KIT | KIT-Bibliothek | Impressum | Datenschutz

Massively Parallel Genetic Optimization Through Asynchronous Propagation of Populations

Taubert, Oskar ORCID iD icon 1; Weiel, Marie ORCID iD icon 1; Coquelin, Daniel ORCID iD icon 1; Farshian, Anis 1; Debus, Charlotte 1; Schug, Alexander 1; Streit, Achim ORCID iD icon 1; Götz, Markus ORCID iD icon 1
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

We present Propulate, an evolutionary optimization algorithm and software package for global optimization and in particular hyperparameter search. For efficient use of HPC resources, Propulate omits the synchronization after each generation as done in conventional genetic algorithms. Instead, it steers the search with the complete population present at time of breeding new individuals. We provide an MPI-based implementation of our algorithm, which features variants of selection, mutation, crossover, and migration and is easy to extend with custom functionality. We compare Propulate to the established optimization tool Optuna. We find that Propulate is up to three orders of magnitude faster without sacrificing solution accuracy, demonstrating the efficiency and efficacy of our lazy synchronization approach. Code and documentation are available at https://github.com/Helmholtz-AI-Energy/propulate/.


Verlagsausgabe §
DOI: 10.5445/IR/1000159997
Veröffentlicht am 30.06.2023
Originalveröffentlichung
DOI: 10.1007/978-3-031-32041-5_6
Scopus
Zitationen: 4
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2023
Sprache Englisch
Identifikator ISBN: 978-3-031-32041-5
ISSN: 0302-9743, 1611-3349
KITopen-ID: 1000159997
HGF-Programm 46.21.04 (POF IV, LK 01) HAICU
Weitere HGF-Programme 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Erschienen in High Performance Computing – 38th International Conference, ISC High Performance 2023, Hamburg, Germany, May 21–25, 2023, Proceedings. Ed.: A. Bhatele
Veranstaltung 38th ISC High Performance Computing (ISC HPC 2023), Hamburg, Deutschland, 22.05.2023 – 25.05.2023
Verlag Springer Nature Switzerland
Seiten 106 – 124
Serie Lecture Notes in Computer Science (LNCS) ; 13948
Vorab online veröffentlicht am 10.05.2023
Schlagwörter Genetic Optimization, AI, Parallelization, Evolutionary Algorithm
Nachgewiesen in Dimensions
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page