KIT | KIT-Bibliothek | Impressum | Datenschutz

On the clustering of low-aspect-ratio oblate spheroids settling in ambient fluid

Moriche, Manuel ORCID iD icon 1; Hettmann, Daniel 1; García-Villalba, Manuel; Uhlmann, Markus ORCID iD icon 1
1 Institut für Hydromechanik (IFH), Karlsruher Institut für Technologie (KIT)

Abstract:

We have performed particle-resolved direct numerical simulations of many heavy non-spherical particles settling under gravity in the dilute regime. The particles are oblate spheroids of aspect ratio 1.5 and density ratio 1.5. Two Galileo numbers are considered, namely 111 and 152, for which a single oblate spheroid follows a steady vertical and a steady oblique path, respectively. In both cases, a strongly inhomogeneous spatial distribution of the disperse phase in the form of columnar clusters is observed, with a significantly enhanced average settling velocity as a consequence. Thus, in contrast to previous results for spheres, the qualitative difference in the single-particle regime does not result in a qualitatively different behaviour of the many-particle cases. In addition, we have carried out an analysis of pairwise interactions of particles in the well-known drafting–kissing–tumbling set-up, for oblate spheroids of aspect ratio 1.5 and for spheres. We have varied systematically the relative initial position between the particle pair and we have considered free-to-rotate particles and rotationally locked ones. We have found that the region of attraction for both particle shapes, with and without rotation, is very similar. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000160083
Veröffentlicht am 06.07.2023
Originalveröffentlichung
DOI: 10.1017/jfm.2023.261
Scopus
Zitationen: 8
Web of Science
Zitationen: 6
Dimensions
Zitationen: 10
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Hydromechanik (IFH)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 25.05.2023
Sprache Englisch
Identifikator ISSN: 0022-1120, 1469-7645, 1750-6859
KITopen-ID: 1000160083
Erschienen in Journal of Fluid Mechanics
Verlag Cambridge University Press (CUP)
Band 963
Seiten Art.-Nr.: A1
Vorab online veröffentlicht am 15.05.2023
Schlagwörter multiphase flow, particle/fluid flow
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page