
A Generic Flexible and Scalable
Method for Using Evolutionary

Algorithms in Cluster Computing
Environments

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

M.Sc. Hatem Khalloof
aus Ain Aljern

Tag der mündlichen Prüfung: 16.06.2023
Erster Gutachter: Prof. Dr. Veit Hagenmeyer
Zweiter Gutachter: T.T.-Prof. Dr. Pascal Friederich

An investment in knowledge pays the best interest
— Benjamin Franklin

Abstract

Recently, the complexity of optimization problems has dramatically increased leading to
non-linear, multimodal, constrained and non-convex search spaces. Generally, deterministic
or conventional optimization methods cannot tackle such problems without simplifications
which in turn are not trivial tasks. Among others, population-based metaheuristics – such as
evolutionary algorithms – are convincing alternatives to solve complex and large-scale opti-
mization problems. They make hardly any demands on the formulation of the optimization
problem since they do not require convexity, linearity, continuity or derivability. They are
able to escape from local optima and handle objective functions with noise. Additionally,
population-based metaheuristics have a generic implementation which facilitates their adap-
tation to solve any new optimization problems. These beneficial traits do not exclude some
drawbacks such as the absence of guarantee for finding the global optimum and the high
computational demands for solving complex and large-scale problems in a timely manner.
To overcome these limitations, it is of great importance to leverage the advantage of the
inherent parallel nature of population-based metaheuristics and their ability to formulate
hybrid methods along with other algorithmic approaches.

In the context of parallelizing and hybridizing population-based metaheuristics, the interest
in using robust and modern software technologies for exploiting the enormous computational
capabilities of modern hardware such as clusters and cloud environments has increased.
But despite that, there are still some open challenges to be faced. For example, which
software design can be used to facilitate the parallelization process of already developed
population-based metaheuristics and increase the flexibility to hybridize them with other
algorithms to solve more complex tasks in cluster computing environments.

In the present thesis, a generic, flexible and scalable method for using existing population-
based metaheuristics such as evolutionary algorithms in cluster computing environments is
conceptualized and developed. To ensure more efficiency in parallelizing and hybridizing
evolutionary algorithms, our solution is developed in a highly modular manner in contrast
to state-of-the-art monolithic complex software architectures. In this solution, we han-
dle the problem of parallelization of evolutionary algorithms by proposing two methods.
For both of them, we introduce a new perspective to realize and deploy several parallel
models of evolutionary algorithms in cluster computing environments by distinguishing
between functionalities related to the evolutionary algorithms and the ones related to the
parallelization models. We decouple the basic building blocks of each functionality and
encapsulate them in separate small and autonomous software; known as service. This
enables the developers of evolutionary algorithms to easily combine the building blocks
to form one of the well-known parallelization models. While the first method focuses on

iii

Abstract

mapping existing evolutionary algorithms to the basic parallelization models such as the
Global Model and the Coarse-Grained Model, the second one combines two or more of the
basic parallelization models in a hierarchical form to enhance the parallel performance by
reducing the disadvantages of each model and leveraging the advantages.

For enhancing the performance and the applicability of the evolutionary algorithms on
a wide range of application scenarios, a hybridization process between existing evolu-
tionary algorithms and other algorithms in cluster computing environments is required.
To facilitate such hybridization, further development of our solution is achieved whereby
two new hybridization approaches based on machine learning techniques for the partial
seeding of the initial populations of evolutionary algorithms are proposed. In the present
thesis, we introduce simple mechanisms to facilitate the collaboration of evolutionary al-
gorithms with other algorithms and tools like simulators and forecasting frameworks. Our
benchmark experiments on real-world optimization problems indicate that the proposed
solution is promising not only in increasing the scalability and enhancing the performance
of evolutionary algorithms but also in extending the applicability of them, hence opening
new perspectives for applying evolutionary algorithms on a wide spectrum of real-world
optimization problems.

iv

Zusammenfassung

In letzter Zeit hat die Komplexität von Optimierungsproblemen drastisch zugenommen, was
zu nichtlinearen, multimodalen, komplex beschränkten und nicht konvexen Suchräumen
führt. Im Allgemeinen können deterministische oder konventionelle Optimierungsmethoden
solche Probleme nicht ohne Vereinfachungen lösen, was wiederum eine komplexe Aufga-
ben darstellt. Populationsbasierte Metaheuristiken - wie evolutionäre Algorithmen - sind
überzeugende Alternativen zur Lösung komplexer und großskaliger Optimierungsprobleme.
Sie stellen kaum Anforderungen an die Formulierung des Optimierungsproblems, da sie
keine Konvexität, Linearität, Stetigkeit oder Differnzierbarkeit erfordern. Sie sind in der
Lage, lokale Optima zu vermeiden und Zielfunktionen mit Rauschen zu behandeln. Darüber
hinaus stehen populationsbasierte Metaheuristiken über eine generische Implementierung
zur Verfügung, die ihre Anpassung zur Lösung beliebiger neuer Optimierungsprobleme
erleichtert. Diese vorteilhaften Eigenschaften sind jedoch nicht ohne Nachteile, wie der Ver-
lust der Garantie für das Auffinden des globalen Optimums und der hohe Rechenaufwand für
die zeitnahe Lösung komplexer Probleme. Um diese Einschränkungen zu überwinden, ist es
von großer Bedeutung, die inhärente Parallelität von populationsbasierten Metaheuristiken
und ihre Fähigkeit, hybride Methoden zusammen mit anderen algorithmischen Ansätze zu
formulieren, zu nutzen.

Im Zusammenhang mit der Parallelisierung und Hybridisierung von populationsbasierten
Metaheuristiken hat das Interesse am Einsatz robuster und moderner Softwaretechnologi-
en zur Nutzung der gestiegenen Rechenkapazitäten moderner Hardware wie Cluster und
Cloud-Umgebungen gewachsen. Trotz dieser Entwicklungen gibt es immer noch offene
Herausforderungen, wie man den Parallelisierungsprozess bereits entwickelter populations-
basierter Metaheuristiken in Cluster-Computing-Umgebungen und die Hybridisierung mit
anderen Algorithmen erleichtern kann und wie man die parallele Leistung der evolutionären
Algorithmen verbessern kann.

In dieser Dissertation wird ein generisches, flexibles und skalierbares Verfahren zur Nutzung
bestehender populationsbasierter Metaheuristiken im Allgemeinen und evolutionärer Algo-
rithmen im Besonderen in Cluster-Computing-Umgebungen konzipiert und entwickelt. Um
mehr Effizienz bei der Parallelisierung und Hybridisierung von evolutionären Algorithmen
zu gewährleisten, ist unsere Lösung im Gegensatz zu modernen monolithischen komplexen
Softwarearchitekturen hochgradig modular aufgebaut. In unserer Lösung behandeln wir
das Problem der Parallelisierung von evolutionären Algorithmen durch die Einführung
zweier Methoden. In beiden Methoden stellen wir eine neue Perspektive für die Reali-
sierung und den Einsatz verschiedener paralleler Modelle evolutionärer Algorithmen in
Cluster-Computing-Umgebungen vor, indem wir zwischen Funktionalitäten, die mit den

v

Zusammenfassung

evolutionären Algorithmen zusammenhängen, und solchen, die mit den Parallelisierungs-
modellen zusammenhängen, unterscheiden. Wir entkoppeln die grundlegenden Bausteine
jeder Funktionalität und kapseln sie in separater und autonomer Software, die als Service
bezeichnet wird. Dies ermöglicht es den Entwicklern von evolutionären Algorithmen, die
Bausteine einfach zu kombinieren, um eine der grundlegenden Parallelisierungsmodelle
umzusetzen. Während sich die erste Methode darauf fokussiert, bestehende evolutionäre
Algorithmen auf eines der grundlegenden Parallelisierungsmodelle wie das Global Modell
und das Coarse-Grained Modell abzubilden, fokussiert sich die zweite Methode darauf,
zwei oder mehr der grundlegenden Parallelisierungsmodelle in einer hierarchischen Form
zu kombinieren, um die parallele Leistung des EA zu verbessern, indem die Nachteile jedes
Modells reduziert und die Vorteile genutzt werden.

Um die Leistung und die Anwendbarkeit der evolutionären Algorithmen in einem brei-
ten Spektrum von Anwendungsszenarien zu verbessern, ist ein Hybridisierungsprozess
zwischen bestehenden evolutionären Algorithmen und anderen Algorithmen in Cluster-
Computing-Umgebungen erforderlich. Um eine solche Hybridisierung zu ermöglichen, wird
unsere Lösung weiterentwickelt, wobei zwei neue Hybridisierungsansätze für das partielle
Seeding der initialen Population von evolutionären Algorithmen durch den Einsatz von ma-
schinellen Lernen untersucht werden. In dieser Arbeit stellen wir Mechanismen vor, die die
Zusammenarbeit von evolutionären Algorithmen mit anderen Algorithmen und Werkzeugen
wie Simulatoren und Vorhersage-Frameworks erleichtern. Unsere Benchmark-Experimente
mit realen Optimierungsproblemen zeigen, dass die vorgeschlagene Methode nicht nur die
Skalierbarkeit und die Leistung von evolutionären Algorithmen erhöht, sondern auch deren
Anwendbarkeit, indem sie neue Perspektiven für die Anwendung evolutionärer Algorithmen
auf ein breites Spektrum von realen Optimierungsproblemen eröffnet.

vi

Acknowledgement

The research presented in this dissertation was conducted at the Institute for Automation and
Applied Informatics (IAI) of the Karlsruhe Institute of Technology. Attaining the present
dissertation has been a remarkable journey and I would like to express my utmost gratitude
to all those who have supported me along this journey.

First and foremost, I would like to express my genuine heartfelt appreciation to my advisor,
Prof. Dr. Veit Hagenmeyer for granting me the opportunity to pursue my Ph.D. research
under his supervision in a highly competitive working environment at IAI. Very special
thanks goes to the co-referee Prof. Dr. Pascal Friederich, for accepting the role of reviewing
my thesis.

I would like to express my appreciation and gratitude to Dr. Clemens Düpmeier for his
inspiring ideas, continuous support and constructive advice from the beginning of my
research journey. His guidance has been invaluable in shaping my work. I would also
like to express my thanks to Dr. Wilfried Jakob for his unwavering support, guidance and
collaborative efforts throughout the research period. Working closely with them has allowed
me to enhance my understanding in the field of evolutionary algorithms, parallel computing
and software engineering.

I want to express my appreciation to all the students that I had the pleasure of working
with (in order of appearance): Phil Ostheimer, Mohammad Mohammad, Seifeddine Mazigh,
Sergen Ciftci, Saina Khalili and Ragheed Khalouf. Mentoring you has been the most
rewarding aspect of my role at IAI.

I also wish to thank my longtime friend (from bachelor to Ph.D.) and best office mate, Dr.
Shadi Shahoud. This success would not have been achieved without your support, your great
mind, and our sensitive and fruitful discussions throughout 17 years. Thank you for patiently
answering all my questions and providing valuable feedback. Thank you for reviewing
this dissertation. Your expertise and willingness to assist have been instrumental in the
development of this research. I would also like to express my gratitude to my colleagues at
IAI for the wonderful five years we’ve shared, particularly Dominique Sauer, Eric Braun,
Richard Jumar, Rafael Poppenborg, Christian Schmitt, Claudia Greceanu, Dr. Thorsten
Schlachter, Christina Griess, Jianlei Liu, Richard Lutz, Malte Chlosta, Jannik Sidler and Dr.
Kevin Förderer.

I would like to convey special thanks to my parents, brothers and sister. The supreme grati-
tude is to my wise mother Najeha Khalloof who is the reason for everything I have become.
You have always been by my side, endlessly supporting and caring for me throughout my
whole life. I am eternally grateful.

vii

Zusammenfassung

The ultimate thanks goes to my father Elias Khalloof who was always my safety foundation,
and who has always worked very hard to be a successful man. Rest in peace legend.

The last paragraph is dedicated to my wife, Zeina Btrous, who has provided me with power,
as well as moral and emotional support in every aspect of my life. Thank you for standing
by me during times of stress and difficulties and for your patience in the last year. Each day,
you bring happiness into my life. I am grateful for your presence and for the blossoming
of my soul since you entered my life. Thank you, sweetheart. Thank you, my small angel
Kayla, for bearing your busy Dad during your first year. Your laughs erase tiredness. You
are both my ultimate inspiration.

Karlsruhe, Juni 2023 Hatem Khalloof

ix

Contents

Abstract . iii

Zusammenfassung . v

List of Figures . xv

List of Tables . xxi

1. Introduction . 1
1.1. Motivation . 1
1.2. Research Questions . 5
1.3. Research Goals and Contributions . 7
1.4. Structure of the Thesis . 8

2. Background . 11
2.1. Optimization Problems . 11
2.2. Evolutionary Algorithms (EAs) . 13

2.2.1. Parallel Models of EAs . 18
2.2.2. Hybridization of EAs . 23
2.2.3. The EA GLEAM . 24

2.3. Parallel Computing . 27
2.3.1. Service-Oriented Architecture and Microservices Architecture . . 28

2.4. Machine Learning (ML) . 29
2.4.1. Clustering . 30
2.4.2. Artificial Neural Networks (ANNs) 30

2.5. Technology Stack . 33

3. State of the Art . 37
3.1. Parallelization of EAs . 37
3.2. Hybridization of EAs . 43
3.3. Summary and Discussion . 47

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster
Computing Environments . 49
4.1. BeeNestOpt.IAI - Conceptual Architecture for Executing Evolutionary

Algorithms in Cluster Computing Environment 50
4.1.1. Basic Services of BeeNestOpt.IAI 52
4.1.2. General Execution Workflow . 56

xi

Contents

4.2. Mapping the Global Model to BeeNestOpt.IAI Architecture 58
4.2.1. Global Model-related Services 58
4.2.2. Adaptation of the Basic Services to Support the Global Model . . 63
4.2.3. Execution Workflow . 63

4.3. Mapping the Coarse-Grained Model to BeeNestOpt.IAI Architecture . . . 68
4.3.1. Coarse-Grained Model-related Services 69
4.3.2. Adaptation of the Basic Services to Support the Coarse-Grained

Model . 72
4.3.3. Execution Workflow . 74

4.4. Evaluation . 78
4.4.1. EA GLEAM as Test Case . 79
4.4.2. Deployment and Execution on a Cluster 80
4.4.3. Experimental Setup and Results for the Global Model 81
4.4.4. Experimental Setup and Results for the Coarse-Grained Model . . 84

4.5. Summary . 96

5. Enhancing the Parallel Performance of Evolutionary Algorithms in
Cluster Computing Environments . 99
5.1. BeeNestOpt.IAI for Hierarchical Parallelization of Evolutionary Algorithms 100

5.1.1. Mapping the Coarse-Grained - Global Hybrid Model to the BeeN-
estOpt.IAI Architecture . 101

5.1.2. Execution Workflow . 104
5.2. Evaluation . 108

5.2.1. Use Case Scenario: Scheduling Hierarchical Distributed Energy
Resources . 108

5.2.2. Datasets for Power Generation/Consumption and Price 113
5.2.3. EA GLEAM for Scheduling DERS 118
5.2.4. Experimental Setup and Results 119

5.3. Summary . 131

6. Increasing the Applicability of Evolutionary Algorithms in Cluster
Computing Environments . 135
6.1. BeeNestOpt.IAI for Hybridization of Evolutionary Algorithms 136
6.2. Machine Learning-based Approaches for Hybridizing Evolutionary Algo-

rithms . 138
6.2.1. Unsupervised Machine Learning-based Approach for Hybridizing

EAs . 139
6.2.2. Supervised Machine Learning-based Approach for Hybridizing EAs 140

6.3. Evaluation . 141
6.3.1. Unsupervised Approach for Scheduling Distributed Energy Resources142
6.3.2. Supervised Approach for Scheduling Distributed Energy Resources 149
6.3.3. Experimental Setup and Results 152

6.4. Summary . 164

xii

Contents

7. Summary and Outlook . 167
7.1. Summary . 167
7.2. Outlook . 170

Bibliography . 173

A. List of Publications . 189

xiii

List of Figures

1.1. Classification of optimization methods adapted from [174, 71] 2
1.2. Evolutionary algorithms and their implementations 3
1.3. Effect of enriching evolutionary algorithms with knowledge on the performance

taken from [132] . 4

2.1. Illustration of allele, gene, chromosome and population 14
2.2. Exemplary application of evolutionary operations on genes that consist of five

character tuples . 16
2.3. The general scheme of an evolutionary algorithm as a flowchart 17
2.4. Global Model adapted from [35] . 19
2.5. Coarse-Grained Model with ring topology adapted from [35] 21
2.6. Fine-Grained Model with grid structure adapted from [35] 22
2.7. Example of a Hierarchical Model combined the Coarse-Grained Model with

the Fine-Grained Model adapted from [35] 22
2.8. Hybridization perspectives for an EA . 24
2.9. An example of a type schema proposed by GLEAM for scheduling building

24-hours day-ahead schedule for 25 different units of power generation, adapted
from [90] . 25

2.10. Example of a list of actions with segments forming an individual, adapted from
[24] . 25

2.11. Example of Artificial Neural Network a) Graphical representation of the McCulloch-
Pitts model neuron threshold unit. b) Exemplary Feedforward Network [109] 31

2.12. Exemplary schema of a deep autoencoder with seven layers 32
2.13. Recurrent Neural Networks unrolled over time taken from 1 32
2.14. The repeating module in standard RNN with a single layer is compared to the

repeating module on an LSTM containing four interacting layers taken from 2 34

4.1. The conceptual architecture of BeeNestOpt.IAI 51
4.2. The basic microservices within the Container Layer of BeeNestOpt.IAI . . . 53
4.3. Supporting the interaction between EAs and external tools 55
4.4. Mapping the Global Model to the cluster tier of BeeNestOpt.IAI 59
4.5. The concept of the E.O. Service to integrate already developed EA into BeeN-

estOpt.IAI . 60
4.6. Mapping the proposed microservices to the pseudocode of the Global Model . 65
4.7. Mapping the Coarse-Grained Model to the cluster tier of BeeNestOpt.IAI . . 68
4.8. Mapping a bi-directional ring topology with 6 islands to the publish/subscribe

channels infrastructure . 73

xv

List of Figures

4.9. Mapping the proposed microservices to the pseudocode of the Coarse-Grained
Model . 76

4.10. The technological layers of BeeNestOpt.IAI 80
4.11. The deployment process of BeeNestOpt.IAI 81
4.12. Example of how the containers of BeeNestOpt.IAI for the Coarse-Grained

Model with 4 islands are distributed over a cluster with 4 nodes 82
4.13. Overhead times with increasing population size 𝜇 per generation as average of

the workers (ranged between 8 and 120) . 83
4.14. Overhead times with increasing number of workers per generation as average

of the population sizes (ranged between 120 and 960) 83
4.15. Theoretical speedup (dotted line) vs. BeeNestOpt.IAI speedup for the Global

Model . 85
4.16. Comparison of the setup time for the islands for a complete container creation

and a reset . 86
4.17. Framework overhead for a Ring topology with 8 islands and 100 epochs,

spitted into overhead for the ‘Initialization & Termination Phases’ and ‘Iterative
Evolution Phase’ . 87

4.18. Points in Time of the ‘Iterative Evolution Phase’ of one optimization task
performed by 𝑀 islands for 𝑁 epochs . 87

4.19. Migration overhead per epoch for a Ring, Bi Ring, Ladder and Complete with
8 islands by varying the migration rate between 1 and 1024, smaller part of (4.20) 89

4.20. Migration overhead per epoch for a Ring, Bi Ring, Ladder and Complete graph
topology with 8 islands varying the migration rate between 1 and 16384 . . . 90

4.21. Migration overhead per epoch for a Ring, Bi Ring, Ladder and Complete graph
topology with 16 islands . 91

4.22. Migration overhead per epoch for a Ring, Bi Ring, Ladder and Complete graph
topology with 32 islands . 91

4.23. Migration overhead per epoch for a Ring, Bi Ring, Ladder and Complete graph
topology with 64 islands . 92

4.24. Migration overhead per epoch for a Ring, Bi Ring, Ladder and Complete graph
topology with 120 islands . 92

4.25. Speedup with 4 migrants and a Ring topology, delay varied between 0 and 32 ms 94
4.26. Speedup with 4 migrants and a Bi Ring topology, delay varied between 0 and

32 ms . 94
4.27. Speedup with 4 migrants and a Ladder topology, delay varied between 0 and 32

ms . 95
4.28. Speedup with 4 migrants and a Complete topology, delay varied between 0 and

32 ms . 95

5.1. Container and Data & Message Layers of BeeNestOpt.IAI for the Coarse-
Grained - Global Hybrid Model with 𝑁 islands and 𝑀 workers 101

5.2. Mapping the proposed microservices to the pseudocode of the Coarse-Grained
- Global Hybrid Model . 106

5.3. Hierarchical Distributed Energy Resources (DERs) with 𝑛 levels and local
Energy Management Systems (EMS) . 109

xvi

List of Figures

5.4. Use case scenario of scheduling DERs used for evaluation 110
5.5. The load profile used for evaluation . 111
5.6. 50 DERs stacked generation per hour during the first year (2010-07-01 to

2011-06-30) . 112
5.7. Mapping the defined objective functions to the fitness function 114
5.8. Outline of the Ausgrid distribution network that covers 22,275 km and includes

load centers in Sydney and regional New South Wales. Shaded regions within
the Ausgrid network correspond to postcode areas included in the dataset of
300 customers [153]. Map data: 2015 Google 114

5.9. Price schema for the residential customer taken from the Ausgrid website 3 . 115
5.10. Added aberration borders for pricing summer days 116
5.11. Added aberration borders for pricing winter days 117
5.12. Added aberration borders for pricing for other days which are not covered by

the pricing during summer or winter period, i.e., 5.10 and 5.11 117
5.13. Exemplary chromosome with three genes encoding a possible solution to sched-

ule two resources . 118
5.14. Interpretation of one chromosome with three genes for scheduling 2 DERs on a

24-hour time horizon . 120
5.15. The DERs Service and the Interpretation Service instances inside one island

with one Master and 𝑁 workers . 121
5.16. Execution time, framework overhead and container creation time of the Global

Model . 123
5.17. Execution time of the Coarse-Grained Model 124
5.18. Execution time of the Coarse-Grained Model averaged over the four communi-

cation topologies . 124
5.19. Framework overhead of the Coarse-Grained Model 125
5.20. Container creation time of the Coarse-Grained Model 125
5.21. Execution time of the Coarse-Grained - Global Hybrid Model 126
5.22. Execution time of the Coarse-Grained - Global Hybrid Model for each islands-

workers combination averaged over the four applied communication topologies 127
5.23. Execution time of the Coarse-Grained - Global Hybrid Model for each commu-

nication topology averaged over the four applied islands-workers combinations 128
5.24. Framework overhead of the Coarse-Grained - Global Hybrid Model 128
5.25. Container Creation Time of the Coarse-Grained - Global Hybrid Model . . . 129
5.26. Comparing the fastest execution times of the Global and Coarse-Grained models

to the slowest execution time of the Coarse-Grained - Global Hybrid Model . 129
5.27. Comparing the fastest execution times of the Global and Coarse-Grained models

to the fastest execution time of the Coarse-Grained - Global Hybrid Model . . 130
5.28. Comparing framework overhead and container creation time of the Global and

Coarse-Grained models to the Coarse-Grained - Global Hybrid Model 130
5.29. Comparing execution time of Homogeneous-Synchronous Hybrid Model to

Heterogeneous-Synchronous Hybrid Model and Heterogeneous-Asynchronous
Hybrid Model . 131

6.1. Support-and-Learning Service (S&L Service) in the Container layer 137

xvii

List of Figures

6.2. Concept of the proposed ML-based hybridization approaches of EAs 139
6.3. Concept of the unsupervised approach to assist EAs for scheduling DERs . . 143
6.4. Blue line depicts the 50 DERs stacked generation during the first month of the

training dataset. The red line depicts the corresponding temperature measured
on those days . 144

6.5. Blue line depicts the 50 DERs stacked generation during the first month of the
training dataset. The red line depicts the corresponding solar radiation measured
on those days . 144

6.6. Clustering of the Consumption (c) features (24 features). The left side displays
the raw values of the c features and on the other side, the same features reduced
to two features (X0, X1) by utilizing an Autoencoder (c_ae) 146

6.7. Clustering of the Generation (g) features (9 features). The left side displays the
raw values of the g features and on the other side, the same features reduced to
two features (X0, X1) by utilizing an Autoencoder (g_ae) 146

6.8. Clustering of the Weather (w) features (8 features). The left side displays the
raw values of the w features and on the other side, the same features reduced to
two features (X0, X1) by utilizing an Autoencoder (w_ae) 147

6.9. Clustering of the combination of Consumption and Generation (cg) features
(33 features). The left side displays the raw values of the cg features. On the
other side, the same features reduced to two features (X0, X1) by utilizing an
Autoencoder (cg_ae) . 147

6.10. Clustering of the combination of Consumption and Weather (cw) features (32
features). The left side displays the raw values of the gw features. On the other
side, the same features are reduced to two features (X0, X1) by utilizing an
Autoencoder (cw_ae) . 148

6.11. Clustering of the combination of Generation and Weather (gw) features (17
features). The left side displays the raw values of the gw features. On the other
side, the same features are reduced to two features (X0, X1) by utilizing an
Autoencoder (gw_ae) . 148

6.12. Clustering of the combination of Consumption, Generation and Weather (cgw)
features (41 features). The left side displays the raw values of the cgw features.
On the other side, the same features are reduced to two features (X0, X1) by
utilizing an Autoencoder (cgw_ae) . 149

6.13. Concept of supervised approach to assist EAs for scheduling DERs with its two
phases, i.e., training and prediction phase 150

6.14. Illustration of the Seq2Seq LSTM model architecture with multiple outputs . 151
6.15. Mapping the proposed microservices of the Global Model with the Support-

and-Learning-Service (brown hexagon) to the pseudocode of the Global Model
of EA . 152

6.16. Main microservices of the Global Model with Support-and-Learning-Service
(brown hexagon) and Interpretation Service (dark blue hexagon) for scheduling
DERs . 153

6.17. Summary of the evaluation setup . 154
6.18. Consumption profiles of customer No. 102 for the two considered use case

scenarios . 154

xviii

List of Figures

6.19. Stacked generation of all 50 DERs on the 18. Juli 2011 155
6.20. Stacked generation of all 50 DERs on the 3. April 2012 155
6.21. Results of the convergence speed for the load profile A (simple) applying the

unsupervised hybridization approach . 158
6.22. Results of the convergence speed for the load profile A (simple) applying the

supervised hybridization approach . 159
6.23. Results of the solution quality for the load profile A (simple) applying the

unsupervised hybridization approach . 159
6.24. Results of the solution quality for the load profile A (simple) applying the

supervised hybridization approach . 160
6.25. Results of the convergence speed for the load profile B (complex) applying the

unsupervised hybridization approach . 161
6.26. Results of the convergence speed for the load profile B (complex) applying the

supervised hybridization approach . 161
6.27. Results of the solution quality for the load profile B (complex) applying the

unsupervised hybridization approach . 162
6.28. Results of the solution quality for the load profile B (complex) applying the

supervised hybridization approach . 162
6.29. Comparing the best results of both load profiles, A (simple) and B (complex) 163

xix

List of Tables

2.1. Important properties of optimization problems 12

4.1. The APIs of the Opt.J.M. Service . 54
4.2. The publish/subscribe channels of the Opt.J.M. Service 55
4.3. The APIs of the Co.Ma. Service . 56
4.4. The APIs of the Da.Me. Service . 57
4.5. The status-channel of BeeNestOpt.IAI . 57
4.6. The APIs of the E.O. Service for the Global Model 60
4.7. The publish/subscribe channels of the E.O. Service for the Global Model . . . 61
4.8. The APIs of the Ds.S. Service for the Global Model 61
4.9. The publish/subscribe channels of the Ds.S. Service for the Global Model . . 62
4.10. The publish/subscribe channels of the Ca. Service for the Global Model . . . 62
4.11. Mapping the microservices of the Global Model to the three execution phases 64
4.12. Summary of the REST-APIs used by the services of the Global Model where

(Rec.) refers to the receiver and (Sen.) refers to the sender 66
4.13. Summary of the publish/subscribe channels used by the services of the Global

Model where (Pub.) refers to the publisher and (Sub.) refers to the subscriber 67
4.14. The publish/subscribe channels of the Mi.Sy. Service for the Coarse-Grained

Model . 70
4.15. The publish/subscribe channels of the Ds.Jo. Service for the Coarse-Grained

Model . 71
4.16. The publish/subscribe channels of the EA Service for the Coarse-Grained Model 72
4.17. The APIs of the In. EA Service for the Coarse-Grained Model 72
4.18. Mapping the microservices of the Coarse-Grained Model to the three execution

phases . 75
4.19. Summary of the REST-APIs used by the services of the Coarse-Grained Model

where (Rec.) refers to the receiver and (Sen.) refers to the sender 76
4.20. Summary of the publish/subscribe channels used by the services of the Coarse-

Grained Model where (Pub.) refers to the publisher and (Sub.) refers to the
subscriber . 77

4.21. Taxonomy of speedup Measures taken from [2] 79
4.22. Performance of BeeNestOpt.IAI with µ=240 and 50 generations per run . . . 84
4.23. Number of evaluations per island for each topology to solve the Rastrigin

function with GLEAM where the stopping criteria is the number of generations
which is set to 100 and the whole population consists of 1024 individuals . . 96

xxi

List of Tables

5.1. Publish/subscribe channels of the Ds.Jo. Service for the Coarse-Grained -
Global Hybrid Model . 103

5.2. Publish/subscribe channel of the E.O. Service for the Coarse-Grained - Global
Hybrid Model . 103

5.3. The publish/subscribe channels of the Ca. Service for the Coarse-Grained -
Global Hybrid Model . 104

5.4. Mapping the microservices of the Coarse-Grained - Global Hybrid Model to
the three execution phases . 105

5.5. Summary of the publish/subscribe channels used by the services of the Coarse-
Grained - Global Hybrid Model . 107

5.6. Format of the solar household dataset from Ausgrid 115
5.7. Gained speedup through parallelization for solving the problem of scheduling

DERs . 132

6.1. Publish/subscribe channels of the S&L service 138
6.2. Explanation of the measured weather values of the weather station Observatory

Hill – Australia . 142
6.3. The structure of the used Autoencoders for each feature set combination . . . 145
6.4. PostgreSQL database structure with some exemplary values for a potentially

saved chromosome . 152
6.5. Population tuning with fixed amount of generations for 2012-04-03, i.e., the

simple load profile (A) . 156
6.6. Results of the unsupervised approach. The best results, i.e., the lowest number

of fitness evaluations and highest solution quality are highlighted per mode. The
last row provides the results of pure EA GLEAM as reference value without
the S&L Service . 157

6.7. Results of the supervised approach. The best results, i.e., the lowest number of
fitness evaluations and highest solution quality are highlighted per mode. The
last row provides the results of pure EA GLEAM as reference value without
the S&L Service . 158

7.1. Comparison of the existing frameworks for parallel EAs to the BeeNestOpt.IAI 170

xxii

1. Introduction

1.1. Motivation

Nowadays, optimization problems are a part of many real-world applications such as logis-
tics, production, power grids, finance and nature sciences, e.g., [22, 43, 59]. Most of these
problems are of complex nature due to, e.g., non-linearities, multi-objectives, discontinuities
or restrictions. Furthermore, the majority of them have a large-scale search space since they
extensively arise from different modern industrial applications which contain thousands of
decision variables and multiple constraints [3]. For solving optimization problems, there are
two main methods [3], namely exact and heuristic methods as shown in Figure 1.1. Exact
methods are often not applicable to find the optimal solution for complex and large-scale
optimization problems in a timely manner. They are computationally expensive since the
execution time exponentially increases according to the problem size [146]. Using specific
heuristic methods tends to be faster than conducting the exact methods but they are not
considered generic techniques. In other words, their designs are not general enough to be
adapted with minimal effort for solving other similar optimization problems [143]. Unlike
exact and simple heuristic methods, metaheuristics are more generic optimization techniques
that offer good solution quality while maintaining a reasonable runtime. Metaheuristics
combine different search concepts for exploring and exploiting the search space to find the
near-optimal solutions or even the optimal ones efficiently [25, 67].

Among metaheuristics, Evolutionary Algorithms (EAs) are becoming increasingly vital
optimization techniques for solving complex optimization problems in many fields, e.g.,
industry, science, healthcare and sports among others [17, 111, 150, 46]. This popular-
ity arises due to their design flexibility and ability to solve a wide range of optimization
problems in a relatively short time, finding good local optima or even global ones [142].
EAs are population-based random search algorithms that mimic the mechanisms of bio-
logical evolution by generating a population representing a set of possible solutions. Each
individual (solution) undergoes some evolutionary procedures. The main steps of EAs can
be summarized as follows. Initially, an initial population is generated. Then, the fitness
of each individual is calculated. Afterwards, the principle of natural selection, namely
‘survival of the fittest’ is applied in order to select the parents of the next generation based
on their fitness values. After that, the genetic operators, namely crossover and mutation
are applied to the selected parents to generate offspring, on which the fitness evaluation is
again applied. This procedure iteratively continues until the fitness evaluation reaches a
predefined value or another termination criterion is met. Despite the clear advantages of
applying EAs in a wide range of application areas, EAs suffer from scalability issues and

1

1. Introduction

Optimization Methods

Metaheuristics

Exact Methods Heuristics Methods

Specific Heuristics

Local Search

Greedy Algorithms

Hill Climbing

Evolutionary Algorithms

Simulated Annealing

Ant Colony

Tabu SearchNearest Neighbour by TSP

Figure 1.1.: Classification of optimization methods adapted from [174, 71]

admittedly need a lot of computational power to find an adequate solution for a complex
and large-scale optimization problem in a timely manner. This is mainly due to the fact
that the individuals are evolved in an iterative process which requires a high number of
function evaluations. According to the application domains, these evaluations can reduce
the performance of the EAs to inappropriate levels, especially when complex calculations
are required such as simulations. A further common drawback of EAs is the premature
convergence, in which EAs cannot generate any more solutions with better quality than the
actual ones [58]. This occurs since the genetic operators lose the capability to enhance the
population by generating offspring better than the parent. To overcome these drawbacks
and increase the usage of EAs, two approaches are proposed, namely the parallelization
approach and the hybridization approach as shown in Figure 1.2.

Parallelization of EAs has attracted the attention of researchers as a solution for treating the
challenge of scalability and preventing premature convergence. Cantú-Paz [35] proposed
and investigated three basic parallel models, namely the Global Model (Master-Worker
Model), the Fine-Grained Model (Grid Model) and the Coarse-Grained Model (Island
Model) featuring the inherent parallelism of EAs as shown in Figure 1.2. The Global Model
distributes the evaluation effort of a population over several workers, e.g., CPUs to reduce
the amount of execution time. The master holds the frequently panmictic population and
performs the genetic operators on it. In the Coarse-Grained Model, the whole population is

2

1.1. Motivation

Basic Parallel Models

Evolutionary Algorithms

Sequential Evolutionary

Algorithms

Parallel Evolutionary

Algorithms

Hybrid Evolutionary

Algorithms

Global Model

Coarse-Grained Model

Fine-Grained Model

Hierarchical Model

Metaheuristics

Heuristic

Machine Learning

Figure 1.2.: Evolutionary algorithms and their implementations

divided into multiple subpopulations (so-called demes) where each deme forms an island.
A sequential EA is locally applied within an island to evolve the deme. Periodically, the
islands exchange some promising individuals which are known as migrants according to a
predefined migration policy that defines, e.g., which migrants are selected and when migrants
are exchanged among the islands. A communication topology defines the neighbors of each
island to determine among which islands the migration occurs. In the Fine-Grained Model,
the population is spatially structured in, e.g., a grid or a ring structure restricting the spread
of genetic information to the neighbors. Due to the overlapping between the neighbors,
genetic information can slowly spread over the population. Each model emerging from
these three basic models increases the performance of EAs to a reasonable level and reduces
the risk of premature convergence considerably. However, each one has its own drawbacks
which limit its scalability and applicability for solving complex and large-scale optimization
problems. This leads us to add a further parallelization level to one model by combining it
with other models to form the Hierarchical Model [35]. Generally, the Hierarchical Model
hybridizes the Coarse-Grained Model on a high level with some characteristics of other
parallelization models on low levels.

Over the years, several software architectures and frameworks have been introduced, e.g.,
[14, 62, 145, 52, 170, 73, 8, 91, 45, 33, 130, 183, 2, 161, 165, 136, 65, 66, 131, 163, 164] to
accelerate the execution of EAs for solving complex and large-scale optimization problems.
These frameworks mainly use three parallel computing models and technologies, namely
conventional parallel computing model, e.g., RPC (Remote Procedure Call) [8, 33, 145,
62], Big Data technologies such as Hadoop and Spark [91, 183, 165, 45, 52, 170, 136]
and modern software technologies, namely microservices and cloud technologies [131,
161, 130, 163, 164, 73, 66]. The majority of them, except the following works [163, 164,
73, 66] have a classical monolithic software architecture which decreases their modularity,

3

1. Introduction

usability and maintainability leading to a complex and tightly coupled system by adding
new functionalities. In other words, they do not provide a generic and modular software
architecture to realize and deploy any parallel model of EAs from the three basic ones.
Furthermore, enhancing the performance of the parallel EAs by, e.g., combining two or more
basic parallel models in a hierarchical form is also limited. Obviously, they do not support
the integration of existing EAs or the cooperation with other tools such as forecasting
frameworks and simulators. Hence, designing and developing a highly modular, generic,
flexible and scalable software architecture for limiting the aforementioned drawbacks by
facilitating the usage of EAs in a high-performance computing environment – like a cluster –
still represents a challenge.

Range of problems

P
e

rf
o

rm
a
n

c
e

 o
f
m

e
th

o
d

Pure EA
Problem tailored method EA einriched with knowledge

Figure 1.3.: Effect of enriching evolutionary algorithms with knowledge on the performance taken from
[132]

Another approach to increase the performance of EAs for finding an adequate solution in a
reasonable time is hybridization as shown in Figure 1.2. As with any other optimization
algorithm, EAs must adhere to the ‘No Free Lunch Theorem’ [188] which states that a
given optimization algorithm cannot be applied to all optimization problems in an equal
manner, e.g., without exhibiting some sort of performance problem or having problems in
finding an appropriate solution. Hybridizing EAs with other algorithmic approaches, e.g.,
metaheuristics, heuristic, Machine Learning (ML) techniques or deterministic algorithms
forming Hybrid Evolutionary Algorithms (HEAs) represents a promising solution for
enhancing the performance of EAs. Indeed, the hybridization of EAs not only improves
the solution quality but also accelerates the search process, opening new perspectives to
apply EAs on a wide spectrum of real-world optimization problems. The hybrid approach
of EAs enables their use in fields where pure EAs, exact methods and heuristics provide
inadequate solutions or need too much computational effort to reach an acceptable solution
quality, e.g., [16, 97, 112]. There are many ways to hybridize EAs such as incorporating
problem-specific knowledge to generate the initial population, e.g., [177, 180, 1, 32, 97, 110,
175, 120], approximating the fitness values of individuals, e.g., [124, 186, 155, 192, 84]
or exploiting problem-specific knowledge to apply the generic operators, e.g., [76, 75, 16,
173]. For example, combining EAs with problem-specific heuristics can directly enhance
the global performance of pure EAs for the given type of problem [132] as shown in Figure
1.3. For promoting such performance enhancement, a flexible and generic software solution

4

1.2. Research Questions

to facilitate the hybridization of existing EAs at any step with other algorithms is required.
Combining the beneficial traits of the parallelization and hybridization of EAs in a cluster
computing environment without the need to rewrite or redesign the considered EA is still
an open issue needs to be solved. In other words, the existing software approaches do not
introduce a simple mechanism to seamlessly achieve such a combination.

1.2. Research Questions

With emerging modern hardware such as clusters and cloud environments, the interest in
exploiting their enormous computational capabilities to speed up EAs has grown dramati-
cally. To this end, many methods and software solutions to increase the usage of EAs in
such computing environments have been proposed. Despite the extensive developments,
some open questions concerning the design of a software that allows the parallelizing and/or
hybridizing of EAs in a cluster environment still need to be addressed.

Research Question 1 [RQ1]: Which software design is adequate for parallelizing EAs
according to the basic parallelization models in a cluster computing environment?

Each parallelization model of the three basic models has its advantages and disadvantages
which introduce it as a highly fitted model for a specific class of optimization problems and
a less suitable one for the others. For example, the main advantage of the Global Model is
the simplicity enabling cooperation with single simulators or combinations of simulators
for multi-domain simulations. However, its disadvantage is that the master rapidly becomes
a bottleneck. Hence, a proper model when the calculation of the fitness function evaluations
is computationally expensive and the communication between the workers and master does
not occur with high frequency. In the Coarse-Grained Model, the main advantages are the
gained speedup and the ability to improve the global search capabilities, hence avoiding the
problem of premature convergence. Its major disadvantage is that many parameters have to
be set and tuned for an optimal performance. This introduces it as an adequate model when
the search space is complex and has many local optima. Driven by that, It is highly required
to design a scalable, modular and generic software solution that enables the realization of
any model from the three basic models with little adaptation effort. Moreover, the proposed
software solution has to guarantee a seamless deployment of such models in a scalable
runtime environment. This provides high flexibility to choose a suitable parallelization
model according to the optimization problem and to the availability of computational power,
e.g., cluster resources.

Research Question 2 [RQ2]: Which benefits can be obtained from combining two
or more parallel models of EAs into one parallel solution in a cluster computing
environment?

Driven by the first question, given the advantages and disadvantages of each parallelization
model from the three basic ones, why not to combine two parallelization models or more in
order to eliminate the drawbacks of each one and increase the benefits? This combination
enhances the parallel performance of parallel EAs and allows the application of them to

5

1. Introduction

complex and large-scale optimization problems. To answer this question, a scalable, flexible
and modular software architecture that introduces a simple and efficient mechanism to
combine two or more basic models in one hierarchical model is needed. For example, by
combining the Fine-Grained Model with the Global Model, we aim at achieving a good level
of parallelization with the Global Model and at the same time reduce the risk of premature
convergence by using the Fine-Grained Model which maintains the genetic diversity for a
long time, hence finding a good solution at a reasonable time.

Research Question 3 [RQ3]: What are the adequate methods to facilitate the usage of
existing EAs in a cluster computing environment?

This question is raised since EA developers tend to use their stable existing EAs which
have been already developed and tested over many years. However, most of these EAs
are mainly implemented as monolithic and non-distributed algorithms for desktop-based
applications, i.e., they are not directly integrable in a cluster or a cloud environment. The
complexity of using such computing infrastructure represents a big challenge, especially
for EAs developers who are coming from different scientific disciplines, e.g., mathematics,
physics or others with minimal knowledge in distributed systems. To exploit the potential
of modern distributed environments, existing EAs need to be redesigned and rewritten using
modern parallel programming paradigms, e.g., MapReduce programming model. Hence,
the main challenge lies in how to design a software solution that allows the parallelization of
any existing EAs without the need to consider the issues related to the underlying computing
infrastructure and to completely redesign or rewrite the EAs.

Research Question 4 [RQ4]: What are the adequate methods to facilitate the interac-
tion between EAs and external tools and applications (e.g., simulators)?

The fourth question addresses the challenge of integrating EAs in a complex and collab-
orative system, in which they interact with external tools, components like forecasting
platforms and problem-specific functionalities (e.g., simulators) for performing successful
optimization tasks. The contribution of external tools is required to support EAs, e.g., by
defining the implicit and explicit restrictions and other tasks. These tools are usually inde-
pendently developed using several technology stacks and programming languages hindering
easy cooperation with EAs and other software components. Indeed, it is of importance to
design a software solution that allows high-level interactions between EAs and other tools
and services enabling EAs to be a part of complex industrial applications.

Research Question 5 [RQ5]:]: Which software design is adequate for hybridizing
existing EAs with other algorithms in a cluster computing environment?

Combining EAs with other algorithms and methods from other research fields is essential to
increase the performance of EAs and open new perspectives to use EAs in several domains.
For example, EAs use an initial population of potential solutions as starting points in
the solution space. This initial population is generally created at random which can lead
to generate inappropriate individuals that prematurely converge to a suboptimal solution.
Taking the advantage of problem-specific knowledge and ML techniques, namely supervised
and unsupervised learning to assist EAs by generating the initial population increases the
performance and the applicability of EAs to solve complex optimization problems.

6

1.3. Research Goals and Contributions

The hybridization of existing EAs with other algorithms without the need to redesign them
is not a trivial task. To address this challenge, it is noteworthy to design an extensible,
modular and generic software solution that facilitates the hybridization of EAs at any step
of them with other algorithms and techniques in a cluster computing environment.

1.3. Research Goals and Contributions

The present thesis addresses the aforementioned open questions identified within the analysis
of state-of-the-art software architectures and approaches for parallelizing and hybridizing
EAs. The main goal of this thesis is to enhance the performance of EAs for solving real-
world optimization problems by facilitating the parallelizing and/or hybridizing of EAs with
other algorithms in cluster computing environments. The contributions of this work are
summarized as follows.

• Developing BeeNestOpt.IAI1, a flexible, scalable, extendible, modular and generic
software solution for enhancing and facilitating the usage of EAs in cluster and cloud
environments using sophisticated, stable and reliable software technologies such as
microservices, container technologies and the publish/subscribe messaging paradigm.

– BeeNestOpt.IAI provides a highly parallel and scalable environment to parallelize
EAs according to any parallel model from the basic ones with full runtime
automation on a computing cluster.

– It provides a simple and efficient mechanism to hybridize EAs with other algo-
rithmic approaches.

– It hides the technical aspects of the underlying computing infrastructure by
realizing a web-based management and execution environment.

– It allows EAs to be a component of a complex system, in which different tools
and simulators cooperate together to solve the optimization task.

• Mapping the Global Model to BeeNestOpt.IAI. The performance test reports a low
and only slight increase of the communication overhead with growing population sizes
by varying the number of workers. Moreover, the execution time of EAs decreases by
deploying more workers.

• Extending BeeNestOpt.IAI architecture to support the Coarse-Grained Model. The
parallel performance test of the proposed software architecture with the Coarse-
Grained Model shows a constant migration overhead by increasing the migration rates
and a superlinear/linear speedup for complex problems fitness evaluations.

1 The name ‘BeeNestOpt.IAI’ combines three ideas: ‘Bee’ is an individual of the population – representing a
solution for an optimization problem – who works to discover the fields – search space –, the ‘Nest’ is the
beenest that represents the microservices as a nest of hexagons, ‘Opt’ is the abbreviation of optimization.
‘IAI’ is the abbreviation of the name of the Institute for Automation and Applied Informatics where the
proposed software solution is developed.

7

1. Introduction

• Enhancing the performance of the basic parallel models by supporting the hierarchical
combinations between them. We combine the Coarse-Grained Model with the Global
Model to form a Hierarchical Model aiming at limiting the disadvantages and promot-
ing the advantages of both models. This combination achieves a significant speedup,
maintaining a low communication and migration overhead.

• Hybridizing EAs with machine learning algorithms to alter and/or replace some parts
of an EA. Two machine learning approaches are proposed to assist EA by generating
the initial population. This is achieved by seeding the initial population with either
already evaluated individuals or new ones generated based on the gained knowledge
from the prior evaluated individuals and the related domain-based knowledge. Both
hybridization approaches have positive impacts on the final solutions quality and
convergence speed.

• Performing a practical evaluation based on a real-world optimization problem, in
which the applicability and the performance of the proposed software architecture
are studied. The problem of scheduling Distributed Energy Resources (DERs) is
considered to evaluate the scalability of the software design. The results show that
the proposed software solution for parallelizing and hybridizing EAs reduces the total
execution time to a convincing level while still offering a good quality solution.

1.4. Structure of the Thesis

The rest of the present thesis is structured as follows. Chapter 2 describes the technological
as well as the background knowledge used in this work. Chapter 3 discusses research
projects related to the contributions of this work. This includes existing parallelization
frameworks and state-of-the-art implementations in cluster and cloud environments. Then,
an extensive review of different hybridization approaches and their respective realization is
introduced.

In Chapter 4, the new software architecture to parallelize EAs in cluster computing envi-
ronments based on container and microservice technologies is introduced addressing the
research questions [RQ1, RQ3 and RQ4]. This chapter presents the concept, the architecture
of the proposed software solution and the realization of the Global Model and the Coarse-
Grained Model. Then, the evaluation results regarding the parallel performance for both
models are introduced.

Chapter 5 addresses the research question [RQ2, RQ3 and RQ4] for combining two par-
allelization modes in a hierarchical form to enhance the parallel performance of the basic
parallel models. Afterward, the implementation and the evaluation results obtained by
deploying the Hierarchical Model on a cluster for solving a non-convex mixed-integer
multi-objective optimization problem, namely the scheduling of DERs are introduced.

Chapter 6 introduces a software solution to hybridize any part of EAs with other algorithms
and techniques in a cluster computing environment answering the research question [RQ5].
Moreover, it proposes new ML hybridization approaches for assisting EAs by generating the

8

1.4. Structure of the Thesis

initial population exploiting domain-based knowledge. The evaluation of such hybridization
is conducted by solving the problem of scheduling distributed energy resources. Chapter 7
concludes this work and presents an overview of potential future works.

9

2. Background

In this chapter, the necessary theoretical background to understand the main contributions of
this thesis is introduced. Section 2.1 gives a brief general definition of optimization problems
and their classifications. Section 2.2 explains in detail EAs, their parallelization models
and hybridization concepts. Section 2.3 explains some fundamentals related to the parallel
computing. The definition of machine learning and its two main learning strategies, namely
the supervised and unsupervised ones which are used to hybridize EAs are introduced in
Section 2.4. Section 2.5 concludes this chapter by describing the technologies stack used to
develop the contributions of this thesis.

2.1. Optimization Problems

An optimization problem can be formulated as a search problem for finding the near-optimal
or the optimal solution among all possible ones to minimize (or maximize) a function
called the objective function subject to some constraints. Generally, any maximization
problem can be converted into a minimization problem without loss of generality. Given
the objective function 𝑓 , one can always convert it to a minimization problem, since:
𝑚𝑎𝑥{𝑓 (𝑥)} = −𝑚𝑖𝑛{−𝑓 (𝑥)}. According to [18, 81] we can define a parameter optimization
problem as follows: Given the objective function 𝑓

𝑓 : 𝑀 ⊆ 𝑀1 × ... ×𝑀𝑛 → R, 𝑀 ≠ ∅ (2.1)

where R is the set of the real numbers, the overall goal is to find 𝑥𝑜𝑝𝑡 ∈ 𝑀 such that

∀𝑥 ∈ 𝑀 : (𝑓 (𝑥) ≤ 𝑓 (𝑥𝑜𝑝𝑡)) = 𝑓𝑜𝑝𝑡 (2.2)

where 𝑓𝑜𝑝𝑡 is called a global maximum and 𝑥𝑜𝑝𝑡 is the maximum location. In contrast to a
global maximum, a local maximum 𝑓 = 𝑓 (𝑥) is defined by

∃𝜖 > 0 ∀𝑥 ∈ 𝑀 : | |𝑥 − 𝑥𝑙𝑜𝑝𝑡 | | < 𝜖 ⇒ 𝐹𝑙𝑜𝑝𝑡 ≥ 𝐹 (𝑥) (2.3)

𝑀 is called the solution space – or search space – of the problem. If 𝑀 is equal to R, an
unconstrained optimization problem is defined. That a possible solution of the optimization
problem has to be an element of 𝑀 can be seen as a very generic form of constraint
condition which reduces the overall solution domain of a function to a subset of feasible
values satisfying all constraints.

𝑓 : 𝑀1 × ... ×𝑀𝑛 → R (2.4)

11

2. Background

Property Type of optimization problem
Objective function,
constraints or search space

Linear or non-linear, uni or multimodal,
continuous or discontinuous, convex or non-convex

Kind of decision variables
Discrete, continuous or mixed-integer
(i.e., continuous and discrete)

Search space Constrained or unconstrained
Number of objectives Single- or multi-objective optimization

Table 2.1.: Important properties of optimization problems

𝑀 is therefore often also called the set of feasible values of the optimization problem.
Typically, 𝑀 is constrained by inequality and equality constraints:

𝐺𝑖 (𝑥) ≤ 0 𝑎𝑛𝑑 𝐻𝑖 (𝑥) = 0 (2.5)

where 𝑖, 𝑗 ≤ 𝑛. The nature of the objective function 𝑓 and constraints 𝐺 and 𝐻 refers to the
degree of linearity or non-linearity of the functions themselves. If the objective function and
constraints are linear functions, the problem is called a linear optimization problem which
is formed, e.g., as follows.

𝑓 (𝑥,𝑦) = 𝑎𝑥 + 𝑏𝑦, 𝑥 ≥ 0 𝑎𝑛𝑑 𝑦 ≥ 0 (2.6)

subject to:
𝐺𝑖 (𝑥,𝑦) = 𝑐𝑥 + 𝑑𝑦 ≤ 𝑒 𝑎𝑛𝑑 𝐻𝑖 (𝑥,𝑦) = 𝑙𝑥 +𝑚𝑦 = 0 (2.7)

Similarly, if they are non-linear, e.g., – quadratic (e.g., 𝑓 = 𝑥2) or non-convex (e.g.,
𝑓 = 𝑥4+𝑥3+𝑥2+9𝑥 +1) – the optimization problem is classified as a non-linear optimization
problem. If the set 𝑀 has only a discrete number of elements, the problem is called a discrete
optimization problem. Such optimization problem is in principle decidable by evaluating
all possible solutions but typically in such problems 𝑀 is very large and therefore it is
not feasible to solve it by brute-force evaluation because of performance constraints. It
can also be shown that some discrete optimization problems are NP-hard, e.g., integer
linear programming, the traveling salesman problem, the knapsack problem or finding
the max cut in a graph. If the set 𝑀 is uncountably infinite (e.g., a subset of a cross-
product of real numbers), the optimization problem is called continuous optimization.
Furthermore, if all 𝑀𝑖 consist only of integral values, we call the optimization problem
pure integer programming problem. If some of 𝑀𝑖 are real numbers, a mixed integer
programming problem is formulated. We can distinguish between two types of optimization
problems based on the number of optima. Optimization problems that have only one
optimum are called unimodal. Otherwise, they are called multimodal, i.e., if they have
more than one optimum. The number of objective functions also defines the nature of the
optimization problem. Optimization problems with one objective are referred to single-
objective optimization problems. In contrast to that, a multi-objective problem has several
objective functions that are simultaneously optimized. The above-mentioned properties of
optimization problems are summarized in Table 2.1.

12

2.2. Evolutionary Algorithms (EAs)

Surprisingly, optimization problems with small size are solvable using exact optimization
methods such as linear programming, sequential quadratic programming and generalized
gradient methods [158]. They become easier if they are linear, convex and continuous.
However, most real-world optimization problems are large-scale non-linear, non-convex,
multimodal, mixed-integer and multi-objective which makes optimization more complex. In
general, such optimization problems are NP-hard and therefore exact optimization methods
are not applicable, since they need exponential effort to solve them [146]. Typically, heuris-
tics with their special class, namely metaheuristics such as Evolutionary Algorithms (EAs),
simulated annealing, tabu search, ant colony optimization, particle swarm optimization
and others can find adequate solutions with reasonable quality in a timely manner for such
complex optimization problems. Since metaheuristics are defined as general and abstract
methods, they can be applied to different optimization problems with few adaptations.
EAs represent among others the most popular method to solve complex and large-scale
optimization problems, e.g., [26, 133, 79].

2.2. Evolutionary Algorithms (EAs)

EAs are population-based metaheuristic optimization algorithms where their central con-
cepts, e.g., reproduction, mutation, recombination and selection are inspired by mechanisms
of biological evolution. A population is a set of individuals representing candidate solutions.
These individuals are used during their evolution to explore many areas of the solution
space at the same time. They are evaluated by a fitness function representing the objective
function(s) to determine their suitability as solutions for the problem. The basic principles
of biological evolution like crossover, mutation and selection are iteratively applied to the
tentative solutions for generating new offsprings within each generation until a termination
criterion is reached [187, 82, 154]. Generally, EAs have the following terminologies:

Population A population can be viewed as a finite set of possible solutions of a problem.
The diversity of the population plays a key role in exploring the search space to find suitable
solutions for the considered optimization problem. An initial set of candidate solutions
in the form of an initial population is generated before starting the process of evolution.
The population size is set in advance and typically fixed through the evolution steps. To
guarantee a highly diverse population, several strategies and methods are applied. The most
simple and straightforward method is to generate the initial population randomly. Other
methods such as using prior solutions of a previous run of an EA as an initial population for
the next run or combining the random method with prior solutions are other possibilities
to generate a diverse initial population. The initial population is an essential part of the
evolutionary process, since a population with a wide range of diverse individuals increases
the opportunity of the EA to find a near-optimal solution or even the optimal one.

In case of an optimization problem with constraints, members of a population (i.e., in-
dividuals as candidate solutions) need to be feasible solutions, i.e., they typically satisfy
the constraints. Even if all individuals of one population satisfy the constraints, genetic

13

2. Background

operations in general can produce new individuals for the next generation which can violate
those constraints. Therefore, special strategies are needed for applying EAs to optimization
problems with constraints (see later).

Genetic Representation An EA needs a representation schema for encoding the
proposed solution in a genetic representation. In 1866, Mendel discovered that nature
distinguishes the genetic code of an individual and its outward appearance (see, [140] for
more details). I.e, each individual is a dual entity, represented by the internal genotypic
properties and the external phenotypic properties where the genotype encodes the phenotype.
Successful and effective use of an EA requires an appropriate internal representation of
individuals. Several methods are proposed to encode the potential solutions, namely binary,
characters, mixed representations, vectors and lists, to name a few. Since the representation
of a solution is not predetermined by a method, a problem can be mapped to different kinds
of encodings. This complicates the process of choosing the most proper coding schema
which allows an efficient application of the genetic operators. A common representation
scheme for individuals is described by a sequence (list or array, called a chromosome) of
smaller building blocks (called allele) which are instances of pre-given structural schemas
(called gene) for certain building blocks analogous to the structure of RNA/DNA. Figure
2.1 illustrates an exemplary population described by a character encoding of the gene
information of an allele. Precisely, the special variation of a gene within the chromosome
is described by distinguishing variations by unique character strings of an alphabet. The
example population consists of three individuals described by three chromosomes where
each one stores all genetic information of an individual. In contrast to nature, EAs use
one chromosome to encode the genotypic information of an individual representing one
possible solution candidate for a specific problem [12, 159]. Each chromosome is described
as a sequence (list) of alleles, where each allele (or a list of alleles) is a special variation
(instance) of a certain gene. In the illustration below the allele(s) of a gene are encoded as
a character string. In nature, an allele exists in pairwise or more variations and represents
the smallest information unit in a chromosome [12, 159, 87]. For encoding real-world
problem settings into software-defined EA solutions, genes are often described by a schema
definition of a more complex data structure having several attributes where the alleles are
then concrete instances of this data structure.

Gene Chromosome

Population

E W

Allele

GD TR VV LG PO UZ CD AS LO AL XG HJ ES DE

Figure 2.1.: Illustration of allele, gene, chromosome and population

Fitness Function The fitness value is a measure that determines the potential of an
individual to provide a good approximate solution for the considered problem. The way
of calculating this value depends on the concrete optimization problem and its real-world

14

2.2. Evolutionary Algorithms (EAs)

context. Typically, the fitness function for calculating the fitness value somehow makes
use of the objective function(s) of the given optimization problem. E.g., the fitness value
of an individual is higher if it better approximates the minimum criteria of a given single
objective function. For multi-objective optimization problems having more than one ob-
jective function, the fitness function often has to weigh between the otherwise conflicting
optimization goals of each single objective function. For solving optimization problems
with constraints using EAs, one possible solution is to encode the constraints into the fitness
function by defining penalty functions which drastically decrease the fitness of an individual
if it violates constraints [108].

An EA evolves (modifies) a population by selecting and applying genetic operators to
some or all of its individuals generating a new population until, e.g., the fitness of one or
more individuals in the population reaches a fitness value which is defined as a termination
criterion. Typically, some individuals with already good fitness will be carried over to the
next population (the Offspring) unchanged which is called survival of the fittest [108].

Genetic Operators There are two main basic forms of genetic operators, namely
recombination (e.g., crossover) and mutation. The crossover operation swaps the genes
of the parents until a predefined crossover point is reached as shown in Figure 2.2. The
new combined individuals are considered as children or offspring. This type of crossover is
known as single-point crossover. Multi-point crossover is a similar operation of crossover,
however, instead of having only a single crossover point, it has two or more (𝑛 crossover
points). Therefore, it is also called 𝑛-point crossover. Generally, both operations select the
positions of the crossover points, randomly. Other forms of recombination operators are
possible, where the operation somehow recombines the alleles of two or more individuals
in other ways to create new child individuals. Note that such recombination operators
require a kind of list representation of the individuals (i.e., a form of chromosome structure
consisting of instances of genes) because they swap or exchange alleles at different places
within the list. A mutation operator of an EA changes the value representation of the
individual somehow but maintains its internal structure. E.g., if the structure is represented
by a bit field, it could randomly flip one or more bits of the bit field but does not remove
bits from the representation. As a genetic operator, a mutation typically only modifies the
internal value representation of one or more alleles preserving different instances of the
same corresponding gene(s). Therefore, the overall genetic structure of the individuals is
maintained leading to another candidate solution (i.e., individual) for the given problem. By
the application of different genetic operators to a set of parents and survival of the fittest, an
offspring of a population is generated inheriting the genetic information from the parents but
also containing some new variations of the chromosome structure. On one hand, this allows
exploration of new parts of the search space by maintaining a diversity of the population
and therefore decreasing the risk of premature convergence. On the other hand, it passes on
the solution quality of the fittest parents for comparing their fitness with future offspring.

Termination Criteria Generally, there are two main termination criteria for EAs, namely
the solution quality and the EA effort. By applying the solution quality criterion, an EA

15

2. Background

KI QX OO GF DE

FV MT NG XD EW

FV MT OO GF DE

KI QX NG XD EW

Parents Children (Offspring)

Mutation

KI QX OO GF DE

FV MT NG XD EW

KI QX NG XD DE

FV MT OO GF EW

KI QX OO GF DE KM QX EV JU DE

Crossover (single-point-crossover)

Crossover (n-point-crossover)

Figure 2.2.: Exemplary application of evolutionary operations on genes that consist of five character tuples

is stopped if one or multiple individuals reach a predefined fitness value. This termination
criterion does not guarantee the termination of a running EA, since it cannot be guaranteed
that the predefined fitness threshold value is reachable leading to an infinite runtime of the
EA. Therefore, the EA effort criterion is defined by the number of generations after which
the EA stops the evolution and therefore the EA process. Other realizations for the EA effort
criterion such as predefined runtime for an EA or the number of evaluations performed
during the evolution process can be applied. For both criteria and at the end of the evolution
process, the EA returns the fittest individual as a solution for the considered optimization
problem.

In summary, Figure 2.3 depicts the generic workflow of an EA where in the first step, an
initial population is created. For generating a population with sufficient genetic diversity, it
is preferred to generate 75-90% of the initial population randomly [88]. Moreover, other
algorithms can be used to assist EAs by completely or partially creating the initial population
of an EA based on domain-based knowledge, e.g., an initial population generated by a
greedy algorithm [122]. In the second step, the initial population is evaluated to assign a
fitness value to each individual. These values are necessary to select the parents of the next
generation. As soon as all individuals are evaluated, the reproductive cycle starts. In the
first step of a reproductive cycle, the parents of the next generation are selected. Afterward,
crossover or more general recombination operators are applied to generate new individuals
from the parents. In the mutation step, some properties of the newly generated individuals
are randomly modified by randomly changing the genetic information, i.e., creating new

16

2.2. Evolutionary Algorithms (EAs)

alleles. At the end of a reproductive cycle, the new offspring is evaluated and then the new
population is selected by combining the fittest parents with offspring candidates (according
to the evaluation) for the next generation. Afterward, the next loop of the reproductive cycle
is started. If one of the termination criteria is satisfied, the reproductive cycle is stopped and
the EA outputs the best individuals as solutions.

Population

Initialization
Evaluation

Termination?
Best

Individual

Parent

Selection

Recombination

Mutation

New

offspring
Evaluation

Acceptance

Yes

No

Figure 2.3.: The general scheme of an evolutionary algorithm as a flowchart

The most important aspects of an EA are the selection of parents, the acceptance of offspring,
i.e., the replacement strategy and the application of the genetic operators. The application of
these aspects is used to characterize and classify EAs into two categories, namely Panmictic
EAs and Structured EAs [4]. In Panmictic EAs, the parent selection process is globally
applied on the whole population. In other words, any individual can potentially mate
with any other one in this population. In contrast to Panmictic EAs, Structured EAs have
a spatial population structure restricting the application of operators to a subpopulation.
Structured EAs divide the population into several subpopulations where the selection,
replacement and generic operators are separately applied on each subpopulation. The main
difference between Panmictic and Structured EAs is the decentralized selection and the
replacement of individuals for the reproductive cycle. At first, Structured EAs seem to be
more ‘natural’, because in nature mating can only happen when the individuals live in the
same geographic area. But in biology, individuals of a species can travel over long distances,
so that an individual can move from one subpopulation to another. This exchange of
individuals between otherwise isolated subpopulations can also be integrated into Structured
EAs, whereby an exchange of individuals can be done after each evolution step or only
occasionally. This will become important in the next sections when we discuss the parallel
models of EAs.

For the optimization problems where the solution has to strictly adhere to some constraints,
a general problem of EAs is that there is no guarantee to generate offspring by applying the

17

2. Background

genetic operators without a violation of constraints, even if the parent individuals satisfy
all constraints. Therefore, the evaluation step after generating the new offspring has also
to decide how to deal with constraints. The acceptance process can completely ignore
the constraints during the intermediate evaluations in the hope that the inclusion of the
constraints in the fitness function, e.g., using penalty functions, would lead to a final solution
with good fitness and adheres to the constraints. Otherwise, constraint violations need to be
handled by the acceptance process, e.g., by either slightly modifying the generated childern
so that they fulfill constraints or by removing children from the new offspring when they
do not satisfy constraints. For the first option, a general procedure for casting individuals
into feasible individuals satisfying the constraints is needed which does not decrease their
fitness too much. By the second option, very small offspring can be resulted by removing
individuals that do not commit to the considered constraints. In this case, the need to repeat
the generation of offspring until the new population is large enough is not ideal either
[171].

2.2.1. Parallel Models of EAs

Different classifications of parallelization models for EA are existing In the literature, e.g.,
[69, 117, 35, 122, 70]. The most common classification is the one introduced by Cantú-Paz
[35], in which three basic parallelization approaches of EAs, namely the Global Model,
the Coarse-Grained Model (Island Model) and the Fine-Grained Model are presented and
investigated. On the one hand, if the parallelization is achieved only by distributing the
evaluation step over several computing units, a Global Model is instrumented. On the other
hand, if a spatial distribution of individuals, either in the form of neighbors or islands,
is applied using a Structured EA and the application of the operators is limited to these
subpopulations and thereby parallelized, a Fine-Grained or Coarse-Grained Model is applied,
respectively. If the probability of ‘maturing’ (or more generally of applying operators) on
sets of individuals is the same for all chosen subsets of a neighborhood or island, such
subpopulations are also called ‘Deme’ analogously to biology.

Global Model The Global Model [35, 34, 5, 4] (so-called Master-Worker Model) de-
picted in Figure 2.4 distributes only the evaluation of the individuals to several workers.
Each worker performs the evaluation on a distinct subset of the population. The Global
Model does not change the behavior of the EA, since the evolutionary operators are only
performed by the master on the parent selection as in Panmictic EAs. Therefore, the sim-
plicity of the model is considered as a main advantage. The master stores the individuals,
sends subsets of them to the workers to be evaluated and finally collects the results from
the workers. If all workers try to communicate with the master at the same time, the
master becomes a bottleneck. Consequently, the Global Model is only efficient when the
computational costs of the fitness function are very high compared to the communication
costs. The Global Model is called synchronous when the master waits for all workers to
complete their evaluation before continuing. This leads to inefficient processor utilization,
since some workers take more time than others. For increasing the processor utilization,

18

2.2. Evolutionary Algorithms (EAs)

some asynchronous implementations, e.g., [156] are proposed. In asynchronous Global
Model, the master does not wait until all workers are finished to continue the evolution
process. Obviously, any EA distributed according to the synchronous Global Model has the
same numerical behavior as the underlying serial Panmictic EA. The Global Model can be
implemented on a shared-memory as well as on a distributed-memory computer [34], since
there is no assumption about the underlying computing architecture.

Master

Worker nWorker 2Worker 1 ...

Figure 2.4.: Global Model adapted from [35]

Coarse-Grained Model In the Coarse-Grained Model [117, 122], the (initial) popu-
lation is divided and spatially distributed into several subpopulations with a larger set of
individuals called islands. Genetic operators such as recombination, mutation and replace-
ment are only applied to the individuals of the same island and this can be done in parallel
for each island, since the evolution in each island is performed independently. Additionally,
the islands communicate periodically with each other according to a predefined communi-
cation topology to exchange some individuals (so-called migrants) as depicted in Figure
2.5. The communication topology determines how fast good solutions will disseminate
to other islands influencing the performance of the Coarse-Grained Model. For example,
dense connectivity results in a fast spread of migrants, while sparse connectivity slows
it down. The number of generations between two succeeding migrations is defined by
the migration frequency. The cooperation process among the islands assists the EA to
maintain genetic diversity for a long time, reducing the problem of premature convergence
and accelerating the search process. This is due to the fact that good solutions come together
to form potentially better solutions [35]. Despite such advantages of the Coarse-Grained
Model, this model exposes many parameters to be set and tuned for introducing an optimal
performance making it more complex than the other parallelization models [122, 35]. Some
parameters and their meaning are:

• Migration rate: It determines how many individuals will be exchanged between
the islands in one migration process. A high migration rate can rapidly provide a
solution with a quality similar to the one provided by sequential EAs as stated by
Cantú-Paz in [35]. However, this leads to a high level of communications between

19

2. Background

islands. The amount of exchanged individuals can be determined either proportionally
to the population size or by an absolute value.

• Migration frequency: It is the interval between two succeeding migrations (also
called epoch [37]). It is usually determined by a local epoch termination criterion such
as the number of generations or a predefined fitness value. In [68], it is proven that
a high migration interval can significantly reduce the risk of premature convergence
and communication overhead between the islands. However, this slows down the
evolution speedup, since good solutions slowly spread between the islands.

• Selection policy: It decides which individuals of the current subpopulation are
selected to be exchanged with the neighbors. Generally, the best individuals based
on their fitness values are chosen as migrants. This helps the spread of good genetic
information to other subpopulations and the acceleration of the evolution process.
However, the random selection of migrants can also be applied.

• Replacement policy: It determines which individuals in the target subpopulation will
be replaced by the migrants (if any). Usually, the worst individuals which have a low
fitness value in the target population are replaced. Alternatively, a random replacement
of individuals can be used.

• Migration policy: It defines how the islands migrate the individuals. There are two
policies, namely synchronous or asynchronous. If a synchronous migration policy
is applied, all islands migrate individuals at the same time, i.e., they wait for each
other to finish the evolution. However, by applying an asynchronous migration policy,
each island performs the migration process as soon as the migrants are ready and then
continues with the next epoch.

• Island homogeneity: Generally, there are two types of homogeneity, namely homoge-
neous and heterogeneous. While in a homogeneous model, all islands have the same
configurations such as EA configuration, in a heterogeneous model each island has
its own configuration providing great flexibility to adapt settings on each node in a
distributed system. This provides the ability to better keep genotypic diversity in the
populations.

• Communication topology: It plays a key role in the Coarse-Grained Model, since
it defines the neighbors of each island and between which islands the migration can
occur. A dense topology ensures that the good individuals have a big chance to spread
quickly between many islands [35] increasing the performance of EA. In [38], Cantú-
Paz et al. show that there is an optimal number of neighbors where the Coarse-Grained
Model introduces the best performance. If the number of neighbors is far below
this number, the Coarse-Grained Model does not show a significant parallel speedup.
Moreover, if the number of neighbors is far above this number, the communication
overhead outweighs the gained speedup.

Fine-Grained Model In the Fine-Grained Model [122, 107], the population is spatially
structured according to an underlying structuring scheme, such as a grid or lattice. Each
individual is a member of one or more subpopulations (demes) called neighborhoods of the
same size and structure defined by, e.g., a distance operator in the grid or lattice (see, Figure
2.6). Typically, neighborhoods will overlap and the application of the genetic operators

20

2.2. Evolutionary Algorithms (EAs)

Figure 2.5.: Coarse-Grained Model with ring topology adapted from [35]

is then restricted to the neighbors, i.e., an individual can only mate with neighbors of the
same deme as shown in Figure 2.6. Despite this restriction, genetic information can be
spread due to the overlapping of the demes. As demes are independent of each other, genetic
operators on different demes can be executed in parallel. By adjusting the selection pressure
and the deme size, it can be controlled how fast the genetic information spreads across the
population, preventing premature convergence. In other words, the ratio between a depth-
first (exploitation) and breadth-first search (exploration) can be regulated by choosing those
two parameters. In contrast to the Island Model, on each computing, node the evolutionary
operators are only applied to a small set of individuals (e.g., a neighborhood) but due
to the overlapping nature of neighborhoods, the changes have to be then propagated to
many other computing nodes. The main advantages of the Fine-Grained Model are that
it has significantly few strategy parameters to be tuned and applying genetic operators
can be performed much quicker. However, this is offset by the disadvantage of a lot of
communication which occurs especially at the beginning of an evolution run.

Hierarchical Model and Non-Classical Models The combination of two or more
models from the above-mentioned EA parallelization models leads to a Hierarchical Model
(so-called Hybrid Model) [122, 4, 5, 6, 34]. A Hierarchical Model is composed of multiple
layers and usually implements a Coarse-Grained Model in the upper layer and one of the
three basic models in the lower layer as shown in Figure 2.7 where the Coarse-Grained
Model is combined with the Fine-Grained Model. The major advantage of the Hierarchical
Model lies in limiting the disadvantages of using a single parallelization model alone while
keeping the respective advantages of each model. Moreover, it provides great flexibility to
design each layer separately.

21

2. Background

Figure 2.6.: Fine-Grained Model with grid structure adapted from [35]

Figure 2.7.: Example of a Hierarchical Model combined the Coarse-Grained Model with the Fine-Grained
Model adapted from [35]

In addition to the above-mentioned basic models, Gong et al. in [68] explain in their
survey the Pool Model, the Coevolution Model and the Multi-Agent Model as different
implementation strategies for parallelized EAs. The Pool Model is highly influenced by an
underlying massive parallel computation platform where a set of autonomous processors
is working on a shared resource pool. The processors in parallel execute the evolution of
neighborhoods while the individuals are located in a shared resource pool, e.g., distributed
object or memory cache. Moreover, the coupling is very low between them by defining only
small neighborhoods, introducing the Pool Model as a highly parallel solution for paralleliz-

22

2.2. Evolutionary Algorithms (EAs)

ing EAs. In contrast, the Coevolution Model and the Multi-Agent Model decompose the
problem into smaller sub-problems by distributing the dimensionalities of the problem into
several dimensions. Indeed, we focus in the present work only on the classic models and
Hierarchical Model.

2.2.2. Hybridization of EAs

One popular method to enhance the performance of EAs and overcome their limitations is
to hybridize them with other algorithms and methodologies for performing parts of the EA
workflow. For example, utilizing cellular automata, neural networks, heuristics, etc., to seed
the initial population, define the survivor selection, approximate the fitness function or even
replace whole genetic operations. This enables EAs to successfully handle complex real-
world optimization problems which involve imprecision, uncertainty, noisy environment
and vagueness.

Grosan and Abraham [72] identified the most used hybrid architectures for EAs as follows:

• Hybridization between two or more EAs
• Fuzzy logic assisted EA
• Particle Swarm Optimization (PSO) assisted EA
• Ant Colony Optimization ACO assisted EA
• Bacterial Foraging Optimization assisted EA
• Hybridization between an EA and other heuristics
• Hybridization between an EA and Machine Learning (ML) techniques

Due to the fact that all core elements of EAs can be altered, numerous methods and
techniques to investigate the above-listed hybridization approaches are proposed. For
example and as shown in Figure 2.8, the hybridization approach can be applied for generating
the initial population, estimating the fitness function and applying the genetic operators and
the selection policies [173, 190, 167, 118, 64]. The diversity of the initial population plays an
essential role in the search process of EAs. Therefore, enriching the initial population with
good and diverse individuals improves the overall performance of EAs. To this end, other
heuristics methods and ML techniques, namely Local Search (LS), Simulated Annealing
(SA) and Artificial Neural Networks (ANN) are combined with EAs to assist them by
generating a more diverse initial population (see, [72] for more details). For example,
the initial population is seeded with the prior found solutions of a similar problem where
each seed serves as a pointer to a promising area in the solution space assisting EAs to
reach the optimal solution or the near-optimal one in a reasonable time. For complex and
large-scale optimization problems, EAs require large numbers of fitness evaluations which
are in most cases computationally expensive [76, 75, 186, 124, 15]. For accelerating the
evaluation process, estimating the fitness value of each individual by instrumenting ML
techniques like ANN or clustering algorithm is a feasible approach. Furthermore, tuning EA
configuration like the population size, probability of mutation, crossover and recombination
by incorporating domain-specific knowledge into EAs or combining EAs with the previously
mentioned methods and techniques can generally enhance the search process of EAs.

23

2. Background

Initial
Population

Parents

Parent
Selection

Fitness
Evaluation

Offspring

Genetic
Operations

Fitness
Evaluation

Terminate?

Survivor
Selection

Best
Individual(s)

Problem specific
knowledge, heuristics,
neural networks, prior

solutions

Local search,
Clustering

Local search,
machine learning,

neural network

Clustering, neural
network, heuristics

Neural network,
heuristics

Clustering, neural
network, heuristics

Local search, neural
network, reuse as initial
population for repetition

Local search,
machine learning,

neural network

or other algorithms

Figure 2.8.: Hybridization perspectives for an EA

2.2.3. The EA GLEAM

The EA GLEAM 1 (General Learning Evolutionary Algorithm and Method) [24, 23] is used
in this work as an implemented example of an EA with great flexibility to evaluate the pro-
posed method for facilitating the usage of EAs in cluster computing environments. GLEAM
is originally designed to plan, optimize and control dynamic processes like collision-free
path planning for industrial robots. GLEAM is distinguished from other EAs by its flexible
coding, in which the decision variables that semantically belong to one gene are grouped
together. Each gene defines a type schema that determines how many decision variables
of which data type with which lower and upper limits it contains. A decision variable can
either be of type Integer or Real. The upper and lower limits restrict the range of the Integer
or Real variable to a certain interval with lower and upper boundaries and can be seen as a
simple form of inequality constraint conditions. In GLEAM, such a gene definition (also
called action type) is always identified by its type ID (a unique Integer). The limits of the
decision variables are statically assigned to the gene and cannot therefore be changed by
evolution, but dynamically changeable limits can also be modeled as decision variables if
needed. The set of gene definitions defines the genotype and therefore the semantic structure
of the alleles for a given problem setting.

1 https://github.com/KIT-IAI/Gleam (Accessed: 10.02.2023)

24

2.2. Evolutionary Algorithms (EAs)

For example, for scheduling power generators or storages to fulfill a given demand, the
EA GLEAM defines a flexible type schema to code the so-called scheduling operations in
genes, in which the type ID represents the unit ID for each power generation unit. Each gene
consists of, e.g., start time and duration as Integer decision variables as shown in Figure
2.9a. If some of the power generation units are operated at a certain fraction, e.g., power
storages, a new decision variable is added to the genes, namely power fraction which takes
Real values as shown in Figure 2.9b. For ensuring that GLEAM does not generate infeasible
values for these decision variables, an appropriate value range depending on the studied
optimization use case is defined for each decision variable. (cf. [86, 23, 24]) for a detailed
discussion). Figure 2.9 shows an example of such limits where the optimization problem is
the creation of an hourly day-ahead schedule plan for a microgrid consisting of 25 power
generation units.

Type ID (Unit ID) [1,25]

Decision Variable Data Type Limits

start time Integer [0,24]

duration Integer [0,24]

(a)

Type ID (Unit ID) [1,25]

Decision Variable Data Type Limits

start time Integer [0,24]

duration Integer [0,24]

power fraction Real [0,100]

(b)

Figure 2.9.: An example of a type schema proposed by GLEAM for scheduling building 24-hours day-ahead
schedule for 25 different units of power generation, adapted from [90]

The chromosomes contain one or more instances of those genes that are described by
their type definitions as a list of actions (i.e., gene instances representing alleles). The
actions are additionally grouped together into one or more segments, whereby the segment
boundaries can be dynamically changed or set randomly according to some knowledge
about the application (see, Figure 2.10). Genetic operations, e.g., mutation and crossover
can then be applied to the whole segments. This will allow the evolution of partial solutions
as a whole.

Action

a1

Action

a2

Action

a3

Action

b1

Action

b2

Action

c1

Action

c2

Action

c3

Segment a Segment b Segment c

Chromosome

header

Figure 2.10.: Example of a list of actions with segments forming an individual, adapted from [24]

GLEAM currently supports three basic sub-types of chromosomes. In its simplest form,
every gene type is represented by exactly one gene instance in the chromosome and the
order of the instances does not matter. Secondly, the chromosome contains only one
instance of each gene but the order matters. Thirdly, the chromosome can contain more
than one instance of each gene and the order is relevant. The first subtype is appropriate
for static optimization problems where the structure of, e.g., a technical system and its

25

2. Background

dynamics does not change and the application needs only to find the best set of parameters
for configuring the system according to an underlying optimization problem. The second
subtype is especially useful for combinatorial tasks or tasks where both the sequence of the
elements and their parameters are of interest. The third subtype is the most appropriate for
optimizing dynamic processes where even the technical system can be dynamically changed,
e.g., by sending control signals to system parts for modifying the behavior of the system.
E.g., sending control signals will result in having an action element performing control on a
certain machine several times in a chromosome [23, 24, 90].

The described gene types and the rules for chromosome construction and manipulation
form the so-called gene model which defines the GLEAM configuration for performing a
set of general genetic operators on populations. GLEAM provides a set of basic genetic
operators which can be classified into segment-specific (e.g., add or delete segments or
move their boundaries), action-specific (e.g., add, delete or duplicate actions or mutate their
parameters), mutation of parameters (e.g., smaller or larger changes of parameter values)
and Crossover (one-point, n-point and segment crossover) operations. GLEAM additionally
implements a specific approach for applying some of these operators in a specific order by
grouping a number of them into a self-defined evolutionary operator. Each basic operator
also has an execution probability which defines if the basic operator is actually applied
when the self-defined evolutionary operator is executed. Moreover, this approach provides
the ability to add problem-specific genetic operators to the set of general ones and therefore
to use own defined evolutionary operators (cf. [23, 24], for a detailed discussion).

Note, that the exact set of operations applied depends on the specific subtype of chromosome
model. For instance, crossover can now operate on segments as a whole or on single actions
and mutations can be applied to specific attributes of the gene type (decision variables) and
can respect their data type and boundaries. Hence, explicit restrictions that are common
in real-world problems can be easily and advantageously handled in the gene model of
GLEAM. The violation of other more implicit constraints is detected in GLEAM during
the evaluation of a chromosome. This violation is then quantitatively determined and
implemented as a penalty function which provides a penalty factor between zero and one.

GLEAM provides the ability to evaluate the generated chromosomes either externally by
sending it to an external service – this facilitates the parallelization of GLEAM according
to the Global Model – or internally. By default, GLEAM generates the initial population
completely randomly. However, it supports the integration of some individuals which
are taken from previous runs of GLEAM for solving the same or similar optimization
problems or generated by an external tool or algorithms into the initial population. This
feature enables the parallelization of GLEAM based on the Coarse-Grained Model and
the hybridization of GLEAM with other algorithms for seeding the initial population. The
population structure of GLEAM is based on the Fine-Grained Model with overlapping
neighbors. The individuals are organized as a ring in order to find the right balance between
width- and depth-first search.

Since we cannot assign each individual of a population to a processor due to the limitation
of availability of CPUs in the used computing cluster, we do not consider the Fine-Grained
Model of GLEAM in this work. GLEAM is written in C and the interaction between it and

26

2.3. Parallel Computing

the implemented services is realized in terms of invocations based on the command-line
calls. Data exchange is accomplished through file access.

2.3. Parallel Computing

In parallel computing, complex calculation problems are broken down into several small
calculations which are carried out at the same time by a distributed system [10]. This offers
great opportunities regarding the performance of the system and other beneficial traits.
According to Coulouris et al. [42] and Tanenbaum et al. [179], the distributed systems can
be defined as systems that consist of components such as computers, printers or running
computer programs connected by a network for exchanging messages among them. It is
very important to the end users to see a distributed system as a single coherent system. The
components of a distributed system are connected and related to each other according to a
predefined topology which has a great influence on the characteristics of distributed systems
[179].

The communication between the different components of a distributed system is very
essential. There are three types of communication paradigms, namely inter-process commu-
nication, remote invocation and indirect communication.

• Inter-process communication refers to a low-level communication between the pro-
cesses in the distributed systems. This includes message-passing primitives, two-way
streams and multicast communication.

• Remote invocation is a two-way exchange between connected components in a dis-
tributed system. The benefits include calling procedures on remote components as if
they are local and better support for object-oriented programming.

• Indirect communication is defined as the communication between components in
a system is performed through an intermediate layer. Therefore, there is no direct
coupling between the sender(s) and the receiver(s). This makes the communication
more flexible in terms of topology change and increases the flexibility of adding new
components.

Remote invocation and indirect communication are the two communication types that are
used in the context of this thesis. While the response-request communication paradigm is
used for the remote invocation type, the event-based communication paradigm is utilized to
realize the indirect communication type. The response-request communication paradigm
describes how two services can directly communicate with each other where one service
initiates a request to another and in return expects a response. The event-based communica-
tion paradigm is driven by events where one component (so-called producer) emits an event
and all components that have subscribed to the event type (so-called subscribers) will get an
update. REST (REpresentational State Transfer) is a protocol-agnostic architectural style
that does not rely on a specific protocol. Generally, REST implements the response-request
communication paradigm by using the Hypertext Transfer Protocol (HTTP) as an underlying
communication protocol. HTTP is a stateless application-level response-request protocol

27

2. Background

for the foundation of data communication on the web. It is used for other interactions on the
web as service-to-service communications. HTTP has five main methods that simplify the
connection to the components and the manipulation of data. The GET method is used to
retrieve/fetch data from a source. The POST method is used to create new resources. The
PUT method replaces/updates an existing resource. The PATCH method partially updates
an existing resource. The DELETE method is used to delete an existing resource. The main
advantage of REST is based on its simplicity where many web applications support REST
interfaces, since it provides less overhead and easy-to-handle data resource formats like
JSON, HTML or plain text.

The publish/subscribe pattern is a common way to implement the event-based communica-
tion paradigm. The main goal of the publish/subscribe pattern is to loosely coupling senders
and receivers reflecting the dynamic and decoupled nature of distributed systems. Instead
of directly interacting between senders and receivers, the publish/subscribe messaging
paradigm arranges events in channels. The sender (publisher) is programmed to send its
events to one of the channels without knowing the receivers. The receiver (subscriber) in
contrast only expresses interest in one or more channels to receive messages that satisfy its
interest. The intermediate channel matches subscriptions against published events. Since
there are potentially many subscribers for one channel, the publish/subscribe paradigm is
essentially a one-to-many communication paradigm. This decouples senders and receivers
in time, space and synchronization [51] allowing dynamic network topologies and many
different configurations. Hence, the publish/subscribe messaging paradigm is well suited
for the communication between several components allowing experiments with several
changing configurations.

2.3.1. Service-Oriented Architecture and Microservices
Architecture

The Service-Oriented Architecture (SOA) is an approach to break down the large monolithic
applications into distinct several software blocks (so-called services). These services interact
with each other to share their functionalities. In other words, SOA builds a distributed system
with several software components where each one interacts with others through messages
exchanged over a network rather than within a process boundary. This introduces SOA as a
software solution to handle the changes and the heterogeneity that can be found in large
monolithic applications. The major objective of SOA is the reusability where the services
can be reused by two or more end-user applications or other services. However, SOA has
several challenges like the lack of guidance for service granularity, communication protocol
and wrong guidance to split the system [139], to name a few. To face such problems,
microservice architecture has emerged from real-world applications. The microservice
architecture is a specific approach of SOA which is composed of several independent
deployable services [139]. Microservices are small, autonomous services that work together
to perform a specific task. Since all services are independent of each other, each microservice
can utilize its own technology stack allowing great flexibility, e.g., one of the deployed
services is written in Python and the others in Java. The independence of the services

28

2.4. Machine Learning (ML)

also allows each service to scale on demand. The principles to design microservices to
assure their previously mentioned characteristics are summarized by Newman [139] as the
following:

• Model around business concepts: the interfaces are modeled around business bounds
and are therefore more stable than those ones modeled around technical concepts.

• Culture of automation: the automation is used to address the problem introduced by
further complexity because of many moving and changing parts.

• Hide internal implementation details: it ensures the independent evolution and the
development of all services and their databases.

• Decentralize all the things: it maximizes the autonomy of all microservices and
decision making. Especially, the decision to deploy services is made by the team that
develops the services.

• Independently deployable: the services are closely related to the previous point. Here,
the services and their different versions should be independently deployable and able
to coexist.

• Isolate failure: the services should avoid cascading failures to other services. There-
fore, a service should be able to handle failures occurring when calling other services.

• Highly observable: since a distributed system designed according to the microservice
architecture consists of potentially many services and machines, observing the behav-
ior becomes tedious. Therefore, it should be possible to observe the state of the whole
system from a single point of view.

2.4. Machine Learning (ML)

Machine Learning (ML) is the process of a computer system learning patterns from data
to make accurate predictions [135]. These predictions could be answered, e.g., whether
an animal in a photo is a cat or a dog and whether an email is a spam or a normal email.
Furthermore, ML can be used for more complex problems such as recognizing tempo limits
on a road sign by a self-driving car. ML is often categorized by how a model learns to
improve its prediction accuracy. The different basic approaches can be broadly grouped
under four learning techniques [135]:

• Supervised learning requires labeled data, i.e., inputs known as features corresponding
to their outputs called labels. Given sufficient training examples, a supervised learning
model learns the mapping between the input and the output to make the predictions
based on the learned knowledge [141].

• Unsupervised learning is a type of ML, in which an algorithm is trained on unlabeled
data. In contrast to supervised learning, the algorithm identifies patterns in the data
and potentially finds correlations that, e.g., describe the data to split it into similar
categories [106].

• Semi-supervised learning is an approach of ML involving a mix of both above-
introduced learning methods. The model is initially fed with a small amount of labeled
data and afterward with a large amount of unlabelled data. The model is partially

29

2. Background

trained with the labeled training data to label the unlabeled data. Finally, it is trained
on a mix of labeled and pseudo-labeled data [39].

• Reinforcement learning [96] is a learning type, in which the model learns from the
environment, since there is no available data to train it. The training of such a model is
a multi-step process where the model makes a series of decisions which affect the state
of this environment. If the decision is right, the model receives a reward otherwise
it receives punishment. An example of such learning is autonomous driving such as
Tesla.

In this thesis, the main focus is to use the first two learning approaches, namely the
supervised and the unsupervised learning. While clustering techniques and Autoencoder
are used for the unsupervised learning approach, Artificial Neural Networks (ANNs) are
selected as an example of the supervised learning approach.

2.4.1. Clustering

Clustering is a density estimation method used to group similar objects into several groups
or clusters [83]. There are diverse applications of clustering algorithms like document
clustering, noise detection and image compression, to name a few. For example, in the
energy field, customers that have similar consumption profiles can be grouped together
into one cluster opening new perspectives for providing better services. To build groups
of similar inputs, there are several clustering models [134, 78], e.g. distribution, group,
centroid, density and connectivity models. In this thesis, centroid, density and connectivity
models are used. While the centroid and connectivity models depend on the distance metrics
such as Euclidean distance, Manhattan distance, Minkowski distance and Cosine similarity
to define the similarity or dissimilarity between the input data points, the density model
– as its name implies – considers the density of the input data to define the clusters. The
most prominent implementation of the centroid-based clustering model is the KMeans
algorithm [83]. The density-based clustering model is the Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) algorithm and the connectivity-based clustering
model is the Agglomerative Clustering algorithm. Besides these three algorithms, Affinity
Propagation clustering algorithm is tested. K-Nearest-Neighbor (KNN) algorithm can either
be used as a supervised or an unsupervised method. In the context of this thesis, it is used
as an unsupervised approach to find the k nearest neighbors of a given object. Generally,
these algorithms work better with low dimensional data [85], i.e., the higher the number of
dimensions, the less accurate is the clustering.

2.4.2. Artificial Neural Networks (ANNs)

A neural network [109] is inspired by the human brain and consists of many simple process-
ing units, so-called neurons which are illustrated in Figure 2.11. Each neuron of ANN has a
mathematical function called the activation function which learns the relation between the
input and the output. The most familiar used activation functions are the Rectified Linear

30

2.4. Machine Learning (ML)

Unit (ReLU), Hyperbolic tangent (tanh), Softmax and Sigmoid. Each neural network has
three layers, namely the input layer, the hidden layers (at least one) and the output layer as
shown in Figure 2.11. The number of neurons in the first layer, i.e., the input layer is equal
to the number of features in the training set. However, the number of neurons in the second
layer, i.e., the hidden layer is different and there is no fixed rule to select this number. In
most cases, the number of neurons in the hidden layer is smaller than in the input layer. The
number of neurons in the last layer, i.e., output layer depends on the type of the problem.
For example, for complex problems with multiple-output, ANN uses multiple neurons in
the last layer equal to the number of outputs. This enables ANN to simultaneously predict
multiple outputs and learn disjoint label combinations.

a) b)

Figure 2.11.: Example of Artificial Neural Network a) Graphical representation of the McCulloch-Pitts
model neuron threshold unit. b) Exemplary Feedforward Network [109]

Autoencoder An autoencoder is an unsupervised learning algorithm that leverages
ANNs for feature reduction, e.g., [19] and anomaly detection, e.g., [40]. An essential char-
acteristic of autoencoders is their lower dimension representation imposed by a bottleneck
which is depicted, i.e., the Encoded Data layer in Figure 2.12.

The colors in the figure indicate similar representations of the data by the encoding stage and
the decoding one. For feature reduction, the main task of an autoencoder is to map the input
data from the original representation to another one with losing as little information as possi-
ble. In other words, the main aim of an autoencoder is to minimize the reconstruction error
which measures the difference between the original input and the consequent reconstruction.
In the encoder stage, the autoencoder is forced to find a lower-dimensional representation
of the given data and simultaneously try to keep as much as possible the variance of the
original data. In the decoder stage, the autoencoder reconstructs the input from the reduced
features – the red layer in Figure 2.12 –. If the input features are independent of each
other, this encoding and subsequent reconstruction are very difficult or even not realizable.
However, if there is some sort of correlation between the input features, the autoencoder
can eliminate them and successfully reduce the input dimensions [147].

2 kvitajakub.github.io/2016/04/14/rnn-diagrams (Accessed: 10.02.2023)

31

2. Background

Encoder Decoder

Input

Encoded Data

Output

Figure 2.12.: Exemplary schema of a deep autoencoder with seven layers

Figure 2.13.: Recurrent Neural Networks unrolled over time taken from 2

Recurrent Neural Network In recent years, the number of applications that generate
sequential data like speech recognition, language translation and the stock market has
increased. Building a ML model that can learn from such data is considered as one of
the most challenging problems in the ML field. Recurrent Neural Networks (RNNs) are a
special architecture of ANNs that are mainly used to tackle this learning problem [129].

As shown in Figure 2.13, RNN receives input 𝑥 at time step 𝑡 , outputs a value ℎ for the
same time step 𝑡 and passes a message to the next time step 𝑡 + 1. This mechanism enables
RNN to work better if the information is saved in a specific sequence over time steps. It is
important to note that RNN works better if the gap between the relevant information and the
required information is small. In other words, RNN can remember the learned information
for a short time. For example, when RNN predicts the last word of the sentence, ‘the color
of the ocean is . . . ’, RNN can quickly predict the word without any additional information,
since it is quite clear that the ocean is most likely blue. However, it is more difficult for
RNN to predict the last word of the sentence, ‘I come from . . . ’ if multiple sentences

32

2.5. Technology Stack

such as ‘I study computer science in Karlsruhe which is a nice city located in the west
south of Germany, . . .’ are coming before this sentence. The difficulty arises from the
fact that RNN fails to remember what it is learned from long sequences [20]. For treating
the long-term dependency issues, Hochreiter et al. in [80] have proposed Long Short-Term
Memory Networks (LSTMs) architecture which has a similar structure of standard RNN.
It consists of a simple and straightforward structure as depicted in the top part of Figure
2.14 where each cell is a single tanh layer. The same chain structure is used to build
LSTM, however, supplementary operations besides the tanh layer are integrated within each
cell. These operations are used to enable the LSTM to forget irrelevant information and
keep the relevant one. The cell states and the three different gates are the main concept
behind LSTMs. The cell states save and deliver relevant information to the next cell of the
chain, ensuring that information is transferred from previous time steps to the next ones
and reducing the effects of short-term memory. At each time step, information is added or
removed from the cell state via the input gate and forget gate, respectively.

Sequence-to-Sequence problems (Seq2Seq) problems like the translation of sentences from
German into English or the generation of captions for videos [182] are usually solved by
applying LSTMs. In the simplest form, i.e., by translating word by word, one word is
used as input for the LSTM model and the model outputs the corresponding translated
word. Generally, the input and the output have different lengths leading to a special type of
LSTM model which is called Seq2Seq LSTM model with multiple outputs. Such a model
is typically built out of two main stages, namely an encoder stage and a decoder one. The
encoder of the LSTM model processes the complete input sequence and returns its internal
states discarding other outputs. These states can be interpreted as context and are used later
as input for the decoder. In the first step of the decoder stage, the decoder gets the internal
states of the encoder and a start vector as inputs to predict the first output (so-called target
value). Then, it updates the states and passes them to the next time step. The decoder uses
the target value and states from the previous time step to make the next prediction. This
iteration is continued until the decoder generates an end vector as an indication of the end
of the output sequence.

2.5. Technology Stack

In this section, the main software tools and technologies that are utilized for the investiga-
tions of this thesis are explained. Firstly, an introduction to the container-based virtualization
approach is introduced. Secondly, an overview of the used data exchange and storage tools
is given.

Container-based Virtualization Container technologies and Virtual Machines (VMs)
are two of the most used approaches that allow the abstraction of the systems code from

3 colah.github.io/posts/2015-08-Understanding-LSTMs (Accessed: 10.02.2023)

33

2. Background

Figure 2.14.: The repeating module in standard RNN with a single layer is compared to the repeating module
on an LSTM containing four interacting layers taken from 3

the underlying hardware, simplifying automation, enabling portability and standardizing
development across multiple machines and platforms. Container-based virtualization, also
known as containerization, is an isolated virtual environment installed on top of an operating
system kernel. The kernel isolates the environment for all running containers. As a result,
there is no need to include an entire guest operating system in a container. Containers share
the same properties regarding resource isolation and allocation with other virtualization
techniques, such as VMs as shown in Figure 2.15. However, containers virtualize the
operating system by enabling the run of isolated systems on a single server or host, i.e.,
the system resources are shared between all deployments. This makes the execution of
applications running in containers highly efficient [49, 172], since one can scale up and down
the computation power based on the current demand by increasing or decreasing the number
of running containers. The most popular open source software enabling containerization
is Docker [178]. Docker performs operating-system-level virtualization to isolate the
applications. This is achieved by running containers on the Docker engine that separates the

4 docker.com/resources/what-container (Accessed: 10.02.2023)

34

2.5. Technology Stack

Infrastructure

Host Operating System

Docker

A
p
p

 A

A
p
p

 B

A
p
p

 C

Infrastructure

Hypervisor

Guest

Operating

System

App A

Guest

Operating

System

App B

Guest

Operating

System

App C

A
p
p

 D

A
p
p

 E

A
p
p

 F

Virtual

Machine

Virtual

Machine

Virtual

Machine

Containerized

Applications

Figure 2.15.: Comparing Containers and Virtual Machines taken from 4

applications from the underlying host operating system. Docker is primarily developed for
Linux where it uses built-in resource isolation capabilities.

In order to unlock the full potential of containers, it is necessary to automate the deploy-
ment, scaling and management. This process is called container orchestration. In general,
orchestration is the automated configuration, coordination and management of computer
systems and software [50]. In the context of containers, orchestration means managing
the whole lifecycle of containers, including provisioning, deployment, resource allocation,
health monitoring, load balancing and configuration. The two main container orchestration
systems are Kubernetes 4 and Docker Swarm 5. Since Kubernetes is able to orchestrate
not only Docker containers but also other container runtime environments and is used in
many production environments, it is a more mature and flexible product. Kubernetes defines
several building blocks which are called objects, to provide mechanisms for deploying,
maintaining and scaling applications. These objects represent resources that can be easily
managed as such. The key objects that are relevant to this work are the following:

• Pod: it is Pod is the smallest building block in the Kubernetes object model. It
represents a running process. Inside a Pod, there are one or more running containers.
However, a pod has a unique IP address and encapsulates not only containers, but also
storage resources and options on how the container(s) should run.

• Service: a Kubernetes service combines a set of Pods that work together. The service
acts as an abstraction that redirects requests to the Pods. Therefore, Pods can be
dynamically created and destroyed in the background to scale a service.

Data Exchange and Storage Tools In this thesis, two different types of tools for data
exchange and storage are utilized, one used for the communication between microservices
and one for storing persisting data. To realize a very loosely coupled software architecture,

35

2. Background

an open source in-memory key-value-based database, namely Redis 5 is used as a message
broker to realize the publish/subscribe messaging paradigm an store temporary data. An
in-memory database is a database management system that, in contrast to classic database
management systems, does not rely on the disk storage but rather on the main memory.
Therefore, they provide faster and more predictable performance. Indeed, Redis supports
only simple and abstract data structures such as strings, hashes, lists, sets, sorted sets,
bitmaps, hyperloglogs and geospatial indexes. In other words, complex data structures are
not supported leading us to use technologies like JSON (JavaScript Object Notation) to
serialize such a structure. For the cluster environment, Redis cluster features high availability
and scalability for distributed systems. For the persistence storage, PostgreSQL 6 is used as
an object-relational database management system.

5 redis.io (Accessed: 10.02.2023)
6 http://postgrest.org/en/v7.0.0/ (Accessed: 10.02.2023)

36

3. State of the Art

Since the introduction of Genetic Algorithms (GAs) in the 60s by Holland [166, 82] and
the Evolution Strategies (ES) in the 70s by Rechenberg and Schwefel [154, 169], many
frameworks and approaches have been proposed to parallelize and hybridize them. The
reasons to add such parallelization and hybridization to EAs are twofold. On the one
hand, they alter the numerical behavior of EAs, maintaining a higher genetic diversity for
a longer period of time leading to better solutions. On the other hand, they accelerate
the computations needed by EAs to find optimal solutions. Recently, parallelization and
hybridization of EAs have become even more relevant , since the application of EAs to solve
emerging complex and large-scale optimization problems in the industry as well as academic
fields has been widely increased. Moreover, modern distributed software technologies such
as microservices and container technologies open new perspectives to efficiently parallelize
and hybridize EAs on modern hardware such as cluster and cloud environments exploiting
their enormous computational power, e.g., [73, 66, 163, 164]. In Section 3.1, an extensive
overview of state-of-the-art software architecture and frameworks for parallelizing EAs
is introduced. Moreover, different hybridization approaches of EAs and their respective
implementations are reviewed in Section 3.2.

3.1. Parallelization of EAs

Parallelization of population-based metaheuristics, e.g., EAs have attracted many researchers
in the industry as well as in academic domains. Over the years, frameworks and libraries
using different software architectures for the execution of parallel EAs have been introduced.
These frameworks facilitate the development of new parallel EAs and perform benchmarks
quickly. Most of these frameworks follow the object-oriented paradigm for software
architecture providing great modularity, reusability and flexibility on the code level.

The four most popular state-of-the-art frameworks for parallel EAs are MALLBA [8, 7],
Parallel and Distributed Evolving Objects ParadisEO [33], Distributed Resource Evolution-
ary Algorithm Machine (DREAM) [145], Distributed Evolutionary Algorithms in Python
(DEAP) [62] and JCLEC [181].

MALLBA [8, 7] is a generic library containing algorithms for solving combinatorial
optimization problems. The library is written in C++ providing algorithmic skeletons
where each one represents a template to realize an EA solving a specific optimization
task. Each developed algorithm can be easily executed sequentially and in parallel. Each
skeleton provides three different implementations, namely sequential, parallel for Local

37

3. State of the Art

Area Networks (LANs) and parallel for Wide Area Networks (WANs). To achieve that, a
middleware layer on top of the Message Passing Interface (MPI), called NetStream, for
communication in LANs and WANs is provided. NetStream introduces a high-level interface
for communication ensuring portability and ease of use of the communication channels.
The algorithmic skeletons support the Coarse-Grained Model for parallel EAs. MALLBA
introduces a generic skeleton which supports two optimization techniques, namely exact
and heuristic. This enables the possibility to hybridize them into one algorithmic approach.
For instance, combining Genetic Algorithms (GAs) and Simulated Annealing (SA) can be
achieved in two different approaches. While in the first one, the SA algorithm is used to
assist the GA by applying the genetic operators, in the second one, the GA is initially run to
generate a population which is used by the SA algorithm to evolve the final solution.

ParadisEO [33] is a generic framework dedicated to the reusable design and implementation
of parallel metaheuristics. It is a parallel extension of the Evolving Objects (EO) framework
[98]. ParadisEO has several similarities with MALLBA regarding the deployed technologies
and use cases, i.e., it is written in C++ and uses MPI for communication. ParadisEO has
a clear separation between the solution methods and the problem-specific parts. The
user only has to adapt the problem-specific parts of the framework while the invariant
parts of the solution method remain the same for all problems of an application domain.
ParadisEO supports four parallelization models, namely the Coarse-Grained Model, the
Global Model, Hierarchical Models and the dimensionality distributed model. Moreover,
ParadisEO introduces a hybridization mechanism to combine EA with other methods such
as Local Search (LS). In contrast to MALLBA, ParadisEO does not support the execution
in WANs.

DREAM [145] is a framework for the automatic distribution of EAs. The framework
is designed to be used with WANs where computers are connected through the internet.
DREAM uses the Java Evolving Objects (JEO) [13] framework to execute EAs. JEO has
similar features compared to the EO library which is deployed in ParadisEO. However, it is
written in Java and not in C++. DREAM provides two main levels, namely the high level
and the low level. The high level is designed to allow the users to develop EAs, execute
and monitor them. It provides a Graphical User Interface (GUI) called GUIDE which
allows users with few programming experiences to graphically specify the execution of
EA and observe the experiments performed. The EA specification is translated using the
easy specification of EAs module from the textual syntax to a Java Code to be executed
using the JEO library. At the low level, DREAM has a layer called Distributed Resource
Machine (DRM) that provides a distributed P2P mobile agent system that may be used for
the automatic distribution of EAs. This architecture allows the execution of parallel EAs
without central servers that manage the environment, making it scalable and more effective.
DREAM supports only the Coarse-Grained Model for parallelization EAs.

DEAP [62] is an evolutionary computation framework that allows the easy development of
EAs. In contrast to the above-mentioned approaches, DEAP allows simple customization of
existing algorithms that are developed in DEAP, since it does not hide the implementation
details for the user. There is a great focus on usability, since there are high-level abstractions

38

3.1. Parallelization of EAs

available that facilitate the use of this framework. DEAP is written in the Python program-
ming language making each step of the algorithms, data structures and code easy to read
and understand. The core architecture has two modules, namely the creator module and
the toolbox module. The creator module is a meta-factory that uses both inheritance and
composition to extend existing classes with attributes (data and functions). This mechanism
is especially useful for the creation of custom genotypes and populations. The toolbox
module is a container for customized tools such as genetic operators. In addition to the
previously mentioned modules, DEAP has several peripheral modules like the Distributed
Task Manager (DTM) module that allows the distribution of specific parts of the deployed
EAs. The DTM is able to distribute certain subtasks across a cluster and to perform load-
balancing between the distributed tasks. DEAP is firstly designed to support the Global
Model and then it was extended to support the Coarse-Grained Model [149].

JCLEC [181] is a java-based framework which is designed by object-oriented programming
principles applying design patterns to maximize the reusability and the ability to hybridize
EAs with other algorithms. It provides a high-level software environment to implement any
type of evolutionary computing, e.g., GAs and EAs. The framework supports the Global
Model by using threads to parallelize the evaluation of each individual. JCLEC is extended
to JCLEC-MO to solve multi-objective optimization problems using EAs and PSO [151].

Parallelization of EAs in cluster and cloud environments has recently received a lot of
attention of the scientific community. This is due to the fact that many real-world opti-
mization problems are of complex nature due to, e.g., non-linearities, discontinuities, many
parameters and restrictions. Moreover, EAs require time-consuming assessments due to the
usage of elaborate simulations or the like. Thus, a lot of computational power is needed.
The execution of EAs in cluster and cloud environments seems to be a promising step for
exploiting their enormous computational capabilities. However, the intrinsic computation
and time complexity cannot be reduced by using only cluster and cloud environments but
also by the contributing of parallel computing software techniques such as MapReduce,
Spark and microservices which allow the solution times to be on reasonable levels.

One of the first implementations to distribute EAs using MapReduce has been introduced
by Jin et al. [91]. They proposed the MapReduce for Parallelizing Genetic Algorithms
(MRPGA) framework that allows an automatic parallelization of GA. The underlying
MapReduce implementation is based on the .NET platform. MRPGA overcomes the
problem of mapping the iterative style of EAs to the MapReduce paradigm by adding
a coordinator that iteratively starts MapReduce jobs and performs the genetic operators.
The mapping phase is dedicated to the evaluation of the individuals while selection takes
place in a hierarchical reduction phase that extends the standard MapReduce model. The
extended reduction phase has two steps. While in the first step a local selection is applied,
in the second one which is called at the end of each generation, the global selection takes
place. MRPGA only supports one parallelization model, namely the Global Model. Since
the coordinator is a serial component that applies the genetic operators, evaluates the
convergence criteria and schedules the whole execution, it rapidly becomes a bottleneck.
This limits the scalability of the MRPGA and prevents it from scaling well by using more

39

3. State of the Art

than 33 nodes. Moreover, the concluded results show that the communication overhead is
comparably small, since it is less than 1% of the whole execution time.

Verma et al. [183] improved the MRPGA approach by having only one reduction phase and
therefore no change to the underlying paradigm by MapReduce. In contrast to MRPGA,
the MapReduce implementation is based on a dedicated framework, namely Hadoop and
the local selection takes place in the intermediate phase of the combiner. The mappers
still evaluate the individuals and the best is written to the distributed file system to ensure
elitism. The default partitioner is overridden, since the default implementation introduces
artificial spatial constraints to distribute the key-value pairs to the reducers. Another
reason is the premature convergence that skews the distribution of the individuals, since
certain individuals will dominate the population at some point. In the reduction phase,
all genetic operators are performed and the selection takes place. The client checks the
convergence criteria after each generation. The initial population is produced in a separate
MapReduce job. The results show that using more computing resources with a fixed size of
the optimization problem decreases the time per iteration. There is a decrease in performance
if the number of requested nodes exceeds the number of available CPUs.

Salza et al. [165] proposed elephant56, a framework supporting the development and
execution of parallel EAs. Elephant56 supports the Global, Fine-Grained and Coarse-
Grained Models. It is based on the previous work by Ferrucci et al. [55, 56] that only
supports the Coarse-Grained Model. Compared to MRPGA, they share several similarities
regarding the Global Model and the Fine-Grained Model. In elephant56 there is also one job
per generation and a coordinator that starts the MapReduce jobs, applies genetic operators
and performs selection. Therefore, the coordinator in this implementation also becomes the
bottleneck. In contrast to the previous work by Ferrucci et al., elephant56 introduces the
concept of periods for the Coarse-Grained Model where, in each period, the mapper runs
several generations until the migration is performed. This speeds up the computation by
reducing the number of MapReduce jobs compared to one job per generation. The migration
uses the shuffling mechanism by MapReduce. These two phases of periods and migration
are performed in each MapReduce job until the termination criterion has been reached. In
their performance assessment [54] of the three deployed parallelization models, they note
that the Coarse-Grained Model outperforms the sequential version as well as the Global
Model and the Fine-Grained Model for all considered datasets and cluster configurations.
This is due to the fact that the overhead of the default data store in Hadoop, namely HDFS,
impairs further parallelization improvements gained by the Global Model and Fine-Grained
Model.

Martino et al. [45] used the Google App Engine MapReduce framework in order to paral-
lelize GAs in the cloud. Theoretically, the proposed approach supports the Global Model,
the Fine-Grained Model and the Coarse-Grained Model. However in their implementation,
only the Global Model is tested where the mappers perform the evaluation while the reduc-
ers perform the genetic operators. Compared to the other implementations there are two
additional components, namely the master and the user program that manage the execution.
The master is responsible for the coordination of the resources while the user program

40

3.1. Parallelization of EAs

performs several tasks like generating the initial population and checking the convergence
criteria.

Fazenda et al. [52] proposed a library designed to run EAs in the cloud computing environ-
ment based on the MapReduce programming model. The Coarse-Grained Model is chosen
to validate the design of such a library. The main drawback of it is that the parallelization
introduced by this library is limited to one island. Sherry et al. improved the library by
introducing Flex-GP [170] which supports multiple islands. They demonstrated the scala-
bility of up to 350 islands. Llora et al. [119] introduced a framework for semantic-driven
data-intensive flows in the cloud. They concluded that Hadoop is a suitable choice to adapt
EAs to very large problems as long as the time for each iteration is relatively constant.

Nebro et al. [136] introduced jMetalSP that combines the Big Data analytics engine Spark
[189] and metaheuristics implemented with jMetal [48] to parallelize the execution of
dynamic multi-objective optimization problems. In jMetalSP, the flexible and extensible
architecture of jMetal is combined with the streaming capabilities and the high-level parallel
model provided by Spark. While Spark reads information from various data sources,
streams it and updates the problem, the jMetal represents the actual solver that solves the
optimization problem based on data provided by Spark. The proposed architecture allows
jMetalSP to easily run applications on other Big Data platforms, such as Hadoop. The
main result of them is that using only one feature from Apache Spark does not introduce a
significant enhancement of the performance of jMetal.

Salza et al. [163, 164] proposed a framework, called Advanced Message Queuing Protocol
for Genetic Algorithms (AMQPGA), for the execution of the Global Model for genetic
algorithms using software containers. The exchange of individuals between the master and
its workers is performed by adapting the Global Model to the Advanced Message Queuing
Protocol (AMQP) where queues add a level of indirection between the master and its workers.
RabbitMQ provides the implementation of AMQP and acts as a message broker to accept
and forward messages between the master and the workers. The underlying communication
paradigm of AMQP is the publish/subscribe pattern. It allows a potential infinite number of
subscribers to listen to one publisher while the publisher does not have to know any of its
subscribers. This allows greater scalability compared to direct communication. The master
and the workers are executed in Docker containers that manage the model code. CoreOS
allocates resources and orchestrates the containers. In their performance test, they varied
the execution times of a dummy function between 0.001 ms and 100 ms, the chromosome
size between 128 and 65536 and the cluster size between 1 and 128 nodes to measure
the communication overhead. They reported an almost linear relationship between the
speedup and the cluster size for large evaluation times. The message broker of AMQP
becomes a bottleneck if the communication takes a lot of time compared to the evaluation
of individuals.

The KafkEO framework proposed by Guervos et al. [73] introduces cloud-based architecture
to parallelize EAs. They describe their underlying parallelization model as an asynchronous
Coarse-Grained Model. However, the framework is functionally equivalent to the EvoSpace
Model [65], since there is no strict topology between the islands. The evolutionary functions
are implemented with DEAP [62] and integrated into the serverless framework, namely

41

3. State of the Art

OpenWhisk where the deployed services are triggered by arriving messages. Kafka is
used as a communication channel that provides message queues. The architecture mainly
consists of three services and two message queues. The Producer service creates the initial
populations that are sent to a message queue as a new population. The GA Search service
gets the population from the message queue, evaluates it and applies the genetic operators to
generate offspring. Afterward, the Population Controller service extracts migrants from the
evolved population and performs the migration process. This service is the only sequential
part of the framework. Therefore, it constitutes a similar bottleneck as the coordinator in
the MapReduce implementations.

There are many examples of works that use the Hierarchical Parallel Model of EAs are
introduced, e.g., [30, 60, 115, 116, 61]. However, only the works that use modern software
or hardware, namely [115, 60] are reviewed in the context of this thesis. Lim et al. [115]
presented a framework for Hierarchical Parallel EAs exploiting grid computing. Specifically,
the Coarse-Grained Model is combined with the Global Model. For managing the grid
architecture, different technologies and tools are used, e.g., The Globus Toolkit, the Com-
modity Grid Kit, the Ganglia monitoring tool and NetSolve. In the proposed framework, a
meta-scheduler is used to perform discovery, bundling and load balancing with the help of
gathered information from the clusters by using Ganglia and a Grid Service. The detailed
workflow of the proposed framework can be summarized as follows. The meta-scheduler
provides the required computing nodes and the grid services for the evolution and evaluation
of subpopulations. Then, the subpopulations are transferred to the remote clusters. After
that, the parallel evolution is started for the subpopulations. The fitness evaluation of indi-
viduals is then performed in parallel over different nodes of the clusters. Once the fitness
evaluation has been completed, the obtained fitness is returned to the upper layer where the
genetic operations take place. This process is repeated until a specified termination criterion
has been reached. Lim et al. reported a speedup gain through the combination between the
Coarse-Grained Model and the Global model.

P-CAGE [61] is an environment for the execution of genetic programming, a subclass of
EAs which has been implemented as a Peer to Peer (P2P) network. In a P2P network, each
participant shares a part of its own resources to provide the service offered by the network
[168]. P-CAGE combines the Coarse-Grained Model with the Fine-Grained Model. The
islands are distributed on the P2P network nodes and are connected using a bi-directional
ring topology. As an epoch termination criterion, a prespecified number of generations has
been chosen. For the global termination, three criteria have been implemented, namely the
number of epochs, a maximum fixed time and the computation effort. One of them can be
chosen before the algorithm starts execution.

García-Valdez et al. [66] implemented evospace-js framework using an event-driven ar-
chitecture and asynchronous I/O model to parallelize EAs according to the Pool Model.
The underlying idea is to use available computing resources in an opportunistic manner.
This includes adding and removing resources at runtime. The Evospace Model [65] is the
underlying platform of evospace-js. The two main components of the framework are the
population repository which is implemented using an in-memory database, namely Redis
and the clients called EvoWorkers that execute the actual optimization. García-Valdez et al.

42

3.2. Hybridization of EAs

implemented a Particle Swarm Optimization and a Genetic Algorithm using DEAP [62]
as EvoWorkers. The EvoWorkers are implemented as microservices communicating with
each other via RESTful web services. Meri et al. [131] used synchronous cloud storage
services (Dropbox, Sugarsync) to distribute the pool over normal, heterogeneous PCs. Roy
et al. [161] used a simple distributed storage to exchange individuals with the pool, while
SofEA by Merelo et al. [130] used Apache CouchDB.

Moreover, other approaches for parallel implementations of EAs, e.g. [121, 93, 94, 95]
are tied to a specific underlying computing platform such as GPUs. Jurczuk et al. [93,
94, 95] developed and implemented a GPU-based application to distribute evolutionary
induction of decision trees for large-scale data applying the Global Model. Luong et al.
[121] implemented a Hierarchical Model, namely combining the Coarse-Grained Model
with the Global Model on a GPU and CPU platform. The GPU executes the workers of
the Global Model, while the CPU executes the Coarse-Grained Model. They identified the
communication between the CPU and GPU as a bottleneck.

3.2. Hybridization of EAs

Hybridization of EAs with different algorithms and techniques like heuristics and ML
techniques paves the road for applying EAs in fields where pure EAs provide inadequate
solutions or take too much computational effort to reach an acceptable solution quality.
Therefore, the hybridization of metaheuristics – especially EAs – has received a lot of
attention by researchers. In this section, we review different approaches to hybridize EAs.
These approaches are organized into three categories, namely approaches to assist EAs
by generating the initial population, approaches to assist EAs by calculating the fitness
evaluation and approaches to assist EAs by applying the genetic operators or by improving
the resulting offspring. More in-depth information about most of the research works
reviewed in this section can be found in the surveys of Grosan and Abraham m [72], Zhang
et al. [190] and Y. Jin [92].

Population Initialization Typically, EAs generate the initial population according to
some given constraints, randomly. This randomness guarantees a diverse population that
assists EAs in exploring the search space. The main advantage of such initialization is
that it is simple and does not need any prior knowledge and computationally intensive
methods. This facilitates the use of EAs in several domains with minimum adaptation
efforts. However, the random initialization of the initial population can mislead the EA
by pointing towards unpreferable areas in the search space. Hence, many techniques and
algorithms such as heuristics, other population-based metaheuristics, LS and ML techniques
are used to assist EAs by generating a more advantageous initial population aiming at
decreasing the convergence time and achieving better solution quality [123].

Tseng and Liang [177] proposed a hybrid metaheuristic called ANGEL to solve the
Quadratic Assignment Problem (QAP) which is a well-known combinatorial optimiza-

43

3. State of the Art

tion problem. ANGEL combines ACO, GA and LS to solve such problems by finding a
permutation of the components that minimizes or maximizes the total assignment cost. Two
phases are proposed, namely the ACO phase and the GA phase. Before the GA phase is
started, an initial population is generated by the ACO phase. Then, the GA is used to explore
the search space and provide promising results to solve the QAP. At the end of the GA phase,
the GA returns feedback to the ACO phase via extensive pheromone updating procedures.
This pheromone is used by the ACO to evolve a new population for the next run of the
GA phase. The LS assists GA and ACO to explore a local neighborhood enhancing the
search process of both global algorithms. A similar approach to solve the QAP is used by
Vazquez and Whitley [180] by combining GA with Tabu Search. The approach also includes
an alternative method for the initial population generation, namely a Greedy Randomized
Adaptive Search Procedure (GRASP) [53] which combines greedy elements with random
local search elements.

A greedy GA for the QAP is proposed by Ahuja et al. [1]. The proposed algorithm contains
several concepts, namely generating the initial population using a randomized construction
heuristic, new crossover schemes, an immigration scheme that supports diversity, periodic
local optimization of a subset of the population, a tournament among the different pop-
ulations and a mechanism to achieve a balance between diversity and bias toward better
solutions. The greedy GA is applied to all benchmark instances of QAPLIB [31] which is a
library of QAP. Out of the 132 instances, the algorithm obtained the best-known solution for
103 instances and found solutions with an enhancement up to 1% of the best-known ones
for the remaining 29.

Burke and Smith [32] solved a thermal generator maintenance scheduling problem using
a Memetic Algorithm (MA) and compared the obtained results with other algorithms that
have a built-in LS as an essential part of their approaches. The used MA uses different LS
strategies such as simulated annealing, hill climbing and tabu search. The influence of an
initial population on solution quality and computation time is studied. The first results show
that the initial population seeded by a heuristic does not introduce a significant influence on
the quality of the solution generated by MA. However and in terms of execution time, the
seeding of an initial population reduces the running time of MA. Some of the significant
benefits are decreasing the time to achieve a given solution quality or discovering better
solutions in a fixed time range are observed.

Louis [120] used a case-based reasoning principle to enhance a GA. The intent is to use
previous GA runs of similar optimization tasks to seed an adapted initial population for future
similar problems. During the evolution process, every individual generated defines a point in
the search space and its evaluation provides the respective fitness. The genetic information
from the previously computed similar optimization tasks is discarded in basic GAs, but
if it is stored in explicit memory, analyzed and then used for the case-based analysis of
individuals in population, it can improve the performance of GA. The approach is evaluated
for the open shop scheduling problem and yielded consistently better performance than
randomly seeded populations.

Zhang and Wang [191] proposed an orthogonal GA with quantization for global numerical
optimization with continuous variables. They apply the concept of orthogonal design to

44

3.2. Hybridization of EAs

two elements during the evolution process, i.e., initial population generation and crossover.
Orthogonal design is a kind of statistical method that is used to obtain knowledge from data.
Instead of testing all combinations of possible individual constructions or random creations,
only the orthogonal combinations are tested by following a statistic-based orthogonal array
[110]. Using such an approach enables the generation of an initial population scattered
uniformly over the feasible search space so that the GA has a good starting point for the
evolution process. The same orthogonal design principles are applied to the crossover
operation so that the GA can evenly explore the search space once to locate good points for
further exploration in subsequent iterations.

Opposition-Based-Learning (OBL) is a novel ML algorithm inspired by diverse biological,
behavioral and natural phenomena [175]. OBL can seed the initial population and further
enhance the exploration of the search space. Rahnamayan et al. [148] used OBL in the
initialization step and during the evolution process step to enhance a Differential Evolution
(DE) algorithm. To apply OBL in the initialization phase, a random initial population is
necessary. Afterward, the opposites of the random individuals are calculated and then
compared to the randomly generated ones. The fittest of both populations are used as the
final initial population for the DE algorithm. The impact of the OBL generated initial
population is examined by replacing it with a uniformly generated random population. This
approach is evaluated on 15 benchmark problems with 30 and 100 dimensions, including
a very large number of local minima. The results indicate that the proposed methods can
find the optimal or near-optimal solutions and are more competitive than other comparable
algorithms on the studied problems. An acceleration rate up to 57% is achieved.

Fitness Evaluation The fitness evaluation is a key step in the evolutionary process of
EAs. It assesses the usefulness of each individual to solve a given problem and thereby
directly defines the probability that the individual will be selected to generate new off-
spring for the next generation. For complex real-world optimization problems where the
computational cost of the evaluation functions is too high, an estimation of the fitness
function is needed. There are numerous approaches for approximating such functions such
as ANNs with single-objective function [84, 186] and multi-objective function [76, 124, 75,
15], polynomial regression and Gaussian process [192], radial basis function (previously
evaluated nearest-neighbors) [155], heuristics [90, 24] or Markov fitness model [27]. Two
exemplary hybridization approaches of using ANN to assist EAs are reviewed.

Wang [186] proposed a hybridization between a GA and ANN to solve the simulation
optimization problem of minimizing the total cost of a pressure vessel manufacturing
process. Firstly, two approaches are implemented by using only one ANN, i.e., single-ANN
and in the second approach with two ANNs, i.e., multiple-ANN. In the single approach, a
simple three-layer ANN is designed and trained with 50 feasible samples that are randomly
generated based on the considered constraints and an objective function in the limited region.
Despite a minor inaccuracy of ca. 10% to 20% between prediction and true performance,
the single-ANN approach delivers consistent performances. The multiple-ANN approach
uses the same ANN as in the single approach to create multiple ANNs with different random
initial weights. The average over the predicted values of each ANN is used to approximate

45

3. State of the Art

the final fitness value. Thereby, the prediction error is decreased to less than 10% leading to
more consistent results.

Magnier and Haghighat [124] proposed an optimization approach based on EA and ANN to
solve the multi-objective optimization problem of building design. In this work, numerous
decision variables are taken into account to reduce the energy consumption of the building,
e.g., window size for passive solar design, heating and cooling temperature set points,
relative humidity set points and a supply of air. For simulation purposes, a simulator is
developed to estimate the monthly energy consumption of the proposed building design.
This model is run using measured weather of the months of January and August 2003 with a
two-minute resolution to measure the monthly energy consumption for the heating, cooling
and fan of the design. The obtained results of 450 training cases are saved for training the
ANN. The trained ANN estimates the monthly energy consumption based on the weather
data for each building design proposed by the EA, with an average error up to 1%. The
simulator required three weeks to create the training data set. Therefore, if the EA uses the
simulator to evaluate each proposed design, it needs ten years to finish the task (based on
the number of evaluations).

Genetic Operators The performance of an EAs in finding a global optimum for a given
objective function depends on the balance between the exploitation of already discovered
areas and the exploration of new areas in the search space [173]. These two contradictory
requirements are influenced by genetic operators of EAs, namely crossover and mutation.
Many different approaches are introduced to hybridize EAs for enhancing, adapting, re-
placing or creating new genetic operations. For instance, using the Fitness-Blind Mutation
for mutation enhancement [173], general purpose or application of problem-specific LS
on mutated individuals [77, 86, 167] and using clustering techniques in each generation to
select a subset of individuals which are refined by an LS method [125]. In the following,
some of the depicted approaches, namely [76, 75, 16] are further explained, since they are
relevant to this thesis.

Hacioglu et al.[76, 75] proposed a hybrid EA to solve the inverse airfoil design problem.
The essential backbone of this approach is the combination of a GA and ANN. The goal is to
design an ANN which maps the highly non-linear relationships between aerodynamic con-
figurations and their corresponding aerodynamic performance to extrapolate or interpolate
new candidate solutions from the population. These solutions are added to the population
to assist the GA in finding the required design. The ANN predicts solutions based on the
gained knowledge during the training process. For this training, the pressure coefficients
and distributions serve as input. The output are the design parameters which define the
airfoil geometries. The predicted airfoil becomes an individual altering the population pool
and participating in the selection process of the parent for the next generation.

Askarzadeh [16] used a more intervening and direct approach to alter the selection of the
parents during the reproductive cycle of EAs. Askarzadeh proposed an explicit memory
concept to assist a GA, a so-called Memory-based Genetic Algorithm (MGA). It stores the
best individuals of the previous runs of GAs to be used later in the next generation. The

46

3.3. Summary and Discussion

main goal of the MGA is to prevent premature convergence to suboptimal local optima,
especially when the problem is non-linear and there are many local minima in the search
space. In the proposed MGA, the best-so-far individual is stored in explicit memory and
affects the parent selection process of generating the offspring. This directly impacts all
basic genetic operations and consequently enhances the exploitation process of GA. The
performance of the suggested algorithm is evaluated on the task of sharing the demanded
electrical power among DERs where three wind plants, two photovoltaic plants (PVs) and a
combined heat and power system are considered. The main task of MGA is to minimize
the billing cost. Simulated results reveal that solutions obtained from the MGA are more
accurate than the ones found by the basic GA or PSO algorithms.

For hybridizing EAs with other algorithmic approaches, there are many frameworks and
libraries that support such hybridization, e.g., [184, 57, 44, 33, 185, 8, 181] (cf. [126]).
Most of them, namely, [184, 57, 44, 185] are designed to allow only the hybridization of
EAs without supporting the parallelization. Indeed, only ParadisEO, MALLBA and JCLEC
support the parallelization and hybridization of EAs as explained in Section 3.1.

3.3. Summary and Discussion

In this chapter, different state-of-the-art research works in the field of parallelization and
hybridization of EAs are reviewed. The above-mentioned libraries and frameworks, namely
MALLBA [8, 7], ParadisEO [33], DREAM [145], DEAP [62] and JCLEC [181] support
the development of new EAs and the parallel execution of them. However, they realize
such EAs as monolithic and non-modular applications running on one computer instead
of using the computing power of a cluster or a cloud. This is mainly due to the fact that
the parallel technologies that are used by these frameworks have several obstacles. For
example, Message Passing Interface (MPI) is not designed for generic use in large-scale
clusters and cloud environments. Indeed, it handles the underlying computing infrastructure
requiring detailed knowledge about it [162]. In contrast to the above-depicted frameworks,
frameworks developed based on big data technologies such as MapReduce, Hadoop and
Spark [91, 183, 165, 45, 52, 170, 136] provide a highly parallel and scalable runtime
environment with full runtime automation in big data environments such as a cluster.
Moreover, these technologies represent reliable software environments. Using a high-
performance GPU-based platform for executing EAs, e.g., [121, 93, 94, 95] provide far
superior performance compared to serial EA implementations. However, GPUs are only
able to execute EAs that are specifically adapted to be executed on them. Therefore, they
are a lot less flexible than CPU implementations (see, [68]). Another important aspect is
the limited scalability of the implementations across several GPUs, since they are mostly
limited to one GPU.

The above-mentioned frameworks [8, 7, 33, 145, 62, 181, 91, 183, 165, 45, 52, 170, 136,
121, 93, 94, 95] have a monolithic architecture and therefore do not provide flexibility for
interacting with external tools like simulators and a mechanism to integrate an existing EA
to a parallel environment. In other words, the EA developers have to implement or adapt

47

3. State of the Art

their EAs to a specific programming language supported by the framework. For example,
EAs must be adapted to the MapReduce programming model for exploiting the full potential
of such technologies, forcing EA developers to learn and understand such a programming
model. Another obstacle of these frameworks is a lack of modularity at the code level. This
complicates the reusability and maintainability of the code during the development process.
Moreover, they do not provide an easy-to-use web-based user interface.

Several cloud technologies, such as container virtualization are utilized by [131, 161, 130,
73, 66, 163, 164]. Among them, only [73, 66, 163, 164] use container technologies in
combination with a microservice architecture introducing a reliable and scalable approach
to parallelize EA. They can integrate any already existing EAs, communicate with external
tools and are inherently web-based systems. However, they are designed to support only one
parallel model of EA, preventing the application of other parallel models of EAs according
to the nature of optimization problems to take their advantages. While the frameworks
developed in [163, 164] support only the Global Model, the other two frameworks [73,
66] support the Pool Model. Moreover, they do not provide any flexibility to combine two
or more models from the three basic parallelization models of EAs with little adaptation
effort for building the Hierarchical Model. The second main drawback of these frameworks
is that they do not introduce a simple, generic and efficient mechanism to hybridize EAs
with other algorithmic approaches in cluster computing environments. In other words, they
do not provide interfaces, i.e., APIs for the integration of any methods to assist existing
EAs. Moreover, they do not support the hybridization of parallel EAs in cluster or cloud
computing environments.

Alternatively, BeeNestOpt.IAI introduced in this dissertation supports the parallelization
of existing EAs according to the basic parallelization models based on three lightweight
technologies, namely microservices, container virtualization and the publish/subscribe
messaging paradigm without the need to re-implement or re-design them. Precisely, BeeN-
estOpt.IAI is a software solution that helps EA developers to parallelize their already
developed EAs on cluster computing environments with minimal knowledge in distributed
systems. BeeNestOpt.IAI is supported with lightweight interfaces (APIs) to achieve such
parallelization and to communicate with any external tools or frameworks. Moreover,
BeeNestOpt.IAI enables an easy combination of different parallelization models of EAs,
a full decoupling between services providing basic building blocks of the algorithm and
seamless deployment in a scalable runtime environment such as a cluster. In contrast to most
of the aforementioned software frameworks and libraries, BeeNestOpt.IAI – besides the
parallelization – enables the hybridization of existing EAs with other algorithms and tech-
niques in a cluster environment. Moreover, BeeNestOpt.IAI supports two ML hybridization
approaches, namely the unsupervised hybridization approach and the supervised one.

48

4. Facilitating the Usage of Parallel
Evolutionary Algorithms in
Cluster Computing Environments

The Scalability of population-based metaheuristics such as EAs represents a main challenge
for applying them to complex and large-scale real-world applications [35]. Therefore,
parallelization of EAs increasingly becomes popular in tackling this challenge providing
satisfying results. The parallel execution of EAs and the division of the population into
subpopulations cannot only speedup the computation but also alter the numerical behavior
of EAs leading to better solution quality. There are mainly three basic models to paral-
lelize EAs, namely the Global Model (Master-Worker Model), the Coarse-Grained Model
(Island Model) and the Fine-Grained Model. Many software approaches are proposed for
parallelizing EAs instrumenting different technologies and software techniques as explained
in Chapter 3. However, most of these approaches have a monolithic architecture which
limits their ability to apply the three parallel basic parallelization models to a given class of
optimization problems with minimal adaptation efforts. Moreover, the main disadvantage
of these solutions is that the existing EAs cannot be easily plugged into them. Indeed, it
is necessary to adapt the existing EAs to their programming paradigm in order to leverage
their potential. Other disadvantages are the lack of ability to plug in problem-specific
functionality (e.g., simulators) and the restriction to one technology stack.

In this chapter, BeeNestOpt.IAI, a new software solution for simplifying the usage of EAs
in high-performance computing environments – such as a cluster – is introduced to answer
the research questions [RQ1], [RQ3] and [RQ4]. BeeNestOpt.IAI allows the parallelizing

Parts of this chapter are reproduced from:

• Khalloof, H., Jakob, W., Liu, J., Braun, E., Shahoud, S., Duepmeier, C., & Hagenmeyer, V. A
generic distributed microservices and container based framework for metaheuristic optimization.
In Proceedings of the genetic and evolutionary computation conference companion. (2018), pp.
1363–1370. DOI: 10.1145/3205651.3208253

• Khalloof, H., Ostheimer, P., Jakob, W., Shahoud, S., Duepmeier, C., & Hagenmeyer, V. A distributed
modular scalable and generic framework for parallelizing population-based metaheuristics. In
International Conference on Parallel Processing and Applied Mathematics. (2019), pp. 432–444.
DOI: 10.1007/978-3-030-43229-4_37

• Khalloof, H., Ostheimer, P., Jakob, W., Shahoud, S., Duepmeier, C., & Hagenmeyer, V. Superlinear
speedup of parallel population-based metaheuristics: A microservices and container virtualization
approach. In International Conference on Intelligent Data Engineering and Automated Learning.
(2019), pp. 386–393. DOI: 10.1007/978-3-030-33607-3_42

49

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

and hybridizing of EAs in a cluster computing environments and provides interfaces for
an easy plugin of EAs and third party software components. This solution is developed
based on three lightweight technologies, namely microservices, container virtualization
and the publish/subscribe messaging paradigm. We start in Section 4.1 by introducing
the general parts of the new highly scalable, modular and generic software architecture of
BeeNestOpt.IAI for supporting different parallelization approaches. In Section 4.1, the
conceptual architecture, the basic services and the general workflow of BeeNestOpt.IAI
are presented. In Section 4.2, the Global Model is mapped to the proposed solution for
accelerating the execution of EAs where the tasks of the master and workers are carried out
by several microservices. In Section 4.3, the architecture of BeeNestOpt.IAI is extended to
support the Coarse-Grained Model which reduces the execution runtime, preserves high
diversity for a longer time and thus, avoids the problem of premature convergence [143].
The benchmark results for evaluating the performance of BeeNestOpt.IAI considering the
Global Model and the Coarse-Grained Model are introduced in Section 4.4. The research
contributions presented in this chapter are the main topics of our papers [100, 99, 105].

4.1. BeeNestOpt.IAI - Conceptual Architecture for
Executing Evolutionary Algorithms in Cluster
Computing Environment

The general architecture of BeeNestOpt.IAI shown in Figure 4.1 is designed using a multi-
tier structure with the goal of providing abstract interfaces for increasing the flexibility,
usability and maintainability of the design as much as possible. It hides the technical aspects
of the underlying computing platform by introducing such a layered architecture with two
main tiers, namely the User-Interface Tier (UI) in the front-end and the Cluster Tier in
the back-end. The UI Tier provides a simple, user-friendly and web-based interface for
managing the interaction with the back-end. The UI-Tier supports the user in performing
tasks such as defining the input for optimization tasks, uploading optimization models, and
starting as well as stopping the optimization tasks. Moreover, it visualizes the obtained
results and monitors the whole system by, e.g., showing the usage of CPUs and RAM. The
Cluster Tier runs the EAs on a cluster to solve optimization tasks and stores the required data.
It contains two sub-layers, namely the Container Layer and the Data & Message Layer. The
Container Layer is designed based on microservices and container technologies providing
high flexibility, modularity and generality in executing already developed EAs on a cluster.
Compared to the monolithic applications, a microservice-based architecture enforces some
useful properties to facilitate the usage of parallel EAs in a cluster computing environment.
In other words, an application featuring the microservices architecture is composed of
several independent services, where each service performs a special task which it is exposed
via a lightweight communication interface [139]. Hereby, each service can use its own
technology stack for the implementation. A valuable advantage of microservice lies in its

50

4.1. BeeNestOpt.IAI - Conceptual Architecture for Executing Evolutionary Algorithms in Cluster Computing Environment

…

Container Layer

C
lu

s
te

r
T

ie
r

(B
a

c
k
-e

n
d

)

U
s
e

r-
In

te
rf

a
c
e

T
ie

r

(F
ro

n
t-

e
n

d
)

Upload optimization models

Start and control an

optimization task
Visualization and monitoring

Configuration of optimization

models

Persistent

storage

Software-container Microservice

Temporary

storage

Data & Message Layer

Event-based

messaging system

Figure 4.1.: The conceptual architecture of BeeNestOpt.IAI

ability to build highly parallel and scalable solution where each service can use the most
suitable technologies and be scaled horizontally. Moreover, each service is encapsulated at
runtime in containers which are dynamically created on demand for runtime automation
and platform independence. Combining microservices with container runtime automation
unlocks the full potential of EAs by allowing the execution of them on large-scale computing
clusters. The architecture of the Container Layer supports EA developers by providing
an implementation of different parallelization models of EAs. It allow plugging in their
own EA implementation as a separate service, hybridizing EAs with other algorithms
to form HEAs and incorporating EAs into a more complex system. In such systems,
different tools and simulators can cooperate together to solve an optimization task. The
Container Layer contains all services necessary to execute EAs on a cluster. This not only
includes services that actually execute the EA, but also services that coordinate the execution
and distribute the data. In other words, the main functions provided by BeeNestOpt.IAI,
namely parallelizing EAs, hybridizing EAs to support HEAs, coordinating the execution,
distributing the necessary data, managing containers and starting external simulators are
carried out in the Container Layer. The Data & Message Layer stores data required by
EAs for solving an optimization problem and also the obtained results of each optimization
job. Moreover, it serves as an intermediate storage for message exchange among services.
To reflect these functionalities, the Data & Message Layer is subdivided into a persistent
storage, a temporary storage and an Event-based messaging system. The persistent storage is
responsible for storing the final results and the data required for performing one optimization
task. The temporary storage stores the intermediate data that is exchanged between the
services during the execution of an optimization job. The Event-based messaging system

51

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

realizes a publish/subscribe message communication pattern to improve the decoupling
among the services by enforcing event based communication between the services. For
facilitating the communication among the services within the Container Layer and between
the layers, two communication styles, namely the request/response and the event-based
(i.e., publish/subscribe) are used. On the one hand, REST (REpresentational State Transfer)
APIs are a common lightweight implementation of the request/response communication
style. It is used for the synchronous communications that occur at the beginning and end of
each optimization job. On the other hand, the publish/subscribe messaging paradigm is an
implementation of the event-based communication style. It is used for exchanging message
among the services during the run-phase of an optimization job. Utilizing microservices,
container technologies and the publish/subscribe messaging paradigm within the Container
Layer ensures a seamless deployment, full decoupling among the services and increase the
flexibility of the design to provide several parallelization models of EAs by BeeNestOpt.IAI
in one single framework. In the following sections, the term service refers to microservice.

BeeNestOpt.IAI distinguishes between two groups of services namely, the basic services
and the model-related services. While the first group realizes the general functionalities
required by the parallelization and hybridization models of EAs, e.g., the ones related to
communication and computing infrastructure, the second group implements the functionali-
ties related to each parallelization and hybridization model. The basic services are defined
abstractly, so that each one can be modified and reused according to the considered paral-
lelization or hybridization model. By realizing any parallelization or hybridization model
of EAs into BeeNestOpt.IAI, we add the model-related services that specially perform the
tasks of this model into the Container Layer. For the basic services, we either modify their
functionalities or add new ones. This increases the flexibility, generality and modularity of
BeeNestOpt.IAI and facilitates the realization of different parallelization and hybridization
models of EAs in a cluster computing environment. The general execution workflow of
EAs in BeeNestOpt.IAI has three stages, namely the ‘Initialization Phase’, the ‘Iterative
Evolution Phase’ and the ‘Termination Phase’. In the following section, we describe the
basic services of BeeNestOpt.IAI and the general execution workflow.

4.1.1. Basic Services of BeeNestOpt.IAI

Executing EAs in a highly distributed environment such as a cluster using microservices and
container technologies implies several general tasks such as creating the required services
to carry out an optimization job in parallel and fetching required data from a database. To
this end and as shown in Figure 4.2, three decoupled and cohesive microservices within the
Container Layer of BeeNestOpt.IAI are designed.

• The Optimization Job Management Service (Opt.J.M. Service).

• The Container Management Service (Co.Ma. Service).

• The Data & Message Service (Da.Me. Service).

52

4.1. BeeNestOpt.IAI - Conceptual Architecture for Executing Evolutionary Algorithms in Cluster Computing Environment

Co.Ma.

Service

Da.Me.

Service

Opt.j.M.

Service

Container Layer
Opt.J.M. Service: Optimization Job Management

Service

Co.Ma. Service: Container Management Service

Da.Me. Service: Data & Message Service

Software-container

Microservice

Data & Message Layer

Event-based messaging system Temporary storage

DB

Persistence storage

Figure 4.2.: The basic microservices within the Container Layer of BeeNestOpt.IAI

Optimization Job Management Service (Opt.J.M. Service) The Optimization
Job Management Service (Opt.J.M. Service) is the central (user) access point for creating,
tracking, monitoring and managing optimization jobs as well as coordinating the interaction
between the services in the back-end Tier and the user. The Opt.J.M. Service receives the
configurations for each job from the UI Tier as a JSON structure. It interprets them and
extracts three main configurations, namely the cluster configuration, the optimization job
configuration and the EA configuration. The cluster configuration contains information
about, e.g., the number of CPUs and size of RAM required for running the microservices
and their containers in a cluster computing environment as shown in Figure 4.2. The
optimization job configuration defines all configurations related to each optimization job like
the parallelization model, objective functions, required data and type of the communication
among services, i.e., synchronous or asynchronous. The EA configuration holds all EA
configurations related to the actual optimization job such as population size, acceptance
policy and termination criteria, to name a few. The Opt.J.M. Service extracts these three
type of configurations and sends them to the corresponding services to be applied.

The Opt.J.M. Service exposes a REST API to run several optimization jobs with different
configurations as batch jobs (i.e., workloads) on the microservice runtime environment (i.e.,
a Kubernetes cluster). It waits until all other services signalize that they have applied their
specific configuration parameters and are ready to perform their job for an optimization
job. The Opt.J.M. Service receives information from the underlying cluster computing
environment about the usage of CPUs and RAM. The status of each optimization job,
namely ‘Initialized’, ‘Running’, ‘Stopped’ or ‘Finished’ is handled by the Opt.J.M Service.
The current and final results of each optimization job are also sent to the Opt.J.M. Service
which in turn sends them to other services to be stored. Table 4.1 lists the REST-APIs
offered by the Opt.J.M. Service.

In addition to the functionalities presented in Table 4.1, the Opt.J.M. Service also creates a
group of publish/subscribe channels for each optimization job in the Event-based messaging

53

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

Method URL-Pattern Description

POST /opt/jobs

A POST request on this URL is used to
submit the configurations for several optimization
jobs. When the required services are started
and ready to be used, the Opt.J.M. Service returns
a list of optimization job descriptions containing
a unique job-id and the status ‘Initialized’ to
the client. In case of an error, an error description
will be returned as a JSON structure.

POST
/opt/job/{job-id}/
start/
opt/job/{job-id}/stop

The API methods allow to start or stop
an optimization job. After the first step of starting
the required services for an optimization job,
the start API can be called to start an
optimization job.
A job status JSON structure will be returned which
describes if the status change could be achieved.
The service returns the status ‘Running’ if
an optimization job is successfully started.
The status ‘Stopped’ is returned as a response
if an optimization job is stopped without any trouble.
In case of an error, an error description will be
returned as a JSON structure.

GET /opt/job/{job-id}

A GET request to this URL is used to retrieve all
information related to an optimization job, e.g.,
the status ‘Initialized’, ‘Running’, ‘Stopped’,
or ‘Finished’.
The latter one is returned when an optimization
job stops itself after reaching one of the predefined
stopping criteria. Besides status information, the
applied cluster configuration and EAs configuration
related to an optimization job are also returned.

GET
/opt/job/{job-id}/
results

A GET request to this URL is used to obtain current
results, i.e, either intermediate or final results of an
optimization job. If the optimization job is running,
intermediate results are returned.
If an optimization job has one of the statuses
‘Stopped’ or ‘Finished’, the final results are returned.

DELETE /opt/job/{job-id}
Destroy the runtime environment of an optimization
job with the given id and free any resources
it consumes.

Table 4.1.: The APIs of the Opt.J.M. Service

54

4.1. BeeNestOpt.IAI - Conceptual Architecture for Executing Evolutionary Algorithms in Cluster Computing Environment

Method Address Description

SUBSCRIBE
status.service.
{serviceName}.job.
{job-id}

Get the status of each service, i.e.,
‘Initialized’, ‘Running’, ‘Stopped’ or
‘Finished’ for an optimization job.

SUBSCRIBE
result.job.{job-id}.
type.{resultType}

Get intermediate or final results
(referred to as {resultType})
of an optimization job.

PUBLISH start.job.{job-id}
Publish a start signal to start
an optimization job.

PUBLISH stop.job.{job-id}
Publish a stop signal to stop
an optimization job.

Table 4.2.: The publish/subscribe channels of the Opt.J.M. Service

system or subscribes to some channels as shown in Table 4.2. This channel infrastructure is
used for event-based coordination between different service instances that are interacting
while performing tasks of an optimization job. The microservices of BeeNestOpt.IAI post
information about their status changes and other possible information on their own channels
when performing tasks for the given optimization job. Additional information is also sent
to the Opt.J.M. Service. Such information includes the availability of certain intermediate
results or final ones of an optimization task and the status information about the evolution of
the populations by the deployed EA. This enables the Opt.J.M. Service to monitor the whole
optimization process, e.g., to know in which status the executed optimization is existing.

The design flexibility of the Opt.J.M. Service enables the possibility to implement new
APIs and publish/subscribe channels for achieving a seamless interaction between EAs and
external tools or frameworks like forecasting frameworks as shown in Figure 4.3.

EA

Optimization

Job

Management

Service

External
Software

Tools

Figure 4.3.: Supporting the interaction between EAs and external tools

Container Management Service (Co.Ma. Service) The Container Management
Service (Co.Ma. Service) is used to automatically create the required containers running
services for an optimization job based on the cluster configuration and the optimization
job configuration extracted by the Opt.J.M. Service. Before deploying new containers for
any service, the Co.Ma. Service checks whether there are already deployed instances that
are not used by another optimization job. If this is the case, the Co.Ma. Service resets and

55

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

Method URL-Pattern Description

POST
/com/ job/
{job-id}/create

A POST request on this URL is used to create
the required containers according to the description
in the payload which is extracted from optimization job
and cluster configurations. A list of information
about status and access to those containers
after creation is returned.

Table 4.3.: The APIs of the Co.Ma. Service

configures them for a new optimization task. Otherwise, it creates them from scratch. Table
4.3 describes the APIs the Co.Ma. Service.

Data & Message Service (Da.Me. Service) The Data & Message Service (Da.Me.
Service) is the central access point to the persistence and temporary storages of the Data
& Message Layer. It stores required data for performing an optimization job and all infor-
mation related to an optimization job, e.g., the status of the cluster computing environment
and services, final results and configurations in the persistence storage. Temporary data
exchanged among services, e.g., subpopulations and intermediate results are stored in the
temporary storage. The Da.Me. Service is responsible for retrieving such data to be used
by other services or tiers such as UI Tier. Table 4.4 describes the main APIs of the Da.Me.
Service.

In an underlying cluster computing environment (e.g., Kubernetes), the aforementioned
three basic services namely, the Opt.J.M. Service, the Co.Ma. Service and the Da.Me.
Service as well as the components of the Data & Message Layer will run permanently as
daemon processes. It is noteworthy that the three basic services and their APIs are generally
designed, so that their functionalities can be modified or new ones can be added according to
the considered parallelization model as we will see in the following sections and chapters.

Continuously, the above basic and all model-related services – explained later – publish
their status on the status-channel of the publish/subscribe channel infrastructure as shown in
Table 4.5.

4.1.2. General Execution Workflow

The general execution workflow starts with the ‘Initialization Phase’ which is carried out
once per optimization task, then the ‘Iterative Evolution Phase’ is iteratively performed and
finally the ‘Termination Phase’ takes a place. In the following sections, we describe how
the basic microservices are involved in each phase of the execution workflow of EAs in
BeeNestOpt.IAI.

56

4.1. BeeNestOpt.IAI - Conceptual Architecture for Executing Evolutionary Algorithms in Cluster Computing Environment

Method URL-Pattern Description

POST
/dam/job/{job-id}/
data/{data-type}/store

A POST request on this URL is used to store
both considered data types (referred to
as {data-type}), i.e., persistence and temporary
data. For example, data required for solving
an optimization problem and other data related
to an optimization job, namely final results and
configurations stored in the persistence storage.
Intermediate results and subpopulations are stored
in the temporary storage. This API is abstractly
designed to handle a wide range of data,
e.g., time series data or structured data.

GET /dam/job/{job-id}

A GET request to this URL is used to retrieve
all information related to an optimization job from
the persistence storage such as status,
configurations and results.

GET
/dam/job/{job-id}/
data/{data-type}

A GET request to this URL is used to retrieve
a specific type of data required for solving
an optimization process. This API is also designed
to be as general as possible.

Table 4.4.: The APIs of the Da.Me. Service

Method Address Description

Publish
status.service.{serviceName}.
job.{job-id}

Publish the status of the services, i.e.,
‘Initialized’, ‘Running’, ‘Stopped’ or
‘Finished’ for an optimization job.

Table 4.5.: The status-channel of BeeNestOpt.IAI

Initialization Phase It starts by sending the configurations as a JSON file from the UI
Tier to the Opt.J.M. Service. Firstly, the Opt.J.M. Service processes the input JSON which
contains configurations for several optimization jobs and then assigns a job-id for each
optimization job. This identifier is included in each interaction among services to identify,
e.g., cluster configuration, EA configuration, optimization job configuration, results and the
location of required data related to each optimization job. After that, the Opt.J.M. Service
sends the cluster configuration and a part of the optimization job configuration, e.g., the
parallelization model to the Co.Ma. Service to create a new optimization job environment
for each job according to these configurations. Indeed, it starts the necessary runtime
artifacts for this job, namely the model-related services which publish the ‘Initialized’ status
to the status-channel when they are started. At the end of this phase, the Opt.J.M. Service
sends the applied configurations for each optimization job with its job-id to the Da.Me.
Service to store them. The UI Tier can every time access this data and visualize it.

57

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

Iterative Evolution Phase After initializing the required services, a start signal – for
at least one optimization job – is sent from the UI Tier to the Opt.J.M. Service which in
turn asks other services to start the required processes to perform the selected optimization
job. At the end of each iteration, the Opt.J.M. Service fetches the aggregated results for
monitoring purposes.

Termination Phase Once one of the termination criteria is fulfilled, this phase is carried
out. A stop signal is sent to the Opt.J.M. Service for stopping the whole process. This stop
signal can be sent either from model-related services or from the UI Tier. In both cases, the
Opt.J.M. Service sends the current obtained results and its related population to the Da.Me.
Service to store them into the persistent storage for later access, e.g., for visualization by
the UI Tier.

4.2. Mapping the Global Model to BeeNestOpt.IAI
Architecture

In this section, the extension and the adaptation of BeeNestOpt.IAI architecture for paral-
lelizing EA according to the Global Model in a cluster computing environment is presented.
The model-related services and the adapted basic ones are described in Sections 4.2.1 and
4.2.2, respectively. To understand the mapping of the Global Model to the BeeNestOpt.IAI
architecture, the execution workflow required to achieve the main functionalities of the
services is presented in Section 4.2.3.

4.2.1. Global Model-related Services

For mapping the Global Model to the proposed software architecture, the aforementioned
three basic services of BeeNestOpt.IAI are partly adapted to support the Global Model.
Moreover, the following three new model-related services are designed to interact with the
basic ones for performing the task of the Global Model as shown in Figure 4.4.

• Evolutionary Operators Service (E.O. Service).
• Distribution & Synchronization Service (Ds.S. Service).
• Calculation Service (Ca. Service).

In contrast to the basic services, the E.O. Service, Ds.S. Service and Ca. Service instances
are created dynamically on the underlying microservice runtime environment for each
optimization job at job creation time. The type of EA algorithm, the corresponding E.O.
Service and the worker processes that are used are depending on the actual Master-Worker
optimization job configuration.

58

4.2. Mapping the Global Model to BeeNestOpt.IAI Architecture

…

E.O.

Service

Ds.S.

Service

Ca.

Service

1

Co.Ma.

Service

Ca.

Service

2

Ca.

Service

3

Opt.j.M.

Service

Container Layer
Opt.J.M. Service: Optimization Job Management

Service

E.O. Service: Evolutionary Operators Service

Ds.S. Service: Distribution & Synchronization

Service

Co.Ma. Service: Container Management Service

Da.Me. Service: Data & Message Service

Ca. Service: Calculation Services

Software-container

Microservice

…
…

Data & Message Layer

Temporary storage

DB

Persistence storage

Da.Me.

Service

Event-based messaging system

Figure 4.4.: Mapping the Global Model to the cluster tier of BeeNestOpt.IAI

Evolutionary Operators Service (E.O. Service) In the Global Model, the genetic
operators, namely crossover, mutation and selection operation are performed by the mas-
ter as described in Section 2.2.1. The E.O. Service acts as a master by generating the
population, applying the genetic operators and selecting the parents of the offspring as
well as the surviving offspring for the next generation. Such tasks can be implemented in
any programming language according to the EA implementation concepts of a certain EA
developer which can be quite different. An E.O. Service integrable into BeeNestOpt.IAI
can be designed as a distinguished microservice as shown in Figure 4.5b which implements
the APIs listed in Table 4.6 and subscribes to channels described in Table 4.7. Another
possibility is to use the already implemented microservice which only implements the E.O.
Service APIs shown in Table 4.6 and subscribes to channels described in Table 4.7. It
defines an Input/Output (I/O) adapter interface (see, Figure 4.5a) that provides the ability to
encapsulate any already developed EA as it exists via, e.g., its command and file system
interfaces (if there are any) to perform the aforementioned tasks. Precisely, an external
EA application is used as it exists and should not be adapted, since the pre-given E.O.
Service uses glue code which interfaces with the command and file system interfaces of
the external EA application. This enables the integration of already developed EA into the
microservice-based platform, namely BeeNestOpt.IAI without any changes. The I/O adapter
(e.g., glue code) realizes a bridge between the deployed EA and other services providing
two main functions. Firstly, the transformation of external requests into understandable
ones to be applied by the deployed EA. Secondly, the reaction of the deployed EA on these
requests into acceptable form by external applications. Precisely, it receives the requests
including EA configuration from external applications using its API and translates them in a
way that the used EA can understand them and react to them. Besides requests, it iteratively

59

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

Existing EA

E.O. Service (as I/O adapter)

Data files

Application
HTTP

TCP

(a) The generic E.O. Service as adapter

Application
E.O. Service

(as EA)

HTTP

TCP

(b) EA as a standalone microservice implementing the
E.O. Service APIs

Figure 4.5.: The concept of the E.O. Service to integrate already developed EA into BeeNestOpt.IAI

receives the results of the evaluation process from the Opt.J.M. Service and formats them
for matching the original list format supported by the EA. These results are required for
calculating the fitness function of each individual and consequently applying the genetic
operators.

Method URL-Pattern Description

PUT
/eo/job/{job-id}/
configuration

A PUT request on this URL is used to set up
the EA configuration of the E.O. Service
instance before the deployed EA is actually started.
This can include, e.g., the chromosome model
and runtime parameters for the EA.

GET
/eo/job/{job-id}/
status

A GET request on this URL sended from
the Opt.J.M. Service is used to receive the
current status of the EA process.
The status information can contain information
like the status of the EA: ‘Running’, ‘Stopped’,
‘Finished’. It also contains the count of iterations
performed or a summary of statistical data about
the intermediate status of the evolution.

POST
/eo/job/{job-id}/
result

A POST request on this URL is used to submit
the intermediate and final results of
the evaluation process of individuals.

Table 4.6.: The APIs of the E.O. Service for the Global Model

After applying the configurations included into the requests and evaluating the intermediate
results by the used EA, the I/O adapter reads the output of EA, i.e., the population or
offspring and transfers them back in standardized formats to be used by the other services
as shown in Figure 4.5.

The E.O. Service acting as the master of the Global Model starts the evolution process of
this specific optimization job after receiving a start signal from the Opt.J.M. Service using
the publish/subscribe channels presented in Table 4.7.

60

4.2. Mapping the Global Model to BeeNestOpt.IAI Architecture

Method Address Description

SUBSCRIBE job.{job-id}.start
Get a start signal to start an optimization job
by generating a population according to
the applied EA configuration.

SUBSCRIBE job.{job-id}.stop Get a stop signal to stop an optimization job.

Table 4.7.: The publish/subscribe channels of the E.O. Service for the Global Model

Distribution & Synchronization Service (Ds.S. Service) The Ds.S. Service is
a central component for parallelizing the Global Model. It splits the population sent by
the E.O. Service evenly into subpopulations that are distributed over the workers, namely
the Ca. Service instances, for evaluation. After receiving a start signal from the Opt.J.M.
Service and depending on the defined Master-Worker synchronization policy (see, Section
2.2.1), the Ds.S. Service sends the subpopulations either to all workers once, in case of
synchronous mode or to each one separately, in case of asynchronous mode. In the first
mode, the Ds.S. Service collects the partial results and waits until all workers finish their
jobs to join the results. However, for the last one, it collects and joins partial results as
soon as they are available, i.e., it does not wait until all workers are finished from their
calculations. Finally, it sends the built result list to the Opt.J.M. Service for further usage.
The main functionality of the Ds.S. Service API is described by the URL patterns in Table
4.8.

Method URL-Pattern Description

POST /ds/job/{job-id}/configurations

A POST request on this URL is used to
submit the optimization job configuration,
e.g., worker configuration and synchronization
mode related to the current optimization
task to be distributed over corresponding
services.

POST /ds/job/{job-id}/population
A POST request on this URL is used to
submit a list of chromosomes forming
a population to be split.

Table 4.8.: The APIs of the Ds.S. Service for the Global Model

The Ds.S. Service stores the subpopulations in the Event-based messaging system, i.e., the
publish/subscribe channel infrastructure provided by the Data & Message Layer to be read
subsequently by the Ca. Service instances. The workers also use the same publish/subscribe
channel infrastructure for publishing the calculation results. The Ds.S. Service subscribes
to the result-channels to build the intermediate results when an optimization job is running
and the final ones when all workers finish their calculations. The Ds.S. Service has the
publish/subscribe channels described in Table 4.9.

61

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

Method Address Description

PUBLISH
population.job.
{job-id}.worker.
{worker-id}

Publish the subpopulations to
each worker for an optimization job.

PUBLISH
config.job.{job-id}.
worker.{worker-id}

Publish configurations to each
worker for an optimization job.

PUBLISH
result.job.{job-id}.
type.{resultType}

Publish the joined intermediate or final
results for an optimization job.

SUBSCRIBE
result.part.job.{job-id}.
worker.{worker-id}

Get the partial result related
to each worker.

SUBSCRIBE stop.job.{job-id}
Get a stop signal to stop an
optimization job.

Table 4.9.: The publish/subscribe channels of the Ds.S. Service for the Global Model

Calculation Services (Ca. Service) The Ca. Service instances act as workers in
the Global Model that get the individuals in form of subpopulations and calculates the
values of the objective functions and constraints defined by the user for each individual. In
some cases, this calculation requires some data which is provided by the Da.Me. Service.
When a job is started, as many instances from the Ca. Service are created as required
by its configuration. Each Ca. Service reads the subpopulation assigned to it from its
corresponding publish/subscribe channel. It evaluates it and publishes the results in its own
publish/subscribe channel created for the considered job. The Ds.S. Service gets the results
of each worker and then joins them with other partial results coming from the other workers.
The publish/subscribe channels used by each Ca. Service are listed in Table 4.10.

Method Address Description

SUBSCRIBE
population.job.
{job-id}.worker.{worker-id}

Get the input, i.e., the subpopulations
to be evaluated by calculating the
objective functions and constraints.

SUBSCRIBE
config.job.
{job-id}.worker.{worker-id}

Get the configurations, e.g., the objective
function and constraints
related to an optimization job

PUBLISH
result.part.job.
{job-id}.worker.{worker-id} Publish the partial result of the evaluation.

SUBSCRIBE stop.job.{job-id}
Get a stop signal to stop
an optimization job.

Table 4.10.: The publish/subscribe channels of the Ca. Service for the Global Model

Any software tool such as a simulator can act as a Ca. Service by implementing the
publish/subscribe channels showed in Table 4.10.

62

4.2. Mapping the Global Model to BeeNestOpt.IAI Architecture

4.2.2. Adaptation of the Basic Services to Support the Global
Model

Some of the basic functionalities of the Opt.J.M. Service and Co.Ma. Service described in
Section 4.1.1 are adapted to support the Global Model. The functionality of the Opt.J.M.
Service for sending the extracted configurations to the model-related services is defined as
follows.

Firstly, the Opt.J.M. Service sends the cluster configuration to the Co.Ma. Service which is
adapted to create the necessary containers of microservice instances of the Global Model
according to these configurations. Those are an instance of the Ds.S. Service, the E.O.
Service running a certain EA as a master and on demand the required containers for the
Ca. Service (Workers) in the required quantity. The Ca. Service instances – realized as
container images implementing a Ca. Service REST interface – are needed for evaluating
the objective functions and the constraints of the optimization problem. The Co.Ma. Service
assigns an identifier (worker-id) to each worker by the creation. This identifier is included in
the name of each publish/subscribe channel of the worker to facilitate the communications
between it and other services. After that, the Opt.J.M. Service sends the EA configuration
to the E.O. Service to be applied and the configurations extracted from the optimization job
configuration which is related to the Ds.S. Service and workers to the Ds.S. Service. The
Ds.S. Service applies its own configuration, e.g., the type of communication between the
master and workers, i.e., synchronous or asynchronous and distributes the configurations
related to workers over them. These configurations include, e.g., the simulation model,
the objective functions, the constraints and the location of data in the persistence storage
required to solve the considered optimization problem. The Da.Me. Service using the
components of the Data & Message Layer supports the proposed microservices to execute
the Global Model. The Da.Me. Service with its APIs explained in Table 4.4 is used to
store the final found solutions (individuals) and all information, e.g., configurations and
results for an optimization job into the Data & Message Layer as explained above in Section
4.1.1.

4.2.3. Execution Workflow

To execute an optimization task using an EA parallelized according to the Global Model
in the cluster environment, the microservices and the Data & Message Layer cooperate
together. They follow the three general execution workflow phases explained in Section
4.1.2. In the following sections, we explain the three phases of the execution workflow for
the Global Model and the role of each model-related service in each phase.

Initialization Phase The basic service of BeeNestOpt.IAI performs the general ‘Initial-
ization Phase’ explained in Section 4.1.2. After booting up the required services like the E.O.
Service, the Ds.S. Service and the instances of the Ca. Service, the Opt.J.M. Service starts
sending the configurations of the optimization job to the Ds.S. Service to be distributed over

63

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

the other services like Ca. Service instances. Moreover, it sends also the EA configuration
to the E.O. Service to be applied as described above. After finishing the ‘Initialization
Phase’, the E.O. Service, the Ds.S. Service and the instances of the Ca. Service publish the
‘Initialized’ status to the status-channel.

Iterative Evolution Phase A start signal is sent from the UI Tier to the Opt.J.M.
Service which in turn forwards it to the E.O. Service (master). The E.O. Service receives
this signal and starts generating the chromosomes as a population according to the applied
EA configuration and sends them to the Ds.S. Service. Each population is split up by the
Ds.S. Service into smaller sized parts (the size will be as equal as possible) according to the
number of available workers, i.e., the Ca. Service instances and the parts are then published
into the corresponding channel of each worker. Then, the Ca. Services are informed via the
Event-based message system that new data for evaluation is available. Each Ca. Service
fetches the assigned subpopulation from its channel, calculates the values of the assessment
criteria for each individual and writes the results to the result channels of the Event-based
message system notifying the Ds.S. Service that a result is available. In a synchronous
Global Model, once all Ca. Service instances have finished, the partial results are read and
merged together in one list by the Ds.S. Service. By applying an asynchronous Global
Model, the Ds.S. Service builds the partial results when at least one Ca. Service instance is
finished. The Ds.S. Service returns the merged result to the E.O. Service to evaluate the
quality of generated individuals and apply the generic operator. If no termination criterion
such as the quality of solution, the elapsed time or the performed generations is met, the
optimization process continues. The E.O. Service performs the genetic operators, namely
selection, crossover and mutation to generate the offspring to be processed over and over
until a termination criterion is reached. Furthermore, the merged result is sent to the Opt.J.M.
Service which in turn sends it to the Da.Me. Service to be stored.

Termination Phase A stop signal either from the E.O. Service or from the UI Tier is
sent to the Opt.J.M. Service for stopping the master and workers as explained in Section
4.1.2. Table 4.11 summarizes how the above microservices are involved in the three stages
of the execution workflow.

Services Initialization
Phase

Iterative Evolution
Phase

Termination
Phase

Opt.J.M. Service Yes No Yes
E.O. Service Yes Yes Yes
Ds.S. Service Yes Yes No
Co.Ma. Service Yes No No
Ca. Service Yes Yes No

Table 4.11.: Mapping the microservices of the Global Model to the three execution phases

The above three model-related microservices and the three basic ones are mapped to the
pseudocode of the Global Model as shown in Figure 4.6. The E.O. Service executes lines

64

4.2. Mapping the Global Model to BeeNestOpt.IAI Architecture

Optimization Job Management Service

Evolutionary Operators Service

Calculation Service

Distribution and Synchronization Service

Distribution and Synchronization Service

Distribution and Synchronization Service

Evolutionary Operators Service

Distribution and Synchronization

Service

Distribution and Synchronization

Service

Evolutionary Operators Service

Calculation Service

Figure 4.6.: Mapping the proposed microservices to the pseudocode of the Global Model

1,7, 8, 9 and 15, the Ds.S. Service implements lines 2, 3, 6, 10, 11 and 14, the Ca. Service
performs the evaluation by executing lines 5 and 13, the Opt.J.M. Service corresponds to
line 16.

Tables 4.12 and 4.13 summarize the REST-APIs and the publish/subscribe channels used
by the services of the Global Model. While Table 4.12 shows the Sender (Sen.) and the
Receiver (Rec.) that interact via each API, Table 4.13 defines the Publisher (Sub.) and the
Subscriber (Sub.) for each channel.

65

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

Microservices of the Global Model

REST APIs Method UI Opt.J.
M. E.O. Ds.S. Co.

Ma. Ca. Da.
Me.

/opt/jobs POST Sen. Rec.
/opt/job/
{job-id}/start POST Sen. Rec.

/opt/job/
{job-id}/stop POST Sen. Rec. x

/opt/job/{job-id} GET Sen. Rec.
/opt/job/
{job-id}/results GET Sen. Rec.

/opt/job/{job-id}
DEL-
ETE Sen. Rec.

/com/ job/
{job-id}/create POST Sen. Rec.

/dam/job/{job-id}/
data/{data-type}/
store

POST Sen. Rec.

/dam/job/{job-id} GET Sen. Rec.
/dam/job/{job-id}/
data/{data-type} GET Sen. Rec.

/eo/job/{job-id}/
configuration PUT Sen. Rec.

/eo/job/{job-id}/
status GET Sen. Rec.

/eo/job/{job-id}/
result POST Rec. Sen.

/ds/job/{job-id}/
configurations POST Sen. Rec.

/ds/job/{job-id}/
population POST Rec. Sen.

Table 4.12.: Summary of the REST-APIs used by the services of the Global Model where (Rec.) refers to the
receiver and (Sen.) refers to the sender

66

4.2. Mapping the Global Model to BeeNestOpt.IAI Architecture

Microservices of the Global Model
publish/subscribe channels Opt.J.M. E.O. Ds.S. Co.Ma. Ca. Da.Me.
status.service.{serviceName}.
job.{job-id} Sub. Pub. Pub. Pub. Pub. Pub.

result.job.{job-id}.type.
{resultType} Sub. Pub.

start.job.{job-id} Pub. Sub.
stop.job.{job-id} Pub. Sub. Sub. Sub.
population.job.{job-id}.worker.
{worker-id} Pub. Sub.

config.job.{job-id}.worker.
{worker-id} Pub. Sub.

result.part.job.{job-id}.worker.
{worker-id} Sub. Pub.

Table 4.13.: Summary of the publish/subscribe channels used by the services of the Global Model where
(Pub.) refers to the publisher and (Sub.) refers to the subscriber

67

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

4.3. Mapping the Coarse-Grained Model to
BeeNestOpt.IAI Architecture

In this section, we map the Coarse-Grained Model to the Container Layer of BeeNestOpt.IAI
by using the three basic services, adapting some of the model-related services of the Global
Model and adding new ones related to the Coarse-Grained Model. From the model-related
services of the Global Model, some functionalities of the Ds.S. Service are used to support
the Coarse-Grained Model. As explained in Section 2.2.1, the Coarse-Grained Model is
more complex than the Global Model in terms of synchronization and has many parameters
and options to be set up and distributed over the islands. Therefore, all functionalities related
to the splitting the initial population, distributing them with configurations over the islands
and joining the partial results are adapted and realized in a new service called Distributing
& Joining Service (Ds.Jo. Service). The synchronization task is not more supported by the
Ds.S. Service, since a new service called the Migration & Synchronization Service (Mi.Sy.
Service) is designed to perform this task as we explain later. Besides these two services,
the Initializer EA Service (In. EA Service) and the EA Service are designed. While the In.
EA Service generates the initial population, the EA Service performs a sequential EA. The
main tasks of the Coarse-Grained Model described in Section 2.2.1 are performed by these
four new model-related services collaborating with the basic ones as shown in Figure 4.7.

D
a

ta
 &

 M
e

s
s
a

g
e

L
a

y
e

r
C

o
n

ta
in

e
r

L
a

y
e

r

Optimization

Job

Management

Service

Distributing

& Joining

Service

Container

Management

Service

Migration &

Synchronization

Service 1

Migration &

Synchronization

Service N

…

Initializer EA

Service

EA Service

1

EA Service

N

Temporary storage

DB

Persistence storage Event-based messaging system

Data & Message

Service

……

Figure 4.7.: Mapping the Coarse-Grained Model to the cluster tier of BeeNestOpt.IAI

68

4.3. Mapping the Coarse-Grained Model to BeeNestOpt.IAI Architecture

4.3.1. Coarse-Grained Model-related Services

In the following sections, we describe the newly added services in detail. For simplicity’s
sake, the term island refers to the Mi.Sy. Service and EA Service.

Migration & Synchronization Service (Mi.Sy. Service) The Migration & Synchro-
nization Service is one of the model-related services for performing the Coarse-Grained
Model in cluster computing environments. It is responsible for performing all tasks related
to the migration policy, synchronizing the execution and checking if the global termina-
tion criterion is met within each island. Moreover, it builds the selected communication
topology among the islands, by subscribing to the publish/subscribe channels of the re-
spective neighbors as we explain later. The configurations related to the migration and
communication topology are sent to each Mi.Sy. Service instance by the Ds.Jo. Service
via a publish/subscribe messaging channel. Before an optimization job is started, each
Mi.Sy. Service applies these configurations and publishes the status ‘Initialized’ to the status
channel notifying the Opt.J.M. Service to start an optimization job. For exchanging migrants
among islands, each Mi.Sy. Service publishes its migrants on its own channel which is
subscribed by the neighbors. Defining which neighbors of an island subscribe to this channel
is set up according to the selected communication topology. The Mi.Sy. Service supports
synchronous migration policy among the islands where each Mi.Sy. Service subscribes
to a shared channel, in which the status of the migration process is published. When the
migration process is completed by all Mi.Sy. Service instances, they publish their status to
the shared channel notifying other islands to start a new epoch of evolution. In addition,
the Mi.Sy. Service supports asynchronous migration by ensuring that a migration process
occurs in an asynchronous manner. In other words, each island starts a new epoch as soon
as it receives the migrants from the considered neighbors and does not wait for the other
islands to finish their migration process. The publish/subscribe channels used by each Mi.Sy.
Service are described in Table 4.14.

Distributing & Joining Service (Ds.Jo. Service) The Distributing & Joining
Service performs the same tasks of the Global Model related to splitting, distributing the
initial population at the beginning of an optimization job and joining the results of the islands
after finishing an optimization job or during an epoch for monitoring purposes. Furthermore,
it distributes the EA, migration and communication topology configurations related to the
Coarse-Grained Model over the islands before starting an optimization job. The distribution
of configurations is subdivided into three steps. In the first step, the migration configuration
is distributed. While the communication topology configuration is distributed in the second
step, the EA configuration is sent in the last one. After the configuration is successfully
distributed to the Mi.Sy. Service and EA Service instances, the Ds.Jo. Service notifies the
Opt.J.M. Service via the status channel to call the In. EA Service for creating the initial
population and sends it to the Ds.Jo. Service. The APIs of the Ds.S. Service listed in
Table 4.8 are also used by the Ds.Jo. Service for receiving the configurations and the initial

69

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

Method Address Description

PUBLISH
migrants.job.{job-id}.
island.{island-id}

When an island finishes an epoch,
it publishes its migrants to be
consumed by the neighbors.

PUBLISH stop.job.{job-id}

If an island reaches the global criterion,
it notifies other islands by publishing a
stop signal on this channel to stop
their evolution process.

PUBLISH
status.migration.job.
{job-id}.island.
{island-id}

Each island continuously publishes
the status of the migration process, i.e.,
‘Completed’ or ‘In process’ which is used
by applying the migration policy.

PUBLISH
start.EA.job.
{job-id}.island.
{island-id}

Publish a start signal to the corresponding
EA Service to start the evolution process.

PUBLISH
result.part.job.
{job-id}.island.
{island-id}

Publish the partial result of an epoch.

SUBSCRIBE
config.migration.job.
{job-id}.island.
{island-id}

Get the migration configuration applied by
a Mi.Sy. Service for an optimization job.

SUBSCRIBE
config.topology.job.
{job-id}

Get the communication topology
configuration, e.g., type of topology.

SUBSCRIBE
population.job.
{job-id}.island.
{island-id}

Get a subpopulation from the initial
population assigned to this island.

SUBSCRIBE
population.intermediate.
job.{job-id}.island.
{island-id}

Get an intermediate population
published by the EA Service
after each epoch to select the migrants.

SUBSCRIBE start.job.{job-id}
Get the start signal sent from Opt.J.M
Service to start an optimization job.

SUBSCRIBE
migrants.job.
{job-id}.island.
{island-id}

Get the migrants from the neighbor
islands defined by the applied
communication topology.

SUBSCRIBE stop.job.{job-id}
Get the stop signals from other Mi.Sy.
Services instances.

SUBSCRIBE
status.migration.job.
{job-id}.island.
{island-id}

Get the status of the migration process.
This is important for applying synchronous
or asynchronous migration policy.

Table 4.14.: The publish/subscribe channels of the Mi.Sy. Service for the Coarse-Grained Model

70

4.3. Mapping the Coarse-Grained Model to BeeNestOpt.IAI Architecture

Method Address Description

PUBLISH
config.EA.job.{job-id}.
island.{island-id}

Publish the EA configuration for
each EA Service.

PUBLISH
config.migration.job.
{job-id}.island.{island-id}

Publish the migration configuration for
each Mi.Sy. Service.

PUBLISH
config.topology.job.
{job-id}

Publish the communication topology
configuration applied by all
Mi.Sy. Service.

PUBLISH
population.job.{job-id}.
island.{island-id}

Publish subpopulations obtained from
the initial population for each island.

PUBLISH
result.job.{job-id}.type.
{resultType}

Publish the joined intermediate or
final results of an optimization job.

SUBSCRIBE
result.part.job.{job-id}.
island.{island-id}

Get the partial result related
to each island.

Table 4.15.: The publish/subscribe channels of the Ds.Jo. Service for the Coarse-Grained Model

population related to an optimization job. The publish/subscribe channels used by each
Ds.Jo. Service are described in Table 4.15

EA Service For each island, there is an EA Service instance which is called by the Mi.Sy.
Service to evolve the population. The same design concept followed by designing the E.O.
Service in the Global Model is also considered for the EA Service. In other words, it can be
designed as a standalone microservice or encapsulated in the I/O adapter as shown in Figure
4.5. Compared to the Global Model, the EA Service performs the tasks of the E.O. Service
and the Ca. Service. This includes the parent selection, the application of genetic operators,
the acceptance of the offspring and the evaluation of the offspring internally by calculating
the objective functions and constraints. After finishing each epoch, the EA Service sends
the intermediate population to the corresponding Mi.Sy. Service to perform the migration
process according to the migration policy. After performing it, the Mi.Sy. Service publishes
the newly obtained population into the corresponding channel of the island. The EA Service
reads it from the channel and uses it as an initial population. The EA Service implements
only the Event-based communication style enabling more flexibility by building different
communication topologies. The publish/subscribe channels used by each EA. Service are
described in Table 4.16.

Initializer EA Service (In. EA Service) The main purpose of the In. EA Service
is to create an initial population according to a certain configuration sent by the Opt.J.M.
Service for an optimization job. The initial population is distributed over the islands at the
beginning of each optimization job. The initial population can be created completely or
partly randomly. In the latter case, some individuals are taken from previous optimization
jobs or from an external tool. It has two APIs as shown in Table 4.17

71

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

Method Address Description

PUBLISH
population.intermediate.
job.{job-id}.island.
{island-id}

Publish an intermediate population after
each epoch to be handled by
the corresponding Mi.Sy. Service.

SUBSCRIBE
config.EA.job.{job-id}.
island.{island-id}

Get an EA specific configuration
from Ds.Jo. Service.

SUBSCRIBE
start.EA.job.{job-id}.
island.{island-id}

Get the start signal from the
Mi.Sy. Service to start the evolution process.

SUBSCRIBE stop.job.{job-id}
Get the stop signal from the corresponding
Mi.Sy. Service when the global
criterion is reached.

SUBSCRIBE
config.EA.job.{job-id}.
island.{island-id}

Get the EA configuration to be applied
by EA Service for an optimization job.

Table 4.16.: The publish/subscribe channels of the EA Service for the Coarse-Grained Model

Method URL-Pattern Description

PUT
/ine/job/{job-id}/
configuration

A PUT request on this URL is used
to set up the EA configuration of the In.
EA Service. This can include, e.g.,
the used chromosome model.

POST
/ine/job/{job-id}/
population

A POST request on this URL is used to
generate an initial population according
to the applied EA configuration.

Table 4.17.: The APIs of the In. EA Service for the Coarse-Grained Model

4.3.2. Adaptation of the Basic Services to Support the
Coarse-Grained Model

For the basic services, no new features have been added to the Co.Ma. Service and the
Da.Me. Service. However, the functionalities of the Co.Ma. Service is adapted to handle
the request of creating the number of containers for the Mi.Sy. Service and the EA Service
instances and other services, namely the Ds.Jo. Service and the In. EA Service. The Co.Ma.
Service assigns an identifier (island-id) to the Mi.Sy. Service and the EA Service that form
an island. This identifier is used to facilitate exchanging data among the islands themselves
and between them and other services.

The Opt.J.M. Service performs the basic functionalities described in Section 4.2.2, i.e.,
sending a request to the Co.Ma. Service for creating the required instances of the Mi.Sy.
Service and the EA Service and other services. It is also responsible for starting and stopping
an optimization job. A new function to create the initial population by calling the In. EA
Service is added to the Opt.J.M. Service. In addition to that, the Opt.J.M. handles the new
configurations related to the Coarse-Grained Model which can be categorized into two
groups. While the first group includes the migration configuration, namely the migration

72

4.3. Mapping the Coarse-Grained Model to BeeNestOpt.IAI Architecture

rate, migration frequency, migrant selection and migrant replacement policy, the second
one comprises the type of the selected communication topology, e.g., a uni-directional
ring (Ring), a bi-directional ring (Bi Ring), a ladder (Ladder) and a completely connected
graph (Complete) and information on how to apply them, i.e, static or dynamic. Static
means that only one communication topology is applied during the evolution process of
an optimization job. If the topology changes during one optimization job then we obtain
the dynamic topology. Having these configurations and the EA configuration increase the
flexibility of BeeNestOpt.IAI enabling the deployment of homogeneous and heterogeneous
islands where each island receives separate migration and EA configuration. Furthermore, it
supports the deployment of a static as well as a dynamic Coarse-Grained Model.

Since the Coarse-Grained Model applies a complex communication model among islands,
the Event-based messaging system of the Data & Message Layer is used to realize the
publish/subscribe pattern as an underlying communication paradigm. This ensures a full
decoupling between the services and facilitates the establishment of different communication
topologies. For example, to realize a bi-directional ring topology, the Mi.Sy. Service with
ID 𝑖 publishes the migrants to its own publish channel 𝑖 and the neighboring Mi.Sy. Service
instances with ID 𝑖 + 1 and 𝑖 − 1 subscribe to this channel. In the example depicted in Figure
4.8, the island 3 publishes migrants to its channel (No. 3). In the example depicted in Figure
4.8, the island 3 publishes migrants to its channel (No. 3). The islands 2 and 4, as neighbors
and subscribers, subscribe the channel No. 3 to get the published migrants.

Island 6

Island 1 Island 3

Island 4

Island 2

Island 5
Redis Publish/Subscribe

Channels

Island Channel 1

Island Channel 2

Island Channel 3

Island Channel 4

Island Channel 5

Island Channel 6

Figure 4.8.: Mapping a bi-directional ring topology with 6 islands to the publish/subscribe channels
infrastructure

73

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

4.3.3. Execution Workflow

For the execution of the Coarse-Grained Model, the three general phases proposed in
BeeNestOpt.IAI namely the ‘Initialization Phase’, the ‘Iterative Evolution Phase’ and the
‘Termination Phase’ are also performed. In comparison to the execution workflow of the
Global Model explained in Section 4.2.3, the execution workflow of the Coarse-Grained
Model is more complex. Therefore, we simplify the explanation of the phases as much as
possible for better understanding.

Initialization Phase After performing the general ‘Initialization Phase’ by creating
the required containers for the model-related services, i.e, the In. EA Service, the Ds.Jo.
Service, the Mi.Sy. Service and the EA Service instances, they subscribe to the associated
publish/subscribe channels. After that, the initial population is created by calling the In.
EA Service by the Opt.J.M. Service. Then, the Opt.J.M. Service starts to send the initial
population and configurations to the Ds.Jo. Service which in turn splits the initial population
into subpopulations and distributes them over the islands. The initial configurations are also
distributed to the islands. It is possible that the Mi.Sy. Service instances receive a complete,
partial or no initial subpopulation at all. In the latter two cases, each EA Service has to
generate either the missing part of the received subpopulation if it has received a smaller
initial subpopulation than the required one, or a complete subpopulation if it did not receive
any initial subpopulation. The individuals generated in this process are randomly generated.
The initial configurations include the configurations for the deployed EA, migration strategy
parameters, e.g., migration rate, selection and replacement strategy and the communication
topology configuration which is required for building the communication topology among
the islands. The Mi.Sy. Service instances can subscribe to their neighbors in several manners
defined by the user which leads to establishing different topologies like a Ring, Bi Ring,
Ladder or Complete as we explained before. In case of a heterogeneous Coarse-Grained
Model, a list with all configurations related to each island is sent by the Ds.Jo. Service to all
islands, where each island takes its configurations from the list according to the island-id.
After finishing the Initialization Phase, the Mi.Sy. Service and the EA Service instances
have all the required data to execute the evolution by, e.g., applying the genetic operators,
evaluating the individuals and exchanging migrants.

Iterative Evolution Phase After finishing the ‘Initialization Phase’, each Mi.Sy. Ser-
vice informs the Opt.J.M. Service that it is ready to execute the actual iterative cycle of the
evolution. Once the Opt.J.M. Service receives an ‘Initialized’ status from all Mi.Sy. Service
instances and a start signal from UI Tier, a start command is sent to the islands to start the
evolution. In the ‘Iterative Evolution Phase’, each Mi.Sy. Service starts its corresponding
EA Service that evolves the population by evaluating the individuals, selecting the parents
and applying the genetic operators, to name a few. The evolution process is performed
iteratively until some epoch termination criterion has been satisfied. Afterward, each Mi.Sy.
Service receives the intermediate population from the corresponding EA Service to select
the migrants according to the selection policy. Then, the migrants are published on their

74

4.3. Mapping the Coarse-Grained Model to BeeNestOpt.IAI Architecture

corresponding publish/subscribe channel as shown in Figure 4.8. The neighbors, i.e., the
Mi.Sy. Service instances receive migrants through the same channel and replace individuals
from their intermediate population according to the replacement strategy. After that, the EA
Service is called by its corresponding Mi.Sy. Service with the updated population including
the migrants. This loop is performed as long as there is no global termination criterion
satisfied.

Termination Phase In the final phase of an optimization task, either one Mi.Sy. Service
notifies the other Mi.Sy. Service instances to stop the evolution process or all Mi.Sy. Service
instances stop themselves. The distinction is caused by the fact that there are multiple
termination criteria. For example, if the termination criterion is the number of generations
or the computation time, the Mi.Sy. Service instances stop themselves, since there is
no knowledge necessary from the other Mi.Sy. Service instances to make this decision.
However, if the termination criterion is the minimum fitness of a potential solution, one
Mi.Sy. Service notifies the others that it has found a solution that exceeds the required
fitness value. Hence, this information is published to all Mi.Sy. Service instances in order
to finish their evolving process. After that, the Mi.Sy. Service instances send a stop signal
to the Opt.J.M. Service to stop the evolution process. The Mi.Sy. Service instances publish
their partial results to the corresponding publish/subscribe channels. The Ds.Jo. Service
selects the best obtained results, after being notified that the partial results are available to
be joined in one list. The steps of the general ‘Termination Phase’ explained in Section 4.1.2
is also performed. Table 4.18 gives an overview how the above microservices are involved
in the three stages of the execution workflow.

Services Initialization
Phase

Iterative Evolution
Phase

Termination
Phase

Opt.J.M. Service Yes No Yes
In. EA Service Yes No No
Ds.Jo. Service Yes Yes Yes
Co.Ma. Service Yes No No
Mi.Sy. Service Yes Yes Yes
EA Service Yes Yes Yes

Table 4.18.: Mapping the microservices of the Coarse-Grained Model to the three execution phases

The proposed microservices are mapped to the pseudocode of the Coarse-Grained Model
(see, Figure 4.9). The In. EA Service executes line 1, the Ds.Jo. Service executes lines 2, 3
and 15, the Mi.Sy. Service implements lines 6 and 12-14, the EA Service corresponds to
lines 5 and 7-11 and the Opt.J.M. Service returns the best solution by performing line 16.

Besides the REST-APIs supported by the Opt.J.M. Service and the Co.Ma. Service of the
Global Model summarized in Table 4.12, Table 4.19 contains the REST-APIs of the Ds.Jo.
Service and the In. EA Service for supporting the Coarse-Grained Model. It also defines the
Sender (Sen.) and the Receiver (Rec.) of each API. Table 4.20 lists all publish/subscribe

75

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

Initializer EA Service

Splitting & Joining Service

EA Service

Migration & Synchronization Service

Migration & Synchronization Service

Splitting & Joining Service

Is
la

n
d

 i

Optimization Job Management Service

EA Service

Figure 4.9.: Mapping the proposed microservices to the pseudocode of the Coarse-Grained Model

Microservices of the Coarse-Grained Model

REST APIs Method Opt.J.
M. EA Ds.Jo. Co.

Ma. Mi.Sy. Da.
Me. In. EA

/ds/job/{job-id}/
configurations POST Sen. Rec.

/ds/job/{job-id}/
population POST Sen. Rec.

/ine/job/{job-id}/
configuration PUT Sen. Rec.

/ine/job/{job-id}/
population POST Sen. Rec.

Table 4.19.: Summary of the REST-APIs used by the services of the Coarse-Grained Model where (Rec.)
refers to the receiver and (Sen.) refers to the sender

channels used by the services of the Coarse-Grained Model and shows which service is the
Publisher (Pub.) and which is the Subscriber (Sub.) for each channel.

76

4.3. Mapping the Coarse-Grained Model to BeeNestOpt.IAI Architecture

Microservices of the Coarse-Grained Model
publish/subscribe
channels

Opt.J.
M. EA Ds.Jo. Co.

Ma. Mi.Sy. Da.
Me. In. EA

status.service.
{serviceName}.job.
{job-id}

Sub. Pub. Pub. Pub. Pub. Pub. Pub.

migrants.job.{job-id}.
island.{island-id}

Pub.
(Sub.

by neighbors)

stop.job.{job-id} Pub. Sub.
Pub. (Sub.

by neighbors)
status.migration.job.
{job-id}.island{island-id}

Pub. (Sub.
by neighbors)

start.EA.job.{job-id}.
island.{island-id} Sub. Pub.

result.part.job.{job-id}.
island.{island-id} Sub. Pub.

config.migration.job.
{job-id}.{island-id} Pub. Sub.

config.topology.job.
{job-id} Pub. Sub.

population.job.{job-id}.
island.{island-id} Sub. Sub.

population.intermediate.
job.{job-id}.island.
{island-id}

Pub. Sub.

start.job.{job-id} Pub. Sub.
migrants.job.{job-id}.
island.{island-id} Sub.

status.migration.job.
{job-id}.
island{island-id}

Pub. (Sub.
by neighbors)

config.EA.job.{job-id}.
island.{island-id} Sub. Pub.

result.job.{job-id}.type.
{resultType} Sub. Pub.

Table 4.20.: Summary of the publish/subscribe channels used by the services of the Coarse-Grained Model
where (Pub.) refers to the publisher and (Sub.) refers to the subscriber

77

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

4.4. Evaluation

In this section, we investigate how BeeNestOpt.IAI facilitates the deployment of existing
EAs that already support at minimum one parallelization model from the basic ones into a
cluster computing environment without any change or adaptation at the code level. More-
over, the effect of using microservices, container virtualization and the publish/subscribe
messaging paradigm on the parallel performance of an EA in the cluster computing environ-
ment is studied and analyzed. Basically, the parallel performance of EAs can be measured
and compared in two ways. Either one measures the effort required to achieve a given and
attainable target quality (speedup) or one measures the quality of solutions achieved at a
given effort. In other words, parallel EAs can be evaluated with respect to two criteria,
namely how fast can an EA obtain an optimal or near-optimal solution in comparison to
the sequential version of it (speedup) and what is the quality of this solution (solution
quality). In this evaluation, we focus on the first criterion, namely the speedup. Moreover,
the performance of BeeNestOpt.IAI in terms of the communication overhead is evaluated.

There are two different approaches to analyze the speedup, namely the theoretical analysis
(e.g., [36]) and the experimental analysis (e.g., [122]). In this evaluation, we analyze the
performance of BeeNestOpt.IAI empirically following [122]. The speedup (𝑆𝑚) is defined as
the ratio between the sequential and parallel execution times using 𝑚 processors. Therefore,
it is necessary to define how execution time is measured. In the sequential case, it is the
CPU time to solve the problem, since the algorithm is executed on a single processor. In the
parallel case, the execution time has to include the communication overhead arising from
exchanging data between the services. Consequently, we measure the time for executing the
parallel EA by taking into account the start and the end time – known as wall-clock times –
for each optimization task subtracting the communication overhead. We denote 𝑇𝑚 as the
execution time of a parallel EA on 𝑚 processors and 𝑇1 as the execution of the same EA on
one processor as shown in Equation (4.1).

𝑠𝑚 =
𝑇1

𝑇𝑚
(4.1)

Because of the non-deterministic nature of EAs, we cannot use this metric directly. There-
fore, we have to consider the means for several runs 𝐸 [𝑇1] and 𝐸 [𝑇𝑚] for both measures as
described in Equation (4.2).

𝑠𝑚 =
𝐸 [𝑇1]
𝐸 [𝑇𝑚]

(4.2)

Driven by this definition, we can distinguish between three cases: Sublinear speedup with
(𝑠𝑚 < 𝑚), linear speedup with (𝑠𝑚 =𝑚) and superlinear speedup with (𝑠𝑚 > 𝑚). Alba [2]
introduced a taxonomy depending on the definition of these values (see, Table 4.21).

Strong speedup (type I.) refers to the speedup achieved compared to the best-so-far sequential
algorithm. Because of the difficulty to find the best-so-far algorithm for a problem at hand,
most of the research works do not consider strong speedup. Instead, the weak speedup (type
II.) which refers to a comparison between the sequential version and the parallel version

78

4.4. Evaluation

I. Strong speedup
II. Weak speedup

A. speedup with solution-stop
1. Versus panmixia
2. Orthodox

B. speedup with predefined effort

Table 4.21.: Taxonomy of speedup Measures taken from [2]

of the developed EA is applied. The two subcategories of the weak are distinguished from
each other based on the stopping criterion. For speedup with solution-stop (type II.A), a
target solution quality is given. The parallel version of an EA running on𝑚 processors is
either compared to the sequential version, i.e., the panmictic EA running on one processor
(type II.A.1) or compared to the same parallel EA running on one processor (type II.A.2).
The second subcategory sets a predefined effort as the stopping criterion (type II.B.). This is
especially useful if not the performance of a given EA should be evaluated but the parallel
environment it is executed in. In this evaluation, we consider type II.B. speedup as the most
suitable measure.

In the following, we describe the EA integrated into BeeNestOpt.IAI as a test case. After-
ward, we introduce the deployment steps on the cluster to parallelize EAs. The obtained
benchmark results of the evaluation of he Global Model and the Coarse-Grained Model in
terms of the communication overhead and speedup are discussed.

4.4.1. EA GLEAM as Test Case

The EA GLEAM (General Learning Evolutionary Algorithm and Method) [23, 24] shortly
explained in Section 2.2.3 is chosen as a test case valuating the Global Model and Coarse-
Grained Models realized in the microservices and container-based architecture. However,
any EA can be integrated in BeeNestOpt.IAI as long as the proposed interfaces are imple-
mented which facilitates the processing of new applications. The variant of GLEAM used
in this work offers the functionality to configure a scalable delay so that the amount of time
for the fitness evaluation can be artificially extended. While the EA GLEAM is integrated
into the E.O. Service and acting as a master in the Global Model, it is integrated into two
services in the Coarse-Grained Model, namely the In. EA Service and the EA Service. The
communication interfaces of the EA-related services provide a GLEAM-specific layer that
allows the integration of GLEAM as it is. The Fine-Grained Model supported by GLEAM
is not considered in this evaluation, since it needs a large massively parallel processing
infrastructure to assign each individual to a CPU which is not available in our cluster
computing environments.

https://github.com/KIT-IAI/Gleam, last visited: 13/01/2023

79

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

Redis

Kubernetes

Docker

Cluster & OS

Framework Services

Figure 4.10.: The technological layers of BeeNestOpt.IAI

4.4.2. Deployment and Execution on a Cluster

Figure 4.10 gives an overview about the involved technological layers of BeeNestOpt.IAI.
On the lowest level, the cluster hardware runs a certain Operating System (OS). However,
all microservices run in a containerized environment that is independent of the underlying
OS. Therefore, we do not describe the OS in detail. On top of the OS runs the container
orchestration system, namely Kubernetes which dynamically allocates resources to Pods
that run the microservices. Inside the Pods, the implemented microservices are run by the
Docker Engine. In addition to the implemented services, Redis runs in a Pod acting as a
temporary storage and implementation for the Event-based messaging system. For this
evaluation, we use a cluster with four nodes with 32 Intel cores (2.4 GHz), 128 GB RAM
and an SSD disk each. The nodes are connected to each other by a LAN with 10 GBit/s
bandwidth.

As a starting point, we have the source code for all microservices that perform the Global
Model and the Coarse-Grained Model. Some of these services are developed in Python
and the others in Java. For the latter case, each service has besides the source code the
Maven’s Project Object Model (POM) file which describes the project dependencies and
configuration details. Combining both files together creates the executable Java Archive
(JAR) for each microservice which is encapsulated in a local docker image as shown in
Figure 4.11. In order to deploy the developed microservices on a cluster, two parts are
necessary. The first one is the docker images which are pushed to an online docker registry.
The second part is the YAML config which describes the number of CPUs and size of RAM
assigned for each docker, the name of the deployment, how many Pods for one deployment
will be created, networking details and other relevant information for Kubernetes. This
information is included into cluster configuration provided as a JSON file defined by a user.
For the services that do not scale on demand, one Pod containing one container for each

80

4.4. Evaluation

Source

Code

Docker

Image

Maven

Package

Docker

Build

Registry

Docker

Push

YAML

Config

Kubectl

Apply Pods &

Deployments

Docker

File
POM

Java

JAR
Java

Python

Docker

File

Docker

Image

Docker

Build

Locally Cluster

Figure 4.11.: The deployment process of BeeNestOpt.IAI

microservices is created. However, for creating several instances from the other services,
several Pods are created where each one contains one container running one microservices
such as the Ca. Service, the Mi.Sy. Service and the EA Service. Hence, the terms container
and Pod refer to the same component in this evaluation. Figure 4.12 shows an example of
how the services of the Coarse-Grained Model with four islands are mapped to the CPUs on
four cluster nodes. On the first node, the Opt.J.M. Service, the Ds.Jo. Service and the In.
EA Service are deployed. The second node runs the Co.Ma. Service, the Mi.Sy. Service
1 as well as the EA Service 1. Node number three runs the Mi.Sy. Service instances 2,
the EA Service 2 and the EA Service 3. On the fourth node, Redis, the Mi.Sy. Service
instances 3 and 4, the EA Service 4 and the Da.Me. Service are running. Since Kubernetes
automatically allocates resources depending on the resource usage, the distribution of the
microservices can change between two succeeding optimization tasks.

4.4.3. Experimental Setup and Results for the Global Model

For estimating the applicability and the efficiency of the proposed microservice and
container-based architecture for parallelizing EAs according to the Global Model on a
cluster, we analyze the scalability of the Global Model. This is achieved by varying the
number of workers between 1 and 120, so that each worker becomes one core and at min-
imum two cores are left on every node for the operating system. Since the development
of the overhead with growing data volume and amount of workers is of particular interest
for the Global Model, we vary the population size between 120 and 960 individuals. The
optimization problem which is used as a test case is a scheduling task from the industrial pro-
cess [86, 23] where each chromosome consists of 87 genes each with 2 integer parameters.
This results in chromosome list sizes of 820 kB and 6560 kB for 120 and 960 individuals,
respectively. Each run is performed for 50 generations so that all overhead-related functions
are performed 50 times to minimize the effect of single delays coming from the operating

81

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

Optimization Job
Management

Service

Distributing &
Joining

Service

Container
Management

Service

<

Migration &
Synchronization

Service 1

Migration &
Synchronization

Service 3

Migration &
Synchronizatin

Service 2

Migration &
Synchronization

Service 4

Node 1 Node 2 Node 3 Node 4

Cluster

EA Service 1 EA Service 2 EA Service 3 EA Service 4

Redis

Initializer EA
Service

Data & Message

Service

Figure 4.12.: Example of how the containers of BeeNestOpt.IAI for the Coarse-Grained Model with 4
islands are distributed over a cluster with 4 nodes

system. The total time and the maximum time required to evaluate the allotted portion
of the offspring of all Ca. Services are measured. The maximum time is taken, since the
Ds.S. Service must wait for the last Ca. Service to finish, i.e, we consider the synchronous
Global Model. The scalable delay feature of the used version of EA GLEAM for the fitness
evaluation is applied for simulating different run times. Figure 4.13 shows a nearly linear
increase of the overhead time with growing population sizes (𝜇) averaged over the number
of involved workers, i.e., the Ca. Service instances. The growth is originated from the linear
increase in data volume exchanged among the services and the increasing effort required for
managing and synchronizing the workers as it is depicted in Figure 4.14. In other words,
by deploying more workers, an additional overhead arises, since BeeNestOpt.IAI requires
more time to orchestrate the execution over the workers. The concluded result shows that
BeeNestOpt.IAI with the Global Model generates an overhead of only 0.4–1.8 seconds per
generation for up to 120 worker nodes and chromosome lists of size up to 6.5 MB.

Table 4.22 and Figure 4.15 show the results of the scalability experiment, for which the
execution time of one evaluation of an individual is artificially set to 0.9 seconds. The
results show that by utilizing more workers, the gain in the execution time has an almost
linear trend between 8 and 32 workers. Then, it increases more slowly between 32 and
120 workers. This is due to the fact that the master becomes a bottleneck when using too
many workers, since most of them try to communicate with the master to exchange data
at the same time. Cantú-Paz analyzed among others the performance of the Global Model
[36] and defined the ratio 𝛾 between the time required for one assessment (𝑡𝑒𝑣𝑎𝑙) and the
communication overhead (𝑡𝑐𝑜𝑚) as shown in Equation (4.3).

𝛾 =
𝑡𝑒𝑣𝑎𝑙

𝑡𝑐𝑜𝑚
(4.3)

82

4.4. Evaluation

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

120 240 360 480 600 720 840 960

C
o

m
m

u
n

ic
at

io
n

 o
ve

rh
ea

d
in

 s
ec

o
n

d
s

Population size µ

Figure 4.13.: Overhead times with increasing population size 𝜇 per generation as average of the workers
(ranged between 8 and 120)

0.95

1.00

1.05

1.10

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Number of workers (Ca. Service instances)

C
o

m
m

u
n

ic
at

io
n

 o
ve

rh
ea

d
in

 s
ec

o
n

d
s

Figure 4.14.: Overhead times with increasing number of workers per generation as average of the population
sizes (ranged between 120 and 960)

The value of 𝛾 should be greater or even better much greater than one. Given that value, the
number of optimal workers 𝑆∗ can be calculated for the given test case, in which the master
node does not also work as a worker, as shown in Equation (4.4).

𝑆∗ =
√︁
𝜆𝛾 =

√︁
8𝜇𝛾 (4.4)

83

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

Containers
[Workers]

Execution Time
[Seconds]

Overhead
[Seconds]

Total Time
[Seconds] Speedup

1 87216.42 25.73 87242.15 1
8 12110.80 24.68 12135.47 7.19

16 5883.40 23.84 5907.24 14.77
24 4220.87 24.74 4245.62 20.55
32 3240.90 24.98 3265.89 26.71
40 2713.06 24.84 2737.90 31.86
48 2336.97 25.42 2362.39 36.93
56 1978.08 25.97 2004.04 43.53
64 1838.47 25.56 1864.03 46.80
72 1768.33 26.27 1794.60 48.61
80 1686.85 26.71 1713.56 50.91
88 1621.74 26.69 1648.44 52.92
96 1551.67 26.98 1578.64 55.26

104 1516.49 26.40 1542.88 56.54
112 1485.98 26.12 1512.10 57.70
120 1423.01 27.67 1450.68 60.14

Table 4.22.: Performance of BeeNestOpt.IAI with µ=240 and 50 generations per run

where 𝜆 is the amount of offspring per generation which is set to 8 ∗ 𝜇 (the EA GLEAM is
set to generate eight offspring per paring). From table 4.22, we can calculate the 𝑡𝑒𝑣𝑎𝑙 per
individual according to the following equation:

𝑡𝑒𝑣𝑎𝑙 =
𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒_𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

𝜇 + (8 ∗ 𝜇 ∗ 𝑁𝑟 .𝑜 𝑓 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) (4.5)

and 𝑡𝑐𝑜𝑚 as following:

𝑡𝑐𝑜𝑚 =
𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑

𝑁𝑟 .𝑜 𝑓 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
(4.6)

For an execution time of 0.9 seconds for one evaluation of an individual and 𝜇=240, the
optimal number of workers is 58 and 𝛾 = 1.76. This corresponds to the curve shown in
Figure 4.15, the increase of which starts to decrease beginning at approx. 50–60 workers.
This low and only slightly rising overhead time allows an efficient parallelization starting at
an assessment duration of approx. 0.1 seconds per individual. For this duration, the best
number of workers ranges between 15 and 40 for the population sizes used.

4.4.4. Experimental Setup and Results for the Coarse-Grained
Model

For assessing the performance of BeeNestOpt.IAI for parallelizing EAs based on the Coarse-
Grained Model, we study the overhead including the communication overhead in each

84

4.4. Evaluation

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100 110 120

Sp
ee

d
u

p

Number of workers (Ca. Service instances)

Figure 4.15.: Theoretical speedup (dotted line) vs. BeeNestOpt.IAI speedup for the Global Model

phase of the execution workflow and the migration overhead. Furthermore, the parallel
performance in terms of speedup is analyzed. To this end, the non-convex non-linear
multimodal Rastrigin function [152] is selected in its generalized form as an optimization
problem. The only relevant information for the purpose of this evaluation is the chosen
dimensionality of the function of 20, so that an individual contains 20 genes requires a size of
about 2 KB. For simulating a real scenario, in which the computing resources are exploited
as they would be in a real optimization task, we defined several evaluation scenarios for
evaluating the overhead and the speedup of BeeNest32.IAI for the Coarse-Grained Model as
we explain in the following sections. In these scenarios, we compare four communication
topologies, namely a Ring, a Bi Ring, a Ladder and a Complete.

4.4.4.1. Overhead

For measuring the communication and the migration overhead of the microservice and
container-based architecture for parallelizing EAs according to the Coarse-Grained Model,
we change the following two parameters:

• Number of islands: it is varied between 1, 8, 16, 32, 64 and 120, so that the minimum
of two cores is left on each node for the OS.

• Migration rate: we chose migration rates between 1 (the absolute minimum of the
migration rate), 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 and 16384.

85

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

According to these migration rates, the amount of exchanged data per island and epoch
ranged between 2 KB and 32 MB. For each migration rate, we execute 100 epochs so that
the overhead related functions are calculated 100 times to minimize the effect of single
delays resulting from the OS or other running services on the cluster. As a starting point
to analyze the overhead, we measure and compare the amount of time needed for starting
up the required islands. The Co.Ma. Service dynamically deploys the required number of
containers by either creating them, if there are no deployed ones or resetting them. The
latter is applied, if they are already deployed and are not used by another optimization task.
For both cases, there is a linear increase of time with the number of islands as shown in
Figure 4.16. However, the amount of time needed to create a container is about 20 times
greater than to reset it. Due to the varied load on the cluster, some minor fluctuations can be
observed such as the ones between 40 and 56 containers.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

Number of Islands

0

10

20

30

40

50
Container Initialization

Container Creation
Container Reset

Se
tu

p
tim

e
in

 s
ec

on
ds

Figure 4.16.: Comparison of the setup time for the islands for a complete container creation and a reset

After presenting the setup time, we focus on the BeeNestOpt.IAI overhead of all phases
of the execution workflow, namely the ‘Initialization Phase’ (with a container reset), the
‘Iterative Evolution Phase’ (excluding the computation time for the deployed EA in the
EA Service) and the ‘Termination Phase’. As described in Section 4.3.3, the ‘Initialization
Phase’ and the ‘Termination Phase’ are executed only once for each optimization task.
Therefore, we add up both and compare it to the amount of time needed for the ‘Iterative
Evolution Phase’.

As shown in Figure 4.17, the overhead of the ‘Initialization Phase’ and the ‘Termination
Phase’ for Ring topology with 8 islands remains almost constant when migration rates vary
between 1 and 1024. In contrast to that, the overhead of the ‘Iterative Evolution Phase’ is
accountable for the increase of the overhead starting with 256 migrants. Therefore, we focus
on the overhead resulting from the ‘Iterative Evolution Phase’. In this phase, the active

86

4.4. Evaluation

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Migration Rate

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Framework Overhead

Iterative Evolution Phase
Initialization & Termination Phases

 F
ra

m
ew

or
k

ov
er

he
ad

 in
 s

ec
on

ds

Figure 4.17.: Framework overhead for a Ring topology with 8 islands and 100 epochs, spitted into overhead
for the ‘Initialization & Termination Phases’ and ‘Iterative Evolution Phase’

services are the Mi.Sy. Service and the EA Service. We summarize both as an island which
executes 𝑁 epochs. The time of each epoch is subdivided into the amount of time needed
to execute the deployed EA (GLEAM Execution Time in Figure 4.18) and the amount of
time needed by BeeNestOpt.IAI to perform the migration (Framework Migration Overhead
(FMO) in Figure 4.18).

GLEAM Execution TimeFramework Migration Overhead

Epoch 0 Epoch 1 Epoch N-1

t
…

𝑡𝑎,0,0

Island 0
𝑡𝑏,0,0 𝑡𝑐,0,0 𝑡𝑎,0,1 𝑡𝑏,0,1 𝑡𝑐,0,1 𝑡𝑎,0,2 𝑡𝑎,0,𝑁−1 𝑡𝑏,0,𝑁−1 𝑡𝑐,0,𝑁−1 𝑡𝑎,0,𝑁

…

𝑡𝑎,1,0

Island 1
𝑡𝑏,1,0 𝑡𝑐,1,0 𝑡𝑎,1,1 𝑡𝑏,1,1 𝑡𝑐,1,1 𝑡𝑎,1,2 𝑡𝑎,1,𝑁−1 𝑡𝑏,1,𝑁−1 𝑡𝑐,1,𝑁−1 𝑡𝑎,1,𝑁

…

𝑡𝑎,𝑀−1,0

Island M-1
𝑡𝑏,𝑀−1,0 𝑡𝑐,𝑀−1,0 𝑡𝑎,𝑀−1,1 𝑡𝑏,𝑀−1,1 𝑡𝑐,𝑀−1,1 𝑡𝑎,𝑀−1,2 𝑡𝑎,𝑀−1,𝑁−1 𝑡𝑏,𝑀−1,𝑁−1 𝑡𝑐,𝑀−1,𝑁−1 𝑡𝑎,𝑀−1,𝑁

… …

…

…

Figure 4.18.: Points in Time of the ‘Iterative Evolution Phase’ of one optimization task performed by 𝑀

islands for 𝑁 epochs

For different combinations of parameters, only the FMO is considered, since it is the
governing factor of the overhead. For one optimization task, we observe the FMO for
each island and each epoch building the migration overhead matrix 𝑠 as shown in Equation
(4.7).

87

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

𝑠 =

©«

𝑠0,0 𝑠0,1 𝑠0,2 · · · 𝑠0,𝑁−1
𝑠1,0 𝑠1,1 𝑠1,2 · · · 𝑠1,𝑁−1
𝑠2,0 𝑠2,1 𝑠2,2 · · · 𝑠2,𝑁−1
...

...
...

. . .
...

𝑠𝑀−1,0 𝑠𝑀−1,1 𝑠𝑀−1,2 · · · 𝑠𝑀−1,𝑁−1

ª®®®®®®¬
(4.7)

Then, this matrix is converted to the vector 𝑡 as shown in Equation (4.8) containing the
FMO for each epoch by calculating the maximum FMO of each epoch from all islands as
shown in Equation (4.9). The maximum FMO of all islands is considered, since it gives us
the worst case of the FMO.

𝑡 =
(
𝑡0 𝑡1 𝑡2 · · · 𝑡𝑁−1

)
(4.8)

𝑡 𝑗
0≤ 𝑗≤𝑁−1

= max
𝑖∈{0,..,𝑀−1}

𝑠𝑖, 𝑗 (4.9)

The sum of the maximum FMO, namely 𝑟 for 𝑁 epochs is shown in Equation (4.10). The
whole procedure to calculate the FMO for one optimization task is summarized in Algorithm
1.

𝑟 =

𝑁−1∑︁
𝑗=0

𝑡 𝑗 (4.10)

We compare the FMO per epoch for the Ring, Bi Ring, Ladder and Complete topologies
with 8 islands. Figure 4.19 shows the results for varying the migration rate between 1 and
1024. It is noticeable that the FMO rises by increasing the number of connections between
the islands, e.g., the FMO for the Bi Ring, Ladder and Complete topologies is higher than
for the Ring. This is mainly due to the fact that the number of exchanged messages among
the islands has increased. We increase the migration rate from 1024 to 2048, 4096, 8192
and 16384. The default limit of each channel, i.e., 32 MB per 60 seconds is not enough to
handle the amount of exchanged data. Therefore, the output buffer has to be increased to
be able to handle more than 8192 migrants with 8 islands. As shown in Figure 4.20, the
migration overhead trend shown in Figure 4.19 is also confirmed.

88

4.4. Evaluation

Algorithm 1: Pseudocode to calculate the Migration Overhead (FMO) for one optimiza-
tion task based on the points in time shown in 4.18
input :All times related to one optimization task as shown in Figure 4.18
output :FMO (𝑟) for one optimization task

1 𝑀 = Number of islands;
2 𝑁 = Number of epochs;
3 𝑠 = [M,N], matrix with migration overhead times for each island and epoch (see,

Equation (4.7));
4 𝑡 = [N], vector with maximum migration overhead for each epoch (see, Equation (4.8)),

each entry initialized with −∞;
5 𝑟 = Migration overhead for one optimization task (see, Equation (4.10));
6 for 𝑖 ← 0 to 𝑀 − 1 do
7 for 𝑗 ← 0 to 𝑁 − 1 do
8 𝑠𝑖, 𝑗 = (𝑡𝑎,𝑖, 𝑗+1 − 𝑡𝑐,𝑖, 𝑗) + (𝑡𝑏,𝑖, 𝑗 − 𝑡𝑎,𝑖, 𝑗);

9 for 𝑗 ← 0 to 𝑁 − 1 do
10 for 𝑖 ← 0 to 𝑀 − 1 do
11 𝑡 𝑗 =𝑚𝑎𝑥 (𝑡 𝑗 , 𝑠𝑖, 𝑗);

12 for 𝑗 ← 0 to 𝑁 − 1 do
13 𝑟 = 𝑟 + 𝑡 𝑗 ;
14 return 𝑟 ;

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Migration Rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Migration Overhead per Epoch
Ring
Bi Ring
Ladder
Complete

M
ig

ra
tio

n
ov

er
he

ad
 in

 se
co

nd
s

Figure 4.19.: Migration overhead per epoch for a Ring, Bi Ring, Ladder and Complete with 8 islands by
varying the migration rate between 1 and 1024, smaller part of (4.20)

After comparing the influence of different topologies and migration rates on the FMO, we
focus on the influence of the number of islands. The migration rate is varied between 1,

89

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Migration Rate

0

1

2

3

4

5

6

7
Migration Overhead per Epoch

Ring
Bi Ring
Ladder
Complete

M
ig

ra
tio

n
ov

er
he

ad
 in

 s
ee

co
nd

s

Figure 4.20.: Migration overhead per epoch for a Ring, Bi Ring, Ladder and Complete graph topology with
8 islands varying the migration rate between 1 and 16384

2, 4, 8, 16, 32, 64 and 128. For 8 islands (see, Figure 4.19) the considered topologies
and migration rates show an almost constant FMO. For 16 islands (see, Figure 4.21), we
can see an increase of the FMO for Complete topology starting with a migration rate of
32. For 32 islands (see, Figure 4.22), the increase of the FMO for the complete graph
topology also starts at a migration rate of 32. For 64 islands (see, Figure 4.23), the Complete
topology shows peaks by 16 migrants and for 120 islands (see, Figure 4.24), peaks begin at
a migration rate of 8. The reason for these peaks is the exponential growth of connections
with a growing number of islands, especially for Complete topology. For the Ring, Bi
Ring and Ladder topologies, we always have a constant number of neighbors of 1, 2 and 3,
respectively.

90

4.4. Evaluation

1 2 4 8 16 32 64 12
8

Migration Rate

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Migration Overhead per Epoch
Ring
Bi Ring
Ladder
Complete

M
ig

ra
tio

n
ov

er
he

ad
 in

 s
ec

on
ds

Figure 4.21.: Migration overhead per epoch for a Ring, Bi Ring, Ladder and Complete graph topology with
16 islands

1 2 4 8 16 32 64 12
8

Migration Rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Migration Overhead per Epoch

Ring
Bi Ring
Ladder
Complete

M
ig

ra
tio

n
ov

er
he

ad
 in

 s
ec

on
ds

Figure 4.22.: Migration overhead per epoch for a Ring, Bi Ring, Ladder and Complete graph topology with
32 islands

91

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

1 2 4 8 16 32 64 12
8

Migration Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Migration Overhead per Epoch

Ring
Bi Ring
Ladder
Complete

M
ig

ra
tio

n
ov

er
he

ad
 in

 se
co

nd
s

Figure 4.23.: Migration overhead per epoch for a Ring, Bi Ring, Ladder and Complete graph topology with
64 islands

1 2 4 8 16 32 64 12
8

Migration Rate

0

1

2

3

4

Migration Overhead per Epoch
Ring
Bi Ring
Ladder
Complete

M
ig

ra
tio

n
ov

er
he

ad
 in

 se
co

nd
s

Figure 4.24.: Migration overhead per epoch for a Ring, Bi Ring, Ladder and Complete graph topology with
120 islands

92

4.4. Evaluation

4.4.4.2. Speedup

For measuring the speedup of the parallel EAs according to the Coarse-Grained Model and
based on the microservices and container technologies, the delay feature of the applied
GLEAM version for the fitness evaluation explained in Section 2.2.3 is used. We vary the
delay between 0 ms (just executing the optimization for the Rastrigin function), 1 ms, 2 ms,
4 ms, 8 ms, 16 ms and 32 ms to simulate optimization tasks with several levels of complexity.
In the parallel execution, the global population size is set to 1024 and the migration rate
to 4 for the four considered topologies. The migration among the islands is synchronously
occurring and all islands have the same configurations, i.e., they are homogeneous. The
number of islands is varied between 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112
and 120. By dividing the whole population, i.e., 1024 among the islands, subpopulation
sizes ranging between 9 and 128 individuals are obtained. The number of epochs (the
interval between two succeeding migrations) is set to 100 with 1 generation per epoch as a
termination criterion. For the sequential implementation, we execute the EA GLEAM on
one island with 100 epochs where each epoch performs one generation. The population
consists of 1024 individuals resulting in the same effort (number of evaluations of the fitness
function) as of the parallel EA. We measure the whole execution time of BeeNestOpt.IAI,
i.e., between the reception of the configurations sent from the UI tier in the Opt.J.M. Service
and the reception of the final result in the Opt.J.M. Service. Then, the speedup is averaged
over 10 runs in order to minimize the possible effect of the delays caused by the OS and the
non-deterministic behavior of EAs.

The results for the speedup measured for the Ring, Bi Ring, Ladder and Complete topologies
are shown in Figures 4.25, 4.26, 4.27 and 4.28, respectively. By increasing the delay, the
speedup shows a partial linear/superlinear trend for all four topologies. This is due to the
fact that the computation time of the sequential EA increases rapidly by increasing the delay.
In contrast to this linear increase, the computation time of the parallel EA increases more
slowly because of the distribution of computation over the islands. Moreover, the migration
overhead is independent of the delay and therefore the ratio between the overhead and the
parallel computation time decreases. This results in a higher speedup for greater delays.
There are three possible reasons introduced by Alba [2] for this partial superlinear behavior
of parallel EA based on the Coarse-Grained model, namely the implementation source,
numerical source and the physical source. In the implementation source, the underlying data
structure used to represent the chromosomes has a large impact on the reduced execution
time of the parallel implementation. For instance, the computing units for a Structured
EA handle shorter lists of individuals other than a sequential one. On the other hand, the
complexity of certain operators, e.g., selection is significantly reduced when the population
is split and the resulting subpopulations are dealt with in parallel. In the numerical source,
the parallel EA can find a solution of the same quality faster as the one found by the
sequential EA by preserving the genetic diversity for a longer time by searching many
regions of the search space concurrently. The last source, i.e., the physical one refers to the
capability of efficiently exploiting the deployed computing resources by applying a parallel
version of EA more than by applying a sequential EA.

93

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

0 20 40 60 80 100 120
Number of Islands

0

20

40

60

80

100

120
Sp

ee
du

p
Linear speedup
0 ms
1 ms
2 ms
4 ms
8 ms
16 ms
32 ms

Figure 4.25.: Speedup with 4 migrants and a Ring topology, delay varied between 0 and 32 ms

0 20 40 60 80 100 120
Number of Islands

0

20

40

60

80

100

120

Sp
ee

du
p

Linear speedup
0 ms
1 ms
2 ms
4 ms
8 ms
16 ms
32 ms

Figure 4.26.: Speedup with 4 migrants and a Bi Ring topology, delay varied between 0 and 32 ms

94

4.4. Evaluation

0 20 40 60 80 100 120
Number of Islands

0

20

40

60

80

100

120

Sp
ee

du
p

Linear speedup
0 ms
1 ms
2 ms
4 ms
8 ms
16 ms
32 ms

Figure 4.27.: Speedup with 4 migrants and a Ladder topology, delay varied between 0 and 32 ms

0 20 40 60 80 100 120
Number of Islands

0

20

40

60

80

100

120

Sp
ee

du
p

Linear speedup
0 ms
1 ms
2 ms
4 ms
8 ms
16 ms
32 ms

Figure 4.28.: Speedup with 4 migrants and a Complete topology, delay varied between 0 and 32 ms

95

4. Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments

For the obtained superlinear speedup, the implementation is the main source since the
computed data structures of the subpopulations are smaller compared to the sequential
EA GLEAM. Furthermore, certain genetic operators such as crossover are not executed
in GLEAM, if the parents are too similar. This case usually occurs earlier with small
subpopulations than with larger ones reducing the number of evaluations and therefore the
computing time as shown in Table 4.23. It shows that GLEAM performs more evaluations
when the population is unsplit than when it is divided into subpopulations.

The second and third reasons are not responsible for the conducted measurements since the
quality of the proposed solution is not considered in this evaluation (see, 4.4)). Furthermore,
the sequential and the parallel EA use the same hardware. The speedup starts to decrease
at a certain point showing a constant trend. This is due to the fact that the overhead of the
increased number of islands exceeds the gain in the execution time of the EA GLEAM.

Ring Bi Ring Ladder Complete
1 Island 4833 4833 4833 4833
8 Islands 317 281 285 291
16 Islands 137 142 145 147
24 Islands 102 94 98 98
32 Islands 76 75 70 72
40 Islands 71 70 61 60
48 Islands 58 54 47 48
56 Islands 53 48 44 43
64 Islands 54 43 40 34
72 Islands 41 41 34 30
80 Islands 41 39 31 29
88 Islands 39 32 33 28
96 Islands 45 35 26 24
104 Islands 34 28 30 25
112 Islands 36 25 26 22
120 Islands 34 26 24 23

Table 4.23.: Number of evaluations per island for each topology to solve the Rastrigin function with GLEAM
where the stopping criteria is the number of generations which is set to 100 and the whole population consists
of 1024 individuals

4.5. Summary

In this chapter, BeeNestOpt.IAI is presented as a new, generic and modular software solution
for parallelization EAs in a cluster computing environment. Three lightweight technolo-
gies, namely microservices, container virtualization and the publish/subscribe messaging
paradigm are used to develop BeeNestOpt.IAI. We started by introducing the conceptual
architecture in Section 4.1. Then, we mapped the Global Model to BeeNestOpt.IAI by

96

4.5. Summary

designing the required microservices in Section 4.2. In Section 4.3, we explained how the
microservices that realize the Global Model are extended to support the Coarse-Grained
Model. A modern runtime technology, namely the container virtualization is utilized to
deploy each microservice into one or more containers to perform its task. In Section 4.4, we
introduced our concept to evaluate the applicability and the performance of BeeNestOpt.IAI.
We described the EA GLEAM used as a test case in Section 4.4.1. Thereafter, we explained
the integration of GLEAM into BeeNestOpt.IAI and the successful deployment on a cluster
with 4 nodes and 128 cores for benchmarking in Section 4.4.2. The communication over-
head and the speedup for the Global Model is measured. The concluded results presented in
Section 4.4.3 show that the underlying microservice architecture combined with container
technologies introduces a linear increase of the overhead with growing population sizes and
an almost linear increase of the overhead with the number of workers. Moreover, using
BeeNestOpt.IAI with the Global Model and the given hardware is a good choice if the
evaluation time is greater than 0.1 seconds per individual. In Sections 4.4.4.1 and 4.4.4.2,
we introduced our approach to assess the performance of BeeNestOpt.IAI in terms of the
migration overhead and the speedup for the Coarse-Grained Model. Several setup configu-
rations with four topologies, namely Ring, Bi Ring, Ladder and Complete are investigated.
The observed constant migration overhead for low and moderate migration rates and the
high speedup for more time-consuming fitness evaluations introduce the new proposed
BeeNestOpt.IAI as a promising software architecture to parallelize EAs according to the
Coarse-Grained Model in a cluster environment.

97

5. Enhancing the Parallel
Performance of Evolutionary
Algorithms in Cluster Computing
Environments

Each parallelization model of the three basic models, namely the Global Model (Master-
Worker Model), the Coarse-Grained Model (Island Model) and the Fine-Grained Model has
its own advantages and disadvantages. While the advantages introduce each parallelization
model as a proper model for some kind of optimization problems, the disadvantages
limit its common applicability. For example, the main disadvantage of the Global Model
is the communication overhead which limits its application to optimization problems
with high fitness computational costs and low communication demands. Otherwise, the
communication overhead might outweigh the speedup gained through parallelization [68].
Another example is the inability of the Coarse-Grained Model to work efficiently with
external tools and frameworks, limiting its usage to optimization problems that do not
require, e.g., simulators. Obviously, the disadvantages of each parallelization model of
EAs decrease the usability of the parallel EAs by limiting the parallel performance and
their applicability. In order to reduce the negative effects, some characteristics of two or
more of the three basic parallelization models can be hierarchically combined to form the
Hierarchical Model (so-called Hybrid Model) aiming at minimizing the disadvantages and
increasing the benefits [68]. Generally, the Hierarchical Model combines (i.e., hybridizes)
the Coarse-Grained Model on the upper layer and one of the three basic models on the

Parts of this chapter are reproduced from:

• Khalloof, H., Mohammad, M., Shahoud, S., Duepmeier, C., & Hagenmeyer, V. A generic flexible
and scalable framework for hierarchical parallelization of population-based metaheuristics. In
Proceedings of the 12th International Conference on Management of Digital EcoSystems. (2020),
pp. 124–131. DOI: 10.1145/3415958.3433041

• Khalloof, H., Mohammad, M., Shahoud, S., Duepmeier, C., & Hagenmeyer, V. A generic flexible and
scalable framework for hierarchical parallelization of population-based metaheuristics. In Internet of
Things, Vol. 16 (2021), p. 100433. DOI: 10.1016/j.iot.2021.100433

• Khalloof, H., Jakob, Shahoud, S., Duepmeier, C.,& Hagenmeyer, V . “A Generic Scalable Method
for Scheduling Distributed Energy Resources Using Parallelized Population-Based Metaheuristics”.
In: Proceedings of the Future Technologies Conference. (2020), pp. 1–21. DOI: 10.1007/978-3-030-
63089-8_1

99

5. Enhancing the Parallel Performance of Evolutionary Algorithms in Cluster Computing Environments

lower layers. E.g., combining the Coarse-Grained Model with the Global Model forms the
Coarse-Grained - Global Hybrid Model. Other combinations are also possible resulting in
five Hierarchical Models:

• Coarse-Grained - Coarse-Grained Hybrid Mode.
• Coarse-Grained - Fine-Grained Hybrid Model.
• Global - Fine-Grained Hybrid Model.
• Coarse-Grained - Global - Fine-Grained Hybrid Model.

In this chapter, we extend the architecture of BeeNestOpt.IAI to support the Hierarchical
Model of EAs in cluster and cloud computing environments answering the research question
[RQ2]. This introduces BeeNestOpt.IAI as a new generic and flexible software solution
to combine arbitrary models from the basic parallelization models of EAs with minimum
adaptation efforts. Such a combination paves the road to enhance the parallel performance
of EAs by achieving further acceleration. For analyzing the practicality of the proposed
solution, the Coarse-Grained - Global Hybrid Model is mapped to the microservices and
container-based architecture of BeeNestOpt.IAI. By combining the Coarse-Grained Model
with the Global Model, we achieve a further parallelization level by using the Global Model
and maintain the advantages of the Coarse-Grained Model, i.e., the promotion of a longer
preservation of genotypic diversity in the population, the associated strengthening of the
breadth search and the resulting reduction of the risk of premature convergence. Moreover,
the Global Model extends the application space of the Coarse-Grained Model by paving
the road for using it with simulation-based optimization problems. In order to compare the
Hierarchical Model with its basic parallelization models, a real-world optimization problem,
namely the problem of scheduling Distributed Energy Resources (DERs) is considered as a
test case.

The new approach of BeeNestOpt.IAI for hierarchical parallelization of EAs is described in
Section 5.1 where in Sections 5.1.1 and 5.1.2, the mapping of the Coarse-Grained - Global
Hybrid Model to BeeNestOpt.IAI and the execution workflow are introduced. In Section
5.2, the evaluation concept is introduced. The problem of scheduling DERs acting as a
use case for the evaluation is presented in Section 5.2.1. In Section 5.2.2, we describe the
two datasets used in the context of this evaluation. Then, we give a brief description of the
application of GLEAM to the scheduling task of DERs in Section 5.2.3. We introduce the
experimental configurations and results for evaluating the performance of BeeNestOpt.IAI
for the Coarse-Grained - Global Hybrid Model Section 5.2.4. The research contributions
presented in this chapter are the main topics of our papers [101, 102, 103].

5.1. BeeNestOpt.IAI for Hierarchical Parallelization
of Evolutionary Algorithms

The conceptual microservice and container-based architecture of BeeNestOpt.IAI introduced
in Section 4.1 enables an easy integration for the Hierarchical Model. This can be achieved
by adding new microservices or adjusting the existing ones. In this Section, we explain

100

5.1. BeeNestOpt.IAI for Hierarchical Parallelization of Evolutionary Algorithms

in detail how BeeNestOpt.IAI maps the Hierarchical Model, e.g., the Coarse-Grained -
Global Hybrid Model to its architecture with minimal adaptation efforts. Furthermore, the
execution workflow for the Coarse-Grained - Global Hybrid Model is introduced.

5.1.1. Mapping the Coarse-Grained - Global Hybrid Model to the
BeeNestOpt.IAI Architecture

D
a

ta
 &

 M
e

s
s
a

g
e

L
a

y
e

r
C

o
n

ta
in

e
r

L
a

y
e

r

Optimization

Job

Management

Service

Distributing

& Joining

Service

Container

Management

Service

Initializer EA

Service

Temporary storage

DB

Persistence storage Event-based messaging system

Data & Message

Service

Global Model

Workers [1.(1..M)]

C
o

ar
se

-G
ra

in
ed

 -
G

lo
b

al
 h

yb
ri

d
 M

o
d

el

Is
la

n
d

 1

C
o

ar
se

-G
ra

in
ed

 M
o

d
el

<

Migration &

Synchro-

nization

Service 1

…
E.O.

Service

1

Master 1

sClculation

Svice M

Calculation

Service1

Global Model

Workers [N.(1..M)]

C
o

ar
se

-G
ra

in
ed

 -
G

lo
b

al
 h

yb
ri

d
 M

o
d

el

Is
la

n
d

 N

C
o

ar
se

-G
ra

in
ed

 M
o

d
el

<

Migration &

Synchro-

nization

Service N

E.O.

Service

N

sClculation

Svice M

Calculation

Service1

Master N

Global ModelGlobal Model

Workers [N.(1..M)]Workers [1.(1..M)]

Figure 5.1.: Container and Data & Message Layers of BeeNestOpt.IAI for the Coarse-Grained - Global
Hybrid Model with 𝑁 islands and 𝑀 workers

As explained in Chapter 4 the services for parallelizing EAs are located in the Container
Layer performing all functionalities related to different EA parallelization models. Besides

101

5. Enhancing the Parallel Performance of Evolutionary Algorithms in Cluster Computing Environments

the basic services of BeeNestOpt.IAI introduced in Section 4.1.1, the model-related mi-
croservices described in Sections 4.2.1 and 4.3.1 are used to support the Coarse-Grained -
Global Hybrid Model. These services perform, e.g., the genetic operators for the Coarse-
Grained Model and the Global Model, the migration policy between the islands for the
Coarse-Grained Model and apply the communication between the master and workers for
the Global Model. Since the Coarse-Grained Model and the Global Model share some
common functionalities and differ in others, we grouped the model-related services into
three main groups.

Shared Services They support the shared functionalities for both EA parallelization
models.

• Distributing & Joining Service (Ds.Jo. Service).
• Evolutionary Operators Service (E.O. Service).

Coarse-Grained Model Services They perform the tasks related to the Coarse-
Grained Model.

• Migration & Synchronization Service (Mi.Sy. Service).
• Initializer EA Service (In. EA Service).

Global Model Services They perform the tasks related to the Global Model.

• Calculation Service (Ca. Service).

These services use REST APIs and publish/subscribe paradigm to communicate and share
data among them. As shown in Figure 5.1, the E.O. Service in conjunction with the Mi.Sy.
Service performs the tasks of an island in the Coarse-Grained Model. Furthermore, the E.O.
Service acts as a master in the Global Model, where it communicates with the workers (Ca.
Service instances) building the Coarse-Grained - Global Hybrid Model. The APIs and the
publish/subscribe channels of the Mi.Sy. Service and In. EA Service described in Tables
4.14 and 4.17 are used to support the Coarse-Grained - Global Hybrid Model without any
change. However, the functionalities of the shared services and the Ca. Service are modified
for supporting the Coarse-Grained - Global Hybrid Model as we explain in the following.
The Data & Message Layer has the same functionalities explained in Section 4.1 and 4.3
providing more flexibility and scalability as the island and worker instances are completely
decoupled from each other. For simplicity’s sake, the term island is used to refer to the
Mi.Sy. Service and the E.O. Service.

Distributing & Joining Service (Ds.Jo. Service) It is extended to execute the same
tasks of splitting the population, joining the results and distributing configurations for both
models. Firstly, it distributes the configurations over the islands and over the workers within
each island. Secondly, it splits the population into subpopulations and distributes them over
the islands. Finally, it splits each subpopulation according to the number of workers within

102

5.1. BeeNestOpt.IAI for Hierarchical Parallelization of Evolutionary Algorithms

Method Address Description

PUBLISH
population.job.{job-id}.
island.{island-id}.
worker.{worker-id}

Publish subpopulation to
each worker within an island.

PUBLISH
config.job.{job-id}.
island.{island-id}.
worker.{worker-id}

Publish configuration to
each worker within an island.

PUBLISH
result.part.job.{job-id}.
island.{island-id}

Publish the joined partial result of
the Global Model within an island.

SUBSCRIBE
result.part.job.{job-id}.
island.{island-id}.
worker.{worker-id}

Get the partial result related
to each worker within an island.

Table 5.1.: Publish/subscribe channels of the Ds.Jo. Service for the Coarse-Grained - Global Hybrid Model

the island and distributes them over the workers. By joining the results, it firstly joins the
partial results coming from the workers of each island to form the intermediate result. At
the end of one optimization job, the final result is formed by joining the intermediate result
coming from all islands to be sent to the Opt.J.M. Service.

The APIs and the publish/subscribe channels summarized in Tables 4.8 and 4.15 are used
without any change. However, the publish/subscribe channels described in Table 4.9 are
modified as shown in Table 5.1.

Evolutionary Operators Service (E.O. Service) It is a shared service that supports
both models, i.e., the Coarse-Grained Model and the Global Model. While it acts as a master
by applying the genetic operators, selecting the parents of the offspring and selecting of the
surviving offspring to the next generation in the Global Model, it sends the intermediate
population to the Mi.Sy. Service after each epoch in the Coarse-Grained Model. In Addition
to the publish/subscribe channels introduced in Table 4.16, a new publish/subscribe channel
is added to support the Coarse-Grained - Global Hybrid Model as described in Table 5.2.

Method Address Description

SUBSCRIBE
result.part.job.{job-id}.
island.{island-id}

Get the partial result related
to the Global Model within an island.

Table 5.2.: Publish/subscribe channel of the E.O. Service for the Coarse-Grained - Global Hybrid Model

Calculation Service (Ca. Service) The Ca. Service performs the same tasks explained
in Section 4.2.1. However, its publish/subscribe channels listed in Table 4.10 are adapted to
support the Coarse-Grained - Global Hybrid Model as shown in Table 5.3.

103

5. Enhancing the Parallel Performance of Evolutionary Algorithms in Cluster Computing Environments

Method Address Description

SUBSCRIBE
population.job.{job-id}.
island.{island-id}.
worker.{worker-id}

Get the input, i.e., the
subpopulations of each worker within an island.

SUBSCRIBE
config.job.{job-id}.
island.{island-id}.
worker.{worker-id}

Get the configurations, e.g., the objective function
and constraints for each worker within an island.

PUBLISH
result.part.job.{job-id}.
island.{island-id}.
worker.{worker-id}

Publish the partial result of evaluation performed
by each worker within an island.

Table 5.3.: The publish/subscribe channels of the Ca. Service for the Coarse-Grained - Global Hybrid Model

5.1.2. Execution Workflow

The execution workflow for the Coarse-Grained - Global Hybrid Model has also three
phases, namely the Initialization Phase, the Iterative Evolution Phase and the Termination
Phase as the ones introduced in Sections 4.2.3 and 4.3.3. Since all steps of the Coarse-
Grained Model are required, only the new added ones related to the Coarse-Grained - Global
Hybrid Model are explained in the following.

Initialization Phase It performs the same tasks as in the Coarse-Grained Model which
is explained in Section 4.3.3. However, it creates not only the required containers for the
island instances but also for the workers. In this phase, the container creation must be
performed in a specific order for ensuring that the creation of the containers for all required
services is done before starting the evolution process. First, the E.O. Service instances
must be created. Then, the corresponding Mi.Sy. Service instances are booted up. Once all
islands are created, the Opt.J.M. Service sends a request to the Co.Ma. Service to create
the containers for the Ca. Service instances. When the components of the island, namely
the E.O. Service and the Mi.Sy. Service and the corresponding Ca. Services are initialized,
the Mi.Sy. Service sends an initialization signal to the Opt.J.M. Service to start the next
stage.

Iterative Evolution Phase Before starting the Iterative Evolution Phase, the Opt.J.M.
Service guarantees that all islands and workers received the related configurations that
control the evolving process. As in the Coarse-Grained Model, the Opt.J.M. Service sends
a start signal to all Mi.Sy. Service instances for starting an epoch. Each island sends its
subpopulation to the Ds.Jo. Service which splits and distributes them over the Ca. Service
instances to be evaluated. After the evaluation is completed, each Ca. Service publishes the
partial results for joining them by the Ds.Jo. Service into one intermediate result for each
island. After that, the Ds.Jo. Service publishes the intermediate results to the corresponding
channels of the E.O. Services to apply the genetic operators. After an epoch, the migration
process takes place, where each island selects and publishes its migrants and receives the

104

5.1. BeeNestOpt.IAI for Hierarchical Parallelization of Evolutionary Algorithms

Services Initialization
Phase

Iterative Evolution
Phase

Termination
Phase

Opt.J.M. Service Yes No Yes
In. EA Service Yes No No
Ds.Jo. Service Yes Yes Yes
Co.Ma. Service Yes No No
Mi.Sy. Service Yes Yes No
E.O. Service No Yes Yes
Ca. Service No Yes No

Table 5.4.: Mapping the microservices of the Coarse-Grained - Global Hybrid Model to the three execution
phases

migrants from the neighbors. If the epoch termination criterion is not met, a new iteration is
started by splitting the newly created subpopulation and distributing them over the islands.

Termination Phase The same tasks of the termination phase of the Coarse-Grained
Model explained in Section 4.3.3 are performed here.

Table 5.4 summarizes how the above microservices are mapped to the three stages of the
execution workflow.

Figure 5.2 shows how the basic and model-related microservices are mapped to the pseu-
docode of the Coarse-Grained - Global Hybrid Model. The In. EA Service creates an
initial population by executing line 1. Then, the Ds.Jo. Service splits the generated initial
population and distributes it to the islands by executing lines 2 and 3. After that, within each
island, the Ds.Jo. Service splits the subpopulations and distributes them to the corresponding
workers as in lines 4, 5 and 6 of the pseudocode. Thereafter, the Ca. Service instances start
the evaluation of the subpopulations in lines 7 and 8. Once the evaluation is done, the Ds.Jo.
Service joins the partial results of all workers related to each subpopulation to form the
intermediate results as expressed in line 9. In lines 10 and 11, the Mi.Sy. Service checks
if the global termination criterion is met or not. In the latter case, the E.O. Service selects
the parents and applies the genetic operators on the subpopulation in the lines 12, 13 and
14. Lines 12, 13, 14, 15, 16, 17, 18, 19 and 20 are executed by the Ds.Jo. Service, the Ca.
Service and the E.O. Service over and over until the epoch termination criterion is reached.
Once an epoch termination criterion is met, the Mi.Sy. Service executes lines 21, 22 and
23 to perform the migration process by selecting the migrants and publishing them. These
steps, namely from line 11 to 23 continue until a global termination criterion is met. After
that, the Ds.Jo. Service joins the intermediate results of the islands as shown in line 24 and
sends them to the Opt.J.M. Service which then returns the best solution for the optimization
job by performing line 25.

Table 5.5 summarizes the modified publish/subscribe channels to support the Coarse-Grained
- Global Hybrid Model.

105

5. Enhancing the Parallel Performance of Evolutionary Algorithms in Cluster Computing Environments

Opt.J.M. Service

(Shared)

Is
la
n
d
i

In. EA Service

(Goarse-Grained Model)

Ds.Jo. Service

(Shared)

E.O. Service

(Global Model – The Master)

Mi.Sy. Service

(Goarse-Grained Model)

Mi.Sy. Service

Ds.Jo. Service

Ca.Service

(Global Model – The Workers)

Ds.Jo. Service

Ds.Jo. Service

Ds.Jo. Service

Ca.Service

Ds.Jo. Service

E.O. Service

Figure 5.2.: Mapping the proposed microservices to the pseudocode of the Coarse-Grained - Global Hybrid
Model

106

5.1. BeeNestOpt.IAI for Hierarchical Parallelization of Evolutionary Algorithms

Microservices of the Coarse-Grained - Global
Hybrid Model

publish/subscribe channels E.O. Ds.Jo. Ca.
population.job.{job-id}.
island.{island-id}.
worker.{worker-id}

Pub. Sub.

config.job.{job-id}.
island.{island-id}.
worker.{worker-id}

Pub. Sub.

result.part.job.{job-id}.
island.{island-id} Sub. Pub.

result.part.job.{job-id}.
island.{island-id}.
worker.{worker-id}

Sub. Pub.

Table 5.5.: Summary of the publish/subscribe channels used by the services of the Coarse-Grained - Global
Hybrid Model

107

5. Enhancing the Parallel Performance of Evolutionary Algorithms in Cluster Computing Environments

5.2. Evaluation

In this section, we evaluate the applicability of BeeNestOpt.IAI for the Coarse-Grained -
Global Hybrid Model by solving a real-world optimization problem. Moreover, we investi-
gate and discuss how the Hierarchical Model using microservice, container virtualization
and the publish/subscribe messaging paradigm enhances the parallel performance of an EA
by measuring the execution time and the communication overhead. For identifying the pos-
sible gain in execution time, we compare the Coarse-Grained Model and the Global Model
with the Coarse-Grained - Global Hybrid Model by changing the number of islands and
workers taking into account achieving a predefined target solution quality. In this evaluation,
the EA GLEAM explained in Sections 2.2.3 and 4.4.1 is also used. We start in Section 5.2.1
by describing the use case scenario for scheduling Distributed Energy Resources (DERs)
which is chosen as a real-world optimization problem. In this scenario, the creation of an
hourly day-ahead schedule plan for a simulated microgrid based on the Ausgrid electricity
dataset [153] is chosen. The preprocessing steps to generate the adequate datasets for
power generation, power consumption and electricity price are discussed in Section 5.2.2.
Then, a short description of the flexible coding used by GLEAM for scheduling DERs is
given in Section 5.2.3. Afterwards, the experimental setup and the obtained results from the
evaluation regarding the communication overhead and execution time for the Global Model,
the Coarse-Grained Model and the Coarse-Grained - Global Hybrid Model are presented in
Section 5.2.4.

5.2.1. Use Case Scenario: Scheduling Hierarchical Distributed
Energy Resources

In the last decades, new types of energy generation technologies have emerged and been
integrated into the existing Electric Power System (EPS) changing its architecture from a
central system to a more decentralized one [11, 29]. This transition is strongly influenced
by integration more Renewable Energy Resources (RERs) into the EPS. Indeed, the high
penetration level of RERs comes with its own benefits, such as fulfilling the increasing
energy demand, limiting the climate changes and achieving socio-economic benefits for
sustainable development [157]. However, it represents new challenges for the network
operators like management, coordination and uncertainties in power generation. To face
such challenges, the concept of Distributed Energy Resources (DERs) represents a promising
approach for facilitating the adaptation of RERs such as PVs and wind turbines into the
existing EPS [41, 144]. A DER represents a small or large-scale and self-autonomous
subsystem connected to an electricity network. Moreover, it balances the energy supply and
demand in a specific part of a power network by providing flexible load options or storage.
DER includes both generation units such as fuel cells, micro-turbines, PVs, electrical
loads (demand-response), e.g., electric vehicles or flexible heating systems and energy

https://www.ausgrid.com.au/Industry/Our-Research/Data-to-share/Solar-home-electricity-data (Accessed:
2023-01-28)

108

5.2. Evaluation

PV ESS

CHP PV

ESS PV

EV

Controllable
Load

Uncontrollable
Load

Local Bus 1

Local Bus 2

= single point of common coupling (PCC) + EMS-IF

DER 1 with local EMS

DER 2
with
Local
EMS

DER 1 with local EMS

DER 3 with local EMS

DER 2 with local EMS

DER n with local EMS

= eletrical connection without IT-Interface
PV = Photovoltaic system

ESS = Energy Storage Systems

CHP = Combined heat and power EV= Electric Vehicles

DER n with local EMS

DER 1 with local EMS

Controllable
Load

DER 1 with local EMS

DER 1 with local EMS

…
…

Figure 5.3.: Hierarchical Distributed Energy Resources (DERs) with 𝑛 levels and local Energy Management
Systems (EMS)

storage technologies like batteries. A DER may also contain uncontrollable loads which
complicate the DER coordination and management. DERs interconnect bi-directionally to
the grid through one or more Point(s) of Common Coupling (PCC) [74]. By the time, the
high integration of DERs into the existing electrical grid will provide more clean energy
generated from RERs. However, the coordination of many DERs on a large-scale level,

109

5. Enhancing the Parallel Performance of Evolutionary Algorithms in Cluster Computing Environments

e.g., in a distribution network or industrial area represents a challenge for the traditional
Energy Management Systems (EMS). For facilitating the management process, namely
the scheduling of DERs, a hierarchical approach proposed in [74, 41] is feasible. Using
this approach, an energy subsystem can be structured into a hierarchical group of DERs,
whereby each one can contain smaller DERs as shown in Figure 5.3. More specifically, each
DER consists of components that are either elementary generation units or DERs with PCC
and local EMS (see, Figure 5.3 for an example).

The blue DER1 has an EMS which manages one local load located in the same level and 𝑛

local DERs, namely the black DER1, 2, 4, ..., 𝑛 located in a lower level. The black DERs
have EMSs that manage elementary generation units, e.g., the EMS of the DER1 manages
three elementary generation units, namely two PVs and one CHP, one storage unit (ESS)
and one controllable load. All elementary components and DERs have a communication
interface (EMS-IF) enabling the EMSs to communicate with each other and with outside
to collect data as well as for reacting to external control commands. DERs on the higher
level consider the DERs located in lower ones as black boxes offering required data and an
abstract service interface through their EMS-IFs.

ER

DER1

…

DER2 DER3 DER50

DER1

ER

DER49

ER ER ER

Load profile= single point of common coupling (PCC) + EMS-IF
= Energy ResourceER

Figure 5.4.: Use case scenario of scheduling DERs used for evaluation

The problem of scheduling DERs according to the demands of consumers and the offers
of the producers represents a real challenge for grid operators. Such a challenge lies in the
uncertain nature of DERs in generating renewable energy [144]. In general, scheduling of
DERs can be classified as an NP-hard optimization problem [28, 176]. Typically, scheduling
of DERs problems is defined as a non-convex, large-scale, non-linear and mixed-integer
optimization problem. This introduces it as a complex optimization problem to be solved
by exact methods, especially if a large number of generation resources are considered
[28, 176]. Consequently, the problem of scheduling DERs is an adequate test case for
the proposed software architecture of parallel EAs [11]. This is due to the fact it is a
complex optimization problem that cannot be solved by exact methods [77], especially if
a large number of generation resources need to be considered. In the literature, there are
many applications for EAs in the field of energy for, e.g., building an intelligent energy
management system or solving other optimization problems such as scheduling, e.g., [16,
114, 113, 138, 137, 127, 9, 128]

110

5.2. Evaluation

The concept of hierarchical distributed energy resources is used to define a DER scheduling
scenario instrumenting 50 DERs with renewable energy as shown in Figure 5.4. Through
EMS-IF, each DER provides its flexibility in terms of the amount of energy that can be sold
at a specific time interval with a specific price to a more or less controllable load depicted in
Figure 5.4 (house symbol) located in the DER1. Each DER has two elementary generation
units, namely PV and other energy resources such as batteries. For the period between 9 and
17 o’clock, the EMSs offer energy from PVs and outside this period from other resources
such as batteries to cover a load profile of one customer which is depicted in Figure 5.5.

0

0.5

1

1.5

2

2.5

3

3.5

4

C
o

n
su

m
p

ti
o

n
 in

 k
W

h

Hours
Load profile

Figure 5.5.: The load profile used for evaluation

For defining the renewable generation behavior, the hourly real power generation data for
50 PVs provided by Ausgrid [153] is used. Figure 5.6 shows the hourly power generation
aggregated over one year for the 50 DERs where each color represents one DER.

Scheduling of energy resources can be categorized into three main operation modes: Cost-
Effective Operation Mode, Economic Operation Mode and Robust Operation Mode as
introduced in [157]. For this evaluation, only the Cost-Effective Operation Mode is con-
sidered, aiming at minimizing the daily billing costs of the customer and covering the
requested power at each time interval. A 24-hour day-ahead schedule has to be created
using parallelized EAs. To this end, we define a non-linear (e.g., quadratic) cost function in
Equation (5.1).

𝐶𝑜𝑠𝑡 =

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝐶𝑖,𝑡 ∗ (𝑃𝑖,𝑡) =
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1
[𝛼𝑖,𝑡 ∗ 𝑃2

𝑖,𝑡 + 𝛽𝑖,𝑡 ∗ 𝑃𝑖,𝑡 + 𝛾𝑖,𝑡] (5.1)

Where:

• 𝑁 is the number of DERs.
• 𝑇 is the number of time intervals.

111

5. Enhancing the Parallel Performance of Evolutionary Algorithms in Cluster Computing Environments

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

St
ac

ke
d

 G
e

n
e

ra
ti

o
n

 in
 k

W
h

Hours of a day

Figure 5.6.: 50 DERs stacked generation per hour during the first year (2010-07-01 to 2011-06-30)

• 𝐶𝑖,𝑡 is the price in (EUR) for each kWh taken from resource 𝑖 in time interval 𝑡 .
• 𝑃𝑖,𝑡 is the scheduled power in kWh taken from resource 𝑖 in time interval 𝑡 .
• 𝛼𝑖,𝑡 , 𝛽𝑖,𝑡 and 𝛾𝑖,𝑡 are the cost function coefficients defined for each DER at every time

interval 𝑡 .

Considering the necessary power balance within the blue DER of Figure 5.4 as an important
factor for ensuring locally supplied power, an additional objective function, namely the
Daily Total Deviation (DTD) is defined as shown in Equation (5.2). It is the sum of absolute
differences between the required power and the scheduled one at every time interval 𝑡 . For
arriving at a local balance, DTD should be as low as possible.

𝐷𝑇𝐷 =

𝑇∑︁
𝑡=1
|

𝑁∑︁
𝑖=1

𝑃𝑖,𝑡 − 𝐷𝑡 | (5.2)

Where:

• 𝐷𝑡 is the requested power by the laid-in time interval 𝑡 in kWh.

For directing the evolutionary search process to preferably find solutions without undersup-
ply at each hour, the Hours of Undersupply (HU) function representing the number of hours
of undersupply is defined as shown in Equation (5.3). It takes an integer value between zero
(the optimal case no undersupply) and 𝑇 (the worst case where there is undersupply in all
hours).

𝐻𝑈 =

{
𝐻𝑈 + +, 𝑖 𝑓 𝐷𝑡 >

∑𝑁
𝑖=1 𝑃𝑖,𝑡 : 𝑡 ∈ (1, ...,𝑇)

𝐻𝑈,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(5.3)

112

5.2. Evaluation

According to the above-defined functions, the optimization problem is formulated as a
combinatorial non-convex mixed-integer multi-objective non-linear optimization problem.
The main goal is to minimize the cost and the DTD functions as much as possible taking
into account that no undersupply could happen as shown in Equations (5.4) and (5.5).

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [𝐶𝑜𝑠𝑡, 𝐷𝑇𝐷] (5.4)

subject to
𝐻𝑈 = 0 (5.5)

In this evaluation, the EA GLEAM is used to solve the aforementioned scheduling problem
by minimizing the Cost and DTD criteria and holding the constraint HU. For calculating
the fitness of each proposed solution, a weighted sum function defined in Equation (5.6) is
formed to combine the results of the objective functions into a fitness value ranging between
zero and 100.000 which represents the highest fitness value. The fitness value determines
the probability of a chromosome to be reproduced by applying the genetic operators or
discarded from the population. Precisely, the fitness value of each individual is used to
choose the parents of the next generation and to decide if the offspring have to be accepted
or rejected. Note that the Fitness function correlates both optimization functions Cost and
DTD for directing the evolution towards a ‘certain optimization direction’ which emphasizes
the DTD value in favor of the Cost value. For handling the equality constraint HU, the
Penalty Function (PF) shown in Equation (5.7) which yields a value between zero and one
(no undersupply) is defined. The PF penalizes solutions which tend to evolve towards a
high value of under-production hours so that an undersupply of 5 hours already reduces
the fitness value to a third as shown in Figure 5.7c. For this purpose, the numerical value
provided by the Ca. Service instances for each criterion must be mapped to a uniform
fitness scale using one of the standard normalization functions of GLEAM, namely linear,
exponential and mixed linear–exponential. For the Cost and DTD criteria, the inversely
proportional exponential function is used as shown in Figures 5.7a and 5.7b, respectively.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = (0.4 ∗𝐶𝑜𝑠𝑡 + 0.6 ∗ 𝐷𝑇𝐷) ∗ 𝑃𝐹 (𝐻𝑈) (5.6)

𝑃𝐹 (𝐻𝑈) = (1 − 1
𝑇
𝐻𝑈) (5.7)

5.2.2. Datasets for Power Generation/Consumption and Price

For this evaluation, we mainly use the solar home electricity dataset provided by Aus-
grid [153]. Ausgrid published the energy consumption and PV production data for 300
households for the period from 1 July 2010 to 30 June 2013. For privacy purposes, all
information which could lead to the identification of the customers is removed from the
dataset. However, the postcode for each customer number is left. Figure 5.8 outlines the
corresponding regions to the given postcodes of all residential customers.

113

5. Enhancing the Parallel Performance of Evolutionary Algorithms in Cluster Computing Environments

Preferred Value
One Third

Unweighted Fitness

Cost [Euro]

F
it
n
e
s
s
 [
th
o
u
s
a
n
d
]

(a) Cost criterion

Daily Deviation

Preferred Value

F
itn
e
ss
 [
th
o
u
sa
n
d
]

One Third
Unweighted Fitness

(b) Daily Total Deviation (DTD) criterion

P
e
n
a
lt
y
 F
a
c
to
r

Penalty Factor
One Third

Number of Deviated Hours [h]

(c) Penalty function for the Hours of Undersupply (HU)
criterion

Figure 5.7.: Mapping the defined objective functions to the fitness function

Figure 5.8.: Outline of the Ausgrid distribution network that covers 22,275 km and includes load centers in
Sydney and regional New South Wales. Shaded regions within the Ausgrid network correspond to postcode
areas included in the dataset of 300 customers [153]. Map data: 2015 Google

An overview of the dataset structure is presented in Table 5.6. The customer ID column
indicates the customer identifier which ranges between 1 and 300. The generator capacity
column identifies the maximum capacity of the PV installation in kilowatt-peak (kWP).
The postcode column refers to the location of each customer. The next column is the
consumption category which takes a value of three different two-letter codes, namely GC
(General Consumption), CL (Controlled Load) and GG (Gross Generation for electricity
generated by a PV). The date column has the following date format: ‘DD/MM/YYYY’. The
consumption and generation data are collected in a 30-minutes interval.

For further analysis, the data is divided into two datasets, one dataset for the generated
energy from the PV systems where each household serves as a potential generation resource

114

5.2. Evaluation

C
us

to
m

er

G
en

er
at

or
C

ap
ac

ity
kW

p

Po
st

co
de

C
on

su
m

pt
io

n
C

at
eg

or
y

D
at

e

00
:3

0
kW

h

01
:0

0
kW

h

... 23
:0

0
kW

h

23
:3

0
kW

h

1 3.78 2076 CL 01/07/2010 1.25 1.25 ... 0 0
1 3.78 2076 GC 01/07/2010 1.077 669 ... 118 219
1 3.78 2076 GG 01/07/2010 0 0 ... 0 0
...

246 1.53 2261 CL 30/06/2013 1.465 0 ... 0 22
246 1.53 2261 GC 30/06/2013 1.057 671 ... 815 878
246 1.53 2261 GG 30/06/2013 0 0 ... 0 0

Table 5.6.: Format of the solar household dataset from Ausgrid

and the other one for the consumption data. The datasets are checked for missing values
and completely missing entries for whole days. Over the three years, each household in
each dataset should have 1096 days, i.e., 52560 data points. Some households have a lot of
missing days for more than one month. Overall there are 73 households which are dropped
from the datasets, since they have up to 519 missing days. After removing the respective 73
households from the datasets, 164 households with 1096 days are left for the considered use
case scenarios.

Figure 5.9.: Price schema for the residential customer taken from the Ausgrid website

Another required data for scheduling DERs is the price for the bought energy at each
time interval. The Ausgrid dataset does not specify any price for the energy generated by
the PVs of the households. In order to define a feasible price schema, we consider two
resources, namely the Energy Australia website and the Ausgrid website. These websites

https://www.ausgrid.com.au/Your-energy-use/Meters/Time-of-use-pricing (Accessed: 10.02.2023)
https://www.energyaustralia.com.au (Accessed: 10.02.2023)

115

5. Enhancing the Parallel Performance of Evolutionary Algorithms in Cluster Computing Environments

offer information on the prices charged at the different parts of the day as shown in Figure
5.9. The shoulder period is applied for each day between 7:00 and 22:00 o’clock. During
the shoulder period, the peak period is applied. For the rest of the day, i.e., between 22 and
7:00, the off-peak period is considered. The peak period, in which more charges are added
to each consumed kilowatt-hour (kWh), is mainly located in summer and winter. According
to these periods and based on the price scheme taken from both websites, we define the
following three base groups for our price scheme:

• Shoulder Period: 31.02 cents per kWh.
• Peak period: 59.29 cents per kWh.
• Off-Peak Period: 18.92 cents per kWh.

Applying these prices for all resources means that every resource sells its generated energy
for the same price at the same time as the others. Therefore and for a more realistic pricing
scheme, upper and lower bounds for the three price groups are defined. The prices for each
resource can be randomly varied within a range of 25%, 35% and 50% of the base prices
for the peaks period, the shoulder period and the off-peak period, respectively as shown
in Figure 5.10, 5.11 and 5.12. Consequently, obvious differences in prices between the
considered resources can be observed, adding more challenges to the scheduling problem.

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

P
ri

ce
 in

 c
e

n
t

p
e

r
kW

h

Timehorizon in Hours

Upper Bound Simulated Price Lower Bound

Figure 5.10.: Added aberration borders for pricing summer days

116

5.2. Evaluation

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

P
ri

ce
 in

 c
e

n
t

p
e

r
kW

h

Timehorizon in Hours

Upper Bound Simulated Price Lower Bound

Figure 5.11.: Added aberration borders for pricing winter days

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

P
ri

ce
 in

 c
e

n
t

p
e

r
kW

h

Timehorizon in Hours

Upper Bound Simulated Price Lower Bound

Figure 5.12.: Added aberration borders for pricing for other days which are not covered by the pricing during
summer or winter period, i.e., 5.10 and 5.11

117

5. Enhancing the Parallel Performance of Evolutionary Algorithms in Cluster Computing Environments

5.2.3. EA GLEAM for Scheduling DERS

We choose the EA GLEAM as one of the state-of-the-art EAs to solve general scheduling
problems in several different applications, e.g., [24, 88, 89]. The flexible and generic coding
schema used in GLEAM to aggregate semantically related decision variables in one gene
distinguishes it from other EAs as explained in Section 2.2.3. The third type of chromosome
in GLEAM which consists of a dynamic number of genes is considered for this evaluation.
In this type, more than one gene of the same type may belong to a chromosome. The
sequence of the genes and the length of chromosomes are subject to evolutionary change.
For scheduling DERs, a dynamic number of scheduling operations is required, since it is
not known a priori how many peaks and thus how many changes a demand curve has, for
which the corresponding power generation is to be provided by a schedule (cf. [24, 90]
for a detailed discussion). To this end, GLEAM maps each scheduling operation to a gene
consisting of a gene type ID which is referred to Unit ID and the three decision variables
which are depicted in Figure 5.13 (see, 2.2.3 for more details).

Gen. 1 Gen. 2 Gen. 3
Unit ID 2 1 2

Start time 9 11 12
Duration 5 9 6

Power fraction (P) 0.5 0.3 0.8

Figure 5.13.: Exemplary chromosome with three genes encoding a possible solution to schedule two
resources

• Unit ID corresponds to the DER ID indicating the utilized DER. In this evaluation,
the DER ID can take a value between one or fifty, since only 50 DERs are considered.

𝑈𝑛𝑖𝑡𝐼𝐷 ∈ [1, 50] 𝑤𝑖𝑡ℎ 𝑈𝑛𝑖𝑡𝐼𝐷 ∈ 𝑍 (5.8)

• Start time determines the start time of taking energy from this DER for a specific
number of the time intervals defined by the duration variable. In this evaluation, an
hourly resolution is considered for day-ahead scheduling. Therefore, it can take a
value between one and 24.

1 ≤ 𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 ≤ 24𝑤𝑖𝑡ℎ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ∈ 𝑍 (5.9)

• Duration defines the number of time intervals to which this setting is applied. It
ranges also between one and 24.

1 ≤ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ≤ 24𝑤𝑖𝑡ℎ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ∈ 𝑍 (5.10)

• Power fraction is a relative value – e.g. in percent of the maximum provided power –
and refers to the amount of energy that is taken from the DER within the defined time
intervals. The range of the variable is defined as follows.

1 ≤ 𝑃 ≤ 100𝑤𝑖𝑡ℎ 𝑃 ∈ 𝑅 (5.11)

118

5.2. Evaluation

An allocation matrix with𝑚 rows and 𝑛 columns is created to interpret each chromosome.
While the rows correspond to the number of resources, i.e., DERs, the columns refer to
the number of the time intervals. Since each chromosome can contain genes that refer to
the same DER, we build the allocation matrix by considering the order of them within a
chromosome. Precisely, the later gene overwrites matrix entries of the previous ones with
the same DER ID. After creating the allocation matrix, the relative values of the power
fraction of each considered DER are converted to absolute ones by multiplying them by
the corresponding power generation values, e.g., the forecasting data of renewable energy
resources. As shown in Figure 5.14, the example chromosome from Figure 5.13 consisting
of three genes representing an hourly day-ahead schedule is interpreted. An allocation
matrix with two rows is built, since the first and the third genes have the same DER ID.
In other words, the third gene overwrites the first one at the time intervals 12 and 13. For
evaluation (simulation) purposes, the relative values of power fraction are transformed to
absolute values by multiplying them by the corresponding values of the actual maximum
power generation provided by the EMS of each DER for the corresponding time intervals.

For achieving this interpretation, an additional microservice, namely the Interpretation
Service is added to the above-mentioned microservices as shown in Figure 5.15. The Inter-
pretation Service performs all aforementioned tasks related to chromosome interpretation to
generate the allocation matrix. For scheduling DERs, two types of data, namely dynamic
and static data about the DER components are required. While dynamic data refers to
data that is continuously changed according to different factors such as the weather, static
data represents data that is fixed like the number and type of DER components, technical
constraints for the conventional energy resources, e.g., minimum and maximum capacity,
ramping limits and minimum up and down times. The actual state of batteries, forecasting
data for the generation of RERs and consumption and market prices are examples of dy-
namic data. This data is stored in the Data & Message Layer, i.e., in the persistent database
either automatically, if the DER has an Energy Management System Interface (EMS-IF)
or manually if it does not. The Da.Me. Service plays an essential role by providing other
services with both types of data. While the In. EA Service and E.O. Service need it for
creating the initial population and offspring, the Interpretation Service uses it to convert the
relative power values to absolute ones. The Ca. Service also needs such data to calculate the
objective functions and constraints. Obviously, the interpretation process can require much
computing time according to the size of population. Therefore, BeeNestOpt.IAI can deploy
as many Interpretation Service instances as required, allowing a parallel interpretation for
scalability.

GLEAM is deployed into two services, namely the In. EA Service and the E.O. Service.
While it creates the initial population in the In. EA Service, it evolves the offspring by
applying the genetic operators in the E.O. Service acting as a master of the Global Model.

5.2.4. Experimental Setup and Results

The applicability of BeeNestOpt.IAI by realizing the Coarse-Grained - Global Hybrid
Model using microservices and container technologies to solve a real-world optimization

119

5. Enhancing the Parallel Performance of Evolutionary Algorithms in Cluster Computing Environments

U
n

it
s

Time horizon

2 0 0 0 0.8 0.8 0.8 0.8 0.8 0.8 0 0

1 0 0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

2 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0

0 . . 9 10 11 12 13 14 15 16 17 18 19 . . 24

U
n

it
s

Time horizon

2 0.5 0.5 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0 0

1 0 0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

0 . . 9 10 11 12 13 14 15 16 17 18 19 . . 24

2 2.5 5 7.5 8 16 12 4 16 8 0 0

1 0 0 3 4.5 7.5 9 6 3 7.5 4.5 3

0 . . 9 10 11 12 13 14 15 16 17 18 19 . . 24

U
n

it
s

Time horizon

Initial allocation matrix

Allocation matrix with relative values Gen.3 overwrite Gen. 1

Allocation matrix with absolute values

2 5 10 15 10 20 15 5 20 10 7 8

1 25 20 10 15 25 30 20 10 25 15 10

0 . . 9 10 11 12 13 14 15 16 17 18 19 . . 24

U
n

it
s

Time horizonPredicted values of power generation supplied by DERs Service

X

Figure 5.14.: Interpretation of one chromosome with three genes for scheduling 2 DERs on a 24-hour time
horizon

problem is evaluated. Precisely, we discuss the parallel performance of BeeNestOpt.IAI
by investigating the execution time and the communication overhead considering the use
case scenario for scheduling DERs introduced in Section 5.2.1. To achieve that, we deploy
different combinations of islands and workers on the same cluster that is used for the
evaluation introduced in Section 4.4.2. However, only a part of the CPUs and RAM is
available for this evaluation, i.e., 68 Intel cores (2.4 GHz) and 196 GB RAM. The number
of used cores is 60, since at minimum two cores are left on each node for the OS.

We assign 12.5% of the maximum power of each core for the containers running the Opt.J.M.
Service, Ds.Jo. Service, Co.Ma. Service, In. EA Service, Mi.Sy. Service, E.O. Service
and Da.Me. Service and 25% of the maximum power of each core for each container
running the Interpretation Service and the Ca. Service. Hence, the maximum number of
deployed containers cannot exceed 240 containers. For example, if we deploy one instance
from each service except the Interpretation Service and Ca. Service, nine containers are
required, i.e., one core and a quarter of a core are used. The rest of the cores, namely 58
ones and three quarters of a core, allow the deployment of about 116 works resulting in 232
running containers. While the number of islands and workers is varied, we keep all other
EA configuration parameters fixed, aiming at achieving a fair evaluation. We set the global

120

5.2. Evaluation

DERs Tier

User-Interface Tier (Front-end)

…

Data &

Message

Service

Interpretation

Service 1.1

…

Interpretation

Service 1.2

Interpretation

Service 1.3

Interpretation

Service 1.n

Calculation

Service 1.2

Calculation

Service 1.1

Calculation

Service 1.3

Calculation

Service 1.n

E.O.

Service

1

Mi.Sy.

Service

1

Master -Workers

Island 1

D
a
ta

 &

M
e
s
s
a
g
e
 L

a
ye

r

Temporary storage

DB

Persistence storage Event-based messaging system

Figure 5.15.: The DERs Service and the Interpretation Service instances inside one island with one Master
and 𝑁 workers

stopping criterion to solution-stop where a predefined target solution quality is given. Since
it is difficult to reach the highest fitness value, namely ‘100.000’ in a timely manner, we set
the desired target solution quality to ‘70.000’. In other words, we consider that GLEAM has
found a sufficiently good solution if it obtains 70% of the highest fitness value. This target
solution quality does not represent the quality of an optimal solution rather it represents the
average of good solutions that have been reached with a predefined EA effort. After testing
different population sizes, a global population of 512 chromosomes is chosen to explore the
search space and reach such a fitness value.

If at least one island reaches the given solution quality, the evolution process will be
stopped. In the context of this evaluation, the overhead refers to the time needed for the
communication among the services and by the services of BeeNestOpt.IAI themselves to
perform one optimization task excluding the EA evolution time and evaluation time, i.e., the
execution time of E.O. Service and Ca. Service. By comparing the Coarse-Grained - Global
Hybrid Model to its both basic models, namely the Coarse-Grained Model and the Global
Model, we aim at identifying a possible gain in the speedup by using the Coarse-Grained -
Global Hybrid Model while keeping an acceptable communication overhead. The parallel
performance of the Coarse-Grained Model and the Coarse-Grained - Global Hybrid Model is
measured according to four communication topologies, namely uni-directional ring (Ring),
bi-directional ring (Bi-Ring), ladder (Ladder) and a completely connected graph (Complete)
and a migration rate of 10% of the subpopulation (deme) size. While the best migration
selection policy is applied for choosing the migrants from each deme to be exchanged

121

5. Enhancing the Parallel Performance of Evolutionary Algorithms in Cluster Computing Environments

among its neighbors, the worst policy as a replacement policy is applied, enabling the
replacement of the worst individuals in the target demes.

In this evaluation, we follow the following steps: Firstly, homogeneous EA configuration
and a synchronous migration policy are applied. Then, heterogeneous EA configuration
and an asynchronous migration policy are applied by using the combination of islands-
workers that introduces the fastest execution time aiming at achieving more acceleration (see,
Section 2.2.1 for more details about island homogeneity). The migration frequency (also
called epochs) is executed after running 50 generations in each island. Each experiment is
performed ten times aiming at limiting the effect of single delays caused by the OS or other
running services and due to the non-deterministic nature of EAs. For calculating the gained
speedup for the Coarse-Grained - Global Hybrid Model and its two basic models, the task
of scheduling DERs is sequentially performed by deploying the EA GLEAM using only
one island and one worker. This allows us to compare the execution time and the overhead
of each parallelization model introduced by the proposed software solution to the sequential
one. The overall execution time to reach the predefined fitness value, namely 70000 is
300522 seconds while the overhead is about 39 seconds and the container creation time is
82 seconds. The overhead and the container creation time are fairly low as compared to
the execution time. These values represent the comparative values used in the experiments
described below.

Results - Global Model In this experiment, we evaluate the Global Model by varying
the number of workers between 5, 10, 15 and 20 workers. As shown in Figure 5.16,
the obtained results show that the execution time decreases by deploying more workers.
Compared to the sequential execution, a gain in the execution time ranging between 260377
seconds by using 5 workers and 281530 by using 20 workers is obtained. It is noticeable
from Figure 5.16 that the Global Model cannot guarantee a solid increase in the gain of
the execution time by deploying more workers. For example, the gain in the execution
time by increasing the number of workers from 10 to 20 is smaller than the one obtained
by increasing the number of workers from 5 to 10. This is due to the fact that having a
master in a distributed system with too many workers leads to a well-known communication
problem, namely the bottleneck problem. Indeed, the master cannot quickly react to the
requests sent by the workers when most of them communicate with it at the same time.

From Figure 5.16, it is clear that the framework overhead does not increase by deploying
more workers but it remains nearly stable. On the contrary, the container creation time is
increased from 122 seconds by using 5 workers to 146 by using 20 workers, since more
containers are created and initialized.

Results - Coarse-Grained Model We evaluate the Coarse-Grained Model by vary-
ing the number of islands between 5, 10, 15 and 20 islands. Four considered topologies,
namely Ring, Bi-Ring, Ladder and Complete with homogeneous EA configuration and a
synchronous migration are considered. Generally, the Coarse-Grained Model accelerates

122

5.2. Evaluation

40145

25148
22665

18992

0

5000

10000

15000

20000

25000

30000

35000

40000

45000
Ex

ec
u

ti
o

n
Ti

m
e

[s
ec

]

(a) Execution time

12 12
13

16

0

2

4

6

8

10

12

14

16

18

O
ve

rh
ea

d
 [

se
c]

(b) Framework overhead

122
128

135
146

0

20

40

60

80

100

120

140

160

C
o

n
ta

in
er

 C
re

at
io

n
Ti

m
e

[s
ec

]

(c) Container creation time

5 workers 10 workers 15 workers 20 workers

Figure 5.16.: Execution time, framework overhead and container creation time of the Global Model

the evolution process of GLEAM by deploying more islands and according to the communi-
cation topology. This is noticeable in Figure 5.17 which shows that the execution time is
decreased for the four communication topologies by increasing the number of islands. By
averaging the execution times of using 5, 10, 15 and 20 islands over the four communica-
tion topologies, it is noticeable that the averaged execution time is decreased from 80454
seconds by using 5 islands to 16757.75 seconds by using 20 islands as shown in Figure 5.18.
Compared to the sequential execution, a gain of 283765 seconds in the execution time is
achieved by using 20 islands. The reason behind this result lies in the fact that the size of
the data structure, i.e., the number of chromosomes within each subpopulation, becomes
smaller, accelerating the evolution process of each island. While Ring and Bi-Ring promote
breadth-first search which is useful for finding optimal solutions consuming more time,
Ladder and Complete foster depth-first search which leads faster to find good solutions but
not necessarily the optimal ones. Hence, Ladder and Complete communication topologies
are able to accelerate the evolution process more than Ring and Bi-Ring in most cases as
shown in Figure 5.17.

By deploying more islands, more communications between the services are established in
the Coarse-Grained Model for population distribution and results collection. However, a
slight increase in the overhead by increasing the number of islands is observed as shown
in Figure 5.19. Furthermore and as shown in Figure 5.20, the container creation time
slightly increases by deploying more islands. On average, the container creation time in the
Coarse-Grained Model is greater than the one of the Global Model, since more containers
are required to deploy the islands. Indeed, there is no significant difference between the
communication topologies, since the number of containers to be created is independent of
the deployed topology.

The Coarse-Grained Model introduces relatively small overhead and container creation time
compared to the execution time. The results are obtained based on a real-world optimization
problem for the Global Model and the Coarse-Grained model confirm the ones presented in

123

5. Enhancing the Parallel Performance of Evolutionary Algorithms in Cluster Computing Environments

84056

53512

33815

17875

83141

45592

36985

18353

78667

46443

22304

14490

75952

52535

23256

16313

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

5 Islands 10 Islands 15 Islands 20 Islands

Ex
ec
u
ti
o
n
Ti
m
e
[s
ec
]

Ring Bi-Ring Complete Ladder

Figure 5.17.: Execution time of the Coarse-Grained Model

80454

49520.5

29090

16757.75

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Ex
ec

u
ti

o
n

Ti
m

e
[s

ec
]

5 Islands 10 Islands 15 Islands 20 Islands

Figure 5.18.: Execution time of the Coarse-Grained Model averaged over the four communication topologies

Section 4.4.3 and Section 4.4.4, in which the amount of time for the fitness evaluation is
artificially set.

Results - Coarse-Grained - Global Hybrid Model The key focus of the experiment
is to assess the applicability of the proposed microservice-based solution to distribute the

124

5.2. Evaluation

12

14 14

19

12 12

13

16

13

15 15

16

12 12

13

15

0

2

4

6

8

10

12

14

16

18

20

5 Islands 10 Islands 15 Islands 20 Islands

O
ve
rh
ea
d
 [
se
c]

Ring Bi-Ring Complete Ladder

Figure 5.19.: Framework overhead of the Coarse-Grained Model

136

151

162

172

132

159

172

183

138
146

173

183

135

153

174

184

0

20

40

60

80

100

120

140

160

180

200

5 Islands 10 Islands 15 Islands 20 Islands

C
o
n
ta
in
er
 C
re
at
io
n
Ti
m
e
[s
ec
]

Ring Bi-Ring Complete Ladder

Figure 5.20.: Container creation time of the Coarse-Grained Model

execution of EAs according to the Hierarchical Model. To this end, the parallel performance
of the Coarse-Grained - Global Hybrid Model in terms of the execution time and framework
overhead is evaluated in a cluster environment. The same four communication topologies,
namely Ring, Bi-Ring, Ladder and Complete used in the evaluation of the Coarse-Grained
Model are also used in this experiment. For each communication topology, the number of
service instances running islands and workers is varied taking into account that the whole
number of containers running these microservices must not exceed the number of available

125

5. Enhancing the Parallel Performance of Evolutionary Algorithms in Cluster Computing Environments

computational resources. Precisely, four islands-workers combinations are defined, namely
5 islands with 20 workers per island, 10 islands with 10 workers per island, 15 islands with
7 workers per island and 20 islands with 5 workers per island. This results in 200 running
containers for the first, second and fourth combinations and 240 running containers for the
third one, namely 15 islands with 7 workers per island. By comparing the execution time
of the islands-workers combinations for the same communication topology, we find that
different distributions of available computational resources among the number of deployed
islands and workers have only a limited effect on the execution time as shown in Figure
5.21.

5838

5064
5331 5445

5276 5336

4881 4895
5118

4472 4461 4539

4905

4332

4671
4394

0

1000

2000

3000

4000

5000

6000

7000

Ring Bi-Ring Complete Ladder

Ex
ec

u
ti

o
n

Ti
m

e
[s

ec
]

5 Islands - 20 Workers 10 Islands - 10 Workers 15 Islands - 7 Workers 20 Islands - 5 Workers

Figure 5.21.: Execution time of the Coarse-Grained - Global Hybrid Model

By averaging the execution times for each islands-workers combination over the four
communication topologies as shown in Figure 5.22, we can conclude that deploying more
islands with fewer workers decreases the execution time. For example, by using 20 islands
with 5 workers, a gain in execution time of 15% and 10% can be achieved compared to 5
islands with 20 workers and 10 islands with 10 workers, respectively. Such a result can be
interpreted as follows: by deploying more islands, the number of evaluations performed by
GLEAM is decreased. The reason behind this decrease lies in the fact that the subpopulations
and the computed data structures (number of chromosomes) are smaller compared to the
global population [2]. Consequently, it is clear that the Coarse-Grained Model has a more
significant positive effect on the EA execution time than the Global Model.

In order to investigate the effect of the communication topologies on the execution time of
the EA, we average the execution time of each topology over the above-mentioned islands-
workers combinations as shown in Figure 5.23. Obviously, the Ring topology takes more
time on average than the others to solve the problem of scheduling DERs. In other words,
the Bi-Ring, Ladder and Complete topologies find a solution with the same solution quality
reached by the Ring topology with less time, achieving a gain in the execution time by

126

5.2. Evaluation

5420

5097

4648

4576

4000

4200

4400

4600

4800

5000

5200

5400

5600

Ex
ec

u
ti

o
n

Ti
m

e
[s

ec
]

5 Islands - 20 Workers 10 Islands - 10 Workers 15 Islands - 7 Workers 20 Islands - 5 Workers

Figure 5.22.: Execution time of the Coarse-Grained - Global Hybrid Model for each islands-workers
combination averaged over the four applied communication topologies

about 9%. This gain is obtained, since each island in the Bi-Ring, Ladder and Complete
topologies communicates with two islands at minimum, enabling the possibility to spread
solutions with good genetic information over the topology more rapidly. However, this is
not the case for the Ring topology where each island exchanges solutions (migrants) with
only one island.

Compared to the execution time, it is clear that the overhead is still acceptable and low. On
average, the four communication topologies achieve an overhead of about 20 seconds as
shown in Figure 5.24. Obviously, deploying more islands and less workers increases the
overhead from 14 seconds by using 5 islands and 20 workers to 22 seconds for the other
three combinations averaged over the four considered communication topologies. As shown
in Figure 5.25, the container creation time keeps the same trend as the Coarse-Grained
Model depicted in Figure 5.20 for the four communication topologies and ranges between
159 seconds and 175 seconds.

For achieving a fair and accurate comparison between the Coarse-Grained - Global Hybrid
Model and its two basic parallelization models, namely the Coarse-Grained Model and the
Global Model, we compare the fastest execution times of the basic models to the slowest
execution time of the Coarse-Grained - Global Hybrid Model. In other words, we consider
the Coarse-Grained - Global Hybrid Model with 5 islands - 20 workers per island and Ring
topology with the Coarse-Grained Model with 20 islands and Complete topology and the
Global Model with 20 workers.

The comparison results show that the Coarse-Grained - Global Hybrid Model with the
lowest execution time can achieve a gain in the execution time of about 60% and 70%
compared to the Coarse-Grained Model and the Global Model, respectively as shown in

127

5. Enhancing the Parallel Performance of Evolutionary Algorithms in Cluster Computing Environments

5284

4801
4836

4818.25

4500

4600

4700

4800

4900

5000

5100

5200

5300

5400

Averaged over the four IslandsWorkers combinations

Ex
ec
u
ti
o
n
 T
im

e
[s
ec
]

Ring BiRing Complete Ladder

Figure 5.23.: Execution time of the Coarse-Grained - Global Hybrid Model for each communication topology
averaged over the four applied islands-workers combinations

15
16

12 12

21

24 24 24
23

20
19 19

22
21 21

20

0

5

10

15

20

25

30

Ring Bi-Ring Complete Ladder

O
ve

rh
ea

d
 [

se
c]

5 Islands - 20 Workers 10 Islands - 10 Workers 15 Islands - 7 Workers 20 Islands - 5 Workers

Figure 5.24.: Framework overhead of the Coarse-Grained - Global Hybrid Model

Figure 5.26. If we consider the Coarse-Grained - Global Hybrid Model with the fastest
execution time, i.e., by using 20 islands - 5 workers per island and Bi-Ring topology, more
gains in the execution time of about 10% and 7% can be observed as shown in Figure
5.27.

128

5.2. Evaluation

167 166
172 175

159 161
167 164163 162

169 170
166 168 169 167

0

20

40

60

80

100

120

140

160

180

200

Ring Bi-Ring Complete Ladder

C
o

n
ta

in
er

 C
re

at
io

n
Ti

m
e

[s
ec

]

5 Islands - 20 Workers 10 Islands - 10 Workers 15 Islands - 7 Workers 20 Islands - 5 Workers

Figure 5.25.: Container Creation Time of the Coarse-Grained - Global Hybrid Model

5838

14490

18992

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Ex
ec
u
ti
o
n
Ti
m
e
[s
ec
]

Coarse-Grained - Global Hybrid Model - 5 islands and 20 workers with Ring topology

Coarse-Grained Model - 20 islands

Global Model - 20 workers

Figure 5.26.: Comparing the fastest execution times of the Global and Coarse-Grained models to the slowest
execution time of the Coarse-Grained - Global Hybrid Model

The promising results obtained with the Coarse-Grained - Global Hybrid Model can be
attributed to the fact that the combination of two levels of parallelization in a hierarchical
form allows the use of the advantages of each model. For example, by combining more
islands and fewer workers, namely 20 islands and 5 workers in the Coarse-Grained - Global
Hybrid Model, we prevent the problem of premature convergence, guarantee an additional
acceleration and avoid the bottleneck problem of the Global Model. It is noticeable that not
only a very good acceleration is achieved, but also the overhead and the container creation

129

5. Enhancing the Parallel Performance of Evolutionary Algorithms in Cluster Computing Environments

4332

14490

18992

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Ex
ec
u
ti
o
n
Ti
m
e
[s
ec
]

Coarse-Grained - Global Hybrid Model - 20 Islands and 5 Workers with Bi-Ring topology

Coarse-Grained Model - 20 islands

Global Model - 20 workers

Figure 5.27.: Comparing the fastest execution times of the Global and Coarse-Grained models to the fastest
execution time of the Coarse-Grained - Global Hybrid Model

time remained almost the same, as for the Global Model and the Coarse-Grained Model, as
shown in Figure 5.28.

15
16 16

0

2

4

6

8

10

12

14

16

18

O
ve

rh
ea

d
[s

ec
]

168
183

146

0

50

100

150

200

Co
nt
ai
ne
r
Cr
ea
ti
on

[s
ec
]

5838

14490

18992

0

5000

10000

15000

20000

Ex
ec

u
ti

o
n

Ti
m

e
[s

ec
]

Coarse-Grained - Global Hybrid Model - 5 Islands and 20 Workers with Ring topology
Coarse-Grained Model - 20 islands
Global Model - 20 workers

Figure 5.28.: Comparing framework overhead and container creation time of the Global and Coarse-Grained
models to the Coarse-Grained - Global Hybrid Model

In the last step of this evaluation, we study the effect of applying heterogeneous EA
configuration where each island gets different configurations for applying the genetic
operators and asynchronous migration policy on the execution time aiming at achieving
more acceleration. To this end, the execution time of the Coarse-Grained - Global Hybrid
Model, i.e., the one with 20 islands - 5 workers per island and a Bi-Ring topology is chosen

130

5.3. Summary

as the comparative value. As shown in Figure 5.29, an additional acceleration compared to
the synchronous migration policy and homogeneous EA configuration is obtained. The main
reason behind such enhancement is that by applying the asynchronous migration policy, the
islands continue the evolution process as soon as they receive the migrants without the need
to wait for the other islands to complete their current jobs. Moreover, the heterogeneous
EA configuration allows better exploitation of the search space. This is due to the fact
that heterogeneous configurations enable some islands to explore new areas in the search
space while the other islands exploit their already found solutions – if they are promising
ones –. This gives GLEAM the ability to find the optimal solution or the near-optimal
one in a shorter time. Moreover, if each island has its own settings and configurations, the
flexibility to fit the settings of each one to the cluster resources is increased enabling optimal
exploitation of the available underlying computing infrastructure.

4332

4045 4007
4175

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Ex
ec

u
ti

o
n

Ti
m

e
[s

ec
]

Homogeneous-Synchronous Hybrid Model Homogeneous-Asynchronous Hybrid Model2

Heterogeneous-Synchronous Hybrid Model Hetrogeneous-Asynchronous Hybrid Model

Figure 5.29.: Comparing execution time of Homogeneous-Synchronous Hybrid Model to Heterogeneous-
Synchronous Hybrid Model and Heterogeneous-Asynchronous Hybrid Model

5.3. Summary

In this chapter, BeeNestOpt.IAI is extended to support the Hierarchical Model. It is able to
combine two or more models from the basic parallelization models of EAs with moderate
implementation efforts, while providing maximum flexibility in mapping optimization
tasks to external simulators. To this end, the flexibility, generality and modularity of using
microservices and container virtualization to parallelize EAs according to the Hierarchical
Model is demonstrated by mapping the Coarse-Grained - Global Hybrid Model to the
microservices into the Container Layer as explained in Section 5.1. Combining the Coarse-
Grained Model with the Global Model aims at achieving further flexible parallelization

131

5. Enhancing the Parallel Performance of Evolutionary Algorithms in Cluster Computing Environments

by the Global Model and reducing the risk of premature convergence by using the Coarse-
Grained Model. In Section 5.1.2, we introduced the execution workflow of the Coarse-
Grained - Global Hybrid Model. For the evaluation of the applicability of the proposed
approach, a real-world optimization problem is chosen, namely scheduling Distributed
Energy Resources (DERs) which is explained in Section 5.2.1. Through such an optimization
problem, we are able to evaluate BeeNestOpt.IAI with a practical application. The EA
GLEAM with its flexible coding for solving the problem of scheduling DERs is introduced
in Section 5.2.3. We deployed the microservices on a cluster with 60 cores, 196 GB of RAM
and a 10 GBit/s LAN. We chose a global population of 512 chromosomes and a solution-stop
criterion is selected as a global termination criterion. In Section 5.2.4, we evaluate our
approach in terms of scalability, overhead and container creation time of BeeNestOpt.IAI for
the Coarse-Grained - Global Hybrid Model. In the first step, we evaluated BeeNestOpt.IAI
without using any parallelization models, i.e., as a sequential EA for solving the problem of
scheduling DERs. Then, the Global Model is evaluated by varying the number of workers
between 5, 10, 15 and 20 workers. Afterwards, the Coarse-Grained Model is evaluated by
changing the number of islands between 5, 10, 15 and 20 islands for four communication
topologies, namely Ring, Bi-Ring, Ladder and Complete. As a migration rate, 10% of
the deme size is chosen. Moreover, a synchronous migration policy and a homogenous
EA configuration are applied. In the next step, we evaluated the Coarse-Grained - Global
Hybrid Model with the same configuration applied to the Coarse-Grained Model while
varying the number of islands and workers as follows: 5 islands and 20 workers, 10 islands
and 10 workers, 15 islands and 7 workers, 20 islands and 5 workers. Finally, we evaluate
the Coarse-Grained - Global Hybrid Model with the asynchronous migration policy and
heterogeneous configurations.

EA Sequential
Execution
(t𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙)

EA Parallel Execution (t𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙)

Global
Model

Coarse-
Grained
Model

Coarse-Grained -
Global Hybrid

Model
Homo.
Synch.

Hetero.
Asynch.

Execution
Time
[Seconds]

300522 18992 14490 4332 4007

Speedup
[t𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 /
t𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙]

1 16 21 69 75

Table 5.7.: Gained speedup through parallelization for solving the problem of scheduling DERs

The concluded results show that the evaluated parallelization models can achieve a con-
siderable speedup ranging between 16 and 75 times as shown in Table 5.7 which is based
on the fastest execution time of the two basic parallelization models and the Hierarchical
Model. The Coarse-Grained - Global Hybrid Model with asynchronous and heterogeneous
configurations is the fastest model. It is faster than the Global Model, the Coarse-Grained

132

5.3. Summary

Model and the sequential execution of the EA GLEAM with about four (18992/4007), three
(14490/4007) and 75 (300522/4007) times, respectively. The overhead and the container
creation time are comparable to the Coarse-Grained Model and the Global Model. With the
heterogeneous configurations and the asynchronous migration we achieved a further accel-
eration of the evolution process. Consequently, BeeNestOpt.IAI is an applicable method
to support the Hierarchical Model for solving complex real-world optimization problem,
e.g., multi-objective non-linear problems based on a parallel EA with enhanced calculation
performance in cluster computing environments.

133

6. Increasing the Applicability of
Evolutionary Algorithms in
Cluster Computing Environments

EAs are general optimization problem solvers that can be easily applied to various real-
world optimization problems. However, EAs perform poorly in solving some complex
practical applications. This is due to the fact that EAs suffer from a lack of domain-specific
knowledge, the risk of premature convergence to the same suboptimal solution and are
computationally very expensive. These drawbacks hinder the common applicability of
EAs on a wide range of complex and large-scale optimization problems. It is ambitious to
formulate a universal optimization algorithm which is confirmed by the ‘No Free Lunch
Theorem’ proposed by Wolpert and Macready [188]. They stated that there is a little reason
to expect a uniform algorithm for solving all classes of optimization problems without
some kind of problems in performance or solution quality. In other words, any gained
performance on one class of optimization problems is offset by losses in performance
on other classes of optimization problems. For enhancing the performance of EAs for a
given application scenario, the concept of Hybridization, i.e., combining EAs with other
algorithmic approaches into one solution approach is introduced overcoming the above-
mentioned drawbacks. The main idea behind the hybridization of different algorithms is to
combine methods, techniques and algorithms to solve a complex problem better than using
each method separately. Despite EAs being robust general optimization problem solvers,
they lack the ability to solve complex real-world optimization problems in a timely manner.
Therefore, various research works are concluded to enhance EAs by combining them with
other algorithms and/or by integrating domain-specific knowledge into them. The results
show that improvements in the form of better solution quality, faster convergence speed and
better exploration and exploitation of the solution space, to name a few, can be obtained
(see, Section 3.2 for more details).

Parts of this chapter are reproduced from:

• Khalloof, H., Ciftci, S., Shahoud, S., Duepmeier, C., Foerderer, K., & Hagenmeyer, V. “Facilitating
the hybridization of parallel evolutionary algorithms in cluster computing environments”. In:
Proceedings of the Genetic and Evolutionary Computation Conference Companion. (2022), pp.
2001–2008. DOI: 10.1145/3520304.3533997

135

6. Increasing the Applicability of Evolutionary Algorithms in Cluster Computing Environments

To guarantee a seamless and effective hybridization process, two main aspects have to be
considered, namely an efficient hybridization concept and a software solution that facilitates
such a hybridization at any part of EAs. In this chapter, the main focus is on introducing a
modular, extendable, flexible, generic and scalable software solution for hybridizing EAs
in cluster computing environments to answer the research question [RQ5]. The generic
software architecture of BeeNestOpt.IAI is extended to support the hybridization of EAs.
In other words, a new microservice called ‘Support-and-Learning Service (S&L Service)’
is added to the software architecture for facilitating the integration of any hybridization
approach into any step of EA. Furthermore, a new methodology to hybridize EAs with
ML techniques in high-performance computing environments is introduced. The generality
of the proposed software solution is tested by seeding the initial population of EAs either
with prior solutions or with new ones generated based on the extracted knowledge from
the already found solutions. To achieve that, two ML techniques, namely clustering and
sequence-to-sequence Long Short-Term Memory (LSTM) with multiple-output layers
[21] are used. For demonstrating the beneficial traits of the proposed ML hybridization
approach, the use case scenario introduced in Section 5.2.1 for scheduling Distributed
Energy Resources (DERs) is applied. The scheduling task is formulated as a combinatorial
non-convex mixed-integer multi-objective optimization problem where 50 DERs are utilized
with two consumption profiles.

Section 6.1 covers the extension of the generic microservice-based architecture of BeeN-
estOpt.IAI to support the hybridization process at any part of EAs in high-performance
computing environments. In Section 6.2, the newly proposed ML hybridization approaches,
namely the unsupervised hybridization approach and the supervised hybridization approach
to assist EAs by generating the initial population are introduced. In Section 6.3, the evalua-
tion concept, the realization of both ML hybridization approaches to assist the parallelized
EA GLEAM according to the Global Model and the first obtained results by deploying the
proposed hybridization solutions on a cluster for solving the problem of scheduling DERs
are presented. Section 6.4 concludes this chapter. The research contributions presented in
this chapter are the main topics of our paper [104].

6.1. BeeNestOpt.IAI for Hybridization of Evolutionary
Algorithms

For facilitating the hybridization of already developed EAs – that they support some kind of
hybridization but not in cluster computing environments – with any algorithmic approaches
in high-performance computing environments, a generic, modular, flexible and scalable
software architecture is required. This architecture has to enable easy integration of EAs
and hybridizes them with any method or algorithm with minimum adaptation efforts.
Microservice-based software architecture provides such flexibility by introducing interfaces
for the integration of any method that can assist EAs. Furthermore, it allows EAs to access
the hybridization methods and integrate them, e.g., in the generation step of the initial
population. To this end, BeeNestOpt.IAI is adapted to support the hybridization of EAs by

136

6.1. BeeNestOpt.IAI for Hybridization of Evolutionary Algorithms

adding a new microservice called ‘Support-and-Learning Service’ (S&L Service) which is
shown in Figure 6.1. It provides the ability to plug in any hybridization model, e.g., ML
model to assist EAs by solving real-time complex and large-scale optimization problems.
The S&L Service supports the publish/subscribe messaging paradigm to reduce the coupling
between it and other services, enabling the S&L Service to communicate with any service
of BeeNestOpt.IAI. Hence, the S&L Service allows effortless hybridization of any part of
EAs. For example, the S&L Service can communicate with the EA Service to assist it by
generating the initial population or with the Ca. Service for estimating the fitness function.
Furthermore, the publish/subscribe messaging paradigm guarantees an efficient and reliable
data exchange between the S&L Service and the others.

To achieve the above functionalities, the S&L Service defines an I/O adapter to link any
hybridization model, e.g., ML model to BeeNestOpt.IAI. The I/O adapter, e.g., glue code
receives hybridization requests sent from other services and extracts the information needed
by the considered hybridization model. After processing each hybridization request by the
deployed hybridization model, the I/O adapter transfers the results into a form that can
be consumed by other services. Data exchange between the hybridization model and the
adapter is achieved through file access. The I/O adapter writes the extracted information
into a file that is read by the hybridization model which applies the configuration, processes
the request and writes the result into another file as output to be read by the I/O adapter as
shown in Figure 6.1. We leverage the container technologies to enable seamless deployment
of the S&L Service in a high-performance computing environment like a cluster. In other
words, the S&L Service can be deployed as often as needed, as long as enough computation
resources can be provided.

Hybridization Model
(E.g., ML model)

S&L Service (as I/O adapter) Opt.J.M.
Service Da.Ma.

Service

Co.Ma.
Service

C
o

n
ta

in
e

r
L

a
y
e

r
Data files

D
a

ta
 &

M
e

s
s
a

g
e

 L
a

y
e

r

Temporary storage

DB

Persistence storage Event-based messaging system

Figure 6.1.: Support-and-Learning Service (S&L Service) in the Container layer

To communicate with other services in the Container Layer, the S&L Service provides two
publish/subscribe channels as shown in Table 6.1. While the first channel is used by other
services to publish hybridization requests including, e.g., hybridization model – supervised

137

6. Increasing the Applicability of Evolutionary Algorithms in Cluster Computing Environments

Method Address Description

SUBSCRIBE
hybridization.request.
job.{job-id}.service.
{serviceName}

Get hybridization requests including
configurations like hybridization model,
ML algorithm, data, etc.
from other services and applications.

PUBLISH
hybridization.result.
job.{job-id} Publish the results, e.g., seeds.

Table 6.1.: Publish/subscribe channels of the S&L service

or unsupervised – the latter one is used by the S&L Service for publishing the results of
processing hybridization requests.

6.2. Machine Learning-based Approaches for
Hybridizing Evolutionary Algorithms

Generally, EAs discard domain-specific knowledge from evolution and start from scratch
for each optimization problem. Therefore, two hybridization approaches based on the
well-known ML techniques, namely unsupervised and supervised learning to utilize such
knowledge for assisting EAs in generating the initial population are proposed as shown in
Figure 6.2. Precisely, they exploit the domain-specific knowledge and the prior solutions
that are already found for similar problems for seeding the initial population and guiding
the search process of the EAs. Based on only domain-specific knowledge, the unsupervised
hybridization approach selects the nearest similar solutions from past runs of EAs as they
exist and seed them in the initial population. However, the supervised hybridization approach
instruments a learner to learn the mapping between the domain-specific knowledge and the
prior solutions to generate completely new solutions, i.e., seeds.

Domain-specific knowledge can be generally grouped into two groups, namely the one that
is directly used by EAs to find the solutions and the one that is indirectly related to the found
solutions. For example, an EA solves the problem of unit commitment by computing an
adequate day-ahead scheduling plan for a customer with the minimum cost as an objective.
The EA requires the predicted load profile of the customer, the predicted energy generation
for the considered time interval for each energy resource and its corresponding price. This
data is the direct knowledge used by EAs to assess the fitness of each proposed solution.
However, the weather data is an example of indirect knowledge that is significantly related to
the scheduling plans. As shown in Figure 6.2, the direct and indirect knowledge related to the
obtained solutions is stored in the ‘Prior Knowledge Repository’. This knowledge is known
as features and they are used to describe the solutions saved in another repository, namely
the ‘Prior Solutions Repository’. While the unsupervised hybridization approach uses these
features to select the nearest similar solutions from the ‘Prior Solutions Repository’, the
supervised hybridization approach learns how to map the prior solutions to these features.

138

6.2. Machine Learning-based Approaches for Hybridizing Evolutionary Algorithms

S&L Service with ML Models

Similar Solutions from Prior

Solutions Repository

Unsupervised Approach

Clustering KNN

Predictive Model

Predicting New Similar

Solutions

Supervised Approach

Machine Learning algorithm

e.g. Neural Network

Similarity-based Model

New Knowledge

Persistent storage

Prior Knowledge Repository - Features
(e.g. Generation, Consumption, Weather)

Prior Solutions Repository - Label
(chromosomes e.g. Scheduling Plans)

Figure 6.2.: Concept of the proposed ML-based hybridization approaches of EAs

Generally, the S&L Service needs two input parameters defined by the user, namely ‘mode’
and ‘featureType’. The ‘mode’ parameter is used to select the method or the technique,
namely, the ML technique that is used to hybridize EAs, i.e., supervised or unsupervised.
The ‘featureType’ parameter is used to define which features from the ‘Prior Knowledge
Repository’ are selected for performing the training process of the ML model.

6.2.1. Unsupervised Machine Learning-based Approach for
Hybridizing EAs

Unsupervised learning aims to find the regularities in the input data. In other words, it
discovers the structure of the input data including their hidden patterns. Clustering is the
most famous unsupervised learning technique by which the input data is divided into clusters
or groups of similar patterns based on some measures like Euclidean distance [106]. As
shown in Figure 6.2, the clustering algorithm is trained with domain-specific knowledge,
i.e., features that correspond to the solutions obtained from previous runs of the used EA.
It groups similar features based on a similarity measure into several clusters. When a new
problem of the same domain needs to be solved, the clustering model assigns the new
unseen features to the closest cluster. Then, the proposed approach returns one or multiple
potential similar solutions corresponding to the features within the chosen cluster from the
‘Prior Solutions Repository’. These solutions are used to enhance EAs by integrating them
into the evolutionary process, e.g., into the initial population.

139

6. Increasing the Applicability of Evolutionary Algorithms in Cluster Computing Environments

The proposed unsupervised ML approach provides three modes, namely cluster, best and
mix. These modes provide an EA with more flexibility for selecting solutions from the
returned similar ones to be used in the evolution process. The cluster mode returns a random
set of similar solutions out of the cluster, in which the new features are clustered. In contrast,
the best mode only returns the nearest similar solutions without considering any cluster
borders. Since the diversity of a population plays a key role for EAs, we decided to define a
new mode, namely the mix mode to increase the diversity of the returned similar solutions.
In this mode, the best mode is applied and some randomness is added to it. Precisely, half
of the returned similar solutions are selected according to the best mode and the other half
is returned by the cluster mode.

Since the high dimensional input spaces can pose challenges for the clustering algorithm,
dimensionality reduction methods such as Principal Component Analysis (PCA) or Autoen-
coder (AE) can be used to reduce the dimensions of the input space to the optimal or more
adequate one aiming at performing better clustering.

6.2.2. Supervised Machine Learning-based Approach for
Hybridizing EAs

The supervised hybridization approach aims at extracting patterns from domain-specific
knowledge and information from prior solutions to predict potential solutions for a new given
problem instance. This approach uses a part of the feature space used in the unsupervised
hybridization approach combined with the corresponding prior solutions as labels. It trains
a learner, e.g., ANN with the labeled data to learn the mapping between the domain-specific
knowledge and prior solutions. Hence, the supervised hybridization approach does not
return solutions as they exist in the ‘Prior Solutions Repository’ but generates new solutions
based on the learned knowledge. The proposed approach generates solutions that can serve
as part of the initial population of an EA. Since the labels are the solutions representing the
chromosomes, the learning algorithm has to learn the structure of the chromosome, i.e., the
genetic representation. To this end, the prior solutions, i.e., chromosomes are processed and
adapted to a usable label format and then combined with the corresponding features. In
contrast to the unsupervised hybridization approach, the supervised hybridization approach
takes the advantage of learning patterns from the whole repository and exploits them
to generate new chromosomes which could be more suitable than the ones returned by
the unsupervised hybridization approach. This is due to the fact that the unsupervised
hybridization approach can seed the initial population with suboptimal solution. However,
the supervised hybridization approach learns from all available solutions, i.e., the optimal
and suboptimal ones. An ANN with its design flexibility can be instrumented as a learner to
generate the chromosomes with the same genetic representation as the prior ones. In the
context of this work, an LSTM is utilized as an implementation of the ANN.

To summarize, the unsupervised hybridization approach serves as a straightforward approach
for the hybridization of an EA with ML. Grouping similar solutions to a cluster limits the
search process for finding the most similar solutions to several bounded pools of potential

140

6.3. Evaluation

solutions. The unsupervised hybridization approach lacks the ability to learn from similar
solutions and generate new solutions for a new similar problem instance. In contrast to the
unsupervised hybridization approach, the supervised hybridization approach learns from the
prior solutions and generates new solutions increasing the diversity of the initial population.
The main drawback of this approach is how to adapt the historical solution to a useful form
to be used as labels. Moreover, designing an ML algorithm to learn the mapping between
features and complex format of labels represents a challenge.

6.3. Evaluation

In this evaluation, we investigate how the proposed microservice-based solution facilitates
the hybridization process of EA. Furthermore, we study and analyze the effect of seeding the
initial population of an EA on the convergence speed and solution quality. To achieve that,
the unsupervised and supervised hybridization approaches are realized and integrated into
the S&L Service to assist EA by generating the initial population for solving the problem
of scheduling Distributed Energy Resources (DERs). The use case scenario introduced
in Section 5.2.1 for scheduling 50 DERs is considered where the optimization problem
is formulated as a combinatorial non-convex mixed-integer multi-objective problem. The
EA GLEAM with its genetic representation introduced in Sections 2.2.3 and 5.2.3 is
instrumented to solve this problem. Both approaches can be combined with any other EA
which supports the hybridization type of seeding the initial population. For realizing both
hybridization approaches for scheduling DERs, the S&L Service introduces an additional
input parameter, namely ‘date’ which has the format ‘YYYY-MM-DD’ representing the
requested date to be scheduled. Based on knowledge-domain data corresponding to this date,
the S&L Service returns a set of similar solutions to be seeded into the initial population. The
‘Prior Solutions Repository’ is filled with a list of chromosomes where each one represents
an hourly scheduling plan. These plans are calculated in advance for one year for the same
use case. Three basic features, namely consumption (c), generation (g) and weather (w) are
contained in the ‘Prior Knowledge Repository’. These features correspond to the scheduling
plans stored in the ‘Prior Solutions Repository’. The consumption and generation features
are extracted from the solar home electricity dataset provided by Ausgrid [153] which is
explained in Section 5.2.2.

For defining the consumption behavior of the aggregated load (house symbol located in the
blue DER of Figure 5.4), real-world load profiles of a customer from the Ausgrid dataset
are selected. For the power generation process, 50 DERs from the Ausgrid dataset based on
their distance to the considered customer are selected. For the weather feature, the historical
weather data provided by the Bureau of Meteorology is used. This data contains weather
information collected from 153 weather stations located in the region of New South Wales
where the Ausgrid dataset is collected. The weather data of the weather station Observatory
Hill is used, since it is located in the center of Sydney with relative proximity to the selected

http://www.bom.gov.au/ (Accessed: 10.02.2023)

141

6. Increasing the Applicability of Evolutionary Algorithms in Cluster Computing Environments

Weather Feature Description Units

Temperatur
Min

Minimum temperature in the
24 hours at 9:00. degree celsius

Max
Maximum temperature in the

24 hours at 9:00. degree celsius

Rain
Precipitation (rainfall) in the

24 hours at 9:00. millimeters

Evapotranspiration
"Class A" pan evaporation in the

24 hours at 9:00. millimeters

Solar Radiation
Power per unit area received

from the Sun.
watt per square
meter (W/m2)

Average wind speed
Wind speed measure over

10 meters. Meters per second

Relative humidity
Min

Minimum relative humidity in the
24 hours at 9:00. percent

Max
Maximum relative humidity in the

24 hours at 9:00. percent

Table 6.2.: Explanation of the measured weather values of the weather station Observatory Hill – Australia

customer and most of the selected DERs. The Australian Bureau of Meteorology does not
freely provide the weather data in a fine-grained resolution, e.g., 15-minutes or 30-minutes
but only in the form of a summary for each day, e.g., daily resolution as shown in Table
6.2.

6.3.1. Unsupervised Approach for Scheduling Distributed
Energy Resources

The goal of the unsupervised approach is to return a set of scheduling plans from the ‘Prior
solutions Repository’ based on the similarity metric. To achieve that, the unsupervised
approach builds a clustering model that groups similar domain-specific knowledge stored
in the ‘Prior Knowledge Repository’ together into one cluster and implicit groups the
scheduling plans which are corresponded to the clusters together as shown in Figure 6.3.

For the considered datasets, we have access to the hourly generation of each DER, the
hourly consumption of the customer and weather data with a daily resolution. These three
feature sets represent the knowledge space stored in the ‘Prior Knowledge Repository’. The
consumption data of the customer plays a key role in the scheduling process performed by
GLEAM and therefore is essential in the clustering process. It is used to cluster consumption
profiles into well-separated clusters based on their similarity. For example, by applying the
distance metric to find the similarity between two profiles, the absolute difference between
two consumption profiles is calculated by subtracting the hourly consumption values from
each other. Then, the sum of the absolute differences is calculated where is a low value
indicating high similarity. For the generation feature, only power generation between 9

142

6.3. Evaluation

Similarity-based

Modes

Prior Knowledge Repository
(e.g., Generation, Consumption, Weather) Prior Solutions Repository

(e.g., Scheduling Plans)

Similar Solutions

Preprocessed Features

C
lu

s
te

ri
n

g

M
o

d
e

l

New Knowledge

KMeans

Affinity

Propagation

Agglomerative

DBSCANC
lu

st
er

in
g

KNN

Encoded Features (e.g. Autoencoder) Raw Features

In
te

r

V
a

li
d

a
ti
o

n

Cluster Mode

Best Mode

Mix Mode

Figure 6.3.: Concept of the unsupervised approach to assist EAs for scheduling DERs

o’clock and 17 o’clock, i.e., the main PV hours, is taken into account. This is due to the fact
that the used DERs are mainly based on PVs for generating power as explained in Section
5.2.1. Both features are directly involved in the process of creating scheduling plans, since
they are essential for calculating the objective functions introduced in Section 5.2.1. Since
power consumption and power generation are influenced by the weather, the weather data
is considered as an indirect factor that is involved in the process of creating scheduling
plans. For example, the maximum temperature and the solar radiation have a significant
impact on the generated energy as illustrated in Figures 6.4 and 6.5. In the ‘Prior Knowledge
Repository’, there are 24 features for hourly power consumption profiles of a customer,
nine features representing hourly power generation aggregated over the selected 50 DERs
and eight features for the weather data. Besides the three feature sets, four combinations
between them are defined, namely consumption-generation (cg), consumption-weather
(cw), generation-weather (gw) and consumption-generation-weather (cgw). This results in
seven feature sets, i.e., c, g, w, cg, cw, gw and cgw which are considered for the clustering
process.

For building an adequate clustering model, four clustering algorithms, namely KMeans,
Affinity Propagation, Agglomerative Clustering and DBSCAN are used. These algorithms
follow different methodologies and use different parameter settings to cluster the input.
The adequate values for such parameters for the four algorithms are not known a priori.
Therefore and to identify which clustering algorithm performs better than the others, we
test each clustering algorithm with different parameter settings and various cluster sizes.
The algorithms are compared to each other considering three clustering criteria, namely
the Silhouette Score [160], the Dunn Index [47] and the Connectivity Score [78]. These
criteria are used to measure the performance of a cluster algorithm indicating how well
the clustering algorithm has performed on a given set of features. Raw features are more
challenging for all clustering algorithms. This is due to the fact that the high dimensionality
features lead to inaccurate similarity computation. Based on visual cluster analysis, the

143

6. Increasing the Applicability of Evolutionary Algorithms in Cluster Computing Environments

0

5

10

15

20

25

0

1

2

3

4

5

6

Te
m

p
e

ra
tu

re
in

 C
e

ls
iu

s

G
e

n
e

ra
ti

o
n

 in
 k

W
h

Date

50 DERs Aggregated Generation Maximimum Temperature

Figure 6.4.: Blue line depicts the 50 DERs stacked generation during the first month of the training dataset.
The red line depicts the corresponding temperature measured on those days

0

2

4

6

8

10

12

14

0

1

2

3

4

5

6

So
la

r
R

ad
ia

ti
o

n
 in

 W
/m

2

G
e

n
e

ra
ti

o
n

 in
 k

W
h

Date

50 DERs Aggregated Generation Solar Radiation

Figure 6.5.: Blue line depicts the 50 DERs stacked generation during the first month of the training dataset.
The red line depicts the corresponding solar radiation measured on those days

best-performing cluster algorithm for the raw features of the sets is the Agglomerative
Cluster algorithm with average as a linkage parameter. For performing better clustering
results, an autoencoder technique is applied to reduce the representation of each feature set
to two features in total. The results show that the clustering algorithms perform better on

144

6.3. Evaluation

Features
Number of neurons in each layer

Reduced
representation

Consumption (c) 24 12 6 2 6 12 24
Generation (g) 9 6 2 6 9
Weather (w) 7 4 2 4 7

cg 33 24 12 6 2 6 12 24 33
cw 31 24 12 6 2 6 12 24 31
gw 16 12 6 2 6 12 16
cgw 40 24 12 6 2 6 12 24 40

Table 6.3.: The structure of the used Autoencoders for each feature set combination

two-dimensional data. The number of layers and number of neurons of each autoencoder are
selected based on the number of features within each feature set as shown in Table 6.3.

The best-performing clustering algorithm based on the encoded features is the KMeans
clustering algorithm with ten clusters. Both clustering results, i.e., based on the raw and
encoded features, are visualized in Figures 6.6, 6.7, 6.8, 6.9, 6.10, 6.11 and 6.12. Each figure
depicts and compares the clustering results based on the raw and the encoded features. While
each figure on the left side illustrates the clustering results of applying the Agglomerative
Cluster algorithm with the raw features, the ones on the right side depict the clustering
results of applying the KMeans algorithm on the reduced features by using an autoencoder
technique. Both algorithms are tested with different numbers of clusters according to the
feature type. The results show that the raw features have many overlaps between clusters.
In most cases, the clustering algorithm of the raw features tends to cluster most data points
in one big cluster and the remaining ones are grouped in small clusters where each one
has between 1 and 20 data points. In other words, the clusters of raw features are mostly
very small except for one big cluster consisting of 80–95% of all data points. However, the
reduced features are clustered more clearly than the raw features and data points are more
evenly distributed over all clusters as shown in Figures 6.6, 6.7, 6.8, 6.9, 6.10, 6.11 and 6.12.
It is clear that better clustering results and even distribution of data points are obtained by
using the reduced feature sets.

145

6. Increasing the Applicability of Evolutionary Algorithms in Cluster Computing Environments

1 2

3

4

5

6

7

8

910

11

12

13

14

15
1617

18

19

20

21

22

23

24

25

26

2728

29

30

31

32
33
34

35

36

37

3839

40

41
42 43

44

45

46

47

48

49

50

51

52

53

54

55 56 57

58
59

60

61

62

63

64

65

66
67

68

69

70

71

72

73

74

75

7677 78

79

80

8182

83 84

8586

87

88
89

9091

92

93

94

9596
97

98
99

100
101

102

103104
105106

107

108
109

110

111

112

113
114

115
116

117118119
120

121
122

123

124
125
126

127

128129
130

131132133134

135

136

137
138
139140

141

142
143

144

145

146
147

148

149

150

151

152

153

154

155156
157158

159

160

161

162163
164

165

166
167

168

169

170

171

172

173
174

175

176

177

178

179

180
181

182

183

184

185

186

187

188

189
190191

192

193

194
195

196197

198

199200

201

202203204

205

206

207

208

209

210

211

212

213

214

215
216

217

218

219

220

221222

223

224

225

226

227

228229
230

231

232

233

234

235

236

237
238

239

240

241

242243

244

245246

247

248249250251252

253
254

255

256

257258
259260

261

262263
264265

266
267

268

269

270
271

272

273
274

275

276

277278

279

280
281

282283
284

285

286

287

288

289

290

291

292

293

294
295
296

297

298

299

300

301

302

303

304
305

306
307

308

309310

311
312 313

314
315

316
317

318

319

320

321
322323

324

325

326327

328
329

330

331

332

333

334335336

337

338

339

340

341

342

343

344

345

346

347

348

349

350
351

352353

354
355356

357
358

359

360

361

362 363

364
365

−5

0

5

−5 0 5 10 15
Dim1 (40.2%)

D
im

2
(1

0.
7%

)
Feature Type: c

1 234
5

67 8910 11 121314 151617 1819 2021 2223242526 2728 293031 32 333435
36 37383940414243444546 47484950 51525354 5556 5758596061

62
63

64
65

66

67

68

69 707172

73

74

75

7677
78 79

80

81

82
83

84
8586

87

88

89

9091
92

93
94

95
96

97

9899

100

101

102

103

104105 106
107

108
109

110

111
112113114

115

116 117

118
119120

121

122
123

124125126

127
128

129

130

131
132133

134
135

136

137
138139140141

142143

144

145

146

147148

149

150

151

152153
154

155
156

157

158

159160
161

162163

164
165 166

167
168

169

170

171

172

173174175
176177

178

179

180
181

182183 184185
186

187

188189190
191

192

193
194

195196
197198

199

200

201202203204

205

206207

208

209
210

211

212213

214
215

216217

218

219

220221

222

223224

225

226

227

228

229230231

232

233

234235
236

237
238

239240
241

242
243
244

245
246

247

248

249

250

251

252253254

255

256257
258

259
260

261
262

263

264
265

266
267268

269

270
271

272
273

274
275276

277278

279
280

281282

283

284

285286 287288

289

290

291

292

293

294295296
297298

299

300

301

302303
304

305306
307

308309

310

311
312

313
314

315316

317

318

319

320321322323
324

325
326

327

328 329330331332333334335336337
338339 340341 342 343344345346347348349350 351352353354355356 357358359360

361

362

363

364365

−8

−6

−4

−2

0

−2 0 2
X0

X
1

Feature Type: c_ae

Figure 6.6.: Clustering of the Consumption (c) features (24 features). The left side displays the raw values
of the c features and on the other side, the same features reduced to two features (X0, X1) by utilizing an
Autoencoder (c_ae)

1

2

34

5

6

7

8
9 10

11

12
13

14

15

16
1718

19

20

21

22

23

24

2526

27

28

29

30

31

32

33

34

35

36
37
38

39
40

41

42

43

4445

46

4748

49

50
51

52

53

54

5556

57

58

59
60

61

62

63

64

6566

67

68

69
70

71

72

7374

7576

77

78

79
80

81

82

83

84

85

86

87 88

89

90

91

92

93

94

95 96 97

98

99

100

101
102

103

104

105

106

107

108

109

110

111
112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129 130

131

132

133

134

135

136
137

138

139

140

141

142

143144

145

146

147148

149

150151

152

153

154 155

156

157

158
159

160

161
162

163

164

165

166
167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183
184185

186

187

188

189

190

191

192

193

194
195

196

197

198

199

200

201

202

203

204205
206

207

208

209

210

211

212

213

214215216217

218

219
220

221

222

223

224

225

226
227 228

229

230

231

232

233

234235
236237

238

239

240

241

242
243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260261

262

263

264

265

266 267

268

269
270

271

272

273

274

275

276

277
278

279

280

281
282

283

284

285286

287

288

289

290
291

292

293

294

295296

297

298

299

300

301

302

303

304

305

306
307

308

309

310

311312

313

314

315

316317

318

319320321322

323

324325
326

327

328

329

330

331

332

333

334
335

336

337

338

339

340

341

342

343
344

345
346

347

348349
350

351

352

353354355

356

357358359
360361

362

363

364

365

−4

−2

0

2

−3 0 3
Dim1 (64.3%)

D
im

2
(1

7.
2%

)

Feature Type: g

1

2

3 4
5

6

7

8910

11

12 13

14

15

161718

19

20

21

22

23

24

25
26

27

28

29
30

31

32

33

34

35

36

37
38
39

40

41

42

43

4445

46

4748

49

5051
52

53

54

5556
57

5859 60

61

62

63

64

65

66

67

68

69
70

71

72

73

74

75

76

77

78

79
80

81

82

83

84
85

86

87

88

8990

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121122

123

124
125

126

127

128

129

130

131

132

133

134

135

136
137

138

139 140

141
142

143144

145

146

147148

149

150

151

152

153

154

155

156

157

158
159

160

161

162

163

164

165

166
167

168

169

170

171

172

173
174

175

176

177

178

179

180

181

182

183
184185

186

187
188

189

190
191

192

193

194

195

196

197

198

199

200

201

202

203

204205
206

207

208

209

210

211 212

213

214215216217
218219220

221

222

223

224

225

226

227

228

229

230

231

232

233

234235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258
259

260

261

262

263

264

265

266
267

268

269

270
271

272

273 274

275

276

277
278

279

280

281282283

284

285
286

287

288

289

290

291

292
293

294
295

296

297

298
299

300

301 302

303

304

305

306
307

308

309

310

311312

313
314

315

316

317

318

319320
321
322

323

324325
326

327

328

329

330

331

332

333 334

335

336

337338
339

340

341

342

343

344

345

346

347

348
349

350
351

352

353354355

356

357358359

360

361

362

363364
365

−2

−1

0

1

2

−2 −1 0 1 2
X0

X
1

Feature Type: g_ae

Figure 6.7.: Clustering of the Generation (g) features (9 features). The left side displays the raw values
of the g features and on the other side, the same features reduced to two features (X0, X1) by utilizing an
Autoencoder (g_ae)

146

6.3. Evaluation

1

2

3
4

5

6
7

8

9

10

11
12

13

14

15

1617
18

19

20

21

22

23
2425

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

464748

49

50

51

52

53

54

55

56

57

58

59
60

61 62

63

64
6566

67

68

6970

71

72

73

74

75

76

77

78
79

80

81

82

83

84

85
86

87
88

89

90

91
92

93

94

95

96
97
98

99

100101 102103

104105

106

107

108
109

110

111

112
113114

115

116

117

118

119

120

121 122123

124125

126

127
128

129

130

131

132

133

134
135

136
137

138 139

140
141142

143

144
145

146

147

148

149
150

151

152
153

154

155

156

157

158 159

160
161

162

163

164

165

166

167
168

169

170

171

172

173

174

175

176

177

178

179

180

181 182

183

184

185

186

187

188

189 190

191

192

193

194
195

196

197

198

199
200

201202

203

204

205

206207208

209

210211
212

213 214

215

216

217

218

219

220

221

222
223

224
225

226

227228

229
230

231
232

233
234

235

236

237

238 239240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255
256

257258

259

260

261

262

263

264

265

266

267

268

269

270

271
272

273

274

275
276

277

278

279

280

281282 283
284

285

286

287

288

289

290

291

292293

294

295

296

297 298

299

300

301

302

303304

305

306
307

308
309

310311
312

313

314315

316

317

318

319

320

321
322

323324

325326

327

328

329

330

331

332

333

334
335

336

337

338339

340

341

342

343

344

345

346
347348

349350351

352

353

354

355

356

357

358

359

360
361362

363
364
365

−2

0

2

4

6

−2 0 2 4
Dim1 (46.4%)

D
im

2
(2

7.
2%

)

Feature Type: w

123456789101112131415161718192021222324252627282930313233343536373839404142434445

46

47
484950

51

52

53 5455

56

57

58

59606162

63

646566

67

68

697071727374757677

78

79

80

81828384858687

88

89

90

919293949596979899
100

101102

103

104

105

106

107

108109110

111

112

113

114

115

116117

118

119

120

121

122

123

124125126 127128129

130

131132

133

134135136137

138

139

140

141

142

143144145146147148149150

151152153154

155

156157
158
159160161162163164165166167168

169

170

171

172

173174175176177178

179180

181

182183184185186

187188

189

190191192193

194

195

196197198
199
200201202

203

204205206207208209210211

212

213214215216217218219220221
222

223

224225226

227228

229

230

231

232

233

234235

236
237

238

239

240

241

242

243

244245

246

247

248

249250251

252

253254

255

256

257258

259

260
261262263264

265
266

267
268

269270271272

273

274275276

277

278279280281282283284285
286

287288

289290291292293294295

296

297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365

−1.5

−1.0

−0.5

0.0

0.5

−1.5 −1.0 −0.5 0.0 0.5
X0

X
1

Feature Type: w_ae

Figure 6.8.: Clustering of the Weather (w) features (8 features). The left side displays the raw values of the w
features and on the other side, the same features reduced to two features (X0, X1) by utilizing an Autoencoder
(w_ae)

1

2

3
4

5

6

7

8

9

10 11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

33
34

35 36

37

38
39

40

41

42

43

44

45

46

47
48

49

50

51

52

53

54

55

56

57

58
59

60

61

62

63

64

65

66

67

68

69

70

7172

73

74 75

76

77

78

79

80

81

82

83
84

85

86

87

88

89

90

91

92

93

9495

96

97
98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113114

115

116

117

118

119120

121

122

123

124

125

126

127

128

129

130

131

132
133

134

135

136

137

138

139

140

141

142

143
144

145
146

147
148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164
165

166

167

168

169

170

171

172

173

174

175

176
177

178

179

180

181

182

183184
185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204
205206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224
225

226

227

228

229

230

231

232

233

234
235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263264

265

266

267

268

269

270

271

272
273

274

275

276

277278

279

280

281282

283

284

285
286287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303
304

305

306

307

308
309

310

311
312

313

314

315

316

317
318

319

320

321322

323

324

325

326
327 328

329
330

331

332

333

334

335

336

337

338

339

340
341

342

343

344

345346

347348
349

350

351

352

353

354
355

356

357

358

359

360

361

362

363

364

365

−7.5

−5.0

−2.5

0.0

2.5

5.0

−5 0 5 10 15
Dim1 (31.8%)

D
im

2
(1

7.
8%

)

Feature Type: cg

1

2

3

4

5

6

7

8

910

11

12

13

14
151617

18

19

20

21

22

23
24

25

26 27

28

29

3031

32

33
34

35

36

3738
3940

41

42
43
4445

46

47
48

49

50
515253

54

5556

57

58
59

60

61

62

63

64

65

66

67

68

69

70

71

72

7374

75

76

77

78
79

80

81

82

83

84

85

86

87

88

89

90
91

92

93

94

95

96

97

98

99

100

101

102

103
104

105

106

107

108

109

110

111

112
113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131132

133

134

135

136137

138

139

140

141

142

143

144
145146 147

148

149

150

151

152

153

154

155

156

157

158

159160 161

162

163

164

165

166

167
168

169

170

171

172

173

174

175

176 177

178

179

180

181

182
183

184

185
186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213 214

215

216
217

218

219

220

221222

223

224

225

226

227

228

229

230
231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263
264

265 266

267

268

269

270

271

272
273

274

275

276

277
278

279

280

281282

283

284

285286 287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308
309310

311312

313

314

315

316

317

318

319 320
321

322

323324325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341
342

343
344

345

346

347
348

349

350

351

352

353
354355
356

357358359

360361

362

363

364
365

−2

−1

0

1

2

−2 −1 0 1 2
X0

X
1

Feature Type: cg_ae

Figure 6.9.: Clustering of the combination of Consumption and Generation (cg) features (33 features). The
left side displays the raw values of the cg features. On the other side, the same features reduced to two features
(X0, X1) by utilizing an Autoencoder (cg_ae)

147

6. Increasing the Applicability of Evolutionary Algorithms in Cluster Computing Environments

1

2

3

4

5

6

78

9

10

11

12

13
14

15

16

17

18

19

20

21

22

23

24

25

26

2728

29

30 31
323334

35

36

37

3839

40

41
4243

44

45

46
47

48 49

50

51

525354

5556
57

58

59
60

61
62

63
64

65

66
67

68

69

70

71

72

73
74

7576

77

78
79

80

81

82
83

84
85

86

87
888990

91
92

93

94
95

96

97

98

99
100

101

102

103

104
105

106

107

108

109110

111

112113
114

115

116

117

118

119
120121

122

123
124

125

126

127
128

129

130

131
132
133

134

135

136

137

138

139

140

141

142

143144

145

146

147

148

149

150

151

152
153
154

155
156

157

158

159

160

161

162
163

164

165

166167

168

169

170

171172173

174
175

176

177 178

179

180181

182

183184
185

186

187

188

189

190

191

192

193

194

195

196197

198

199

200

201

202
203

204

205206
207208

209

210

211

212

213

214

215

216

217

218

219

220

221

222
223

224

225

226

227

228
229230

231

232

233

234
235

236
237

238

239

240

241

242

243

244

245

246

247

248249

250
251252253254 255

256

257
258

259
260

261262
263

264

265266
267

268

269

270
271

272

273

274

275

276

277278
279

280

281282
283
284285

286

287
288

289
290

291

292293
294

295
296

297
298

299

300

301
302303304

305
306307

308
309

310

311312
313

314

315
316

317
318

319

320
321322

323

324
325326

327

328

329

330

331

332
333

334 335

336

337

338
339

340

341

342

343

344

345 346

347348

349350

351

352
353

354
355

356
357

358

359

360

361
362

363

364

365

−10

−5

0

−15 −10 −5 0 5
Dim1 (34.3%)

D
im

2
(1

2.
2%

)
Feature Type: cw

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

1718

19

20

21

22

23

24

25

26

2728

29

30

31

32

33
34

35

36

37

3839

40

41

42

43

44

45

4647

48

49

50

51

52

53

54

55
5657

58

59

60

61

62

63

64

65

66

67

68

6970

71

72

73

74

75

76

77

7879 80

81
82

83

84

85 8687
88

89

90
91 92

93
94

95

96
97

98

99

100

101

102103

104105

106

107
108 109

110

111

112113
114

115

116 117

118

119120
121

122

123

124125

126127128

129
130

131
132

133

134

135

136

137

138

139

140

141

142

143
144

145

146

147

148

149

150

151

152153154

155 156157158

159

160

161

162

163

164

165

166

167

168

169

170

171 172

173

174

175

176

177

178179

180

181

182

183

184185

186

187

188
189

190

191

192

193

194

195

196

197

198

199
200

201

202

203

204

205
206

207

208

209210

211

212

213

214

215216

217
218 219

220

221

222
223

224
225

226

227 228

229

230

231

232

233

234 235

236
237

238

239

240

241

242

243
244

245

246

247

248

249

250251252
253
254 255

256

257
258

259

260

261262

263

264

265

266

267

268

269

270

271
272

273

274 275

276 277

278
279

280 281
282

283

284

285

286

287

288

289

290

291

292

293294

295296
297

298

299

300
301

302

303

304
305

306307
308

309

310
311

312
313314

315

316

317

318
319

320

321

322

323
324

325326

327

328329

330

331

332

333
334 335

336

337

338
339

340

341

342
343

344

345

346347

348

349

350

351

352353

354

355

356

357 358

359

360

361

362

363

364

365

−3

−2

−1

0

1

2

3

−2 −1 0 1
X0

X
1

Feature Type: cw_ae

Figure 6.10.: Clustering of the combination of Consumption and Weather (cw) features (32 features). The
left side displays the raw values of the gw features. On the other side, the same features are reduced to two
features (X0, X1) by utilizing an Autoencoder (cw_ae)

1 2

3

4

5

6

7

8

910

11

12

13

14

15
1617

18

19

20

21

22

23

24

25

26

2728

29

30

31

32
33
34

35

36

37

3839

40

41
42 43

44

45

46

47

48

49

50

51

52

53

54

55 56 57

58
59

60

61

62

63

64

65

66
67

68

69

70

71

72

73

74

75

7677 78

79

80

8182

83 84

8586

87

88
89

9091

92

93

94

9596
97

98
99

100
101

102

103104
105106

107

108
109

110

111

112

113
114

115
116

117118119
120

121
122

123

124
125
126

127

128129
130

131132133134

135

136

137
138
139140

141

142
143

144

145

146
147

148

149

150

151

152

153

154

155156
157158

159

160

161

162163
164

165

166
167

168

169

170

171

172

173
174

175

176

177

178

179

180
181

182

183

184

185

186

187

188

189
190191

192

193

194
195

196197

198

199200

201

202203204

205

206

207

208

209

210

211

212

213

214

215
216

217

218

219

220

221222

223

224

225

226

227

228229
230

231

232

233

234

235

236

237
238

239

240

241

242243

244

245246

247

248249250251252

253
254

255

256

257258
259260

261

262263
264265

266
267

268

269

270
271

272

273
274

275

276

277278

279

280
281

282283
284

285

286

287

288

289

290

291

292

293

294
295
296

297

298

299

300

301

302

303

304
305

306
307

308

309310

311
312 313

314
315

316
317

318

319

320

321
322323

324

325

326327

328
329

330

331

332

333

334335336

337

338

339

340

341

342

343

344

345

346

347

348

349

350
351

352353

354
355356

357
358

359

360

361

362 363

364
365

−5

0

5

−5 0 5 10 15
Dim1 (40.2%)

D
im

2
(1

0.
7%

)

Feature Type: c

1 234
5

67 8910 11 121314 151617 1819 2021 2223242526 2728 293031 32 333435
36 37383940414243444546 47484950 51525354 5556 5758596061

62
63

64
65

66

67

68

69 707172

73

74

75

7677
78 79

80

81

82
83

84
8586

87

88

89

9091
92

93
94

95
96

97

9899

100

101

102

103

104105 106
107

108
109

110

111
112113114

115

116 117

118
119120

121

122
123

124125126

127
128

129

130

131
132133

134
135

136

137
138139140141

142143

144

145

146

147148

149

150

151

152153
154

155
156

157

158

159160
161

162163

164
165 166

167
168

169

170

171

172

173174175
176177

178

179

180
181

182183 184185
186

187

188189190
191

192

193
194

195196
197198

199

200

201202203204

205

206207

208

209
210

211

212213

214
215

216217

218

219

220221

222

223224

225

226

227

228

229230231

232

233

234235
236

237
238

239240
241

242
243
244

245
246

247

248

249

250

251

252253254

255

256257
258

259
260

261
262

263

264
265

266
267268

269

270
271

272
273

274
275276

277278

279
280

281282

283

284

285286 287288

289

290

291

292

293

294295296
297298

299

300

301

302303
304

305306
307

308309

310

311
312

313
314

315316

317

318

319

320321322323
324

325
326

327

328 329330331332333334335336337
338339 340341 342 343344345346347348349350 351352353354355356 357358359360

361

362

363

364365

−8

−6

−4

−2

0

−2 0 2
X0

X
1

Feature Type: c_ae

Figure 6.11.: Clustering of the combination of Generation and Weather (gw) features (17 features). The
left side displays the raw values of the gw features. On the other side, the same features are reduced to two
features (X0, X1) by utilizing an Autoencoder (gw_ae)

148

6.3. Evaluation

1

2
34

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29

30

31

32

33

34

35
36

37

38
39

40

41

42

43

44

45

46

47

48

49 50

51

52

53

54

55

56

57

5859

60

61

62

63

64

65

66

67

68

69

70

71 72

73

74

75

76

77

78

79

80

81

82

8384

85

86
87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113114

115

116

117

118

119120

121

122

123

124

125

126

127

128

129

130131

132
133

134

135136

137

138

139

140

141

142

143144145
146

147
148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164165

166

167

168

169

170
171

172

173

174

175

176
177

178

179

180

181

182

183184185

186

187

188

189

190

191

192

193

194

195

196

197

198

199
200

201

202

203

204

205206

207

208

209210211

212

213

214

215

216

217

218

219

220

221

222

223

224
225

226

227

228

229

230

231

232

233

234235

236

237

238

239

240

241

242

243
244

245

246247

248

249

250

251

252

253
254

255

256

257

258

259

260

261

262263

264

265

266

267

268

269

270

271

272
273

274

275

276

277
278

279

280

281282

283

284

285
286

287
288

289

290

291

292

293

294

295
296

297

298

299

300

301

302

303304

305

306
307

308309

310

311
312

313

314

315

316

317
318

319

320

321
322

323
324

325
326

327

328
329 330

331
332

333

334 335

336
337

338

339

340341

342

343

344

345

346

347348

349
350

351

352

353

354

355
356

357

358359

360

361

362

363

364

365

−5

0

5

−15 −10 −5 0 5
Dim1 (30.4%)

D
im

2
(1

7.
6%

)

Feature Type: cgw

1

2

34

5
6

7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
25

26

27

28

29

30

31 32

3334

35

3637

383940

41

42 43

44

45

46

47
48

49

50 51 52
53

54

5556

57

58

59
60

61

62
63

64

65

66

67

68

69

70

71

72

73
74

75

76

77

78 79

80

81

82
8384

85

86

87

88

89

90

91

92

93

94

95

96
97
98

99

100

101

102
103

104

105

106

107

108

109110

111

112

113
114

115

116

117

118

119

120

121

122

123

124

125

126

127
128129

130

131
132

133

134

135

136

137

138

139

140

141

142

143144145 146

147

148

149

150

151

152
153

154

155

156

157

158

159
160

161

162

163

164165

166

167

168

169
170171

172

173

174

175176
177

178

179

180

181

182

183184
185

186

187

188

189

190

191

192

193

194

195

196

197

198

199
200

201

202
203

204
205206

207

208

209
210

211

212

213

214

215

216

217

218

219

220

221

222
223

224
225

226

227

228

229

230 231

232

233

234

235

236
237

238

239

240

241

242

243
244

245

246

247

248

249

250
251

252

253

254

255

256

257

258

259

260

261
262

263
264

265
266

267

268

269
270

271

272
273

274

275

276

277278

279
280

281282
283

284

285
286
287

288

289

290

291

292
293

294

295
296

297

298

299

300 301
302

303304

305

306
307

308309310311312

313
314

315

316

317
318319

320
321

322323

324325326327

328

329

330

331

332

333

334

335

336

337
338

339

340
341

342 343344

345

346

347

348

349

350

351

352353354
355
356 357
358359360

361
362

363
364

365

−3

−2

−1

0

1

2

3

−2 −1 0 1 2
X0

X
1

Feature Type: cgw_ae

Figure 6.12.: Clustering of the combination of Consumption, Generation and Weather (cgw) features (41
features). The left side displays the raw values of the cgw features. On the other side, the same features are
reduced to two features (X0, X1) by utilizing an Autoencoder (cgw_ae)

6.3.2. Supervised Approach for Scheduling Distributed Energy
Resources

The goal of the supervised approach is to create one or multiple new solutions either to be
seeded into the initial population of the EA GLEAM or to be used directly as scheduling
plans for the customer. To achieve that, a dataset which contains the available feature sets in
the ‘Prior Knowledge Repository’ as features and the already found scheduling plans stored
in the ‘Prior Solutions Repository’ as labels is created as shown in Figure 6.13. Building an
ML model that can learn the mapping between the features and the corresponding scheduling
plans, i.e., the label is not a trivial task. This is due to the fact that the length of the labels is
not fixed as explained in Sections 2.2.3 and 5.2.3. In other words, the EA GLEAM codes
each scheduling plan as a chromosome with a variable number of genes where each gene
has three discrete variables, namely Unit ID, Start, Duration and one continuous variable,
i.e., Power Fraction (PF).

To tackle such challenges, a sequence-to-sequence (Seq2Seq) learning method with multiple
outputs [80], namely LSTM is proposed (see, Section 2.4.2). As shown in Figure 6.14, the
proposed Seq2Seq LSTM model is composed of an encoder and a decoder. For training a
LSTM model, the encoder is designed with 𝑇 time steps – e.g., 24 if an hourly day-ahead
scheduling plan is required – to capture the context of the input. For each time step, the
input is provided in the form of a vector containing the hourly consumption of a customer
and the generation for 𝑁 DERs – e.g., 50 DERs for the use case scenario introduced in

149

6. Increasing the Applicability of Evolutionary Algorithms in Cluster Computing Environments

Ensemble LSTMSingle LSTM

Prior Knowledge Repository
(e.g., Generation, Consumption, Weather)

Prior Solutions Repository
(e.g., Scheduling Plans)

Preprocessed Features

New

Knowledge

Dataset for Deep Learning Neural Network (LSTM)

LSTM Model 1
(32 Neurons)

Preprocessed Labels

LSTM Model 2
(64 Neurons)

LSTM Model 3
(128 Neurons)

LSTM Model 4
(256 Neurons)Tr

ai
n

in
g

P
h

as
e

P
re

d
ic

ti
o

n
 P

h
as

e

P
re

p
ro

c
e

s
s
e

d

F
e

a
tu

re
s

LSTM Model 1

LSTM Model 2

LSTM Model 3

LSTM Model 4

New

Solutions

New Solutions 1

New Solutions 2

New Solutions 3

New Solutions 4

Figure 6.13.: Concept of supervised approach to assist EAs for scheduling DERs with its two phases, i.e.,
training and prediction phase

Section 5.2.1 –. Since the weather data is available only in a daily resolution, adding the
same daily value of each weather factor to all input vectors for each time step introduces
no significant effect. Therefore, the weather data is excluded from the input as a potential
feature. The input is summarized by the encoder as one hidden state vector which is passed
to the decoder as an initial hidden state. At each step of decoding, the decoder interprets and
adapts the context of the state vector based on the corresponding label. Indeed, it predicts a
vector for the dense layer which in turn predicts the output, i.e., a gene. Moreover, it updates
the hidden state and passes it to the next time step. At the end of decoding, a sequence of
genes that collectively represents a chromosome, i.e., a scheduling plan is generated.

Obviously, the labels, i.e., the chromosomes with their gene coding, represent a challenge
for the LSTM model, since each gene has an Unit ID and three decision variables to be
predicted. To tackle this problem, each variable of a gene is represented as a set of classes,
namely 50 classes for the Unit ID, 24 classes for the Start, 24 classes for the Duration
and 100 classes for PF – for simplicity’s sake, PF is converted from a float to an integer
representation with one percent precision –. This enables the dense layer to perform a one-
hot-encoding by using a softmax activation function to predict the values of each variable
of a gene. To this end, the decoder and dense layer are divided into multiple output layers,
namely four layers where the four variables of a gene are synchronously predicted enabling
the creation of the whole gene at each time step as shown in Figure 6.14. While the number
of neurons in each layer of the dense layer is corresponding to the number of classes taken
by each variable, i.e., 50, 24, 24 and 100, the number of neurons in the encoder and decoder

150

6.3. Evaluation

Encoder

𝑐

𝑔0
𝑔1
.
.
.

𝑔49

Encoder

𝑐

𝑔0
𝑔1
.
.
.

𝑔49

Encoder

𝑐

𝑔0
𝑔1
.
.
.

𝑔49

. . .

DecoderStates

Dense

𝐺𝑒𝑛𝑒0
ሺ𝑅𝑁𝑟ȁ𝑆𝑡 𝐷𝑟 ሻ%

Decoder

Dense

𝑆𝑡𝑎𝑟𝑡 Terminal
ሺ−1ȁ−1 −1 ሻ−1

States Decoder

Dense

States

. . .

𝐺𝑒𝑛𝑒1
ሺ𝑅𝑁𝑟ȁ𝑆𝑡 𝐷𝑟 ሻ%

𝐸𝑛𝑑 Terminal
ሺ−2ȁ−2 −2 ሻ−2

𝑡0 𝑡1 𝑡23

Figure 6.14.: Illustration of the Seq2Seq LSTM model architecture with multiple outputs

layers is independent of the representation of the output. Therefore, the proposed LSTM
model supports different numbers of neurons for the encoder and decoder layers, namely 32,
64, 128 and 256 neurons. This allows the application of an ensemble method for creating a
pool of solutions as shown in Figure 6.13. The proposed LSTM model only generates one
scheduling plan per input representing a challenge when the requested number of similar
solutions are more than one. Therefore, some noise about +/- 15% to the overall original
input, i.e., consumption and generation are added to obtain multiple similar scheduling
plans. The trend of consumption profile and the generation of each DER is preserved.

The S&L Service realizes the proposed ML hybridization approaches for assisting the
parallelized EA GLEAM in solving the problem of scheduling DERs. The Global Model
introduced in Section 2.2.1 and described in Section 4.2 is applied as a parallel model for
EA for solving the problem of scheduling DERs. The main microservices of the Global
Model, namely the Opt.J.M. Service, the Ds.S. Service, the E.O. Service and the Ca. Service
are mapped to the pseudocode of the Global Model as shown in Figure 6.15. The E.O.
Service executes lines 1, 8, 9, 10 and 17, the Ds.S. Service implements lines 2, 3, 7, 11, 12
and 16, the Ca. Service performs the evaluation by executing lines 6 and 15, the Opt.J.M.
Service corresponds to line 18. For scheduling DERs, the additional service, namely the
Interpretation Service explained in Section 5.2.3 is mapped to the pseudocode for executing
lines 5 and 14. The S&L Service assists the E.O. service by performing the first line of the
pseudocode.

Figure 6.16 illustrates the integration of the S&L Service into BeeNestOpt.IAI where it
interacts only with the Opt.J.M. Service for seeding the initial population of the E.O. Service.
The two main repositories, namely the ‘Prior Knowledge Repository’ and the ‘Prior Solu-
tions Repository’ are stored in the persistent storage of the Data Layer of BeeNestOpt.IAI.
To achieve that, PostgreSQL is used as a relational database to store both repositories.

151

6. Increasing the Applicability of Evolutionary Algorithms in Cluster Computing Environments

Optimization Job Management Service

Evolutionary Operators Service

Calculation Service

Distribution and Synchronization Service

Distribution and Synchronization Service

Distribution and Synchronization Service

Evolutionary Operators Service

Distribution and Synchronization Service

Distribution and Synchronization Service

Evolutionary Operators Service

Calculation Service

Support & Learning Service

Interpretation Service

Interpretation Service

Figure 6.15.: Mapping the proposed microservices of the Global Model with the Support-and-Learning-
Service (brown hexagon) to the pseudocode of the Global Model of EA

Table 6.4 shows an example of the ‘Prior Solutions Repository’ where the chromosomes
representing already found scheduling plans beside other information are stored. The ‘id’
column acts as the primary key of the table and is auto-incremented. The ‘date’ is the
scheduled day, the ‘plan_number’ column is used to distinguish between multiple chromo-
somes, i.e., scheduling plans for the same date. The other columns, namely ‘fitness’, ‘price’,
‘daily_deviation’ and ‘hourly_undersupply’ are the values of fitness, objective functions and
constraints related to this chromosome (see, Section 5.2.1).

id date plan_
number chromosome fitness price daily_

deviation
hourly_

undersupply
0 2012-04-03 0 3200 ... 90247 92.04 0.01 0
1 2012-04-04 0 3200 ... 70767 134.87 3.34 1
...

Table 6.4.: PostgreSQL database structure with some exemplary values for a potentially saved chromosome

6.3.3. Experimental Setup and Results

After testing the generality, modularity and flexibility of the S&L Service by integrating
the above-explained ML hybridization approaches, namely the clustering-based and the
LSTMs-based approaches, we assess their performance for enhancing the EA GLEAM in

152

6.3. Evaluation

D
a

ta
 &

M
e

s
s
a

g
e

 L
a

y
e

r
C

o
n

ta
in

e
r
L

a
y
e

r

Optimization

Job

Management

Service

Distributing

& Joining

Service

Container

Management

Service

E.O.

Service

Temporary storage

DB

Persistence storage Event-based messaging system

Data & Message

Service

…

Support &

Learning

Service

Interpretation

Service 1
Interpretation

Service N

Interpretation

Service 2

Calculation

Service1

Calculation

Service1

Calculation

Service1

Figure 6.16.: Main microservices of the Global Model with Support-and-Learning-Service (brown hexagon)
and Interpretation Service (dark blue hexagon) for scheduling DERs

terms of convergence speed and solution quality. While the convergence speed states how
much effort the EA spends to reach a solution with a predefined quality, the solution quality
metric reports which solution quality can be reached within a predefined EA effort. In other
words for the first metric, a predefined fitness value is given as the termination criterion
and the performance of the EA is measured based on the spent effort to reach such fitness.
For the second metric, the EA effort is defined as the termination criterion while the fitness
value is observed as shown in Figure 6.17.

For training the proposed ML models of the supervised and unsupervised hybridization
approaches, the hourly day-ahead scheduling plans for one year, i.e., from 2010-07-01 to
2011-06-30 for the customer No. 102 are calculated to be used with the corresponding
consumption, generation and weather data as a training dataset. For the parallelization
model, 40 workers for the Global Model is used. The EA GLEAM is terminated after
performing at minimum 200 generations and at maximum 500 generations according to
the complexity of the load profile of the scheduled day. For testing the proposed ML
hybridization approaches, the consumption profiles of the customer mentioned above are
used. After applying Kmeans clustering algorithm, the consumption profiles show an
unequal complexity, representing two groups of load profiles. While in the first group, the
simple load profiles are grouped, in the second one, the complex profiles are gathered. From
each group, one load profile is selected, i.e., a simple load profile and a complex one. As
shown in Figure 6.18, the load profile for the date ‘2011-07-18’ (blue line) is more complex

153

6. Increasing the Applicability of Evolutionary Algorithms in Cluster Computing Environments

Convergence Speed
• Global population 40

• Global termination criterion

• Fitness value 87.000

•

• Seeding Rate 10%

• Global population 80

• Global termination criterion

• Fitness value 51.000

•

• Seeding Rate 10%

EA GLEAM (General Learning Evolutionary Algorithm and Method)

EA effort

Solution Quality

EA effort
Size of RAM Lan bandwidth

4 60 (2.4 GHz) 196 GB 10 Gbit/s

No. Evaluation 57.000 No. Evaluation 126.000

Fitness value
(No. Evaluation)

Fitness value (No. Evaluation)
No. Of nodes No. of available cores

Load profile A (simple) Load profile B (complex)

Parallelization Model: The Global Model (Master-Worker)

Figure 6.17.: Summary of the evaluation setup

than the other one (red line) for the date ‘2012-04-03’, since it has higher peaks and more
sudden inclinations.

Time Horizon in Hours

C
on

su
m

pt
io

n
in

 k
W

h

0

1

2

3

0 5 10 15 20

2011-07-18 2012-04-03

Consumption Profiles of Customer 102

Figure 6.18.: Consumption profiles of customer No. 102 for the two considered use case scenarios

The stacked hourly generation for the 50 DERs on these days is illustrated in Figure 6.19
and 6.20.

In the context of the present evaluation, the EA effort is quantified by the number of fitness
evaluations performed by the EA to find a solution with a given quality. For measuring the
convergence speed, we experimentally fix the values of the fitness to be reached as follows:
87% and 51% of the highest fitness value which is set to ‘100.000’ for the simple load
profile and the complex one, respectively. These two values are experimentally defined

154

6.3. Evaluation

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

St
ac

ke
d

 G
e

n
e

ra
ti

o
n

 in
 k

W
h

Hours of a day

Figure 6.19.: Stacked generation of all 50 DERs on the 18. Juli 2011

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

St
ac

ke
d

 G
e

n
e

ra
ti

o
n

 in
 k

W
h

Hours of a day

Figure 6.20.: Stacked generation of all 50 DERs on the 3. April 2012

and represent the average fitness values of 50 runs that can be reached by spending a
moderate effort of the pure EA GLEAM, i.e., 200 generations. For the comparison of the
solution quality, the EA GLEAM is terminated after performing 57.000 fitness evaluations
for the simple load profile and 126.000 fitness evaluations for the complex one. Both values
correspond with the previous fitness values, i.e., the EA GLEAM performs on average
57.000 and 126.000 fitness evaluations to get solutions with the aforementioned solution

155

6. Increasing the Applicability of Evolutionary Algorithms in Cluster Computing Environments

qualities. EAs have to be parameterized for generating solutions with high quality. There
are various parameter settings to be tuned, e.g., population size, termination criterion, initial
population policy and probability of applying genetic operators. These parameters have to
be selected based on the complexity of the optimization problem, since they significantly
change the behavior of the search procedure of EAs. For defining the appropriate population
sizes to find good scheduling plans for the two considered load profiles, we perform multiple
runs of the basic EA GLEAM, i.e., without using the hybridization approaches and then we
take the average of them. We consider the amount of generations performed as a termination
criterion. The obtained results for the simple load profile (A) show a clear trend toward
smaller population sizes as shown in Table 6.5. By reducing the size of the population under
40 individuals, the EA GLEAM produces solutions with poor quality.

Population Generation Fitness Cost Duration
Daily

Deviation
Number of

Hourly Deviation
40 200 89500 90 468 4.8 0
80 120 86346 91 352 6.4 0
120 80 80375 102 301 8.8 0
200 40 73506 89 251 15 0

Table 6.5.: Population tuning with fixed amount of generations for 2012-04-03, i.e., the simple load profile
(A)

Based on tuning results, two different population sizes depending on the complexity of
the given load profile are selected, namely a population of 40 individuals for the simple
load profile and a population of 80 individuals for the complex load profile – following the
same concept of defining the population size of load profile (A) –. Moreover, the seeding
rate of the initial population is set to 10% of the population size. The EA GLEAM with
the selected settings and a completely random generated initial population is performed
10 times for each evaluation metric, i.e., convergence speed where the fitness value is set
as the termination criterion and solution quality where the number of evaluations is set
as the termination criterion. The results are averaged and serve as a reference value for
assessing the performance of the hybridization approaches. The services are deployed on a
cluster with four computing nodes where each node has 15 Intel cores (2,4 GHz), 196 GB
RAM and an SSD disk. The nodes are connected to each other by a LAN with 10 GBit/s
bandwidth (for more details about the deployment, see Section 4.4.2).

For evaluating the proposed ML hybridization approaches, the three modes, namely cluster,
best and mix of the unsupervised hybridization approach and the LSTM model for the
supervised hybridization approach with different feature combinations, i.e., c, g, w, cg, cw,
gw and cgw are evaluated. The average of several runs, namely 10 times for each mode and
the combination is taken to minimize the possible effect of the non-deterministic behavior
of the clustering algorithm, EA and the LSTM model.

Results Tables 6.6 and 6.7 show our first concluded results for the convergence speed,
i.e., the effort spent by the EA GLEAM to reach the predefined fitness value. Moreover,

156

6.3. Evaluation

Mode Feature
Type

Simple Load
Profile

[2012-04-03]

Complex Load
Profile

[2011-07-18]

Simple Load
Profile

[2012-04-03]

Complex
Load

Profile
[2011-07-18]

Number of
Evaluations
[average]

Number of
Evaluations
[average]

Fitness
[average]

Fitness
[average]

cluster

c 43074.3 61707 86507.3 51132.5
cg 41264.5 118179.8 88124.2 54912

cgw 50376 112009.8 88023.9 50697.2
cw 53492.1 57685.9 89759.6 49929.1
g 43990.7 104229 89453.5 50657.8

gw 44477.9 71880.2 89835.1 51961.7
w 48744.1 71703.7 90481 48852

best

c 57614.8 92853.4 88274.7 48179.9
cg 57423.3 115092.7 88970.2 50918

cgw 45196.2 101741.6 88694 48869.4
cw 43842 125075 88352.5 48761.2
g 45669.4 88704 86054.4 48423.6

gw 51626.5 133164.5 90407.9 49541.9
w 52989.4 122673 87662.1 50925.5

mix

c 46666.9 97261.3 85673.8 50634
cg 57110 83495 90651.3 51586.4

cgw 59608.4 134459.7 89244.3 48268.6
cw 49393.9 151148.4 90245.2 55689
g 65141.7 122506.3 85126.5 51608.2

gw 45019.9 52744 88418.1 49727.4
w 41117 62922 86560.7 48597.6

reference value 48202 100071 88570 50259

Table 6.6.: Results of the unsupervised approach. The best results, i.e., the lowest number of fitness
evaluations and highest solution quality are highlighted per mode. The last row provides the results of pure
EA GLEAM as reference value without the S&L Service

they present the first achieved results for the solution quality, i.e., the achieved fitness
value within the predefined number of evaluations. The predefined fitness value is set to
87000 and 51000 for the simple load profile (2012-04-03) and the complex load profile
(2012-07-18), respectively. For the solution quality, the predefined number of evaluations
is set to 57000 and 126000 for the simple load profile (2012-04-03) and the complex load
profile (2012-07-18), respectively. While Table 6.6 compares the reference results of pure
EA GLEAM to the results obtained by applying the unsupervised hybridization approach to
assist EA GLEAM, Table 6.7 compares the results of using the supervised hybridization
approach, i.e., LSTM model to the reference values. On one hand, the results for the simple
load profile shown in Figures 6.21 and 6.22 indicate an improvement in the convergence
speed of the hybrid EA GLEAM for some features compared to the completely random

157

6. Increasing the Applicability of Evolutionary Algorithms in Cluster Computing Environments

Mode Feature
Type

Simple Load
Profile

[2012-04-03]

Complex Load
Profile

[2011-07-18]

Simple Load
Profile

[2012-04-03]

Complex
Load

Profile
[2011-07-18]

Number of
Evaluations
[average]

Number of
Evaluations
[average]

Fitness
[average]

Fitness
[average]

LSTM

32 45980.9 49699.7 89432.1 48940.3
64 60216.2 100684.5 89289.9 51076.4
128 48755.9 107953.8 87322.8 49185.2
256 58411.7 98221.9 90047.9 51288.1

ensemble 48202 97112.6 85803.4 48012.1
reference value 48202 100071 88570 50259

Table 6.7.: Results of the supervised approach. The best results, i.e., the lowest number of fitness evaluations
and highest solution quality are highlighted per mode. The last row provides the results of pure EA GLEAM
as reference value without the S&L Service

seeding. Precisely, hybrid EA GLEAM requires less effort up to 15% to reach a solution
with a fitness of 87.000. On the other hand, a less impact on the final solution quality is
observed, where an enhancement of about 2% is measured as shown in Figures 6.23 and
6.24.

cluster best mix
Unsupervised Approach

0

10000

20000

30000

40000

50000

60000

70000

Av
er

ag
e

of
 E

va
lu

at
io

ns

Feature Type
c
cg
cgw

cw
g
gw

w
reference value

Figure 6.21.: Results of the convergence speed for the load profile A (simple) applying the unsupervised
hybridization approach

158

6.3. Evaluation

lstm
Supervised Approach

0

10000

20000

30000

40000

50000

60000

70000

Av
er

ag
e

of
 E

va
lu

at
io

ns

Feature Type
32
64
128
256
ensemble
reference value

Figure 6.22.: Results of the convergence speed for the load profile A (simple) applying the supervised
hybridization approach

cluster best mix
Unsupervised Approach

0

20000

40000

60000

80000

Fi
tn

es
s

Feature Type
c
cg
cgw
cw
g
gw
w
reference value

Figure 6.23.: Results of the solution quality for the load profile A (simple) applying the unsupervised
hybridization approach

159

6. Increasing the Applicability of Evolutionary Algorithms in Cluster Computing Environments

lstm
Supervised Approach

0

20000

40000

60000

80000

Fi
tn

es
s

Feature Type
32
64
128
256
ensemble
reference value

Figure 6.24.: Results of the solution quality for the load profile A (simple) applying the supervised hybridiza-
tion approach

160

6.3. Evaluation

For the complex load profile, the obtained results show improvements in the convergence
speed of the EA GLEAM using the proposed ML hybridization approaches compared to the
completely random seeding. The hybridization approaches reduce the required effort up to
50% to reach a solution with a fitness of 51.000 as shown in Figures 6.25 and 6.26. However,
a less impact on the final solution quality by applying the ML hybridization approaches is
observed, where an enhancement of about 11% is measured as shown in Figures 6.27 and
6.28.

cluster best mix
Unsupervised Approach

0

25000

50000

75000

100000

125000

150000

175000

Av
er

ag
e

of
 E

va
lu

at
io

ns

Feature Type
c
cg

cgw
cw

g
gw

w
reference value

Figure 6.25.: Results of the convergence speed for the load profile B (complex) applying the unsupervised
hybridization approach

lstm
Supervised Approach

0

20000

40000

60000

80000

100000

120000

Av
er

ag
e

of
 E

va
lu

at
io

ns

Feature Type
32
64
128

256
ensemble
reference value

Figure 6.26.: Results of the convergence speed for the load profile B (complex) applying the supervised
hybridization approach

161

6. Increasing the Applicability of Evolutionary Algorithms in Cluster Computing Environments

cluster best mix
Unsupervised Approach

0

10000

20000

30000

40000

50000

Fi
tn

es
s

Feature Type
c
cg
cgw
cw
g
gw
w
reference value

Figure 6.27.: Results of the solution quality for the load profile B (complex) applying the unsupervised
hybridization approach

lstm
Supervised Approach

0

10000

20000

30000

40000

50000

Fi
tn

es
s

Feature Type
128
256
32
64
ensemble
reference value

Figure 6.28.: Results of the solution quality for the load profile B (complex) applying the supervised
hybridization approach

162

6.3. Evaluation

Results Discussion The results introduced in the above tables and figures show the
averaged results of applying the proposed ML hybridization approaches over ten runs for
each mode and feature combination. The best result of each mode with the corresponding
feature is presented in Figure 6.29. The EA effort, i.e., the computational effort, is reduced
up to 15% for the simple load profile by applying the mode mix with the weather features.
Furthermore, an acceleration of about 50% for the complex load profile by using the LSTM
model with 32 neurons per layer is achieved. It is noticeable that not all mode and feature
combinations decrease the EA effort to reach a solution with the predefined fitness. For
example, applying the mix mode with generation features increases such effort about 35%
for the simple load profile and about 51% for the complex load profile with the consumption
and weather features as shown in Table 6.6. This is due to the fact that some modes and
features seed the initial population with inadequate solutions which disturb the search
process of the EA. Consequently, more effort has to be spent by the EA to eliminate the
effect of such disturbances. This is also the case for the solution quality metric where
seeding the initial population does not obviously improve the fitness value compared to the
reference value. For the fitness value of the simple load profile, there is no big enhancement.
Indeed, only a small improvement up to 2% can be gained for the simple load profile as
shown in Figure 6.29. However for the complex one, more enhancement up to 11% can be
observed.

-14

-9

-15

-5

-20

-15

-10

-5

0

cluster cg best cw mix w lstm 32

2 2 2 2

0

0.5

1

1.5

2

2.5

cluster w best gw mix cg lstm 256

-42

-11

-47
-50

-60

-50

-40

-30

-20

-10

0

cluster cw best g mix gw lstm 32

9

1

11

2

0

2

4

6

8

10

12

cluster cg best w mix cw lstm 256

Demanded computational effort in % Solution Quality enhancement in %

Si
m

p
le

 P
ro

fi
le

 A
C

o
m

p
le

x
P

ro
fi

le
 B

Figure 6.29.: Comparing the best results of both load profiles, A (simple) and B (complex)

To summarize, the obtained results in Tables 6.6 and 6.7 show that the seeding of the initial
population with prior solutions or new solutions generated based on the knowledge learned
from the prior ones can impact the behavior of the EA positively or negatively confirming the
results of hybridizing EA introduced in the literature, e.g., [120, 175, 97, 63]. I.e, not every
initial population seeding strategy has a positive effect on the convergence speed and final
solution quality. Moreover, there is no one optimal mode with a specific feature combination

163

6. Increasing the Applicability of Evolutionary Algorithms in Cluster Computing Environments

that always has a positive effect on the search process of the EA for both considered load
profiles. It is noticeable that applying the modes which use some randomness in the selection
process of similar solutions, namely the cluster and mix modes outperform the exact mode,
i.e., the best mode. This is due to the fact that such randomness increases the likelihood to
seed the initial population with diverse solutions assisting the EA to discover new areas in
the search space. The LSTM Model introduces no results to enhance the solution quality for
both load profiles. The unconvincing performance of the LSTM model for improving the
solution quality can be attributed to the lack of training data. The generated dataset has only
364 training samples which are insufficient to train such a complex model. However, for
reducing the required computational effort, the LSTM shows at least one time a convincing
performance by decreasing the required effort to reach the predefined fitness value for the
complex load profile up to 50% compared to the reference value. This introduces LSTM
as a promising approach to generate new solutions based on the gained knowledge from
the prior ones for seeding the initial population of an EA. It is clear that the proposed ML
hybridizing approaches for assisting the EA in solving the problem of scheduling DERs
affect the convergence speed more than the solution quality. This is due to the fact that it is
much harder to improve the fitness of the final solution introduced by the basic EA when
this solution is the optimal one or very close to the optimal one. For example, the basic EA
GLEAM reaches the optimal solution or the near-optimal one with a fitness of 87000 for
the simple load profile. Nevertheless, an overall increase in convergence speed by utilizing
the ML hybridizing approaches for both load profiles is observed. Consequently, seeding
the initial population for solving the problem of scheduling DERs can accelerate the search
process to solve the considered optimization problem. Moreover, it shows a potential in the
enhancement of the solution quality.

6.4. Summary

In this chapter, a novel and generic microservice-based software method to facilitate the
hybridization process of an EA in high-performance computing environments is introduced
answering the research question [RQ5]. Beside microservices, two lightweight technologies,
namely container virtualization and the publish/subscribe messaging paradigm are exploited
to develop a modular, extendable, flexible, generic and scalable software solution to provide
access to different hybridization methods. These three technologies together provide an
easy hybridization of an existing EA, e.g., seeding of the initial population of EAs based
on ML methods and models. Moreover, it guarantees a seamless deployment of several hy-
bridization approaches in a scalable runtime environment and even in a big data environment
paving the road for utilizing ML with EA for solving large-scale optimization problems. For
evaluation purposes, BeeNestOpt.IAI is extended to integrate the proposed software solution.
Its generality and applicability are tested by introducing two new hybridization approaches.
The first hybridization approach, namely the unsupervised hybridization approach is realized
as a clustering problem, in which the potential similar prior solutions are selected from the
prior computed using clustering algorithms. The second hybridization approach, namely the
supervised hybridization approach utilizes the Seq2Seq LSTM models with multiple-output

164

6.4. Summary

layers to predict new solutions based on the gained knowledge from prior solutions. A use
case scenario for solving the problem of scheduling DERs is defined for evaluating the
applicability of the proposed ML hybridization approaches. This use case instruments 50
DERs and two load profiles, namely a simple load profile and a complex load profile for
finding an optimal hourly day-ahead scheduling plan. In this evaluation, the EA GLEAM is
exemplarily integrated into the microservice architecture to be assisted by both approaches
for generating a part of the initial population. The Global Model as a parallelization model
of EA is chosen. A high-performance computing environment, namely a cluster with 60
cores and 196 GB of RAM is used for testing the impact of both hybridization approaches
on the behavior of the EA GLEAM. Such an impact is measured in terms of convergence
speed and solution quality. The first observed results differ depending on the complexity of
the optimization task. For the simple load profile, a little solution quality enhancement of
up to 2% is obtained. However, a speedup in the convergence speed is measured with up
to 15% reduction of the computational effort to reach a predefined fitness. The results of
the complex load profile show more performance enhancements, i.e., an improvement of
up to 11% in the solution quality and a reduction of 50% in the convergence speed. These
promising results show the potential of the proposed hybridization approaches to accelerate
EAs for solving complex optimization problems.

165

7. Summary and Outlook

7.1. Summary

Population-based metaheuristics like Evolutionary Algorithms (EAs) are general optimiza-
tion methods that are applied to solve a plethora of applications in business, commerce
and engineering, to name a few. Their generality arises from the fact that they can solve
any optimization problem with little problem-specific knowledge. Moreover, EAs are good
alternatives for finding solutions with good quality for complex and large-scale optimization
problems whereas other optimization techniques, namely the exact and heuristics methods
provide solutions with poor quality or require too much time [3]. It is obvious that the
exploration process of EAs to find a feasible solution in a complex and large-scale search
space is significantly time-consuming, requires high computational demands. This occurs
particularly in modern applications where the search space becomes more complex due to,
e.g., multi domain-simulation. This limits the application of EAs on modern real-world
optimization problems. In this thesis, our contributions for facilitating the usage and increas-
ing the applicability of EAs in cluster computing environments based on modern software
and hardware are presented. The first contribution focuses on conceptualizing and devel-
oping a generic and modular software architecture which is called BeeNestOpt.IAI based
on microservices, container virtualization and the publish/subscribe messaging paradigm.
BeeNestOpt.IAI facilitates the usage of EAs in cluster computing environments such as
a cluster or a cloud answering three research questions [RQ1, RQ3 and RQ4]. This ar-
chitecture is a combination of modular components known as microservices where each
one can be scaled and developed independently. Each microservice is deployed and ex-
ecuted in one container or more. A set of APIs are designed to achieve communication
among the microservice, the integration of any existing EA and the communication to other
tools and services like simulators written in different programming languages. Moreover,
BeeNestOpt.IAI provides a runtime environment for accelerating EAs by parallelizing
their execution in cluster computing and cloud runtime infrastructures. It is designed to
support the realization of any parallelization model from the three basic models, namely
the Global Model (Master-Worker Model), the Coarse-Grained Model (Island Model) and
the Fine-Grained Model. In the proposed software architecture, we distinguish between the
functionalities related to the parallelization model and the ones related to the framework
such as coordination. Firstly, the Global Model is realized and evaluated by developing
five different microservices that carry out the functionalities of this model. Secondly, the
Coarse-Grained Model is mapped to the proposed software architecture by adding new mi-
croservices or adapting the existing ones. Indeed, six decoupled and cohesive microservices
carry out the tasks related to the Coarse-Grained Model. Both models and the functionalities

167

7. Summary and Outlook

of the proposed software solution are evaluated by using an existing EA, namely GLEAM
where the entire framework is deployed on a cluster with 4 nodes and 128 cores for per-
formance measurements. The scalability of the proposed software architecture in terms
of the communication overhead and the parallel performance, i.e., speedup is presented
and discussed. For the Global Model, the scalability is measured by varying the number of
workers between 1 and 120 workers with a delay time for evaluating each individual set to
0.9 seconds. The network load, i.e., communication overhead is observed by changing the
population size between 120 and 960 individuals. It is worth noting that the communication
overhead is low and only slightly increasing in proportion to the size of the population. By
analyzing the obtained results, we can conclude that the Global Model based on microser-
vices and container technology is useful for an optimization problem with an evaluation
time of more than 0.1 seconds per individual. The speedup test shows that the Global
Model can achieve an almost linear speedup with an increase in the number of workers.
Indeed, BeeNestOpt.IAI is able to guarantee an increase in the speedup up to a specific
threshold which is reached by using a number of workers ranging between 50 and 60. For
the Coarse-Grained Model, the overhead and the speedup are evaluated and discussed. For
assessing the migration overhead, four communication topologies, namely Ring, Bi-Ring,
Ladder and Complete with several configurations setup such as varying the migration rate
between 1 and 16384 individuals and the number of islands between 1 and 120 are applied.
Moreover, for simulating different complexities of optimization problems, the delay feature
of the applied GLEAM version is used and set to different evaluation times ranging between
1 ms and 32 ms. The obtained results show that the underlying microservice architecture for
realizing the Coarse-Grained Model introduces an almost constant migration overhead for a
migration rate lower than 128 migrants and substantial speedup rates.

The second contribution of the present thesis builds upon the first one by focusing on
enhancing the parallel performance of the three basic parallelization models answering
three research questions [RQ2, RQ3 and RQ4]. In this contribution, we introduce our
software architecture to hierarchically combine arbitrary parallelization models from the
three basic ones with minimum adaptation efforts. We demonstrate the flexibility, generality
and modularity of BeeNestOpt.IAI by combining the Coarse-Grained Model with the
Global Model using eight microservices. This hybrid model eliminates the drawbacks of
each model and simultaneously combines their advantages. A cluster computer is used to
deploy the proposed microservices to form the Coarse-Grained - Global Hybrid Model. The
problem of scheduling distributed energy resources is selected as a real-world optimization
problem. This enables us not only to evaluate the performance of the proposed software
architecture in terms of scalability and communication overhead but to also assess the
ability of parallel EAs to solve such a scheduling problem. The evaluation is performed
in three steps. In the first step, we evaluate the Global Model to solve this problem by
changing the number of workers between 5 and 30 workers, whereas in the second step, we
evaluate the Coarse-Grained Model by comparing four communication topologies, namely
Ring, Bi-Ring, Ladder and Complete and varying the number of islands between 5 and 20
islands. Moreover, a synchronous migration policy with homogenous EA configuration are
compared with an asynchronous migration policy and heterogeneous EA configuration. In
the last step, the scalability and communication overhead of the Coarse-Grained - Global

168

7.1. Summary

Hybrid Model is evaluated by changing the number of islands and workers. It is noticeable
that the proposed software solution facilitates the process of combining two parallelization
models into one hierarchical model by increasing the parallel performance and at the same
time allowing the communication overhead to be on reasonable levels. Precisely, the Coarse-
Grained - Global Hybrid Model guarantees a speedup up to 4 times compared to its basic
models and up to 75 times compared to the sequential execution of the EA. Moreover, by
applying the heterogeneous configuration and the asynchronous migration an additional
speedup is achieved. The third contribution of this thesis focuses on expanding the problem
classes of EAs by extending BeeNestOpt.IAI to facilitate the hybridization process of
any existing EAs with other algorithmic approaches in cluster computing environments
which hence answers the fifth research question [RQ5]. The proposed solution allows
the hybridization of the step of generating the initial population of existing EAs with any
algorithms such as machine learning algorithms. This opens a new perspective to assist EAs
by solving a wide range of optimization problems. In order to analyze the feasibility of
the proposed design, two machine learning-based hybridization approaches are proposed.
While in the first approach, an unsupervised technique, namely clustering is realized, in
the second approach, a supervised technique, i.e., Sequence to Sequence (Seq2Seq) Long
Short-Term Memory (LSTM) models with multiple-output-layers is used. Both approaches
have the same task of assisting EAs by generating a part of the initial population based on
domain-based knowledge. However, they differ in the technique used to seed the initial
population. In the unsupervised approach, some historical solutions are selected based on
external knowledge. In the supervised approach, new solutions are generated based on the
learned knowledge gained from the historical solutions. We combine the hybridization
approaches of EA with the parallel EA to solve the problem of scheduling distributed energy
resources. In such a way, we evaluate BeeNestOpt.IAI and the two corresponding developed
hybridization approaches. For measuring the convergence speed and the solution quality,
two use case scenarios are defined. These use case scenarios are distinguished in their
complexity. While a simple load profile is used in the first use case, a more complex one is
considered in the second one. The results show that assisting the EA by seeding the initial
population does not introduce a sufficient impact on the solution quality of the first use case
scenario. However, a good speedup in the convergence speed is gained. For the second use
case scenario, both proposed approaches enhance the solution quality and accelerate the
search process.

To summarize and as shown in Table 7.1, the contributions of this thesis fulfill the main gaps
of the mentioned libraries and frameworks reviewed in Section 3. Precisely, BeeNestOpt.IAI
supports the parallelization of any existing EAs according to any parallelization model
of the three basic ones. Moreover, it provides a simple and applicable mechanism to
enhance the parallel performance of the basic models by combining them in a hierarchical
structure with minimal adaptation efforts. One main feature that distinguishes our software
architecture from others is that it allows the hybridization of any part of a parallel EA with
any algorithmic approach. Besides these three beneficial traits, we facilitate the deployment
of any existing EA in cluster computing environments or a cloud, since it is designed as a
web-based application providing an easy-to-use management and execution environment.

169

7. Summary and Outlook

Framework
or library Global Coarse-

Grained
Fine-

Grained
Hierar-
chical Pool Hybrid-

ization

Supporting
cloud

or
cluster

Integration
of

existing
EAs

Cooperating
with

external
simulators

Hiding
the

technical
aspects

MALLBA
[8, 7] - + - - - + - - - -

ParadisEO
[33] + + - + - + - - - -

DREAM
[145] - + - - - - - - - -

DEAP
[62] + + - - - - - - - -

JCLEC
[181] + - - - - + - - - -

MRPGA
[91] + - - - - - + - - -

Verma et al.
[183] + - - - - - + - - -

elephant56
[165] + + + - - - + - - -

Martino et al.
[45] + + + - - - + - - -

Fazenda et al.
[52] - + - - - - + - - -

Flex-GP
[170] - + - - - - + - - -

jMetaISP
[136] + + + - - - + - - -

AMQPGA
[163, 164] + - - - - - + - - -

KafkEO
[73] - - - - + - + - - -

Lim et al.
[115] - - - + - - + - - -

P-CAGE
[61] - - - + - - + - - -

evospace-js
[66] - - - - + - + - - -

Meri et al.
[131] - - - - + - + - - -

Roy et al.
[161] - - - - + - + - - -

Merelo et al.
[130] - - - - + - + - - -

Jurczuk et al.
[93, 94, 95] + - - - - - + - - -

Luong et al.
[121] - + - - - - + - - -

BeeNestOpt.IAI + + + + - + + + + +

Table 7.1.: Comparison of the existing frameworks for parallel EAs to the BeeNestOpt.IAI

Furthermore, our proposed software architecture achieves seamless cooperation between
EAs and other external tools and services like simulators.

7.2. Outlook

The proposed software architecture – BeeNestOpt.IAI – to increase the usage of EAs shows
that using modern software technologies on powerful hardware opens new perspectives to
face the main drawbacks of EAs such as scalability. Furthermore, it allows the extension
of the application space of EAs to include more complex and large-scale optimization

170

7.2. Outlook

problems coming from Big Data applications, where large amounts of data are generated
by sensing technologies and other Internet of Things (IoT) applications. The present thesis
answers the four research questions introduced in Section 1.2 and paves the road for further
research to enhance EAs, e.g., by reducing the amount of execution time and achieving
better solution quality.

In the first contribution of this thesis which answers the following three research questions:

• Research Question 1 [RQ1]: Which software design is adequate for parallelizing
EAs according to the basic parallelization models in a cluster computing environment?

• Research Question 3 [RQ3]: What are the adequate methods to facilitate the usage
of existing EAs in a cluster computing environment?

• Research Question 4 [RQ4]: What are the adequate methods to facilitate the interac-
tion between EAs and external tools and applications (e.g., simulators)?

We only focus on the three basic parallelization models, namely the Global Model (Master-
Worker Model), the Fine-Grained Model (grid model) and the Coarse-Grained Model
(Island Model). However, it is worthwhile to test if the proposed software architecture is
able to realize other models such as non-classical parallelization models for EAs, e.g., the
Pool Model. For the Coarse-Grained Model (Island Model), four static communication
technologies are studied in terms of speedup and communication overhead. Nevertheless,
it is recommended to extend the present software architecture to dynamically change the
topologies during one optimization task building dynamic topology.

The second contribution of this thesis answers the second research question, namely

• Research Question 2 [RQ2]: Which benefits can be obtained from combining two
or more parallel models of EAs into one parallel solution in a cluster computing
environment?

For increasing the parallel performance of the basic parallelization models and for inten-
sively evaluating the flexibility, generality and modularity of the BeeNestOpt.IAI, other
hybridizations of the parallelization models for EAs, e.g., the Coarse - Fine-Grained hy-
brid Model or the Coarse - Coarse-Grained hybrid Model have to be comprehended and
analyzed.

For increasing the performance and the applicability of EAs, this thesis introduces a new soft-
ware method to hybridize parallel EA in cluster computing environment and proposes two
approaches to hybridize EA with ML algorithms to seed the initial population considering
domain-based knowledge answering the fifth research question, i.e.,

• Research Question 5 [RQ5]: Which software design is adequate for hybridizing of
existing EAs with other algorithms in a cluster computing environment?

However, the same seeding or an adopted approach can be applied to other elements of an
EA, e.g., the parent or survivors could be partially seeded by the proposed ML hybridization
approaches or by adding adequate local search heuristics to improve descendants or to
generate offspring. Additionally, other hybridization approaches, e.g., using neural networks
for evaluating the proposed solutions can be applied and studied. Finally, it is of utmost

171

7. Summary and Outlook

importance to integrate the whole proposed software into a complex workflow that consists
of different algorithms, software components, tools, services and simulators in order to
solve more complex and realistic optimization problem such as the Energy Management
System (EMS).

172

Bibliography

[1] Ravindra K Ahuja, James B Orlin, and Ashish Tiwari. “A greedy genetic algorithm
for the quadratic assignment problem”. In: Computers&Operations Research, Vol.
27, No. 10 (2000), pp. 917–934. DOI: 10.1016/S0305-0548(99)00067-2
(cit. on pp. 4, 44).

[2] Enrique Alba. “Parallel evolutionary algorithms can achieve super-linear perfor-
mance”. In: Information Processing Letters, Vol. 82, No. 1 (2002), pp. 7–13. DOI:
10.1016/S0020-0190(01)00281-2 (cit. on pp. 3, 78, 79, 93, 126).

[3] Enrique Alba. Parallel metaheuristics: a new class of algorithms. Vol. 47. (2005).
DOI: 10.1002/0471739383 (cit. on pp. 1, 167).

[4] Enrique Alba and Marco Tomassini. “Parallelism and evolutionary algorithms”. In:
IEEE transactions on evolutionary computation, Vol. 6, No. 5 (2002), pp. 443–462.
DOI: 10.1109/TEVC.2002.800880 (cit. on pp. 17, 18, 21).

[5] Enrique Alba, José M Troya, et al. “A survey of parallel distributed genetic algo-
rithms”. In: Complexity, Vol. 4, No. 4 (1999), pp. 31–52. DOI: 10.5555/315491.
315495 (cit. on pp. 18, 21).

[6] Enrique Alba and José M Troya. “Improving flexibility and efficiency by adding
parallelism to genetic algorithms”. In: Statistics and Computing, Vol. 12, No. 2
(2002), pp. 91–114. DOI: 10.1023/A:1014803900897 (cit. on p. 21).

[7] Enrique Alba et al. “Efficient parallel LAN/WAN algorithms for optimization. The
MALLBA project”. In: Parallel Computing, Vol. 32, No. 5–6 (2006), pp. 415–440.
DOI: 10.1016/j.parco.2006.06.007 (cit. on pp. 37, 47, 170).

[8] Enrique Alba et al. “MALLBA: A library of skeletons for combinatorial optimisa-
tion”. In: European Conference on Parallel Processing. (2002), pp. 927–932. DOI:
10.1007/3-540-45706-2_132 (cit. on pp. 3, 37, 47, 170).

[9] Florian Allerding et al. “Electrical load management in smart homes using evo-
lutionary algorithms”. In: European Conference on Evolutionary Computation in
Combinatorial Optimization. (2012), pp. 99–110. DOI: 10.1007/978-3-642-
29124-1_9 (cit. on p. 110).

[10] George S Almasi and Allan Gottlieb. Highly parallel computing. (1994) (cit. on
p. 27).

[11] Lázaro Alvarado-Barrios et al. “An evolutionary computational approach for the
problem of unit commitment and economic dispatch in microgrids under several
operation modes”. In: Energies, Vol. 12, No. 11 (2019), p. 2143. DOI: 10.3390/
en12112143 (cit. on pp. 108, 110).

173

https://doi.org/10.1016/S0305-0548(99)00067-2
https://doi.org/10.1016/S0020-0190(01)00281-2
https://doi.org/10.1002/0471739383
https://doi.org/10.1109/TEVC.2002.800880
https://doi.org/10.5555/315491.315495
https://doi.org/10.5555/315491.315495
https://doi.org/10.1023/A:1014803900897
https://doi.org/10.1016/j.parco.2006.06.007
https://doi.org/10.1007/3-540-45706-2_132
https://doi.org/10.1007/978-3-642-29124-1_9
https://doi.org/10.1007/978-3-642-29124-1_9
https://doi.org/10.3390/en12112143
https://doi.org/10.3390/en12112143

7. Bibliography

[12] Alex M Andrew. “Introduction to evolutionary computing”. In: Kybernetes. (2004).
DOI: 10.1108/03684920410699216 (cit. on p. 14).

[13] M Arenas et al. “JEO: a framework for Evolving Objects in Java”. In: Actas Jornadas
de Paralelismo, Vol. 1 (2001) (cit. on p. 38).

[14] Maribel García Arenas et al. “A framework for distributed evolutionary algorithms”.
In: International Conference on Parallel Problem Solving from Nature. (2002),
pp. 665–675. DOI: 10.1007/3-540-45712-7_64 (cit. on p. 3).

[15] Ehsan Asadi et al. “Multi-objective optimization for building retrofit: A model using
genetic algorithm and artificial neural network and an application”. In: Energy and
Buildings, Vol. 81 (2014), pp. 444–456. DOI: 10.1016/j.enbuild.2014.06.
009 (cit. on pp. 23, 45).

[16] Alireza Askarzadeh. “A memory-based genetic algorithm for optimization of power
generation in a microgrid”. In: IEEE transactions on sustainable energy, Vol. 9, No.
3 (2017), pp. 1081–1089. DOI: 10.1109/TSTE.2017.2765483 (cit. on pp. 4,
46, 110).

[17] Masri Ayob and Graham Kendall. “A survey of surface mount device placement
machine optimisation: Machine classification”. In: European Journal of Operational
Research, Vol. 186, No. 3 (2008), pp. 893–914. DOI: 10.1016/j.ejor.2007.
03.042 (cit. on p. 1).

[18] Thomas Bäck, Frank Hoffmeister, and Hans-Paul Schwefel. “A survey of evolu-
tion strategies”. In: Proceedings of the fourth international conference on genetic
algorithms. (1991) (cit. on p. 11).

[19] Muhammed Fatih Balin, Abubakar Abid, and James Zou. “Concrete autoencoders:
Differentiable feature selection and reconstruction”. In: International conference on
machine learning. (2019), pp. 444–453 (cit. on p. 31).

[20] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. “Learning long-term dependen-
cies with gradient descent is difficult”. In: IEEE transactions on neural networks,
Vol. 5, No. 2 (1994), pp. 157–166. DOI: 10.1109/72.279181 (cit. on p. 33).

[21] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. “Learning long-term dependen-
cies with gradient descent is difficult”. In: IEEE transactions on neural networks,
Vol. 5, No. 2 (1994), pp. 157–166. DOI: 10.1109/72.279181 (cit. on p. 136).

[22] Jörg Biethahn and Volker Nissen. Evolutionary algorithms in management applica-
tions. (2012). DOI: 10.1007/978-3-642-61217-6 (cit. on p. 1).

[23] Christian Blume and Wilfried Jakob. GLEAM - General Learning Evolutionary
Algorithm and Method: Ein evolutionärer Algorithmus und seine Anwendungen.
Vol. 32. (2009). DOI: 10.5445/KSP/1000013553 (cit. on pp. 24–26, 79, 81).

[24] Christian Blume and Wilfried Jakob. “GLEAM-An Evolutionary Algorithm for
Planning and Control Based on Evolution Strategy”. In: GECCO Late Breaking
Papers. (2002), pp. 31–38 (cit. on pp. 24–26, 45, 79, 118).

174

https://doi.org/10.1108/03684920410699216
https://doi.org/10.1007/3-540-45712-7_64
https://doi.org/10.1016/j.enbuild.2014.06.009
https://doi.org/10.1016/j.enbuild.2014.06.009
https://doi.org/10.1109/TSTE.2017.2765483
https://doi.org/10.1016/j.ejor.2007.03.042
https://doi.org/10.1016/j.ejor.2007.03.042
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://doi.org/10.1007/978-3-642-61217-6
https://doi.org/10.5445/KSP/1000013553

7. Bibliography

[25] Christian Blume and Andrea Roli. “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison”. In: ACM computing surveys (CSUR), Vol.
35, No. 3 (2003), pp. 268–308. DOI: 10.1145/937503.937505 (cit. on p. 1).

[26] Marlon Alexander Braun et al. “A neuro-genetic approach for modeling and op-
timizing a complex cogeneration process”. In: Applied Soft Computing, Vol. 48
(2016), pp. 347–358. DOI: 10.1016/j.asoc.2016.07.026 (cit. on p. 13).

[27] Alexander EI Brownlee et al. “Using a Markov network as a surrogate fitness
function in a genetic algorithm”. In: IEEE Congress on Evolutionary Computation.
(2010), pp. 1–8. DOI: 10.1109/CEC.2010.5586548 (cit. on p. 45).

[28] Peter Brucker, Yu N Sotskov, and Frank Werner. “Complexity of shop-scheduling
problems with fixed number of jobs: a survey”. In: Mathematical Methods of Oper-
ations Research, Vol. 65, No. 3 (2007), pp. 461–481. DOI: 10.1007/s00186-
006-0127-8 (cit. on p. 110).

[29] Eduard Bullich-Massaguí et al. “Microgrid clustering architectures”. In: Applied
energy, Vol. 212 (2018), pp. 340–361. DOI: 10.1016/j.apenergy.2017.12.
048 (cit. on p. 108).

[30] Tadeusz Burczyński et al. “Optimization and defect identification using distributed
evolutionary algorithms”. In: Engineering Applications of Artificial Intelligence, Vol.
17, No. 4 (2004), pp. 337–344. DOI: 10.1016/j.engappai.2004.04.007
(cit. on p. 42).

[31] Rainer E Burkard, Stefan E Karisch, and Franz Rendl. “QAPLIB–a quadratic
assignment problem library”. In: Journal of Global optimization, Vol. 10, No. 4
(1997), pp. 391–403. DOI: 10.1016/0377-2217(91)90197-4 (cit. on p. 44).

[32] EK Burke and AJ Smith. “Hybrid evolutionary techniques for the maintenance
scheduling problem”. In: IEEE transactions on power systems, Vol. 15, No. 1
(2000), pp. 122–128. DOI: 10.1109/59.852110 (cit. on pp. 4, 44).

[33] Sébastien Cahon, Nordine Melab, and E-G Talbi. “Paradiseo: A framework for the
reusable design of parallel and distributed metaheuristics”. In: Journal of heuristics,
Vol. 10, No. 3 (2004), pp. 357–380. DOI: 10.1023/B:HEUR.0000026900.
92269.ec (cit. on pp. 3, 37, 38, 47, 170).

[34] Erick Cantú-Paz. “A summary of research on parallel genetic algorithms”. In:
IlliGAL Report, University of Illinois. (1997) (cit. on pp. 18, 19, 21).

[35] Erick Cantú-Paz et al. “A survey of parallel genetic algorithms”. In: Calculateurs
paralleles, reseaux et systems repartis, Vol. 10, No. 2 (1998), pp. 141–171 (cit. on
pp. 2, 3, 18–22, 49).

[36] Erick Cantú-Paz. Efficient and accurate parallel genetic algorithms. Vol. 1. (2000).
DOI: 10.1007/978-1-4615-4369-5 (cit. on pp. 78, 82).

[37] Erick Cantú-Paz. “Topologies, migration rates, and multi-population parallel ge-
netic algorithms”. In: Proceedings of the 1st Annual Conference on Genetic and
Evolutionary Computation-Volume 1. (1999), pp. 91–98 (cit. on p. 20).

175

https://doi.org/10.1145/937503.937505
https://doi.org/10.1016/j.asoc.2016.07.026
https://doi.org/10.1109/CEC.2010.5586548
https://doi.org/10.1007/s00186-006-0127-8
https://doi.org/10.1007/s00186-006-0127-8
https://doi.org/10.1016/j.apenergy.2017.12.048
https://doi.org/10.1016/j.apenergy.2017.12.048
https://doi.org/10.1016/j.engappai.2004.04.007
https://doi.org/10.1016/0377-2217(91)90197-4
https://doi.org/10.1109/59.852110
https://doi.org/10.1023/B:HEUR.0000026900.92269.ec
https://doi.org/10.1023/B:HEUR.0000026900.92269.ec
https://doi.org/10.1007/978-1-4615-4369-5

7. Bibliography

[38] Erick Cantú-Paz and David E Goldberg. “Predicting speedups of idealized bounding
cases of parallel genetic algorithms”. In: In Back, T.(Ed.), Proceedings of the Seventh
International Conference on Genetic Algorithms. (1996), pp. 113–121 (cit. on p. 20).

[39] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. “Semi-supervised learn-
ing (chapelle, o. et al., eds.; 2006)[book reviews]”. In: IEEE Transactions on Neural
Networks, Vol. 20, No. 3 (2009), pp. 542–542. DOI: 10.1109/TNN.2009.
2015974 (cit. on p. 30).

[40] Zhaomin Chen et al. “Autoencoder-based network anomaly detection”. In: 2018
Wireless Telecommunications Symposium (WTS). (2018), pp. 1–5. DOI: 10.1109/
WTS.2018.8363930 (cit. on p. 31).

[41] F. M. Cleveland. “IEC 61850-7-420 communications standard for distributed energy
resources (DER)”. In: 2008 IEEE Power and Energy Society General Meeting -
Conversion and Delivery of Electrical Energy in the 21st Century. (2008), pp. 1–4.
DOI: 10.1109/PES.2008.4596553 (cit. on pp. 108, 110).

[42] George F Coulouris, Jean Dollimore, and Tim Kindberg. Distributed systems: con-
cepts and design. (2005) (cit. on p. 27).

[43] Dipankar Dasgupta and Zbigniew Michalewicz. Evolutionary algorithms in engi-
neering applications. (1997). DOI: 10.1007/978-3-662-03423-1 (cit. on
p. 1).

[44] Luca Di Gaspero and Andrea Schaerf. “EasyLocal++: an object-oriented framework
for the flexible design of local-search algorithms”. In: Software: Practice and
Experience, Vol. 33, No. 8 (2003), pp. 733–765. DOI: 10.1002/spe.524 (cit. on
p. 47).

[45] Sergio Di Martino et al. “Towards migrating genetic algorithms for test data gener-
ation to the cloud”. In: Software Testing in the Cloud: Perspectives on an Emerg-
ing Discipline. (2013), pp. 113–135. DOI: 10.4018/978-1-4666-2536-
5.ch006 (cit. on pp. 3, 40, 47, 170).

[46] Andreas Drexl and Sigrid Knust. “Sports league scheduling: graph-and resource-
based models”. In: Omega, Vol. 35, No. 5 (2007), pp. 465–471. DOI: 10.1016/j.
omega.2005.08.002 (cit. on p. 1).

[47] Joseph C Dunn. “A fuzzy relative of the ISODATA process and its use in detecting
compact well-separated clusters”. In: Journal of Cybernetics. (1973). DOI: 10.
1080/01969727308546046 (cit. on p. 143).

[48] Juan J. Durillo and Antonio J. Nebro. “jMetal: A Java framework for multi-objective
optimization”. In: Advances in Engineering Software, Vol. 42, No. 10 (2011),
pp. 760–771. DOI: https://doi.org/10.1016/j.advengsoft.2011.
05.014 (cit. on p. 41).

[49] Michael Eder. “Hypervisor-vs. container-based virtualization”. In: Future Internet
(FI) and Innovative Internet Technologies and Mobile Communications (IITM), Vol.
1 (2016). DOI: 10.1109/ICCV.2015.515 (cit. on p. 34).

176

https://doi.org/10.1109/TNN.2009.2015974
https://doi.org/10.1109/TNN.2009.2015974
https://doi.org/10.1109/WTS.2018.8363930
https://doi.org/10.1109/WTS.2018.8363930
https://doi.org/10.1109/PES.2008.4596553
https://doi.org/10.1007/978-3-662-03423-1
https://doi.org/10.1002/spe.524
https://doi.org/10.4018/978-1-4666-2536-5.ch006
https://doi.org/10.4018/978-1-4666-2536-5.ch006
https://doi.org/10.1016/j.omega.2005.08.002
https://doi.org/10.1016/j.omega.2005.08.002
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1080/01969727308546046
https://doi.org/https://doi.org/10.1016/j.advengsoft.2011.05.014
https://doi.org/https://doi.org/10.1016/j.advengsoft.2011.05.014
https://doi.org/10.1109/ICCV.2015.515

7. Bibliography

[50] Thomas Erl. Service-oriented architecture: concepts, technology, and design. (2005)
(cit. on p. 35).

[51] Patrick Th Eugster et al. “The many faces of publish/subscribe”. In: ACM computing
surveys (CSUR), Vol. 35, No. 2 (2003), pp. 114–131. DOI: 10.1145/857076.
857078 (cit. on p. 28).

[52] Pedro Fazenda, James McDermott, and Una May O’Reilly. “A Library to Run
Evolutionary Algorithms in the Cloud using MapReduce”. In: European Conference
on the Applications of Evolutionary Computation. (2012), pp. 416–425. DOI: 10.
1007/978-3-642-29178-4_42 (cit. on pp. 3, 41, 47, 170).

[53] Thomas A Feo and Mauricio GC Resende. “Greedy randomized adaptive search
procedures”. In: Journal of global optimization, Vol. 6, No. 2 (1995), pp. 109–133.
DOI: 10.1007/BF01096763 (cit. on p. 44).

[54] Filomena Ferrucci, Pasquale Salza, and Federica Sarro. “Using Hadoop MapReduce
for Parallel Genetic Algorithms: A Comparison of the Global, Grid and Island
Models”. In: Evolutionary computation, Vol. 26 (2017), pp. 535–567. DOI: 10.
1162/evco_a_00213 (cit. on p. 40).

[55] Filomena Ferrucci et al. “A framework for genetic algorithms based on hadoop”. In:
CoRR. (2013). DOI: 10.48550/arXiv.1312.0086 (cit. on p. 40).

[56] Filomena Ferrucci et al. “A parallel genetic algorithms framework based on Hadoop
MapReduce”. In: Proceedings of the 30th Annual ACM Symposium on Applied
Computing. (2015), pp. 1664–1667. DOI: 10.1145/2695664.2696060 (cit.
on p. 40).

[57] Andreas Fink and Stefan Voß. “HotFrame: a heuristic optimization framework”.
In: Optimization software class libraries. (2003), pp. 81–154. DOI: 10.1007/0-
306-48126-X_4 (cit. on p. 47).

[58] David B Fogel. “An introduction to simulated evolutionary optimization”. In: IEEE
transactions on neural networks, Vol. 5, No. 1 (1994), pp. 3–14. DOI: 10.1109/
72.265956 (cit. on p. 2).

[59] Gary B Fogel and David W Corne. Evolutionary computation in bioinformatics.
(2003). DOI: 10.1016/B978-155860797-2/50000-7 (cit. on p. 1).

[60] Gianluigi Folino, Clara Pizzuti, and Giandomenico Spezzano. “Training distributed
GP ensemble with a selective algorithm based on clustering and pruning for pattern
classification”. In: IEEE Transactions on Evolutionary Computation, Vol. 12, No. 4
(2008), pp. 458–468. DOI: 10.1109/TEVC.2007.906658 (cit. on p. 42).

[61] Gianluigi Folino and Giandomenico Spezzano. “P-cage: an environment for evolu-
tionary computation in peer-to-peer systems”. In: European Conference on Genetic
Programming. (2006), pp. 341–350. DOI: 10.1007/11729976_31 (cit. on
pp. 42, 170).

[62] Félix-Antoine Fortin et al. “DEAP: Evolutionary algorithms made easy”. In: The
Journal of Machine Learning Research, Vol. 13, No. 1 (2012), pp. 2171–2175. DOI:
10.5555/2503308.2503311 (cit. on pp. 3, 37, 38, 41, 43, 47, 170).

177

https://doi.org/10.1145/857076.857078
https://doi.org/10.1145/857076.857078
https://doi.org/10.1007/978-3-642-29178-4_42
https://doi.org/10.1007/978-3-642-29178-4_42
https://doi.org/10.1007/BF01096763
https://doi.org/10.1162/evco_a_00213
https://doi.org/10.1162/evco_a_00213
https://doi.org/10.48550/arXiv.1312.0086
https://doi.org/10.1145/2695664.2696060
https://doi.org/10.1007/0-306-48126-X_4
https://doi.org/10.1007/0-306-48126-X_4
https://doi.org/10.1109/72.265956
https://doi.org/10.1109/72.265956
https://doi.org/10.1016/B978-155860797-2/50000-7
https://doi.org/10.1109/TEVC.2007.906658
https://doi.org/10.1007/11729976_31
https://doi.org/10.5555/2503308.2503311

7. Bibliography

[63] Tobias Friedrich and Markus Wagner. “Seeding the initial population of multi-
objective evolutionary algorithms: A computational study”. In: Applied Soft Com-
puting, Vol. 33 (2015), pp. 223–230. DOI: 10.1016/j.asoc.2015.04.043
(cit. on p. 163).

[64] K Ganesh and M Punniyamoorthy. “Optimization of continuous–time production
planning using hybrid genetic algorithms–simulated annealing”. In: The Interna-
tional Journal of Advanced Manufacturing Technology, Vol. 26, No. 1-2 (2005),
pp. 148–154. DOI: 10.1007/s00170-003-1976-4 (cit. on p. 23).

[65] Mario Garcia-Valdez et al. “The evospace model for pool-based evolutionary algo-
rithms”. In: Journal of Grid Computing, Vol. 13, No. 3 (2015), pp. 329–349. DOI:
Garcia-Valdez (cit. on pp. 3, 41, 42).

[66] Mario García-Valdez and JJ Merelo. “evospace-js: asynchronous pool-based ex-
ecution of heterogeneous metaheuristics”. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion. (2017), pp. 1202–1208. DOI:
10.1145/3067695.3082473 (cit. on pp. 3, 37, 42, 48, 170).

[67] David E Golberg. Genetic algorithms in search, optimization, and machine learning.
1989. DOI: 10.5555/534133 (cit. on p. 1).

[68] Yue-Jiao Gong et al. “Distributed evolutionary algorithms and their models: A survey
of the state-of-the-art”. In: Applied Soft Computing, Vol. 34 (2015), pp. 286–300.
DOI: 10.1016/j.asoc.2015.04.061 (cit. on pp. 20, 22, 47, 99).

[69] V Scott Gordon and Darrell Whitley. “Serial and parallel genetic algorithms as
function optimizers”. In: ICGA. (1993), pp. 177–183. DOI: 10.5555/645513.
657737 (cit. on p. 18).

[70] Martina Gorges-Schleuter. Genetic algorithms and population structures: a mas-
sively parallel algorithm. (1991) (cit. on p. 18).

[71] MOW Grond et al. “Multi-objective optimization techniques and applications in
electric power systems”. In: 47th International Universities Power Engineering
Conference (UPEC). (2012), pp. 1–6. DOI: 10.1109/UPEC.2012.6398417
(cit. on p. 2).

[72] Crina Grosan and Ajith Abraham. “Hybrid evolutionary algorithms: methodologies,
architectures, and reviews”. In: Hybrid evolutionary algorithms. (2007), pp. 1–17
(cit. on pp. 23, 43).

[73] Juan J Merelo Guervós and J Mario García-Valdez. “Introducing an event-based ar-
chitecture for concurrent and distributed evolutionary algorithms”. In: International
Conference on Parallel Problem Solving from Nature. (2018), pp. 399–410. DOI:
10.1007/978-3-319-99253-2_32 (cit. on pp. 3, 37, 41, 48, 170).

[74] Yuanxiong Guo, Yuguang Fang, and Pramod P Khargonekar. “Hierarchical Ar-
chitecture for Distributed Energy Resource Management”. In: Stochastic Opti-
mization for Distributed Energy Resources in Smart Grids. (2017), pp. 1–8. DOI:
10.1007/978-3-319-59529-0_1 (cit. on pp. 109, 110).

178

https://doi.org/10.1016/j.asoc.2015.04.043
https://doi.org/10.1007/s00170-003-1976-4
https://doi.org/Garcia-Valdez
https://doi.org/10.1145/3067695.3082473
https://doi.org/10.5555/534133
https://doi.org/10.1016/j.asoc.2015.04.061
https://doi.org/10.5555/645513.657737
https://doi.org/10.5555/645513.657737
https://doi.org/10.1109/UPEC.2012.6398417
https://doi.org/10.1007/978-3-319-99253-2_32
https://doi.org/10.1007/978-3-319-59529-0_1

7. Bibliography

[75] Abdurrahman Hacioglu. “A novel usage of neural network in optimization and im-
plementation to the internal flow systems”. In: Aircraft Engineering and Aerospace
Technology. (2005). DOI: 10.1108/00022660510617095 (cit. on pp. 4, 23,
45, 46).

[76] Abdurrahman Hacioglu. “Fast evolutionary algorithm for airfoil design via neural
network”. In: AIAA journal, Vol. 45, No. 9 (2007), pp. 2196–2203. DOI: 10.2514/
1.24484 (cit. on pp. 4, 23, 45, 46).

[77] William E Hart, Natalio Krasnogor, and James E Smith. Recent advances in memetic
algorithms. (2004). DOI: 10.1007/3-540-32363-5 (cit. on pp. 46, 110).

[78] Erez Hartuv and Ron Shamir. “A clustering algorithm based on graph connectivity”.
In: Information processing letters, Vol. 76, No. 4-6 (2000), pp. 175–181. DOI:
10.1016/S0020-0190(00)00142-3 (cit. on pp. 30, 143).

[79] Christian Hirsch, Pradyumn Kumar Shukla, and Hartmut Schmeck. “Variable pref-
erence modeling using multi-objective evolutionary algorithms”. In: International
Conference on Evolutionary Multi-Criterion Optimization. (2011), pp. 91–105. DOI:
10.1007/978-3-642-19893-9_7 (cit. on p. 13).

[80] Sepp Hochreiter and Jürgen Schmidhuber. “Long short–term memory”. In: Neural
computation, Vol. 9, No. 8 (1997), pp. 1735–1780. DOI: 10.1162/neco.1997.
9.8.1735 (cit. on pp. 33, 149).

[81] Frank Hoffmeister and Thomas Bäck. “Genetic algorithms and evolution strategies:
Similarities and differences”. In: International conference on parallel problem
solving from nature. (1991), pp. 455–469. DOI: 10.1007/BFb0029787 (cit. on
p. 11).

[82] John H Holland. “Outline for a Logical Theory of Adaptive Systems”. In: Journal
of the ACM (JACM), Vol. 9, No. 3 (1962), pp. 297–314. DOI: 10.1145/321127.
321128 (cit. on pp. 13, 37).

[83] Zhexue Huang. “Extensions to the k-means algorithm for clustering large data sets
with categorical values”. In: Data mining and knowledge discovery, Vol. 2, No. 3
(1998), pp. 283–304. DOI: 10.1023/A:1009769707641 (cit. on p. 30).

[84] J Hunger and Gottfried Huttner. “Optimization and analysis of force field parameters
by combination of genetic algorithms and neural networks”. In: Journal of Compu-
tational Chemistry, Vol. 20, No. 4 (1999), pp. 455–471. DOI: 10.1002/(SICI)
1096-987X(199903)20:4%3C455::AID-JCC6%3E3.0.CO;2-1 (cit.
on pp. 4, 45).

[85] Jasmine Irani, Nitin Pise, and Madhura Phatak. “Clustering techniques and the simi-
larity measures used in clustering: A survey”. In: International journal of computer
applications, Vol. 134, No. 7 (2016), pp. 9–14. DOI: 10.5120/ijca2016907841
(cit. on p. 30).

[86] Wilfried Jakob. “A general cost-benefit-based adaptation framework for multimeme
algorithms”. In: Memetic Computing, Vol. 2, No. 3 (2010), pp. 201–218. DOI:
10.1007/s12293-010-0040-9 (cit. on pp. 25, 46, 81).

179

https://doi.org/10.1108/00022660510617095
https://doi.org/10.2514/1.24484
https://doi.org/10.2514/1.24484
https://doi.org/10.1007/3-540-32363-5
https://doi.org/10.1016/S0020-0190(00)00142-3
https://doi.org/10.1007/978-3-642-19893-9_7
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/BFb0029787
https://doi.org/10.1145/321127.321128
https://doi.org/10.1145/321127.321128
https://doi.org/10.1023/A:1009769707641
https://doi.org/10.1002/(SICI)1096-987X(199903)20:4%3C455::AID-JCC6%3E3.0.CO;2-1
https://doi.org/10.1002/(SICI)1096-987X(199903)20:4%3C455::AID-JCC6%3E3.0.CO;2-1
https://doi.org/10.5120/ijca2016907841
https://doi.org/10.1007/s12293-010-0040-9

7. Bibliography

[87] Wilfried Jakob. “Applying Evolutionary Algorithms Successfully: A Guide Gained
from Real-world Applications”. In: CoRR. (2021). DOI: 10.48550/arXiv.
2107.11300 (cit. on p. 14).

[88] Wilfried Jakob et al. “Fast multi-objective scheduling of jobs to constrained re-
sources using a hybrid evolutionary algorithm”. In: International Conference on Par-
allel Problem Solving from Nature. (2008), pp. 1031–1040. DOI: 10.1007/978-
3-540-87700-4_102 (cit. on pp. 16, 118).

[89] Wilfried Jakob et al. “Fast rescheduling of multiple workflows to constrained het-
erogeneous resources using multi-criteria memetic computing”. In: Algorithms, Vol.
6, No. 2 (2013), pp. 245–277. DOI: 10.3390/a6020245 (cit. on p. 118).

[90] Wilfried Jakob et al. “Towards coding strategies for forecasting-based scheduling in
smart grids and the energy lab 2.0”. In: Proceedings of the Genetic and Evolutionary
Computation Conference Companion. (2017), pp. 1271–1278. DOI: 10.1145/
3067695.3082481 (cit. on pp. 25, 26, 45, 118).

[91] Chao Jin, Christian Vecchiola, and Rajkumar Buyya. “MRPGA: an extension of
MapReduce for parallelizing genetic algorithms”. In: 2008 IEEE Fourth Interna-
tional Conference on eScience. (2008), pp. 214–221. DOI: 10.1109/eScience.
2008.78 (cit. on pp. 3, 39, 47, 170).

[92] Yaochu Jin. “A comprehensive survey of fitness approximation in evolutionary
computation”. In: Soft computing, Vol. 9, No. 1 (2005), pp. 3–12. DOI: 10.1007/
s00500-003-0328-5 (cit. on p. 43).

[93] Krzysztof Jurczuk, Marcin Czajkowski, and Marek Kretowski. “Evolutionary in-
duction of a decision tree for large-scale data: a GPU-based approach”. In: Soft
Computing, Vol. 21, No. 24 (2017), pp. 7363–7379. DOI: 10.1007/s00500-
016-2280-1 (cit. on pp. 43, 47, 170).

[94] Krzysztof Jurczuk, Marcin Czajkowski, and Marek Kretowski. “Multi-GPU ap-
proach for big data mining: global induction of decision trees”. In: Proceedings
of the Genetic and Evolutionary Computation Conference Companion. (2019),
pp. 175–176. DOI: 10.1007/978-3-319-99259-4_37 (cit. on pp. 43, 47,
170).

[95] Krzysztof Jurczuk, Daniel Reska, and Marek Kretowski. “What are the limits of
evolutionary induction of decision trees?” In: International Conference on Parallel
Problem Solving from Nature. (2018), pp. 461–473 (cit. on pp. 43, 47, 170).

[96] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. “Reinforcement
learning: A survey”. In: Journal of artificial intelligence research, Vol. 4 (1996),
pp. 237–285. DOI: 10.1613/jair.301 (cit. on p. 30).

[97] Edward Keedwell and Soon-Thiam Khu. “A hybrid genetic algorithm for the design
of water distribution networks”. In: Engineering Applications of Artificial Intelli-
gence, Vol. 18, No. 4 (2005), pp. 461–472. DOI: 10.1016/j.engappai.2004.
10.001 (cit. on pp. 4, 163).

180

https://doi.org/10.48550/arXiv.2107.11300
https://doi.org/10.48550/arXiv.2107.11300
https://doi.org/10.1007/978-3-540-87700-4_102
https://doi.org/10.1007/978-3-540-87700-4_102
https://doi.org/10.3390/a6020245
https://doi.org/10.1145/3067695.3082481
https://doi.org/10.1145/3067695.3082481
https://doi.org/10.1109/eScience.2008.78
https://doi.org/10.1109/eScience.2008.78
https://doi.org/10.1007/s00500-003-0328-5
https://doi.org/10.1007/s00500-003-0328-5
https://doi.org/10.1007/s00500-016-2280-1
https://doi.org/10.1007/s00500-016-2280-1
https://doi.org/10.1007/978-3-319-99259-4_37
https://doi.org/10.1613/jair.301
https://doi.org/10.1016/j.engappai.2004.10.001
https://doi.org/10.1016/j.engappai.2004.10.001

7. Bibliography

[98] Maarten Keijzer et al. “Evolving objects: A general purpose evolutionary com-
putation library”. In: International Conference on Artificial Evolution (Evolution
Artificielle). (2001), pp. 231–242. DOI: 10.1007/3-540-46033-0_19 (cit. on
p. 38).

[99] Hatem Khalloof et al. “A distributed modular scalable and generic framework
for parallelizing population-based metaheuristics”. In: International Conference
on Parallel Processing and Applied Mathematics. (2019), pp. 432–444. DOI: 10.
1007/978-3-030-43229-4_37 (cit. on p. 50).

[100] Hatem Khalloof et al. “A generic distributed microservices and container based
framework for metaheuristic optimization”. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion. (2018), pp. 1363–1370. DOI:
10.1145/3205651.3208253 (cit. on p. 50).

[101] Hatem Khalloof et al. “A Generic Flexible and Scalable Framework for Hierarchical
Parallelization of Population-Based Metaheuristics”. In: Proceedings of the 12th
International Conference on Management of Digital EcoSystems. (2020), pp. 124–
131. DOI: 10.1145/3415958.3433041 (cit. on p. 100).

[102] Hatem Khalloof et al. “A generic flexible and scalable framework for hierarchical
parallelization of population-based metaheuristics”. In: Internet of Things, Vol. 16
(2021), p. 100433. DOI: 10.1016/j.iot.2021.100433 (cit. on p. 100).

[103] Hatem Khalloof et al. “A Generic Scalable Method for Scheduling Distributed
Energy Resources Using Parallelized Population-Based Metaheuristics”. In: Pro-
ceedings of the Future Technologies Conference. (2020), pp. 1–21. DOI: 10.1007/
978-3-030-63089-8_1 (cit. on p. 100).

[104] Hatem Khalloof et al. “Facilitating the hybridization of parallel evolutionary al-
gorithms in cluster computing environments”. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion. (2022), pp. 2001–2008. DOI:
10.1145/3520304.3533997 (cit. on p. 136).

[105] Hatem Khalloof et al. “Superlinear Speedup of Parallel Population-Based Meta-
heuristics: A Microservices and Container Virtualization Approach”. In: Interna-
tional Conference on Intelligent Data Engineering and Automated Learning. (2019),
pp. 386–393. DOI: 10.1007/978-3-030-33607-3_42 (cit. on p. 50).

[106] Memoona Khanum et al. “A survey on unsupervised machine learning algorithms for
automation, classification and maintenance”. In: International Journal of Computer
Applications, Vol. 119, No. 13 (2015). DOI: 10.5120/21131-4058 (cit. on
pp. 29, 139).

[107] Udo Kohlmorgen, Hartmut Schmeck, and Knut Haase. “Experiences with fine-
grained parallel genetic algorithms”. In: Annals of Operations Research, Vol. 90
(1999), pp. 203–219. DOI: 10.1023/A:1018912715283 (cit. on p. 20).

[108] Oliver Kramer. “Genetic algorithms”. In: Genetic algorithm essentials. (2017),
pp. 11–19. DOI: 10.1007/978-3-319-52156-5_2 (cit. on p. 15).

181

https://doi.org/10.1007/3-540-46033-0_19
https://doi.org/10.1007/978-3-030-43229-4_37
https://doi.org/10.1007/978-3-030-43229-4_37
https://doi.org/10.1145/3205651.3208253
https://doi.org/10.1145/3415958.3433041
https://doi.org/10.1016/j.iot.2021.100433
https://doi.org/10.1007/978-3-030-63089-8_1
https://doi.org/10.1007/978-3-030-63089-8_1
https://doi.org/10.1145/3520304.3533997
https://doi.org/10.1007/978-3-030-33607-3_42
https://doi.org/10.5120/21131-4058
https://doi.org/10.1023/A:1018912715283
https://doi.org/10.1007/978-3-319-52156-5_2

7. Bibliography

[109] Anders Krogh. “What are artificial neural networks?” In: Nature biotechnology, Vol.
26, No. 2 (2008), pp. 195–197. DOI: 10.1038/nbt1386 (cit. on pp. 30, 31).

[110] Yiu-Wing Leung and Yuping Wang. “An orthogonal genetic algorithm with quanti-
zation for global numerical optimization”. In: IEEE Transactions on Evolutionary
computation, Vol. 5, No. 1 (2001), pp. 41–53. DOI: 10.1109/4235.910464
(cit. on pp. 4, 45).

[111] Rhydian Lewis. “A survey of metaheuristic-based techniques for university timetabling
problems”. In: OR spectrum, Vol. 30, No. 1 (2008), pp. 167–190. DOI: 10.1007/
s00291-007-0097-0 (cit. on p. 1).

[112] F Li, R Morgan, and D Williams. “Hybrid genetic approaches to ramping rate
constrained dynamic economic dispatch”. In: Electric power systems research, Vol.
43, No. 2 (1997), pp. 97–103. DOI: 10.1016/S0378-7796(97)01165-6
(cit. on p. 4).

[113] Hepeng Li et al. “A genetic algorithm-based hybrid optimization approach for
microgrid energy management”. In: 2015 IEEE International Conference on Cy-
ber Technology in Automation, Control, and Intelligent Systems (CYBER). (2015),
pp. 1474–1478. DOI: 10.1109/CYBER.2015.7288162 (cit. on p. 110).

[114] HZ Liang and HB Gooi. “Unit commitment in microgrids by improved genetic
algorithm”. In: 2010 Conference Proceedings IPEC. (2010), pp. 842–847. DOI:
10.1109/IPECON.2010.5697083 (cit. on p. 110).

[115] Dudy Lim et al. “Efficient hierarchical parallel genetic algorithms using grid comput-
ing”. In: Future Generation Computer Systems, Vol. 23, No. 4 (2007), pp. 658–670.
DOI: 10.1016/j.future.2006.10.008 (cit. on pp. 42, 170).

[116] Shyh-Chang Lin, Erik D Goodman, and William F Punch. “Investigating parallel ge-
netic algorithms on job shop scheduling problems”. In: International Conference on
Evolutionary Programming. (1997), pp. 383–393. DOI: 10.1007/BFb0014827
(cit. on p. 42).

[117] Shyh-Chang Lin, William F. Punch, and Erik D. Goodman. “Coarse-grain parallel
genetic algorithms: categorization and new approach”. In: Proceedings of 1994 6th
IEEE Symposium on Parallel and Distributed Processing. (1994), pp. 28–37. DOI:
10.1109/SPDP.1994.346184 (cit. on pp. 18, 19).

[118] Yung-Chien Lin, Kao-Shing Hwang, and Feng-Sheng Wang. “A mixed-coding
scheme of evolutionary algorithms to solve mixed-integer nonlinear programming
problems”. In: Computers&Mathematics with Applications, Vol. 47, No. 8-9 (2004),
pp. 1295–1307. DOI: 10.1016/S0898-1221(04)90123-X (cit. on p. 23).

[119] Xavier Llora et al. “Meandre: Semantic-driven data-intensive flows in the clouds”.
In: 2008 IEEE Fourth International Conference on eScience. (2008), pp. 238–245.
DOI: 10.1109/eScience.2008.172 (cit. on p. 41).

[120] Sushil J Louis. “Working from blueprints: evolutionary learning for design”. In:
Artificial Intelligence in Engineering, Vol. 11, No. 3 (1997), pp. 335–341. DOI:
10.1016/S0954-1810(96)00048-9 (cit. on pp. 4, 44, 163).

182

https://doi.org/10.1038/nbt1386
https://doi.org/10.1109/4235.910464
https://doi.org/10.1007/s00291-007-0097-0
https://doi.org/10.1007/s00291-007-0097-0
https://doi.org/10.1016/S0378-7796(97)01165-6
https://doi.org/10.1109/CYBER.2015.7288162
https://doi.org/10.1109/IPECON.2010.5697083
https://doi.org/10.1016/j.future.2006.10.008
https://doi.org/10.1007/BFb0014827
https://doi.org/10.1109/SPDP.1994.346184
https://doi.org/10.1016/S0898-1221(04)90123-X
https://doi.org/10.1109/eScience.2008.172
https://doi.org/10.1016/S0954-1810(96)00048-9

7. Bibliography

[121] Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. “GPU-based island model
for evolutionary algorithms”. In: Proceedings of the 12th annual conference on
Genetic and evolutionary computation. (2010), pp. 1089–1096. DOI: 10.1145/
1830483.1830685 (cit. on pp. 43, 47, 170).

[122] Gabriel Luque and Enrique Alba. Parallel genetic algorithms: theory and real world
applications. Vol. 367. (2011). DOI: 10.1007/978-3-642-22084-5 (cit. on
pp. 16, 18–21, 78).

[123] Heikki Maaranen, Kaisa Miettinen, and Antti Penttinen. “On initial populations of
a genetic algorithm for continuous optimization problems”. In: Journal of Global
Optimization, Vol. 37, No. 3 (2007), p. 405. DOI: 10.1007/s10898-006-
9056-6 (cit. on p. 43).

[124] Laurent Magnier and Fariborz Haghighat. “Multiobjective optimization of build-
ing design using TRNSYS simulations, genetic algorithm, and Artificial Neural
Network”. In: Building and Environment, Vol. 45, No. 3 (2010), pp. 739–746. DOI:
10.1016/j.buildenv.2009.08.016 (cit. on pp. 4, 23, 45, 46).

[125] Alfonso C Martínez-Estudillo et al. “Hybridization of evolutionary algorithms and
local search by means of a clustering method”. In: IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), Vol. 36, No. 3 (2006), pp. 534–545.
DOI: 10.1109/tsmcb.2005.860138 (cit. on p. 46).

[126] Suraya Masrom et al. “Software Framework for Flexible User Defined Metaheuristic
Hybridization”. In: International Conference on Advanced Software Engineering
and Its Applications. (2010), pp. 218–227. DOI: 10.1007/978-3-642-17578-
7_22 (cit. on p. 47).

[127] Ingo Mauser et al. “Adaptive building energy management with multiple commodi-
ties and flexible evolutionary optimization”. In: Renewable Energy, Vol. 87 (2016),
pp. 911–921. DOI: 10.1016/j.renene.2015.09.003 (cit. on p. 110).

[128] Ingo Mauser et al. “Encodings for evolutionary algorithms in smart buildings with
energy management systems”. In: 2014 IEEE Congress on Evolutionary Compu-
tation (CEC). (2014), pp. 2361–2366. DOI: 10.1109/CEC.2014.6900633
(cit. on p. 110).

[129] Larry R Medsker and LC Jain. “Recurrent neural networks”. In: Design and Ap-
plications, Vol. 5 (1999), pp. 64–67. DOI: 10.1201/9781420049176 (cit. on
p. 32).

[130] Juan J Merelo et al. “Sofea: A pool-based framework for evolutionary algorithms
using couchdb”. In: Proceedings of the 14th annual conference companion on
Genetic and evolutionary computation. (2012), pp. 109–116. DOI: 10.1145/
2330784.2330802 (cit. on pp. 3, 43, 48, 170).

[131] K Meri et al. “Cloud-based evolutionary algorithms: An algorithmic study”. In:
Natural Computing, Vol. 12, No. 2 (2013), pp. 135–147. DOI: 10.1007/s11047-
012-9358-1 (cit. on pp. 3, 43, 48, 170).

183

https://doi.org/10.1145/1830483.1830685
https://doi.org/10.1145/1830483.1830685
https://doi.org/10.1007/978-3-642-22084-5
https://doi.org/10.1007/s10898-006-9056-6
https://doi.org/10.1007/s10898-006-9056-6
https://doi.org/10.1016/j.buildenv.2009.08.016
https://doi.org/10.1109/tsmcb.2005.860138
https://doi.org/10.1007/978-3-642-17578-7_22
https://doi.org/10.1007/978-3-642-17578-7_22
https://doi.org/10.1016/j.renene.2015.09.003
https://doi.org/10.1109/CEC.2014.6900633
https://doi.org/10.1201/9781420049176
https://doi.org/10.1145/2330784.2330802
https://doi.org/10.1145/2330784.2330802
https://doi.org/10.1007/s11047-012-9358-1
https://doi.org/10.1007/s11047-012-9358-1

7. Bibliography

[132] Zbigniew Michalewicz. Genetic algorithms + data structures= evolution programs.
(1996). DOI: 10.1007/978-3-662-03315-9 (cit. on p. 4).

[133] Martin Middendorf et al. “An evolutionary approach to dynamic task scheduling on
FPGAs with restricted buffer”. In: Journal of Parallel and Distributed Computing,
Vol. 62, No. 9 (2002), pp. 1407–1420. DOI: 10.1006/jpdc.2002.1853
(cit. on p. 13).

[134] Glenn W Milligan and Martha C Cooper. “Methodology review: Clustering meth-
ods”. In: Applied psychological measurement, Vol. 11, No. 4 (1987), pp. 329–354.
DOI: 10.1177/014662168701100401 (cit. on p. 30).

[135] Tom M Mitchell et al. Machine learning. (1997) (cit. on p. 29).

[136] Antonio J Nebro et al. “Design and architecture of the jMetaISP framework”. In:
Proceedings of the Genetic and Evolutionary Computation Conference Companion.
(2017), pp. 1239–1246. DOI: 10.1145/3067695.3082466 (cit. on pp. 3, 41,
47, 170).

[137] Mohsen Nemati, Martin Braun, and Stefan Tenbohlen. “Optimization of unit com-
mitment and economic dispatch in microgrids based on genetic algorithm and mixed
integer linear programming”. In: Applied energy, Vol. 210 (2018), pp. 944–963. DOI:
10.1016/j.apenergy.2017.07.007 (cit. on p. 110).

[138] Mohsen Nemati et al. “Optimization of microgrids short term operation based on an
enhanced genetic algorithm”. In: 2015 IEEE Eindhoven PowerTech. (2015), pp. 1–6.
DOI: 10.1109/PTC.2015.7232801 (cit. on p. 110).

[139] Sam Newman. Building microservices: designing fine-grained systems. (2015) (cit.
on pp. 28, 29, 50).

[140] Susan Offner. “Mendel’s peas & the nature of the gene: genes code for proteins &
proteins determine phenotype”. In: The american biology Teacher, Vol. 73, No. 7
(2011), pp. 382–387. DOI: 10.1525/abt.2011.73.7.3 (cit. on p. 14).

[141] FY Osisanwo et al. “Supervised machine learning algorithms: classification and
comparison”. In: International Journal of Computer Trends and Technology (IJCTT),
Vol. 48, No. 3 (2017), pp. 128–138. DOI: 10.14445/22312803/IJCTT-
V48P126 (cit. on p. 29).

[142] Ibrahim H Osman and Gilbert Laporte. Metaheuristics: A bibliography. (1996). DOI:
10.1007/BF02125421 (cit. on p. 1).

[143] Ibrahim Hassan Osman. “Metastrategy simulated annealing and tabu search algo-
rithms for the vehicle routing problem”. In: Annals of operations research, Vol. 41,
No. 4 (1993), pp. 421–451. DOI: 10.1007/BF02023004 (cit. on pp. 1, 50).

[144] K Rajmohan Padiyar and Anil M Kulkarni. Dynamics and control of electric
transmission and microgrids. (2019). DOI: 10.1002/9781119173410 (cit.
on pp. 108, 110).

184

https://doi.org/10.1007/978-3-662-03315-9
https://doi.org/10.1006/jpdc.2002.1853
https://doi.org/10.1177/014662168701100401
https://doi.org/10.1145/3067695.3082466
https://doi.org/10.1016/j.apenergy.2017.07.007
https://doi.org/10.1109/PTC.2015.7232801
https://doi.org/10.1525/abt.2011.73.7.3
https://doi.org/10.14445/22312803/IJCTT-V48P126
https://doi.org/10.14445/22312803/IJCTT-V48P126
https://doi.org/10.1007/BF02125421
https://doi.org/10.1007/BF02023004
https://doi.org/10.1002/9781119173410

7. Bibliography

[145] Ben Paechter et al. “A distributed resource evolutionary algorithm machine (DREAM)”.
In: Evolutionary Computation, 2000. Proceedings of the 2000 Congress on. Vol. 2.
(2000), pp. 951–958. DOI: 10.1109/CEC.2000.870746 (cit. on pp. 3, 37, 38,
47, 170).

[146] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: al-
gorithms and complexity. (1998). DOI: 10.1007/BF02023004 (cit. on pp. 1,
13).

[147] Walter Hugo Lopez Pinaya et al. “Autoencoders”. In: Machine learning. (2020),
pp. 193–208. DOI: 10.1016/B978-0-12-815739-8.00011-0"s (cit. on
p. 31).

[148] Shahryar Rahnamayan, Hamid R Tizhoosh, and Magdy MA Salama. “Opposition–
based differential evolution”. In: IEEE Transactions on Evolutionary computation,
Vol. 12, No. 1 (2008), pp. 64–79. DOI: 10.1109/TEVC.2007.894200 (cit. on
p. 45).

[149] De Rainville et al. “DEAP: enabling nimbler evolutions”. In: ACM SIGEVOlution,
Vol. 6, No. 2 (2014), pp. 17–26. DOI: 10.1145/2597453.2597455 (cit. on
p. 39).

[150] Abdur Rais and Ana Viana. “Operations research in healthcare: a survey”. In:
International transactions in operational research, Vol. 18, No. 1 (2011), pp. 1–31.
DOI: 10.1111/j.1475-3995.2010.00767.x (cit. on p. 1).

[151] Aurora Ramirez et al. “JCLEC-MO: a Java suite for solving many-objective opti-
mization engineering problems”. In: Engineering Applications of Artificial Intel-
ligence, Vol. 81 (2019), pp. 14–28. DOI: 10.1016/j.engappai.2019.02.
003 (cit. on p. 39).

[152] L A Rastrigin. “Systems of extremal control”. In: Nauka. (1974) (cit. on p. 85).

[153] Elizabeth L Ratnam et al. “Residential load and rooftop PV generation: an Australian
distribution network dataset”. In: International Journal of Sustainable Energy, Vol.
36, No. 8 (2017), pp. 787–806. DOI: 10.1080/14786451.2015.1100196
(cit. on pp. 108, 111, 113, 114, 141).

[154] Ingo Rechenberg. “Evolutionsstrategien”. In: Simulationsmethoden in der Medizin
und Biologie. (1978), pp. 83–114. DOI: 10.1007/978-3-642-81283-5_8
(cit. on pp. 13, 37).

[155] Rommel G Regis and Christine A Shoemaker. “Local function approximation
in evolutionary algorithms for the optimization of costly functions”. In: IEEE
transactions on evolutionary computation, Vol. 8, No. 5 (2004), pp. 490–505. DOI:
10.1109/TEVC.2004.835247 (cit. on pp. 4, 45).

[156] Rebecca Rivers, Alex R Bertels, and Daniel R Tauritz. “Asynchronous parallel evolu-
tionary algorithms: Leveraging heterogeneous fitness evaluation times for scalability
and elitist parsimony pressure”. In: Proceedings of the Companion Publication of
the 2015 Annual Conference on Genetic and Evolutionary Computation. (2015),
pp. 1429–1430. DOI: 10.1145/2739482.2764718 (cit. on p. 19).

185

https://doi.org/10.1109/CEC.2000.870746
https://doi.org/10.1007/BF02023004
https://doi.org/10.1016/B978-0-12-815739-8.00011-0"s
https://doi.org/10.1109/TEVC.2007.894200
https://doi.org/10.1145/2597453.2597455
https://doi.org/10.1111/j.1475-3995.2010.00767.x
https://doi.org/10.1016/j.engappai.2019.02.003
https://doi.org/10.1016/j.engappai.2019.02.003
https://doi.org/10.1080/14786451.2015.1100196
https://doi.org/10.1007/978-3-642-81283-5_8
https://doi.org/10.1109/TEVC.2004.835247
https://doi.org/10.1145/2739482.2764718

7. Bibliography

[157] A Rodríguez del Nozal et al. “Application of genetic algorithms for unit commitment
and economic dispatch problems in microgrids”. In: Nature Inspired Computing for
Data Science. (2020), pp. 139–167. DOI: 10.1007/978-3-030-33820-6_6
(cit. on pp. 108, 111).

[158] Franz Rothlauf. “Optimization Methods”. In: Design of Modern Heuristics: Princi-
ples and Application. (2011), pp. 45–102. DOI: 10.1007/978-3-540-72962-
4_3 (cit. on p. 13).

[159] Franz Rothlauf. “Representations for genetic and evolutionary algorithms”. In:
Representations for Genetic and Evolutionary Algorithms. (2006), pp. 9–32. DOI:
10.1007/3-540-32444-5_2 (cit. on p. 14).

[160] Peter J Rousseeuw. “Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis”. In: Journal of computational and applied mathematics, Vol. 20
(1987), pp. 53–65. DOI: 10.1016/0377-0427(87)90125-7 (cit. on p. 143).

[161] Gautam Roy et al. “A distributed pool architecture for genetic algorithms”. In:
2009 IEEE Congress on Evolutionary Computation. (2009), pp. 1177–1184. DOI:
10.1007/s11047-012-9358-1 (cit. on pp. 3, 43, 48, 170).

[162] Carolina Salto et al. “Developing Genetic Algorithms Using Different MapReduce
Frameworks: MPI vs. Hadoop”. In: Conference of the Spanish Association for
Artificial Intelligence. (2018), pp. 262–272. DOI: 10.1007/978- 3- 030-
00374-6_25 (cit. on p. 47).

[163] Pasquale Salza and Filomena Ferrucci. “An approach for parallel genetic algorithms
in the cloud using software containers”. In: CoRR., abs/1606.06961 (2016) (cit. on
pp. 3, 37, 41, 48, 170).

[164] Pasquale Salza and Filomena Ferrucci. “Speed up genetic algorithms in the cloud
using software containers”. In: Future Generation Computer Systems, Vol. 92 (2019),
pp. 276–289. DOI: 10.1016/j.future.2018.09.066 (cit. on pp. 3, 37, 41,
48, 170).

[165] Pasquale Salza, Filomena Ferrucci, and Federica Sarro. “elephant56: Design and
implementation of a parallel genetic algorithms framework on hadoop MapReduce”.
In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference
Companion. (2016), pp. 1315–1322. DOI: 10.1145/2908961.2931722 (cit.
on pp. 3, 40, 47, 170).

[166] Jeffrey R Sampson. Adaptation in natural and artificial systems (John H. Holland).
(1976). DOI: 10.1137/1018105 (cit. on p. 37).

[167] Frank Schlottmann and Detlef Seese. “A hybrid heuristic approach to discrete
multi-objective optimization of credit portfolios”. In: Computational statistics&data
analysis, Vol. 47, No. 2 (2004), pp. 373–399. DOI: 10.1016/j.csda.2003.
11.016 (cit. on pp. 23, 46).

186

https://doi.org/10.1007/978-3-030-33820-6_6
https://doi.org/10.1007/978-3-540-72962-4_3
https://doi.org/10.1007/978-3-540-72962-4_3
https://doi.org/10.1007/3-540-32444-5_2
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1007/s11047-012-9358-1
https://doi.org/10.1007/978-3-030-00374-6_25
https://doi.org/10.1007/978-3-030-00374-6_25
https://doi.org/10.1016/j.future.2018.09.066
https://doi.org/10.1145/2908961.2931722
https://doi.org/10.1137/1018105
https://doi.org/10.1016/j.csda.2003.11.016
https://doi.org/10.1016/j.csda.2003.11.016

7. Bibliography

[168] Rüdiger Schollmeier. “A definition of peer-to-peer networking for the classification
of peer-to-peer architectures and applications”. In: Proceedings First International
Conference on Peer-to-Peer Computing. (2001), pp. 101–102. DOI: 10.1109/
P2P.2001.990434 (cit. on p. 42).

[169] Hans-Paul Schwefel. Numerical optimization of computer models. (1982). DOI:
10.1057/jors.1982.238 (cit. on p. 37).

[170] Dylan Sherry et al. “Flex-GP: genetic programming on the cloud”. In: European
Conference on the Applications of Evolutionary Computation. (2012), pp. 477–486.
DOI: 10.1007/978-3-642-29178-4_48 (cit. on pp. 3, 41, 47, 170).

[171] SN Sivanandam and SN Deepa. “Genetic algorithms”. In: Introduction to genetic
algorithms. (2008), pp. 15–37. DOI: 10.1007/978-3-540-73190-0_2
(cit. on p. 18).

[172] Stephen Soltesz et al. “Container-based operating system virtualization: a scalable,
high-performance alternative to hypervisors”. In: Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007. (2007), pp. 275–
287. DOI: 10.1145/1272996.1273025 (cit. on p. 34).

[173] Anjan Kumar Swain and Alan S Morris. “A novel hybrid evolutionary programming
method for function optimization”. In: Proceedings of the 2000 Congress on Evolu-
tionary Computation. CEC00 (Cat. No. 00TH8512). Vol. 1. (2000), pp. 699–705.
DOI: 10.1109/CEC.2000.870366 (cit. on pp. 4, 23, 46).

[174] El-Ghazali Talbi. Metaheuristics: from design to implementation. Vol. 74. (2009).
DOI: 10.5555/1718024 (cit. on p. 2).

[175] Hamid R Tizhoosh. “Opposition-based learning: a new scheme for machine intelli-
gence”. In: International conference on computational intelligence for modelling,
control and automation and international conference on intelligent agents, web tech-
nologies and internet commerce (CIMCA-IAWTIC’06). Vol. 1. (2005), pp. 695–701.
DOI: 10.1109/4235.910464 (cit. on pp. 4, 45, 163).

[176] CL Tseng. “On power system generation unit commitment problems. Berkeley:
University of California”. PhD thesis. Doctoral Thesis, (1996) (cit. on p. 110).

[177] Lin-Yu Tseng and Shyi-Ching Liang. “A hybrid metaheuristic for the quadratic
assignment problem”. In: Computational Optimization and Applications, Vol. 34,
No. 1 (2006), pp. 85–113. DOI: 10.1007/s10589-005-3069-9 (cit. on pp. 4,
43).

[178] James Turnbull. The Docker Book: Containerization is the new virtualization. (2014)
(cit. on p. 34).

[179] Maarten Van Steen and A Tanenbaum. “Distributed systems principles and paradigms”.
In: Network, Vol. 2 (2002), p. 28 (cit. on p. 27).

[180] Manuel Vázquez and L Darrell Whitley. “A hybrid genetic algorithm for the
quadratic assignment problem”. In: Proceedings of the 2nd annual conference
on genetic and evolutionary computation. (2000), pp. 135–142. DOI: 10.5555/
2933718.2933737 (cit. on pp. 4, 44).

187

https://doi.org/10.1109/P2P.2001.990434
https://doi.org/10.1109/P2P.2001.990434
https://doi.org/10.1057/jors.1982.238
https://doi.org/10.1007/978-3-642-29178-4_48
https://doi.org/10.1007/978-3-540-73190-0_2
https://doi.org/10.1145/1272996.1273025
https://doi.org/10.1109/CEC.2000.870366
https://doi.org/10.5555/1718024
https://doi.org/10.1109/4235.910464
https://doi.org/10.1007/s10589-005-3069-9
https://doi.org/10.5555/2933718.2933737
https://doi.org/10.5555/2933718.2933737

7. Bibliography

[181] Sebastián Ventura et al. “JCLEC: a Java framework for evolutionary computation”.
In: Soft computing, Vol. 12, No. 4 (2008), pp. 381–392. DOI: 10.1007/s00500-
007-0172-0 (cit. on pp. 37, 39, 47, 170).

[182] Subhashini Venugopalan et al. “Sequence to sequence-video to text”. In: Proceedings
of the IEEE international conference on computer vision. (2015), pp. 4534–4542
(cit. on p. 33).

[183] Abhishek Verma, David E Goldberg, and Roy H Campbell. “Scaling Simple and
Compact Genetic Algorithms using MapReduce”. In: Ninth International Confer-
ence on Intelligent Systems Design and Applications (ISDA). (2009), pp. 13–18.
DOI: 10.1.1.173.2387 (cit. on pp. 3, 40, 47, 170).

[184] Christos Voudouris et al. “iOpt: A software toolkit for heuristic search methods”. In:
International Conference on Principles and Practice of Constraint Programming.
(2001), pp. 716–729. DOI: 10.1007/3-540-45578-7_58 (cit. on p. 47).

[185] Stefan Wagner and Michael Affenzeller. “Heuristiclab: A generic and extensible
optimization environment”. In: Adaptive and Natural Computing Algorithms. (2005),
pp. 538–541. DOI: 10.1007/3-211-27389-1_130 (cit. on p. 47).

[186] Ling Wang. “A hybrid genetic algorithm–neural network strategy for simulation
optimization”. In: Applied Mathematics and Computation, Vol. 170, No. 2 (2005),
pp. 1329–1343. DOI: 10.1016/j.amc.2005.01.024 (cit. on pp. 4, 23, 45).

[187] Darrell Whitley. “A genetic algorithm tutorial”. In: Statistics and computing, Vol. 4,
No. 2 (1994), pp. 65–85. DOI: 10.1007/BF00175354 (cit. on p. 13).

[188] David H Wolpert and William G Macready. “No free lunch theorems for optimiza-
tion”. In: IEEE transactions on evolutionary computation, Vol. 1, No. 1 (1997),
pp. 67–82. DOI: 10.1109/4235.585893 (cit. on pp. 4, 135).

[189] Matei Zaharia et al. “Spark: Cluster computing with working sets”. In: HotCloud,
Vol. 10, No. 10 (2010), p. 95. DOI: 10.5555/1863103.1863113 (cit. on p. 41).

[190] Jun Zhang et al. “Evolutionary computation meets machine learning: A survey”. In:
IEEE Computational Intelligence Magazine, Vol. 6, No. 4 (2011), pp. 68–75. DOI:
10.1007/978-3-540-73297-6_1 (cit. on pp. 23, 43).

[191] Qingfu Zhang and Yiu-Wing Leung. “An orthogonal genetic algorithm for multime-
dia multicast routing”. In: IEEE Transactions on Evolutionary Computation, Vol. 3,
No. 1 (1999), pp. 53–62. DOI: 10.1109/4235.752920 (cit. on p. 44).

[192] Zongzhao Zhou et al. “A study on polynomial regression and Gaussian process
global surrogate model in hierarchical surrogate-assisted evolutionary algorithm”.
In: 2005 IEEE congress on evolutionary computation. Vol. 3. (2005), pp. 2832–2839.
DOI: 10.1109/CEC.2005.1555050 (cit. on pp. 4, 45).

188

https://doi.org/10.1007/s00500-007-0172-0
https://doi.org/10.1007/s00500-007-0172-0
https://doi.org/10.1.1.173.2387
https://doi.org/10.1007/3-540-45578-7_58
https://doi.org/10.1007/3-211-27389-1_130
https://doi.org/10.1016/j.amc.2005.01.024
https://doi.org/10.1007/BF00175354
https://doi.org/10.1109/4235.585893
https://doi.org/10.5555/1863103.1863113
https://doi.org/10.1007/978-3-540-73297-6_1
https://doi.org/10.1109/4235.752920
https://doi.org/10.1109/CEC.2005.1555050

A. List of Publications

Journal Articles

1. Hatem Khalloof et al. “A generic flexible and scalable framework for hierarchical
parallelization of population-based metaheuristics”. In: Internet of Things, Vol. 16
(2021), p. 100433. DOI: 10.1016/j.iot.2021.100433

Conference Articles

1. Hatem Khalloof et al. “A generic distributed microservices and container based
framework for metaheuristic optimization”. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion. (2018), pp. 1363–1370. DOI:
10.1145/3205651.3208253

2. Hatem Khalloof et al. “A distributed modular scalable and generic framework for
parallelizing population-based metaheuristics”. In: International Conference on
Parallel Processing and Applied Mathematics. (2019), pp. 432–444. DOI: 10.
1007/978-3-030-43229-4_37

3. Hatem Khalloof et al. “Superlinear Speedup of Parallel Population-Based Metaheuris-
tics: A Microservices and Container Virtualization Approach”. In: International
Conference on Intelligent Data Engineering and Automated Learning. (2019), pp.
386–393. DOI: 10.1007/978-3-030-33607-3_42

4. Hatem Khalloof et al. “A Generic Flexible and Scalable Framework for Hierarchical
Parallelization of Population-Based Metaheuristics”. In: Proceedings of the 12th
International Conference on Management of Digital EcoSystems. (2020), pp. 124–
131. DOI: 10.1145/3415958.3433041

5. Hatem Khalloof et al. “A Generic Scalable Method for Scheduling Distributed Energy
Resources Using Parallelized Population-Based Metaheuristics”. In: Proceedings of
the Future Technologies Conference. (2020), pp. 1–21. DOI: 10.1007/ 978-3-030-
63089-8_1

6. Hatem Khalloof et al. “Facilitating the hybridization of parallel evolutionary al-
gorithms in cluster computing environments”. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion. (2022), pp. 2001–2008. DOI:
10.1145/3520304.3533997

189

	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Questions
	Research Goals and Contributions
	Structure of the Thesis

	Background
	Optimization Problems
	Evolutionary Algorithms (EAs)
	Parallel Models of EAs
	Hybridization of EAs
	The EA GLEAM

	Parallel Computing
	Service-Oriented Architecture and Microservices Architecture

	Machine Learning (ML)
	Clustering
	Artificial Neural Networks (ANNs)

	Technology Stack

	State of the Art
	Parallelization of EAs
	Hybridization of EAs
	Summary and Discussion

	Facilitating the Usage of Parallel Evolutionary Algorithms in Cluster Computing Environments
	BeeNestOpt.IAI - Conceptual Architecture for Executing Evolutionary Algorithms in Cluster Computing Environment
	Basic Services of BeeNestOpt.IAI
	General Execution Workflow

	Mapping the Global Model to BeeNestOpt.IAI Architecture
	Global Model-related Services
	Adaptation of the Basic Services to Support the Global Model
	Execution Workflow

	Mapping the Coarse-Grained Model to BeeNestOpt.IAI Architecture
	Coarse-Grained Model-related Services
	Adaptation of the Basic Services to Support the Coarse-Grained Model
	Execution Workflow

	Evaluation
	EA GLEAM as Test Case
	Deployment and Execution on a Cluster
	Experimental Setup and Results for the Global Model
	Experimental Setup and Results for the Coarse-Grained Model

	Summary

	Enhancing the Parallel Performance of Evolutionary Algorithms in Cluster Computing Environments
	BeeNestOpt.IAI for Hierarchical Parallelization of Evolutionary Algorithms
	Mapping the Coarse-Grained - Global Hybrid Model to the BeeNestOpt.IAI Architecture
	Execution Workflow

	Evaluation
	Use Case Scenario: Scheduling Hierarchical Distributed Energy Resources
	Datasets for Power Generation/Consumption and Price
	EA GLEAM for Scheduling DERS
	Experimental Setup and Results

	Summary

	Increasing the Applicability of Evolutionary Algorithms in Cluster Computing Environments
	BeeNestOpt.IAI for Hybridization of Evolutionary Algorithms
	Machine Learning-based Approaches for Hybridizing Evolutionary Algorithms
	Unsupervised Machine Learning-based Approach for Hybridizing EAs
	Supervised Machine Learning-based Approach for Hybridizing EAs

	Evaluation
	Unsupervised Approach for Scheduling Distributed Energy Resources
	Supervised Approach for Scheduling Distributed Energy Resources
	Experimental Setup and Results

	Summary

	Summary and Outlook
	Summary
	Outlook

	Bibliography
	List of Publications

