number of Re;, = 3009, two bed-
forms are considered—one with a macroscopically flat bed which solely exhibits turbulence-induced
ridges (henceforth denoted by “LR”), and one with ripple features (henceforth denoted by “RP”). For
both background flows, the exact same physical parameters are imposed which enables a direct assess-
ment of the influence of bedforms on the spreading of contaminants. This was achieved by artificially
suppressing the formation of ripples in the LR background flow by reducing the streamwise period of the
simulation domain below the minimal value required to trigger the instability, see Kidanemariam and
Uhlmann (2017) for a detailed discussion on this procedure. Indeed, LR and RP have been initialised
from cases H3 and H6 presented in Kidanemariam and Uhlmann (2017) with the distinction that the

2 The current definition of the bulk Reynolds number is the same as eq. (2.23) with the newly defined clear fluid height used as

the length scale. It should be noted that the value of the clear fluid height is not known a priori as it depends on the interaction
between the flow and the sediment bed. It can, however, be estimated with reasonable accuracy.
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Table 3.1: Summary of the physical parameters associated with the turbulence and sediment bed which constitute the background
flow of the transient settling simulations.

12\1/2

case Re, Re, Ga py/p; Hp/d; Hy/ds (hy)./ds df 6 bedform

LR 3009 241 284 25 274 11.0 0.34 8.8 0.10 flat
RP 3009 340 28.4 25 27.7 10.7 2.08 12.3 0.19 ripple
HR 9483 838 56.7 2.5 28.6 7.0 0.52 29.3 0.27 flat

Table 3.2: Summary of the numerical parameters concerning the computational domain and the resolution of the fluid discreti-
sation and sediment particles. The observation time corresponds to the time interval over which statistics on the back-
ground flow have been gathered. N, Ny, N, denote the number of grid nodes in x, y, z direction, respectively, and Nj is
the total number of sediment particles.

case [L.xL,xL]/H [N.xN,xN,]  Ax" N, dy/Ax tylt,
x " by bz 'f X 'y z s s obs' 'b

LR [2.80x1.40%x2.80] [1152x576x1152] 0.58 65359 15 217
RP [5.60x1.40x2.80] [2304x576x1152] 0.82 127070 15 214
HR [2.49x1.24x2.49] [2560x1280x2560] 0.81 45612 36 283

mesh has been refined by a factor of 1.5 in all directions in order to accommodate a wider range of con-
taminant sizes. In contrast, the higher Reynolds number flow (HR) has been developed from scratch in
a high-performance computing project associated to this thesis (GCS 2021, Gedenk 2022). Its value of
the bulk Reynolds number is significantly higher at Re, = 9483, and consequently, only few experiments
could be performed for this background flow due to its high demand of computational resources. In par-
ticular, the contaminants are only seeded over a featureless sediment bed such that a direct comparison
of the Reynolds number effect is only possible for macroscopically flat beds.

For the purpose of defining the wall shear stress on the virtual wall, the method of Chan-Braun et al.
(2011) is applied in which the fluid shear 7; defined in eq. (2.24) is extrapolated from the bulk of the
channel onto the mean position of the sediment-fluid interface at y = 0. The resulting wall shear stress
is then used to define the friction velocity from eq. (2.26) and the remaining inner scales. The friction
Reynolds number is then given by

u, H,
Rezrf

T H

(3.37)
i

in accordance with eq. (2.29) using Hy as the outer length scale, and its value reads Re, = {241,340,838}
for the LR, RP and HR background flows, respectively. The corresponding values of the Shields parame-
ter introduced in eq. (2.48) are 0 = {0.10, 0.19, 0.27} and bedload transport can be observed for all back-
ground flows considered. The particle diameters scaled in inner units read d,, = {8.8,12.3,29.3} for LR,
RP and HR such that the sediment particles are significantly larger than the smallest turbulent scales in
all cases. Summaries of relevant physical and numerical parameters regarding the turbulent flow and
the sediment bed are provided in table 3.1 and table 3.2, respectively.

In order to characterise the temporal evolution of the sediment bed topology, the instantaneous fluid-
sediment interface is presented in streamwise-averaged and spanwise-averaged form in the follow-
ing. The streamwise-averaged perspective enables an evaluation of turbulence-induced ridges, i.e. the
streamwise-aligned streaks of elevations and troughs with relatively low-amplitude, whose length is typ-
ically sufficiently long to span the entire streamwise length of the domains considered in this thesis. Fig-
ure 3.3 displays the spatio-temporal evolution of (i, (x, z, 1)), for the two macroscopically flat cases LR
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Figure 3.3: Temporal evolution of the streamwise-averaged fluid-sediment interface (hy,(x, z, ) )x for the featureless background
flows. (a) LR, Re; = 241. (b) HR, Re; = 838. The dotted vertical lines mark the initial conditions for the transient settling
problem aside from ¢ = 0, cf. §3.6. The evolution of the bed is shown in absence of contaminant particles.
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Figure 3.4: Temporal evolution of the averaged fluid-sediment interface for the background flow featuring ripples (RP). (a)
streamwise-average (hy,(x,z, 1) )x similar to fig. 3.3 indicating the presence of superimposed ridges. (b) spanwise-
average (hy(x,z, 1) )Z showing the propagation of the ripple. Contaminants are added to the flow at ¢ = 0 as well at
the times marked by the dotted vertical lines, cf. §3.6. The evolution of the bed is shown in absence of contaminant
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Figure 3.5: Characterization of the sediment bedload layer. (a) Local solid volume fraction as a function of vertical position. (b)
Streamwise flux density of particles in inertial scaling and normalised by the expected scaling of [ Apx dy/ (vp,gds)
according to the Wong and Parker (2006) version of the Meyer-Peter and Miiller (1948) formula. The vertical grey
lines indicate the mean position of the sediment-fluid interface, whereas the dots on the curves indicate its standard
deviation. Legend: LR (—), RP (—), and HR (—).

59



3 Problem formulation and methodology

and HR. Albeit the sediment ridges exhibit some dynamics, their spanwise position is relatively stable in
time—an attribute which is likely inherited from the large-scale fluid motion they are generated by. In
general, their time scale of meandering and their lifetime are substantially longer than the time scales
of the transient to be investigated in this work which are generally of O(10%,) as will be unveiled in §3.6.
Sediment ridges can also be observed in the presence of other bedforms as is suggested by fig. 3.4(a)
which displays the streamwise-averaged bed height for the case RP which features a single ripple. To
characterise the spanwise-aligned ripple, (hb(x, z,t) )Z is shown in fig. 3.4(b). The amplitude of this fea-
ture is several times larger than that observed for ridges, and hence, ripples dominate the appearance
of the fluid-sediment interface. As indicated by the spatio-temporal evolution, the feature propagates
in streamwise direction with a nearly constant speed in the time interval under observation. This speed
can be quantified by defining the two-point, two-time correlation of the interface fluctuation (Kidane-
mariam and Uhlmann 2014a), viz.

(3.38)

vl

Ry, (6x,61) := (), (x, 1) (hy), (x+6x, 1 +61)),

and a subsequent linear regression of the streamwise shift 6x for which R;, reaches its maximum at a
given temporal shift 6¢. The propagation velocity obtained for RP in the time interval shown in fig. 3.4(b)
reads

crp = 0.02314, (3.39)

which is somewhat lower than the value reported by Kidanemariam and Uhlmann (2017) for this case
(cgp = 0.03214). One source of deviation lies in the method of interface extraction, as the method pro-
posed in §3.4 is observed to result in larger values of Hy compared to the method employed by Kidane-
mariam and Uhlmann (2017), which implies smaller values for 1, at constant flow rate. However, this
scaling effect tends to reduce the observed deviation, and thus, the discrepancy still persists when the
same extraction method is used for both cases. Ruling out differences in scaling, the reduction of cgp is
presumably a result of the grid refinement, as all physical parameters and all other relevant numerical
parameters are matched between the simulations. In particular, the distance over which the particle
collision force acts before two particles overlap is set to A,,; = Ax in both cases, and thus, the effective
diameter d, + 27, of the particles in the refined simulation is approximately 5.5% smaller than that in
Kidanemariam and Uhlmann (2017). This results in a more compact beds, for which it appears reason-
able that the mobility of particles, and hence cpp, is reduced.

As stated earlier, the shape of the virtual wall is only one way with which the sediment bed interacts with
the carrier flow. In the following, the bedload will be characterised in order to fathom how much the
direct influence of the sediment protrudes into the flow. To begin with, a local solid volume fraction is
defined as

G )= (X, x 1) _, (3.40)

which is a function of vertical position. Figure 3.5(a) provides the spatial evolution of ¢, and demon-
strates that for all background flows considered a fair amount of sediment particles can be still be found
at distances of O(0.1Hy) from the interface. In accordance with their Shields number difference, HR
extends further into the flow than LR and sediment particles can regularly be found outside the inner
layer of turbulence. For RP, the increased variance in bedform height leads to a similar effect and causes

3 The refined simulations exhibit a mean bed height which is about 7.5% reduced compared to the unrefined simulations when

the extraction method of Kidanemariam and Uhlmann (2017) is used.
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3.5 Flow over the sediment bed in the absence of contaminants
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Figure 3.6: Turbulence statistics of the sediment-laden background flows. (a) Mean streamwise velocity. (b) Mean shear induced
by the vertical gradient of the streamwise velocity. (c) Root-mean-square of the fluid velocity fluctuations uj'.» (=), U}

(===)and w]’c (serenee ). (d) The Reynolds stress uj'c U;'. Legend: LR (—), RP (—), and HR (—).

the solid volume fraction to decrease more gradually in wall-normal position. Aside from the spatial
distribution of particles, it is also common to examine the momentum carried by the solid phase. For
this purpose, the sediment flux density is defined as

Gpx (¥, 1) = (U (X, DY, (X, 1)), (3.41)

where u, (x, 1) is the streamwise component of the particle velocity evaluated in the Eulerian frame. As
suggested by its name, integration of the sediment flux density in the vertical direction yields streamwise
sediment flux, and thus, it serves as an adequate proxy to assess bedload transport for the background
flows considered. Figure 3.5(b) shows ¢, , normalised by the gravitational velocity and scaled across the
various background flows in terms of the scaling law of the total sediment flux according to the Wong
and Parker (2006) based on the formula of Meyer-Peter and Miiller (1948). For all background flows
investigated, the bedload layer extends well into the buffer layer and beyond—a characteristic which is
ought to be kept in mind when analysing the settling of contaminants.

In §2.3.1, the effect of mobile sediments on the turbulence statistics was discussed in a general context.
To conclude the characterization of the background flow, the actual statistics of the turbulent flow are
presented for the three background flows. Figure 3.6(a) shows the mean streamwise fluid velocity as a
function of the wall-normal coordinate. Due to the porosity of the interface and the vagueness of its
location, (u; )xzt does not strictly vanish at the virtual wall. This characteristic is especially pronounced
for RP where the considerable variability in bed height causes the velocity to be significantly greater
than zero. Another implication of the diffuseness of the interface is that the strongest gradient in <uf )xzt
is not observed directly at the (virtual) wall, but rather at a significant distance from it, see fig. 3.6(b).
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3 Problem formulation and methodology

This effect is most pronounced for RP where the decay of (u; )xzt with decreasing distance from the wall
is already initiated at y ~ 0.3 Hy, whereas the flows over macroscopically flat beds (LR,HR) decay more
abruptly starting around y = 0.2H;.

Regarding the second moments of the velocity statistics shown in fig. 3.6(c), it can first and foremost be
observed that the amplitude of the near-wall peak in (u}2 )xzt decreases with increasing Reynolds num-
ber, which indicates the absence of turbulent structures associated to the near-wall cycle, cf. §2.2.3 and
§2.3.1, and in particular, the velocity streaks of the buffer layer. In presence of ripples, the peak ampli-
tude is increased compared to the featureless case which is presumably due to the bedform itself. Just
like the streamwise fluctuations, the wall-normal and spanwise fluctuations differ only little across the
background flows above y £ 0.3Hy. Significant vertical fluctuations protrude closest to the interface in
the presence of ripples, and the tendency to do so increases with increasing Reynolds number. Con-
cerning the spanwise fluctuations, the influence of bedforms appears to be more significant than that
of the Reynolds number.

The turbulent Reynolds stress is the primary contribution to the fluid shear stress above the height where
fluid shear becomes significant, see fig. 3.6(d). In the presence of particles, the balance of mean stream-
wise momentum formulated in eq. (2.24) is complemented by an additional stress term due to the body
forcing term related to the presence of particles (Uhlmann 2008, Kidanemariam et al. 2013). The pre-
mature decay of (u]'c v})xzt in the presence of ripples can be in part attributed to the presence of this
term.

3.6 Description of the contaminants

The principal objective of this thesis is to study the spreading of contaminations which enter a flu-
vial system from the free surface. Two types of contaminations are distinguished in this thesis—solid
contaminants which are subject to the equations of motion of particles, and dissolved contaminants
whose transport is governed by the advection-diffusion equation. However, due to the paramount role
of particle-attached bacteria in the spreading of microbial contaminations (McDonald et al. 1982, Sherer
et al. 1992, Wilkinson et al. 1995, Jamieson et al. 2005) and the complexity of the dynamics of particles
in turbulent flows, the primary focus of this thesis lies in the investigation of the former type, and the
discussion of dissolved contaminations is restricted to §9.

As described in §2.3.3, the seeding of heavy particles near the top boundary of the flow domain results
in a transient settling problem. While there are endless possibilities for the initial distribution of con-
taminants, the only configuration considered in this work is the distribution in which all particles are
initially located at the same vertical position, see fig. 3.7 for a visualization. This choice was made due
to the homogeneous properties of this distribution in streamwise and spanwise direction which gives
it the advantage of generality over more localised distributions. Moreover, this initial condition may
be interpreted as an equivalent distribution to the line source used in the related experimental work of
Cuthbertson and Ervine (2007) for a periodic setup, and thus, enables a comparison to existing data.

The initial centre point location of all contaminant particles is y,, = 0.953Hf.4 For this location, all
contaminant particles considered in the following are fully immersed into the flow, which implies that
Yoo < Hy —d, /2. Within this y-normal plane, the particles are distributed randomly while ensuring that
they do not overlap. For this purpose, a random Poisson process is implemented using the subsequently

4 Henceforth the subscript “c” is used to denote properties attributed to contaminant particles.

62



3.6 Description of the contaminants
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Figure 3.7: Example of the initial distribution of contaminant particles (red spheres). (a) Lateral view of the simulation domain.
The contaminant particles are initially located at the exact same vertical position o = 0.953H £ (b) Top view of the
simulation domain. Within the xz-plane, the particles are distributed randomly using a random Poisson process while
avoiding overlaps. While the global solid volume fraction can be considered as dilute, the distribution in the initial
plane is rather dense. This exemplary parameter point corresponds to G30-D15-HR.

Table 3.3: Summary of all contaminant parameter points investigated in this chapter including all relevant physical and numerical
parameters. The table includes the value of the characteristic settling time , ; = H¢/ v, ., which is introduced at a later
point.

case Ga pc/pf d; Hf/dc Re, I St N, N d./Ax tp,s/tb tos/

G30-D10-LR 284 25 88 274 187 047 54 1000 {51} 15 5.9  {8.3,436}
G15-D10-LR 164 15 88 274 81 1.08 4.7 1000 6 15 13.5 12.5
G15-D6-LR 154 25 58 412 73 080 3.1 3375 6 10 10.0 12.5
G10-D6-LR 109 1.75 5.8 41.2 42 140 2.7 3375 {51} 10 17.5 {12.5,435}
G30-D10-RP 28.4 25 123 277 18.7 0.66 10.5 2000 {3,1} 15 5.8 {12.2,428}
G10-D6-RP 109 1.75 82 415 4.2 196 53 6750 {3,1} 10 17.3  {12.2,427}
G30-D15-HR 27.1 25 179 46.8 179 1.00 234 3913 1 22 11.4 14.1
G10-D10-HR 10.8 1.75 122 68.6 4.2 2.88 12.2 12346 1 15 32.6 19.3

described algorithm which is repeated until the desired number of contaminants has been distributed.
First, a candidate for the horizontal centre point position is generated by drawing two uniformly dis-
tributed pseudorandom numbers from the intervals [0,L,) and [0, L,). Second, the distance from this
candidate to all previously distributed particles is computed, and if any of those distances is smaller
than d, + ¢, a new candidate is generated until this criterion is fulfilled. Here, € denotes a small distance
which is introduced to avoid high initial collision forces and numerical complications, which is set to
be of O(Ax). When the distance criterion is fulfilled, the contaminant particle is assigned the position
of the candidate and the algorithm is continued until all particles have been distributed. The contami-
nants’ initial velocity is set to the value of the fluid velocity at the position where the particle is placed.
Therefore, the mean velocity of the fluid and solid phase is approximately equal at initialization as the
contaminants sample the xz-plane randomly. In particular, this implies that the contaminants initially
have, on average, zero momentum in the vertical direction, and hence, start settling from rest.

Table 3.3 provides a summary of the contaminant particle parameter points examined in this thesis. The
naming convention of the cases consists of three compartments—an indication of the Galileo number,
the diameter in inner units, and the background flow—which are separated by hyphens. The input pa-
rameters are varied with respect to the Galileo number, the particle diameter, and the density ratio, and
the most extensive investigation has been performed in the background flow over a macroscopically flat
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3 Problem formulation and methodology

bed at a low turbulent Reynolds number (LR). These cases are complemented by further simulations
involving ripple bedforms (RP) or at a higher Reynolds number (HR), which have been conducted ex-
clusively for the highest and lowest Galileo number under investigation, and are approximately matched
in input parameters to the LR simulations.

The total number of contaminant particles per simulation, denoted by N, is not constant across the
various cases. Instead, N, is chosen such that the global solid volume fraction of contaminants defined
as

1 nd>N,
() f (3.42)

“" Hf _Hb(pf y= 6L, HyL,

attains a value of &, =3.2- 107>, In this definition, ¢, denotes the local solid volume fraction introduced
in eq. (3.40), but only applied to the set of contaminant particles. While the selected value of @, is
generally low enough to classify the system as dilute, one has to keep in mind that the local solid volume
fraction in the plane of initialization is not small as ¢, () € [0.13,0.33], cf. fig. 3.7 for a visualization of
the case with an initial area coverage of ¢, = 0.23.

In order to ensure a sufficient number of samples to obtain converged statistics and to minimise the
influence of the specific flow conditions at initialization, multiple realizations of the numerical simu-
lations have been performed per parameter point whenever possible. In particular, all simulations at
LR have been realised six times and the simulations of the RP series four times. Figures 3.3 and 3.4
indicate the state of the sediment bed at the seeding times of the various realizations. While most re-
alizations only cover a relatively short observation time t,,, which constitutes the transient, the LR and
RP runs for the highest and lowest Galileo numbers have also been simulated over substantially longer
time intervals in order to assess the long-term deposition behaviour. Letting N,,,,, denote the number of
realizations of the numerical experiment, the total number of samples available for a single parameter
point is given by

Nz = N:Noyp» (3.43)

and its value varies in the range N5 € [3913,27000].

All particles investigated in this thesis are situated in the axisymmetric wake regime, cf. §2.3.4, and for
all contaminant particles, the value of the Galileo is sufficiently low such that no noteworthy recircula-
tion can be observed in the rear. The choice of this parameter point is driven by the aim to represent
high relative turbulence intensities as the solid matter which is discharged into rivers in CSOs is often
pretreated in a manner that only particles with small settling velocities remain, cf. §1.1. In fact, the rela-
tive turbulence intensities under investigation vary within , € [0.47,2.88] such that various regimes are
covered.

Regarding the particle size compromises had to be made as the limitation in Reynolds number range
for DNS restricts the separation between the smallest and largest scales of the flow. The diameter of
the particle was chosen such that it is larger than the viscous length scale in order to capture small
scale interactions and to avoid computational meshes whose resolution is dictated by the particle scales,
i.e. df > 1. At the same time the contaminant particles are ought to be small compared to the clear
fluid height in order to provide a reasonable vertical distance for the settling process, i.e. d./Hy < 1.
The ability to fulfil both of these demands simultaneously is directly linked to the value of the friction
Reynolds number, cf. §2.2.2, and thus, the longest available settling distance can be found for the HR

64
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Figure 3.8: Setup and results from the reference simulations to determine the terminal velocity. (a) Visualization of the compu-
tational domain showing G10-D6-LR as an example. (b) The resulting terminal velocity as a function of the Galileo
number for all parameter points (markers). Circles indicate parameter points with settling distance and numerical
resolution of the LR simulations, while squares correspond to the HR runs. The black line shows a reference curve
determined using eq. (2.49) and the empirical drag law of Schiller and Naumann (1933). (c) The settling velocity of the
isolated particles as a function of wall-normal position showing that the terminal velocity is reached well within the
finite settling distance. Legend: G30-D15-HR (-+-=*), G10-D10-HR (----), G30-D10-LR (—), G10-D6-LR (—), G15-D10-
LR (—) and G15-D6-LR (—).

Table 3.4: Numerical parameters of the auxiliary simulations conducted to determine a reference value for the ambient terminal

velocity.
case [Lya*Lzql /Ly,a [Lyqx Ly,a XLzl ld, [Nyq* Ny,u XN, 4 d./Ax,
G30-D10-LR [0.333x0.333] [8.5%25.6x8.5] [128x384 x128] 15
G15-D10-LR [0.333x0.333] [8.5%25.6x8.5] [128x384x128] 15
G15-D6-LR [0.333x0.333] [12.8x38.4x12.8] [128x384x128] 10
G10-D6-LR  [0.333x0.333] [12.8x38.4x12.8] [128x384x128] 10
G30-D15-HR [0.267x0.267] [11.6x64.0x11.6] [256x960x256] 22
G10-D10-HR [0.267x0.267] [17.1x43.6x17.1] [256x960x256] 15

series of simulations, albeit one would expect considerably larger values of Hy/d. and Re, in actual

rivers.

3.7 Determination of the ambient terminal velocity

The definition of some of the relevant particle parameters such as the relative turbulence intensity and
the particle Reynolds number require the knowledge of the terminal velocity of the particle in an undis-
turbed ambient container. The value of v, ,, depends on the details of the flow developing around the
particle, and is thus not known a priori. In fact, it has already been stated in eq. (2.49) that knowledge
of the drag coefficient in the quasi-steady settling state is sufficient to derive its value from the grav-
itational velocity which is known at the outset. Various correlations exist to determine C; for a given
Galileo number, however, in the following the terminal velocity will be determined directly from auxil-
iary simulations, which has the advantage of providing a more exact reference due to the avoidance of
inevitable inaccuracies in the correlations and gauging potential systematic errors related to the numer-
ical method employed here.
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The reference simulations contain a single isolated particle in a domain with the same boundary con-
ditions as the open-channel, but without any background flow, see table 3.4 for a summary of the nu-
merical parameters. Similar to the main simulations, the particle is initially located at y,o = 0.95L,,,.
The lateral dimensions are kept short to reduce computational cost, but are generally larger than those
of Uhlmann and Dusek (2014) such that the results can be expected to be independent of the lateral
boundary conditions. The numerical resolution of the particle is matched with that of the turbulent sim-
ulation for each case, which entails that the parameter points in the RP background flow do not need to
be investigated separately as their relevant numerical parameters exactly match those of LR. This is done
in order to reduce systematic errors when normalizing the particle velocities later on, although the data
obtained for G10-D6-LR and G10-D10-HR, which approximately match in Galileo number and should
therefore attain the same terminal velocity, suggests that this is not a major concern, see fig. 3.8(b). How-
ever, the figure also suggests that the results differ from those obtained by an empirical drag law by a few
percent, highlighting the benefit of conducting auxiliary simulations.

The reference simulations are also beneficial to understand how quickly the terminal velocity is attained.
Generally, it appears favourable for the results to not be significantly affected by the initial acceleration
from rest. In order to estimate the significance of the initial transient, the settling distance in terms of
particle diameters, i.e. L,,/d, is matched approximately to that of the turbulent cases. Figure 3.8(c)
shows the particle velocity as a function of wall-normal position under quiescent conditions. For all
cases, terminal velocity is essentially attained in the upper quarter of the channel.

3.8 Computational resources

It should not go unnoticed that the direct numerical simulation of the Navier-Stokes equations requires
considerable resources in terms of computing and data storage for the problem sizes considered in
this work. As may be deduced from table 3.2, the number of grid points required for each field is of
0(10°-10'%), and even a factor of eight larger for each transported scalar field which is considered due
to the refined dual mesh approach. To put this into perspective, a snapshot of the velocity and pres-
sure fields for a single instance in time for the HR simulation series requires 282 GB of storage capacity,
and in order to analyse the flow conditions during the transient in postprocessing, several finely spaced
snapshots have to be stored. The total data size accumulated within the computational projects related
to this work is of O(100 TB), and consequently, most of the analyses which have been performed would
not have been realisable without the availability of appropriate data storage infrastructure. The storage
facilities utilised are namely the “Large Scale Data Facility” (LSDF)—a hot storage system with a capacity
of several petabytes—and the “bwDataArchiv’—a hybrid disk-and-tape-based system for cold storage
purposes. Both systems are maintained by the Steinbuch Centre for Computing (SCC) at the Karlsruhe
Institute of Technology.

Naturally, the generation of such immense numerical datasets demands the use of massively parallelised
supercomputers. The LR and RP simulation series have been for the most part conducted within the
computing project “DNS of transient particle settling in horizontal open-channel flow: investigating the
influence of initial conditions” on the machine ForHLR II at SCC within a budget of 8.3 million core-h
utilizing 324 cores (LR) and 648 cores (RP), respectively. For the HR series, a large-scale project funding
from the Gauss Centre for Supercomputing was acquired, and the corresponding project named “Finite-
size particle dynamics and scalar transport in turbulent open channel flow over a mobile sediment bed”
was conducted on Hazel Hen and Hawk at the High-Performance Computing Center Stuttgart (HLRS)
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within a budget of 50 million core-h utilizing 4000 cores for the HR series and 8000 cores for the de-
velopment of ripple features at high Reynolds number. The latter dataset is not immediately discussed
within this thesis, although it contributed to the recognitions made in Scherer et al. (2022) which are
referred to throughout this work. Aside from these computational projects, several other HPC systems
have been used primarily for postprocessing purposes, which includes bwUniCluster and bwUniClus-
ter 2.0 systems at SCC, and the internal clusters of the Institute for Hydromechanics.

The major computational costs are typically associated to solving the Poisson equation for the pressure
related to the problem stated in eq. (2.17), as it requires knowledge on the flow state in the entire domain,
and thus, gives rise to a large communication overhead on parallel computers. While the direct cost of
the treatment of particle motion itself is rather insignificant in most cases, the numerical methods which
can be employed for the particle-laden flow problem are generally less efficient than their singlephase
counterparts. As a consequence, the advancement in the field of DNS of particle-laden flows is strongly
tied to the advances in high-performance computing, and hence, the approach employed in this thesis
is not meant to provide a practical framework to model bacteria transport. Rather it should be regarded
as a campaign to provide a database for existing transport models and complement them by identifying
potentially unknown small-scale effects which might be of relevance in the bigger picture.
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4 Particle velocity during the
transient

The velocity with which solid particles propagate in the receiving flow plays a paramount role for the
prediction of the spreading of particle-bound bacteria. The vertical velocity component is a parameter
which is frequently used in bacteria transport models, and in the majority of studies, its value is assumed
to equal the terminal velocity in stagnant water disregarding any interactions with the fluid flow. The
purpose of the current chapter is to examine the effect of turbulence on the particle velocity in a phe-
nomenological manner to provide a basis for subsequent more detailed discussions on the interaction
between the carrier flow and the dispersed phase.

4.1 Temporal evolution of the transient

In the initial state of the numerical experiment, the system is out of equilibrium. After release, the con-
taminants collectively settle towards the sediment bed under the action of gravity causing a net down-
ward contaminant flux. As time progresses and contaminants approach the sediment bed, an equilib-
rium between deposition and resuspension is achieved eventually. At this stage, the net contaminant
flux of particles is zero if a sufficient number of contaminant particle is considered, and their vertical
distribution is constant in time.

Without providing a formal definition of the global contaminant flux, this behaviour becomes observ-
able in terms of the average vertical position of the contaminants,

1 N
()0 :=—3 30, 4.1)
Nes io1

where here and in the following (+)} denotes the operation of ensemble-averaging over all contaminants
and realizations at a given instance in time. The statements made on the global flux then translate into
the following: initially, the average position is by definition located at the height of the plane of initializa-
tion, i.e. at y,,, whereas at equilibrium, < yc)1T is a constant whose value depends on the characteristics
of the contaminants and the details of turbulence. The rate at which the equilibrium is approached is
given by the ensemble-averaged settling velocity of the contaminants,

d(y,)
(V) () = dct L (4.2)

At initialization, the average settling velocity is approximately zero, since the contaminants randomly
sample a horizontal plane for which (vf) =0 holds. At equilibrium, (v, ); is required to be zero for
sufficiently large samples. Under quiescent conditions and after an initial acceleration phase, this rate
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Figure 4.1: Ensemble-averaged (a) vertical position and (b) vertical velocity of the contaminant particles as a function of time
normalised by the characteristic settling time. Legend: G30-D10-LR (—), G10-D6-LR (—), G15-D10-LR (—), G15-
D6-LR (—), G30-D10-RP (- -+), G10-D6-RP (- - ), G30-D15-HR (), and G10-D10-HR (-+-~).
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Figure 4.2: The ratio of ensemble-averaged settling velocity of the contaminant particles to their terminal velocity as a function of
relative turbulence intensity, I, = u; /v, 00" Legend: G30-D10-LR (0), G10-D6-LR (0), G15-D10-LR (0), G15-D6-LR (0),
G30-D10-RP (4), G10-D6-RP (4), G30-D15-HR (O), and G10-D10-HR ().

is equal to the terminal velocity. A characteristic time scale at which contaminants reach equilibrium
may therefore be defined in terms of the settling distance and the particles’ intrinsic velocity, viz.

tys = Hp [ Uy oo (4.3)

Figure 4.1 shows the ensemble-averaged vertical position and settling velocity for the time interval cov-
ering the longest common observation time of all realisations, cf. table 3.3. For all cases, the quasi-
steady equilibrium was not reached during the observation time, although the data suggests asymptotic
behaviour. More interestingly, the rate at which equilibrium is approached varies significantly between
the cases. While G30-D10-LR is the only case for which this rate is consistently slower than its quiescent
counterpart, the remaining cases all exhibit a phase where the instantaneous average settling velocity is
faster than terminal velocity.

The amplitude of the peak in settling velocity is shown as a function of relative turbulence intensity in
fig. 4.2. The degree of enhancement is quite significant: for G10-D10-HR—the parameter point with
strongest enhancement—an increase of approximately 70% is observed. This behaviour is notably dif-
ferent from unbounded turbulence (Chouippe and Uhlmann 2015, Fornari et al. 2016, Chouippe and
Uhlmann 2019), as well as vertical channel flow (Uhlmann 2008, Garcia-Villalba et al. 2012), where the
settling velocity is normally found to be reduced. This discrepancy may be attributed to the substantially
higher relative turbulence intensity, anisotropy causing a preferential direction of flow structures, or the
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Figure 4.3: The local flux of contaminants (net number of crossings per unit time) as a function of vertical position and time. The
various cases are arranged in column-major order: (a) G30-D10-LR, (b) G15-D10-LR, (c) G15-D6-LR, (d) G10-D6-LR,
(e) G30-D15-HR and (f) G30-D10-HR.

boundedness of the flow. The finding of a strong enhancement is, however, consistent with the observa-
tions made by Cuthbertson and Ervine (2007) and Bragg et al. (2021a) in horizontal channel flows, as will
be elaborated in detail at a later point. For all cases under investigation, the settling velocity peak shows
the tendency to increase with increasing relative turbulence intensity, and the data points roughly col-
lapse on a single curve for all parameter points investigated. In particular, the effect of ripple bedforms
on the settling velocity appears to be captured well by merely considering the modification in ;.

While the ensemble-averaged settling velocity is a suitable global indicator for the transient, a more
localised quantification may be desirable in order to track the progress. Therefore, the rate at which
contaminant particles cross a given wall-parallel plane is defined as

1 t+6t/2 . . .
Jex (D= = ft s (Mo (1 £5) = ngx (1, £9)) 2™, (4.4)

where 7, x; (3, £) is the number of upwards crossing through such a plane per unit time gathered from
all realisations, n, x| (¥, t) the corresponding number of downward crossings, and 67 ~ 0.0881;, the length
of the time interval under consideration. At equilibrium, upward and downward crossings are balanced
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Figure 4.4: The number of contaminant crossings of a given wall-parallel plane as a function of vertical position. The data is
normalised by the total number of contaminants, i.e. the number of contaminants per realization times the number
of realizations. The vertical grey line denoted the plane of initialization. (a) Only the first crossing of each particle
is considered. (b) All upward and downward crossings are considered. Legend: G30-D10-LR (—), G10-D6-LR (—),
G15-D10-LR (—), G15-D6-LR (—), G30-D10-RP (- =), G10-D6-RP (- - ), G30-D15-HR (), and G10-D10-HR ().

aside from fluctuations, and thus, j.x tends to vanish everywhere. Figure 4.3 displays the temporal
and spatial evolution of j, y, and the inferences on the progress of the transient are in accordance to
those made based on the ensemble-averaged settling velocity, with the additional information that the
remaining fluctuations are restricted to the lower parts of the channel. Moreover, the data suggests
that no significant upward motion across the plane of initialization occurs, with the notable exception
of G10-D10-HR where a small upward flux can be perceived at early times due to the low submerged
weight.

4.2 Spatial-averaging operator and trajectory
crossings

When investigating the time evolution of ensemble-averaged quantities, one has to keep in mind that
the contaminants are generally located at various wall-normal positions for a given instance in time, as
can be deduced from fig. 4.3, and hence, some information is obfuscated by the averaging procedure.
For instance, the rapid decay of (v, )y after the occurrence of the peak can be attributed to the arrival of
fast-paced particles in the near-wall region where they are decelerated. Moreover, spatial information
such as the variation in turbulence structure with wall-normal position becomes fuzzy in such a per-
spective. Therefore, a spatial ensemble-average is introduced in order to investigate position-dependent
behaviour with the definition

D M
(k= Lo (), (4.5)
X i=1

where (p(i)(t) is a placeholder for any quantity attributed to an individual particle (such as its velocity)

and N,y (y) is the sample size of crossings through a wall-normal plane located at y in all realization

(i)
tC,X’
averages a quantity irrespective of the time at which the particle is located at y.

at any time. The time at which the i-th crossing occurs is denoted by and hence, ( >x ensemble-

In order to evaluate eq. (4.5), the cross-through time £, x (y) has to be determined from the vertical tra-
jectories of the contaminant particles. In general, y,(?) is not a bijective function, and thus, the number
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4.2 Spatial-averaging operator and trajectory crossings

of crossings does not necessarily correspond to the number of contaminants, i.e. particles may cross
a given plane more than once or not at all during the observation time. Therefore, it can be readily
acknowledged that averages obtained using this procedure are sensitive to the observation time. The
longer the period of observation endures, the more crossings may be attributed to events in the quasi-
steady equilibrium rather than the transient phase. This is especially true in the lower parts of the chan-
nel where particle concentration is the highest then. In order to avoid this peculiarity, {+ ), only consid-
ers the first crossing of a given particle through the control plane. This restriction has further advantages
which are discussed in §4.4. However, it is occasionally informative (or practical) to loosen this require-
ment, and whenever a different sample is used it will be denoted by either ( >XT (all upward crossings),
()x, (all downward crossings) or (), (all up- and downward crossings), with N x;, N, x| and N, x;,
denoting the respective sample sizes.! In fact, for the inferences made in the present work, { >x | only
differs little from (- ), as will be demonstrated in §5.2.1.

4.2.1 Number of crossings

The number of crossings provides valuable information on its own. When only the first crossing is con-
sidered, N, x / N,z becomes a measure for the sufficiency of the observation time under the assumption
that every particle crosses a given plane eventually, which is corroborated by the findings in the sub-
sequent section §4.4. If for a given vertical position its value equals one, then all contaminants have
settled through this layer at least once and the transient can be considered as completely captured
within the observation time. For N, x / Nz < 1, its value provides a quantitative measure for the suffi-
ciency of the observation time. Hence, fig. 4.4(a) implies that the cases G15-D10-LR, G10-D6-LR and
G10-D10-HR are somewhat truncated by the finite observation time at vertical positions roughly below
y=10.4,0.5,0.6} Hy, respectively, judging by a 90% percentile requirement. Therefore, possible implica-
tions of such a truncation need to be discussed.

It seems natural that an incomplete sample is biased towards faster moving particles, as these likely have
a higher probability to first cross a given plane within a shorter amount of time.> Consequently, the
mean of the settling velocity is presumably overestimated and its variance underestimated for positions
where N, x /N,y < 1, and similar ramifications are to be expected for any quantity which is correlated to
the settling velocity. Nevertheless, it should be noted that N, x close to the sediment bed is also subject
to geometric constraints, as y = 0 corresponds to the spatio-temporal mean position of the interface and
irregularities in the bed will cause particles to be deposited before this position is reached, thus, limiting
the validity of this analysis for the near-bed region.

When the total number of crossings is considered, information on the extent of the region of quasi-
steady equilibrium can be inferred, see fig. 4.4(b). For the cases with relatively long observation times, a
peakin N, x;, is visible in the vicinity of the sediment bed, whereas N, x; = N, x above. The peak resem-
bles the streamwise flux of sediment particles in shape, cf. fig. 3.5(b), and is presumably correlated to
the streamwise flux of contaminants at equilibrium. Furthermore, its location coincides with the sudden
drop in N, x close to the lower boundary, indicating that resuspension acts as an apparent deposition
barrier at this point. The three cases with Ga = 10 slightly deviate from the behaviour of the remaining

The sample size of crossings is linked to the previously defined number density of crossings by means of integration over the
entire observation time, e.g. N, x| = fot"bs g x| dt.

While this statement might appear self-evident at a glance, it really depends on the definition of a “fast” particle and its accel-
eration history. The correlation between the initial crossing time of a given wall-normal and the corresponding instantaneous
settling velocity is examined in §4.3.5.
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Figure 4.5: Conceptual sketch of the bias in ensemble averaging when plain binning is employed. Slowly settling particles con-
tribute more samples (@) to the average than fast ones, thus causing every ensemble-averaged quantity to be biased
towards slow particles. The spatial averaging procedure defined in eq. (4.5) circumvents this problem by only consid-
ering the crossings of a two-dimensional plane as samples (“plane of interest”).

cases in the sense that a perceivable number of upward crossing can already be observed well above the
near bed region. This is likely due to the high relative turbulence intensities in these cases, and is partly
concealed by the significant decrease in the total number of crossings in the lower half of the channel
and near absence of a near-bed peak. A comparison with fig. 4.4(a) suggests that this is a manifestation
of the shorter relative observation time, i.e. the footprint of the transient phase still dominates that of
the equilibrium phase for these parameter points.

Both the data for N, x and N,y indicate that contaminants rarely move upwards directly after their
initial release, and thus, potential non-physical interactions with the upper boundary can safely be ne-
glected. Furthermore, for G10-D10-HR where these events are the most frequent, N, x| = 2N, x which
suggests a parabola-like motion with little complexity.

4.2.2 Comparison to binned averaging

The spatial ensemble-average defined in eq. (4.5) is distinct from a plain binned averaging procedure,
which is often employed for other flow configurations or, more relevantly, in the relevant experimental
study by Cuthbertson and Ervine (2007). This is because binned averaging exhibits a bias with the set-
tling velocity: slowly moving particles spend more time in a given bin than fast moving ones, and thus,
for a given sampling frequencies, contribute more samples towards the average, see fig. 4.5 for a con-
ceptual sketch of this phenomenon. In fact, it is demonstrated in §5.2.1 that ( >x1 | can be approximated
by a weighted binned-averaging procedure where the weights correspond to the absolute value of the
instantaneous settling velocity, and other variations may be approximated as well in this manner using
straightforward adjustments.

In the following, averages will often be presented as a function of wall-normal position. The reader
should be aware that these can be interpreted in two different ways. First, since the flow is inhomo-
geneous in y, variations may be attributed to differences in the local structure of turbulence, e.g. due
to differences in the fluid-particle interaction within the buffer layer, logarithmic or wake region. Sec-
ond, y,, — y may also be treated as a time-like coordinate for the progress of the transient, and thus,
phenomena like acceleration from rest near the plane of initialization or inertia/response time effects
are superimposed. While the aim is to separate these effects eventually, a sharp distinction might not
always be possible.
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—, +1)

Figure 4.6: Ensemble-averaged vertical component of particle velocity, normalised by the corresponding ambient terminal veloc-
ity of an isolated particle, as a function of vertical position. On the right-hand sight, the relative turbulence velocity
I = ur/l/nOo is indicated for the various cases shown. Legend: G30-D10-LR (—, 0), G10-D6-LR (—, 0), G15-D10-LR
(—, 0), G15-D6-LR (—, 0), G30-D10-RP (- -+, 4), G10-D6-RP (- -, &), G30-D15-HR (-, O), and G10-D10-HR (-,
0).

4.3 Instantaneous particle velocity

Now that a spatial averaging procedure has been defined, the question “what is the contaminants’ in-
stantaneous velocity at a given vertical position?” is posed. The average particle velocity at position y is
given in accordance with eq. (4.5) by

PN
()= L (1) (4.6)
GA 1=

It should be noted that the definition of the sampling procedure gives cause to two peculiarities for sam-
pling the wall-normal component of the particle velocity. First, the velocity cannot be zero because for
the crossing of a wall-parallel plane to occur movement is required in its normal direction, and second,
the samples are strictly negative for positions below the plane of initialization. While the former is true
for all kinds of samples used in this work, the latter only applies to the original definition where solely
the first crossing is considered. Furthermore, one has to keep in mind that no precise time can be at-
tributed to (u, )y as the arrival times generally differ, which gains relevance with increasing distance of
the plane of interest from the plane of initialization.

4.3.1 Mean velocity

When presented in terms of the ambient terminal velocity, it can be observed that the contaminants
reach, on average, instantaneous downward velocities which span from approximately unity to values
vastly larger than one when normalised by the reference settling velocity, see fig. 4.6. This observation is
in accordance with Cuthbertson and Ervine (2007) who experimentally studied a very similar parameter
range and likewise reported significant enhancements of the settling velocity for similar configurations.
As indicated on the right-hand side of the figure, the excess in Velocity3 is correlated to the relative tur-
bulence intensity, i.e. the higher the value of I, the stronger is the enhancement in settling velocity is,
and thus, it can be hypothesised that turbulent fluctuations are the dominant cause of enhancement.

3 The excess in settling velocity is given by v, + Up oo SINCE the direction of gravity is pointing in negative y-direction, but

positive because it has been defined as the absolute value of the converged settling velocity in the ambient case.

Up,oo 1
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Figure 4.7: Vertical component of the ensemble-averaged particle velocity, normalised by the root-mean-square of vertical fluid
velocity fluctuations (a) as a function of vertical position and (b) as a function of relative turbulence intensity at y =
0.3Hy. The difference from the terminal velocity under quiescent conditions is shown, where negative(positive) values
indicate settling at speeds faster(slower) than Up,co- Legend: G30-D10-LR (—, O), G10-D6-LR (—, ©), G15-D10-LR
(—, 0), G15-D6-LR (—, 0), G30-D10-RP (- -, 4), G10-D6-RP (- -+, 4), G30-D15-HR (-, O), and G10-D10-HR (-
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Figure 4.8: Streamwise component of the ensemble-averaged particle velocity normalised by the friction velocity (a) as a function
of vertical position and (b) as a function of relative turbulence intensity at y = 0.3H¢. Legend: G30-D10-LR (—, O),
G10-D6-LR (—, 0), G15-D10-LR (—, 0), G15-D6-LR (—, 0), G30-D10-RP (- -+, A), G10-D6-RP (- -+, 4), G30-D15-HR
(-, 0), and G10-D10-HR (-, ).

Figure 4.7(a) depicts the same data, albeit now scaled in terms of the root-mean-square of the vertical
component of the fluid velocity, which itself is a function of wall-normal position. For all cases apart
from G30-D10-LR, a plateau region exists where (v, )y /( 1/]% )i/zzt is approximately constant. This indicates
that—after an initial phase of adaption—the contaminants are in balance with their turbulent environ-
ment, and—through a mechanism to be determined—utilise fluctuations in vertical fluid velocity in
order to enhance their mean settling velocity. Furthermore, this mechanism itself becomes more effec-
tive as the relative turbulence intensity increases, cf. fig. 4.7(b) where the excess settling velocity in the
plateau region is shown with respect to I,. In the limit of negligible (relative) turbulence intensity, the
enhancement mechanism appears to be inactive, whereas for high values, it can be hypothesised that
the effectiveness must be bounded, since the enhancement ought to be constraint by the intensity of
the turbulent fluctuations, i.e. it can at most be of the order of the extreme values of v}. Evidence for
this hypothesis is provided by the apparent convergence seen in fig. 4.7(b) for high values of I,. Close
to the lower boundary (vfz )JI(Z decreases rapidly, cf. fig. 3.6, and the relationship between vertical fluid

fluctuations and settling velocity cannot be sustained, causing a divergence to either large positive or
negative values.

76



4.3 Instantaneous particle velocity

The streamwise component of the mean particle velocity exhibits a behaviour which is less universal
with respect to the background flow. In particular, the wall-normal evolution does not perceptibly cor-
relate with <u}2 ift (figure omitted), and the curves suggest a dependence on the flow Reynolds number,
as well as on the bedforms even at greater distances from the bed (fig. 4.8). However, for a given back-
ground flow, the curves only differ quantitatively by a factor which is approximately constant for a wide
range of wall-normal positions. This factor is decidedly a function of relative turbulence intensity, albeit
fig. 4.8(b) suggests that other flow dependent parameters need to be considered.

In general, the contaminants travel faster than the mean fluid velocity at the corresponding height. One
plausible explanation is a persistent lag in adapting to the local conditions, as the contaminants move
from top to bottom, i.e. from regions of high to low average streamwise fluid momentum. Therefore, the
particles may keep their momentum attained at higher positions temporarily on their way downwards
similar to the fluid momentum transfer in Prandtl’s mixing length model. It is apparent that such a lag
ought to be proportional to the vertical gradient of { ug )XZI, the average settling velocity and the particle
response time. Evaluating the product of these parameters yields a curve with a significant peak close to
the lower boundary—similar to what can be observed in fig. 4.8(a) at y ~ 0.05Hy—but does not explain
neither the shape of the curve nor the specific order of the amplitudes for different cases in higher re-
gions (figure omitted). The shift in said order in the near-wall region might suggest that response time
effects gain significance very close to the wall where (Sxy >xz , attains its highest values, as will be further
elaborated in §5.2.3.

Another potential mechanism which does not directly depend on the inhomogeneity of the mean flow
in vertical direction is a possible bias of the particles to preferentially visit regions of high streamwise
momentum while settling. Like for the vertical velocity component, where particles must preferentially
visit downward sweeping regions in order to enhance their mean settling velocity from turbulent fluc-
tuations around a zero mean, a similar phenomenon may occur for the streamwise component. In fact,
the scaling of both (uy), and (vy), with relative turbulence intensity possibly suggests that these phe-
nomena might be related, as will be investigated next.

4.3.2 Quadrant analysis

It is a well-established fact in wall-bounded turbulence that fluctuations of the streamwise and vertical
fluid velocity are negatively correlated, see e.g. Wallace et al. (1972) or Willmarth and Lu (1972), which

results in a negative sign of the tangential Reynolds stress (u} vji . In fact, fluctuations with a negative

)

value of the product u} v} are about twice as likely to occur than t)izltose with a positive value (Pope 2000),
and these events are designated by the terms sweep (u]’c >0, U} < 0) and ejection (u]'c <0, vjﬁ >0), cf. §2.2.3.
In regard to settling particles, sweep events are particularly interesting, as they combine downwashing
events and high streamwise momentum, and thus, are a promising candidate for providing the missing

link from the preceding paragraph.

In the following, an analogous analysis is conducted in terms of the particle velocity, however, the fluc-
tuations are in this context defined in terms of deviations from ((uf)xzt ,— vp'oo). This enables a direct
comparison to the fluid fluctuations, as this formulation likewise corresponds to deviations from the
fluid mean while additionally accounting for the inherent gravity-driven velocity difference between the
solid and the fluid phase. Figure 4.9 shows the empirical joint probability density function of the velocity
of all downward (upward) crossing particles in blue(red), as well as that of fluid fluctuations (black lines).
Additionally, a black dashed line indicates the value v, = 0, which bisects the diagram, since no particle
crossings can occur at y, = 0, and hence, the joint PDF is required to be zero on this line. This implies
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Figure 4.9: Empirical joint probability density function of the streamwise and vertical fluctuations of the particle velocity (shaded
regions) and fluid velocity (contour lines) for y = 0.3H and all up-/downward crossings. For cases where upward
crossings occur, the joint PDF of the particle velocity is bimodal with two regions strictly separated by v, = 0 (==").
Upward crossings occur above this bisecting line and are coloured in red, whereas downward crossings occur beneath
and are coloured in blue. The colouring corresponds to {0.1,0.3,0.5,0.7,0.9} times the respective maximum value of
the distribution. The joint PDF of fluid fluctuations, viz. jpdf (u}, v;), is superimposed with black contour lines which

correspond to [0.1:0.1:0.9] times the maximum value. The following cases are arranged in column-major order: (a)
G30-D10-LR, (b) G10-D6-LR, (c) G30-D15-HR and (d) G30-D10-HR.

that jpdf(u,, v,) is bimodal if upward crossings occur. Therefore, the bisecting line defines a strict upper

bound for downward crossings to occur, as they require v, < 0 by definition. The opposite is true for
upward crossings.

The particle velocity fluctuations for downward crossings predominantly occur in the 4th quadrant
(ue > (up) ,,» Ve < —Upq0), which comes at no surprise when recalling the earlier findings regarding the
mean velocity. What is interesting, however, is that the range of particle velocity fluctuations is approx-
imately restricted by the range of fluid fluctuations, or in other words, the set of likely particle velocity
fluctuations seems to be a subset of all possible fluid fluctuations. Although a direct relationship be-
tween the local fluid velocity and the particle velocity is yet to be demonstrated, this observation cor-
roborates the hypothesis that the increase in (1), and enhancement of (vy), are two manifestations
of the same phenomenon and driven by turbulent events rather than a lag in response.
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4.3 Instantaneous particle velocity

The position of the v, = 0 line provides an appealing heuristic on the subset of fluid fluctuations which
act on the downward and upward moving contaminants.* As this position is given by Upoo! Uy = L
one can consider the limit behaviours of vanishing and prevailing relative turbulence intensity. For
Upoo > U, the bisector is located well above the space of probable fluid fluctuations, which causes all
occurring fluid fluctuations to act on downward moving particles and decreases the likelihood that fluid

fluctuations which are intense enough to move a particle upwards occur. Vice versa, for v

oo <K Uy the

range of fluctuations which can be visited by a downward moving particle is severely restricted, and
the probability to encounter a downward fluid fluctuation severely faster than its terminal velocity is
rather high. However, this comes at the expense that at the same time the number of upward crossings
will increase accordingly. This difference in limit behaviour is well demonstrated by G30-D10-LR and
G10-D10-HR shown in fig. 4.9(a,d).

While the effect of relative turbulence intensity on the instantaneous particle velocity conditioned to
the crossing direction may be obvious from this perspective, a further inference can be made which is
less trivial. Due to the fact that for v, ,, < u, downward moving particles are essentially restricted to
quadrants 3 and 4, the probability of encountering u]'c > 0 is twice as high as that of encountering u]'c <0
due to the dominance of sweep events. This implies that for a sufficiently high relative turbulence inten-
sity, a statistical bias towards positive streamwise velocity fluctuations exists simply because a particle is
moving downwards. Naturally, the opposite is true for upward moving particles. Nevertheless, it should
be appreciated that this bias is insufficient in fully explaining the excess in streamwise particle velocity
observed, as G30-D10-LR, where effectively no such quadrant restriction occurs, still exhibits a tendency
towards positive fluctuations. The boundedness of u, — (us )xzt by the range of u} still indicates that this
phenomenon is driven by turbulence, though its understanding likely requires an examination of the
dynamics.

Albeit this heuristic certainly neglects important details—primarily explicit particle-fluid interactions—
it provides a convenient way to determine solely from fluid data and apriori known particle attributes
whether significant upward particle motion is to be expected and what the approximate magnitude of
the average instantaneous velocity might be. Knowledge of both these quantities is essential whenever
the overall average settling velocity (v, >X” is to be estimated for a net flux of particles as it occurs in a
transient settling.

4.3.3 Velocity fluctuations

For some applications knowledge of the magnitude of variations in settling velocity around its mean
might be valuable. Using the standard deviation of the particle velocity as a measure, viz.

<ut/;2a 1}22 =Y <u§tx>x - <uc,uz>>2g’ 4.7)

with u,, being a component of the contaminant particle velocity, this variability is presented in fig. 4.10
as a function of vertical position.

For the wall-normal component of the velocity, the spatial trend can again be described well by the stan-
- : . . . 12 .

dard deviation of the fluid fluctuations, i.e. a normalisation by (ng )xzt once more yields a pronounced

plateau region. In contrast to the mean velocity, the amplitude is now negatively correlated with the

4 This formulation is not to be taken in the literal sense, since, so far, the only link between the particle velocity and the fluid

velocity is that they occupy similar regions in the (1, v')-space.
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Figure 4.10: Standard deviation of the particle velocity as a function of vertical position. (a) Vertical component normalised by
standard deviation of local fluid fluctuations. (b) Streamwise component normalised by friction velocity. Legend:
G30-D10-LR (—), G10-D6-LR (—), G15-D10-LR (—), G15-D6-LR (—), G30-D10-RP (- -+), G10-D6-RP (- - ), G30-
D15-HR (-+++), and G10-D10-HR (-+-+).

Table 4.1: Approximate parameter ranges of the experiments of Cuthbertson and Ervine (2007) and the numerical experiments
conducted within the current work.

Re; Ga pc/ of dc+ Hf / dc I

Cuthbertson and Ervine (2007) 14000-30000 10-45 2.5 8-20 160-640 0.75-2.25
Current work 241-838  10-30 1.5-2.5 6-18 25-70  0.5-3.0

relative turbulence intensity. While this behaviour perhaps seems counterintuitive at first, it can easily
be explained using the heuristic discussed in the context of the quadrant analysis. As previously stated,
I, > 1 restricts the range of fluid fluctuations which can be experienced during downward motion, and
thus, the variability is reduced as long as only downward motion is considered or downward motion is
dominant due to a net flux of particles.

A negative correlation with turbulence intensity can be observed for the variability of the streamwise
component as well. The same argument as for the vertical component can be applied to arrive at the
conclusion that increased turbulence intensity decreases the subset of streamwise fluid fluctuations
which may be experienced because of the fact that u; and vy are correlated. Another observation to be
made is that the evolution of the standard deviation with y is akin to that of the mean, cf. fig. 4.8. Thus,
if a master curve can be identified for the mean, it likely also serves as a good description of the standard
deviation.

4.3.4 Comparison to experiments at high Reynolds numbers

In this paragraph, the data obtained from the present simulations are compared to the experiments
of Cuthbertson and Ervine (2007). Despite a considerable difference in the flow Reynolds number—
their experiments are conducted around Re, = 2.5- 10* which is about 30 times as high as that of the HR
cases—many similarities exist between their experimental setup and the computational setup employed
here. In particular, the experiments are conducted in an open channel over a rough porous bed, settling
particles are added at the free surface and the particle parameters are varied within a similar range. A
juxtaposition of the fundamental parameters is provided in table 4.1.
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Figure 4.11: Comparison of the average settling velocity obtained from the numerical experiments at Re; = 241 (O, LR), Re; = 340
(A, RP) and Re; = 838 (O, HR), and the experiments conducted by Cuthbertson and Ervine (2007) at Re, = 25000
(4). Contrary to the convention usually employed in this thesis, the average is taken over an ensemble within the
finite-width bin 0.2 < y/Hy < 0.5 as is done in Cuthbertson and Ervine (2007). Legend: G30-D10-LR (0), G10-D6-
LR (0), G15-D10-LR (0), G15-D6-LR (0), G30-D10-RP (4), G10-D6-RP (4), G30-D15-HR (O0), G10-D10-HR (), and
Cuthbertson and Ervine (2007) ().

In order to compare their findings to the current data, their figure 5(b), which displays the particle set-
tling velocity averaged over all of their experiments, has been rescaled using the information available
in the publication to be presented in terms of the relative turbulence intensity. Although they present
averages in three different regions, the comparison is solely made for the region 0.2 < y/ Hp < 0.5 as
the region above may be subject to a bias caused by differences in settling distance (initial acceleration
phase) and the region below is likely sensitive to the specifics of the sediment bed. Moreover, it has to
be taken into account that their velocity is obtained by binned averaging, and thus, subject to the bias
elaborated in §4.2 and dependent on the observation time. For the purpose of a fair comparison, the
numerical data is presented using their definition of the average.

As can be seen in fig. 4.11, the numerical and experimental data are generally in decent agreement, the
more so when consideration for the various potential sources of inaccuracies is shown. One conspicu-
ous feature of the data is that the excess in settling velocity appears to peak around I, = 2. Since the only
simulation data point available in this parameter range is one exhibiting ripple features, it is unclear
whether or not the observed discrepancy in numerical and experimental data is caused by the presence
of bedforms or rather hints at a more substantial inconsistency. There is an argument to be made that a
peak in the settling velocity obtained by binned averaging is to be expected: as the turbulence intensity
increases, the region where upward and downward crossings are quasi-steady extends further away from
the wall to the point that a considerable number of samples in the bin are contributed from the equi-
librium phase rather than the transient. Evidence that this effect is indeed active is given by fig. 4.7(b)
where only the first crossing, i.e. only the contribution from the transient, is considered and no decline
in enhancement can be observed at high values of I,. Moreover, fig. 4.4 suggests that the quasi-steady
region extends significantly further into the outer flow in the presence of ripples, which reinforces the
presumption previously made about the outlier.

Apart from the assurance that the findings from the numerical simulations are in good agreement with
the physical world, the comparison discloses that the mechanism which enhances the settling particles’
instantaneous velocity is insensitive to variations in the flow Reynolds number over a wide range. It
further corroborates the hypothesis that the relative turbulence intensity is the major influencing factor.
This realization is highly relevant for the upscaling of the numerical results towards large fluvial systems.
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Figure 4.12: Correlation between instantaneous settling velocity and cross-through time. (a) Pearson correlation coefficient as
a function of vertical position. (b) Empirical joint probability density function for G10-D10-HR at y = 0.6Hy with
contour lines spaced at 0.1 times the maximum value. Legend: G30-D10-LR (—), G10-D6-LR (—), G15-D10-LR
(—), G15-D6-LR (—), G30-D10-RP (= =), G10-D6-RP (- - ), G30-D15-HR (), and G10-D10-HR ().

4.3.5 Consequences of truncated observation time

To conclude the discussion on the instantaneous particle velocity, the remark from §4.2 that a truncation
of the observation time could possibly lead to a bias in the average towards fast moving particles is
revisited. In order for such a bias to exist, the instantaneous particle velocities have to be correlated with
the crossing time, or in other words, particles which cross through the control plane at earlier times must
also do so generally at higher speeds. A simple measure for (linear) correlation is Pearson’s correlation
coefficient, which is defined as

cov ( UC,X’ tc,X)

0t o) = S st (1) o)
where cov (v, x, fx ) denotes the covariance of the particle velocity and time of crossing. When inspect-
ing this coefficient as a function of vertical position, it can be observed that both quantities are visibly
correlated near the plane of initialization, but the correlation is progressively lost with increasing dis-
tance to it, see fig. 4.12(a). The intuition behind this is that a greater travelling distance allows for more
variations in the acceleration history, i.e. it is more probable that a particle which is instantaneously fast
has experienced a phase of slow movement which delayed its cross-through time.

It should be noted that the higher the relative turbulence intensity is, the weaker the correlation is in
general. At the same time, the most truncated cases in this work are the ones with high values of I,
cf. fig. 4.4. In particular, the most truncated case G10-D10-HR is at the same time the case which has
the lowest correlation coefficient. Figure 4.12(b) depicts the joint probability density of 7, x and v, x at
y = 0.6H; for this case. At this position the observation time of G10-D10-HR begins to be significantly
truncated. At the same time it can be deduced from the joint PDF that the value of the mean velocity
conditioned to late cross-through times is not substantially different from that for early cross-through
times. Consequently, no considerable systematic errors are to be expected in the estimation of the mean
settling velocity.

In conclusion, while it is indeed true that a truncation in observation time leads to an overestimation
of the average settling velocity, this effect is rather unimportant for the current analysis since the fac-
tors which benefit truncation are the same which benefit a decorrelation of the cross-through time and
instantaneous velocity.
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Figure 4.13: Empirical probability density functions of cross-through times at various heights (peaks from left to right: y/ Hp =
{0.9,0.8,0.7,0.6,0.5,0.4,0.3}). (a) For G10-D10-HR. (b) For G30-D15-HR.

4.4 Cross-through time

As was emphasised earlier, contaminants cross a given control plane at different times. Since the cross-
through time 7, x(y) can be interpreted as the (incomplete) inverse of the vertical particle trajectory
¥.(2), it provides a link between the temporal and spatial perspective on the settling data. Therefore, a
detailed analysis of its characteristic seems rewarding.

By means of a histogram, an empirical probability density function, epdf(z,y), is constructed, and
fig. 4.13 displays the empirical PDFs for the cross-through times obtained at various wall-normal posi-
tions for the two HR cases. As might have been anticipated, the peak of the PDF shifts towards later times
and the width of the distribution increases as contaminants advance towards the lower sections of the
channel. Furthermore, the difference in characteristic settling time and susceptibility to dispersion is
also reflected when comparing the two cases shown. What is striking, however, is that the general shape
of the distributions shown varies only little, and hence, it can be hypothesised that they are self-similar.

4.4.1 Self-similarity

The shape of the empirical PDFs is approximated best by the three-parameter generalised Gamma dis-
tribution (Stacy 1962), which is defined as

alc

cb _
pdf(tc,X) = mtgxlexp (—btgx) (4.9)

c

where a, b, ¢ > 0 are the free parameters of the regression and I'(s) = fg’o " Ye 'dt is the gamma func-
tion. Eq. (4.9) fulfils the normalisation properties of a probability density function for any valid set of
parameters.

The set of free parameters are determined from the empirical PDF for each case and vertical position
using the method of least squares. As can be seen in fig. 4.13, some empirical PDFs are visibly truncated
due to the finite observation time. Therefore, in general,

Lobs Lobs
j; epdf(tcvx) dtc,x # j; pdf(tc,x) dtC,X = Cdf(tﬂbs) , (410)
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Figure 4.14: Exemplary results for two generalised Gamma distribution fits (—) to the empirical probability density functions
(0). The shape fits well for vertical positions close to the plane of initialization (0: y = 0.8Hp) as well as for positions
closer to the sediment bed (O: y = 0.2Hy). The case shown is G10-D10-HR with a strong dispersion in cross-through
times where the truncation of the empirical PDF at the observation time (grey line) is clearly visible. The gamma
distribution fit enables a reasonable extrapolation of the values. The rescaled empirical PDF as explained in the
algorithm is depicted by solid markers (®). Further examples for various cases and at various positions can be found
in fig. B.2 in the appendix.

and for this reason the optimization problem has to be formulated in terms of a rescaled empirical PDE
Fortunately, since the data suggests that all contaminants cross a given plane eventually” the rescaling
factor is known and corresponds to N, x /N, presented in fig. 4.4. Applying this factor ensures that both
the resulting generalised Gamma distribution and the rescaled empirical distribution have an approxi-
mately equal value of their cumulative distribution function at the observation time. The curious reader
is referred to section §B in the appendix for details on the optimization problem and a summary of the
algorithm employed.

Figure 4.14 shows two resulting Gamma distributions fitted at different vertical positions for Gal10-D10-
HR in an exemplary manner. The generalised Gamma distribution describes the empirical PDF close
to the plane of initialization well without any need of renormalisation (blue, y = 0.8 H). For crossings
close to the sediment bed, the observational data is visibly truncated (orange, y = 0.2Hf), but may still
be described well by the distribution if the empirical data is renormalised (solid markers). Further ex-
amples can be found in the appendix in fig. B.2 in conjunction with the residuals for all cases and vertical
positions (fig. B.1).

4.4.2 Estimation of required observation time

As has already been noted, the ratio N, x /N5, which is approximately equal to cdf(z,,), provides a mea-
sure for the sufficiency of the observation time. If for a given vertical position cdf(t,,) = 1, then all con-
taminants have settled through this layer at least once and the transient can be considered as completely
captured within the observation time. For cdf(z,,,) < 1, its value provides a measure for the sufficiency
of the observation time. Conversely, given a fit of the Gamma distribution on truncated data, the cu-
mulative density function provides a method to estimate the observation time required to capture the
transient within a given accuracy. The reliability of such an estimation, however, is limited by the quality
of the empirical data and the uniqueness of the underlying optimization problem.

The integral of the generalised gamma distribution converges to unity, so as long as the assumption that the crossing time
follows this distribution holds, all contaminants must ultimately cross a given plane.
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Figure 4.15: Estimation of the required observation time in order to capture 95% of the contaminants’ principal crossings. (a)
normalised by the actual observation time. (b) normalised by the characteristic settling time. Legend: G30-D10-
LR (—), G10-D6-LR (—), G15-D10-LR (—), G15-D6-LR (—), G30-D10-RP (- -+), G10-D6-RP (- - ), G30-D15-HR

A quantitative estimate on the observation time required to capture the transient to a satisfactory degree,
here arbitrarily chosen as the 95% percentile, is provided in fig. 4.15. When the data is presented in terms
of the actual observation time, it becomes apparent that the required observation time for the truncated
cases needs to be 20%-80% longer in order to capture the transient up until the bedload layer. More
interestingly, when the required observation time is normalised by the characteristic settling time, the
curves for all cases collapse to a reasonable degree, and it is suggested that , ; is an adequate measure
to gauge the required length of the experiment.

4.4.3 Moments of cross-through time distribution

By evaluating the moments of the generalised Gamma functions, the mean and variance of the crossing
time distribution data may be estimated even for crossing planes which are truncated by insufficient ob-
servation time. This reconstruction requires no assumptions other than that the shape of the data is well
described by the generalised Gamma function, for which persuasive evidence from the completed cases
exists. Naturally, the quality of the reconstruction is confined by the uncertainty in fit parameters which
increases with decreasing amount of empirical data points. The n-th raw moment of the distribution
can be calculated explicitly from its parameters by

r(#2)

C

(%)

(thop=b"" 4.11)

Figure 4.16 shows the (reconstructed) mean of the crossing time and its standard deviation as a function
of vertical position. The curves are similar in shape to the 95% percentile (fig. 4.15(b)), which is unsur-
prising since all these quantities are a direct result of the increasing spread of the Gamma distribution
with decreasing height.
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Figure 4.16: The (a) mean and (b) standard deviation of the fitted generalised Gamma distributions of cross-through times as
function of vertical position. Legend: G30-D10-LR (—), G10-D6-LR (—), G15-D10-LR (—), G15-D6-LR (—), G30-
D10-RP (- -+, G10-D6-RP (- - ), G30-D15-HR (), and G10-D10-HR ().

4.5 Group velocity

Based on the preceding analysis of particle cross-through times as a function of vertical position, yet
another velocity scale can be defined as

_ J’—J’c,o

- (4.12)
<tc,X >r

DC,X (y) :

where (7, x >r is the first raw moment of the generalised Gamma distribution as given by eq. (4.11) 5 This
newly defined quantity will be denoted as group velocity of the contaminant particles in the following,
since it describes the (average) velocity with which the ensemble of particles settles. Although the de-
nomination is motivated by wave phenomena, it should not be understood literally in this sense, but
rather in the spirit of a propagation velocity of an envelope, i.e. here in the sense of propagation of the
mean of the generalised Gamma distribution. It might be debatable whether the mean or a different
measure like the median is of more practical relevance for such a definition, nonetheless, the inferences
remain the same. In fact, for all cases and positions, median(. ) = 0.8(z, x >r is an apposite approxima-
tion.

The group velocity is defined as an integral quantity rather than a differential one, i.e. it should be
understood as the average velocity of the ensemble from its initial position y, to its current position y.
In fact, for a fully captured transient, one can show that

0]

tc,X
) 1 %1 f o,
Uex = - 2y | Ve (Ddt, 4.13)
cxX | tL‘,X 0

while, in contrast, the spatially-averaged particle settling velocity as introduced in §4.3 reads

1 M=o
(Vo) = Ny 2 0 (e 0)- (4.14)
C i

5 Note that (tx >F is similar to (; x >X if the transient has been fully captured, but differs from it if the observation time was too

short. The value of (7 x >F is likely a more accurate estimation of the true value, cf. §4.4.
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Figure 4.17: Group velocity of contaminant particles as a function of vertical position (a) scaled by the terminal velocity and (b)
scaled by the group velocity evaluated for a single particle settling in a quiescent environment. Legend: G30-D10-
LR (—), G10-D6-LR (—), G15-D10-LR (—), G15-D6-LR (—), G30-D10-RP (- -+), G10-D6-RP (- - ), G30-D15-HR

under the same assumption. Thus, 7, x corresponds to the ensemble-average of the settling velocity
time-averaged until the first crossing of a given y-normal plane, whereas (v, >X is merely the ensemble-
average of the settling velocity at the time of crossing. Therefore, the group velocity accounts for the
entire history of the particle trajectory—including temporary upward movements or other loitering
mechanisms—whereas the spatially-averaged settling velocity is an instantaneous measure.

Figure 4.17(a) shows the group velocity scaled by the corresponding terminal velocity as a function of
vertical position. Clearly, the initial acceleration of the ensemble from rest is observable in the upper
part of the channel. It then steadily increases with decreasing wall-normal position, but does not reach
a plateau within the distance available for settling. Since the value of the group velocity depends on
the entire acceleration history since release, comparing it quantitatively to the terminal velocity may be
elusive. More appropriately, it should be compared to 7, x evaluated for a single particle settling in a qui-
escent environment, i.e. the respective values obtained for the accompanying experiments described in
§3.7, since this allows for a point-wise, quantitative comparison of the propagation speed under ambi-
ent and turbulent conditions. This comparison is shown in fig. 4.17(b). At positions far from the plane
of initialization, the values differ only slightly from the simpler normalisation with the terminal veloc-
ity. In fact, for long settling distances, U x/ V0 — Ve x/ [7.x] amp due to the loss of significance of the
acceleration phase in ambient settling. Closer to the initial position, however, a small delay of all cases
compared to their ambient counterpart may be observed. It is only for Ga30-D10-LR that this delay per-
sists, and hence, for this case the ensemble of contaminant settles slower than one would expect judging
from ambient conditions.

Given that 0, x /), o, and thus also 7 x/ [ x],,,,;, at a reasonable distance, is universal to some extent,
it is worthwhile to investigate the variation of its scaling factor. In fig. 4.18, the value of 7, x/ [T, x] .,
at y = 0.3H; is presented as a function of the relative turbulence intensity, which has been identified as
the predominant scaling parameter.” As turbulent fluctuations become more intense with respect to the
particles’ terminal velocity, the ensemble tends to settle faster. Interestingly, the transition from delayed
to enhanced settling appears to take place around I; = 1. However, due to the limitation in data, the
functional dependency of the group velocity on I is not clear. If only Re;, = 3000 (LR, RP) is considered,
a linear dependency seems to be appropriate. Yet, if data from both flow Reynolds numbers is consid-
ered, the enhancement appears to saturate for high relative turbulence intensities. It can be reasoned

T may be noteworthy that no trend can be observed when the data is presented in terms of the Stokes number.
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Figure 4.18: Group velocity of contaminant particles as a function of relative turbulence intensity at y = 0.3 H; normalised by its
respective value in a quiescent environment. Legend: G30-D10-LR (0), G10-D6-LR (0), G15-D10-LR (0), G15-D6-LR
(0), G30-D10-RP (4), G10-D6-RP (&), G30-D15-HR (O), and G10-D10-HR ().

that for a vanishing turbulence intensity, 7, x/ [7x],,,,, should tend to unity under the assumption of
negligible collective effects, which reinforces the speculation on a nonlinear behaviour. So far it remains
unclear whether the relative turbulence intensity is sufficient to accurately parametrise the group veloc-
ity, or other major parameters need to be accounted for, especially in regard to the dependency on flow
Reynolds number.

4.6 Particle transport after the initial settling phase

The focus is now shifted towards the phase of quasi-steady deposition and resuspension which is as-
sumed to occur after the initial settling phase. Figure 4.19(a) presents the long-term temporal evolution
of the mean vertical particle position for the four cases for which a realisation with longer observation
time is available, cf. table 3.3. A distinct change in behaviour is observed at ¢ = 1-2 by in accordance
with the inferences made in §4.4.2, marking the end of the settling phase. However, a downward trend
of (y, )1I is still observed even for ¢ > 1, ; which indicates that the particle transport has not yet entered
the quasi-steady phase. In fact, the sustained downward migration trend perceived for all cases under
investigation suggests a phase were contaminant particles are entrained into the sediment bed. For the
cases without sediment bedforms, this trend appears to be rather monotonous, and a more pronounced
entrainment is observed for G10-D6-LR compared to Ga30-D10-LR, which may be due to the difference
in particle size. In the presence of ripples, the mean vertical position oscillates in time while still main-
taining a net downward movement. Albeit the amplitude of these oscillations is more pronounced for
G10-D6-RP than for G30-D10-RP, the effectiveness of entrainment process does not appear to differ
considerably between the two parameter points as opposed to the observations which have just been
made for macroscopically flat beds. The local solid volume fraction defined in eq. (3.40) averaged over
the time interval 7 € [501,, f,,¢] is shown in fig. 4.19(b). The results regarding the cases with Ga ~ 30 are
unsurprising since their parameter points are matched with those of the sediment particles, and accord-
ingly the evolution of the solid volume fraction approximately overlap with that for the sediment. For
Ga = 10, the profile extends significantly further into the bulk of the channel, which is expected due to
the higher value of the relative turbulence intensity. A comparison with the trend predicted by the Rouse
formula (not depicted) suggests that the spatial evolution is not significantly altered at a distance from
the interface. Yet, due to the vagueness of the virtual origin to be chosen, it is unclear whether the larger
sediment particles affect the profile close to the interface where the curve largely overlaps with that for
the sediment.
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Figure 4.19: (a) Mean vertical position of the contaminants as a function of time, similar to fig. 4.1(a), but displayed for a consider-
ably longer observation time which exceeds the initial transient. The inset shows a zoom into the quasi-steady regime.
(b) Local solid volume fraction as defined in eq. (3.40) evaluated exclusively for contaminant particles (coloured lines)
or sediment particles (black lines). A temporal average is shown over the time interval 7 € [501, #,,, ] which excludes
the initial settling phase. Regarding the sediment particles, the volume fraction is shown in absence of contaminants,
as the modification was found to be insignificant. Legend: G30-D10-LR (—), G10-D6-LR (—), G30-D10-RP (--),
and G10-D6-RP (- -).

In regard to the propagation of contaminants, it is interesting to compare the streamwise particle flux
in the initial settling phase to that due to bedload transport. For this purpose, the overall particle flux is
defined as

1
prx(t) = ?f\/‘H qp,xd_yr (415)
—Hp

where qp‘x(y, 1) denotes the particle flux density introduced in eq. (3.41). As fig. 4.20(a) suggests, the
particle flux is up to two orders of magnitude higher in the settling phase than in the bedload trans-
port phase, and decreases steadily as the contaminants approach the bed. This is easily explained by
the mean streamwise fluid velocity experienced by the contaminants which decreases with increasing
progress of the transient. During the settling phase, the influence of bedforms on the transport rate
appears to be marginal. The same is true for the monodisperse parameter points (Ga = 30) in the bed-
load phase, yet, a significantly enhanced particle flux is observed for bidisperse contaminant transport
(Ga = 10) in the presence of ripples. Although the particle flux oscillates similar to what has been ob-
served for the vertical particle position, the rate is on average two times as high as that over the macro-
scopically flat bed. When looking at the vertically-resolved contributions to the streamwise particle flux
displayed in fig. 4.20(b), it can be seen that the presence of ripple features significantly shifts the distri-
bution of streamwise particle momentum towards greater heights despite the low local volume fractions
previously observed away from the bed. This suggests that rather few particles significantly contribute
to the streamwise propagation of the contamination, namely those which are located within the sed-
iment transport layer or above, and that the ramp-up effect of ripples might help eject contaminants
with a higher Shields number into the wake region of the flow where significantly higher streamwise
momentum can be attained. In the monodisperse case, the contaminant transport is equivalent to that
of the sediment particles as might have been anticipated, and the observed shift in the peak location is
merely caused by the increased number of particles present.
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Figure 4.20: (a) Streamwise contaminant flux as defined in eq. (4.15) as a function of time. The flux is scaled in terms of outer
units and the global solid volume fraction which are consistent among the cases displayed and allow for an imme-
diate comparison. The inset shows a zoom into the quasi-steady regime. (b) Flux density of the streamwise particle
flux evaluated exclusively for contaminant particles (coloured lines) or sediment particles (black lines). A temporal
average is shown over the time interval t € [501,, 7] which excludes the initial settling phase. For the sediment
particles, the flux density is shown in absence of contaminants, as the modification was found to be insignificant.
Legend: G30-D10-LR (—), G10-D6-LR (—), G30-D10-RP (- -), and G10-D6-RP (- -).

4.7 Summary and concluding remarks

In this chapter, the phenomenology of the transient settling of contaminant particles in a sediment-
laden turbulent open-channel flow is presented in regard to the statistics of the solid phase. The simu-
lations are conducted either over a macroscopically flat bed (LR,HR) or in the presence of ripple features
(RP) at three distinct values of the friction Reynolds number, namely Re, = {241,340, 838} for LR, RP and
HR, respectively. In total, eight distinct parameter points for the contaminants have been investigated
and compared in regard to their settling velocity and streamwise transport behaviour.

The instantaneous velocity of the contaminants is investigated using an averaging procedure based on
crossings of a control plane which avoids an averaging bias towards slowly settling particles a binned av-
eraging procedure would exhibit. It is found that the instantaneous settling velocity is generally higher
than its counterpart in a isolated quiescent environment. The excess in settling velocity correlates well
with the standard deviation of the vertical fluid velocity for all cases, and the effectiveness of this mech-
anism is itself dependent on the relative turbulence intensity. No significant dependency on the flow
Reynolds number or bedforms could be detected. Regarding the streamwise component of particle ve-
locity, a lead was found in regard to the corresponding mean fluid velocity. In contrast to the settling
velocity, the magnitude of this excess is not solely a function of relative turbulence intensity, but also
at least Reynolds number dependent. A combined quadrant analysis of fluctuations in fluid and parti-
cle velocities suggests that the enhancement in particle velocity is driven by sweep events. The relative
turbulence intensity divides the (¢’ v')-space into regions of upward and downward crossings, and this
distinction alone partly explains the prevalence of positive fluctuations in u; provided that fluid and
particle velocities are instantaneously and locally correlated, which is yet to be demonstrated. Trustwor-
thiness of the results of the numerical simulations is assured by a comparison with the akin experiments
of Cuthbertson and Ervine (2007) which yielded a good agreement. Furthermore, as these experiments
were conducted at a much higher value of the Reynolds number, confidence is gained that the excess in
instantaneous settling velocity is indeed independent of the Reynolds number.

By assessing the number of crossings which occur during the transient through a given control plane, it
is shown to be possible to estimate the sufficiency of the observation time of the numerical experiments.
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An evaluation of the correlation between cross-through time and instantaneous settling velocity yields
that, although the transient is incompletely captured for some parameter points, the analysis on the
instantaneous particle velocity stands as is. Moreover, it is found that the distribution of cross-through
times follows a generalised Gamma distribution and this knowledge alone is sufficient to estimate the
observation time required to capture a given percentage of the full transient. It also enables the recon-
struction of quantities which would otherwise be biased by a truncated transient, first and foremost the
mean of the cross-through time distribution.

Using the combination of the local distance to the plane of initialization and the reconstructed mean
cross-through time, the group velocity of the contaminants is defined which allows a comparison of the
propagation speed of the ensemble of particles to its ambient reference. This comparison yields that for
I, Z 1 the group velocity is enhanced, albeit to a much smaller degree than the instantaneous velocity.
The same is true for the temporal peak of the ensemble-averaged contaminant settling velocity at a given
time, which can also be understood as a measure of the global vertical contaminant flux. The group ve-
locity enables a spatially-resolved view on the net settling velocity, whereas the ensemble-averaged ve-
locity disregards any inhomogeneities in the instantaneous vertical distribution of contaminants. It was
ascertained that the presence of bedforms does not perceptibly alter the settling velocity if the induced
modification in the wall shear stress is accounted for.

The transport of contaminants beyond the initial settling phase has been investigated for Ga = {10,30}
in the presence and absence of ripples, as for these cases substantially longer time series are avail-
able. Within approximately 500¢,, no equilibrium behaviour was achieved, as the contaminants ap-
pear to get progressively entrained into the sediment bed. In the absence of ripples, the entrainment
is monotonous and its rate depends on the contaminant parameter point. In the presence of ripples,
the mean vertical particle position exhibits cycles of downward and upward movement, and the average
rate of entrainment does not vary substantially between the two cases investigated. The streamwise flux
of contaminant particles is similar to the sediment flux for all cases with the notable exception of the
bidisperse transport over ripples (G10-D6-RP), where the contaminant flux oscillates in time similar to
the mean vertical position and attains approximately twice the rate of sediment transport.

To conclude, this chapter has shown that many phenomena associated to contaminant settling appear
to be driven by fluid-particle interactions, and thus, the subsequent chapters will focus on different
aspects of this interaction. At first, it will be necessary to establish a direct correlation between fluid
and particle velocity fluctuations, since so far such a relationship is only hinted at by the overlap of
fluctuation statistics of both phases. Another aspect to be further investigated is the distinction of u,.
and v, in terms of Reynolds number dependence. Moreover, the interaction between contaminant and
sediment particles during the entrainment phase deserves further attention, especially in regard to the
cyclic behaviour exhibited in the presence of ripples.
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5 Preferential sampling of the fluid
flow

In the preceding chapter it has been assessed that the contaminant particles’ vertical velocity varies
substantially depending on the relative turbulence intensity. The reported scaling behaviours, and the
fact that fluctuations of the particle velocity are presumably linked to fluid velocity fluctuations and in
particular sweep events, suggest that an enhancement of the settling velocity is caused by interactions
with turbulent structures. The purpose of the current chapter is therefore to examine these interactions,
and more specifically, to assess the role of the preferential sweeping mechanism during the settling
phase, cf. §2.3.3. Moreover, since the lead in streamwise velocity by the contaminants cannot solely
be explained by a statistical bias, the effect of preferential sampling of intense high-momentum regions
is addressed. As the impact of bedforms on the settling velocity has been deemed insignificant, the
following analysis will predominantly focus on the settling over macroscopically flat beds, i.e. on the LR
and HR background flows.

5.1 Secondary motion and particle velocity

To begin with, the analysis from §4.3 concerning the localised particle velocity based on crossings of
wall-parallel planes is revisited. This time, however, the plane is further tessellated in the spanwise di-
rection such that the number of crossings and the spatial-averaged velocity are now also functions of
the spanwise position, i.e. N, x = N, x (1, 2) and (u, ), = (u,)y (y, 2) for the remainder of this section. Fur-
thermore, the mean secondary motion of the channel flow is introduced and defined as the streamwise-
temporal average of the cross-sectional fluid velocity, viz. (vf)_(y,2) and (wy)_(y,2). Although both
(vr )xt and (wy )xt vanish for sufficiently long domains or sufficiently long observation times, it is a well-
established phenomena that in finite domains and observation times secondary flow patterns can be
observed (e.g. Scherer (2022)). Moreover, regions for which <vf>xt < 0 are associated to so-called high-
momentum pathways exhibiting (u]'c )xt (¥, 2) > 0, which are complemented by low-momentum pathways
for which the opposite is true. Momentum pathways can be understood as the statistical footprint of
the large-scale sweeps and ejections described in §2.2.3, whereas the secondary flow is associated to
the roller structures connecting them. In the following, the time interval for averaging is taken to be the
observation time of the settling simulations, which is typically of O(10%,), and thus sufficiently short to
observe the secondary motion induced by large streamwise-aligned coherent structures. For the sake of
brevity, the analysis focuses on the case G10-D10-HR, yet, all observations are qualitatively similar for
the other cases.
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Figure 5.1: Histograms of the number of crossings per spanwise unit, presented in the form of one probability density function per
crossing plane. The secondary fluid motion in the yz-plane, averaged over the entire observation time and streamwise
direction, is shown by arrows whose thickness and opacity is proportional to the local magnitude of the secondary

motion, viz. /{ 73 )jt + (wf )jt The grey area at the bottom of the domain shows the spanwise-resolved average height
of the sediment bed, (/,),,. The case G10-D10-HR is shown. (a) Only downward crossings. (b) Only upward crossings.
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Figure 5.2: Contaminant settling velocity averaged over all crossings of the corresponding y-normal plane within spanwise bins.
Secondary fluid motion is indicated by arrows as described in fig. 5.1. The case G10-D10-HR is shown. (a) Averaged
over all local downward crossings. (b) Averaged over all local up- and downward crossings.
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Figure 5.3: Streamwise component of (a) fluid velocity and (b) contaminant velocity at crossing averaged within spanwise bins
and presented as differences from the overall mean streamwise fluid velocity. Secondary fluid motion is indicated by
arrows as described in fig. 5.1. The case G10-D10-HR is shown.
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5.1 Secondary motion and particle velocity

The spanwise-resolved number of crossings is presented in form of the probability density of the num-
ber of crossings for each crossing plane, viz.

N x(y,2) Hy

PAf(N,) = -,
: Jo? Nox(1,2)dz

(5.1)

which is again a function of vertical and streamwise position and effectively normalises N, x (y, z) by the
total number of crossings detected for each vertical position, cf. fig. 4.4. A juxtaposition of this prob-
ability density and the secondary motion is given in fig. 5.1 for both downward and upward crossings,
separately. Under both conditions, the probability of crossings is inhomogeneous in lateral direction.
Furthermore, the probable regions of downward or upward crossings are complementary, i.e. a region
of high probability of downward crossings is at the same time a region of low probability of upward
crossings, and vice versa. The only exception to this observation is found close to the sediment bed,
where both regions predominantly overlap.

When comparing the crossing probabilities to the secondary motion, a clear correlation can be detected:
whenever the average cross-sectional fluid velocity is pointing upwards, fewer downward crossings oc-
cur and the probability of upward crossings is increased. The opposite is true for regions of downward
fluid motion. While it is certainly conceivable that the secondary motion is actually induced by the set-
tling contaminants themselves, this mechanism can quickly be discarded by comparing the secondary
flow pattern to a numerical simulation of the same setup in absence of contaminants, which differs only
little quantitatively (figure omitted). As a consequence, it is likely that the lateral organization of con-
taminants has its root in the same phenomenon which induces the secondary flow, and thus, it can be
hypothesised that particles preferentially sweep turbulent structures on a large scale.

The correlation between the secondary flow and contaminant distribution also affects the local average
particle velocity. Figure 5.2 displays the spanwise-resolved excess in settling velocity of the contami-
nants averaged over all downward crossings, as well as averaged over all up- and downward crossings.
For the downward-conditioned average, a strong enhancement in settling velocity is typically observed
in fluid downdrafts, whereas in updrafts the settling velocity is significantly slower in comparison. It
should be noted, however, that the settling velocity is still enhanced on average even in regions of mean
upward fluid motion, which indicates that the secondary flow is not sufficient to explain the enhance-
ment. This conclusion is supported by the results obtained for the average over all up- and downward
crossings. While here the correlation between the settling velocity and secondary motion is especially
obvious, as due to the inclusion of upward moving particles the average vertical velocity in updrafts is
significantly shifted towards high positive particle velocities, the magnitude of enhancement is inexpli-
cable by the large-scale motion alone since the variation in excess settling velocity is at least a factor
two higher than that of the mean vertical fluid velocity in terms of range as well as standard deviation
(not shown in the figure). Potential causes for this deviation could be inertial or collective effects for the
contaminant particles, but also the disregard of fluid motion on smaller—and thus shorter—scales.

In terms of the streamwise component, the discrepancy in velocity magnitude between the mean fluid
and contaminant velocity is much less significant for the most part, as shown in fig. 5.3. Here, the ve-
locities are in decent agreement with the only notable exception being the lower quarter of the clear
channel, where the solid phase generally possesses higher streamwise velocities than the fluid. The
conformity of this region with the occurrence of increased mean shear indicates that this discrepancy
may be explained by a delayed response of the contaminants to the rapidly changing mean streamwise
fluid momentum, cf. fig.3.6(b).
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5 Preferential sampling of the fluid flow

Although the detailed mechanisms still need to be evaluated, both fig. 5.2 and fig. 5.3 suggest that the
enhancement of the contaminants’ vertical and streamwise components of momentum is indeed pre-
dominantly a result of preferential sampling of specific flow regions, as has been first hypothesised in
§4.3.1.

5.2 Particle-conditioned flow field

The juxtaposition of the secondary flow and the particle velocity gave a first hint on how the contami-
nants are redistributed within the flow and which mechanisms could potentially explain the enhance-
ment in contaminant velocity. However, this perspective does not take into account the instantaneous
and largely local nature of particle-fluid interactions, but rather correlates two quantities which have
been independently collapsed in space and time. Thus direct evidence for a connection between the
local fluid surrounding and the particle velocity is yet to be provided.

5.2.1 Particle-conditioned averaging operator

A new conditional averaging procedure is now defined to evaluate the three-dimensional flow field in
the vicinity of the contaminants averaged at the time of crossing a given wall-parallel plane. In order to
achieve this, the field is first translated such that the origin of the new coordinate system is centred at the
centroid of the particle to be sampled, and subsequently the spatial-averaging procedure introduced in
§4.2 is applied. Hence, the particle-conditioned averaging operator reads

<uf,a(x_xc’ t) Xf(x_xc; t)>X
<Xf(x_xc) t)>x

(Upa p & ) = : (5.2)

where x7:=1-y, is the indicator function of the fluid phase which has been introduced in order to dis-
regard the solid phase from the average. This operator maps a three-dimensional and time-dependent
input onto an output which is three-dimensional with respect to the transformed coordinates, X:=x—Xx,,
but also depends on the y-coordinate of the crossing plane under investigation.1 By definition, the ori-
gin of the transformed coordinate system coincides with the centroid of the particle, and thus, in simple
terms, this operation averages the fluid field relative to the particle’s location whenever a sample particle
crosses a given xz-plane.

Whereas the definition of the particle-conditioned averaging operation is straightforward, its evaluation
for fluid data poses difficulties. For attributes intrinsic to the particles, that is, those which are stored
alongside the trajectories, the spatial-averaging operator (+ ), can readily be evaluated by interpolating
the finely sampled data onto the time of crossing in the same manner as in chapter §4. In principle,
the same procedure could be used for the fluid as well, however, in practice the sampling frequency of
fluid samples in time is orders of magnitude scarcer than that of attributes associated to the particle
trajectories because of the vastly larger demand on storage. This circumstance in conjunction with the
problematic nature of temporal interpolation of a highly nonlinear chaotic system demands the search
for an alternative way to evaluate the spatial-averaging operator which is more practical for fluid data.

As was stated before in §4.2, the y-coordinate of the crossing plane may be regarded as a time-like coordinate for the transient,
and hence, the time-dependency of the input is not discarded, but rather substituted such that the averaging is conducted at
the particle-dependent time where the fluid conditions for all samples are statistically homogeneous, i.e. at the time where
the particles are at the same wall-normal position.
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5.2 Particle-conditioned flow field

Figure 5.4: Assessment of the differences between the weighted-bin approximation of the spatial-averaging operator given in
eq. (5.3) and the corresponding evaluation using (4.5) and interpolation of finely sampled trajectory data. As an ex-
ample the vertical particle velocity is shown, cf. fig. 4.7. (a) Using the original definition (4.5) and considering only the
first crossing. (b) Same, but evaluated for all downward crossings. (c) Using the approximation (5.3) with trajectory
data at full temporal resolution and a bin width and spacing of € = 0.01. (d) Same, but for bin width and spacing of
£ =0.05 and temporal samples only considered where fluid data is available, i.e. the exact setup as used for the fluid
data in this work.

As demonstrated in §A in the appendix, the spatial-averaging operator defined in eq. (4.5) can be ap-
proximated by a weighted-binning method, viz.

Sy 21 o (5w, 0w, y) [0 0| V) de 53
s zé\lgz A0, 1P, y) [0 dr : )

<‘P>x(y) =

Here, Ay is a function which determines whether or not a particle is to be sampled. Whereas the defini-
tion of a binning function which approximates exclusively the first crossing of a particle is an intricate
task, the definition of a function which is specific to downward crossings is straightforward and reads

. oy oy
1 if yely—=,y+=)andy, <0
D) s U ¥) = Y '[ Y7 P (5.4)
0 otherwise

and a variant specific to upward crossings can be constructed analogously. The free parameter 6y de-
notes the width of the bin and its value is set to 6y := 0.05Hy in the following. The spacing of the bins is
chosen as small as possible under the condition that the bins do not overlap, and hence, it is equivalent
to the bin width.

As a consequence, the approximation employed in the current chapter differs from the spatial-averaging
procedure employed in chapter §4 in two ways. First, uncertainty in the wall-normal position of sam-
ples is introduced as a result of finite-width bins. Second, the nature of samples is slightly different as all
downward moving particles are now included as samples by default as opposed to merely the first cross-
ing of a particle. Fortunately, it is straightforward to assess the impact of these differences by applying
the approximation to any intrinsic particle attribute where a reference value is known from trajectory
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5 Preferential sampling of the fluid flow

interpolation. Such an assessment can be found in terms of the contaminant settling velocity in fig. 5.4.
As can be seen, only minor differences in the results arise from the distinct ways of evaluating the oper-
ator, and therefore, results obtained in this chapter can without reservation be compared to the results
obtained in the previous chapter.

Finally, the approximation of the particle-conditioned averaged fluid velocity as employed in the follow-
ing is given by

Jo N A (50, v @), y) |00 wge - xP0), 0) 3 - xP(0), 1) i
S 20 A (0@, 00, ) [0 apx—x(0), 1) de

<uf,a>|le (i' y) = (55)

for the variant conditioned to downward crossing particles. For upward crossings, the procedure differs
merely with regards to the binning function employed.

5.2.2 Conditioned fluid velocity in the crossing plane

The averaging procedure previously described is now employed to examine the conditioned fluid ve-
locity. Figure 5.5 displays this quantity within the wall-parallel plane located at y = 0.3H;. At this
position, the contaminants’ vertical and streamwise velocities are generally enhanced, cf. fig. 4.7 and
fig. 4.8. This enhancement is clearly reflected in the nearby fluid environment, as the conditioned verti-
cal(streamwise) fluid velocity fluctuations are biased towards negative(positive) values, thus establish-
ing a direct link between the velocities of both phases.2 This observation holds for both parameter points
shown.

At this point, it has not yet been finally resolved whether the nearby fluid velocity is induced by the
contaminants themselves or has its origin in a preferential sampling bias, though the analysis regarding
secondary motion hinted towards the latter. The preferential sampling hypothesis is further reinforced
for the streamwise velocity component by comparing the two cases shown, which mainly differ in their
relative turbulence intensity and particle mobility. If the excess in streamwise velocity was to be induced
solely by the finite response time of the contaminants at this position, one would expect G30-D15-HR
to exhibit higher values of (u})PX . than G10-D10-HR, as these contaminants carry more streamwise
momentum per particle, settle faster in absolute terms and adapt more slowly to changes in the fluid
environment. This is not the case. In contrast, the short response time and higher relative turbulence
intensity of G10-D10-HR likely enables these contaminants to perform preferential sampling more ef-
fectively, which is in agreement with the actual trend observed for the two cases. However, this inference
is limited to the bulk of the fluid, for which fig. 5.5 is an adequate representative. It was noted already in
§4.3.1 that the near-wall behaviour of the streamwise contaminant velocity differs from that in the bulk,
and an analysis thereof in terms of the local fluid environment is subject of upcoming §5.2.3.

Regarding the vertical fluid motion, an assessment of the cause of the biased downward fluid velocity
is more intricate. This is mainly due to the intrinsic relative velocity between the two phases in the di-
rection of gravity whose value is difficult to quantify as it may deviate from its ambient value in either
direction due to turbulence interaction or collective effects. The direct effect of this velocity difference
is observable in fig. 5.5 at distances of O( 10_1dp) from the particle’s surface where the conditioned fluid

To be precise, the term “fluctuation” is used in the current context to denote deviations from the classical spatio-temporal
mean of the fluid flow, i.e. up - (uf >xzt, and not with respect to deviations from the particle-conditioned average which was
just introduced. This implies that spatio-temporal mean of these fluctuations is zero by definition, whereas the particle-
conditioned mean may be nonzero if a sampling bias exists.
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5.2 Particle-conditioned flow field
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Figure 5.5: Particle-conditioned average of the fluid velocity in the vicinity of the contaminant particles for the cases (a,b) G30-
D15-HR and (c,d) G10-D10-HR. The xz-plane is located at y = 0.3Hp. The top row (a,c) shows the streamwise velocity

fluctuations (uj’c)[PX I whereas the bottom row (b,d) depicts the vertical component (vf)[P>X E
velocity has its highest downward values. The difficulty lies, however, in determining the radial distance
at which this effect becomes negligible, as this distance could in principle be of the order of multiple par-
ticle diameters if the contaminants frequently form clusters. As will be shown in upcoming chapter §6,
clustering indeed occurs more frequently for G10-D10-HR than for G30-D15-HR, and hence, this phe-
nomenon may serve as an explanation for the slower radial decay of the vertical velocity observed at this
parameter point. Nonetheless, it can equally be argued that the difference in radial decay is caused by
the preferential sampling mechanism: due to the higher mobility for G10-D10-HR, these contaminants
likely sample downdrafts more effectively which potentially leads to a similar pattern in the conditional
average if the downdraft regions are of the size of multiple particle diameters.® There is, however, an ar-
gument to be made in favour of the preferential sampling mechanism. For both cases, the conditioned
vertical fluid velocities are O(u,). While for G30-D15-HR this information does not allow discrimination

between particle-induced and turbulence-induced motion as = u,, these velocity scales are clearly

v
P00
separated for G10-D10-HR where v, , = 0.35u,. Hence, a cluster of particles would be required to settle

3 The assumption that preferentially sampled downdrafts have a length scale of at minimum the particle diameter appears

obvious, as any fluctuations significantly smaller than the particle are experienced as noise as they are uncorrelated on the
particle scale, and thus, are unlikely to produce the directional effect required for preferential sampling.
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Figure 5.6: Particle-conditioned average of the fluid velocity as in fig. 5.5, but now showing the entire streamwise/spanwise extent
of the computational domain. The xz-plane is again located at y = 0.3H;. The left column shows (a) the streamwise
and (b) the vertical component of the fluctuating fluid velocity for G30-D15-HR. The right column shows the same

quantities for G10-D10-HR, i.e. (c) <u}‘> and (d) <vf>[P>X Ik

PX|
at around three times the speed of the isolated terminal velocity of an individual particle in order to be
the sole explanation of the observed velocity magnitude, a value which is well above those typically ob-
served for wake-induced clustering, see e.g. Uhlmann and Doychev (2014). Furthermore, the values of
the Galileo numbers at the parameter points currently discussed are—from the current understanding
of this phenomenon—insufficient to generate wake-induced particle clusters. A potential formation of
clusters is consequently more likely a byproduct from preferential sampling, and thus might correlate
with an enhancement in particle velocity without being the principal cause.

The insights which can be gained from the particle-conditioned fluid velocity are not restricted to the
near vicinity of the particle. In fact, as was already observed in §5.1, the contaminants interact with
large-scale flow structures with characteristic sizes of the order of the clear fluid height, and this be-
haviour is also reflected in the conditionally-averaged velocity field. Figure 5.6 presents the same data
as previously shown, but at a vastly larger scale. Here, the entire cross-section of the computational
domain is shown rather than just the immediate proximity of the particle. For both the streamwise
and the vertical component of the fluid velocity, alternating streamwise-aligned stripes of positive and
negative fluctuations are conspicuous. These stripes have an infinite extent in streamwise direction—
they connect to themselves across the periodic domain—and a spanwise spacing of the order of the
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5.2 Particle-conditioned flow field
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Figure 5.7: Exemplary visualization of an instantaneous state of the background flow at y = 0.3H, (HR, Re, = 838). In this partic-
ular numerical experiment depicted, no contaminant particles are present in the flow. (a) Streamwise fluctuations of
the fluid velocity u} (b) the corresponding wall-normal fluctuations vj’c.

fluid height. It can be readily acknowledged that the conditionally-averaged field is complementary to
the observations from §5.1, as there the contaminants were seen to accumulate in regions of positive
(up )., and negative () , which in the particle-conditioned perspective must be reflected in the form
of streamwise-aligned stripes.* The advantage of the particle-conditioned average is, however, that it is
also resolved in streamwise direction and that the temporal average is weighted by the number of cross-
ings within a given time interval such that it more adequately reflects the flow field at the time at which
contaminants are actually affected by the flow.

Regarding the streamwise fluid velocity, the inferences differ only little from the ones made in §5.1. The
primary reason for this is that the large-scale streaks which leave their footprint in the streamwise mean
are indeed rather homogeneous in the streamwise direction, and their typical lifetime is significantly
longer than the observation time of the settling experiments. Therefore, the increased spatial resolution
and temporal accuracy of the particle-conditioned averaging procedure is not required for their detec-
tion. An example for the instantaneous state of a large-scale streak in the current setup is provided in
fig. 5.7(a). The structure exhibits only little variation in the streamwise direction even instantaneously,
and its streamwise extents fills the entire length of the computational domain. Indeed, an argument can
be made the the numerical domain is too short to capture the dynamics of these large-scale structures
accurately—a circumstance which originates from the artificial suppression of the ripple-instability in
the sediment bed. A discussion on the implications of the domain size with regards to contaminant
settling is subject of §5.5.

The instantaneous vertical fluid velocity is significantly more intermittent in streamwise direction than
Uy, see fig. 5.7(b), albeit large-scale coherence may also be detected to some degree. In fact, it is this

Please keep in mind that if the contaminants were to sample the crossing plane randomly with respect to the (x, z)-position
and time, the particle-conditioned fluid fluctuations would be nil, as this would directly correspond to the classical spatio-
temporal fluid average. The obvious exception to this statement is the local flow modification caused by the particle itself.
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5 Preferential sampling of the fluid flow

streamwise-coherent part which manifests itself in the secondary flow and as stripes in the particle-

conditioned average. With regards to <vf> it may be observed that the bias in fluid velocity is notice-

PX|
ably stronger in the near vicinity of the particle compared to the large-scale coherent motion at greater

distances, which is much less the case for (uf> This nearby zone of influence is exactly the one dis-

PX|"
played in detail in fig. 5.5(b,d), and for the reasons stated in the discussion thereof, is presumably caused

by a preferential sampling of downward fluid motion. Recalling the findings up to this point that
1. the magnitude of (vy) _ is significantly smaller than (v, )y at the same (y, 2)-position
2. the nearby fluid velocity is unlikely to be induced by the contaminants themselves
3. the vertical fluid velocity is highly intermittent in streamwise direction

it can be hypothesised that the enhancement of the settling velocity is primarily caused by the prefer-
ential sampling of turbulent fluctuations of the vertical velocity in negative direction which occur at a
scale larger than the particle size, but considerably smaller than the coherent turbulent motion at the
largest scales. This hypothesis will be subject of further investigations.

5.2.3 Fluid velocity sampled by the contaminants

While the particle-conditioned averaging operator defined in eq. (5.2) proved to be useful for the as-
sessment of the average flow environment experienced by the contaminants, a similar quantity of lower
dimensionality would be more expedient to investigate trends between the various cases and at varying
wall-normal positions. For this reason, a virtual sphere of radius r is defined in the particle-attached co-
ordinate system whose centre is located at % = (0,0,0) " Areduction in dimensionality is then achieved
by averaging the values of the particle-conditioned field on the surface of the virtual sphere S, with
radius r, viz.

( uf,w)§X1 (r,y):= # fs,,(r) ( uf'a>uﬂ>x1 (%,y) dS,. (5.6)
This sphere-average ( >§x | depends on the vertical coordinate of the crossing plane under investigation
and its three-dimensionality in the particle-attached coordinate system is now reduced into a single
dimension—the radius of the virtual sphere. The idea behind this approach is to define a characteristic
velocity of the background turbulence which is experienced by the contaminants at the time of crossing.
In order to achieve this, the radius has to be chosen sufficiently large so that the self-induced velocity
fluctuations by the particle are negligible, but as small as possible such that the value of the average
accurately reflects the local conditions. Similar approaches have been used in literature by e.g. Kidane-
mariam et al. (2013) (on a segmented sphere) or Uhlmann and Doychev (2014) (on a full sphere) for the
same purpose, and in both studies, the radius has been setto r = 1.5dp. This value will be used in the fol-
lowing as well. Please note that the choice of this parameter does indeed influence the absolute values
of the obtained velocities, as one might readily assume by assessing fig. 5.5. However, the relative trend
among cases and vertical positions was found to be quite robust with respect to r within a reasonable
range, such that the particular choice is not decisive for the inferences made in the following.

In the following, an attempt is made to explain the finding of enhanced contaminant velocities from
chapter §4 in terms of the fluid velocity in the vicinity of the contaminants. To begin with, the focus is
placed on the vertical velocity component. Figure 5.8(a) shows the sphere-averaged vertical fluid veloc-
ity for all cases at varying vertical positions in the same scaling as the corresponding fig. 4.7(a) for the
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Figure 5.8: Sphere-averaged vertical fluid velocity experienced by the contaminants at the time of crossing of a given xz-plane. (a)
Normalised as in fig. 4.7(a) using the local unconditioned value of the standard deviation. (b) As normalisation of the
excess in contaminant settling velocity. Legend: G30-D15-HR (-++), G10-D10-HR (-*), G30-D10-LR (—), G10-D6-LR
(—), G15-D10-LR (—) and G15-D6-LR (—).

particle velocity. A comparison of the two figures suggests that the excess in settling velocity is corre-
lated to the surrounding fluid velocity, which is to be expected if the enhancement is indeed a result of
the preferential sweeping mechanism. Interestingly, for some cases the velocity sampled by the con-
taminants appears to decrease with decreasing height when compared to the standard deviation of the
local vertical fluid velocity after a peak at the end of the initial transient phase. If the particles were to
sample fluctuations of the same length scale consistently, this observation may be related to the varia-
tion in turbulent length scales, i.e. small turbulent scales increase their contribution to (v; )m closer to
the lower boundary, but this contribution may be too small to be sampled by the contaminants. In fact,
one has to keep in mind that averaging over the surface of a sphere acts as an implicit filter for any vari-
ation whose length scales are smaller than the diameter of the virtual sampling sphere. A discussion on
the wall-normal dependence of the scales of turbulent fluctuations in the flow configuration of current
interest is provided in §5.5.

When the excess settling velocity is scaled by <vf >§X pan approximate plateau is reached—or at least
approached—by all cases, see fig. 5.8(b). In fact, the convergence towards the plateau exhibits similar-
ities to the initial acceleration in the ambient settling experiments, in particular, the distance travelled
until the particles reach an equilibrium of all acting forces as displayed in fig. 3.8(c). Perhaps, the re-
laxation observed in the turbulent environment can be interpreted in a similar way, in the sense that
some distance needs to be travelled until the interaction between the background turbulence and the
contaminants is approximately quasi—steady.5 If so, fig. 5.8(b) provides a potential explanation on why
G30-D10-LR exhibits a behaviour deviant from the other cases on some statistics—the available settling
distance may be too short for those contaminants to reach their equilibrium settling state. This realiza-

tion should be kept in mind whenever an anomaly concerning G30-D10-LR is to be interpreted.

Turning to the streamwise velocity, the wall-normal trend of the sphere-averaged fluid velocity por-
trayed in fig. 5.9(a) appears to explain the corresponding evolution of the particle velocity (fig. 4.8(a))
reasonably well in the bulk of the channel. Interestingly enough, the correlation gets lost below y <
0.3H; where the surplus in streamwise particle velocity with respect to the local fluid mean has its pro-
nounced peak. It was hypothesised in §4.3.1 that this peak is not due to preferential sampling, but rather

5 Certainly, no steady state in the proper sense can be reached during the transient as the background flow is inhomogeneous

in the direction of settling.
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Figure 5.9: Sphere-averaged streamwise fluid velocity experienced by the contaminants at the time of crossing of a given wall-
normal plane. (a) Normalised as in fig. 4.8(a) using the friction velocity. (b) Difference between the velocities of the
solid and fluid phase normalised by the product of mean shear in the channel, local settling velocity and particle
response time. Legend: G30-D10-LR (—), G10-D6-LR (—), G15-D10-LR (—), G15-D6-LR (—), G30-D10-RP (- =),
G10-D6-RP (- -, G30-D15-HR (), and G10-D10-HR ().

aresult of the inability of the contaminants to adapt to the mean fluid velocity which is rapidly decreas-
ing towards the sediment bed. In order to reexamine this hypothesis, the surplus of the particle velocity
with respect to the sphere-average fluid velocity is shown in fig. 5.9(b) scaled by the three factors this
phenomenon ought to be proportional to—the mean shear ((Sxy)m), the velocity with which the con-
taminants travel along this gradient ((1,)y) and the particle response time (z,). The surplus may be
interpreted as a particle velocity which adjusted to disregard preferential sampling effects, and it indeed
collapses reasonably well for a given background flow at around y < 0.3Hy. As a consequence, one can
conclude that the mean fluid shear needs to be taken into account in the lower quarter of the channel
in order to explain the surplus in (), | with respect to (u) .

5.2.4 Quadrant analysis of conditioned fluid velocity

Now that then enhancement in mean streamwise and vertical particle velocities was successfully ex-
plained by means of the particle-conditioned average fluid velocities, the more detailed quadrant anal-
ysis of §4.3.2 is revisited. As a reminder, the premise of the heuristic proposed in that analysis was that
the fluctuations in particle velocities directly reflect the turbulent fluctuations in close proximity to the
contaminants. This conjecture is the subject of this paragraph.

In order to construct a histogram of the fluid fluctuations in the vicinity of the contaminants at a given
vertical position, eq. (5.6) has to be generalised in the sense that the subset of instantaneous velocities
which gives rise to the sphere average needs to be defined. In a first step, the time-dependent set of fluid
velocities sampled by the i-th contaminant particle along its trajectory is defined as

[uge]e) (0= {upe &0 1) : K€ 5,1 A g, &0 0 =1} (5.7)

Consequentially, the complete set of fluid velocities sampled for (uﬁa> is given by the union of

sx|
[uﬁa] g ) evaluated at all instances in time where downward crossings at y occur for all contaminant
particles, viz.

Nex . .
[ugaly, )= U [ugald (15, 1)) (5.8)
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where i is the index of the particle to which the j-th downward crossing of the plane is attributed. The

arithmetic mean of [uﬁa] is equivalent to <uﬁ @ Jey - A variant which considers only upward crossings

sx|
can be constructed analogously.

S9N

The primary quantity of interest for the current analysis is the joint probability density of the condi-
tioned streamwise and vertical fluid velocities. However, because of the scarce temporal resolution of
the samples, cf. §5.2.1, it is not feasible to construct the set defined in eq. (5.8) explicitly. Instead, the
probability distribution is approximated using a weighted histogram in a manner similar to the approx-
imation of the particle-conditioned average, cf. eq. (5.5). This weighted histogram is given by

Jo 21 Ay (1P, v, y) [0 st (lup) L 0, [ 0) d
Jo 21 Ay (1P, v, y) [0 dr

hist ([uglg, |, [yl V) = (5.9

and normalisation yields the corresponding joint probability density function. Please note that the de-
pendency on the radius of the sampling sphere has been disregarded in this equation as it is not varied
in this study.

The resulting joint probability functions of the (u;, vy)-fluctuations experienced by downward moving
particles displayed in fig. 5.10 are strikingly similar to those of the corresponding particle velocity fluc-
tuations (fig. 4.9). This reinforces the conjecture that these quantities are closely related. Moreover, it
can be observed that the (uy, vp)-space also exhibits an approximate upper bounded dictated by the rel-
ative turbulence intensity as virtually no fluctuations faster than the terminal velocity of the particle are
sampled by the contaminants—at least for the vertical position under investigation. This observation is
remarkable as the analogous (rigorous) property with respect to the particle velocity fluctuations plays
a decisive role for the reasoning of §4.3.2, and many of the inferences made relied on the supposition
that the fluid velocity fluctuations behave equally, which indeed seems to be adequate assumption.

Interestingly enough, the joint PDFs of fluid fluctuations conditioned to upward crossings (fig. 5.11)
suggest that there is a fundamental difference between downward and upward particle movement. Here,
the fluctuations sampled by the contaminants show little to no indication of boundedness by the relative
turbulence intensity. One potential interpretation of this observation is that downward moving particles
are more effective at sampling regions of the flow which are favourable for their direction of movement
than upward moving particles.

As may be inferred from the conditioned mean statistics, the sampling bias towards specific quadrants
depends on the wall-normal position. For this reason, the contribution of the individual quadrants to
the (uy, vy)-space sampled by the contaminants is examined in the following. The probability of an
instantaneous fluctuation to belong to i-th quadrant, which will be denoted as X;, is given by

0o oo , , oo 0 , ,
ipdf(us, ve) du, dv +[ f ipdf(us, ve) duy dvy +

::XQl ::XQ2
0 0 0 [oo
f f jpdf(u]'f, vf) du}dvf +f j(; jpdf(uj'p, vf)du} dvf =1, (5.10)
= =

respectively. In this definition, uy and vy may refer to either the conditioned and unconditioned sample
velocities alike, although in both cases u]'c is to be understood as the difference from the unconditioned
fluid mean (us) .

xzt
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Figure 5.10: Joint probability density function of the streamwise and vertical components of the fluid velocity conditioned to the

contaminants,

. !
pdf(luplg,  Tuly

) (shaded regions) and the unconditioned fluid velocity, jpdf (u}, vr), (contour

lines) at y = 0.3Hy for all downward crossings. The data is presented as a function of the velocity fluctuations, which
means that the mean unconditioned streamwise velocity at the position shown is subtracted from the conditioned
and unconditioned streamwise velocities alike. The colouring corresponds to {0.1,0.3,0.5,0.7,0.9} times the respec-
tive maximum value of the distribution. An indicator for the inverse of the relative turbulence intensity for each case
is given by the dashed line which is located at vf = v}, o, (=="). The following cases are arranged in column-major
order: (a) G30-D10-LR, (b) G10-D6-LR, (c) G30-D15-HR and (d) G30-D10-HR.
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Figure 5.11: Same as fig. 5.10, but the conditioned fluid velocity is now considered for all upward crossings, i.e. the shaded regions
correspond to jpdf([u}]§X1‘ , [Vf]SXI)‘ Only the cases at Re; = 838 are shown: (a) G30-D15-HR and (b) G30-D10-HR.
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Figure 5.12: Probability of a fluid fluctuation sampled by the contaminants to belong to the i-th quadrant as a function of vertical
position in the channel. The data is presented in form of stacked area curves to reflect the property ; Xp; = 1.
Therefore, XQI (m), XQZ ), XQS () and XQ4 () correspond to the vertical extent of the areas in the respective colour
at each y-position. The conditioned probabilities for the four cases at Re, = 241 are shown in the upper row (a-d),
whereas those for the two simulations at Re, = 838 are shown in the lower row (e,f) together with the values obtained
for the unconditioned fluid velocity for the (g) LR and (h) HR background flows. The conditioned probabilities are
ordered in increasing relative turbulence intensity for each flow Reynolds number.
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Figure 5.13: Ratio between conditioned and unconditioned probability of a fluid fluctuation to belong to (a) the fourth quadrant
where uj/c >0, vp < 0, and (b) the third quadrant where u]’c <0, vp < 0. Legend: G30-D10-LR (—), G10-D6-LR (—),
G15-D10-LR (—), G15-D6-LR (—), G30-D10-RP (- =), G10-D6-RP (- - ), G30-D15-HR (), and G10-D10-HR ().
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5 Preferential sampling of the fluid flow

The resulting probabilities are shown in fig. 5.12. When comparing the conditioned values to the un-
conditioned ones, it becomes apparent that sweep-events (Q4) dominate, and that the prevalence in-
creases with increasing relative turbulence intensity. This increase largely happens at the expense of
Q1- and Q2-events, i.e. those for which vr >0, whereas Q3-events are still likely, but are not as preva-
lent as Q4. The unconditioned probabilities suggest that the distribution among quadrants slightly
varies with respect to the wall-normal coordinate, and this variation is also reflected by the conditioned
probabilities—at times even in an amplified manner such as the excursion observed for Q4 at y =~ 0.35
for LR. In order to gauge this effect and to display the relative shift in probabilities, fig. 5.13 provides
the conditioned probabilities of Q3- and Q4-events normalised by their corresponding unconditioned
values. While for a short initial period—the wall-normal position serves as a time-like coordinate of the
transient in this picture—the organization into preferentially sampled regions is rather irrespective of
the sign of u}, sweep events are clearly preferred at later times in most cases. A notable exception to
this observation is G30-D10-RP for which the probability of sampling either quadrant stays comparable
until close to the sediment bed. A major contributing factor for the preference is presumably the ac-
cumulation of contaminants in large-scale velocity streaks, which was observed and described in §5.1
and §5.2.2. In order to understand the connection between these observations, the mechanism which
causes preferential sampling in this configuration needs to be further understood, and an attempt at
gaining more insights is taken in chapter 7.

5.3 Particle wakes

The focus is now shifted towards the flow at the scale of the individual contaminant particles. In par-
ticular, the questions of how the wake of the particles interacts with the background flow and how it is
modified with respect to a suitable laminar reference state are raised.

5.3.1 Instantaneous fluid motion near the contaminants

To begin with, the instantaneous fluid motion in the vicinity of the contaminants is inspected on a sam-
ple basis. For this purpose, two orthogonal slices oriented normal to the spanwise and streamwise direc-
tion, respectively, and centred at the centroid of the contaminant particle of interest are extracted from
a snapshot of the fluid field at a time where the settling process is fully developed. Four distinctive sam-
ples are chosen under the consideration that their settling velocities at the time of inspection preferably
span the full extent of the range at this particular instance in time. The fluid motion is then inspected
from two perspectives. First, the vertical velocity is examined from the perspective of a steady observer,
i.e. a observer who is not moving with respect to the channel’s walls, which enables a straightforward
assessment of the background turbulence in the vicinity of the particle. Second, the velocity is inspected
in a frame of reference translating with the particle of interest and particular attention is drawn to ver-
tical velocities of the order of the terminal velocity of the contaminants. This perspective is especially
advantageous for the detection of particle-induced fluid motion as caused by a particle’s boundary layer
or wake.

It should perhaps be noted that in the range of Galileo numbers under investigation in this thesis (Ga <
30), no wake in the proper sense is to be expected, which means that no zone of recirculation exists
in the undisturbed flow around such particles. Nonetheless, the particle induced motion exhibits a
pronounced front-rear-asymmetry at all parameter points, and it is the velocity deficit in the rear of
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%/dp Z/dy %/dp z/dy

Figure 5.14: Instantaneous flow field around four selected contaminant particles for G30-D15-HR at ¢ = 7.94,. (a-d) Vertical fluid
velocity scaled by the friction velocity in a stationary reference frame centred at the particle of interest. (e-h) Vertical
fluid velocity scaled by the particles terminal velocity in a reference frame moving with and centred at the particle of
interest. The lines correspond to vp=[-0.9:0.1: -0.1] v, . Per subfigure, a cross-sectional xy/zy-plane is shown on
the left/right, respectively. The particles’ instantaneous vertical positions and velocities are (a,e) 0.48Hf, -2.0 Up,oor
(b,f) 0.36Hp, —1.3v), o, (¢,8) 0.48Hy, —1.1vy, o, (d,h) 0.48Hy, —0.2v}, o0, respectively.
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Figure 5.15: Same as fig. 5.14, but for G10-D10-HR at ¢ = 13.11,. The particles’ instantaneous vertical positions and velocities are
(a,e) 0.39Hf, —5.8vp’oo, (b,f) 0.25Hf, -1.7 Up,cor (c,g) 0.43Hf, -0.3 Up oo (d,h) 0.24Hf, +2.7vp’oo, respectively.
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5.3 Particle wakes

the particle which is referred to as wake in the following. Visualizations of the undisturbed wakes at
Ga={27.1,10.8} are provided at a later point in fig. 5.16(a) and fig. 5.17(a), respectively.

Figure 5.14 shows the instantaneous fluid motion in the vicinity of selected contaminant particles for
G30-D15-HR. From the point-of-view of a steady observer, it is obvious that the fluid environment ex-
perienced by the contaminants during settling is intermittent, as for all samples shown, patches of neg-
ative and positive vertical fluid velocity coexist within only few diameters distance from the particle.
Regarding the relative velocity between the solid and fluid phase, it can be noticed that the contami-
nants induce a fluid motion which resembles a wake, although these structures are visibly deformed by
the background flow, especially at greater distances. A decent example is given by fig. 5.14(f) where a
distinct velocity deficit can be observed in the rear of the sample particle.

The observations for G10-D10-HR are similar to those at the higher value of the Galileo number with
regards to the fluid environment experienced by the contaminants, see fig. 5.15. However, there is a
disparity regarding the relative fluid motion in the near vicinity of the particle. Whereas for Ga = 30
structures resembling a particle boundary layer are still perceptible, it seems that for Ga = 10 and the
corresponding higher relative turbulence intensity, fluctuations of the order of the terminal velocity are
mostly driven by—or at least severely distorted by—the background turbulence. This suggests that high
values of I, might reduce the difference in relative velocity between the two phases below the ambient
terminal velocity, or that the time scale at which a distortion by turbulent fluctuations occurs simply
becomes much shorter than the characteristic time scale of the particle-induced flow.

5.3.2 Comparison with undisturbed wake

The particle-conditioned average introduced in §5.2.1 is now used to investigate the vertical velocity
field in close proximity of the particle in order to understand how the boundary layer is modified by
the background turbulence. Of particular interest in this investigation are variations of the order of the
ambient terminal velocity in a reference frame moving with the particle, as fluid velocities of this order
of magnitude can be induced by the intrinsic relative velocity between the particle and its environment.

In order to have a reference to which the wake under the influence of turbulence can be compared
to, the undisturbed flow around a particle at the corresponding value of the Galileo number has to be
examined first. For this reason, the converged state of the reference simulations previously presented
in §3.7 is visualised in fig. 5.16(a) for Ga = 27.1. As previously stated, the boundary layer is steady and
axisymmetric and no recirculation occurs in the rear of the particle. However, a strong asymmetry of the
velocity deficit in the direction of movement can be observed with significant disturbances being still
noticeable at distances of the order of ten particle diameters from the rear.

In contrast, the velocity deficit decays within a considerably shorter distance in the averaged turbulent
case, see fig. 5.16(b-e). This result is consistent with e.g. Bagchi and Balachandar (2004) or Homann et al.
(2013), although only few data points at comparably low(high) values of the Reynolds number(relative
turbulence intensity), respectively, are available in literature. More interestingly, the general shape of
the boundary layer from the quiescent reference is somewhat maintained in the turbulent mean for the
vertical positions shown in the sense that it is approximately axisymmetric and slightly tapered at the
sides of the particle.

For Ga = 10.8, the undisturbed boundary layer is notably shorter and less confined in the horizontal
direction than at higher Galileo numbers, see fig. 5.17(a). In the presence of background turbulence
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(a)

14 -

Figure 5.16: Vertical component of particle-conditioned average fluid velocity (uf)[P7X | in the vicinity of the contaminant particle
for G30-D10-HR. The lines indicate isolines of velocity with values at [-0.1: —0.1: —0.9] times the ambient terminal
velocity. (a) The undisturbed axisymmetric boundary layer for Ga = 27.1 as a reference. (b) The averaged bound-
ary layer from the turbulent simulations at y = 0.8 H, in the streamwise-normal plane. (c) Same as before, but in
the spanwise-normal plane. (d) The averaged boundary layer from the turbulent simulations at y = 0.3Hp in the
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Figure 5.17: Same as fig. 5.16, but for G10-D10-HR.
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Figure 5.18: (a) Velocity deficit as a function of distance from the particles’ centroid for the cases G30-D15-HR (- -, ") and G10-
D10-HR (= =+, =) aty = 0.8Hg (==") and y = 0.3Hp (). Also shown are the curves obtained for the converged states
of the respective ambient settling simulations at Ga = 27.1 (—) and Ga = 10.8 (—) as well as black lines indicating

the slope of )7_1 (laminar decay) and )7_2 (decay in presence of background turbulence). (b) Length of the wake as
defined in the main text as a function of local relative turbulence intensity for the cases G30-D15-HR (O0) and G10-
D10-HR (). The samples are taken at vertical positions in the range y € [0.2,0.85] H¢ and the values are normalised
by the corresponding value for an undisturbed wake at the same value of the Galileo number. The black triangles (&)
indicate the relative length of the wake obtained by Homann et al. (2013) for a sphere towed in homogeneous isotropic
turbulence at Re 00 = 20. Please note that the reference data of Homann et al. (2013) is evaluated for a velocity deficit
of 0.5 as opposed to 0.1 for the simulations presented here.

(b-e), most of the defining features are lost, which is unsurprising given the virtual absence of particle-
induced motion in the instantaneous picture.

Both fig. 5.16 and fig. 5.17 depict the mean wake at two positions within the channel, and it can be noted
that the wake considerably differs between those positions. In order to quantify the length and decay of
the wake in the rear of the particles, the velocity deficit is defined as

(U Jp (X =0,7,2=0,3) = ()5 ()

Up,oo

Uf,def(j;’y) =1- (511)
Please note that this deficit is defined with regards to the ambient terminal velocity—similar to the wakes
previously shown—and not with respect to a zero mean and also not with respect to an actual slip ve-

locity. The former is due to the fact that (), , does not decay to zero anywhere near the particles

PX|
due to preferential sampling, and the latter is avoided since the definition of an actual slip velocity is

ambiguous as will be discussed in §5.4.1.

Figure 5.18(a) shows the decay of the velocity deficit for the two undisturbed and four mean wakes dis-
played in fig. 5.16 and fig. 5.17. Whereas the undisturbed wakes follow the decay expected for a laminar
wake proportional to )7_1 (Wu and Faeth 1993) reasonably well, this regime can merely be observed over
a considerable distance for G30-D10-HR at y = 0.8 H;. In the presence of turbulence, the velocity deficit
decays significantly quicker, and especially at high relative turbulence intensities no clear power law
such as the quadratic decay proposed by Wu and Faeth (1994), Legendre et al. (2006) or Amoura et al.
(2010) for the wake of a sphere in a turbulent background could be identified over a significant extent.

A possible explanation for the distinct wake behaviour at a given Galileo number, but at different po-
sitions in the channel is given by the varying turbulence intensity experienced by the contaminants as
they move vertically through the channel. In particular, the intensity of the fluctuations in the direction
of gravity varies by approximately a factor of two for the two positions shown, cf. fig 3.6(c). For this
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5 Preferential sampling of the fluid flow

reason, a local relative turbulence intensity is defined in terms of the standard deviation of the vertical
fluid velocity, viz.

() )
L(y) = ————. (5.12)
p,00

In order to examine the evolution of the velocity deficit as a function of I, the length of the wake is
defined as the smallest vertical distance on the centre axis originating from the particle’s centroid at
which the particle-conditioned mean flow is still disturbed by 10% of the value of the ambient terminal
velocity in the relative reference frame. In other words, L, (y) is the distance in the particle-attached
coordinate system for which vf, ¢ (7, ) = 0.1. The threshold is motivated by the varying decay rates for
different parameter points and the observation that for the selected threshold all wakes examined decay
proportionally to j/_z.

Figure 5.18(b) shows the length of the wake normalised by its ambient counterpart as a function of the
local relative turbulence intensity, i.e. at different vertical positions in the channel, for the two Galileo
numbers in the HR background flow. A consistent trend can be observed for G30-D15-HR, where for de-
creasing I, the length of the wake approaches its ambient value as one would expect. Furthermore, the
ratios which are observed for Ga = 27.1 (Rep'OO =17.9) agree well with the results of Homann et al. (2013)
for a sphere (Re,, o, = 20) towed through homogeneous isotropic turbulence in terms of the general trend
as well as the quantitative value within the short parameter range in which they overlap. When examin-
ing higher relative turbulence intensities, a saturation in wake length seems to occur around I, = 1 where
the vertical velocity fluctuations are of the same order as the ambient terminal velocity. The nearly con-
stant wake length observed for G10-D10-HR for which I, > 1 at all positions supports this observation.
This might correspond to what Amoura et al. (2010) describe as “a wake controlled by the incident tur-
bulence” for which the far wake results “from the distortion of the incident turbulence by the sphere”.
They state that the length of the attached wake in this regime is approximately 1.5d,, and that as soon
as the wake is fully controlled by the incident turbulence, it ought to decay proportional to j/_z. Both of
these predictions agree well with what is shown in fig. 5.18.

5.3.3 Effect of shear on settling velocity

The wakes previously presented are all axisymmetric on average to a good estimation. This is generally
not the case when vertical positions closer to sediment bed are investigated where the fluid shear is
considerably higher in the space-time average, cf. fig 3.6(b). For this reason, the role of significant shear
on the averaged particle wakes will now be subject of discussion.

As the comparison with an undisturbed wake in §5.3.2 proved to be expedient, an extension of this
comparison with regards to shear may aid in the interpretation of the mean turbulent wakes as well. For
this reason, the ambient settling simulations of §3.7 are modified such that the particles now settle in the
presence of a linear velocity profile whose gradient is coaligned with the direction of gravity. To achieve
this, the free-slip upper boundary is substituted by a no-slip boundary which moves with a constant
speed of U, in x-direction, and the background flow is initialised by its laminar profile, viz.

up(y) = LLUW, (5.13)
Ve

where L, . denotes the vertical extent of the simulation domain. This setup corresponds to plane Cou-
ette flow and a sketch and further information on the computational domain are provided in fig. 5.19(a).
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Figure 5.19: (a) Sketch of the computational setup used for the reference simulations to investigate the effects of shear on the
particle wakes. The setup is similar to that of the ambient settling reference cases described in §3.7. However, a
constant background shear of U,/ Lycis achieved throughout the domain by means of introducing a no-slip wall as
the upper boundary which moves at velocity U,,, in x-direction. The numerical parameter are identical to those of the
ambient settling simulations of G30-D10-LR for Ga = 30 and G10-D6-LR for Ga = 10 except for a substantially larger
domain size of L . x L, . = 5L, , x 2L, ;. (b) The value of the shear parameter based on the mean shear as a function
of vertical position for the turbulent cases G30-D15-HR (—) and G10-D10-HR (—). The constant values of § for the
reference simulations in laminar Couette flow are indicated by dashed lines: Ga= 30 (--) and Ga= 10 (- - ).

It should be noted that while laminar plane Couette flow is stable with regards to infinitesimal pertur-
bations (Davey 1973, Romanov 1973) independent of the Reynolds number, finite-amplitude perturba-
tions as introduced by the presence of the moving particle may trigger the transition to a turbulent state.
The value of the Reynolds number for the reference simulations reads

U,L

Re,:= —2% =45.10°, (5.14)
i
and is indeed sufficiently large such that turbulence may be triggered by three-dimensional finite-
amplitude perturbations (Orszag and Kells 1980). However, during the time of observation, no signifi-
cant deviations from the laminar state apart from the wake of the particle were observed, indicating that
either the perturbation is too insignificant to trigger the transition or that its time-scale is significantly
longer than the observation time.

The presence of background shear introduces another particle-specific parameter which needs to be
matched between the reference and the turbulent simulation, see e.g. Bagchi and Balachandar (2002)
for the parameter space of a similar problem. Therefore, the shear parameter is introduced as

2 <SXJ’ >xzt dc

§i= — 2K (5.15)

Up,oo

Please note that this parameter is typically defined with regards to the relative velocity between the two
phases, but in the spirit of the previous analysis it is assumed that the ambient terminal velocity is a
sufficiently good approximation instead. Figure 5.19(b) displays the local value of the shear parameter
for the cases of interest, G30-D15-HR and G10-D10-HR, as well as the corresponding values for the ref-
erence simulations. As indicated, the reference setup corresponds approximately to the conditions that
are experienced on average by the contaminants® at y=0.15H;.

6 As the shear parameter is based on the unconditioned spatio-temporal mean of the fluid shear, it is not taken into account

that due to preferential sampling the shear experienced by the contaminants might be different.
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Figure 5.20: Particle wakes in the presence of significant mean shear. The solid lines indicate isovalues of the vertical fluid velocity
(Wpdpy | for the values [-0.1:—-0.1:—-0.9] times the ambient terminal velocity in the particle-attached frame of refer-

ence. The coloured background shows the streamwise fluid velocity (U | in the relative frame. (a) Mean wake for

G30-D15-HR. (b) Mean wake for G10-D10-HR. (c) Same parameter point as G30-D15-HR, but for an isolated particle
settling in laminar Couette flow. (d) Same parameter point as G10-D10-HR, but for an isolated particle settling in
laminar Couette flow. The value of the shear parameter reads 8 = 0.71 for (a,c) and 8 = 1.37 for (b,d).

Figure 5.20 displays the mean particle wakes from the turbulent simulations and the corresponding
reference cases in laminar Couette flow. The normalised fluid shear in the rear of the particles is in good
agreement between the turbulent and laminar cases, however, a steeper gradient in the front can be
observed for the turbulent mean shear due to its nonlinear trend. Qualitatively, the wakes of the laminar
reference and the turbulent mean are rather similar in terms of their shear-induced deformation. Their
primary distinction is the considerably shorter wake in the turbulent case, which is in accordance with
the observations made in §5.3.2. Nonetheless, the near-particle region exhibits congenial modifications
caused by the shear, which suggests that the laminar reference might be a suitable proxy to assess its
effect. When evaluating the settling velocity under linear shear conditions, it is found that its value
remains unchanged for Ga = 30,8 = 0.71 and is reduced by approximately 4% for Ga = 10,8 = 1.37.
Under the conjecture that these inferences are transferable to the turbulent case, it can be concluded
that the effect of mean shear on the settling velocity is negligible in the current context.
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5.4 Relative velocity on a microscale

The preceding analysis regarding particle wakes was conducted under the supposition the relative ve-
locity between the fluid and solid phase is of the order of the ambient terminal velocity. In the following,
an attempt is made to quantify the actual slip velocity in order to justify this assumption and to gain
insights on the impact of wake modifications on the settling velocity under the influence of turbulence
on a microscale.

5.4.1 Slip velocity

Figure 5.8(b) suggests that the ratio between the settling velocity of the contaminants and the fluid
velocity experienced by them is approximately constant over a large vertical range for the majority of
parameter points under investigation. By subtracting a measure for the instantaneous fluid velocity
experienced by the particle from the particle velocity, the effect of preferential sampling is effectively
disregarded, and the flow conditions in the vicinity of the particles can be investigated on a microscale.
For this purpose, an instantaneous variant of the sphere-average is introduced, which reads

$s, o e &0 D &0 1) dS,

$s,nxr &1 0 dS,

(uge)s (r,0) = (5.16)

for the i-th contaminant particle. Here, the instantaneous fluid velocity field uf,a(i”z 1) is translated
such that the origin of the coordinate system coincides with the centroid of the i-th particle, and again,
the surface of the virtual sampling sphere S, (r) is defined in this coordinate system and its radius is set

to the same value as earlier.

Under the assumption that the interaction between the particle and the nearby fluid velocity—nearby
meaning of the order of the radius of the virtual sampling sphere—is invariant with regards to the flow
conditions at a larger scale, i.e. preferential sampling, the difference in u,, and (uﬁa>§ is not subject to
the bias described in §4.2.2 anymore, and hence, the spatial-averaging procedure can be replaced by an
unweighted binning approach for investigations at the microscale.” Therefore, the instantaneous slip
velocity u, o — (s, ) is averaged within a wall-parallel slab using a standard binned-averaging operation,
viz.

S 7 A0 0,0, 71) (ulod )~ (uga)d) (1) d
fotb r= A(J’c(l)(t)’yo»h) dr

(Uga = (Upadg), Vo 1) = 5.17)

with the binning kernel function

1 if € v,
AYp» Yoo 1) = Y '[yo yl), (5.18)
0 otherwise

where y,, y; are the extents of the bin to be specified.

Figure 5.21 shows this slip velocity as a function of the relative turbulence intensity averaged in the
region y/ Hf € [0.3,0.8] where <Up>x | / <Uf>§x | only varies little for the majority of cases. Its value is found

This assumption appears to be justified if the length scale of the regions which are preferentially sampled is considerably larger
than the particle diameter.
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Figure 5.21: Average relative particle velocity of the contaminants at the microscale as a function of relative turbulence intensity
and scaled by its ambient value. Reference data by Fornari et al. (2016) in sustained homogeneous isotropic turbu-
lence (4) is shown for Ga = {200, 145,60, 19} (from left to right) at density ratios of Pp! Py € 11.0004,1.04] and a particle
diameter of twelve Kolmogorov length scales, where the relative turbulence intensity is defined as the ratio of the
root-mean-square of the turbulent velocity fluctuations to the ambient terminal velocity of the particles. Further ref-
erence points are available from vertical channel flow evaluated on the centre line, for which the parameters in terms
of the triplet (pp/pf, Ga, d;) are given by @ : (2.2, 115.4, 11.3), Garcia-Villalba et al. (2012). W: (2, 23, 19), Zhu et al.
(2020). #: (2,40, 18), Zhu et al. (2020). @: (2,99.5, 21), Yu et al. (2021). The solid lines indicate the reduction in settling
velocity expected from the non-linear drag model by Homann et al. (2013), evaluated for Ga = 30 (—) and Ga = 10
(—). Legend: G30-D15-HR (@), G10-D10-HR (), G30-D10-LR (0), G10-D6-LR (0), G15-D10-LR (0) and G15-D6-LR
).

to be generally reduced in comparison to the ambient value. Keeping in mind the arbitrariness of the
definition of a local fluid velocity and the resulting uncertainty of the obtained relative velocity, the
general magnitude and trend of this observation conform reasonably well to the result of Fornari et al.
(2016) who found a reduction in the settling velocities of particles in sustained homogeneous isotropic
turbulence in a similar range of relative turbulence intensities, as well as data available from vertical
channels.

One potential explanation for the reduction of the settling velocity in a turbulent environment is the
nonlinear dependence of the drag coefficient on the particle Reynolds number (based on the slip veloc-
ity) for Re, > 1, where a temporal variation in the slip velocity may result in an increased mean drag
force, cf. §2.3.3. Homann et al. (2013) derived an expression for this increase assuming a nonlinear drag
law and Gaussian fluctuations in the relative velocity. The resulting drag coefficient depends on the
relative turbulence intensity and is given by8

0.1897 Re>-687

CHBCGRe 1):=[1+ ———L 12| CSN(Re,). (5.19)
d P 1+0.15R%7 )7 P

Here, CgN is the ambient drag coefficient as obtained from the empirical drag law of Schiller and Nau-
mann (1933), viz.

24
GV (Re,) = 7 (1+0.15Re)). (5.20)
It should be noted that the considerations of Homann et al. (2013) were made for a sphere translating
at a fixed velocity. Extending their argument towards freely moving particles, a variation in the drag
force naturally leads to a variation in the relative velocity, resulting in a feedback loop between these

8 Please note that the prefactor of the term involving I, differs from the one stated in Homann et al. (2013) as a numerical

evaluation of the underlying integral yielded a value differing from the one stated in the publication (private communication,
Uhlmann, 2015).
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5.4 Relative velocity on a microscale
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Figure 5.22: Probability density function of the instantaneous values of the particle Reynolds number based on the three-

dimensional slip velocity in the region y/Hf €[0.3,0.8]. Legend: G30-D15-HR (-+++), G10-D10-HR (-*-), G30-D10-LR
(=), G10-D6-LR (—), G15-D10-LR (—) and G15-D6-LR (—).
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two quantities. If all other unsteady effects as well as lateral movement are neglected, can be

substituted into eq. (2.49) in order to obtain a solution for the modified slip velocity by solving
1Ga® = CJ*°(Re,, I,)Re; (5.21)

given the Galileo number and the relative turbulence intensity. In fig. 5.21, two families of solutions
are shown for Ga = {10,30}, respectively. While the predictions for I, = 1 are in the same range as the
numerical data, this simple model considerably overpredicts the reduction in relative velocity for I, > 1.

5.4.2 Particle Reynolds number

In the previous discussion on the slip velocity, the lateral components of the relative velocity were disre-
garded in order to simplify the argument. For some applications, and especially for the accurate mod-
elling of particle-laden flows using unresolved methods, it might, however, be of interest to be aware
of the range of particle Reynolds numbers which are reached instantaneously. For this purpose, the
probability density distributions of the particle Reynolds number based on the three-dimensional slip
velocity,

Re, = |uc<:—f>§|dp, (5.22)

!

are provided in fig. 5.22. While the instantaneous Reynolds number is most likely lower than that based
on the terminal velocity—an observation in accordance with the findings regarding only the vertical
component—it can occasionally be found to be increased by a factor of three.

In general, it is found that the particle velocity is severely correlated to the fluid velocity sampled on
the virtual sphere. Table 5.1 provides the Pearson correlation coefficients for each velocity component
and various parameter points. The most notable deviations from unity are observed for Ga = 30, and
decorrelation is generally higher for the vertical and spanwise component than for the streamwise com-
ponent. It can be assumed that a high correlation between u,, and (uﬁa >§ is a prerequisite to obtain
similar probability distributions for the particle velocity fluctuations and the particle-conditioned fluid
velocities as presented in §4.3.2 and §5.2.4.
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5 Preferential sampling of the fluid flow

Table 5.1: Linear correlation coefficients defined in similar to eq. 4.8 for the individual components of the instantaneous particle
velocity and the corresponding sphere-averaged fluid velocity.

G30-D10-LR G15-D6-LR G15-D10-LR G10-D6-LR G30-D15-HR G10-D10-HR

0 (e, Cup)) 0.98 0.99 0.99 1 0.98 1
JURUAN 0.95 0.98 0.98 0.99 0.95 0.99
o (we, (wp)) 0.96 0.99 0.98 0.99 0.95 0.99

5.5 Domain size effects

It was found in §5.2.2 that the preferential arrangement of the settling contaminants likely coincides
with the lateral position of large-scale high-speed streaks which are present throughout the outer layer
of the turbulent background flow. While the vertical length scale of these turbulent structures is of the
order of the clear fluid height, their streamwise extent was shown to be of as long as 3-100 Hy in closed
channels (Lozano-Duran and Jiménez 2014a). The lower end of this range corresponds to the struc-
tures known as large-scale motions (LSMs) while the upper range is known as very-large scale motions
(VLSMs), cf. §2.2.3. These structures are known to contribute substantially to the overall Reynolds stress
(Guala et al. 2006, Lozano-Durdn et al. 2012b), and since contaminants were shown to preferentially
sample Q4-events during settling, it ought to be assumed that an adequate representation of these large-
scale structures is required for an accurate description of transient settling.

It is apparent that the streamwise period of the computational domains employed for all background
flows considered in this thesis are insufficiently long to adequately capture events at these length
scales—a circumstance which arises partly from the desired suppression of bedform instabilities, but
is also due to the large computational cost of particle-laden flow simulations. In fact, it was previously
noted in §5.2.2 that the velocity streaks of the outer layer self-connect across the periodic boundary,
and hence, constitute a coherent region of infinite length. Since no suitable reference data for turbulent
flow over a mobile sediment bed exists, the energy content of the various spatial scales of the turbu-
lent motion is in the following compared to an open-channel flow over a smooth wall at a comparable
friction Reynolds number in a computational domain with substantially larger streamwise and span-
wise periods. For this purpose, the velocity components are expanded as a Fourier series with discrete
coefficients ﬁ;}’;l) (y, t) which are defined under the convention that the backtransform reads

U, y,2,0= ) ) ﬁ}’;”(y,t)exp(—i(K;k)x+1<g)z)). (5.23)

k=—o00l=-00

The [-th/k-th harmonics of the periodic system in x/z-direction are indicated by superscripts to the
Fourier coefficients, and the discrete wavenumbers are given by

2k
o 2Tk

2ml
and K;l) =—
X LZ

(5.24)

The Fourier series expansion allows the overall energy of turbulent fluctuations to be expressed as sum
of the energy contained at each wavenumber (Parseval’s theorem), viz.

> 3

k=—00l=~00

2
a}’;”\ = <”12€a>xz (5.25)
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5.5 Domain size effects

Therefore, the variation of the absolute square of the Fourier coefficients with respect to the streamwise
and spanwise wavenumbers is referred to as the energy spectrum of the particular fluid velocity com-
ponent. Following common practice, these spectra will be presented in terms of the wavelengths which
are related to the corresponding wavenumbers by

2n L

L
M=""= and AP = N =. (5.26)
z

The reference spectra for turbulent open-channel flow over a smooth wall are provided by Bauer et al.
(2022). Their domain size has a wall-parallel cross-sectional area of L, x L, = 127 x4 in terms of the fluid
height, which is approximately 75 times larger than that of the computational domain employed in the
transient settling simulations. As a consequence, the LSMs and VLSMs are resolved to a far greater extent
in their simulation. The value of the friction Reynolds number is Re, = 596 which closely matches that
of HR when the bed is still at rest (Re, = 622). Indeed, the following discussion will be held exclusively
with regards to HR, as its domain is the shortest and LSMs and VLSMs are thought to be more relevant at
high Reynolds number due to their different scaling compared to other turbulent structures (del Alamo
and Jiménez 2003) and the growing separation between inner and outer turbulence scales.

Figure 5.23(a) shows a comparison between the two-dimensional spectra of the streamwise and span-
wise fluid velocities for the HR background flow in the absence of contaminant particles and for the
reference smooth open-channel flow at y = 0.5. The spectra are premultiplied by the corresponding
wavenumbers such that energy contribution over any wavenumber range is obtained from the area un-
der the curve, and thus, the most energetic modes can be identified by the peak locations in this repre-
sentation (Perry et al. 1986). As was expected, the spectrum of the streamwise velocity is considerably
truncated by the period of the domain. However, the resolved portion of the spectrum coincides rea-
sonably well with the reference data despite the notable differences in setup. It should be noted that
the contours are presented in absolute terms, i.e. they are scaled by their respective friction velocity
and not relative to their total energy (u]'c u} )xzt. Furthermore, the total energy content agrees reasonably
well between the HR background flow and the reference data, and is thus not considerably affected by
the truncation. This type of behaviour was already described by Alamo et al. (2004) and Lozano-Duran
and Jiménez (2014a) for varying box sizes in smooth-wall closed channel flow, and Lozano-Duran and
Jiménez (2014a) argued that the truncated unresolved part of the spectrum is essentially captured by
the (k =0,/ > 0) harmonics, and that the interaction of these modes with the resolved part of the spec-
trum is well represented. If this is indeed the case, one might argue that the fluid-particle interaction is
likely not considerably different in a truncated domain compared to a flow with fully resolved LSMs and
VLSMs. This is because a direct interaction presumably occurs around the scale of the particle size, i.e.
within the fully resolved turbulent scales which are captured accurately, and large-scale organization of
particles is then a result of the interaction between fluid modes of different sizes which seems to be little
affected by the truncation according to the arguments of Lozano-Durdn and Jiménez (2014a).

More evidence that the short streamwise length of the domain likely does not substantially alter the
observed settling behaviour is provided by the spectra of vertical fluid velocities—the component of
velocity which is directly linked to the contaminants’ settling velocity and plays a key role in preferential
sampling due to the turbulence intensity effect described in §4.3.2 and §5.2.4. As is demonstrated in
5.23(b), the fluctuations of vy generally occur at smaller scales which are captured for the most part by
the computational domain.’ This disparity in length scale may be explained in terms of the tall attached

9 The difference in length scale and anisotropy between the streamwise and wall-normal velocity component is already visually

evident in the instantaneous visualizations shown previously in fig.5.7
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Figure 5.23: Two-dimensional premultiplied energy spectra of the fluid velocity K;k) K;l) (m}%l)l )t aty =0.5H;. The shaded re-
gions display the spectra obtained for HR in the absence of contaminant particles. The black lines represent the
corresponding spectra for open-channel over a smooth wall at Re; = 596 in a considerably larger computational do-

main (Bauer et al. 2022). The fundamental wavelengths (Agcl), Aél]) of the transient settling domain are indicated by
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Figure 5.24: Premultiplied spectra (a,b) summed over all spanwise modes K;l) Zf’:

2
oo(llij[p]znl )t, and (c,d) summed over all

streamwise modes K;k) Z?Z_OOQQ}%DIZ) . The shaded regions display the spectra obtained for HR in the ab-
sence of contaminant particles. T‘he blaick lines represent the reference data from Bauer et al. (2022). The re-
spective fundamental wavelength (ASCU or A(ZD) of the background flow is indicated by a dashed line (-=+). (a,c)
Streamwise component with contours at {0.2,0.4,0.6,0.8,1.0} KS) uf (b,d) Vertical component with contours at

{0.05,0.1,0.15,0.2} K;l) uf . An average over positive and negative wavenumbers is shown.
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vortex clusters described by del Alamo et al. (2006) where the cluster itself is relatively compact and a
contributor to large-scale vertical motion, whereas its “wake” is significantly longer and gives rise to the
very long anisotropic motions observed in the spectrum of u; (Jiménez 2012).

In order to inspect the wall-normal dependence of the energy distribution among the scales, the one-
dimensional spectra obtained by means of summation over one homogeneous direction are now con-
sidered. Figure 5.24(a,c) displays the one-dimensional spectrum of the streamwise velocity as a function
of y and the wavelength in the non-collapsed homogeneous direction. The first observation to be made
is the lack of the energy peak at small wavelengths close to the (virtual) wall which is associated to the
streaks of the buffer layer, which has already been discussed in §2.3.1. However, it is known that the ab-
sence of buffer layer structures has essentially no implications on the statistics of the logarithmic layer
(Flores and Jiménez 2006) nor on the properties of attached vortex cluster (Flores et al. 2007), which is
reflected by the fact that the remainder of the spectrum coincides reasonably well with the reference
data. The second observation to be made concerns the spanwise period of the computational domain.
When Flores and Jiménez (2010) investigated the minimal flow units of the logarithmic layer they found
that a minimal spanwise period of L, =~ 3Hy is required in order to have “healthy” unrestricted turbu-
lence. However, according to their analysis, a smaller value of the spanwise period does not lead to the
decay of turbulence, but rather restricts the region where the turbulence is described accurately close to
the wall. For the HR background turbulence, the spanwise period is L, = 2.5H; and hence smaller than
the minimum width stated by Flores and Jiménez (2010). In terms of the one-dimensional spectra, this
manifests itself in terms of slightly compressed spectra of both u, and vy, see fig. 5.23(c,d), although the
remainder of the spectra does not show conclusive anomalous behaviour. According to the arguments
of Flores and Jiménez (2010), a subminimal domain restrict the healthy turbulence to a height of ap-
proximately 0.3L,, which corresponds to 0.75H for HR, and thus, one should be keep this uncertainty
in mind when interpreting the simulation results.

On top of the restrictive properties of a small computational box on flow quantities, it should also
not be disregarded that a single realization of an initial value problem—such as the transient settling
discussed—may differ substantially based on the state of the flow during initialization. For example, the
large-scale streak in the minimal flow unit of the logarithmic layer is known to burst quasi-periodically
(Flores and Jiménez 2010), and hence, the flow on the largest scale considerably varies in time. As a con-
sequence, even if the amount of sample particles is plenty in a single realization, the obtained particle
statistics may exhibit a bias if the relevant flow characteristic are variant on a time scale comparable or
larger than the settling time. This is less likely to be a problem in a larger domain where different states
of the flow can coexist at a single instance in time. With regards to the current study, the LR and RP sim-
ulations presumably do not suffer from this problem as multiple initial conditions or a longer domain
have been simulated, while for the HR simulations the settling was only realised once because of the
high computational costs.

5.6 Summary and concluding remarks

In this chapter, the settling of contaminants was examined with regards to the regions of the background
flow which are predominantly visited by the particles. A comparison between the streamwise-time-
averaged flow and the spanwise-resolved crossing locations of wall-parallel planes suggests that the
contaminants accumulate in high-momentum pathways, and consequently in downdrafts of the sec-
ondary flow. By means of particle-conditioned averaging, it was deduced that this corresponds to an
accumulation in the high-momentum regions associated to large-scale streaks of the turbulent outer
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5 Preferential sampling of the fluid flow

layer in the instantaneous picture, which are thought to be a result of the vortex clusters described by
del Alamo et al. (2006).

While the locations of the large-scale streaks and the spanwise arrangement coincide well, this inter-
action at the length scales of O(H;) is deemed insufficient to fully explain the enhancement of settling
velocity described in chapter §4. In fact, the particle-conditioned average indicates that the contami-
nants also preferentially sample downward fluid motion at scales which are significantly smaller than
Hy, but must be larger than the particles themselves. Although it is a possibility that velocity fluctua-
tions at this scale are induced by the contaminants themselves, it is considered more likely that these
regions originate from the background turbulence as the magnitude of the average nearby fluid velocity
decreases with with increasing terminal velocity. However, this argument requires further refinement
regarding the analysis of clustering.

Given the importance of large-scale flow structures, the adequacy of the size of the computational do-
main is discussed regarding the ability to appropriately represent these features. It is argued that while
the LSMs are indeed truncated and the VLSMs remain unresolved, no substantial implications on the
settling behaviour are to be expected. This is largely due to the fact, that the energy of the unresolved
motion is properly captured by spanwise modes which are infinitely long in streamwise direction, and
that the interaction between these modes and the resolved portion of the spectrum is well represented
according to the arguments of Lozano-Durdn and Jiménez (2014a).

A systematic analysis of the immediate surrounding of the contaminants reveals that the enhancement
in streamwise and vertical particle velocity can be explained adequately by the fluid velocity sampled
by the particles. It is found that the contaminants preferentially sample sweep events, and that the
tendency to do so increases with increasing relative turbulence intensity. Moreover, a quadrant analysis
of the sampled fluid velocity exhibits a striking similarity to that of the particle velocity fluctuations
which reinforces the heuristic inferences made in chapter §4 regarding the role of turbulence intensity.

On a microscale, the averaged wakes of the contaminants retain some similarities to their undisturbed
settling states. This similarity is progressively lost at increasing relative turbulence intensity until the
average wake is confined into a narrow region of O(d,,) in the rear of the particle which is consistent with
the predictions of Amoura et al. (2010). At low to moderate turbulence intensities, the observed length
of the wake is in good agreement with the observations of Homann et al. (2013) in a similar parameter
range for a towed sphere. The transition in behaviour is found to occur at a relative turbulence intensity
of around unity. Furthermore, the characteristics of the wake at a single value of the Galileo number
vary with respect to vertical channel coordinate in a trend which can be explained by a local value of the
relative turbulence intensity.

Mean shear plays a subordinate role for the settling in the bulk of the channel, but becomes increasingly
important as the contaminants approach the lower boundary. Close to the sediment, the wakes of the
particles are visibly sheared, albeit a comparison with a particle settling in a comparable laminar shear
flow suggests that the impact on the settling velocity is low. Nonetheless, shear is an important factor
in explaining the excess in mean streamwise particle velocity in the lower quarter of the channel where
preferential sampling loses its relevance in this regard.

An evaluation of the slip velocity, although not devoid from arbitrariness, indicates that it might be
reduced with respect to the ambient terminal velocity in a way which is consistent with the results of
Fornari et al. (2016). This suggests that the settling velocity is reduced on a microscale, whereas on a
macroscale preferential sampling is prevalent, and thus, overshadows this reduction.
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5.6 Summary and concluding remarks

In conclusion, the major observations of chapter §4 regarding the particle statistics are readily explicable
in terms of the fluid regions which are preferentially visited by the contaminants during the transient.
However, this raises the question of what mechanism promotes the particles to enter these regions and
at which scales it is active. Furthermore, the role of potential collective effects has not been discussed
extensively yet, and particularly the significance of clustering regarding the settling velocity still needs
to be addressed.
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6 Pattern formation in the
dispersed phase

The analyses of the collective settling of contaminants have indicated that contaminants preferentially
sample flow regions of enhanced streamwise and downward fluid momentum, which ought to be re-
flected in the relative arrangement of the particle positions. An assessment of the structure of the dis-
persed phase during the settling phase and beyond is subject of this chapter, and inferences will be
made regarding the role of self-organisation on the spreading behaviour.

6.1 Clustering

First of all, the contaminant trajectories are analysed with regards to the formation of particle clusters.
As discussed in §2.3.2 and §2.3.4, clustering may occur due to turbulent effects such as preferential
sweeping or may be self-induced, for instance by wake attraction effects. In the following, the emergence
of clusters will be assessed and quantified, especially with respect to its potential connection to the
enhancement in particle settling velocity.

6.1.1 Reference distribution

In order to detect and quantify particle clusters, a suitable reference distribution is required in order to
distinguish random fluctuations in the local particle density from accumulations which are induced by
physical mechanisms. In the study of homogeneous domains, the measured distribution of particles
is typically compared to random distributions with uniform probabilities in all directions, cf. e.g. Mon-
chaux et al. (2012). However, concerning the transient investigated in this thesis, the settling particles
are initially distributed inhomogeneously in the vertical direction. In fact, their initial distribution is a
state of maximum order with respect to y, and consequently, vertical dispersion will generally tend to
reduce the orderliness compared to a three-dimension uniform random arrangement with time which
complicates the detection of potential particle accumulations. For this reason, special care is to be taken
in the choice of a suitable reference distribution in order to quantify the formation of clusters.

For the purpose of familiarising oneself to the phenomenon which is to be quantified, fig. 6.1 displays
an example for the emergence of three-dimensional structures of the solid phase shortly after the start
of the transient. When comparing the contaminant arrangement to the initially homogeneous arrange-
ment in a single wall-parallel plane, cf. fig. 3.1, it becomes immediately obvious that a mechanism exists
which leads to the formation of accumulations and voids. While the portrayed arrangement evidently
possesses increased order in streamwise and spanwise directions, dispersion reduces the orderliness
in the wall-normal direction, and when the arrangement is compared to a three-dimensional uniform
random distribution, these effects counteract each other. Therefore, in order to avoid undesired effects
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6 Pattern formation in the dispersed phase

Figure 6.1: Exemplary visualisation of the formation of clusters shortly after the start of the transient settling. The contaminants
are coloured by their vertical positions indicating their vertical dispersion. The parameter point shown is G10-D10-HR
at 1 =221,

caused by the disorganisation in y, the reference arrangement needs to take into account the localised
nature with regards to this direction.

A potential resolution to this difficulty is to disregard the vertical component of the particle position
entirely, i.e. to only analyse accumulation effects solely in a projection onto the wall-parallel plane.
While this is a practical solution for early times where the vertical localisation is still prominent, it defies
the purpose of the clustering analysis with regards to collective effects at later times as the possibility for
particles to interact with each other predominantly depends on their instantaneous proximity in three
dimensions. The negligence of the vertical position at times where wall-normal localisation is mostly
lost does not necessarily quantify this proximity, and thus, complicates the interpretation of the results.

A more suitable solution is to construct a reference distribution which takes into account the confine-
ment of possible particle positions with respect to the vertical direction. In order to achieve this, the
probability density for the random distribution cannot be uniform with respect to y, but should rather
reflect the progressive dispersion which is observed in the settling simulations. This is accomplished by
extracting the time-varying probability distribution of the vertical contaminant positions from the sim-
ulation data, which is then randomly sampled to obtain non-uniformly distributed y-positions for the
randomly arranged reference particles, whereas uniformity is upheld in the perpendicular directions.

The resulting algorithm then reads as follows. To begin with, the vertical contaminant positions are
gathered for all realisations of the parameter point as a function of time passed since the initial release,
and from these positions, a time-dependent cumulative density function cdf(y,) is constructed. Subse-
quently, N, particles are distributed using a random Poisson process under the condition that particle
do not overlap, cf. §3.6. Therefore, a candidate for the centre point position is generated by drawing two
uniformly distributed pseudorandom numbers from the intervals [0, L,) and [0, L,) for the horizontal
components, and one pseudorandom number in accordance with cdf(y,) for the vertical component.1

In practice, the non-uniform distribution is easily achieved by uniformly sampling the inverse of cdf(y,.).

128



6.1 Clustering

simulation data probability distribution random distribution
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Figure 6.2: Visual sketch describing of the random distribution of contaminant particles which are used as a reference to identify
clustering in the following. From the simulation data, the vertical distribution of contaminants is extracted in order to
obtain the cumulative density function of y, as a function of time. The random sample particles are then generated
such that they follow a uniform distribution in x and z, whereas the distribution is non-uniform in y following cdf(y,).
The advantage of this method is that the confinement of the wall-normal particle positions is accounted for and vertical
dispersion does not conceal the emergence of structures in the wall-parallel directions.

The candidate is examined with regards to overlaps with previously distributed particles. If it does over-
lap, the process is repeated until a suitable candidate is found and all reference particles have been
distributed. In practice, a multitude of such random reference distributions are generated to obtained
converged statistics, with the total number of sample particles being of O(10°) in the subsequent analy-
ses. A visual sketch of this method of randomly distributing particles is provided in fig. 6.2.

6.1.2 Nearest neighbour analysis

Now that a suitable reference arrangement has been established, an appropriate way of quantifying
clustering needs to be defined. A straightforward way of characterising the spatial structure of the dis-
persed particles is the nearest neighbour analysis proposed by Kajishima (2004b) for this context. In this
method, the distance from the i-th particle to its nearest neighbour is computed by

RO (0 =min{jx —x"|: je1,2,..., Ny A j #if, 6.1)

and a global indicator for clustering can then be deduced by ensemble-averaging Rz(\;z)v and comparing
it to the reference arrangement. The choice of this approach was mainly motivated by its capability to
provide a meaningful value for the state of clustering for each individual particle in the current con-
text, which is for instance not the case for approaches based on local particle concentrations due to
the abrupt decline in this quantity at the front of the settling ensemble which introduces undesired be-
haviour.
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Figure 6.3: Ensemble-averaged distance to the nearest neighbouring contaminant particle normalised by the value obtained for
the random arrangement described in §6.1.1 and as a function of time. (a) Only capturing the transient phase and
time scaled by the characteristic settling time. (b) Extended temporal range for the cases with long observation times,
cf. table 3.3, showcasing the evolution in the bed-interaction phase. The time is scaled in bulk units. Legend: G30-D10-
LR (—), G10-D6-LR (—), G15-D10-LR (—), G15-D6-LR (—), G30-D10-RP (==, G10-D6-RP (- -+), G30-D15-HR

Figure 6.3 displays the ensemble-averaged distance to the nearest neighbour defined analogously to
eq. (4.1). The data is normalised by the corresponding value Ry . (f) for the random arrangement
described in §6.1.1, and hence, values smaller than unity indicate that the contaminants tend to accu-
mulate more substantially than what is expected for random fluctuations. All parameter points under
investigation exhibit signs of clustering. When focusing on the transient settling phase, the time at which
clustering is found to be most intense coincides well with the time at which the contaminant settling ve-
locity is most enhanced, cf. fig. 4.1, suggesting a relationship between the two phenomena. Interestingly,
it can be noted that the behaviour for G30-D10-LR is qualitatively different from most other parameter
points at early times in the regard that clustering is only found to occur for 7 £ 0.25 t,s- The correspond-
ing settling over ripple bedforms behaves similarly, albeit to a lesser degree. When inspecting on the
bed-interaction phase after the initial settling has concluded, a spatial organisation of contaminants is
found to be maintained. In fact, in the presence of ripple features, the contaminants are observed to
cluster for a second time around ¢ = 50-100¢;,, and the degree of accumulation is found to be of similar
magnitude or even more significant than during the settling phase for both parameters investigated.2
The time at which the second peak occurs coincides with the minimum of the streamwise contaminant
flux observed in fig. 4.20 for each case, and its origin will be subject of investigation of §6.5. In the ab-
sence of bedforms or at longer observation times for ripples, the level of organisation stays relatively
constant with a slow tendency to approach the random state.

The apparent correlation between ( Ry )y and (v, ) will now be assessed. While there is a known mech-
anisms available which might give rise to a cause-effect relation between the two quantities—namely
the wake attraction discussed in §2.3.4—it was argued in §5.2.2 that both velocity enhancement and
clustering are more likely to be caused by preferential sweeping or similar turbulence-driven effects. In
order to clarify this, Rz(\;}v is inspected from the spatially-resolved perspective by introducing the distance
to the nearest neighbor at the time of the initial crossing of a wall-parallel plane, viz.

R®

— pl) (@)
NN,X T RI\;N(tc,lX) (6.2)

2 The occurence of the first peak displayed in fig. 6.3(a) is hardly perceptible in fig. 6.3(b) as it occurs at around 5¢;, and the

resolution of the long-term evolution is of O(101,).
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6.1 Clustering
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Figure 6.4: (a) Distance to the nearest neighbouring contaminant particle averaged at the time of crossing a given wall-normal
plane. The absolute value scaled in multiples of the contaminant particle diameter is shown. (b) Linear correlation
coefficient between the nearest neighbour distance and instantaneous settling velocity at the crossing time. Legend:
G30-D10-LR (—), G10-D6-LR (—), G15-D10-LR (—), G15-D6-LR (—), G30-D10-RP (- -+), G10-D6-RP (- -, G30-
D15-HR (-++), and G10-D10-HR (-++).

(’g{( ) is the time at which the i-th contaminant particle first crosses the wall-parallel plane lo-

where 7’
cated at y, cf. §4.2. When the wake attraction mechanism is active, the settling velocity is generally
enhanced for accumulations of particles. In fig. 6.4(a), the mean distance to the nearest neighbour is
shown as a function of vertical position and in absolute terms, i.e. not scaled with respect to a refer-
ence arrangement. As can be observed, the distance between particles generally increases with growing
distance from the plane of initialisation which does not align with the hypothesis that the settling ve-
locity enhancement is caused by a collective effect, as the enhancement becomes more significant with
growing distance from the initial position, cf. fig. 4.6. A more rigorous and direct evaluation of the cor-
relation between RI(\;I)V,X and Uc(,l; at the time of crossing is achieved using a linear correlation coefficient
defined analogously to eq. (4.8). Figure 6.4(b) display the evolution of p (Ryy x, ¥ x) with respect to the
vertical position. The correlation is rather weak for the most part, and is most significant close to the
plane of initialisation for the parameter points which exhibit only little clustering at early times. This

phenomenon will be subject of further investigations.

6.1.3 Conditionally averaged particle concentration

In order to examine the relative positioning of particles in clusters, the local solid volume fraction is
assessed in the particle-conditioned reference frame. For this purpose, the conditionally averaged solid
volume fraction is defined as

- 1 [ -
(@doxy 1 79)= 3= [ (10,7 0)5 do, 6.3

where . (7, ¢, 7, t) is the solid indicator function applied exclusively to contaminant particles in a cylin-
drical coordinate system whose axis is aligned with the vertical direction and whose origin coincides
with the centroid of the particle considered. Hence, ¢ )pxw denotes an azimuthal average in the particle-
attached frame of reference conditioned to the time when the contaminant particle first crosses a given
wall-parallel plane.

The conditionally averaged particle concentration is displayed in fig. 6.5 for y = 0.8 H; which approxi-
mately coincides with the position where the maximum of p (Ryy x, V. x ) occurs. Four parameter points
are shown which are selected such that they represent various degrees of correlations. The difference
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Figure 6.5: Conditionally averaged local solid volume fraction normalised by the total solid volume fraction at y = 0.8Hy. (a)
G30-D10-LR, (b) G15-D6-LR, (c) G10-D6-LR, and (d) G10-D6-HR. The parameter points are ordered according to the
correlation between ( Ry, )y and (v, )y at this position of the wall-parallel plane in decreasing order, cf. fig. 6.4(b). The
circular grey lines indicate radial distances from the particle centroid in steps of 1d,..
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Figure 6.6: Same as fig. 6.5, but for y = 0.5Hf. (a) G30-D10-LR, (b) G15-D6-LR, (c) G10-D6-LR, and (d) G10-D6-HR.

in the relative arrangement of contaminant particles is striking: while for G30-D10-LR neighbouring
particles are preferentially located side by side, the relative positioning for G10-D6-HR is substantially
more homogeneous. The former arrangement resembles the arrangement of particles in the plane of
initialisation and is presumably a remnant thereof. Thus, it should be emphasised that this horizontal
alignment is not a cluster in the sense of §6.1.2, but rather a result of the lack of vertical dispersion,
which is also reflected by fig. 6.3(a). Moreover, it can be hypothesised that a predominantly horizontal
arrangement between particles is unfavourable regarding an enhancement of settling velocity as it is
likely subject to the hindrance effect described by Richardson and Zaki (1954), cf. §2.3.4. Evidence for
this supposition is provided by the trend of p (RNN,X, v x) in between the parameter points which sug-
gests that the positive correlation is proportional to the degree of horizontal alignment of (¢, )py o With
advancing progress of the settling phase, all relative particle positionings tend to become more isotropic
as can be inferred from fig. 6.6. In fact, a radial peak in the local solid volume fraction indicates that clus-
tering occurs, but no elongated structures are formed in the direction of gravity as would be typical for
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6.2 Hindrance and self-organisation

Table 6.1: Numerical parameters of the auxiliary simulations conducted to determine the hindrance effect during collective set-
tling in a quiescent or laminar open channel.

case (Lo *Lypl/ Lyp [Ny XNy xNypl Ly /dp dp/Axh N, Q, by (Vp0)
G30-D10-HIN 1.67x0.67] 640x384x256 25.6 15 123 35-107°  0.13
G15-D10-HIN 1.67x0.67] 640x384x256 25.6 15 123 35-107°  0.13

[ [ ]

[ [ ]
G15-D6-HIN [1.67x0.67] [640x384x256] 38.4 10 417 35-107°  0.20
G10-D6-HIN [1.67x0.67] [640x384x256] 38.4 10 417 35-107°  0.20

wake attraction. In conclusion, there is little support for the hypothesis that the formation of clusters is
induced by the particles alone.

6.2 Hindrance and self-organisation

To study the consequences of horizontal alignment on the settling of particles, auxiliary simulations
regarding the collective settling in an open channel with smooth walls under initially quiescent and
laminar flow conditions are conducted. Similar to the shear analysis in §5.3.3, this approach attempts to
make qualitative inferences on the role of collective effects on the particle settling velocity by studying
proxy problems of reduced complexity for which the difficulties posed by turbulence are absent. The
domain within which the auxiliary simulations are conducted has the same dimensions and numeri-
cal resolution as the one described in §5.3.3, yet it differs from it in terms of the boundary conditions
(no-slip/free-slip) and the number of particles present. In addition to this, the numerical resolution of
the particles matches exactly that of the isolated settling simulations described in §3.7. To obtain rep-
resentative results, N, is chosen such that the total solid volume fraction is around the same as that for
the turbulent simulations. Moreover, the ratio between the vertical extent of the domain L,;, and the
particle diameter is kept similar such that the local solid volume fraction in the plane of initialisation is
matched. Two flow states are examined for the channel—an initially quiescent environment similar to
§3.7, and a laminar flow at the same bulk Reynolds number as the turbulent simulations.’

Figure 6.7(a) shows an aggregation of the ensemble-averaged settling velocity, the standard deviation of
vertical particle position, and the normalised distance to the nearest neighbour as a function of time for
the initially quiescent environment. The occurrence of a hindrance effect is conspicuous. For all param-
eter points, the settling velocity is found to be significantly reduced compared to the terminal velocity
of an isolated particle. While for the cases with the larger particle diameter an approximate plateau is
reached and maintained, the cases with smaller particles initially exhibit a plateau with stronger reduc-
tion, but subsequently start to accelerate again until a second plateau at a faster velocity is approached.
The stronger reduction in case of the latter is in accordance with the finding of Richardson and Zaki
(1954) as the local volume fraction at y,, , is higher for the smaller particles. This hindrance is essentially
a combined result of fluid displacement, vertical boundedness and incompressibility which demand
a fluid flow in the direction opposing the falling direction of the particles. The resulting resistant hy-
drodynamical force on the particles depends on the arrangement of the ensemble. While the initial
homogeneous arrangement in the wall-parallel plane is arguably a regime of high resistance, a reorgan-
isation which yields a vertically stacked arrangement of particles would exhibit a significantly reduced

Despite the obvious possibility for the flow to become turbulent and the perturbations introduced by the settling particles, it
has been verified that the flow retains its laminar velocity profile during the relatively short time of observation.
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Figure 6.7: Results of the collective settling simulations in (a) a quiescent environment and (b) laminar flow. From top to bottom,
the figure shows the settling velocity normalised by the terminal velocity of an isolated particle, the standard deviation
of vertical position, and the distance to the nearest neighbour normalised by the value of the corresponding reference
distribution. All quantities are given as a function of time scaled by the characteristic settling time. Legend: G30-D10-
HIN (—), G10-D6-HIN (—), G15-D10-HIN (—), and G15-D6-HIN (—).

effective frontal area such that it is presumably less affected by the counterflow. Therefore, it can be hy-
pothesised that the second acceleration phase observed for G15-D6-HIN and G10-D6-HIN is associated
to the breakup of the initial layer and a rearrangement of the particles. This hypothesis is corroborated
by the temporal evolution of the standard deviation of vertical particle position: for the smaller particles
the vertical spread increases alongside the particle velocity, whereas for G30-D10-HIN and G15-D10-
HIN the standard deviation does not increase substantially beyond one particle diameter indicating
that the two-dimensional arrangement stays intact. Similar inferences can be made from the distance
to the nearest neighbour normalised by the reference arrangement. Here, it can be observed that the
initially randomly distributed particles tend to reorder themselves such that their distance from each
other increases.

When comparing the spatial structure of the particle arrangement at initialisation and at a time where
the settling velocity has converged for G30-D10-HIN, the organisation into a more regularly spaced ar-
rangement becomes obvious, see fig. 6.8(a), and as a consequence, hindrance essentially exhibits an
effect which opposes clustering. It can also be observed that the quasi two-dimensional arrangement
eventually develops an instability during which the vertical distribution loses its uniformity. For G30-
D10-HIN this loss of uniformity occurs in form of a sinusoidal perturbation in streamwise direction,
yet, in a quiescent environment it does not develop rapidly enough to break up the layer within the set-
tling time. However, when the same parameter point is examined in a laminar flow, the layer indeed
does disperse vertically which is accompanied by an increase in the settling velocity of the ensemble,
see fig. 6.7(b). The flow-induced breakup mechanism appears rather straightforward to explain: any
irregularities in the vertical distribution lead to a streamwise motion of the settling particles relative to
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6.2 Hindrance and self-organisation

each other due to the fluid shear. While particles at higher positions get pushed forward, the ones with
negative fluctuations y;, from the mean position are driven backwards which leads to the formation of
the spanwise-aligned structures displayed in fig. 6.8(b). This new arrangement considerably reduces
the projected frontal area of the ensemble, and the consequential reduction in resistance manifests it-
self in an increased settling velocity. The breakup mechanism notably resembles the Kelvin—-Helmholtz
instability at the interface of two sheared fluids, and it may be assumed that they are similar in their
nature.

The Kelvin—-Helmbholtz-like instability is indeed not the only breakup mechanism which arises. In fact,
as stated earlier, the settling ensembles with the smaller particle sizes disintegrate already in the absence
of a background flow, and the average settling velocity is not substantially altered when the settling oc-
curs in a laminar flow, see fig. 6.7. When examining the spatial structure shortly before the breakup of
the first plateau for G10-D6-HIN, it can be perceived that fluctuations in y;, emerge in compact spots
both in absence and presence of a background flow, see fig. 6.9. This behaviour is reminiscent of the
Rayleigh-Taylor instability which occurs at the unstable interface of two fluids with different densities
under the action of gravity. With time, the initial disturbances increase in amplitude and the layer dis-
perses vertically with little organization in the wall-parallel plane, even if it is sheared. Indeed, a closer
inspection of fig. 6.9(a) and a comparison between the initial condition and the state at £ = 0.19, ; yields
that the arrangement stays almost unaltered and that the fluctuations in vertical position coincide with
the random clusters occuring in the initialisation. The particles which are initially located in a random
cluster appear to settle slightly faster, and the resulting dispersion is sufficient to break up the layer be-
fore the opposing flow is capable of maximizing the distance between the particles. Thus, this breakup
mechanism is fundamentally different from the Kelvin—-Helmholtz-like instability in the sense that no
substantially ordered state is achieved before the breakup, and that no shear is required for it to be active.
Furthermore, the nearest neighbour analysis presented in fig. 6.7 might indicate that the particles which
undergo the shear-driven instability show a stronger tendency to cluster after the disintegration of the
layer than those which undergo the random-cluster instability. If this is indeed the case, it is likely the
result of the tendency of shear to vertically stack particles creating intermediate voids in the xz-plane,
whereas the cluster-induced instability does not lead to nor require significant horizontal movement,
and hence, retains its random horizontal arrangement.

A substantial recognition from the examination of the proxy settling problems is that a strong reduc-
tion in settling velocity goes hand in hand with an increased order in the internal structure of the set-
tling ensemble of particles. In fact, when no effective breakup mechanism for the layer is available, the
induced resistant flow will actively maximise the ho<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>