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Abstract

Anomaly detection with machine learning in industrial inspection sys-
tems for manufactured products relies on labelled data. This raises the
question of how the labelling by humans should be conducted. More-
over, such a system will most likely always be imperfect and potentially
need a human fall-back mechanism for ambiguous cases. We consider the
case where we want to optimise the cost of the combined inspection pro-
cess done by humans together with a pre-trained algorithm. This gives
improved combined performance and increases the knowledge of the per-
formance of the pre-trained model. We focus on so-called one-class classi-
fication problems which produce a continuous outlier score. After estab-
lishing some initial setup mechanisms ranging from using prior knowledge
to calibrated models, we then define some cost model for machine inspec-
tion with a possible second inspection of the sample done by a human.
Further, we discuss in this cost model how to select two optimal bound-
aries of the outlier score, where in between these two boundaries human
inspection takes place. Finally, we frame this established knowledge into
an applicable algorithm and conduct some experiments for the validity of
the model.

Mathematical methods and models, artificial intelligence and machine
learning, quality control, active learning, label effort, one-class classifica-
tion

1 Introduction
The detection of non-common patterns in a batch of samples is a strong
point of human visual cognition. Still, there are many known limitations
to human visual inspection as well as cost issues and labour shortages in
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real-world production systems. The training of machine learning models
for anomaly detection of industrial inspection problems is often done as
a one-class classification problem where only good samples are presented
to the algorithm. The background for this is that it is generally easy
to acquire good samples, but difficult and expensive to find anomalous
samples. A data set for benchmarking this type of algorithm is the MVTec
data set[1][2]. The best performing model1 on this data set to-date is
“Patchcore” [20]. Although we think of models designed for the MVTec
data set like “Patchcore” as the main application, our method of finding
two boundaries for the outlier score, where in between an additional round
of human inspection will take place, will work for any model for one-class
classification problems[17] with a continuous score.

More precisely, in this paper, we formulate the problem of optimal
usage of human inspection for edge cases after acquiring initial data for
training. For this, we assume that there are certain costs for inspection
and costs for falsely classified samples. We are not aware that such a
human-in-the-loop machine learning consideration exists in the literature,
although more generic considerations about iterative machine teaching
and active learning can be found in [12]. A similar process by giving
the human some sort of optimal presentation of data for labelling was
done in [3]. However, this method does not apply to the one-class outlier
classification problems on images which we do consider here. In [21] it is
shown, that for one-class classification models, one can train an additional
model on the bad samples and use a combined score on the good and bad
sample models to find the most promising new samples for labelling. The
authors show that by using one of their active learning methods one can
achieve faster convergence and better overall performance of the model.
We refer to Munro’s book [13] for a general overview of human-in-the-loop
machine learning and active learning in particular.

In essence, the method we develop will separate samples after passing
through an outlier detection algorithm into three categories depending
on their outlier score. The ones which will be immediately accepted,
the ones which will be immediately rejected and the ones which will be
given to a human for manual inspection. Such a distinction is especially
relevant for inspection tasks where computer vision outlier detection does
not perform sufficiently well. Here, a combination of human and computer
vision algorithms aims to provide better results for industrial inspection
tasks in terms of cost. Such hybrid inspection approaches being viable
has been known for a long time [11, 10], however, to our knowledge, no
concrete decision boundaries for human inspection for the algorithms were
established.

As an example inspection task, we take a production line where it
is not feasible to inspect every piece by a human. We take an artificial
example such as the Utah teapot (see Figure 1) and will show the edge
cases to the user, where they decide whether an anomaly is present or
not. We will also test various future hybrid approaches involving visual
inspection in an experimental set-up we call HALODOME (HumAn in
the Loop Outlier DetectiOn MachinE). The idea is to simulate the machine

1https://paperswithcode.com/sota/anomaly-detection-on-mvtec-ad
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Figure 1: These are pictures of our HALODOME-setup which ought to simulate
inline inspection of manufactured pieces.

teaching and later the edge case inspection done by a human, among other
tasks such as 3D error marking and visualisation (see Figure 2).

2 Related Work
As already mentioned the best-performing algorithm for the MVtec data
set is the so-called “Patchcore” model. For a given picture sample a
“Patchcore”-model after training produces an outlier score together with
a heat map on the likelihood of being an anomalous area (see Figure
3 for a visualisation of such a heat map). This is done by performing
outlier detection on the deep features of a pre-trained neural network
of the images. The cutoff values for an anomaly in the outlier score of
“Patchcore” are optimised in the paper by finding the cut-off value with
the highest F1-score. This already assumes that there are known outliers
which are potentially very costly to acquire. We will later compare the cost
performance of naive F1-optimisation of this algorithm with our approach.

Another important concept which we will discuss and use is that of
probabilistic classifiers. Probabilistic classifiers are classifiers that output
a probability distribution on the target classes instead of just a score.
A calibrated classifier will give out a probability p which will represent
the probability of being in a particular class. Machine-learning models
M such as neural networks often already provide a likelihood with their
output. The question which arises with such models is whether these
likelihood outputs already resemble probabilistic classifiers and how good
these probabilistic classifiers are. Model calibration is a technique which
achieves that a classifier will have a probabilistic output[25] [6]. A mea-
sure for the quality of the likelihood as a probabilistic classifier is that of
calibration.
Definition 1 (Rough definition). A machine learning model’s prediction
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Figure 2: This shows a possible experimental setup in HALODOME. The data
acquisition of the object, here represented as the Utah teapot, will take place in
the box on the right. The object will be moved into the box by a linear robot.
If an outlier is found in the sample it can be presented to the worker on the
left either on display or via a projector mounted on the upper left directly on
the object. Studies to simulate edge case inspection and helpfulness of error
augmentation are planned in such a setup.

Figure 3: A sample visualisation of trained “Patchcore”-models output. The left
images are some test samples. The right images represent the pixel-wise outlier
score, where the values are encoded in the visible spectrum between blue and
yellow. The lowest values are encoded in dark blue and the highest in yellow.
The middle image is a binarisation of the left where the cut-off parameter is
chosen to be the F1-optimal boundary.
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is calibrated when the likelihood output resembles the probability of its pre-
diction being correct.
Definition 2 (Perfect calibration). Let X ∈ X (samples) and Y ∈ Y
(classes) be random variables with joint distribution π(X, Y ) = π(Y |X) ·
π(X). Let h be some machine learning model such that h(X) = (Ŷ , P̂ )
with Ŷ the class prediction and P̂ the predicted probability of correctness.
Now h is called calibrated if

P (Ŷ = Y |P̂ = p) = p for all p ∈ [0, 1]. (1)

Of course, in reality, we have no access to the joint distribution and
instead, check for p being in one of M -many bins Bm which contains all
elements with predictions in the interval ( m−1

M
, m

M
]. We then compare

whether the average of the predicted p in each bin (this is called the con-
fidence of Bm - conf(Bm)) equals the percentage of labelled data being
correct in the bin (this is called the accuracy of Bm - acc(Bm)). As a mea-
surement of the calibration in a formula, we have the Expected Calibration
Error [15]

M∑
m=1

|Bm|
n
|conf(Bm)− acc(Bm)| (2)

where n is the number of samples. Hence as in many applications, it
is important to have an idea of the uncertainty of the model for which
the expected calibration error provides a measure. In situations which
are cost-critical, we will show that we can exploit having an uncertainty
estimate of the classifier for a given sample to make better decisions.
In fact, we will implicitly find some external calibration for the model
through the definition of some statistical model.

3 Model
First, in this section, we will describe the necessary pre-conditions and
cost assumptions. Further, we describe how, after initial training of our
one-class classifier, we can establish our first optimal boundaries. We do
describe multiple alternatives here. Then we pass on to acquiring more
knowledge about the outliers which we will encounter and their outlier
scores. This will then later be used to establish optimal decisions for the
cut-off parameters of human inspection in the sense of our pre-made cost
assumptions.

3.1 Pre-conditions
First, we introduce a few more preliminary and formal assumptions and
notations. We assume that there exists a set of images or more general
data I which each has a hidden label {0, 1} where images with label 0 are
good samples and images with label 1 are anomalous samples. We will
observe these samples in some processes such as an industrial inspection
task one after another. For our cost considerations we assume that the
process of labelling a sample by a human has a cost cl associated with
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Figure 4: A simple binary labelling UI. The use case is a wood image from
MVTec AD[2].

it. Further, we assume that human labelling perfectly assigns the correct
label to the data. Whether this is justified in reality for the MVTec data
set could be tested with a simple user study using a very simple program
as depicted in Figure 4. With N initially labelled data points, we train
and test a model M which will then produce an outlier-score M(i) ∈ R
for every (new) image i we observe. We set a lower and upper decision
boundary for manual inspection bl and bu such that any image i with
outlier score M(i), where bl < M(i) < bu holds, will be inspected by a
human.

3.2 Inspection and fault cost and anomalous data
For our cost considerations, we assume that there is a known (possibly
non-linear2) cost-function Cf such that the absolute cost of missed outliers
can be calculated as Cf (FOR) ·K where FOR is the false omission rate,
i.e. the percentage of anomalies in the accepted samples, and K is the
absolute number of accepted samples. The cost of false positive samples
is associated with a cost per sample of cr. This could be for example lost
revenue and disposal costs of an unnecessarily discarded sample in a good
state.

3.3 Optimal inspection without human interven-
tion
Even in case no human inspection is planned we can still apply the rest of
the analysis done in this paper. This will then be an easier sub-problem

2One reason for non-linearity could be reputation costs, i.e., due to network effects repu-
tation falls non-linearly with increasing fault-rate.
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contained in our analysis, i.e., the problem of finding a single optimal
cut-off value for outliers. This is always a potential solution to a general
problem we will formulate later, where inspection by humans for some
subset is considered. In particular, this means that the inspection interval
has width 0, i.e. bl = bu.

3.4 Initial cut-off boundaries
We assume now that the initial sampling and labelling of data D and
the training of a model M are conducted. We update our initial belief
po of the outlier percentage by taking the percentage of outliers in the
sampled D into account. We are now interested in finding optimal cut-off
parameters bl, bu in this stage. We discuss multiple alternatives now.

3.4.1 A priori anomaly distribution
In the first case, we assume that the distribution of the outlier score of
samples with label 0 and also of the samples with label 1 is both Gaussian3.
For the good samples, we can directly estimate this distribution after
observing our initial training data. We get some distribution gg with
mean µg and variance σg. For the bad samples, we also get some Gaussian
distribution gb (see Figure 5 for examples of such distributions). In the
case where there are no bad samples available, we take some initial belief
about the distribution, which we could take from former observations such
as the MVTec data set or a similar product line as our distribution. We
can find the optimal parameters bl, bu in terms of costs. In order to find
these parameters one would minimise Equation 4 of Section 3.5.

3.4.2 Optimal cut-off sigma
Another approach would be to omit to define an a priori distribution of
gb and instead, take a cut-off parameter x such that any sample with an
outlier score higher than µg + x · σg is considered anomalous. The choice
of the parameter x can be done as follows. We assume that we cannot
inspect every piece which we observe but only some percentage pi of it.
Hence we have to find x in such a way that the expected amount of samples
classified as anomalous is at most the amount that can be handled. Hence
we have to pick x such that

pi ≥ (1− po)
∫ ∞

µg+x·σg

gg(y) dy + po (3)

holds. Note that we omitted the expected false negative classified samples
in our considerations, but we assume that this amount is negligibly small.
In case there is no sample to classify at the moment we might pick a
random sample. In case we acquire enough bad samples we can infer the
distribution gb or update our initial belief about it. More details on the
belief update of Gaussian distributions can be found in [14].

3A non-Gaussian distribution could also easily be considered here.
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(a) Hazelnut

(b) Bottle

(c) Leather

Figure 5: These are the Gaussian distributions of anomaly scores for different
items from the MVTec data set. The blue graphs represent the good sample
distributions and the orange graphs represent the bad sample distributions. The
model where the anomaly score stems from was Patchcore[20] and it was trained
with a training sample split of the MVTec data set. Then the anomaly score
output of the trained model on the good and bad samples of the test data set
split was used to find the shown Gaussian distributions. On these data sets the
established model has an AUC-score of 0.9996 for Hazelnut, 1.0 for Bottle and
1.0 for Leather on the test data set samples.
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3.4.3 Calibrated output
In some cases, the model comes with a calibrated probabilistic output. As
discussed before this roughly means that the output value of the model
M(∗) is a probabilistic classifier, i.e. a sample x has probability M(x) of
being an outlier. With such a calibrated model we can directly use the
model output as our probability for the conditional distribution P(Y |X).
We will later see that the cost equation 4 defined in the Section 3.5 will
be simplified under certain assumptions as we can observe the data on
a point-to-point basis only considering the probabilistic output P(Y |X).
As in our case, for now, we have in most cases a one-class classification
problem so we need calibrated one-class classification models. For support
vector machines there is existing work which conducts calibration of such
classifiers in one-class classification problems[23, 9].

3.4.4 Conclusion for the setting of initial cut-off parame-
ters
Now we have found prior parameters bl, bu or just bl(= µg + x ·σg). With
these, we can set up our initial human-in-the-loop process. After some
time we will enrich our data set of labelled pieces and therefore can update
our belief about the Gaussian curves gg, gb as described in [14] or inter-
fere the distributions gg, gb directly from all the gathered data. There
is some caveat with the selection of the samples: Because of our param-
eters, the selection of the samples is biased. This either needs to be
corrected through enough random samples or giving the unlabelled data
some pseudo label with a continuous value greater than 0 and smaller
than 1. Additionally, we could use the gathered data to further improve
the model M or respectively re-train a new M with the new data and old
data depending on the algorithm in use. In any case, we now fix some
model M , some p0 and the Gaussian distributions gg, gb associated with
it as well as the gathered data. In case we observed and classified a new
sample we could continue to do a belief update of our estimated values
po, gg and gb and retrain our model M to keep improving it. But we omit
such considerations in the rest of the paper.

3.5 Cost-calculation
We calculate the cost associated for some fixed bl and bu for the next sam-
ples. We expect to see po-percent outliers which we have updated from
the observations D. Additionally, we can calculate the expected percent-
age that the next sample will be true positive: TP(bl) = po

∫ ∞
bl

gb(x) dx,

true negative: TN(bu) = (1− po)
∫ bu

−∞ gg(x) dx, false negative: FN(bl) =
po

∫ bl

−∞ gb(x) dx and false positive: FP(bu) = (1− po)
∫ ∞

bu
gg(x) dx. From

this we can calculate the false omission rate FOR = FN
FN+TN . Now for
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the next sample have the cost function C(bl, bu) defined as follows:

Cf (FOR(bl)) · [TN(bu) + FN(bl)] + cr · FP(bu)+

cl · (1− po)
∫ bu

bl

gg(x) dx + cl · po

∫ bu

bl

gb(x) dx.
(4)

This function is our minimisation target for which we choose bl and bu

accordingly:
min
bl,bu

C(bl, bu, gb, gg, p0)

s.t. bl ≤ bu

bl, bu ∈ R

(5)

where R is the set of the extended real numbers which additionally con-
tains plus and minus infinity, i.e. the union of sets R ∪ {−∞, +∞}.

We list the following possible solutions and explanations of their re-
spective meanings for human inspection and machine inspection.
bl, bu = −∞bl, bu = −∞bl, bu = −∞ Every inspected sample should be rejected as an outlier.

This will be in most cases a non-meaningful answer. However, in
some cases where there is an extra station for rejected pieces, this
would mean that every piece should go through this station. In some
cases, we could have a very high probability for the outlier percent-
age p0 temporally as a defective machine could produce parts which
all are outliers. We will discuss the problem of non-independence of
outliers in Section 3.7.

bl = −∞, bu ∈ Rbl = −∞, bu ∈ Rbl = −∞, bu ∈ R This means pieces with outlier score > bu should be
rejected and any piece below this score should be inspected by a
human. This further means that double-checking any piece by the
outlier model and human is a necessity for passing on the processing.
Items which are cheap to produce but have a costly role could qualify
for such a solution.

bl, bu ∈ R, bl < bubl, bu ∈ R, bl < bubl, bu ∈ R, bl < bu There are three intervals. One where every piece will
be accepted, one where every piece will be inspected by a human and
accepted or rejected and one where every piece is rejected. Hence
the machine will accept and reject some samples without human
intervention while leaving the not-so-clear cases for the human.

bl, bu ∈ R, bl = bubl, bu ∈ R, bl = bubl, bu ∈ R, bl = bu A piece will either be accepted by the machine or re-
jected. No human intervention is necessary for cost-optimal results.

bl ∈ R, bu = +∞bl ∈ R, bu = +∞bl ∈ R, bu = +∞ Every piece with outlier score > bl should be inspected
and with smaller bl accepted. Rejected pieces could be very costly
to discard on the one hand, on the other the outlier detection could
have very high precision.

bl, bu = +∞bl, bu = +∞bl, bu = +∞ Every piece should be accepted, hence no inspection should
be conducted and there is no benefit in running the outlier detection.
Still later on the outlier probability p0, as we will discuss in Section
3.7, could be changing. Hence there could be a benefit in running
the outlier detection when the percentage of outliers is changing for
the worse.
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We may have multiple additional restrictions we can apply to the cost
minimisation problem. In case of a very low outlier rate po, we may
simplify the cost by setting bu = ∞. The reason for this is that since
there is no cut-off boundary bu any extra burden of inspection of samples
with very high outlier score will be very small compared to the inspection
close to bl, mainly dominated by the non-outlier. Moreover, when setting
bu =∞ the optimisation problem becomes a single variable problem.

Often it will be the case that we have a fixed percentage of images, say
pf , which we can inspect due to, for instance, a fixed amount of available
human labour. In this case, the following constraint will be added to the
cost optimisation problem 5

pf = (1− po)
∫ bu

bl

gg(x) dx + po

∫ bu

bl

gb(x) dx. (6)

If we additionally set bu =∞ as we discussed before we can already find
the optimal bl by just using this constraint. But even in this case, the
considerations made before are still useful as we can still estimate the
cost of our system and further estimate whether it is useful to employ or
dismiss a human at a certain cost or estimate the cost saving for a higher
or lower rate of inspection of samples.

Moreover, we can estimate costs of inspection done my m-many hu-
mans by taking multiple of pf and hence get the following constraint to
the optimisation problem

m · pf = (1− po)
∫ bu

bl

gg(x) dx + po

∫ bu

bl

gb(x) dx. (7)

Hence to find the optimal number of humans to employ for additional
inspection we have to solve the optimisation problem for each possible m,
where the lower bound is 0, i.e. no inspection, and the upper inspection
limit is the amount of worker needed to inspect every possible sample
produced. Similarly, we can also produce the exact amount, a possible
non-integer amount, of workers needed by finding the solutions to the cost-
optimisation problem without constraint and dividing by the inspection
performance of an average human.

3.6 Cost-function for a calibrated output.
We now assume our model has probabilistic output, i.e. our model is
calibrated. In this case, under some additional assumption for the cost
of false-negative samples, the cost consideration and optimisations are
drastically simplified. We could start to reconstruct the class-conditional
distributions P (X|Y ) for the bad and good samples and hence get gb and
gg and then apply the analysis as done before. This could be done by
using the resulting distribution P (Y |x) = M(x) and also inferring the
distribution P (X) from data, i.e. the distribution of an observed sample
X having a certain value [0, 1]. But we can somewhat simplify the cost
model by using the probabilistic nature of the classifier which resembles
the conditional P (Y |x) = M(x).
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The marginal cost for an observed sample x with probability M(x) = p
being an outlier is as follows.

1p<bl · Cf (p) + cr · 1p>bu · (1− p) + cl · 1bl<p<bu (8)

Note that we deviated from the equation Cf (FOR) and apply Cf directly
onto the value p of being an outlier. We can construct this new Cf from
the original by constructing the distribution P (X) and calculating the
false omission rate by exploiting that P (Y |x) = M(x) and the fact that
there are only two classes, i.e. we use Bayes’ Theorem to calculate P (X >
p|Y = 0) and further FOR in a similar fashion. With this, we can find
a replacement function which takes p as input and resembles the original
Cf .

We now look for the optimal parameters bl and bu. As a value for bu,
we choose the solution to the equation cr · (1− x) = cl, if it is within the
range of possible values. Hence we can find the upper boundary bu of the
human inspection interval as the solution to the following equation

max{0,
cr − cl

cr
}. (9)

The value of bl is determined by the solution of the equation Cf (p) = cl

with the constraint that 0 ≤ bl ≤ bu holds. Hence in the case of a
calibrated classifier and some additional assumptions, the estimation of
outliers is simplified.

3.7 Non independence of outlier observations
In the case where we believe there is a non-independence of the series
of observed data4 we could for example increase the believed percent-
age of outliers po for the next few observed samples after observing an
outlier. This ensures that the costs stay optimal for the next observed
samples with higher anomaly probability. Note that in more complicated
production environments we may observe pieces from multiple different
machines. If possible one should keep track of all the machines involved,
their maintenance status and other critical parameters to get a current
assessment of the probability of outlier probabilities[27].

In lean manufacturing systems[5] there is a drive towards zero defects
in each production step. If such a goal would be achievable, this would
limit the amount of data to consider for estimating the outlier probability
tremendously as only the last step would have to be considered. Still,
zero-defects or even lower goals as six sigma have their limitations in the
real world[19][18] and in a sufficiently complicated production step there
will still be enough complexity to link the probability of defects to other
parameters measured. As in reality often a bathtub-like curve of failures
is observed[8][22]. In the middle of the bathtub curve, we have mostly
random failures and near-constant error rates[22]. In this case, an inde-
pendent assumption for the observation of outliers is justified. Moreover,
the bottom of the bathtub curve can be prolonged with predictive main-
tenance[7] [27] and hence in such a hopefully long-lasting system state, it

4A broken machine could for example produce a sudden stream of defective parts.
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is justified, as initially assumed, that the non-independence of outliers is
a valid assumption for the whole life-cycle of our machine-learning model.
Moreover, such a system as we described for outlier detection containing
a probability model becomes itself a strong data source which then can
be incorporated into a predictive maintenance scheme, as the observed
sequence of good and bad products together with the model are a great
help in identifying anomalous behaviour such as an increased observation
of outliers.

4 Algorithm
In this section, we combine the observations established in the previous
section into a combined algorithm. We note this algorithm in pseudo-code.
For this see Algorithm 1 further below. As an input to our algorithm, we
provide a one-class classification model M that needs N -many samples
for initial training and testing. Further, we have some belief about the
percentage of outliers po in the samples to be observed. Additionally, we
have the positive monotone cost function Cf for false negative samples.
Then there is a real positive value cr representing the cost of a false
positive sample. We also have some real positive value cl which represents
the cost of human labour for the labelling of a sample. Moreover, we fix a
number of outliers we want to observe L. In summary, the algorithm then
starts by letting humans label samples until we obtain a set D containing
N -many samples labelled as good, i.e. samples with the label 0. We then
use this data set D to train our classification model and obtain some
trained model MD. This model is then used to produce outlier scores for
the following samples. Moreover, we produce scores for the test data split
of D. The model is then used to find anomalous samples efficiently. We
do this to obtain a probabilistic model by inferring a Gaussian curve of
the good and a Gaussian curve of the bad samples or to update our belief
about the prior distribution of the good and bad samples. Based on this
we are finally able to find the cost optimal parameters bl and bu by solving
the Optimisation Problem 5. This interval [bl, bu] marks the outlier score
where in-between human inspection will take place.

Note that furthermore, we can replace Step 3 to Step 10 of the Al-
gorithm 1 with an active learning algorithm. Especially, if labelling can
be done asynchronously the labelling cost should not increase with this
approach. This would also improve the performance of the model as our
model will potentially see a more diverse input of samples. For this, we
need some one-class active learning algorithm which can be found in [24]
for example. Moreover, the updated data set D of step 21 could also be
used to improve the model M . Especially using the outlier samples could
be beneficial for the performance and active learning part by training
another one-class model for these samples[21].
Algorithm 1 (Find optimal interval for human inspection).
1: initialisation: po, Cf , cr, cl, N, L
2: n← 0
3: for n < N do
4: wait for next sample s
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5: get label l(s) (by human)
6: n← n + 1− l(s)
7: po ← belief update through observed l(s)
8: end for
9: return training data set D , p0

10: MD ←train model with D
11: b′

l ← (see Section 3.4 for possible computations)
12: k ← 0
13: for k < L do
14: get next sample s
15: if bl < MD(s) then
16: get label l(s) (by human)
17: end if
18: k ← k + l(s)
19: po ← belief update through observed l(s)
20: end for
21: return updated data set D, p0
22: gg, gb ← interfere Gaussian from data D
23: solve minbl,bu C(bl, bu, gb, gg, p0)
Ensure: Model MD and inspection interval values bl, bu

5 Experiments
We conduct the D’Agostino’s K2 normality test [4] on the test data of
MVtec by using the implementation in the SciPY-package[26]. We re-
mind the reader that the normality test is a statistical test with the null
hypothesis being that the given data is Gaussian distributed. We use this
test for every test data set of each MVtec data set separately on the outlier
samples and good samples with a p-value of 5%. Only for the wood data
set the null hypothesis cannot be dismissed. One problem encountered of-
ten is that the Patchcore algorithm only produces a positive outlier score
but the computed Gaussian has negative values which leads to a very
low p-value. Here another distribution which only takes positive values
could be more feasible, such as the truncated Gaussian distribution. The
p-values of the normality test for the wood data set are the following. We
have 93.7% for the outlier samples and a p-value of 47.1% for the good
samples. A histogram and the fitted Gaussians can be seen in Figure 6,
where we took 60 outlier samples and 19 good samples in this test data
set.

We also computed the AUC-scores for the ROC curves of the Patchcore
model outlier scores on the wood test data with the help of scikit-learn[16].
Additionally, with the same software we computed the AUC-scores for
millions of samples from the two fitted Gaussian distributions of these
data sets with the same ratio of outliers and good samples. The AUC-
score for the former data set is 99.04% and that of the latter data set is
99.09%.

Due to the high p-values of the normality tests and the similar AUC-
scores of the test data and the fitted Gaussian distributions, we conclude
that the model is a good fit for the test data’s outlier scores of the Patch-
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Figure 6: Histograms of the outlier scores of the wood data set of the MVtec data
set with fitted Gaussian distributions. The left curve and histogram represent
the good samples and the right curve and histogram represent the bad samples.

core model on the wood data set.
We also did a small computational study with the cost model we in-

troduced (see Equation 4). We now search for some examples to verify
that indeed there are non-trivial solutions to the cost model. For that, we
use the Gaussian distributions fitted to the wood data set together with
some cost parameters and apply the proposed cost model. We compare
the optimal solution of the cost equation and the boundary for optimal
F1 score for the test data which is without human intervention. For that,
we assume that our production line produces 1% outliers, and our labour
cost cl for inspection is normalised to 1. As a cost function Cf we use
the following Cf = α · (exp(β · FOR) − 1). This function ensures that if
the false omission rate is 0 we have no cost associated with this function.
The lost revenue of a good item discarded is cr which we let range as
integers from 0 to 40. The parameter α we let range from 1 to 10 with
a step of 1 and the parameter β from 5 to 200 with a step of 5, both as
integers. Note that a value of α = 1 and β = 200 would lead to a cost of
e2 for every item passing the inspection. Hence if cr ≤ 7 is in our search
this would mean that the product is essentially not sellable. We search
for minimal solutions with the downhill simplex algorithm in SciPy by
starting at bl = 3.5 and bu = 4 with the sub-condition that 0 < bl < bu.
Although this does not necessarily find the global minima we can still infer
from the local minima that it is worth considering a human-in-the-loop
approach. In particular, we find for more than 90% of the search space a
minimal solution with an average cost improvement over the F1-optimal
cut-off value of 57%. Most values of bl and bu range between 3 and 7.
This implies that if the cost structure of the inspection task and results
are known and correct, it is well worth finding an optimal solution to our
cost model.

6 Discussion and future work
We established a theory for the cost-optimal selection of samples for ad-
ditional human labelling of one-class classification models. For this, we
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established a cost model and showed how to infer probabilistic knowledge
of the samples online and offline to establish a cost-optimal decision for
a human inspection boundary in the outlier score. Moreover, we have
merged this into an algorithm which can be applied in production. Fur-
ther, we conducted a small experimental study checking the MVtec data
sets “normality” and found that most data sets have values close to 0 while
being positive to be of Gaussian distribution. Moreover, we searched for
minima for the cost equation in the parameter space and more than halved
the cost compared to F1 optimisations.

For now, we have not considered the case of retraining the model and
we can assume that this will be done occasionally until the economic eval-
uation stabilises or the performance is satisfactory. Also, the problem of
a timely dependence on the occurrence of outliers, which could stem from
faulty machines and certain maintenance cycles, was discussed. At worst
there could be no outlier samples or only a very biased selection of them.
A detailed analysis of the practical relevance of this problem and a field
study is an interesting topic for future investigation. There could also
be potential for future work, especially in the case where the one-class
problem is a moving target, i.e. the golden sample changes over time.
The case for selecting valuable examples for improving the model perfor-
mance also seems an interesting area not yet considered and will probably
require an extra model which is also trained with the outliers. Another
not yet-used feature is utilising the presentation of anomalous areas on
the image for better outlier visualisation for the user decision. There,
another optimisation problem arises which is the optimisation of the cut-
off parameter for the selection of the anomalous area. A more general
question is the question of an appropriate visualisation to improve human
performance. From the general perspective, the work looked into com-
bining machines with human labour to better (in terms of cost) conduct
classification problems with regard to industrial applications.
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