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Abstract

Reliable prediction of heavy precipitation events causing floods in a world of

changing climate is crucial for the development of appropriate adaption strategies.

Many attempts to provide such predictions have already been conducted but there

is still much potential for improvement left. This is particularly true for statistical

downscaling of heavy precipitation due to changes present in the corresponding

atmospheric drivers. In this study, a circulation pattern (CP) conditional down-

scaling to the station level is proposed which considers occurring frequency

changes of CPs. Following a strict circulation-to-environment approach we use

atmospheric predictors to derive CPs. Subsequently, precipitation observations are

used to derive CP conditional cumulative distribution functions (CDFs) of daily

precipitation. Raw precipitation time series are sampled from these CDFs. Bias

correction is applied to the sampled time series with quantile mapping (QM) and

parametric transfer functions (PTFs) as methods being tested. The added value of

this CP conditional downscaling approach is evaluated against the corresponding

common non-CP conditional approach. The performance evaluation is conducted

by using Kling–Gupta Efficiency (KGE), root mean squared error (RMSE), and

mean absolute error (MAE) metrics. In both cases the applied bias correction is

identical. Potential added value can therefore only be attributed to the CP condi-

tioning. It can be shown that the proposed CP conditional downscaling approach

is capable of yielding more reliable and accurate downscaled daily precipitation

time series in comparison to a non-CP conditional approach. This can be seen in

particular for the extreme parts of the distribution. Above the 95th percentile, an

average performance gain of +0.24 and a maximum gain of +0.6 in terms of KGE

is observed. These findings support the assumption of conserving and utilizing

atmospheric information through CPs can be beneficial for more reliable statisti-

cal precipitation downscaling. Due to the availability of these atmospheric predic-

tors in climate model output, the presented method is potentially suitable for

downscaling precipitation projections.
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1 | INTRODUCTION

Heavy rainfall from convective systems and the resulting
pluvial floods are common phenomena during the sum-
mer season in Central Europe. According to the European
Severe Weather Database (ESWD, 2022) over 6000 such
events have been reported for the last 70 years in
Germany. Heavy rainfall events have the potential to
cause severe damage to people, infrastructure, and build-
ings in the affected areas. In particular, the year 2021 fea-
tured extraordinary heavy precipitation events and pluvial
floods (e.g. Ahrtal flood in Western Germany). According
to the German Insurance Association (GDV 2021) 2021
has been the single most expensive year for insurance
dealing with natural hazards that are especially linked to
the heavy rainfall events in Western Germany. As stated
in MunichRE (2022) the total costs of these events
amounted to 33 billion Euro. The events in 2021 are just
one example and there are many more described in litera-
ture (e.g. Grieser et al., 2006; Piper et al., 2016).

It is well known that precipitation is linked to the state
of the atmosphere and therefore to the synoptic circulation
which is prone to changes due to ongoing global climate
change. In parts of Germany trends in heavy precipitation
occurrence have already been described in literature
(e.g. Deumlich & Gericke, 2020; Warscher et al., 2019).
Since these trends are already present it is necessary to
account for them in the future. In the planning of flood
protection, for example, it is common practice to construct
technical measures in a way they are able to withstand
events with a certain return level, for example, the return
level of a 100-year flood or heavy precipitation event. The
distribution of precipitation in a specific area may shift
due to the effects of climate change. Therefore it is crucial
to derive information about the magnitude of these
expected changes for developing adaption strategies
(Rözer et al., 2016). In order to derive qualitative values
for possible changes in the distribution of precipitation
and therefore return levels and return periods in the
future, it is common practice to use the output of dynamic
atmospheric models for predictions. The Intergovernmen-
tal Panel on Climate Change (IPCC) developed a set of
plausible future scenarios which include relevant drivers
for the changes in the atmospheric system like the emis-
sion of greenhouse gases (IPCC, 2021). These scenarios
can be used to drive global circulation models (GCMs) and
nest regionally specific regional climate models (RCMs)

into them. The approach of nesting models is used for
dynamical downscaling which yields atmospheric vari-
ables on a higher spatial resolution (Giorgi et al., 2009).
However, for the assessment of precipitation return levels
on a local scale, other appropriate approaches are needed
since GCMs in particular but also RCMs have biases in vari-
ables like precipitation (Ibebuchi, 2022). Nevertheless, the
general skill in simulating the large-scale and intermediate-
scale circulation of GCMs and in particular RCMs is widely
accepted (Ibebuchi, 2023; Sunyer et al., 2015). Such an
appropriate approach can be statistical downscaling utiliz-
ing circulation pattern conditional downscaling as applied
in B�ardossy and Pegram (2011) and Lutz et al. (2012).
Circulation pattern-based approaches are well established
throughout the climate sciences and are considered skillful
in projecting surface variables such as temperature and pre-
cipitation (B�ardossy & Pegram, 2011; Ramos et al., 2015).
For the creation of suitable circulation pattern classifica-
tions in general two approaches can be distinguished.
The first approach is ‘environment-to-circulation’ which
considers the targeted variable (e.g. precipitation) in the
classification process. The other approach is ‘circulation-to-
environment’ whereas the classification process only con-
siders predictors (e.g. sea level pressure) to derive classes
(Dayan et al., 2012).

This study follows a strict ‘circulation to environment’
approach and all circulation patterns are created solely from
atmospheric predictors like mean sea level pressure or geo-
potential. Plenty of different clustering methods are
described in literature (e.g. Laux et al., 2020; Philipp
et al., 2007). Of the available methods, the optimization
method Simulated Annealing and Diversified Randomiza-
tion (SANDRA) is a promising selection for clustering atmo-
spheric data. SANDRA is able to overcome the shortcoming
of getting stuck to local optima compared to the widely used
k-means clustering method and its performance is deemed
equivalent to self-organizing maps clustering (Philipp
et al., 2016). Many studies (e.g. B�ardossy & Pegram, 2011;
Jacobeit et al., 2017; Laux et al., 2020; Wilby et al., 1998)
conclude that the state of the atmosphere represented by cir-
culation patterns can be linked to surface variables like pre-
cipitation and have discriminative power for deducting
transfer functions potentially suitable for statistical down-
scaling of precipitation. The followed approach of using only
atmospheric variables as predictors without taking the pre-
cipitation into consideration for the clustering opens up the
opportunity to assign the identified circulation patterns to
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RCM scenario simulation output with ease. This makes it
possible to build catalogues of daily atmospheric states in
the future for different scenarios. However Faranda et al.
(2020) and Demuzere et al. (2009) conclude that major
changes in future atmospheric patterns are present in terms
of occurrence probability, predictability, and persistence.
This needs to be taken into consideration when attempting
to attribute future precipitation to future circulation pat-
terns. Nevertheless according to Horton et al. (2015) and
Shepherd (2014) the assumption that the internal variability
of circulation patterns remains stationary meaning that
there will not be completely new patterns in the future is
justified. These considerations are essential for the aim of
this study. The objective of this study is in presenting a cir-
culation pattern (CP) conditional downscaling approach
which conserves the information of changes described by
Demuzere et al. (2009) and Faranda et al. (2020) in cir-
culation pattern frequency changes and utilizes this
additional information for refined precipitation down-
scaling to the station level. Due to this additional infor-
mation, the downscaled precipitation is assumed to be
more accurate in terms of the complete precipitation
distribution and in terms of the representation of
extremes than using a common statistical downscaling
approach. The proposed method is evaluated against
the latter and the added value is investigated. Circula-
tion patterns created using atmospheric predictors only
can be assigned to climate model output with ease.
Therefore the proposed circulation pattern conditional
downscaling approach may provide the opportunity of
deriving sophisticated precipitation information while
accounting for circulation pattern frequency changes if
applied to future scenario runs.

2 | STUDY REGION

As the study region, we selected the German region
Bavarian Oberland (simply referred to as Oberland from
here on) situated between Munich in the North and
Austria in the South which is formed by the four counties
of Weilheim-Schongau (WM), Garmisch-Partenkirchen
(GAP), Bad Tölz-Wolfratshausen (TÖL) and Miesbach
(MB) (Figure 1). The Oberland covers an area of
3956 km2 and features a distinct topographic division
into two areas of different geographic properties. The
northern half can be characterized as an undulating pre-
alpine landscape mostly formed by vast glaciers during
the last glacial period. The southern half on the other
hand is part of the Bavarian Alps and is considered a
mountainous area. Especially in the Western part, it is
characterized by high alpine areas featuring complex
topography with alternating valleys and mountain ridges

as well as peaks reaching 2000m above sea level and
higher. The Oberland is one of the areas having the high-
est amounts of annual precipitation in Germany. Addi-
tionally, it has a high occurrence of heavy precipitation
events which frequently result in pluvial floods. Due to
the presence of measurement sites set up more than
200 years ago, the region has a comparatively high den-
sity of reliable long-term precipitation observations avail-
able. According to Deumlich and Gericke (2020) and
Warscher et al. (2019) the Oberland has shown increasing
trends in precipitation during the past and is continuing
to do so in the future. The combination of diverse terrain
in a relatively small area, the high occurrence frequency
of heavy precipitation events, and the good availability of
data fit well with the aims of this study.

3 | DATA AND METHODS

3.1 | Data

The datasets used for this study can be distinguished into
two groups. First, ERA5 reanalysis data was obtained
from the European Centre for Medium-Range Weather
Forecasts (ECMWF). Second, observation data from the
German Weather Service (Deutscher Wetterdienst—short
DWD) covering the same period as the used ERA5 data.
This data was used for the model training as well as
model evaluation. All the datasets used are described in
more detail in the subsections below.

3.1.1 | ERA5 reanalysis

ECMWF's ERA5 reanalysis dataset is the newest imple-
mentation of ECMWF reanalysis datasets which have
widely been used as a gridded data source for training
and evaluation purposes concerning atmospheric vari-
ables and circulation pattern analysis. In these studies,
ERA5 is frequently described as a superior reanalysis
product and is therefore the dataset of choice in this
study (e.g. Kučerov�a et al., 2017; Mahto & Mishra, 2019).
The ERA5 dataset provides a huge variety of variables on
pressure levels as well as surface variables on a 0.25� spa-
tial resolution. All variables are available globally though
for this study only a specific subdomain and specific vari-
ables have been selected. The years 1980–2019 were
selected from the available daily ERA5 data. The analysis
period of this study is therefore 1980–2019. The obtained
predictors were mean sea level pressure, geopotential at
500 hPa, and the u-and v-wind components at 10 m. For
in-depth information about the characteristics of the
ERA5 product see Hersbach et al. (2020).

BÖKER ET AL. 3
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3.1.2 | DWD stations

Reliable precipitation observations for the selected study
region are obtained from the German Weather Service
(Deutscher Wetterdienst, 2022). These station observa-
tions are used on a daily time resolution in consistency
with the ERA5 data. Dependent on the measurement site
the covered time periods of the measurements may vary
greatly, nevertheless due to the limited temporal avail-
ability of ERA5 reanalysis data the used station data is
bound to the same time constraints. Out of all the avail-
able stations within the study area only those stations
have been selected that have data available for the whole
study period lasting from 1980 to 2019. These consider-
ations lead to the 14 selected stations listed with their key
characteristics in Table 1. Their spatial distribution
throughout the study region is shown in Figure 1.

3.2 | Methods

Figure 2 gives an overview of the applied model chain.
This study follows a two pathways approach in the sense
of performing a standard downscaling of precipitation to
station level (the outer right vertical path in Figure 2) as a
reference and a circulation pattern conditional downscal-
ing (the left vertical pathway in Figure 2) as assumed more
skillful approach. The latter takes additional information

about the state of the atmosphere (circulation patterns
derived from ERA5 reanalysis data) into consideration for
downscaling. Finally, the performance of the approaches
can be assessed relative to each other by comparison of
suitable evaluation metrics. All steps will be described in
detail in the corresponding sections following.

Predictor, domain selection and time selection
The selection of predictor variables is key to the creation
of skillful circulation patterns which have sufficient dis-
criminative power concerning precipitation to provide
beneficial information for CP conditional downscaling.
In this study, only three combinations of the vast possible
set of variables are tested but these are assumed suitable
for several reasons. The first variable used is mean sea
level pressure (MSL) which is known to be one of the
main drivers of formations bearing precipitation in the
mid-latitudes and its predictive skill has been proven by
other studies beforehand (e.g. B�ardossy & Pegram, 2011).
The second set of variables consists of mean sea level
pressure and geopotential at 500 hPa (MSL + z500). This
combination has been chosen to be able to compare the
created classification to the general circulation patterns
by Hess and Brezowsky as described in Gerstengarbe and
Werner (2005) that are broadly used to describe atmo-
spheric states influencing Central Europe and are based
on expert's analysis of said variables. The third tested set
of variables is a combination of mean sea level pressure

FIGURE 1 The Bavarian Oberland region in southern Germany. The four counties of Weilheim-Schongau (WM), Garmisch-

Partenkirchen (GAP), Bad Tölz-Wolfratshausen (TÖL), and Miesbach (MB) forming the Oberland are highlighted in purple. Red dots

indicate the location of the measurement sites used in this study. Red numbers correspond to number used in Table 1.
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and the u- and v-wind components at 10 m (MSL + 10 m
wind). According to Liu et al. (2013) the wind direction
influences the spatial distribution of precipitation directly
due to valley interactions with near surface level atmo-
sphere caused by the complex topography in the study
area. Therefore the inclusion of surface wind components
is tested due to the assumption of being superior to the
first two combinations.

The extent of the domain is selected considering
smaller domain sizes as desirable in terms of initial

computational expenses and representation of more
region-specific characteristics. Nevertheless, the domain
should be large enough to not only cover the study region
itself but allow for the inclusion of important geographic
features of the surrounding area (e.g. the Alps, the north-
ern Adriatic sea, and the Gulf of Genova). Since the
search for the best-fitting domain size can be challenging
and is not the focus of this study the final extent of the
domain is selected within the constraints described
above. The domain used stretches from 42�N to 51�N and

TABLE 1 Station numbers, IDs, names, coordinates and altitude.

Number ID Name Longitude Eð Þ Latitude Nð Þ Altitude mð Þ
1 217 Attenkam 11.364282 47.877428 670

2 318 Bad Bayersoien 10.995599 47.691926 812

3 349 Benediktbeuren 11.413941 47.706327 630

4 1550 Garmisch-Partenkirchen 11.062126 47.482989 719

5 1734 Grainau-Eibsee 10.993872 47.456150 1008

6 2290 Hohenpeißenberg 11.010819 47.800869 977

7 2674 Geretsried 11.477530 47.843312 608

8 2740 Kreuth-Glashütte 11.646185 47.610509 897

9 2943 Lenggries 11.582626 47.679998 698

10 3307 Mittenwald-Buckelwiesen 11.265311 47.477866 984

11 3424 Murnau 11.223842 47.668879 624

12 3677 Oberammergau 11.060714 47.602966 832

13 4617 Obere Firstalm 11.854407 47.670059 1368

14 5792 Zugspitze 10.984761 47.421037 2965

FIGURE 2 Schematic of the applied

methods. CDF stands for cumulative

distribution function.
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6�E to 15�E (note that the given boundary coordinates
correspond to the centres of the boundary grid cells).
Using this domain the mentioned geographic features are
included, the study region is well in the centre, and the
size of 37 times 37 grid cells is still fairly small.

The available time period for the study has been
selected as described in the previous section. The period
from 1980 to 2019 has been split into a 35-year training
period from 1980 to 2014 and a subsequent evaluation
period from 2015 to 2019. For this study, an extended
summer season, June, July, August, and September
(JJAS) is taken into consideration. Due to the used daily
data and the described boundaries, the resulting training
period contains 4270 days and the evaluation period
610 days.

SANDRA classification
SANDRA is short for Simulated ANnealing and Diversi-
fied RAndomization, a clustering method developed
by Philipp et al. (2007). This method has been selected
since it has been applied for circulation pattern analysis
yielding good clustering results in terms of explained
cluster variance in several other studies (e.g. Laux
et al., 2020; Lutz et al. (2012)). Additionally, the SANDRA
algorithm is able to overcome shortcomings of conven-
tional optimization methods like k-means. Clustering
data having local optima using conventional methods
can lead to ambiguous results since there are no strategies
implemented to avoid these local optima. The design of the
SANDRA algorithm addresses this issue so the global opti-
mum can be reached reliably. To achieve this SANDRA
allows for wrong cluster assignments of data objects at each
iteration if the acceptance probability p is higher than a
randomly generated number between 0 and 1.

p= exp
Dold−Dnew

T

� �
ð1Þ

Dnew is the Euclidean distance between the data object
and the new cluster and Dold is the Euclidean distance to
its present cluster. T is a parameter called temperature
control parameter that is set to high values at initializa-
tion and decreases with each iteration i. The increment
of decrease of the temperature is controlled by a cooling
factor C.

Ti+1=CTi ð2Þ

The high initial temperature values allow for relatively
free movement of the data objects at the start, therefore,
giving the opportunity to check out a lot of different pos-
sibilities and slowly reach convergence at the global opti-
mum as the temperature parameter and therefore the

freedom of movement of data objects decreases. Due to
the need for very slowly decreasing temperatures to
ensure reaching the global optimum and therefore unac-
ceptable long run times of the procedure, the diversified
randomization technique is applied. The latter performs
the simulated annealing process 1000 times but only the
first one with the cooling factor set comparably close to
1 and the following 999 runs with significantly faster
cooling rates and selects the best run in the end. Philipp
et al. (2007) show that this combination of simulated
annealing and diversified randomization performs as well
as single runs with very slow cooling rates but at reduced
computational costs. In order to compare the perfor-
mance of different runs -both internally while running a
SANDRA classification as well as externally with differ-
ent predictors or numbers of classes—the explained clus-
ter variance (ECV) is used. The ECV is defined as:

ECV=1−
WSS
TSS

ð3Þ

where WSS is the so-called within-cluster sum of squares
and TSS is the total sum of squares. The WSS value can
be considered as an internal cluster coherence metric and
the TSS value as an external cluster coherence metric. To
achieve high internal and low external coherence it is
desirable to have low WSS and high TSS values resulting
in high ECV values. More in-depth information about
the SANDRA algorithm is given in Philipp et al. (2007).
Additional to the ECV as a clustering performance met-
ric, the cluster internal RMSE between days assigned to a
cluster and cluster centroids are calculated (Figure A1 in
Appendix). This provides an additional instance of assess-
ment of statistical assignment quality of days matching
their corresponding cluster centroids. As mentioned the
ECV can be used to compare the quality of clusters based
on different predictors but additionally, the ECV can be
considered a function of the number of clusters. This
relation can be seen in Figure 3. In general, more clusters
lead to a higher ECV. In order to avoid extensive cluster
number criteria testing, the desired number of clusters
follows the approach of being as small as possible while
having clusters with an ECV of 0.8 for the best predictor
combination (MSL + 10 m wind). Though this has a sub-
jective component it is considered satisfying because the
optimization of ECV is not the goal of this study. Consid-
ering this the chosen solution is one of seven clusters for
all variables used.

In order to conduct a circulation pattern conditional
sampling as described later for the evaluation period it is
necessary to assign the found cluster centroids to the part
of the ERA5 dataset leftover for evaluation generating a
daily cluster catalogue for this period. To do so an
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assignment based on the Euclidean Distance is conducted
with the cost733class ASC function. Further details on
the ASC function can be found in Philipp et al. (2014).

Linking circulation patterns to precipitation
To be able to take advantage of the additional informa-
tion the circulation patterns may provide for sampling
and correcting precipitation it is necessary to statisti-
cally link the states of the atmosphere to the precipita-
tion typical for this state of the atmosphere at a specific
location. A very common approach for the representa-
tion of the distribution of precipitation values is the
calculation of their cumulative distribution function
(CDF). CDFs can be calculated for the complete avail-
able precipitation time series which gives an idea of the
overall distribution of precipitation values in this time
series (e.g. from a specific measurement site). However,
it is equally possible to calculate CDFs dependent on
certain boundary conditions such as considering only
values in a time series with a distinct CP present. The
latter calculation gives the opportunity to calculate the
CDFs for every CP separately and therefore distinguish
relatively wet or dry CPs. If the assumption that CPs can
have discriminative power concerning precipitation,
what has already been shown by B�ardossy and Pegram
(2011) and Laux et al. (2020) the separately calculated
CDFs provide a CP conditional set of CDFs for the
subsequent precipitation sampling. In this study, these
considerations are implemented in a way that for each
of the 14 stations, one single CDF of the complete train-
ing period is calculated for conducting the standard
approach and a set of 7 CDFs of CPs for the CP condi-
tional approach.

Sampling and bias correction
Due to the evaluation period being considered as a
‘test case future projection’ without observations, daily
precipitation series need to be generated before bias
correction can be applied. To do so various methods
like weather generators (e.g. Kilsby et al., 2007),
Markov-Chain models, or fitting distributions (e.g. Liu
et al., 2011) are available. For this study, a simple
approach of fitting distributions and sampling from
them has been selected. According to Maity et al.
(2019) exponential functions belong to the group of
best-fitting distributions in the study area. In the first
step an exponential distribution

f x;θð Þ= 1
θ
e−

x
θ ð4Þ

with scale parameter θ is fitted to the observed daily
precipitation during the training period. In the second
step, the actual precipitation time series generation is
conducted by drawing a random sample from the fitted
distribution for each day of the time series. Steps one and
two are executed for every station so a distinct precipita-
tion time series for each station is modelled.

Modelling precipitation in general inherits multiple
sources of uncertainties as described in (e.g. Eden
et al., 2012; Gudmundsson et al., 2012) which leads to
biases between modelled and observed precipitation.
To address these biases and to improve the agreement
of modelled and observed precipitation it is common prac-
tice to conduct bias correction. Numerous different methods
are available to achieve this task which varies in their
correction performance depending on which target

FIGURE 3 Explained cluster

variance as a function of the number of

clusters for mean sea level pressure

combined with u and v wind

components at 10 m (crosses) and mean

sea level pressure combined with

geopotential at 500 hPa (circles) as

predictors. [Colour figure can be viewed

at wileyonlinelibrary.com]
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FIGURE 4 Mean sea level pressure (hPa) cluster centroids of a 7 cluster CP 1–CP 7 (a–g) solution based on mean sea level pressure and

u and v wind components ERA5 data.

8 BÖKER ET AL.

 10970088, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.8136 by K
arlsruher Inst F. T

echnologie, W
iley O

nline L
ibrary on [30/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



variable (temperature, precipitation, wind, etc.) needs to
be corrected (Gudmundsson et al., 2012). Gudmundsson
et al. (2012) conclude that non-parametric transforma-
tions have a superior performance over parametric
methods in correcting precipitation biases independent
of underlying distribution assumptions. Therefore the
statistical bias correction method of choice for this
study is the non-parametric transformation empirical
quantile mapping which is described by Boé et al.
(2007) and in the following is simply referred to as
‘QM’. For the purpose of evaluating the influence of
correction method choice, a parametric transforma-
tion has been selected as an additional method. Both
methods are well established and widely used (e.g. Boé
et al., 2007; Eden et al., 2012; Gudmundsson et al.,
2012; Piani et al., 2010). As described in Gudmundsson
et al. (2012) and Piani et al. (2010) these methods
are suitable to find a transfer function f which can be
used to solve

xcor= f xmodð Þ ð5Þ

where xcor is the corrected variable and xmod is the mod-
elled variable. The notable difference of the applied
methods is therefore the way how the transfer function f
from a given set of training data is derived.

According to Boé et al. (2007) QM uses the cumula-
tive distribution function (CDF) of a training simula-
tion and the CDF of the observations to derive a
quantile-based transfer function. In the next step, the
correction function is applied to the biased modelled
output variable to correct it quantile by quantile. The
practical application of the QM approach in this study
follows Boé et al. (2007). Percentiles are corrected and

in between two percentiles a linear interpolation is
applied. Since the variable to be corrected in this study
is precipitation the occurrence of drizzle effects is
addressed by ensuring the probability of precipitation
after the correction matches the observed probability of
precipitation. For values exceeding the upper boundary
of the correction function, a simple extrapolation is
conducted so a constant correction value is applied
which equals the correction value for the highest
quantile.

The second applied bias correction method uses a lin-
ear transfer function instead of empirical quantiles. As
proposed in Piani et al. (2010) the relation between the
corrected variable xcor and the modelled variable xmod

can be described as

xcor=a+bxmod ð6Þ

with a being an additive and b an multiplicative correc-
tion parameter. The transfer function is completely
described by these two parameters giving it the form of a
linear function and belongs to the category of parametric
transfer functions. In the following, it is simply referred
to as ‘PTF’.

One of the key features of this study is to contrast the
standard bias correction approach using only the precipi-
tation data as correction information to a CP conditional
approach using the CPs as additional information for the
correction. The latter draws its inspiration from B�ardossy
and Pegram (2011). However, the conducted CP condi-
tional approach is modified in a significant way to be able
to compare the standard method to the CP conditional
method directly. For the standard approach, one CDF
fitted to the whole precipitation distribution of the

FIGURE 5 Circulation pattern

conditional cumulative distribution

functions of the 7 cluster solution based

on mean sea level pressure and u- and

v-wind component at Garmisch-

Partenkirchen station. The CDF of the

station for all days is given as reference.
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training period is used for the raw sampling of the evalu-
ation period time series. Subsequently, the described
bias correction methods are applied to the raw time
series. In contrast to that the CP conditional approach
uses a set of fitted CDFs, one for each CP occurring in
the training period and samples dependent on the CP

present on a specific day in the evaluation period from
the corresponding CDF (e.g. if a day of the evaluation
period has CP 4, the sample for that day will be drawn
from the CDF of CP 4, etc.). This leads to the generation
of as many time series as CPs are present and each time
series contains as many days as the corresponding CP

FIGURE 6 1980–2014 frequency changes in the occurrence of the 7 circulation patterns described in Section 4.1. [Colour figure can be

viewed at wileyonlinelibrary.com]
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occurred in the evaluation period. Each CP conditional
time series is then corrected separately. In the end, the
time series for the whole evaluation period is created by
merging the CP conditional time series. To ensure the
stability of the described models all steps are repeated
500 times. The output time series ready for evaluation is
generated by calculating the mean of the sorted separate
time series, once for the standard method and for the
CP conditional method.

Evaluation metrics
For performance evaluation of applied precipitation
downscaling methods numerous different metrics are
available. Of these, two commonly used metrics used in
this study are mean absolute error (MAE) and root mean
square error (RMSE). The calculation is conducted by
applying the equations given in Chai and Draxler (2014):

MAE=
1
n

Xn
i=1

j ei j ð7Þ

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i=1

e2i

s
ð8Þ

with n samples of errors ei and i=1,2,…,n. In accordance
with Chai and Draxler (2014), a combination of met-
rics is often required, and therefore both metrics are
used in parallel in this study. Also due to this, the
Kling–Gupta model efficiency (KGE) is used as an
additional performance assessment metric. Originally
described in detail in Gupta et al. (2009) the KGE is
calculated as:

KGE=1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r−1ð Þ2+ α−1ð Þ2+ β−1ð Þ2

q
ð9Þ

with r being the linear correlation between observations
and simulations, α a measure of variability error and β
the mean bias term. According to Knoben et al. (2019) α
can therefore be calculated as the quotient of standard
deviation in simulations and standard deviation in
observation:

α=
σsim
σobs

ð10Þ

While β is calculated as the quotient of the simulation
mean and the observation mean:

FIGURE 7 Kling–Gupta efficiency at all stations with different classifications. Used predictors for the classifications are mean sea level

pressure (a), mean sea level pressure and geopotential at 500 hPa (b), mean sea level pressure and 10-meter u- and v-wind component (c),

Hess-Brezowsky general circulation patterns (d). (a–c) are 7-cluster solutions and (d) is a 30-cluster solution. Black diamonds indicate

uncorrected model output, blue triangles corrected model output by standard method, and red circles CP conditional corrected model

output.
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β=
μsim
μobs

ð11Þ

4 | RESULTS

4.1 | Classification

4.1.1 | Circulation patterns

The resulting circulation pattern centroids of the chosen
seven cluster MSL + wind solution are shown in
Figure 4, the centroids of the MSL + z500 solution are
shown in Figure A1. The MSL centroids shown in
Figure 4 are suitable for a brief description and interpre-
tation of the general state of the atmosphere. CP 1 can be
described as a pattern with a distinct separation between
the central European part north of the Alps and the Med-
iterranean part south of the Alps with higher pressure

dominating the northern part and pressure levels close to
the standard pressure present in the southern part. CP
5 belongs to the same group of patterns with such a clear
separation along the Alps and a higher pressure scheme
in the northern part but not as dominant as in the case of
CP 1, with the southern part being closer to standard
pressure. CP 2, 3, 4, and 6 can be grouped as patterns
without this clear distinction between parts of the
domain. The main difference between the patterns is the
general pressure level present in them with CP 3 being a
strong low-pressure pattern, CP 6 being a strong high-
pressure system and CP 2 and CP 4 being in between
with CP 2 around standard pressure, and CP 4 having a
weak high-pressure pattern. CP 7 however forms its own
group being a pattern of generally low pressure with a
distinct higher-pressure wedge present in the western
part of the domain. Investigating the occurrence of heavy
precipitation events under certain CPs, it has to be noted
that for precipitation events in the 99th percentile P 3, CP

FIGURE 8 Observation-model plot of the resampled training period precipitation at Garmisch-Partenkirchen station (a). Real mean

squared error (b) and Kling–Gupta efficiency (c) of the resampled precipitation at the used 14 stations. Black diamonds indicate uncorrected

model output, blue triangles corrected model output by standard method, and red circles CP conditional corrected model output.
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5, and CP 7 are of special interest. While CP 3 has an
occurrence probability in the training period of 4.9% it
was present during 20.9% of the 99th percentile precipita-
tion days, CP 7 has an occurrence probability of 15.5%
and was present during 39.5% of the 99th percentile pre-
cipitation days and CP 5 has an occurrence probability of
16.5% and was present during 27.9% of the 99th percen-
tile precipitation days. Though heavy precipitation can
also occur under other CPs, the formerly mentioned
three CPs are the most relevant ones for heavy precipita-
tion events, explaining 88.3% of the 99th percentile pre-
cipitation days. Therefore changes in the occurrence of
these CPs as described in subsequent sections are of spe-
cial importance for heavy precipitation.

4.1.2 | CDFs of CPs

Investigating the discriminative power of the created
classification on precipitation at a specific location the
CP-wise CDFs of each station are derived. Figure 5 shows
the derived CDFs for one station, and in Figure A2 the
other stations are shown. CPs yielding less precipitation

relative to the stations reference CDF and CPs yielding
more precipitation relative to the reference can clearly be
distinguished. CP 6 can be considered the driest class and
CP 4 and CP 1 as moderately drier than the reference. CP
7 and CP 3 are the wettest classes relative to the refer-
ence. The precipitation distributions of CP 2 and CP
5 can be considered closely to reflect the reference
distribution.

4.1.3 | Frequency changes of CPs

Investigating the derived classification catalogues for the
presence of occurrence frequency changes of CPs yields
the trend lines shown in Figure 6. Analysing a 35 years
time series frequency changes can be observed in five out
of seven CPs. Of particular interest are frequency changes
of the CPs which have CDFs very different from the ref-
erence CDF. Therefore the observed frequency change of
CP 7 (g in Figure 6) must be highlighted. This frequency
change is not only increasing but the only one being sta-
tistically significant passing the Mann-Kendall test at the
95% confidence level. This increasing occurrence of CP

FIGURE 9 Observation-model plots with varying lengths of the training and sampling period. Starting from a 5 years training period

(a) to 15 years (b), to 25 years (c) and 35 years (d) respectively. Black diamonds indicate uncorrected model output, blue triangles corrected

model output by the standard method, and red circles CP conditional corrected model output.
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7 is mostly at the expense of the occurrence of CP 6 and
CP 4 (in Figure 6f,d).

4.2 | Bias correction

4.2.1 | Predictor choice

Testing different predictors in the classifications it can be
observed that in general, all tested classifications are skill-
ful (Figure 7). Nevertheless, some predictor combinations
appear to be slightly more stable in yielding good correc-
tion results at all stations. Said predictors are mean sea
level pressure and the combination of mean sea level pres-
sure together with the 10-m u- and v-wind components
which perform equally well. A combination of mean sea
level pressure and geopotential at 500 hPa occasionally
has a higher skill in terms of Kling–Gupta efficiency (sta-
tion 12) but yields a larger spread over all stations. Though
the choice of different additional predictors other than
mean sea level pressure can improve the resulting skill it
can clearly be stated that mean sea level pressure is the
single most important predictor. Compared to the
approach using Hess–Brezowsky general circulation pat-
terns, mean sea level pressure and mean sea level pressure

together with the 10-m u- and v-wind component yield an
equal performance using 7 semi-objective CPs. The
approach with geopotential at 500 hPa as the second pre-
dictor is not as stable as the Hess–Brezowsky approach.

4.2.2 | Resampling of training period

Analysing the performance in reproducing the precipitation
distributions of the training period it can be stated that all
used bias correction methods in general yield satisfying
results. However, in terms of RMSE and KGE gains
the circulation pattern conditional correction approach
outperforms standard statistical correction methods for
most stations and shows more stable improvement charac-
teristics in between stations (Figure 8). These findings
support the assumption that the conservation and utilization
of atmospheric information through the classification can
lead to amore reliable statistical downscaling of precipitation.

4.2.3 | Length of training period

It can be observed that the performance in representing
the distribution of the measured precipitation at a

FIGURE 10 Observation-model plots at the Garmisch-Partenkirchen station for quantile mapping (a) and linear parametric

transformation function (b) as correction method. Kling–Gupta efficiency at all stations for quantile mapping (c) and linear parametric

transformation function (d). Black diamonds indicate uncorrected model output, blue triangles corrected model output by the standard

method, and red circles CP conditional corrected model output.
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specific site is improved the longer the available training
dataset gets. This remains true for all bias correction
approaches used. For most of the stations, the results show
that quantile mapping correction using all the data of the
given training period at once outperforms CP-conditioned
correction in the case of short training periods. Though
the longer the training periods get the more likely it is that
CP-conditioned bias correction yields better agreement to
the measured precipitation distribution. These characteris-
tics are shown in Figure 9 in an exemplary way for the
Garmisch-Partenkirchen station.

4.2.4 | Bias correction method

Both tested bias correction methods, non-parametric
empirical quantile transformation, and a linear parametric
transformation function are equally capable of improving
the skill of correcting the precipitation distributions.
Figure 10 shows these characteristics in an exemplary way
for the Garmisch-Partenkirchen station. Though there are

small differences in the resulting distributions the general
shape remains the same. In terms of Kling–Gupta effi-
ciency both methods perform comparably well with the
non-parametric empirical quantile transformation being
slightly more stable (Figure 10).

4.3 | Performance evaluation

4.3.1 | Complete distribution

Analysing the performance of correcting the complete
precipitation distribution in the evaluation period, the
standard bias correction approach and the CP conditional
approach are capable of improving the raw model output
significantly as shown in the previous section (Figure 10).
The observation-model plots for all stations are shown in
the Figure A3. Comparing the standard bias correction
approach to the CP conditional approach it can be
observed that, in general, the latter shows a better perfor-
mance resulting in smaller MAE and RMSE and higher

FIGURE 11 Kling–Gupta efficiency (a), RMSE (b) and MAE (c) deviation between standard bias corrected modelled precipitation and

CP conditional corrected model precipitation for the complete distribution at all stations. Negative values on the inverted y-axis indicate

performance gains of the CP conditional corrected model precipitation, and positive values indicate losses. [Colour figure can be viewed at

wileyonlinelibrary.com]
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KGE (Figure 11). However, there are notable exceptions to
this for specific stations. These ‘low performance’ stations
in terms of the CP conditional approach are either depen-
dent on the used evaluation metric (stations 4, 5, 7, 9, and
13) or the CP conditional approach's performance is
always lower than the standard approach's independent of
the used metric (station 3). Taking into account that the
absolute differences between the performances of the com-
pared approaches are often marginal (e.g. RMSE at station
5 or KGE at stations 4 and 7) the results concerning the
performance of correcting the complete distribution show
that both approaches are equally skillful in doing so.

4.3.2 | Extremes

As the special focus of this study is on the extremes,
Figure 12 shows the performance of the analysed
approaches taking only the corrected distribution of the
95th percentile and higher into consideration. As for the
correction performance of the complete distribution,

there are some notable exceptions to the generally supe-
rior performance of the CP conditional approach. How-
ever, these exceptions are fewer (stations 5, 7, 9, and
13 dependent on the metric and 3 independent on the
metric) and the performance gain can be much higher.
Additionally, in terms of KGE the performance of the CP
conditional approach on correcting the extremes is of
higher average and more stable over all stations. There-
fore, the evaluation results show that the correction per-
formance of the CP conditional approach on correcting
the extremes is generally superior to the standard
approach and can yield significant improvements. An
overview of the spatial distribution of KGE gains and
losses for the complete distribution and the extremes is
given in Figure 13.

5 | DISCUSSION

The conducted analyses show that the utilization of sim-
ple circulation patterns provides benefits to the results of

FIGURE 12 Kling–Gupta efficiency (a), RMSE (b) and MAE (c) deviation between standard bias corrected modelled precipitation and

CP conditional corrected model precipitation for the 95th percentile and above at all stations. Negative values on the inverted y-axis indicate

performance gains of the CP conditional corrected model precipitation, and positive values indicate losses. [Colour figure can be viewed at

wileyonlinelibrary.com]
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precipitation downscaling which is consistent with the
findings described in (e.g. B�ardossy & Pegram, 2011;
Yang et al., 2010). This holds true even though we fol-
lowed a strict ‘circulation to environment’ approach of
not taking precipitation into account for the classification
itself, which differs from the approach used in B�ardossy
and Pegram (2011) and the development of the corre-
sponding classification described in B�ardossy (2010).
The creation of sets of CDFs of CPs for the sampling
process expands its range of likely values giving the
sampling process higher probabilities of picking more
extreme values under certain physically based (CPs)
conditions. This assumed advantage of a greater range for
precipitation sampling is backed by the findings of our
study in which the performance gain in reflecting the 95th
percentile and above for certain stations in terms of KGE
reached values up to +0.6. Results show that there are fre-
quency changes present in the occurrence of CPs during
the training period having an increasing occurrence proba-
bility of CP 5 and CP 7 which are found to be linked to
heavy precipitation events occurring in the study region.
Combining the latter two findings the CP conditional
approach's superior performance, especially in the
extremes confirms the validity of the assumptions pre-
sented in the introduction section. Meaning that the con-
servation of frequency changes in the occurrence of
atmospheric states and the discriminative power of CPs on
precipitation is indeed beneficial to the downscaling

results compared to the tested standard approaches. These
characteristics of ‘circulation to environment’ CPs having
discriminative power with respect to precipitation have
also been described by (e.g. Laux et al., 2020; Mehrotra
et al., 2004).

Nevertheless, the results also show that the presented
CP conditional approach inherits characteristics and limi-
tations that need to be discussed and should furthermore
be assessed in detail and addressed as necessary in the
future. Known factors that may influence the outcome of
the downscaling process are residing around the circula-
tion patterns classification itself. One crucial decision
that has to be made in advance of the clustering is the
number of clusters to be created. In the case of this study
the number of clusters has been determined by stating
that an explained cluster variance above 0.8 is satisfying
for the pursued purpose since the aim is not to create the
best possible representation of the atmospheric state but
to show that a simple set of circulation patterns provides
discriminative power to precipitation and can potentially
be used for downscaling which has been shown by Laux
et al. (2020). Therefore basing the number of clusters on
a subjective ECV threshold instead of utilizing one of the
various methods for cluster number determination, for
example, silhouette index or comparable metrics seems
valid but leads to the fact that another number of clusters
may lead to different results. Our findings show that the
tested range of the number of clusters allows only for

FIGURE 13 Spatial distribution of Kling–Gupta efficiency gains and losses for the complete distribution (arrows on the left-hand side

of each station marker) and the 95th percentile (arrows on the right-hand side of each station marker). Blue arrows indicate performance

gains, red arrows indicate performance losses of the CP conditional approach compared to the standard correction approach. Please note,

left-hand side arrows and right-hand side arrows do not have the same scale. For actual values see Figures 11 and 12.
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slight differences in the results in terms of downscaling
precipitation performance. This is consistent with the find-
ings of Prudhomme and Genevier (2011) who state that the
number of clusters is of lesser importance than the used
algorithm. The used SANDRA algorithm however is con-
firmed as showing reliable and good clustering perfor-
mance by various studies (e.g. Huth et al., 2008; Kučerov�a
et al., 2017; Philipp et al., 2007; Philipp et al., 2016;
Prudhomme & Genevier, 2011) which is in good agreement
with the achieved high ECVs (Figure A3) in our study. This
leaves the selection of predictors as most influential to the
suitability of a classification for a given station to be down-
scaled as described in the corresponding section. This selec-
tion has been conducted in a way that predictors have
been chosen which have been identified as important for
precipitation by other studies. For the utilization of said
predictors for downscaling and future predictions the
assumption of temporally stationary correlations of the cir-
culation and precipitation holds true to what has been
described for our most dominant predictor MSLP in Wilby
and Wigley (2000). Haberlandt et al. (2015) who evaluated
critical assumptions considering CP conditional downscal-
ing confirm a strong relationship between CPs and precipi-
tation but reject the stationarity assumption clearly.
Adding to the latter study Beck et al. (2007) and Jones and
Lister (2009) state that the stationarity of these correlations
may be questioned due to within-type variations. Due to
these findings, we stress the selection of predictors taken
into consideration and the link between CPs and precipita-
tion needs to be evaluated frequently. Additionally, the
downscaling method proposed needs to be extended to
account for such non-stationarities if used for long-term
predictions.

In addition to the classification-related characteris-
tics, three other influences should be discussed. First in
terms of bias correction method selection, our findings
have good agreement with the statements in Gud-
mundsson et al. (2012) that non-parametric correction
methods like the tested empirical quantile mapping are
more reliable than methods using parametric transfer
functions so the conducted focusing on the former can
be considered appropriate for this type of downscaling
precipitation. Despite this finding, it may be necessary
to create ensembles including different (CP conditional)
bias correction approaches to utilize the proposed
methods for impact studies due to influences of bias cor-
rection method selection as shown by Laux et al.
(2021b). Second, the used bias correction method does
not account for trends present in the precipitation time
series itself. Since the focus of our study is mainly on
the conservation of frequency changes of CPs we
decided to omit testing methods capable of precipitation
trend conservation in order to avoid potential

interference between CP frequency changes and precipi-
tation trends. Nevertheless, it must be noted that precip-
itation trend-preserving methods like quantile delta
mapping proposed by (Cannon et al., 2015) or trend-
preserving bias adjustment described by (Lange, 2019)
may improve the method's reliability even further. Thirdly
there are the characteristics of the performance evaluation
metrics themselves. As stated in Chai and Draxler (2014)
MAE and RMSE give different types of errors and different
weights resulting in the RMSE being much more sensitive
to a single outlier than the MAE. We observed this charac-
teristic, especially for the evaluation of the representation
of extremes where for example at station 9 the CP condi-
tional approach performs better in terms of KGE and
MAE but not in terms of RMSE which can be explained
by the presence of a single outlier. So the variance of
performance can partly be explained by the selection of
the evaluation metric. Our findings, therefore, support the
suggestion that more than one metric should be provided
in the evaluation process (e.g. Chai & Draxler, 2014; Laux
et al., 2021a).

6 | SUMMARY AND CONCLUSION

The results of this study show that the proposed method
of CP conditional downscaling is able to yield more reli-
able precipitation distributions even more so for the
extremes compared to the tested standard approaches.
Being aware of the discussed characteristics and limita-
tions we conclude that the presented method of CP con-
ditional downscaling provides an added value to the
reliability of daily precipitation prediction in the complex
terrain study region. Since the same bias correction is
applied to the CP conditional and the non-CP conditional
case the observed added value can only be attributed to
the CP conditioning. Due to the strict ‘circulation to envi-
ronment’ approach the identified CPs can easily be
assigned to climate model output and used for future pre-
dictions. The presented method inherits potential for
future extensions overcoming existing limitations. The
stationarity assumption described above is one of the
most important limitations to dealing with the imple-
mentation of a delta change approach taking the change
from RCM simulations and applying it for parameter re-
estimation of the precipitation modelling as proposed by
Haberlandt et al. (2015) may be an appropriate extension.
Other approaches such as including the temperature as an
additional predictor of the classification as conducted by
Beck and B�ardossy (2013) might be a suitable solution,
too. Additionally, we emphasize the option of transferring
this approach to grid-based downscaling and to a sub-daily
scale in the future. The former can be accomplished by

18 BÖKER ET AL.

 10970088, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.8136 by K
arlsruher Inst F. T

echnologie, W
iley O

nline L
ibrary on [30/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



using gridded radar precipitation observations and gives
the opportunity of being able to downscale to the area
rather than just to specific points dependent on the posi-
tion of the stations available. Expanding the approach to
the sub-daily scale which can potentially also be accom-
plished by using radar observations provides a solution to
the limitation of not being able to really distinguish heavy
precipitation events from longer-lasting rain events on the
daily scale. This opens up the opportunity to train the pre-
sented downscaling method even more specifically to the
type of event desired and advancing it to a level it can be
used for reliable heavy precipitation prediction-based plan-
ning of climate change adaption measures.
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FIGURE A2 Cumulative distribution functions used for precipitation sampling of a seven cluster solution based on mean sea level

pressure and u- and v-wind component at stations 1–14. [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE A3 Observation-model plots for QM downscaled precipitation (blue triangles) and CP conditional QM downscaled (red

circles) precipitation at station numbers 1–14. [Colour figure can be viewed at wileyonlinelibrary.com]
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