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Abstract
Buckling is typically the governing failuremode of thin-walled shells. In particu-
lar, geometric andmaterial imperfections have amajor influence on the buckling
behavior. Small variations of imperfections have large effects on the load-bearing
behavior. However, the design of shells is still characterized by a deterministic
way of thinking, in which uncertainties have not yet been sufficiently consid-
ered. Even in probabilistic approaches, false assumptions are often generated due
to the small amount of experimental data. The focus of this paper is an appropri-
ate uncertainty quantification based on the available data. Therefore, the concept
of polymorphic uncertainty modeling is presented on axially loaded shells with
different types of imperfections. Finally, an idea for a novel design concept for
shells based on a fuzzy-valued safety level is introduced. The paper is intended
to initiate a rethinking of themethodology for the numerical design of shells with
an appropriate uncertainty quantification.

1 INTRODUCTION

Shell structures are highly demanded structures, for exam-
ple, in civil and aerospace engineering. They are thin-
walled structures with low dead weight and high load-
bearing capacity due to their curved shape. Their slim
design is the reason that buckling is usually the govern-
ing failure mode. Geometric and material imperfections,
such as deviations in the geometric shape and thickness
of the shell, residual stresses, and variations in boundary
conditions and material parameters, have a major influ-
ence on the buckling behavior. Already small variations
of imperfections have large influences on the load-bearing
behavior. This means that the resistance of thin-walled
shells in particular is very low. The shape of imperfec-
tions is often unknown or only few measurements are
available. Therefore, in traditional design concepts, sig-
nificant design factors a.k.a. knockdown factors (KDFs)
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have to be applied, see Hilburger (2012). The develop-
ment of reliable and more economical KDFs is still part
of numerous research projects, see, for example, Wagner
et al. (2020).
An alternative concept is the representation of spatially

varying imperfections with random fields and autocorre-
lation functions, see, for example, Broggi and Schuëller
(2011), Liang et al. (2022), and Schenk and Schuëller (2003).
Therefore, a series of assumptions have to be made for
the random field, such as homogeneous or nonhomoge-
neous and Gaussian or non-Gaussian. Furthermore, the
required correlation parameters for modeling of imperfec-
tions with random fields have a great influence on the
scatter of the buckling loads. Lauterbach et al. (2018) have
investigated this influence quantitatively. If the assump-
tions and correlation parameters are determined based on
a limited scope of experiments, the solutions of a prob-
abilistic design concept are not reliable. In addition, test
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cylinders under laboratory conditions do not correspond
to real structures such as a rocket or a silo.
In reality, all data and information are characterized by

various types of uncertainty, for example, natural variabil-
ity, incompleteness (lack of knowledge), and imprecision
(measurement errors). These uncertainties have not been
sufficiently considered in traditional concepts. The design
of shell structures with deterministic models implies pre-
cision. Generally, data uncertainties are characterized by
two characteristics, aleatoric and epistemic uncertainty.
The quantification of these characteristics for engineer-
ing problems is discussed in numerous contributions, for
example, Beer et al. (2013) and Faes and Moens (2019).
Aleatoric uncertainty is the natural variability. This uncer-
tainty characteristic is already simulated in traditional
probabilistic design concepts for shells. The cause of epis-
temic uncertainty is incompleteness and imprecision of the
available data. In contrast to aleatoric uncertainty, epis-
temic uncertainty can be reduced, for example, by testing
more shells experimentally in an early design phase or by
an improvement of the accuracy of the measurements.
How aleatoric and epistemic uncertainty can be consid-

ered simultaneously in a numericalmodel is an extensively
discussed issue in research. There is an accepted opinion
that aleatoric uncertainty can be modeled using stochas-
tic models. The main question under discussion is how
epistemic uncertainty can be taken into account. Three
main procedures are being investigated for this purpose:
possibility theory, Bayesian approach, and imprecise prob-
ability (Götz, 2017). In possibility theory, fuzzy sets intro-
duced by Zadeh (1965) are used to describe the possibility
of the occurrence of an event (Dubois & Prade, 1988). In
the Bayesian approach, an a priori probability (aleatoric
uncertainty) is determined based on expert knowledge
(epistemic uncertainty). With a likelihood function based
on measured data and the Bayes theorem, an a posteriori
probability function (Bayesian update) is calculated for a
random variable. Applications to the Bayesian approach
are given, for example, in Wang et al. (2018). The deter-
mination of an a priori probability is regarded as criti-
cal (Möller & Beer, 2008). Moreover, the uncertainties are
mixed, which is a disadvantage for an engineer who wants
to know something about the influence of the epistemic
component. In contrast, the approach of imprecise prob-
ability allows the separation of epistemic and aleatoric
uncertainty. Many different methods are classified under
this term, for example, probability boxes (Faes et al., 2021)
and fuzzy randomness (Möller & Beer, 2004). In this
approach, the concept “polymorphic uncertainty model-
ing” can be categorized. The concept summarizes several
uncertainty models such as random, interval, and fuzzy
variables, and combinations of them to consider natural
variability, incompleteness, and imprecision simultane-

ously. This allows an uncertainty quantification with-
out generating false assumptions based on the available
data (Götz, 2017). The approach of polymorphic uncer-
tainty modeling is introduced by Graf et al. (2014, 2015).
Preliminary works are Beer (2002), Möller et al. (2000),
Pannier et al. (2013), and Reuter (2013). The benefits of
the approach have already been demonstrated on many
engineering tasks. Different uncertainty characteristics for
highly scattering material properties of wood are consid-
ered with polymorphic uncertainty models in Schietzold
et al. (2021). In Freitag et al. (2018), uncertainties of a crack
propagation in a reinforced concrete bridge are quantified
with the concept of polymorphic uncertainty modeling.
InWeber et al. (2019) and Javidan and Kim (2022), the seis-
mic performance of buildings is analyzed with different
uncertainty models. Uncertainty characteristics also have
to be described in modeling of spatially correlated param-
eters, where underlying distributions and autocorrelation
functions require an appropriate uncertainty quantifica-
tion. For this purpose, polymorphic uncertainty models
are applied tomultivariate random fields, see, for example,
in Schietzold et al. (2019).
A correlationmodel with uncertain parameters to simu-

late surface imperfections of cylindrical shells is presented
in Fina et al. (2019b, 2019a) and Fina (2020). The required
correlation parameters are evaluated from measurements.
There are only a few measurements available, hence
the epistemic uncertainty is considered by the definition
of the correlation parameters as fuzzy variables lead-
ing to a representation of surface imperfections as fuzzy
probability–based random fields (fp-rf). Further studies
on the correlation model and a sensitivity analysis are
given in Fina et al. (2020, 2021). In the mentioned papers,
only an uncertainty quantification of surface imperfec-
tions for cylindrical shells is presented. The computational
novelty of this paper is the introduction of a compre-
hensive uncertainty quantification for surface, material,
boundary, and thickness imperfections based on experi-
mental (limited) data. This leads to improved predictions
of experimental buckling loads and allows to propose
an alternative safety concept based on a new formu-
lated “danger of buckling.” In addition, an approach to
model surface imperfections as uncertain random fields
for arbitrary structures is proposed. The concept is demon-
strated on an axially loaded cylindrical shell and conical
shell with cut-outs of the Ariane-3 launcher. The paper’s
new aspects and essential features can be summarized as
follows:

(1) introduction of the concept of polymorphic uncer-
tainty modeling in shell buckling to show an appro-
priate uncertainty quantification with experimental
(limited) data;
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F IGURE 1 Experimental results of 𝑁 = 11 ring stiffened
cylindrical shells, the AR-shells from Arbocz and Abramovich
(1979): histogram and fitting with three different distribution
functions.

(2) uncertainty quantification of different shell imperfec-
tions like surface, thickness, boundary, and material
imperfections;

(3) approach to simulate surface imperfections as uncer-
tain random fields for arbitrary structures;

(4) proposal of an alternative safety concept based on
a new formulated “danger of buckling” considering
polymorphic uncertainties.

2 CONCEPT OF POLYMORPHIC
UNCERTAINTYMODELING

The need to introduce the concept of polymorphic uncer-
tainty modeling in shell buckling should be demonstrated
with Figure 1. Experimental results of the buckling loads
of 11 ring stiffened cylindrical shells from Arbocz and
Abramovich (1979) (AR-shells) are presented in a his-
togram. For all aluminium shells, the Young’s modulus
and the Possion’s ratio are 𝐸 = 68, 950N∕mm

2 and 𝜈 =

0.3. The radius is 𝑅 = 101.6 mm and the average of thick-
ness and length are 𝑡 = 0.231mm and 𝐿 = 136.8mm. It is
noted that the number of tested shells is very small. This
means that epistemic uncertainty can be expected due to
the small set of data.
The exceeding probability is to be calculated for a safety

assessment. To quantify the natural variability (aleatoric
uncertainty), a normal, Weibull, and log-normal distri-
bution are estimated. All three types of distribution are
entirely conceivable based on the available small set of
data. Table 1 contains the calculated exceeding probabil-
ities for three specified buckling loads that should not
be exceeded.
Especially for small exceeding probabilities, that is, in

the region of the “tails” of the probability distributions, the
deviations of the probabilities are large. This phenomenon

TABLE 1 Exceeding probabilities for different buckling loads
assuming normal, Weibull, and log-normal distribution functions.

Exceeding probabilities
Distribution 𝑷𝐜𝐫 ≤ 𝟑𝒌𝑵 𝑷𝐜𝐫 ≤ 𝟓𝒌𝑵 𝑷𝐜𝐫 ≤ 𝟕𝒌𝑵

Normal 1.80 ⋅ 10−3 7.40 ⋅ 10−3 2.44 ⋅ 10−2

Weibull 1.40 ⋅ 10−3 9.70 ⋅ 10−3 3.40 ⋅ 10−2

Log-normal 3.55 ⋅ 10−10 1.26 ⋅ 10−5 0.17 ⋅ 10−2

F IGURE 2 Basic uncertainty models: Distribution function of
a random variable (left), and interval and fuzzy variable (right).

is also called “tail-sensitivity” problem and has been dis-
cussed since the late 1960s, see, for example, Ditlevsen
(1982). The safety of a design is determined entirely by
the choice of possible distribution functions and associ-
ated distribution parameters. This illustrates an inherent
uncertainty already in the assumption of density functions
if not enough data are available. In the concept of poly-
morphic uncertainty modeling, developed by Beer (2002),
Graf et al. (2015), Möller et al. (2000), Pannier et al. (2013),
and Reuter (2013), several uncertainty models are sum-
marized to consider aleatoric and epistemic uncertainties
simultaneously.

2.1 Basic uncertainty models

The idea of the concept of polymorphic uncertainty
modeling is to describe both types of uncertainty char-
acteristics with the combination of basic uncertainty
models such as random, interval, and fuzzy variables. In
Figure 2, the named three basic uncertainty models are
depicted.
Random variables are used to describe aleatoric uncer-

tainty. Distribution functions 𝐹(𝑥) and density functions
𝑓(𝑥) are used to specify a probability measure. The defini-
tions

𝐹(𝑥) = 𝐹(𝑥, 𝜆𝑋) and 𝑓(𝑥) = 𝑓(𝑥, 𝜆𝑋) (1)

are intended to show that the associated functions F(x) and
f(x) of a random variable are specified by the parameters
𝜆𝑋 , for example, the mean value or standard deviation,
see Schietzold et al. (2019). Epistemic uncertainty can
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4 FINA et al.

F IGURE 3 Representation of a membership function of an
element with a fuzzy and crisp set.

be modeled with interval or fuzzy variables. The theo-
retical background of fuzzy variables and their numer-
ical treatment is given, for example, in Möller et al.
(2000). A normalized fuzzy set �̃� is fully defined as
follows

�̃� = {(𝑥, 𝜇𝐴(𝑥)) | 𝑥 ∈ ℝ}

𝜇𝐴(𝑥) ∶ ℝ → [0, 1]

sup
𝑥∈ℝ

[𝜇𝐴(𝑥)] = 1

(2)

where 𝜇𝐴(𝑥) is the membership function, that allows to
gradually evaluate an element of a set. Thus, elements
can assume intermediate states between “fully associated”
with 𝜇𝐴(𝑥) = 1 or “not associated” with 𝜇𝐴(𝑥) = 0. The
value 𝜇𝐴(𝑥) = 1 is also called trend value and the corre-
sponding element is equivalent to the deterministic case.
In Figure 3, the difference between a fuzzy and crisp set
is shown.
An evaluation of a membership function is also called

“fuzzification” and can be performed based on linguis-
tic assessments and expert knowledge. For this purpose,
existing data prepared in a histogram can serve as a
reference. Without statistical background, a subjective
evaluation of the data is done by making verbal state-
ments about the membership, such as “low,” “medium,”
and “high.” The numerical treatment of an uncertainty
analysis with fuzzy variables requires the 𝛼-discretization,
where the membership function is discretized into 𝑟

𝛼-levels

𝐴𝛼𝑘
= {𝑥 ∈ ℝ | 𝜇𝐴(𝑥) ≥ 𝛼𝑘}, 𝑘 = 1,… , 𝑟. (3)

In the paper, only convex fuzzy variables are defined. Thus,
it follows the short notations of a fuzzy triangular number

�̃� = ⟨𝑥𝓁, 𝑥𝑚, 𝑥𝑟⟩ (4)

An interval is a specific case of a fuzzy variable and can be
constructed with 𝜇(𝑥𝓁) = 1 and 𝜇(𝑥𝑟) = 1 if 𝑥𝓁 < 𝑥𝑟, see
Figure 2.

F IGURE 4 Representation of the uncertainty model
fuzzy-probability based random variable (fp-r variable).

2.2 Extension to polymorphic
uncertainty models

A combination of the presented basic models leads to new
uncertainty models. For example, the combination of a
fuzzy and a random variable leads to the model fuzzy
probability based random variable (fp-r). A fuzzy-valued
probability distribution function results, if at least one dis-
tribution parameter 𝜆𝑋 in Equation (1) is defined by a fuzzy
variable. Then, the probability space for an fp-r variable is
(Ω, Σ, �̂�). The outcome set of a random event Ω and the
Σ-algebra can be taken from the definition of a random
variable. The difference to a random variable is that the
probability is fuzzy valued. Such a fuzzy-valued probability
�̂� can be defined as follows:

�̂� =
(
�̂�𝛼

)
𝛼∈(0,1]

(5)

where for each 𝐴 ∈ Σ on a specific 𝛼-level, a probabil-
ity measure is assigned in the form of an interval �̂�𝛼 =

[�̂�𝛼,𝑙(𝐴), �̂�𝛼,𝑟(𝐴)]. Thus, for each 𝛼-level, an associated
fuzzy-valued probability distribution function is defined as

𝐹𝑋 =
(
(𝐹𝑋)𝛼

)
𝛼∈(0,1]

(6)

as depicted in Figure 4. Additionally, in the figure a fuzzy
variable is depicted along the 𝐹(𝑥)-axis, which indicates
the fuzzy-valued probability.
Summarizing, an fp-r variable can be described similarly

to a random variable by the following mapping:

𝑋fp-r ∶ Ω → ℝ (7)

This uncertainty model can be used if not enough data
are available to define a distribution function. A particular
case of the fp-r variable is the p-box variable or in this ter-
minology the interval probability based random variable
(ip-r). This uncertainty model is formed if at least one
distribution parameter 𝜆𝑋 in Equation (1) is defined as an
interval variable. Then, the probability is interval valued.
All such models including the basic uncertainty models
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FINA et al. 5

are summarized under the concept of “polymorphic
uncertainty modeling.” This concept allows to quantify
different types of uncertainty without generating false
assumptions (Götz, 2017). Moreover, an explicit distinction
between aleatoric and epistemic uncertainties is possible.

2.3 Polymorphic uncertain fields

Some parameters for modeling a structure are variable
in space. Examples are the Young’s modulus, density,
thickness, boundary, and surface variations of a structure.
Especially, in shell buckling, the spatial variability ofmate-
rial and geometrical imperfections have to be considered.
For modeling aleatoric uncertainty of spatial variability
parameters random fields are used. It follows a short
summary to random field theory from Vanmarcke (2010)
and Sudret and Kiureghian (2000).
A random field𝐻(𝒙, 𝜃) is a scalar field, where for a fixed

location 𝒙0 ∈ Ω, a random variable 𝐻(𝒙0, 𝜃) is assigned.
Thus, a random field can be defined with

{𝐻(𝒙, 𝜃) ∶ 𝒙 ∈ Ω, 𝜃 ∈ Θ} (8)

as a collection of random variables. The possible events
from the event set Θ of a random experiment are denoted
by 𝜃. Furthermore, a realization of a random field for a
fixed event 𝜃0 can be denoted by

ℎ0(𝒙) ∶= 𝐻(𝒙, 𝜃0) (9)

For a Gaussian random field, the distribution function at
each location is a Gaussian normal distribution withmean
𝜇(𝒙) and variance 𝜎2(𝒙):

𝐻0(𝜃) ∶= 𝐻(𝒙0, 𝜃) ∼  (𝜇(𝒙0), 𝜎
2(𝒙0)) (10)

The covariance function containing the second-order
information about two locations 𝒙𝑖 and 𝒙𝑗 is defined as
follows:

𝐶(𝒙𝑖, 𝒙𝑗) = 𝐸[(𝐻(𝒙𝑖) − 𝜇(𝒙𝑖))(𝐻(𝒙𝑗) − 𝜇(𝒙𝑗))] (11)

Normalization by the standard deviations 𝜎(𝒙𝑖) and 𝜎(𝒙𝑗)

leads to the autocorrelation function (akf)

𝜌(𝒙𝑖, 𝒙𝑗) =
𝐶(𝒙𝑖, 𝒙𝑗)

𝜎(𝒙𝑖)𝜎(𝒙𝑗)
(12)

Alternatively, the akf can be given as a function of the
relative distance 𝝉 of two points

𝜌(𝒙𝑖, 𝒙𝑗) = 𝜌(𝝉) with 𝝉 = 𝒙𝑗 − 𝒙𝑖 (13)

F IGURE 5 Representation of a fuzzy- and interval
probability–based random field.

This leads to the homogeneous covariance function

𝐶(𝜏) = 𝜎2𝜌(𝝉) (14)

A random field is called weakly homogeneous when the
first two moments (expected value and variance) in the
domain Ω are constant (translationally invariant)

𝜇(𝒙) = 𝜇 and 𝜎2(𝒙) = 𝜎2 (15)

and the akf is depended only on the distance, see
Equation (13). However, the parameters for a random
field often cannot be determined exactly. To account for
epistemic uncertainty in spatial variability, the random
field parameters can be defined by polymorphic uncer-
tainty models, for example, with fuzzy-, interval-, or
fuzzy (interval) probability based random variables. The
result is a “polymorphic uncertain field.” For example,
an fp-rf is generated, if at least one of these parame-
ters is defined as a fuzzy variable, see Schietzold et al.
(2019):

(1) a distribution parameter of the random field in Equa-
tion (15),

(2) a correlation parameter �̃�𝑐 to control the akf defined in
Equation (14)→ �̃�𝑐 ∶ �̃�(𝝉, 𝓁𝑐), or

(3) a distance measure �̃� ∶ �̃�(�̃�, 𝓁𝑐).

Then, each realization ℎ̃0(𝒙) for an event 𝜃0 ∈ Θ is a fuzzy
function. Similarly, any uncertainty model can be used
to describe the epistemic component of spatial variability.
The fp-rf and ip-rf are depicted in Figure 5.
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6 FINA et al.

TABLE 2 Overview of polymorphic uncertain fields considering uncertainties of spatially correlated parameters.

Name of the uncertain field
Mathematical
description Data & uncertainty characteristic

Random field (rf) 𝐻(𝒙, 𝜃) Aleatoric
𝑋 ∶ Ω → ℝ

Interval field (if) �̄�(𝒙) Epistemic, nonevaluated field parameters
𝜒 ∶ ℝ → {0, 1}

Fuzzy field (ff) �̃�(𝒙) Epistemic, evaluated field parameters
𝜇�̃�(𝒙) ∶ ℝ → [0, 1]

Fuzzy random field (f-rf) �̃�(𝒙) Aleatoric & epistemic, evaluated field parameters,
imprecision𝑋 ∶ Ω → (ℝ)

Interval probability–based random field (ip-rf) �̄�(𝒙, 𝜃) Aleatoric & epistemic, nonevaluated field parameters
𝑋 ∶ Ω → (ℝ)

𝑃 ∶ Σ → [0, 1]

Fuzzy probability–based random field (fp-rf) �̃�(𝒙, 𝜃) Aleatoric & epistemic, evaluated field parameters,
incompleteness𝑋 ∶ Ω → ℝ

�̂� =
(
�̂�𝛼

)
𝛼∈(0,1]

Fuzzy probability–based fuzzy random field (fp-f-rf) �̃�(𝒙, 𝜃) Aleatoric & epistemic, evaluated field parameters,
incompleteness & imprecision𝑋 ∶ Ω → (ℝ)

�̂� = (�̂�𝛼)𝛼∈(0,1]

An ip-rf results if at least one random field parameter is
defined as an interval variable. Thus, on each node of the
field, a probability box (p-box) is definedwith the following
mappings:

𝑋 ∶ Ω → (ℝ) and 𝑃 ∶ Σ → [0, 1], (16)

where the set of all interval sets of ℝ is denoted by
(ℝ). If the data to a random field parameter are incom-
plete and in addition imprecise, the uncertainty model
fuzzy–probability based fuzzy random field (fp-r-rf) can
be used. This model is defined by the following uncertain
mapping on each point of the field:

𝑋 ∶ Ω → (ℝ)

�̂� = (�̂�𝛼)𝛼∈(0,1]

(17)

where the set of all fuzzy sets of ℝ is denoted by (ℝ).
An overview of polymorphic uncertain fields is given in
Table 2. Based on the available data, a suitable model can
be chosen to quantify all kinds of uncertainties of spatially
correlated parameters.
A numerical treatment to generate polymorphic uncer-

tain fields requires an efficient discretization technique. In
this paper, the EOLE method (Expansion Optimal Linear
Estimation) from Li and Kiureghian (1993) is used. This
method allows to define a covariancematrix only on a sub-

set of field nodes, the so-called “random field mesh.” A
covariance matrix can be generated, for example, with the
homogeneous correlation function given in Equation (14).
The series of the EOLE method represents a random
field with only a few random variables by minimizing the
variance error and is given by

�̂�(𝒙, 𝜃) = 𝜇(𝒙) +

(
𝑀∑
𝑖=1

𝜉𝑖(𝜃)√
𝜆𝑖

𝝋𝑖(𝒙
𝑆)

)
𝐶(𝒙𝑆, 𝒙) (18)

where the vector 𝒙𝑆 = [𝒙1 … 𝒙𝑆
𝑖

… 𝒙𝑆
𝑀] contains the

number of nodal points 𝑀 of the random field and 𝒙 =

[𝒙1 … 𝒙𝑗 … 𝒙𝑁] the number of nodal points𝑁 in full space
(e.g., FE nodes). Consequently, 𝐶(𝒙𝑆, 𝒙) is a covariance
matrix containing the covariances of random field nodes
to FE-nodes. In Equation (18), 𝜉𝑖(𝜃) is a standard normal
distributed random variable. 𝝋𝑖(𝒙

𝑆) and 𝜆𝑖 are the eigen-
functions and eigenvalues of the defined autocovariance
function 𝐶(𝒙𝑆

𝑖
, 𝒙𝑆

𝑗
) formulated on the random field mesh.

The expected value 𝜇(𝒙) can be set to zero if the series
represents a spatially correlated field of surface imper-
fections. However, the separation of the coarser random
field mesh from the FE mesh allows keeping the eigen-
value problem as small as possible. Therefore, the EOLE
method is recommended in particular when performing
a numerical structural analysis with polymorphic uncer-
tain fields. There, the eigenvalue problemof the covariance
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FINA et al. 7

F IGURE 6 Representation of the three-loop computational
model for polymorphic uncertainty modeling in shell buckling.

matrix has to be solved several times within a multiloop
computational model.

3 NUMERICAL BUCKLING ANALYSIS
WITH POLYMORPHIC UNCERTAIN DATA

The application of polymorphic uncertainty models in
shell buckling requires a three-loop computational model,
depicted in Figure 6.
The characteristic of the presented computational

model is that the outer loop forms the fuzzy analysis with
the 𝛼-level optimization, which is an optimization strat-
egy based on the 𝛼-level discretization, see Equation (3).
Therefore, a practical definition of polymorph uncertain
input variables is provided by the bunch parameter rep-
resentation, see, for example, in Möller and Beer (2004).
In this representation, epistemic and aleatoric components
are decoupled. For example, the fuzziness of the distribu-
tion parameters in Equation (15) 𝜇 and 𝜎 are concentrated
in the bunch parameter �̃� = {𝜇, 𝜎, … }. Thus, a fuzzy cumu-
lative distribution function within an fp-r variable can be
simplified as follows:

�̃�(𝑥) = 𝐹(�̃�, 𝑥) (19)

A Monte Carlo simulation (middle loop) is performed
with a deterministic model (inner loop). In this paper,
the deterministic model(𝒙) represents a finite element
(FE) model of axially loaded shells to perform buckling
analyses. Consequently, this leads to the representation of
the buckling load as an fp-r variable 𝑃

fp-r
𝑐𝑟 as presented in

Figure 6. The Monte Carlo simulation (MCS) estimates
for a given configuration of bunch parameters 𝒔0 the

stochastic moments, for example, mean value �̄�𝑐𝑟(𝒔 = 𝒔0),
standard deviation 𝜎𝑃𝑐𝑟

(𝒔 = 𝒔0), or an arbitrary quantile
𝑃𝑐𝑟,𝑞(𝒔 = 𝒔0). In Figure 6, it is shown that for an arbitrary
quantile 𝑃𝑐𝑟,𝑞 the output quantile values are also fuzzy val-
ued. Considering a specific 𝛼-level 𝛼𝑘, the fuzzy bunch
parameters are limited by the 𝛼-level boundaries

𝒔 ∈
[
𝒔𝛼𝑘,𝑙, 𝒔𝛼𝑘,𝑟

]
= {𝒔𝛼𝑘

} (20)

The corresponding 𝛼-level boundaries of the exemplary
fuzzy output variable, for example, 𝑃𝑐𝑟,𝑞, are given by the
following extreme value problem:

𝑃𝑐𝑟,𝑞,𝛼𝑘,𝑙 = min
𝒔∈{𝒔𝛼𝑘 }

[(𝒔)] and

𝑃𝑐𝑟,𝑞,𝛼𝑘,𝑟 = max
𝒔∈{𝒔𝛼𝑘 }

[(𝒔)]
(21)

where the global extreme values of the stochastic output
(𝒔) in the variable space {𝒔𝛼𝑘

} have to be determined.
This can be done with an efficient optimization algorithm.
However, the solution of these optimization problems can
be very time consuming for a complex deterministicmodel
(𝒙). In order to reduce the computational effort of
the 𝛼-level optimization, the deterministic model should
be replaced with a surrogate model ̂(𝒔) ≈ (𝒔). Then
the optimization problem in Equation (21) is performed
on the previously generated surrogate model ̂(𝒔). For
this purpose, a combined approach of a high-dimensional
model representation (HDMR) of second order from Rab-
itz and Aliş (1999) and least squares (LS) polynomial
approximation is used.
In the following chapters, in two examples, an appro-

priate uncertainty quantification based on limited data is
presented. The first example is a conical shell with cut-
outs of the Ariane-3 launcher. This example is to show the
applicability of the approach to real-world problems. The
second example is a cylindrical shell, where experimental
data are given for surface, boundary, thickness, and mate-
rial imperfections. To quantify the uncertainties of imper-
fections, different uncertainty models are presented. This
allows to emphasize the advantage of polymorphic uncer-
tainty modeling in shell buckling, that is an uncertainty
quantification without generating false assumptions. Both
examples are from the aerospace industry. However, the
examples should also address civil engineering problems
like tanks and silos. In Ditlevsen and Munch-Andersen
(1995), correlation functions are presented for a cylindrical
concrete silo and in Górski et al. (2015) an aluminium silo
is analyzed with random imperfections. The presented
methods and algorithms can be applied to such structures
if experimental data of imperfections are available. The
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8 FINA et al.

presented shells are very thin with a radius-thickness
ratio of about 𝑅∕𝑡 = 101.6mm∕0.116mm = 876. Thus,
buckling occurs in the elastic range. However, for civil
engineering problems, the 𝑅∕𝑡-ratios are much smaller.
It is noted that the differences between theoretically and
experimentally determined critical loads depend on the
aspect ratio of the cylinder, in particular are larger for
thinner shells, see, for example, Timoshenko and Gere
(1961). After a presented appropriate uncertainty quantifi-
cation, the uncertainties have to propagate through the
model by the three-loop algorithm as depicted in Figure 6.
A stable and reliable FE model is required. Therefore,
a geometric nonlinear quadrilateral shell element with
moderate rotations from Wagner and Gruttmann (2005)
within an extended version of the general finite ele-
ment analysis program (FEAP) (Taylor, 2023) is used.
The four-node element is based on the isoparametric
concept with linear shape functions. Additionally, to
avoid shear locking, the assumed natural strain (ANS)
method is implemented. To identify a stability point,
the diagonal terms of the tangent stiffness matrix are
observed. A sign change of a diagonal element indicates
a stability point, see, for example, Wagner and Wriggers
(1988). Typically for cylindrical shells under axial load
a cluster of stability points occurs, which leads to a
global failure of the structure. Thus, the postbuckling
behavior is not relevant. In case of other structures, for
example, stiffened shells or panels, the investigation of
the postbuckling regime is mandatory, see, for example,
among many others, the example in Gruttmann and
Wagner (2006). In the following, the numerical results
of the buckling analysis with polymorphic uncertainties
are compared with traditional design concepts for both
examples. Furthermore, an idea for a novel safety con-
cept based on a formulated fuzzy-valued safety level is
presented.

4 CONICAL SHELLWITH CUT-OUTS
OF THE ARIANE LAUNCHER

The model of the Ariane-3 interstage given in Klompé and
den Reyer (1989) is depicted in Figure 7.
There are three cut-outs in the shell for the installa-

tion of hatches. The isotropic shell is composed of 10
curved aluminum segments. The Young’s modulus is 𝐸 =

60, 000N∕mm
2 and the Poisson’s ratio is 𝜈 = 0,34. Due to

the small shell thickness of 𝑡 = 1.8mm, plastic buckling
can be excluded. To simulate the experimental buckling
test, the shell is simply supported on both edges, where
the SS-3 boundary conditions hold at the lower edge: 𝑢 =

𝑣 = 𝑤 = 0, 𝜑𝑥 ≠ 0, 𝜑𝑦 ≠ 0, and the upper edge: 𝑢 = Δ𝑢,

F IGURE 7 Model of the Ariane-3 interstage I/II.

F IGURE 8 FE model of the conical shell: FE mesh with
22, 546 nodes and 22, 032 elements (left) and random field mesh
with 81 × 21 nodes (right).

𝑣 = 𝑤 = 0, 𝜑𝑥 ≠ 0, 𝜑𝑦 ≠ 0. The axial load is applied using
a displacement controlΔ𝑢 until a stability point is reached.
An FE mesh with 22, 032 elements and 22, 546 nodes
is generated using the mesh generator NeGe from Sienz
(1992). Surface imperfections are deviations in radial 𝑧-
direction and are modeled as fp-rfs. Therefore, the EOLE
method according Equation (18) is applied. In contrast
to the distorted FE mesh, a uniform random field mesh
with 81 × 21 nodes is defined. Both meshes are depicted in
Figure 8.
Assuming that the cut-outs weremanufactured after the

imperfection measurements, random field nodes are set
in the area of the cut-outs (hatches). The choice of the
random field mesh can be justified by the manufacturing
process. In addition, a smaller number of nodes reduces
the computational effort and memory costs solving the
eigenvalue problemwith the covariancematrix𝐶(𝒙𝑆, 𝒙) in
Equation (18).
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FINA et al. 9

F IGURE 9 Projected area of the conical shell in physical space
(left) and parameter space (right).

4.1 Uncertainty quantification of
surface imperfections

In the data bank from Klompé and den Reyer (1989), mea-
surement to surface imperfections of eight original conical
shells of the Ariane-3 interstage I/II are documented.With
the Fourier coefficients given therein, the imperfections
can be represented as Fourier series. Surface imperfec-
tions are variations from the ideal shell surface and have
a major influence on the buckling load. Particularly in
this case, a comprehensive quantification of the uncer-
tainties is very important. The fp-rfs are used to consider
aleatoric and epistemic uncertainty of the spatially corre-
lated surface imperfections. Therefore, a correlationmodel
to generate random fields is required. An approach to the
evaluation of akfs from given Fourier series for a cylin-
drical shell without cut-outs is presented in a previous
paper, see Fina et al. (2020). In the following, it is shown
how the approach can be applied for arbitrary structures.
The projected surface of the Ariane interstage is a trape-
zoid with cut-outs. The distance calculation for generating
the akfs can be performed on this projected surface. In
addition, the coordinates are transformed from physical
space into a parameter space 𝜗 ∈ [0, 1] and 𝜁 ∈ [0, 2𝜋], see
Figure 9.
In consideration with the definition of the random field

mesh according to Figure 8, the cut-outs in the parameter
space are neglected. Thus, the fully separable correlation
model

𝐶(Δ𝜗, Δ𝜁) = 𝜎2
𝑛 𝜌𝑛(Δ𝜗) 𝜌𝑛(Δ𝜁) (22)

is constructed on the parameter space, where 𝜌𝑛(Δ𝜗) and
𝜌𝑛(Δ𝜁) are the one-dimensional akfs along the axial and
circumferential direction with the corresponding lags Δ𝜗

and Δ𝜁. 𝜎2
𝑛 is the sample variance. The lags in both

directions can be calculated as follows:

𝝉 =

{|𝜗𝑖 − 𝜗𝑗||𝜁𝑖 − 𝜁𝑗|
}

=

{
Δ𝜗

Δ𝜁

}
(23)

TABLE 3 Fitting results of the correlation lengths 𝓁𝑐,ℎ, 𝓁𝑐,𝑢 and
the variance 𝜎2.

Shell 1 2 3 4 5 6 7 8
�̄�2 (mm2) 0.26 0.31 0.26 0.34 0.40 0.43 0.50 0.36

𝓁𝑐,ℎ (mm2) 0.14 0.12 0.10 0.13 0.16 0.12 0.17 0.21

𝓁𝑐,𝑢 (mm) 3.15 2.09 2.37 1.96 2.12 0.23 2.02 1.88

Further equations and assumptions to calculate both inde-
pendent akfs are given in Fina et al. (2020). The eight akfs
𝜌𝑛(Δ𝜗) and 𝜌𝑛(Δ𝜁) vary from shell to shell. The next step
is to fit these functions using a nonlinear LS method. The
fitting results are correlation lengths as fitting parameters.
Therefore, suitable fitting functions based on the parame-
ter space have to be defined. For a fit of the axial akfs, the
squared exponential function

𝜌(Δ𝜗, 𝓁𝑐,ℎ) = exp

(
−

Δ𝜗
2

𝓁𝑐,ℎ

)
(24)

with the correlation length 𝓁𝑐,ℎ is chosen. Furthermore,
the linear-cosine form

𝜌(Δ𝜁, 𝓁𝑐,𝑢, 𝑇) =

(
1 −

Δ𝜁

𝓁𝑐,𝑢

)
⋅ cos

(
2𝜋Δ𝜁

𝑇

)
(25)

is used for fitting the circumferential akfs, where 𝓁𝑐,𝑢 is
the associated correlation length. Since the akfs are defined
on the parameter space, the correlation lengths are dimen-
sionless. The period length 𝑇 is obtained from the fitting
as the average of all seven correlation curves and amounts
𝑇 ≈

2

3
𝜋. This parameter has been taken equal for all eight

shells in the series to reduce later the number of input vari-
ables. The fitting results of the correlation lengths 𝓁𝑐,ℎ, 𝓁𝑐,𝑢

and the variance 𝜎2 are given in Table 3 and presented in a
histogram in Figure 10.
The final step to model surface imperfections as fp-rfs is

to transform the akf given in Equation (22) to an akf with
polymorphic uncertain parameters

�̃�(𝝉) = �̃�2 �̃�(Δ𝜗) �̃�(Δ𝜁) (26)

where the variance �̃�2 and the correlation parameters �̃�𝑐,ℎ

in 𝜌(Δ𝜗) and �̃�𝑐,𝑢 in 𝜌(Δ𝜁) are the uncertain parameters.
For these parameters, the lack of knowledge due to a small
sample size has to be considered. The sample size of eight
shells allows to evaluate the data. Thus, fuzzy variables
are defined based on the available data. As a first design
aid, the membership function is defined based on the his-
togram in the background. In this case, fuzzy trapezoidal
and fuzzy triangular numbers are chosen. The correspond-
ing fuzzy and sample akfs of the eight shells are depicted
in Figure 11.
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10 FINA et al.

F IGURE 10 Membership functions for the variance and
correlation parameters: variance (above), correlation parameter in
axial direction (middle), and circumferential direction (below).

F IGURE 11 Fuzzy and sample akfs in axial (left) and
circumferential (right) direction.

The eight sample akfs result from inserting the cor-
relation parameters 𝓁𝑐,ℎ and 𝓁𝑐,𝑢 from the histogram in
Figure 10 into the akfs given in Equation (24) and Equa-
tion (25). With the defined fuzzy numbers in Figure 10, the
fuzzy functions for 𝜇𝓁𝑐

= 0 and 𝜇𝓁𝑐
= 1 can be generated.

As shown in Figure 11, all akfs are covered by the defined
fuzzy functions. Of course, any membership functions
with linear or nonlinear branches oriented in the avail-
able data are also conceivable. Due to the lack of expert
knowledge, all samples lie in the support set with a con-
servative overhanging of the membership function. The
presented fuzzification based on subjective optical exami-
nation of the data can lack some kind of consistency when
almost no expert knowledge to the parameters is avail-
able. It is important that the fuzzification of the parameters
can be clearly justified. Finally, two realizations of surface

F IGURE 1 2 Realizations of surface imperfections of the
conical shell with cut-outs (100 times enlarged): Fuzzy input
parameters 𝓁𝑐,ℎ = 0.05, 𝓁𝑐,𝑢 = 1.6, and 𝜎2 = 0.15mm (left) and
𝓁𝑐,ℎ = 0.25, 𝓁𝑐,𝑢 = 4.0, and 𝜎2 = 0.65mm (right).

imperfections are depicted in Figure 12. Therefore, the left
and right bounds of the fuzzy input parameters 𝓁𝑐,ℎ, 𝓁𝑐,𝑢,
and 𝜎2 from Figure 10 are chosen to simulate the random
fields.

4.2 Numerical results

A nonlinear stability analysis provides the ideal buckling
load 𝑃cr,perf = 248.92 kN with the corresponding critical
displacement 𝑢cr,perf = 0.92mm.An analytical solution for
the ideal buckling load of a conical shell under axial pres-
sure with a semivertex angle 𝛼 = 7◦ can be calculated as
follows, see Weingarten and Seide (1968):

𝑃cr,perf =
2𝜋 𝐸 𝑡2 cos2(𝛼)√

3(1 − 𝜈2)
= 738.74 kN (27)

In comparison, the three cut-outs lead to a large reduction
of the stability load: 248.92∕738.74 = 0.34. All buckling
loads 𝑃𝑐𝑟 are normalized by the critical load 𝑃𝑐𝑟,perf =

248.92 kN of the perfect shell by

𝛼𝑐𝑟 =
𝑃𝑐𝑟

𝑃𝑐𝑟,perf
(28)

where 𝛼𝑐𝑟 is denoted as the critical buckling load factor.
The results of the buckling analysis with the uncer-
tain input parameters 𝓁𝑐,ℎ, 𝓁𝑐,𝑢, and 𝜎2 are depicted in
Figure 13.
The critical buckling load factor is an fp-r variable from

which the membership function 𝜇(𝛼cr,0.05) of the fuzzy
5% quantile 𝛼cr,0.05 is depicted. The 𝛼-level optimization
is solved based on a second-order HDMR surrogate model
with the LSmethod and cubic polynomials to approximate
the cut functions. A sampling on the cut functions leads
to 61 sample points for a number of 𝑛sim = 5 grid points
per variable. On each sample point, an MCS with 500
realizations is performed. It follows a computational effort
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FINA et al. 11

F IGURE 13 Results of the buckling analysis with uncertain
parameters of surface imperfections.

with 61 × 500 = 30, 500 buckling analyses. In addition, the
measured imperfections in the form of Fourier series are
applied to the FE model. The corresponding results of
the critical buckling factor are shown in the histogram in
Figure 13. A good agreement of the measurements with
the fuzzy 5% quantile value can be shown. This indicates
an appropriate uncertainty quantification. The left limit of
the fuzzy 5% quantile value is 𝛼cr ≈ 0.92. This small KDF
shows that the stability behavior of the conical shell is less
sensitive to the existing surface imperfections. Neverthe-
less, other imperfection forms likematerial, boundary, and
thickness imperfections and their uncertainties should
be modeled.

5 CYLINDRICAL SHELL UNDER
AXIAL PRESSURE

On a cylindrical shell under axial pressure, an appropri-
ate uncertainty quantification based on experimental data
is presented for all kinds of imperfections like bound-
ary, thickness, material, and surface imperfections. From
Delft’s imperfection data bank (Arbocz & Abramovich,
1979), a representative shell of the test series “A-shells”
is selected, where data for all imperfection types are
available. The test series includes only seven shells. This
small sample size indicates a high epistemic compo-
nent of the available data, which has to be appropri-
ately quantified. The FE mesh and random field mesh
of the axially loaded cylindrical shell are depicted in
Figure 14.
Dimensions and material properties are the averaged

values of the seven investigated A-shells from Delft’s
imperfection data bank from Arbocz and Abramovich
(1979). The shell is simply supported on both edges, where
the SS-3 boundary conditions hold at the lower edge:
𝑢 = 𝑣 = 𝑤 = 0, 𝜑𝑥 ≠ 0, 𝜑𝑦 ≠ 0, and the upper edge: 𝑢 =

Δ𝑢, 𝑣 = 𝑤 = 0, 𝜑𝑥 ≠ 0, 𝜑𝑦 ≠ 0. The cylinder is loaded by
displacement control with Δ𝑢 at the top until the sta-
bility point is reached. The FE mesh consists of 200
elements in circumferential direction and 100 elements

F IGURE 14 Finite element model of the axially loaded
cylindrical shell.

in axial direction. The surface imperfections are modeled
as deviations in radial 𝑧-direction. To generate surface
imperfections according to Equation (18), a random field
mesh is defined with 49 × 31 points. The total number
of points are the number of points that are used for
measurements of the surface imperfections given in the
data bank.

5.1 Uncertainty model for surface
imperfections

For the presented cylindrical shell, surface imperfections
are analyzed in Fina et al. (2020). From this paper, the
uncertainty quantification of the three parameters 𝓁𝑐,ℎ,
𝓁𝑐,𝑢, and 𝜎2 is adopted to simulate an fp-rf. The param-
eters are given in Table 5. In Fina et al. (2020), the
numerical results do not align with the experimental
results, as only the uncertainties of surface imperfec-
tions are taken into account. The main objective of this
research is to demonstrate a comprehensive quantification
of uncertainties associated with surface, material, bound-
ary, and thickness imperfections based on limited data, in
order to improve the prediction accuracy of experimental
buckling loads. Consequently, it follows an extensive dis-
cussion on uncertainty quantification for various types of
shell imperfections.

5.2 Uncertainty model for boundary
imperfections

Boundary imperfections can lead to a drastic reduction of
the buckling load. This kind of imperfections result of the
unevenness of the boundaries at the bottom and top of the
shell. Only few measurements to this kind of imperfection
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12 FINA et al.

F IGURE 15 Measured boundary imperfection and their
approximation.

F IGURE 16 Akf of measured boundary imperfection and
their approximation.

are available in the literature. However, a model as a one-
dimensional ip-rf is possible. Therefore, in Arbocz (2000),
a measurement of boundary imperfections around a cylin-
drical shell with similar dimensions of the investigated
A-shells is published. This single measurement allows to
estimate the spatial variability of boundary imperfections.
The measurement and their approximated function 𝑢bd(𝑦)

that is needed for further calculation is shown in Figure 15,
where the approximated function is generated by the lin-
ear LS method with a polynomial degree of 𝑝 = 10 and
𝑁 = 75 samples.
With equation

𝜌(𝜂Δ𝑦0) =
1

𝑁 − 1

𝑁−1∑
𝑛=1

(𝑢bd(𝑦𝑛 + 𝜂Δ𝑦0)

− �̄�)(𝑢bd(𝑦𝑛) − �̄�)

(29)

a representative akf in circumferential direction can be cal-
culated. Therein, 𝑢bd(𝑦𝑐) is the one-dimensional stochastic
process representing the boundary imperfection with the
sample mean �̄� and 𝜂 = 0 … 𝑁𝐶 − 1 is the number of
multiples of a constant distance Δ𝑦0. Similar to the deter-
mination of the akfs for the surface imperfections, the
linear cosine function

𝜌(Δ𝑦, 𝓁𝑐,bd, 𝑇bd) =

(
1 −

Δ𝑦

𝓁𝑐,bd

)
⋅ cos

(
2𝜋Δ𝑦

𝑇bd

)
(30)

F IGURE 17 Modeling of boundary imperfections in the finite
element (FE) model (left) with two realizations of the random field
(right).

is used for an approximation. The correlation parameter
𝓁𝑐,bd = 494mmand the period length𝑇bd = 349mmresult
in a good approximation. The akf and its approximation are
depicted in Figure 16.
With the akf, the covariance matrix in the form

𝐶(Δ𝑦) = 𝜎2𝜌(Δ𝑦, 𝓁𝑐,bd, 𝑇bd) (31)

can be calculated for a simulation of boundary imper-
fections as a homogeneous standard normally distributed
random field defined as follows:

𝑢bd(𝒚, 𝜃) ∼  (0, 1) (32)

The only available measurement is a reference to estimate
the shape of boundary imperfections. No more detailed
information is given about the variance and amplitude.
Therefore, realizations of the random field are scaled with
an amplitude factor 𝑎bd related to the displacement 𝑢c𝑟 as
follows:

𝑢𝑎
0,bd(𝑦𝑖) =

𝑢bd(𝑦𝑖)||𝑢0,bd(𝒚)||max
⋅
𝑢cr
𝑎bd

with 𝑖 = 1…𝑁 (33)

The numerically calculated displacement 𝑢c𝑟 is the asso-
ciated displacement to the buckling load 𝑃c𝑟 of the shell
without any imperfections. Details to identify a stability
point and calculation of buckling loads will be given later
in Section 5.5. For the investigated shell, the displacement
is 𝑢c𝑟 = 0.134 mm. Figure 17 shows exemplary two real-
izations of the random field for 𝑎bd = 10 mm, 𝓁𝑐,bd = 494

mm, and 𝑇bd = 349mm.
Furthermore, Figure 17 (left) illustrates the incorpora-

tion of boundary imperfections in the FEmodel. These are
applied in the form of support displacements 𝒖 in the 𝑥-
direction at the bottom edge of the cylinder. The impressed
displacements as realizations of a random field result in
a nonuniform stress state in the shell, which is similar to
an imperfection.
Based on the available data, an ip-rf is chosen as the

suitable uncertainty model. With only one measurement
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FINA et al. 13

TABLE 4 Experimental results for Young’s modulus 𝐸
(N/mm2) and shell thickness 𝑡 (mm) of the seven A-shells.

A-7 A-8 A-9 A-10 A-12 A-13 A-14
𝐸 104110 104800 101350 102730 104800 104110 108940
𝑡 0.1140 0.1179 0.1153 0.1204 0.1204 0.1128 0.1110

F IGURE 18 Histogram and membership function of Young’s
modulus 𝐸 (left) and shell thickness 𝑡 (right).

for the correlation property, no evaluation of the data
is possible and the parameters cannot be defined by
fuzzy variables. Therefore, the introduced parameters are
defined as intervals

𝑇bd ∈ [100mm, 500mm] and 𝑎bd ∈ [10mm, 20mm]

(34)

A parameter study of the correlation parameter 𝓁𝑐,bd has
shown that this parameter has no significant influence
on the buckling behavior. Thus, the parameter is defined
as a deterministic variable: 𝓁𝑐,bd = 494mm. However, the
amplitude factor 𝑎bd has a high influence on the criti-
cal load. This parameter is estimated with the results of
analysis to boundary imperfections from Knebel (1997). A
critical amplitude of the boundary imperfection 𝑢𝑎

0,bd(𝑦)

(controlled by 𝑎bd) is about 0.01mm, where the critical
buckling load decreases rapidly. Especially for this param-
eter, more measurements are needed. Therefore, a large
interval and no fuzzy variable is defined.

5.3 Uncertainty models for material
and thickness imperfections

In Delft’s imperfection data bank (Arbocz & Abramovich,
1979), experimental results are given for Young’s mod-
ulus 𝐸 and shell thickness 𝑡 of the seven A-shells, see
Table 4. No information for 𝐸 and 𝑡 to spatial variation
is known and therefore no akfs can be constructed. Espe-
cially the measurement of the spatial variation of the
material parameters is extremely difficult. However, seven
measurements are enough to define a fuzzy variable of
each parameter. For this purpose, the measured values are

displayed in a histogram. The defined membership func-
tion and the histogram of both parameters are depicted in
Figure 18.
The minimum and maximum measured Young’s

modulus and thickness are defined as the left and
right limits of the support of the fuzzy variable. The
trend value represents the mean value of the measure-
ments. The fuzzy triangular numbers are defined as
follows:

�̃� = ⟨101350, 104406, 108940⟩ (N∕mm
2
)

𝑡 = ⟨0.111, 0.116, 0.1204⟩ (mm)
(35)

A relative strict definition is made for both parameters.
It is assumed that it is easier to specify tolerances for the
Young’s modulus and shell thickness than for the cor-
relation parameters, which are more difficult to obtain.
Therefore, nomembership is assigned to the values outside
the range of the measured values.

5.4 Discussion to uncertainty
quantification of shell imperfections

In summary, all chosenuncertaintymodels for shell imper-
fections are shown in Table 5. All uncertainties of different
shell imperfections are quantified with suitable uncer-
tainty models based on the available data. The concept of
polymorphic uncertainty modeling allows the explicit dis-
tinction between aleatoric and epistemic uncertainties in
modeling of shell imperfections. For example, the available
data for surface imperfections allow amodelingwith fp-rfs.
There are not enough data available for classical modeling
with random fields. To determine one specific correlation
length is very brave if the variations of the akfs are observed
in Figure 11.
The epistemic component of the correlation parame-

ters has to be taken into account in order to avoid false
assumptions. On the other hand, only one measurement
for boundary imperfections is available. The definition of a
fuzzy variable with only one measured value and no avail-
able expert knowledge is not possible and would feign a
nonexistent knowledge to the parameter. Therefore, inter-
vals are chosen to model boundary imperfections with an
ip-rf. For thematerial and thickness imperfections, no data
to spatial variability are available. Thus, a random field
modeling is not possible. However, seven measurements
are enough to evaluate the data to define a fuzzy variable
for the Young’s modulus and shell thickness. The ability
to choose an uncertainty model based on available data
is the essential benefit of the introduced concept. This
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14 FINA et al.

TABLE 5 Overview of polymorphic uncertainty models used for different shell imperfections.

Imperfection form Uncertainty model Data & characteristic Notes to the choice
Surface imperfections Fuzzy probability–based random

field (fp-rf)
�̃�2 = ⟨0.002, 0.007, 0.012⟩

Aleatoric & epistemic, few data,
Gaussian random field and a
correlation model with
uncertain data:
�̃�(𝝉) = �̃�2 �̃�(Δ𝑥) �̃�(Δ𝑦)

Conservative choice of
parameters due to limited
expert knowledge of
correlation properties�̃�𝑐,ℎ = ⟨2000, 9000, 13000⟩

�̃�𝑐,𝑢 = ⟨175, 225, 400⟩
Boundary imperfections Interval probability–based

random field (ip-rf)
Aleatoric & epistemic, few
unvaluable data, Gaussian
random field and a correlation
model with uncertain data:
𝐶(Δ𝑦) = 𝜎2𝜌(Δ𝑦, 𝓁𝑐,bd, 𝑇bd)

Only one measurement available,
too little data basis for an
evaluation, no information
about the imperfection
amplitude

𝑇bd ∈ [100, 500]

𝑎bd ∈ [10, 20]

𝓁𝑐,bd = 494

Material imperfections Fuzzy variable
�̃� = ⟨101350, 104406, 108940⟩ Epistemic, few data, an

evaluation of the data is
possible

Correlation properties for
random field modeling are
unknown

Thickness
imperfections

Fuzzy variable
𝑡 = ⟨0.111, 0.116, 0.1204⟩ Epistemic, few data, an

evaluation of the data is
possible

Correlation properties for
random field modeling are
unknown

F IGURE 19 Results of the buckling analysis with
polymorphic uncertain parameters.

avoids generating false assumptions and leads to a more
truthful modeling.

5.5 Numerical results

The results of the buckling analysis with polymor-
phic uncertain parameters from Table 5 are depicted in
Figure 19.
According Equation (28), all buckling loads 𝑃𝑐𝑟 are nor-

malized by the critical load 𝑃𝑐𝑟,perf = 5073 N. Overall,
seven input parameters are defined

�̃� = {�̃�2, �̃�𝑐,ℎ, �̃�𝑐,𝑢, 𝑇bd, 𝑎bd, �̃�, 𝑡} (36)

In order to reduce the computational effort, a surrogate
model based on the HDMR of second order and LS poly-
nomial approximation is used. Therefore, on 365 points
of the input space, a MCS with 500 realizations has to

be performed to get sufficiently accurate results. This
means 365 × 500 = 182, 500 buckling analyses are per-
formed. The critical buckling load factor is an fp-r variable.
Thereof, the membership functions of the fuzzy mean
value �̄�cr and the fuzzy 5% quantile 𝛼cr,0.05 are depicted
in Figure 19. In addition, the experimental results of the
buckling load factors of the seven investigated shells and
NASA’s KDF are also shown in Figure 19. The histogram
of the experimental results is in the range of the highest
membership 𝜇 = 1, which is an indication of appropri-
ate uncertainty quantification. The KDF amounts to 𝛼cr =

0.24 and is significantly smaller than the left boundary of
the resulted membership functions. Thus, it can be shown
that the KDF as a representation for traditional design con-
cepts is very conservative. The results show that there is
much potential to specify higher buckling load factors as
the basis of a shell design. This means a more economi-
cal design is possible. As a first idea, Figure 20 depicts an
alternative safety concept.
There, the result membership function of the fuzzy

5% quantile 𝛼cr,0.05 is overlaid with a safety level based
on nonpermissible buckling load factors defined with
a fuzzy variable. The advantage of such a fuzzy-valued
safety level is that verbal statements can be considered.
Here, verbal statements to imperfection sensitivity are
given. For example, low buckling load factors indicate a
high imperfection sensitive structure. The overlap area
of the result variable and a defined fuzzy-valued safety
level represents a kind of danger of buckling. This area
can be used as a design parameter. How much over-
lapped area can be permitted must be discussed in further
works.
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FINA et al. 15

F IGURE 20 Definition of a danger of buckling for an
alternative safety concept.

6 CONCLUSIONS

In the presented contribution, the concept of polymor-
phic uncertainties to consider aleatoric and epistemic
uncertainties is introduced in shell buckling. The choice
of suitable uncertainty models based on available data
for different imperfection types such as surface, bound-
ary, material, and thickness imperfections is discussed in
detail. It should be emphasized that the choice is based
on the available data. This avoids generating false assump-
tions and leads to a more truthful modeling. This should
open up new perspectives moving away from determin-
istic thinking in civil and other engineering disciplines.
Therefore, an approach for a new design concept with a
fuzzy-valued safety level is formulated. Based on verbal
statements to the imperfection sensitivity, nonpermissible
buckling load factors are defined. An overlap area with
the result variable represents a kind of danger of buckling.
The presented approach allows to consider different ver-
bal statements, for example, to financial, social, or hazard
potential to life. Finally, the concept has to be applied for
composite structures,which provide awide and interesting
research field.

ACKNOWLEDGMENTS
Open access funding enabled and organized by Projekt
DEAL.

CONFL ICT OF INTEREST STATEMENT
The authors declare no potential conflict of interests.

ORCID
MarcFina https://orcid.org/0000-0002-6956-6112

REFERENCES
Arbocz, J. (2000). The effect of imperfect boundary conditions on
the collapse behavior of anisotropic shells. International Journal
of Solids and Structures, 37(46), 6891–6915.

Arbocz, J., & Abramovich, H. (1979). The initial imperfection data
bank at the Delft University of Technology: Part I. Faculty of
Aerospace Engineering. Tech. rep.

Beer, M. (2002). Fuzziness und Fuzzy-Zufälligkeit bei der Sicher-
heitsbeurteilung von Tragwerken. H.5. Lehrstuhl für Statik, TU
Dresden.

Beer, M., Ferson, S., & Kreinovich, V. (2013). Imprecise proba-
bilities in engineering analyses. Mechanical Systems and Signal
Processing, 37(1), 4–29.

Broggi,M.,& Schuëller, G. (2011). Efficientmodeling of imperfections
for buckling analysis of composite cylindrical shells. Engineering
Structures, 33(5), 1796–1806.

Ditlevsen, O. (1982). Extended secondmoment algebra as an efficient
tool in structural reliability.Nuclear Engineering andDesign, 71(3),
317–323.

Ditlevsen, O., & Munch-Andersen, J. (1995). Empirical stochastic
silo load model. I: Correlation theory. Journal of Engineering
Mechanics, 121(9), 973–980.

Dubois, D., & Prade, H. (1988). Possibility theory: An approach to
computerized processing of uncertainty. Plenum Press.

Faes,M.,Daub,M.,Marelli, S., Patelli, E., &Beer,M. (2021). Engineer-
ing analysis with probability boxes: A review on computational
methods. Structural Safety, 93, 102092.

Faes, M., & Moens, D. (2019). Recent trends in the modeling
and quantification of non-probabilistic uncertainty. Archives of
Computational Methods in Engineering, 27(3), 633–671.

Fina, M. (2020). Polymorphe Unschärfemodellierung in der nicht-
linearen Strukturmechanik – Stabilität von Schalentragwerken,
räumliche Variabilität und Metamodellierung. B. 27, Institut für
Baustatik, KIT.

Fina, M., Panther, L., Weber, P., & Wagner, W. (2021). Shell buckling
with polymorphic uncertain surface imperfections and sensi-
tivity analysis. ASCE-ASME Journal of Risk and Uncertainty
in Engineering Systems Part B: Mechanical Engineering, 7(2),
020909.

Fina, M., Weber, P., & Wagner, W. (2019a). A fuzzy stochas-
tic correlation model for geometric imperfections of cylindrical
shells. In 13th international conference on applications of statis-
tics and probability in civil engineering (ICASP13). May 26-30, 2019,
Seoul.

Fina, M., Weber, P., & Wagner, W. (2019b). Modeling of aleatory
and epistemic uncertainties in probabilistic design of cylindrical
shells. InM. Beer, & E. Zio (Eds.) Proceedings of the 29th European
safety and reliability conference (ESREL). Research Publishing,
September 22-26, Hannover, Germany.

Fina, M., Weber, P., & Wagner, W. (2020). Polymorphic uncer-
tainty modeling for the simulation of geometric imperfections
in probabilistic design of cylindrical shells. Structural Safety, 82,
101894.

Freitag, S., Edler, P., Kremer, K., Hofmann,M., &Meschke, G. (2018).
Optimization approaches for durable reinforced concrete struc-
tures considering interval and stochastic parameter uncertainty.
PAMM, 18(1), e201800444.

Graf, W., Götz, M., & Kaliske, M. (2014). Structural design with
polymorphic uncertainty models. In M. Modares (Ed.) 6th inter-
national conference on reliable engineering computing. 64–76, May
25-28, 2014, Chicago, USA.

Graf, W., Götz, M., & Kaliske, M. (2015). Analysis of dynamical pro-
cesses under consideration of polymorphic uncertainty. Structural
Safety, 52, 194–201.

 14678667, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13054 by K
arlsruher Inst F. T

echnologie, W
iley O

nline L
ibrary on [04/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-6956-6112
https://orcid.org/0000-0002-6956-6112


16 FINA et al.
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