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A B S T R A C T

Pollution over insulators surfaces in outdoor environments is detrimental for long term operation of power
systems. The temporal evolution of measurement signals as the contamination increases has not been given
much attention. This work proposes presented the analysis of the time series of partial discharges measured
with an antenna in an increasing pollution condition until flashover, using a deep learning algorithm in order
to identify the early signs of an incoming flashover. Flashover was produced by gradually increasing pollution
over a bushing insulator to carry out a binary classification of signals as low or high danger. Different time
thresholds were tested and it was concluded that partial discharges measured with antennas can be used as
early detection of flashover, and a time threshold at the 70% of total experiment time gave the best result,
being noticeable transition from low to high danger signals before flashover.
. Introduction

Insulators are basic and critical components of high voltage equip-
ent, power transmission and distribution networks, as they withstand
echanical and electrical stresses under high voltage regimes. Since
sually those networks operate in outdoor environment the occurrence
f flashover due to accumulated pollution in the surface of an insulator
epresents an earth fault that, depending on its severity, may harm
he high voltage equipment itself and compromise the entire operation
f the network. Hence, monitoring the pollution in insulators is crit-
cal for preventing network permanent damage. Predicting flashover
s challenging as the electrical discharge activity is of stochastic na-
ure and it is influenced by environment factors, electrical stress and
he presence of different types of pollution. Technical taskforces had
orked in recommendations on the topic of contaminated insulators
nd how to monitor them (33.04.01, CIGRE TF, 2000; 33.04.03, 1994).
s stated by Wilkins (Wilkins, 1969), in presence of environmental
onditions such as humidity, dew or fog, a contaminated insulator
xhibits resistive surface leakage current which is significantly higher
o the capacitive leakage current under normal dry conditions. The
lectrical field distribution is distorted by this phenomena, which is
esponsible for leading into a full gas discharge over the surface of the

∗ Corresponding author.

insulator or flashover. In particular, water droplets suspended between
the sheds or water patches on the insulator surface contribute to the
electrical field distortion and thus the performance of the insulator
under flashover (El-Kishky and Gorur, 1996). Considering different
electrical field distortions and environmental factors, the conductivity
of the pollution layer is the main factor that determines the flashover
occurrence as reported by Jin et al. (2021). Because conductivity is
related to humidity, when polluted conditions are present, arc dis-
charge activity varies depending on the insulator surface material.
Hydrophobic materials, such as polymer insulators, perform better than
porcelain ones (He and Gorur, 2016b).

Different approaches have been taken to evaluate pollution severity
on insulators in order to select better material or to monitor and plan
maintenance. The most straightforward approaches are equivalent salt
deposit density (ESDD) and non-soluble deposit density (NSDD) (IEC,
2014), which require direct sampling of the surface’s pollution in order
to determine the surface conductivity. These are not practical for on-
line monitoring as the handling of the insulator itself is required for the
measurement. An alternative is the measurement of the leakage current
which does not require direct contact with the insulator, but a measure-
ment of current to ground. Different classifications of pollution severity
have been reported using this measurement technique (De Santos and
E-mail address: jorge.ardila@usm.cl (J. Ardila-Rey).
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Sanz Bobi, 2020; Liu et al., 2016; Zhao et al., 2015; Richards et al.,
003; Chandrasekar et al., 2010). Non-contact measurements consider
rom the characterization of acoustic waves, to the measurement of
ifferent wavelengths in the electromagnetic spectrum. As acoustic
ensors can detect ultrasound coming from the arc activity in polluted
nsulators, they were used to measure and classify partial discharges in
utdoor insulators in Ferreira et al. (2012) and Polisetty et al. (2019).
F antennas can also detect the electromagnetic waves that come from

he surface partial discharge activity in polluted insulators without the
eed of close connection to the sensor: in Shurrab et al. (2013) antennas
ere used to monitor and classify partial discharges on insulators and

n Paula Santos Petri et al. (2020) they were used for developing a
ortable monitoring system. Optical measurements can detect infrared
mission due to heating associated with the arc activity (Reddy and
agabhushana, 2003; Jin and Zhang, 2015), in the visible spectrum

hey can detect pollution by image recognition (Mussina et al., 2020;
in et al., 2017), and ultraviolet measurements can also detect arc
ctivity (Jin and Zhang, 2015), or combinations of all these optical
easurements (Jin et al., 2017). A comparison and combination of

he techniques, from acoustic, antenna, leakage current and optical
easurements, can be found in Bezerra et al. (2009).

A large number of diverse signals and images are obtained using the
easurement methods cited above, and machine learning algorithms

re used to find patterns in the data, aiming to interpret and classify
hem in terms of some degree of pollution severity. Deep learning
pproaches have been shown to be most useful in classifying the
easurements (Shurrab et al., 2013; Polisetty et al., 2019; Paula San-

os Petri et al., 2020; Mussina et al., 2020). Machine learning methods
re practical to solve these classification problems in an automated
anner and recent state of the art reviews have been published (Lu

t al., 2020; El-Hag, 2021).
Even before flashover, the same conditions that allow its occurrence

an produce surface partial discharge, therefore arising the question
s to how the arc activity evolves over time under contamination
onditions. The detection partial discharges is the backbone of most of
he non-contact measurement methods cited above. The contribution
f the present work is to demonstrate that time evolution of signals
rom partial discharges measured with an antenna can be used to
etect changes on the signals from low to high danger of flashover.
n example of this type of forecast using deep learning neural network

long short-term memory layers) is informed in Kates-Harbeck et al.
2019), where the onset of fusion plasma disruptions in experimental
eactors was tested. Such architecture could help to interpret the time
f evolution of the partial discharges from no activity until flashover in
n analogous manner.

Experiments were conducted to reproduce the electrical discharges,
oth partial and flashover, on a fully salt polluted bushing insulator
rom a dry condition, i.e., no discharges, to a highly wet, and thus
onductive condition, that produced the final flashover. An open slot
ntenna, tuned in the ultra-high frequency range (UHF), measured
he electromagnetic bursts from the surface and flashover discharges.
uring the measurement, rated ac voltage was applied to the polluted

nsulator while short bursts of saline water were sprayed periodically,
ncreasing surface partial discharge activity until flashover occurred.
hen a deep learning neural network, consisting of convolution layers
or feature extraction and long short-term memory (LSTM) cells for
equence interpretation was used to classify the time series of antenna
ignals in terms of different time thresholds. The signals before a
iven threshold were assigned as class 0, interpreted as low danger
f flashover, and those after the threshold were assigned as class 1,
nterpreted as high danger of flashover. The approach using different
ime thresholds allowed to interpret how early a reasonably dangerous
artial discharge activity can be recognized from experimental data.

The paper structure is as follows: Section 2 describes the exper-
mental set up to replicate the increasing pollution on an insulator.
ection 3 details the time series of antenna signals measured, the
roposed analysis, and the deep learning algorithm utilized. Section 4
ncludes the results of the model for different analysis conditions and
ts discussion. Finally, Section 5 presents the conclusions.
. Experimental methodology

The experiment runs were planned to measure the insulator’s sur-
ace partial discharge activity at distance, by means of an antenna, from
dry salt polluted initial condition, with no detectable discharges, until

lashover due to a critical conductivity because of the humidity . This
orm of contamination allowed for a gradual increase in the salt deposit
n the surface of the insulator, simulating what happens in numerous
nsulators over time, where contaminating agents accumulate on the
urface. It should be noted that in a real situation, this process may
epend on different factors and the evolution from a certain condition
o a possible flashover may occur through various paths. The electrical
ircuit of the experimental configuration is shown in Fig. 1. The test
ircuit consisted of a high voltage transformer 400 V/150 kV, where
nergy supply was taken from a 220 V 50 Hz power grid, controlled
y means of a regulating transformer. A capacitive voltage divider was
sed in parallel to the test object in order to measure the applied
oltage. The test object was a transformer bushing insulator made
f porcelain, rated 34.5 kV with 12 sheds. The porcelain insulator
as chosen because it is mainly found in primary equipment such
s power transformers and is known for its poor performance, thus
eing more critical in polluted environments compared to hydrophobic
aterials (He and Gorur, 2016b), such as polymer.

The insulator was sprayed before each test run with a saline pol-
ution consisting of 167 gr/Lt of Na–Cl dissolved in water and then
ried with an industrial dryer to produce an initial salt deposit on
he surface. An example of an initially polluted insulator is shown
n Fig. 1. During each test run nominal 34.5 kV was applied to the
nsulator until the end of the experiment, while every three or five
inutes salt pollution was sprayed with a short burst of about 1–2 s,
sing a manual spray bomb to increase the humidity of the polluted
nsulator. For each measurement run, the same insulator model was
sed, because it was observed that at the end of each experiment run
he insulator did not have visible damage on its surface as a result of
lashover. Likewise, the insulator was properly cleaned and dried before
tarting the next measurement process. Since an antenna was used as
ensor, manual sprays were preferred over electrical controlled sprays,
s the former allowed no additional electromagnetic (EM) noise to be
cquired during the measurements. To contain the salt pollution, the
nsulator was enclosed in an acrylic cage, see Fig. 1. On top of it was
laced a light bulb to dry the salt pollution sprayed to the insulator,
hus reproducing the effect of accumulated pollution.

In each test run, signals were recorded first using a low trigger,
pecifically 15 mV, just above background level to obtain some back-
round or low amplitude partial discharges, since no high amplitude
ignals were observed at the beginning with a dry condition. After
his initial signals acquisition, the trigger was increased to the value
f 25 mV and held until the end. The acquisition of signals above
ackground noise started with the periodical manual sprays and lasted
ntil the appearance of continuous flashover, thus ending the test run.

The diagnostic signal was the electromagnetic burst from surface
artial discharges and flashovers, detected with a commercial direc-
ional open slot antenna (KC R102 Deepace), see Fig. 2a, with dimen-
ions of 12.0 cm × 16.9 cm and thickness of 1 mm, and a SMA female
onnector as output port. Open slot antennas such as Vivaldi have been
eported to successfully classify partial discharges discarding external
ources of EM noise in the radiofrequency spectrum and directional
roperty (Robles et al., 2013). A MS2035B vector network analyzer
as used to measure the reflection response or 𝑆11 parameter, critical

o describe the frequencies for which an antenna is tuned and those
iminished, resulting in a good response, indicated by lowest values
f reflection coefficient, mostly concentrated above 1500 MHz, with
alleys at approximately 1500 MHz and 2500 MHz, see Fig. 2b. The
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Fig. 1. Electrical circuit, experimental setup, and a salt polluted insulator before starting test runs.
Fig. 2. (a) Antenna and (b) S11 response.
antenna was placed at a distance of 50 cm from the insulator, see
Fig. 1. Because of its directional property it was pointed to the expected
source of EM waves, i.e., the polluted insulator. The signals were
recorded using a Keysight Infiniium DSOS804a oscilloscope using a
time window of 1 μs and sampling frequency of 5 GS/s, thus having
5000 points per signal. This setting was more than enough to register
the pulses associated with partial discharges detection, as for the tuned
frequencies of the antenna the transient signals spanned for at most
hundred nanoseconds.
3. Experimental data and proposed analysis

3.1. Model description

The aim was to determine when the partial discharges activity
evolves to become dangerous and a predecessor of the flashover. It
is a complex task to identify if a partial discharge activity is danger-
ous or not because the diverse measured signals are not uniformly
distributed in time. To tackle this challenge the time series of partial
discharges signals were analyzed as a binary classification in terms
of time, using a deep learning model that combined the extraction of
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features from the signals waveform, the time difference between two
consecutive signals, and the sequence interpretation of those merged
features. This approach showed good results in other physical phenom-
ena forecast (Kates-Harbeck et al., 2019). The binary classification was
arried out with a supervised learning approach. The model was trained
o identify the partial discharges activity as low danger of flashover,
lass 0, and high danger of flashover, class 1. Low danger being the
ignals at the very beginning of the experiment and high danger those
lose to the moment of flashover. Different points in time, named time
hresholds from now on, were tested to make this separation of classes.
y changing these time thresholds, the idea was to find a model output
hat balances no early class 1 classification (false positive too early) and
lear transition to class 1, preferably before flashover. In this manner
he model output inferred the coming flashover.

To analyze the signals and after different trials, the approach that
sed the sequence interpretation of both waveform features and their
ime interval between signals, i.e., a measure of how often the dis-
harges were detected, produced better results than, for instance, just
sing the waveform characteristics. The model extracted the wave-
orm’s features via convolution layers and concatenated them with the
ime interval between signals, and then the sequence of those features
as processed with long short-term memory cells. Convolutional layers
ad been used extensively in areas such as image recognition, in
articular in the area of partial discharges activity recognition (Paula
antos Petri et al., 2020; Mussina et al., 2020; Lu et al., 2020). A
odel based on convolution and long short-term memory (LSTM)

ells was reported to successfully forecast physical phenomena (Kates-
arbeck et al., 2019). To use these memory cells, data was separated

n time steps or groups. Also, grouping signals,takes into consideration
he behavior of the entire group of signals features rather than their
ndividual features, hence reducing the influence of sporadic signals
hat can be, for example, related to strong electromagnetic noise from
lectronic equipment or the arc activity itself, given the randomness of
he phenomena, which can be of high amplitude, but not necessarily
angerous if it is not frequent in time. Fig. 3 illustrates the analysis

arried out and at the bottom of the figure an example of the results t
obtained is shown. The output of the model is a binary classification
decision that is made for each group of signals that conform each
experiment run (black line). The assigned label of the groups (red
line) was according to a given time threshold. The time point when
the partial discharge activity evolved to become dangerous can be
determined when the classifications start to appear with probability
above a certain decision threshold (blue line), 0.5 for example.

3.2. Experimental data

From the experimental setup described in the previous section, ten
experiment runs were made. Each run corresponds to a sequence of
antenna signals gathered during the contamination process. In Table 1
re summarized the number of signals obtained in each run and their
espective time duration (from dry condition to flashover). Experiment
uns lasted between one to four hours. This time depended mainly
n the quantity of the initial salt deposit and frequency of salt water
prays. In experiments 1 to 5 the salt sprays were applied each 5 min,
n experiments 6 to 10 they were applied each 3 min. These time
ntervals between sprays were chosen to give time for the wet process,
.e., the droplets flowing down the insulator, to slowly generate a
artial discharge activity, that in early stages of the experiment started
ith a few discharges and then ceased because the humidity dried
ff. In later stages, the partial discharge activity is sustained in time
ntil the flashover occurred. On the contrary, a constant spray of salt
ollution would have produced almost immediate flashover with no
hance of effectively observe how the arc discharges appeared as the
etting process took place. The spray frequency partly explains the
iverse experiment times obtained. It should be noted that the number
f signals obtained in each run is not necessarily correlated with the
xperiment time because the process itself is highly stochastic and the
prays were manually controlled, so even one second of additional
ulsation implied more salt droplets flowing down the insulator and
hus more discharges were produced. In addition, following the first
ontinuous flashover observed, a strong humming sound was audible,

herefore frequent signals were detected by the antenna, increasing
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Table 1
Experiment runs details.

Experiment Number of signals Experiment time [min]

1 1565 182.45
2 985 100.45
3 2745 205.87
4 2775 237.13
5 2220 122.22
6 1430 132.13
7 1395 136.63
8 1535 168.07
9 1160 126.65
10 1645 70.70

the number of signals acquired at the end of the experiments in an
uncontrolled manner. In some runs, in particular the experiment 10, it
was observed that salt water droplets suspended between the insulator’s
sheds, tended to produce more partial discharge activity, thus more
signals were acquired, even though it was the shortest experiment run
obtained.

To illustrate the sequence of signals of an experiment run, Fig. 4
shows the sequence of the signals’ energy, which is a feature parameter
used to describe partial discharges detected by antennas Reid et al.
(2012). Energy is calculated as ∑𝑁

𝑖=0 𝑣[𝑖]
2, where 𝑣[𝑖] are the samples of

given signal having a total of 𝑁 points (5000 points in the measured
ignals). The sequences obtained can be described as follows: first not
o high amplitude and not frequent partial discharges at the start,
hen moderate to high magnitude and more frequent partial discharges
uring the middle of the experiment, and finally, near flashover and
fterwards a mix between high magnitude and even corona partial
ischarges with high repetition rate. This time behavior of the partial
ischarges sequence is more or less similar for all the experiment runs,
ainly because the experiment procedure of salt accumulation and

ncreasing of humidity was the same, but given the stochastic nature
f the phenomenon they span different total experiment times.

.3. Proposed analysis

As all experiment runs ended with a sustained flashover, the aim
as to determine when the partial discharge activity clearly evolved to
ecome dangerous, i.e., predecessor of flashover. To interpret the time
volution of partial discharges a deep learning model with memory
ayers was implemented to analyze the data and classify the signals as
ow or high danger of flashover. As the exact or correct label of such
ignals classification it is unknown a priori given the diverse signals
easured from the phenomena, it is only known that signals with low
anger of flashover are expected to be found at the beginning and
ignals with high danger of flashover are to be identified at the end of
he experiment. If the antenna signals are to be useful at this task then,
t sometime during the experiment, the antenna signals behavior must
hange to reflect this transition from low to high danger of flashover.
hus, the model needed to identify this transition based on just the
ntenna signals.

In order to use memory layers, signals had to be grouped into
ubsets of five time steps because this way the model produced rea-
onably good results in contrast to larger groups. This approach gives
ore importance to the behavior of a group of signals rather than

heir particular waveforms, thus reducing the influence of sporadic
ignals which appeared due to the randomness of the phenomena or
nother possible external sources of electromagnetic noise. The groups
ere labeled as class 0 (low danger) or class 1 (high danger) to be
nalyzed as a binary classification problem carried out with the deep
earning model. A time threshold was defined to separate both classes
n each experiment dataset, i.e., a point in time when the change of
ntenna signals behavior should occur: before the threshold the groups
f signals were labeled as class 0 and after the threshold, class 1. Eq. (1)
hows the label definition where 𝑇𝑚𝑎𝑥 is the experiment total time,
ee Table 1, and 𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 a fraction of total time to define the time
hreshold.

=

{

1 𝑡 >= 𝑇𝑚𝑎𝑥 × 𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 Else

(1)

Different time thresholds had to be tested in this study because
esults can differ with different output labels. If the model is trained
o learn patterns in the partial discharge activity near flashover it can
e found of little use as it would give no much prediction horizon. On
he contrary, just at the start of the experiment the problem is trivial
s all experiment runs ended with flashover. In a practical application,
he time threshold definition might also depend on how critical the
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Fig. 5. Neural network model.
equipment under study is, so an early time threshold could be needed
for critical equipment while for others it could be relaxed. As most of
the signals were detected from about 40% of experiment time onwards,
the time thresholds considered were 0.5, 0.6, 0.7, 0.8 and 0.9. Time
thresholds below 0.5 produced strong data imbalance between classes,
making prediction by mere chance because it would be trivial for
the model to just predict the most frequent class 1 to get a good
performance score.

In order to achieve generalization, a deep learning model requires
many examples for its training, this presents a problem for phenomena
that takes too much time to develop, because the available measure-
ments are not enough. Such is the case of the experiments of this study.
A balance between feasible experiment time and enough experiment
samples had to be reached. A reasonable justification for the number
of experiment runs is as follows: Although ten runs were reported, note
that each consists of the order of a thousand signals, see Table 1, thus it
was considered that enough signals samples were available for binary
classification of the deep learning analysis. Also, the number of signals
depended on the trigger level. A low value maintained during the whole
experiments would have produced a large quantity of signals, mostly
background noise, making the data size unmanageable and of little use.

To take the most advantage of the ten experiments, the model
was cross validated using the K-folds approach (James et al., 2013).
In particular, K = 3 was used, meaning that, at random, two thirds
of the runs were used in the training process and the third left was
used as testing. The training process was implemented for a maximum
of 100 epochs. It was observed that the minimization of the loss
function occurred during this number of epochs, and the evaluation of
generalization was made based on the test set directly. This process
was repeated until all ten runs were part of the testing subset. It
should be noted that in each training/testing separation the model was
redefined, therefore a model with new parameters was used in each
training/testing iteration. For the main purpose of this work it was
more important to obtain consistent binary classifications in terms of
time than the model itself. An optimization of this model is beyond the
scope of this work as first the usefulness of the measurement signal had
to be assessed, i.e., to relate two physical phenomena. Using the K-folds
approach and the model redefinition in each iteration, the information
of one experimental run learnt by the model during training was not
used again when the same run took part of the test subset. The process
was repeated for each five time thresholds considered in the analysis.

3.3.1. Deep learning model
As mentioned at the beginning of this section, the proposed model to

analyze the data of antenna signals was a combination of convolutional
and long–short term memory (LSTM) layers: the convolutional part to
search for features in the waveforms and the LSTM to interpret the
sequence. This model was implemented in the Python programming
language using Keras for Tensorflow.

A convolutional layer consists of convolution operations between
an image and a filter matrix which passes along every data point of
the image. This calculation allows a model to learn local features of an
image, such as edges or particular shapes (Lecun et al., 2015). The 5000
points signals acquired with the oscilloscope were interpreted as a 2D
matrix with one of its dimensions equal one and the other 5000. It is
worth noting that there are several alternative methods to implement
feature extractors for a given signal, such as utilizing mathematical
transforms (e.g., wavelet), directly reshaping the input waveform to
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n
b

onvert the 1D signal into a 2D matrix, or processing the signal with
ecurrent layers. In terms of simplicity, convolution can be considered
s one of the most practical approaches for implementing this analysis.

The long short-term memory is a recurrent neural network architec-
ure that allows the storage of data representations, i.e., a hidden state,
iven by recent events and those that are far behind in time (Hochreiter
nd Schmidhuber, 1997).

The signals gave information about the shape of the pulses as-
ociated with the partial discharge detection and the time interval
etween recorded signals gave information regarding how quickly they
ccurred. The scheme of the deep learning model to capture these
eatures is summarized in Fig. 5. The feature model extractor obtained
 b
the features of the signals waveforms. This information was interpreted
in a time distributed manner in the complete model, meaning that those
features were determined for each signal in the group of five. This result
was concatenated with the time interval sequence (another feature).
The long LSTM layer analyzed the sequences of those concatenated
features, and the final decision was made by a dense layer with a single
unit and activation function sigmoid as is traditionally used in binary
classification. The loss function implemented was binary cross-entropy.

The LSTM layer was implemented as stateful, meaning that a fixed
umber of groups of five signals, i.e., the number of batches, had to
e specified for the model to be able to retain memory of the previous
ehavior in an experimental run data. As shown in Fig. 5 this number
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was specified as 10. A too large batch number, for example 100, was
considered impractical as the model would need a large number of
signals to make a prediction. On the contrary, if the batch number is
1 the classifications were too oscillatory in time, thus useless for the
intended aim of this study. The total number of groups of five signals in
an experiment run data had to be multiple of 10. Therefore, a padding
was applied to the data by adding fictitious signals with only −10 value
at the start of each experiment run measured sequence of signals. The
padded values were left out of the analysis in the complete model by
applying masking layers right after the inputs layers.

4. Results and discussion

In most of the runs, and depending on the time threshold under
consideration, the results of the binary classification allowed to make a
clear distinction between low danger and high danger groups of signals,
although this distinction did not occur as exactly as the proposed label
assignation by the time threshold, i.e., the distinction made by the
model could occur before or after this time threshold. Also, oscillations
in the classifications could be observed for some runs, indicating that
the model was unsure of the classification. One of the results considered
of interest was the classifications for the time threshold of 0.7 shown
in Fig. 6. The description of the curves shown is as follows: the red
line is the assigned label to each group of five signals according to
the time threshold under study, Eq. (1), the prediction or classification
of the model is shown with a black line, and the blue horizontal
line corresponds to a decision threshold with the value of 0.5. Also,
the vertical green line, which corresponds to the first time the model
output goes above the decision threshold is highlighted since that is
the class transition expected to find with the antenna signals and the
model. The decision threshold is the value set for classification. If the
output of the model, a sigmoid, is above this value, it is considered
as class 1, if it is below the value, it is class 0. This threshold can be
defined with different values depending on how strict the identification
of dangerous partial discharges activity needs to be. For a practical
monitoring application, at the point in time in which the model output
reaches the decision threshold (highlighted with the green vertical
line), an alarm would trigger indicating the need of cleaning. The rest
of results are in Figs. A.8–A.11 in the annex section Appendix.

The point in time when the first classification of class 1 occurs, was
sed to define an error in time related to the class labeling proposed.
t was devised as a measure of how much time earlier or later the
lass transition occurs compared to the proposed class labeling. The
rror, Eq. (2), corresponded to the time difference in minutes between
he first time when the model assigned a class probability above 0.5
�̂� >= 0.5), though this decision threshold could vary in a practical
pplication depending on how sensitive the decision need to be, and
he time when the first class 1 label (𝑦 >= 0.5) appears according to
he time threshold, Eq. (1). The errors obtained are shown in Table 2
nd in Fig. 7.

𝐫𝐫𝐨𝐫 = 𝑡[�̂� ≥ 0.5]0 − 𝑡[𝑦 ≥ 0.5]0 (2)

With time threshold of 0.5 and 0.6 the classifications tended to
ssign class 1 long before the time threshold, see Figs. A.8 and A.9 and
ome experiment runs had class 1 classifications right at the start. Since
he starting condition of the insulator was highly polluted it could had
een possible that with the first sprays the partial discharge activity
tarted in a similar manner to those encountered near the middle of the
xperiment, so with the time threshold of 0.5 and 0.6 the model learnt
o recognize this activity too early. Note that the average and dispersion
f the errors in time prediction were greater for time thresholds 0.5 and
.6, see Fig. 7. For some runs, the model with these thresholds seems
o be confused in making a distinction between low and high danger
roups of signals, although for others it performed reasonably.

With time thresholds of 0.7, 0.8 and 0.9 the absolute average error
nd the dispersion were lower. The results of 0.7 and 0.8 thresholds
Table 2
Classification errors, mean and standard deviations, in terms of time thresholds.

Errors per time thresholds [min]

0.5 0.6 0.7 0.8 0.9

Experiment 1 −93.4 −58.9 −78.9 −60.2 −30.0
Experiment 2 −5.5 −11.0 −21.7 −1.0 8.5
Experiment 3 −44.5 −25.8 −48.2 −57.3 −73.6
Experiment 4 −117.3 −143.2 −77.5 −69.7 −5.8
Experiment 5 −55.3 −73.5 −53.6 −59.6 −62.0
Experiment 6 −10.8 −19.2 −14.3 −14.8 −28.0
Experiment 7 −21.4 −26.8 −22.9 −21.3 −38.9
Experiment 8 −31.2 0.0 −18.9 −13.2 3.8
Experiment 9 −10.5 16.3 −7.9 6.7 10.3
Experiment 10 3.5 −2.5 1.3 −2.0 −12.6

Mean −38.6 −34.5 −34.3 -29.2 −22.0
Standard deviation 37.8 44.3 27.0 27.7 27.6

Fig. 7. Mean and standard deviation of errors per time threshold under study.

were considered the best since the dispersion and mean error were the
lowest, respectively, and the time classifications were reasonable, see
Figs. 6 and A.10, in the sense that a clear transition from class 0 to
1 could be observed in most of the runs before or almost at the time
threshold used. For the 0.9 threshold, see Fig. A.11, the lowest absolute
average error, some runs showed the transition into class 1 considerably
after the threshold, almost at the last minutes of the experiment, when
the flashover was already happening. The transition occurring after
the threshold was interpreted as bad performance because it indicated
that no early signs of danger was detected as it was the case of the
threshold of 0.9. Also, in a possible application, such extreme limit
is not recommended since it has been demonstrated that flashover
on service insulators can occur at lower contamination levels than
laboratory tests (He and Gorur, 2016a). On average, the transition from
class 0 to 1 was observed before the time threshold studied, see the
negative mean values of errors in Fig. 7.

It should be noted that given the fixed experimental method fo-
cused on contamination accumulation and increasing of humidity, the
time evolution of the signals was similar in the experiment runs, so
the generalization to other types of contamination procedures is not
guaranteed based on these results.

The stochastic nature of the electrical discharges and their ap-
pearance in a wet salt polluted environment produced variability in
the duration of all the experiments made, despite of the controlled
environment and procedure of experiments. Moreover, it is expected
that the shape of the insulator could also affect the results, as the
salt droplets needs to flow down the insulator to excite the surface
partial discharge phenomena, thus producing different flashover test
results (He and Gorur, 2016b). Thus, for a practical application, these
same experiments should be made with different shape insulators.

Taking into account the different results obtained, it was not pos-
sible to determine an exact time from which the flashover could be

predicted with total certainty, but the antenna measurement can be
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Fig. A.8. Results using a time threshold of 0.5.
n fact used to at least find a behavior that distinguishes a dangerous
artial discharge activity and how this evolves in time. A completely
egative result would have been to obtain the prediction curve of the
scillatory model for all runs of the experiments and regardless of
he time threshold. Therefore, the measurement of partial discharges
sing an antenna have some information that can be related to a
ossible future flashover in this particular experimental procedure. The
xperiment setup and methodology clearly differs from a real on site
ituation for an insulator, being the application of salt water pollution
nd relative antenna orientation the most determinant factors in the
ignals obtained. If the open slot antenna was not directly oriented
o the path were the droplets flow, then way less signals would be
acquired, thus making this type of measurement less sensible to the
phenomena. A future work needs to tackle the optimization of the
model, a more sensible antenna and experimental conditions closer to
the reality of this phenomena.

5. Conclusions

In this work ten experimental series were analyzed to determine
how the partial discharge activity on a salt polluted insulator evolved
into flashover as the humidity increased. As this phenomenon is highly
stochastic and diverse sets of signals from the partial discharges, were
measured at a distance with an antenna, a deep learning approach
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Fig. A.9. Results using a time threshold of 0.6.
ith time memory layers was implemented to look for patterns that
ould be interpreted as indicators of change in partial discharge activity
hat could lead to flashover. The analysis was carried out as a binary
lassification where groups of signals were labeled as low danger, class
, before a certain time threshold, and high danger, class 1, after it.
ive different time thresholds were tested in terms of fraction of total
xperiment time: 0.5, 0.6, 0.7, 0.8 and 0.9.

Using the time thresholds below 0.5, 0.5 and 0.6 resulted in classi-
ications too early as class 1, even as some of the experiments started.

ith the extreme 0.9 threshold some experiments were labeled as
angerous only right at the occurrence of flashover, thus in some
cases no early signs of dangerous partial discharge activity in the data
were found. The best classification performance in terms of time was
obtained using the threshold of 0.7 and 0.8. Early signs of dangerous
partial discharge activity can be detected early if a deep learning model
is trained to classify groups of discharge signals using these thresholds.

It was concluded that the use of an antenna to measure partial
discharges allows distinguishing between groups of signals with low or
high danger of flashover, with a reasonable time identification between
these two classes. However, no certain time to the flashover can be
determined by this approach.
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Fig. A.10. Results using a time threshold of 0.8.
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Fig. A.11. Results using a time threshold of 0.9.
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