
Dynamic Flows with Time-Dependent Capacities

Thomas Bläsius1[0000−0003−2450−744X], Adrian Feilhauer1, and Jannik
Westenfelder1

Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
{thomas.blaesius, adrian.feilhauer}@kit.edu

Abstract. Dynamic network flows, sometimes called flows over time,
extend the notion of network flows to include a transit time for each
edge. While Ford and Fulkerson showed that certain dynamic flow prob-
lems can be solved via a reduction to static flows, many advanced models
considering congestion and time-dependent networks result in NP-hard
problems. To increase understanding of these advanced dynamic flow set-
tings we study the structural and computational complexity of the canon-
ical extensions that have time-dependent capacities or time-dependent
transit times.
If the considered time interval is finite, we show that already a single edge
changing capacity or transit time once makes the dynamic flow problem
weakly NP-hard. In case of infinite considered time, one change in transit
time or two changes in capacity make the problem weakly NP-hard. For
just one capacity change, we conjecture that the problem can be solved
in polynomial time. Additionally, we show the structural property that
dynamic cuts and flows can become exponentially complex in the above
settings where the problem is NP-hard. We further show that, despite the
duality between cuts and flows, their complexities can be exponentially
far apart.

ar
X

iv
:2

30
2.

07
65

7v
1

 [
cs

.D
M

]
 1

5
Fe

b
20

23

2 T. Bläsius, A. Feilhauer, J. Westenfelder

1 Introduction

Network flows are a well established way to model transportation of goods or
data through systems representable as graphs. Dynamic flows (sometimes called
flows over time) include the temporal component by considering the time to
traverse an edge. They were introduced by Ford and Fulkerson [2], who showed
that maximum dynamic flows in static networks can be found using temporally
repeated flows, which send flow over paths of a static maximum flow as long as
possible.

Since capacities in real-world networks tend to be more dynamic, several
generalizations have been considered in the literature. One category here is con-
gestion modeling networks, where transit times of edges can depend on the flow
routed over them [6,7]. Other generalizations model changes in the network inde-
pendently from the routed flow [4,11,9]. This makes it possible to model known
physical changes to the network and allows for situations, where we have esti-
mates of the overall congestion over time that is caused by external entities that
are not part of the given flow problem. There are also efforts to include different
objectives for the flow, e.g., for evacuation scenarios, it is beneficial for a flow to
maximize arrival for all times, not just at the end of the considered time interval
[1].

Most problems modeling congestion via flow-dependent transit times are NP-
hard. If the transit time depends on the current load of the edge, the flow prob-
lems become strongly NP-hard and no ε approximation exists unless P = NP [6].
If the transit time of an edge instead only depends on its inflow rate while flow
that entered the edge earlier is ignored the flow problems are also strongly NP-
hard [7]. When allowing to store flow at vertices, pseudo-polynomial algorithms
are possible if there are time-dependent capacities [4] and if there additionally are
time-dependent transit times [11,9]. In the above mentioned evacuation scenario,
one aims at finding the so-called earliest arrival flow (EAF). It is also NP-hard
in the sense that it is hard to find the average arrival time of such a flow [1].
Moreover, all known algorithms to find EAFs have worst case exponential output
size for all known encodings [1].

In this paper, we study natural generalizations of dynamic flows that have re-
ceived little attention so far, allowing time-dependent capacities or time-dependent
transit times. We prove that finding dynamic flows with time-dependent capac-
ities or time-dependent transit times is weakly NP-hard, even if the graph is
acyclic and only a single edge experiences a capacity change at a single point
in time. This shows that a single change in capacity already increases the com-
plexity of the – otherwise polynomially solvable – dynamic flow problem. It
also implies that the dynamic flow problem with time-dependent capacities is
not FTP in the number of capacity changes. The above results hold in the set-
ting where the considered time interval is finite. If we instead consider infinite
time, the results remain the same for time-dependent transit times. For time-
dependent capacities, two capacity changes make the problem weakly NP-hard.
We conjecture that it can be solved in polynomial when there is only one change.

Dynamic Flows with Time-Dependent Capacities 3

Beyond these results on the computational complexity, we provide several
structural insights. For static flows, one is usually not only interested in the flow
value but wants to output a maximum flow or a minimum cut. The concept
of flows translates more or less directly to the dynamic setting [2], we need to
consider time-dependent flows and cuts if we have time-dependent capacities or
transit times. In this case, instead of having just one flow value per edge, the flow
is a function over time. Similarly, in a dynamic cut, the assignment of vertices to
one of two partitions changes over time. The cut–flow duality, stating that the
capacity of the minimum cut is the same as the value of the maximum flow also
holds in this and many related settings [5,8,11]. Note that the output complexity
can potentially be large if the flow on an edge or the partition of a vertex in a
cut changes often. For dynamic flows on static graphs (no changes in capacities
or transit times) vertices start in the target vertices’ partition and at some point
change to the source partition, but never the other way [10], which shows that
cuts have linear complexity in this setting.

In case of time-dependent capacities or transit times, we show that flow and
cut complexity are sometimes required to be exponential. Specifically, for all
cases where we show weak NP-hardness, we also give instances for which ev-
ery maximum flow and minimum cut have exponential complexity. Thus, even
a single edge changing capacity or transit time once can jump the output com-
plexity from linear to exponential. Moreover, we give examples where the flow
complexity is exponential while there exists a cut of low complexity and vice
versa.

We note that the scenario of time-dependent capacities has been claimed
to be strongly NP-complete [9] before. However, we suspect the proof to be
flawed as one can see that this scenario can be solved in pseudo-polynomial
time. Moreover, the above mentioned results on the solution complexity make
it unclear whether the problem is actually in NP. In Appendix A, we point out
the place where we believe the proof for strong NP-hardness is flawed.

2 Preliminaries

We consider dynamic networks G = (V,E) with directed edges and designated
source and target vertices s, t ∈ V . Edges e = (v, w) ∈ E have a time-dependent
non negative capacity ue : [0, T] → R+

0 , specifying how much flow can enter e
via v at each time. We allow ue to be non-continuous but only for finitely many
points in time. In addition, each edge e = (v, w) also has a non negative transit
time τe ∈ R+, denoting how much time flow takes to move from v to w when
traversing e. Note that the capacity is defined on [0, T], i.e., time is considered
from 0 up to a time horizon T .

Let f be a collection of measurable functions fe : [0, T − τe] → R, one for
each edge e ∈ E, assigning every edge a flow value depending on the time. The
restriction to the interval [0, T − τe] has the interpretation that no flow may be
sent before time 0 and no flow should arrive after time T in a valid flow. To
simplify notation, we allow time values beyond [0, T − τe] and implicitly assume

4 T. Bläsius, A. Feilhauer, J. Westenfelder

fe(Θ) = 0 for Θ /∈ [0, T − τe]. We call f a dynamic flow if it satisfies the capacity
constraints fe(Θ) ≤ ue(Θ) for all e ∈ E and Θ ∈ [0, T − τe], and strong flow
conservation, which we define in the following.

The excess flow exf (v,Θ) of a vertex v at time Θ is the difference between
flow sent to v and the flow sent from v up to time Θ, i.e.,

exf (v,Θ) :=

∫ Θ

0

∑
e=(u,v)∈E

fe(ζ − τe)−
∑

e=(v,u)∈E

fe(ζ) dζ.

We have strong flow conservation if exf (v,Θ) = 0 for all v ∈ V \ {s, t} and
Θ ∈ [0, T].

The value of f is defined as the excess of the target vertex at the time horizon
|f | := exf (t, T) = − exf (s, T). The maximum dynamic flow problem with time-
dependent capacities is to find a flow of maximum value. We refer to its input
as dynamic flow network.

A cut-flow duality similar to the one of the static maximum flow problem
holds for the maximum dynamic flow problem with the following cut definition.
A dynamic cut or cut over time is a partition of the vertices (S, V \ S) for
each point in time, where the source vertex s always belongs to S while the
target t never belongs to S. Formally, each vertex v ∈ V has a boolean function
Sv : [0, T]→ {0, 1} assigning v to S at time Θ if Sv(Θ) = 1. As for the flow, we
extend Sv beyond [0, T] and set Sv(Θ) = 1 for Θ > T for all v ∈ V (including
t). The capacity cap(S) of a dynamic cut S is the maximum flow that could be
sent on edges from S to V \ S during the considered time interval [0, T], i.e.,

cap(S) =

∫ T

0

∑
(v,w)∈E
Sv(Θ)=1

Sw(Θ+τe)=0

u(v,w)(Θ) dΘ.

An edge (v, w) contributes to the cut S at time Θ if it contributes to the above
sum, so Sv(Θ) = 1∧Sw(Θ+ τe) = 0. Note that this is similar to the static case,
but in the dynamic variant the delay of the transit time needs to be considered.
Thus, for the edge e = (v, w) we consider v at time Θ and w at time Θ + τe.
Moreover, setting Sv(Θ) = 1 for all vertices v if Θ > T makes sure that no point
in time beyond the time horizon contributes to cap(S).

Theorem 1 (Min-Cut Max-Flow Theorem [8,11]). For a maximum flow
over time f and a minimum cut over time S it holds |f | = cap(S).

Proof. The theorem by Philpott [8, Theorem 1] is more general than the setting
considered here. They in particular allow for time-dependent storage capacities
of vertices. We obtain the here stated theorem by simply setting them to constant
zero. The theorem by Tjandra [11, Theorem 3.4] is even more general and thus
also covers the setting with time-dependent transit times. ut

Though the general definition allows the capacity functions to be arbitrary,
for our constructions it suffices to use piecewise constant capacities. We note

Dynamic Flows with Time-Dependent Capacities 5

that in this case, there always exists a maximum flow that is also piecewise
constant, assigning flow values to a set of intervals of non-zero measure. The
property that the intervals have non-zero measure lets us consider an individual
point Θ in time and talk about the contribution of an edge to a cut or flow at
time Θ, as Θ is guaranteed to be part of a non-empty interval with the same
cut or flow. For the remainder of this paper, we assume that all flows have the
above property.

We define the following additional useful notation. We use S(Θ) := {v ∈ V |
Sv(Θ) = 1} and S̄(Θ) := {v ∈ V | Sv(Θ) = 0} to denote the cut at time Θ.
Moreover, a vertex v changes its partition at time Θ if Sv(Θ−ε) 6= Sv(Θ+ε) for

every sufficiently small ε > 0. We denote a change from S to S̄ with Sv
Θ−→ S̄v

and a change in the other direction from S̄ to S with S̄v
Θ−→ Sv. We denote the

number of partition changes of a vertex v in a cut S with chv(S). Moreover the
total number of changes in S is the complexity of the cut S. For a flow f , we
define changes on edges as well as the complexity of f analogously.

In the above definition of the maximum dynamic flow problem we allow
time-dependent capacities but assume constant transit times. Most of our results
translate to the complementary scenario where transit times are time-dependent
while capacities are constant. In this setting τe(Θ) denotes how much time flow
takes to traverse e, if it enters at time Θ. Similarly to the above definition, we
allow τe to be non-continuous for finitely many points in time.

Additionally we look at the scenarios where infinite time (Θ ∈ (−∞,∞)) is
considered instead of only considering times in [0, T]. This removes structural
effects caused by the boundaries of the considered time interval. Intuitively,
because we are working with piecewise constant functions with finitely many
incontinuities, there exists a point in time Θ that is sufficiently late that all
effects of capacity changes no longer play a role. From that time on, one can
assume the maximum flow and minimum cut to be constant. The same holds
true for a sufficiently early point in time. Thus, to compare flow values it suffices
to look at a finite interval I. Formally, f is a maximum dynamic flow with infinite
considered time if it is constant outside of I and maximum on I, such that for
any larger interval J ⊃ I there exists a large enough interval K ⊃ J so that a
maximum flow with considered time interval K can be f during J . Minimum
cuts with infinite considered time are defined analogously. Such maximum flows
and minimum cuts always exist as temporally repeated flows provide optimal
solutions to dynamic flows and we only allow finitely many changes to capacity
or traversal time.

We will need the set of all integers up to k and denote it [k] := {i ∈ N+|i ≤ k}.

3 Computational Complexity

In this section we study the computational complexity of the dynamic flow prob-
lem with time-dependent capacities or transit times. We consider finite and infi-
nite time. For all cases except for a single capacity change with infinite considered
time, we prove NP-hardness.

6 T. Bläsius, A. Feilhauer, J. Westenfelder

We start by showing hardness in the setting where we have time-dependent
capacities with only one edge changing capacity once. Our construction directly
translates to the setting of infinite considered time with one edge changing ca-
pacity twice. For the case of time-dependent transit times we prove hardness
for one change even in the infinite considered time setting. This also implies
hardness for one change when we have a finite time horizon.

We reduce from the partition problem, which is defined as follows. Given a
set of positive integers S = {b1, . . . , bk} with

∑k
i=1 bi = 2L, is there a subset

S′ ⊂ S such that
∑
a∈S′ a = L?

Theorem 2. The dynamic flow problem with time-dependent capacities is weakly
NP-hard, even for acyclic graphs with only one capacity change.

Proof. Given an instance of the partition problem, we construct G = (V,E) as
shown in Figure 1 and show that a solution to partition is equivalent to a flow
of value 1 in G.

Every bi ∈ S corresponds to a vertex xi which can be reached by xi−1 with
one edge of transit time bi and one bypass edge of transit time zero. The last
of these vertices xk is connected to the target t with an edge only allowing flow
to pass during [L+ 1, L+ 2], where the lower border is ensured by the capacity
change of (xk, t) and the upper border is given by the time horizon T = L+ 3.
The source s is connected to x0 with an edge of low capacity 1

L+1 , so that the
single flow unit that can enter this edge in [0, T − 2] can pass (xk, t) during one
time unit.

Since a solution to the partition problem is equivalent to a path of transit
time L through the xi, we additionally provide paths of transit time 0, 1, . . . , L−1
bypassing the bi edges via the yi so that a solution for partition exists, if and
only if flow of value 1 can reach t. To provide the bypass paths, we set ` ∈ N0

so that L = 2`+1 + r, r ∈ N0, r < 2`+1 and define vertices yi, i ∈ N0, i ≤ `. They
create a path of transit time L− 1 where the edges’ transit times are powers of
two and one edge of transit time r and all edges can be bypassed by an edge
with transit time zero. This allows all integer transit times smaller than L− 1.
All edges except for (s, x0) have unit capacity when they are active.

Given a solution S′ to the partition problem, we can route flow leaving s
during [0, 1] through the xi along the non zero transit time edges if and only if
the corresponding bi is in S′. Flow leaving s in [1, L + 1] can trivially reach xk
during [L+ 1, L+ 2] using the bypass paths, providing a maximum flow of 1.

Only one unit of flow can reach x0 until L+ 2, considering the time horizon
T = L + 3 and the transit time of (xk, t), the flow can have value at most 1.
Given a flow that sends one unit of flow to t, we can see that the flow has to
route all flow that can pass (s, x0) during [0, L + 1] to t. Due to the integrality
of transit times, the flow leaving s during [0, 1] has to take exactly time L to
traverse from x0 to xk. The bypass paths via y0 are too short for this. As such,
this time is the sum of edge transit times taken from the partition instance and
zeroes from bypass edges, and there exists a solution S′ to the partition problem
that consists of the elements corresponding to the non zero transit time edges
taken by this flow. ut

Dynamic Flows with Time-Dependent Capacities 7

s
x0 x1 x2 xk

t

b1 b2

0 0

1 1

0
Θ=L+1−−−−−→ 1

20 21

0 0y0 y1 y2 y`

2` 0r 0

1
L+1

Fig. 1: Graph constructed for the reduction of the partition problem to dynamic
flow with time-dependent capacities. Flow leaving s at time zero can only reach
t if it takes exactly time L to traverse from x0 to xk, such choosing a partition.
Black numbers are transit times, blue numbers indicate capacity, all unspecified
capacities are 1, time horizon is T = L+ 3.

Corollary 1. The dynamic flow problem with time-dependent capacities and
infinite considered time is weakly NP-hard, even for acyclic graphs with only two
capacity changes.

Proof. In the proof of Theorem 2, we restricted the flow on the edge from xk
to t to have non-zero capacity only at time [L + 1, L + 2]. For Theorem 2, we
achieved the lower bound with one capacity change and the upper bound with
the time horizon. Here, we can use the same construction but use a second
capacity change for the upper bound. ut

For the case of time-dependent transit times, we use a similar reduction. We
start with the case of infinite considered time.

Theorem 3. The dynamic flow problem with infinite considered time and time-
dependent transit times is weakly NP-hard, even for acyclic graphs with only one
transit time change.

Proof. Similar to the proof of Theorem 2 we give a reduction of the partition
problem. The constructed graph can be seen in Figure 2. We want to link the
existence of a transit time L path to a maximum flow sending 1 flow per time
from s. For this, we start the graph with an edge (s, x0) whose transit time gets
reduced from 1 to zero at time Θ = 0. This results in 2 units of flow reaching
x0 at time Θ = 0, while only a flow of 1 can traverse (x0, t). This means that
flow of 1 has to pass through the xi and yi. The paths through the xi and the
bypass paths through the yi function like in the proof of Theorem 2, but here
the bypass edges also provide paths of transit times L + 1 to 2L. Because the
edge (xk, t) has capacity u(xk,t) = 1

2L+1 , the flow routed through xk has to arrive
at xk using at least 2L+ 1 paths with different transit times. The paths from x0
to xk have integer transit times between zero and 2L, so to route the extra unit
of flow arriving at x0 at time Θ = 0, flow needs to be routed through one path
of each integer transit time between 0 and 2L. The bypass paths do not offer a

8 T. Bläsius, A. Feilhauer, J. Westenfelder

path of transit time L, so, like in the proof of Theorem 2, this flow unit can be
completely routed through the network if and only if the partition problem has
a solution. ut

s
x0 x1 x2 xk

t

b1 b2

0 0
1

Θ=0−−−→ 0 1

1
2L+1

20 21

0 0y1 y2 y3 y`

2` 0L + 1 0

y0
0

r

0

Fig. 2: Graph constructed for the reduction of the partition problem to dynamic
flow with infinite considered time and time-dependent transit times. The flow
units leaving s at times −1 and zero can only reach t if they take the direct
(x0, t) edge and 2L+ 1 paths with different transit times to xk. Black numbers
are transit times, blue numbers specify capacity, all unspecified capacities are 1.

To translate this result to the case of a finite time horizon, note that we
can use the above construction and choose the time horizon sufficiently large to
obtain the following corollary.

Corollary 2. The dynamic flow problem with time-dependent transit times is
weakly NP-hard, even for acyclic graphs with only one transit time change.

Proof. Using the construction of the proof for Theorem 3, we can restrict time
to the interval [−1, 2L+1], then a solution to the partition problem is equivalent
to the existence of a flow of value 2L+ 2. To get a considered time interval from
zero to a time horizon, we let the transit time change of (s, x0) occur at time
Θ = 1 instead and set T = 2L+ 2. ut

This leaves one remaining case: infinite considered time and a single capacity
change. For this case, we can show that there always exists a minimum dynamic
cut, where each vertex changes partition at most once and all partition changes
are of the same direction. Furthermore, for given partitions before and after the
changes, a linear program can be used to find the optimal transition as long as
no vertex changes partition more than once and all partition changes are of the
same direction. This motivates the following conjecture.

Conjecture 1. The minimum cut problem in a dynamic flow network with only a
single change in capacity and infinite considered time can be solved in polynomial
time.

Dynamic Flows with Time-Dependent Capacities 9

4 The Complexity of Maximum Flows and Minimum
Cuts

We first construct a dynamic flow network such that all maximum flows and
minimum cuts have exponential complexity. Afterwards, we show that there are
also instances that require exponentially complex flows but allow for cuts of
linear size and vice versa. These results are initially proven for a single change
in capacity and are then shown to also hold in the setting with time dependent
transit times, likewise with only one change in transit time required.

4.1 Exponentially Complex Flows and Cuts

We initially focus on the complexity of cuts and only later show that it transfers
to flows. Before we start the construction, note that the example in Figure 3
shows how the partition change of two vertices a and b can force a single vertex
v to change its partition back and forth. This type of enforced partition change
of v is at the core of our construction.

a bv

Θ = 0

a bv

Θ = 1

a bv

Θ = 2

a bv a bv

Fig. 3: Example where a changes from S̄ (red) to S (blue) at time 1 and b changes
from S to S̄ at time 2. Only edges from S to S̄ contribute to the cut (bold edges).
Assuming v starts in S̄ and u(a,v) < u(v,b) as well as τ(a,v) = τ(v,b) = 0, v has to
change to S at time 1 and back to S̄ at time 2 in a minimum cut (top row). The
bottom row illustrates the alternative (more expensive) behavior of v.

More specifically, we first give a structure with which we can force vertices to
mimic the partition changes of other vertices, potentially with fixed time delay.

The mimicking gadget links two non terminal vertices a, b ∈ V \ {s, t} using
edges (a, b), (b, t) ∈ E with capacities u(a,b) = α, u(b,t) = β. The following lemma
shows what properties α and β need to have such that the mimicking gadget
does its name credit, i.e., that b mimics a with delay τ(a,b). A visualization of
the mimicking gadget is shown in Figure 4.

Lemma 1. Let G be a graph that contains the mimicking gadget as a sub-graph,
such that

α >
∑

w|(b,w)∈E

u(b,w) and β >
∑

w|(w,b)∈E\(a,b)

u(w,b).

Then, Sb(Θ) = Sa(Θ−τ(a,b)) for every minimum cut S and times Θ ∈ (τ(a,b), T−
τ(b,t)).

10 T. Bläsius, A. Feilhauer, J. Westenfelder

a b t

α β α >
∑

w:(b,w)∈E u(b,w)

β >
∑

w:(w,b)∈E\(a,b) u(w,b)

Fig. 4: Gadget linking the partitions of two vertices a and b, so that b mimics a
with a delay of τ(a,b); α, β are capacities.

Proof. We first show a ∈ S(Θ − τ(a,b)) =⇒ b ∈ S(Θ). With the partition of
a fixed, we look at possible contribution to S of edges incident to b at time
Θ. For b ∈ S̄(Θ) the contribution is at least α, because Θ ∈ (τ(a,b), T − τ(b,t))
ensures that (a, b) can contribute to S. For b ∈ S(Θ) the contribution is at most∑
w|(b,w)∈E u(b,w) < α. Because S is a minimum cut, we obtain b ∈ S(Θ). The

other direction a ∈ S̄(Θ − τ(a,b)) =⇒ b ∈ S̄(Θ) holds for similar reasons. For
b ∈ S(Θ) the contribution is at least β. For b ∈ S̄(Θ) the contribution is at most∑
w|(w,b)∈E u(w,b) < β. ut

Note that Lemma 1 does not restrict the edges incident to a. Thus, we can
use it rather flexibly to transfer partition changes from one vertex to another.

To enforce exponentially many partition changes, we next give a gadget that
can double the number of partition changes of one vertex. To this end, we assume
that, for every integer i ∈ [k], we already have access to vertices ai with period
pi := 2i, i.e., ai changes partition every pi units of time. Note that a1 is the vertex
with the most changes. With this, we construct the so-called binary counting
gadget that produces a vertex v with period p0 = 1, which results in it having
twice as many changes as a1. Roughly speaking, the binary counting gadget,
shown in Figure 6, consists of the above mentioned vertices ai together with
additional vertices bi such that bi mimics ai. Between the ai and bi lies the
central vertex v with edges from the vertices ai and edges to the bi. Carefully
chosen capacities and synchronization between the ai and bi results in v changing
partition every step.

To iterate this process using v as vertex for the binary counting gadget of the
next level, we need to ensure functionality with the additionally attached edges
of the mimicking gadget.

The binary counting gadget Hk shown in Figure 6 is formally defined as
follows. It contains the above mentioned vertices ai, bi for i ∈ [k] and the vertex
v. Additionally, it contains the source s and target t. On this vertex set, we have
five types of edges. All of them have transit time 1 unless explicitly specified
otherwise. The first two types are the edges (ai, bi) and (bi, t) for i ∈ [k], which
form a mimicking gadget. We set τ(ai,bi) = pi + 1 which makes bi mimic the
changes of ai with delay pi + 1. Moreover, we set u(ai,bi) = αi := 2i−1 + 2ε and
u(bi,t) = βi := 2i−1 + ε. We will see that these αi and βi satisfy the requirements

Dynamic Flows with Time-Dependent Capacities 11

of the mimicking gadget in Lemma 1. The third and fourth types of edges are
(ai, v) and (v, bi) for i ∈ [k] with capacities u(ai,v) = u(v,bi) = 2i−1. These
edges have the purpose to force the partition changes of v, similar to the simple
example in Figure 3. Finally, we have the edge (s, v) with capacity u(s,v) = 1−ε.
It has the purpose to fix the initial partition of v and introduce some asymmetry
to ensure functionality even if additional edges are attached to v.

Our plan is to prove that the binary counting gadget Hk works as desired by
induction over k. We start by defining the desired properties that will serve as
induction hypothesis.

Definition 1. Let G be a graph. We say that Hk is a valid binary counting
gadget in G if Hk is a subgraph of G and every minimum cut S has the following
properties.

– For i ∈ [k−1], the vertex ai has period pi. It changes its partition 2k−i times
starting with a change from S to S̄ at time 0 and ending with a change at
time 2k − 2i.

– For i = k, ak changes from S to S̄ at time 0 and additionally back to S at
time 2k.

Θ:

a1
a2
a3
a4

0 2 4 6 8 10 12 14 16

v

18

Fig. 5: Visualization of the partition change patterns of a valid binary counting
gadget H4. In blue sections the vertex is in S and in red sections it is in S̄.

Note that in a valid binary counting gadget the ai and v form a binary
counter from 0 to 2k − 1 when regarding S̄ as zero and S as 1, with v being the
least significant bit (shifted back two time steps); see Figure 5.

Lemma 2. Let G be a graph containing the valid binary counting gadget Hk

such that the central vertex v has no additional incoming edges, the sum of the
capacities of additional outgoing edges of v is less than 1− ε, and no additional
edges are incident to the bi. Then, for every minimum cut S, the central vertex
v has period p0 = 1 and changes 2k times, starting with a change from S to S̄
at time 2 and ending with a change at time 2k + 1.

Proof. First note that the mimicking gadget allows causing an inverted counter
behavior for the bi, affecting v one time step before the corresponding ai. For
Θ ∈ {0, . . . , 2k − 1}, the ai change

Sai
Θ≡0 mod 2i+1

−−−−−−−−−→ S̄ai S̄ai
Θ≡2i mod 2i+1

−−−−−−−−−−→ Sai S̄ak
2k−→ Sak .

12 T. Bläsius, A. Feilhauer, J. Westenfelder

vs t

a1

a2

a3

b1

b2

b3

1 1

2 2

4 4

1− ϵ

s
0−→ t

t
2−→ s

s
4−→ t...

s
3−→ t

t
5−→ s

s
7−→ t...

s
5−→ t

t
9−→ s...

s
9−→ t

t
17−−→ s...

s
0−→ t

t
4−→ s...

s
0−→ t

t
8−→ s...

(a) More intuitive visualization exemplary showing the partition changes of ai, bi in
blue, omitting the mimicking gadgets. For improved readability the partitions are de-
noted by their terminal, i.e. s for S and t for S̄.

vs t

a1

a2

a3

b1

b2

b3

... ...

1 1

2 2

4 4

1− ε

α1

α2

α3

β1

β2

β3

(b) Full visualization with all edges, including the mimicking gadgets.

Fig. 6: Visualization of the binary counting gadget allowing to double the number
of partition changes of a single vertex, ensuring 2k changes of vertex v assuming
that vertices ai, i < k are changing partition chai = 2k−i times each, with
chak = 2 and correct timing; Black numbers are capacities.

Dynamic Flows with Time-Dependent Capacities 13

The delay of pi + 1 for inverting the counter is chosen because the activated
states of the ai and bi are opposite, i.e. Sai(Θ − τ(ai,v)) = 1 allows contribution
of u(ai,v), but Sbi(Θ + τ(v,bi)) = 0 allows contribution of u(v,bi). The reset step
at time 1, changing all bi to S can be omitted, as all vertices start in S. So the
necessary delay between ai and bi is 2i+1. The desired change pattern therefore
is

S̄bi
Θ≡1 mod 2i+1

−−−−−−−−−→ Sbi S̄bk
2k+1+1−−−−−→ SbkSbi

Θ≡2i+1 mod 2i+1

−−−−−−−−−−−−→ S̄bi

for Θ ∈ {3, . . . , 2k + 1}. This pattern is achieved by the functionality of the
mimicking gadget shown in Lemma 1 and the fact that G cannot have additional
edges incident to any bi.

To realize that the partition changes of v have to occur in the claimed way
for any minimum cut S, we look at the edges incident to v. All other edges’
contribution to any cut is already fixed. An edge (ai, v) contributes 2i to cap(S)
if and only if ai ∈ S(Θ − 1) and v ∈ S̄(Θ) (s ∈ S(Θ) always holds, so (s, v)
contributes 1 − ε if v ∈ S̄(Θ)) for some time Θ. Likewise the only way for
(v, bi) to contribute to cap(S) is v ∈ S(Θ) and bi ∈ S̄(Θ + 1) for some time Θ.
Evaluating these contributions for the given partition changes of ai, bi we see that
the counter of the bi contributions is half a counting step – which corresponds to
one time unit – ahead of the ai contribution counter. For the last change of ak,
affecting v at time 2k + 1, the ai counter gets larger than the bi counter instead
of equaling it. Formally for Θ ∈ [1, 2k + 1) the contribution of (ai, v) and (v, bi)
edges is ∑

i|Sai
(Θ−1)=1

u(ai,v) = bΘ − 1

2
c

∑
i|Sbi

(Θ+1)=0

u(v,bi) = bΘ
2
c

and for Θ ∈ [2k + 1, 2k + 2)∑
i|Sai

(Θ−1)=1

u(ai,v) = 2k − 1 > 2k−1 =
∑

i|Sbi
(Θ+1)=0

u(v,bi).

With the additional edge (s, v), the side with more potential to contribute to
the cut changes every Θ ∈ {2, . . . , 2k+1}, forcing v to change its partition every
time to ensure minimality of the cut. So the change pattern of v is

Sv
Θ≡0 mod 2−−−−−−−→ S̄vS̄v

Θ≡1 mod 2−−−−−−−→ Sv

for Θ ∈ {2, . . . , 2k + 1}.
Edges leaving v can only contribute to cap(S) if v ∈ S(Θ), so whenever

the gadget already ensures v ∈ S̄(Θ), added outgoing edges cannot impede the
gadgets behavior. When Hk ensures v ∈ S(Θ), we have∑

i|Sai
(Θ−1)=1

u(ai,v) ≥
∑

i|Sbi
(Θ+1)=0

u(v,bi).

To minimize cap(S), the assignment v ∈ S(Θ) remains necessary to minimize
cap(S), because of the edge (s, vk) with capacity 1− ε, which is larger than the
sum over the capacities of all added edges. ut

14 T. Bläsius, A. Feilhauer, J. Westenfelder

Note that Lemma 2 provides the first part towards the induction step of
constructing a valid Hk+1 from a valid Hk. In the following, we show how to
scale periods of the ai such that ai from Hk can serve as the ai+1 from Hk+1

and v can serve as the new a1. Afterwards, it remains to show two things. First,
additional edges to actually build Hk+1 from Hk can be introduced without
losing validity. And secondly, we need the initial step of the induction, i.e., the
existence of a valid H1 even in the presence of only one capacity change.

We say that a minimum dynamic cut S remains optimal under scaling and
translation of time if S is a minimum cut on graph G = (V,E) with transit times
τe, capacities ue(Θ) and time interval [0, T] if and only if Ŝ with Ŝv(r ·Θ+T0) :=
Sv(Θ) ∀Θ ∈ [0, T] is a minimum cut on Ĝ = (V,E) with transit times τ̂e := r ·τe,
capacities ûe(r · Θ + T0) := ue(Θ) and time interval [T0, r · T + T0] for any
r ∈ R+, T0 ∈ R.

Lemma 3. Any dynamic cut remains optimal under scaling and translation of
time. It also remains optimal under scaling of capacities.

Proof. The capacity of a cut is unaffected by translation of time. Scaling time
scales the capacity of any cut by the same factor. So the relative difference of
the capacity of different cuts is not affected by scaling and translation of time.

Scaling capacities alters the capacity of every cut by the same factor, so the
relative difference in capacity of cuts remains unchanged. ut

With this, we can combine binary counting gadgets of different sizes to create
a large binary counting gadget H` while only requiring a single capacity change.

Lemma 4. For every ` ∈ N+, there exists a polynomially sized, acyclic dynamic
flow network with only one capacity change that contains a valid binary counting
gadget H`.

Proof. To create the necessary change patterns for the ai of H`, we chain binary
counting gadgets of increasing size, beginning with H2 up to H` together creating
the graph G` as shown in Figure 7. The coarse idea is to ensure the behavior
of all ak,i by having them mimic the central vertex vk−i of the correct smaller
binary counting gadget.

Timewise, the binary counting gadgets Hk are scaled by ∆k := 2−k and
translated by T0,k := 2 + 3(1−2∆k) +∆k. So the first change from S to S̄ of the
ak,i in Hk should happen at time T0,k and the period between two successive
changes of ak,i is pk,i := ∆k · 2i = ∆k−i, which is the period between two
successive changes of vk−i. To correctly synchronize the different Hk, the delay
for the mimicking between the binary counting gadgets is set to τ(vk−i,ak,i) =
3 · (∆k−i−2∆k)+∆k. This is chosen so that T0,k−i+2∆k−i+ τ(vk−i,ak,i) = T0,k.

We set ε := 1
6 for the capacity of (s, vk) in Hk.

To ensure that the connecting mimicking gadgets do not exceed the permitted
capacities leaving vk of Hk, the capacities of all edges in the Hk are scaled by
factor λk := 1

5k
. In accordance with this scaling and the capacity requirements

of Lemma 1, the capacities of the mimicking gadget connecting vk−i to ak,i are
u(vk−i,ak,i) = λkγi with γi := 2i + 4ε and u(ak,i,t) = λkε.

Dynamic Flows with Time-Dependent Capacities 15

Ensuring the partition changes of v0 can be done with one capacity change
as shown in Figure 8, using a path s, v0, t. Transit times for Hstart are τ(s,v0) = 1
and τ(v0,t) = T − 3, capacities are u(s,v0) = 2 and u(v0,t)(Θ) = 1, Θ < 2 changing
to u(v0,t)(Θ) = 3, Θ ≥ 2. The time horizon is set to T := 6.

G` clearly has polynomial size in regard to ` and there is only one capacity
change. The previously shown functionality of the binary counting gadget in
Lemma 2 and the mimicking gadget in Lemma 1 are the basis for showing, that
the contained H` is valid. Lemma 3 provides that those gadgets’ functionality is
also given under the shifted and compressed time in which they are used for the
construction of G`. To prove the correct behavior of the constructed graph, it
needs to be shown that the mimicking gadgets adhere to the capacity restrictions
established earlier, and that their attachment to smaller binary counting gadgets
does not impede the behavior of those counting gadgets.

The correctness of the mimicking gadgets’ capacities can easily be seen. The
ak,i have no incoming edges outside of the mimicking gadget, so u(ak,i,t) > 0
fulfills the requirement for (ak,i, t). There are two additional edges leaving ak,i,
one to bk,i and one to vk. The combined capacity of all outgoing edges of ak,i is
therefore λk(αi+2i−1+ε) = λk(2i+3ε) < λkγi, so the restriction for (vk−i, ak,i)
holds.

To see that the chaining of binary counting gadgets does not impede the
behavior of smaller binary counting gadgets, notice that the capacities of the
edges leaving the vk are chosen to not cross the established threshold:

∑
i∈N+,i≤`−k

λk+iγi = λk
∑

i∈N+,i≤`−k

(
2

5

)i
+

4

6 · 5i
< λk(

2

3
+

1

6
) = λk(1− ε)

Note that the behavior of v0 is also unimpeded by the connections to the binary
counting gadgets. This follows from the same argument for k = 0 as well as
the observation, that the changes of v0 are – ignoring connections to the binary
counting gadgets – always ensured by a capacity difference of at least λ0.

We use induction to show that the binary counting gadgets’ ak,i change at
the required times for any minimum cut S. More specifically we show

Svk
Θ≡T0,k mod 2∆k−−−−−−−−−−−→ S̄vk S̄vk

Θ≡T0,k+∆k mod 2∆k−−−−−−−−−−−−−−→ Svk

for all Θ ∈ {T0,k + 2∆k, T0,k + 3∆k, . . . , T0,k + 1 +∆k}.
The correct startup behavior of v0 requires two partition changes. For now

we ignore the edges from the attachment to the binary counting gadgets, since

they do not affect behavior, as argued above. The partition change S
2−→ S̄

directly follows from the capacity change of (v0, t) at time Θ = 2 increasing the

potential contribution of v0 ∈ S(2). The other partition change S̄
3−→ S is a result

of the approaching time horizon T , which reduces the potential contribution of
v0 ∈ S(3) to zero.

Now assume, for a fixed k ∈ N, gadgets Hstart to Hk−1 work correctly, pro-
ducing the desired changes. Because of the functionality of the mimicking gadget,

16 T. Bläsius, A. Feilhauer, J. Westenfelder

a2,1

a2,2
v2

a3,1

a3,2 v3

a3,3

v0
s t

H1

H2

H3

Hstart

λ3γ3

λ3γ2

λ3γ1

λ2γ2

λ2γ1

λ1γ1

...

a1,1 v1

Fig. 7: Construction linking binary counting gadgets to ensure chv` = 2` partition
changes at v` in a minimum cut; purple edges represent mimicking gadgets,
numbers are capacities.

with the delay τ(vk−i,ak,i), by induction ak,i experiences changes Sak,i

Θ−→ S̄aki

at times

Θ ≡ T0,k−i + τ(vk−i,ak,i) mod 2∆k−i ≡ T0,k mod 2∆k−i

and changes S̄ak,i

Θ−→ Saki
at times

Θ ≡ T0,k−i +∆k−i + τ(vk−i,ak,i) mod 2∆k−i ≡ T0,k +∆k−i mod 2∆k−i

beginning with Θ = T0,k−i + 2∆k−i + τ(vk−i,ak,i) = T0,k up to Θ = T0,k−i +
1 + ∆k−i + τ(vk−i,ak,i) = T0,k + 1 − ∆k−1. This means that beginning at T0,k
the ak,i form a binary counter increasing every 2∆k with the additional change

S̄ak
T0,k+1−−−−→ Sak . Now Lemma 2 – multiplying the time with factor ∆k and

adding the initial offset of T0,k – provides the desired change timings for vk.
The correct change pattern of the a`,i required for the validity of H` follow

from the stronger induction hypothesis for the vk, as seen above during the
induction step. ut

To be able to use the complexity of minimum cuts to show complexity of
maximum flows, we need the following lemma.

Lemma 5. Every edge contributing to the capacity of some minimum cut has
to be saturated by every maximum flow during the time where it contributes to a

Dynamic Flows with Time-Dependent Capacities 17

s tv0

1
Θ=2−−−→ 32

Fig. 8: Construction of Hstart, providing the partition changes of v0 needed for
G` with one capacity change, numbers are capacities, τ(v0,t) = T − 3.

cut. Moreover, every edge e = (v, w) with v ∈ S̄(Θ) and w ∈ S(Θ+ τe) for some
minimum cut S may not route flow at time Θ for any maximum flow.

Proof. For any minimum cut S, flow is routed from s ∈ S to t ∈ S̄. This
means that any path along which flow is routed has to contain at least one edge
allowing flow to move from S to S̄. All edges allowing flow to traverse from S to
S̄ contribute to cap(S). As such, if one contributing edge was not saturated by
a flow f , the value |f | would be smaller than cap(S). Then the cut-flow duality
of Theorem 1 provides that f cannot be a maximum flow.

Given a minimum cut S, flow of f routed over an edge e = (v, w) with
v ∈ S̄(Θ) and w ∈ S(Θ + τe) has to cross multiple edges from S to S̄ to reach
t, one before e and one after it. So even if f saturates all edges contributing
to cap(S) as discussed above, less flow than cap(S) can reach t. With this,
Theorem 1 again provides that f is no maximum flow. ut

To obtain the following theorem, it only remains to observe that the structure
of the minimum cut in the construction of Lemma 4 also implies exponentially
complex maximum flows, using Lemma 5. Further note that discretization of
time is possible.

Theorem 4. There exist dynamic flow networks with only one capacity change
where every minimum cut and maximum flow has exponential complexity. This
even holds for acyclic networks and discrete time.

Proof. A valid binary counting gadget H` has a central vertex v` that experi-
ences 2k partition changes in any minimum cut S, as shown in Lemma 2. Since
Lemma 4 provides the existence of a polynomially sized, acyclic dynamic flow
network G` containing a valid H`, so any minimum cut in G` has exponential
complexity. The construction of G` uses only transit times and change timings
that are multiples of ∆`, so discretizing time to units of length ∆` provides a
discrete time dynamic flow network with the same properties.

To see that this partition change pattern with exponentially many changes
also implies that any maximum flow has to have exponential complexity, we need
Lemma 5, which shows that the minimum cuts impose restrictions on maximum
flows. The partition change pattern of a`,1, changing every 2∆` and v`, changing
every ∆ in S results in (a`,1, v`) changing from an edge from S to S̄ to an edge
from S̄ to S exponentially often. This implies exponentially many changes of
f(a`,1,v`) in any maximum flow f in G`. ut

Note that the construction from Lemma 4 requires a specific time horizon
T . In the case of infinite considered time, two capacity changes suffice to obtain
the same result.

18 T. Bläsius, A. Feilhauer, J. Westenfelder

Corollary 3. Theorem 4 also holds for infinite considered time with two capac-
ity changes.

Proof. The starting gadget Hstart shown in Figure 8 can be modified to force

the two changes S
2−→ S̄ and S̄

3−→ S of v0 with infinite considered time by
additionally changing the capacity of (v0, t) to zero at time Θ = 3. The rest of
the proof of Theorem 4 is not changed by the introduction of infinite considered
time. ut

Note that if Conjecture 1 holds, two capacity changes are necessary in this
setting.

As mentioned in the introduction, the above complexity results transfer to the
setting where we have time-dependent transit times instead of time-dependent
capacities. The result of Corollary 3 can even be strengthened to only require a
single transit time change.

Corollary 4. Theorem 4 also holds in the setting of static capacities and time-
dependent transit times with a single change, with finite time horizon and with
infinite considered time.

Proof. For infinite considered time, we give the starting gadget Hstart presented
in Figure 9. Here (v0, t) is always saturated for any maximum flow f , except
during [2, 3], when no flow can be routed over it due to the increase in transit
time by 1 of (s, v0). The corresponding minimum cut S requires v0 to be in S
always except during [2, 3], when v0 has to be in S̄. These are the changes Hstart

needs to provide the induction start for the proof of Theorem 2.

This clearly also works for only considering time in [0, 6] as in the proof of
Theorem 2. ut

s tv0

1
Θ=1−−−→ 2

2 1

1

Fig. 9: Construction of Hstart, providing the partition changes of v0 needed for G`
with one change in transit time, black numbers are transit times, blue numbers
are capacities.

Note that the construction of Theorem 4 causes every minimum cut and every
maximum flow to have exponential complexity. In the following we show that
exponentially many changes in cut or flow can occur independently. Specifically,
we provide constructions that require exponentially complex flows but allow for
cuts of low complexity and vice versa.

Dynamic Flows with Time-Dependent Capacities 19

4.2 Complex Flows and Simple Cuts (and Vice Versa)

All above constructions require all minimum cuts and all maximum flows to have
exponential complexity. Here, we show that flows and cuts can be independent
in the sense that their required complexity can be exponentially far apart (in
both directions).

Theorem 5. There exist acyclic dynamic flow networks with only one capacity
change where every maximum flow has exponential complexity, while there exists
a minimum cut of constant complexity. The same is true for static capacities
and time-dependent transit times.

Proof. Figure 10 shows a graph with these properties. This is achieved by only
allowing flow to enter v0 during [0, 1], but it has to leave vk during [0, 2k] due to
the reduced capacity of (vk, t) for a time horizon T ≥ 2k. Apart from vk all vi
are connected to the next vi+1 with a pair of edges, with transit times 2k−i−1

and zero, all these edges have capacity 1. So all 2k paths of different transit
time through the vi have to be used to route flow for a maximum flow. Every
second of those paths has an even transit time, so flow has to traverse the edge
with transit time zero between vk−1 and vk every second integer time interval,
which results in exponentially many changes in flow over that edge. However
assigning all vi to S̄ for all time is a minimum cut without partition changes.
This generalizes to time-dependent transit times, as we can block the edge (s, v0)
at time Θ = 1 by increasing its transit time to T at that time. ut

s t

1
Θ=1−−−→ 0 v0 v1 vk−1 vk

12k−1

0 0
1
2k

0 0

Fig. 10: Example of a graph where any maximum flow contains exponentially
many changes, but there is a minimum cut with no changes, black numbers are
transit times, blue numbers are capacities, unspecified capacities are 1.

Theorem 6. There exist acyclic dynamic flow networks with only one capacity
change where every minimum cut has exponential complexity, while there exists
a maximum flow of linear complexity. The same is true for static capacities and
time-dependent transit times.

Proof. Figure 11 shows a graph where any minimum cut needs to contain expo-
nentially many changes, but a maximum flow with linearly many changes exists.
The idea of this construction is that only 1

2k+1
flow can enter s′ at any time

and flow can only leave from x2k to t during one integer interval after 2k and

20 T. Bläsius, A. Feilhauer, J. Westenfelder

before the time horizon T = 2k + 1. All other edges have capacity 1. There is
a set of bypass paths through the yi, that allows flow to be routed from s′ to
x2k in any integer time up to 2k − 1, by connecting yi to yi+1 with a pair of

edges with transit times 2k−i−1 and zero. So 2k

2k+1
flow can be routed through

the graph. The section where exponential cuts will be necessary consists of the
xi. The initial x0 can be reached from s′ with transit time 1, internally each
xi, i < k is connected with the next xi+1 with a pair of edges with transit times
2i+1 and zero. The later xi, i ≥ k are connected to the next xi+1 with a pair of
edges of transit time 22k−i and zero.

If the bypass paths are used no additional flow can move through the upper
paths via the xi because of the capacity of (s, s′) and the lack of a transit time 2k

path through the xi. There is no maximum flow that saturates any edge except
for (s, s′) at any time, so, because of the cut flow duality of Theorem 1, this is
the only edge that can contribute to the capacity of a minimum cut. Since there
are integer transit time paths from s′ to x2k for any transit time up to 2k − 1,
we know that s′ has to be in S̄ during [1, 2k+1) to prevent any other edges from
contributing to the cut. This already results in the capacity of the cut being at

least 2k

2k+1
, so s′ has to be in S during [0, 1). To prevent any other contributions

to the capacity of the cut, xk needs to change partition exponentially often.
Observe that any path’s transit time from any s′ to xk plus the 1 from (s′, x0)
marks a timing where xj has to be in the S partition. Likewise 2k minus path
transit times of paths from xk to x2k mark timings where xk has to be in the S̄
partition. So during any integer interval before 2k starting with an odd time, xk
has to be in S and at any such interval starting at an even time, it has to be in
S̄.

The flow through this graph can easily be represented in linear time with
at most one change in flow rate per edge. Using the bypass paths as described
above, no flow gets routed through any xi. The bypass edges are ordered to
ensure that flow moves through any yi during [2k − 2k−i + 1, 2k + 1) when
using all different path transit times as required for this maximum flow. This

means that each edge from yi to yi+1 in the bypass edges sends 2i

2k+1
during

[2k − 2k−i + 1, 2k − 2k−i−1 + 1) for the 2k−i−1 transit time edge and during
[2k − 2k−i−1 + 1, 2k + 1) for the edge with transit time zero. Flow over the
remaining edges is easily representable as well; (s, s′) is saturated during [1, T),

(x2k, t) sends 2k

2k+1
during [2k, T) and (s′, y0), (yk, x2k) only exist to improve the

visual representation, flow over them is given by (s, s′), (x2k, t).
This generalizes to time-dependent transit times, as we can activate the edge

(x2k, t) at time Θ = 2k by decreasing its transit time from T to 0 at that time.
ut

Dynamic Flows with Time-Dependent Capacities 21

s
x0 x1 x2 x2k

t

2 4

0 0

0 0

0
Θ=2k

−−−−→ 1

2k−1 2k−2

0 0y0 y1 y2 yk

1
2k+1

2

0

x2k−1

4

0

1

0

00

x2k−21s′

Fig. 11: Example of a graph where any minimum cut contains exponentially many
changes, but there is a flow with only linearly many changes, black numbers are
transit times, blue numbers are capacities, unspecified capacities are 1, time
horizon is T = 2k + 1.

References

1. Disser, Y., Skutella, M.: The simplex algorithm is NP-mighty. ACM Transactions
on Algorithms (TALG) 15(1), 1–19 (2018)

2. Ford Jr, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static
flows. Operations research 6(3), 419–433 (1958)

3. Hall, A., Hippler, S., Skutella, M.: Multicommodity flows over time: Efficient al-
gorithms and complexity. Theoretical computer science 379(3), 387–404 (2007)

4. Halpern, J.: A generalized dynamic flows problem. Networks 9(2), 133–167 (1979)
5. Koch, R., Nasrabadi, E., Skutella, M.: Continuous and discrete flows over time.

Mathematical Methods of Operations Research 73(3), 301 (2011)
6. Köhler, E., Skutella, M.: Flows over time with load-dependent transit times. SIAM

Journal on optimization 15(4), 1185–1202 (2005)
7. Langkau, K.: Flows over time with flow-dependent transit times (2003)
8. Philpott, A.B.: Continuous-time flows in networks. Mathematics of Operations

Research 15(4), 640–661 (1990)
9. Sha, D., Cai, X., Wong, C.: The maximum flow in a time-varying network. In:

Optimization, pp. 437–456. Springer (2000)
10. Skutella, M.: An introduction to network flows over time. In: Research trends in

combinatorial optimization, pp. 451–482. Springer (2009)
11. Tjandra, S.A.: Dynamic network optimization with application to the evacuation

problem (2003)

22 T. Bläsius, A. Feilhauer, J. Westenfelder

A On the Strong NP-Completeness of Dynamic Flows
with Time-Dependent Capacities

As mentioned in the introduction, a poof for strong NP-completeness for the
dynamic flow problem with time-dependent capacities was claimed by Sha Cai
and Wong [9, Theorem 2]. The exponential complexity we proof in Theorem 4
does not disproof that the maximum dynamic flow problem is in NP, but it
invalidates the use of the two canonical witnesses for verifying a solution in
polynomial time. As such the claim that the maximum dynamic flow problem is
obviously in NP is in doubt.

The reduction from the 3-Dimensional Matching Problem suffers from the is-
sue that flow can take a path from s to t using edges belonging to different triplets
of te 3DM. One example of this is visualized in Figure 12. The 3DM Problem
has four possible triples M = {(w1, x1, y1), (w1, x2, y2), (w2, x2, y3), (w3, x3, y3)}
to hit each of the three elements of each set {w1, w2, w3}, {x1, x2, x3}, {y1, y2, y3}
exactly once. This is impossible because the need to hit y1 and w3 necessitates the
use of (w1, x1, y1), (w3, x3, y3), but the remaining three elements w2, x2, y2 can-
not be covered by either of the remaining triples in M . However there are three
edge disjoint paths (w1, x1, y1), (w2, x2, y2), (w3, x3, y3) in the induced graph, al-
lowing a flow of 3 to pass from s to t, which should correspond to a solvable
3DM instance.

w1 w2 w3

x1 x2 x3

y1 y2 y3

s

t

l

a

Fig. 12: Visualization of the counterexample to the reduction of 3DM to max-
imum dynamic flow, where the 3DM instance is not solvable, but the induced
maximum dynamic flow instance achieves the required flow of 3, implying a
solution to the 3DM problem.

Dynamic Flows with Time-Dependent Capacities 23

Furthermore, it seems unlikely that the dynamic flow problem with time-
dependent capacities, where capacities are piecewise constant functions, capacity
changes happen at integer times and edge transit times are integer, is strongly NP
hard. This case can be solved in pseudo-polynomial time using the time expanded
graph, which has one vertex for every integer time and edges connecting instances
with the correct time difference. In the time expanded graph, there are no more
changing capacities, so it can be solved using temporally repeated flows. With
this in mind a strong NP-hardness proof would show P = NP.

B Strong NP-Hardness for Simple Flow Paths

During our studies, we stumbled upon the following related NP-hardness re-
duction. However, it is somewhat beyond the scope of the paper and thus only
mentioned here in the appendix.

Theorem 7. The (maximum) dynamic flow problem restricted to simple flow
paths with time-dependent capacities or time-dependent transit times is strongly
NP-hard.

Proof. This follows from the NP-hardness proof for the multi-commodity flow
over time problem with simple flow paths and without storage presented by Hall,
Hippler and Skutella [3, Theorem 7]. Their construction requires a traffic light
gadget, but otherwise works with only a single commodity of flow. The traffic
light gadget allows setting the capacity of an edge to zero except for a interval
[a, b) during which the edge offers usable capacity. Since the scenario considered
here allows adjusting an edge’s capacity based on time, creation of such a gadget
is trivial for time-dependent capacities. For time-dependent transit times, we can
construct a traffic light gadget, allowing flow over e only during [a, b) by setting
the transit time of e to T during [0, a) and [b, T). ut

	Dynamic Flows with Time-Dependent Capacities

