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Abstract

We revisit the phenomenological predictions of the Universal Texture Zero (UTZ) model
of flavour originally presented in [1], and update them in light of both improved experi-
mental constraints and numerical analysis techniques. In particular, we have developed
an in-house Markov Chain Monte Carlo (MCMC) algorithm to exhaustively explore the
UTZ’s viable parameter space, considering both leading- and next-to-leading contribu-
tions in the model’s effective operator product expansion. We also extract — for the
first time — reliable UTZ predictions for the (poorly constrained) leptonic CP-violating
phases, and ratio observables that characterize neutrino masses probed by (e.g.) oscil-
lation, B-decay, and cosmological processes. We therefore dramatically improve on the
proof-in-principle phenomenological analysis originally presented in [1], and ultimately
show that the UTZ remains a minimal, viable, and appealing theory of flavour. Our
results also further demonstrate the potential of robustly examining multi-parameter
flavour models with MCMC routines.
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1 Introduction

The bulk of the free, unexplained parameters in the Standard Model (SM) of particle physics
originate in its flavour sector, thanks to the replication of SM fermion generations with distinct
masses and quantum mixings. These parameters are technically natural, in that sending them
to zero recovers a global U(3)® flavour symmetry of the Lagrangian [2,/3]. However, the
Yukawa couplings of SM fermions to the Higgs boson break this symmetry in a deeply flavour-
non-universal manner, with a mass ratio of ~ O(10'?) between (e.g.) neutrinos and the top
quark. Furthermore the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix exhibits a
hierarchical, approximately unit structure [4], while the Pontecorvo-Maki-Nakagawa—Sakata
(PMNS) leptonic mixing matrix is extremely non-hierarchical, with large mixings amongst
generations [5]. These highly disparate patterns of fermionic mass and mixing strongly hint
that the origins of flavour in the SM may be dynamical, as opposed to a random, soft deviation
from an accidental symmetric limit.

The flavour puzzle therefore remains a compelling motivation to search for physics Beyond-
the-SM (BSM), as it can be solved dynamically via the breakdown of an ultraviolet (UV), BSM
symmetry in specific directions of flavour space. This symmetry breaking typically occurs
when exotic scalar familons develop special vacuum expectation values (vev) as determined
by a family-symmetric scalar potential, although other alignment mechanisms are conceiv-
able. When familons couple to SM fermions and the Higgs boson, their flavoured vevs shape
the otherwise free Yukawa matrices of the SM, and therefore control their associated mass
eigenvalues and mixing angles after electroweak symmetry breaking. These predictions can be
compared to global flavour data sets to falsify the model, serving as an indirect probe of the
new physics proposed.



While the predictions of flavour models — derived from either top-down or bottom-up
considerations — are rich, they are also becoming increasingly difficult to falsify, given that
experiment is rapidly resolving all SM flavour parameters to a high degree of precision, such
that the models’ predictions should actually be considered postdictions. Indeed, virtually all
quark masses and CKM mixings are measured with exceptional accuracy, while only the PMNS
angle 6’53 the Dirac CP-violating phase &', absolute neutrino mass eigenvalues, and Majorana
CP-violating phases (if relevant) are poorly constrained in the leptonic sector. While physical
observables that depend on non-trivial combinations of these parameters, e.g. neutrinoless-
double-5 decay rates (0vff), single S-decay rates, and the sum of neutrino mass eigenvalues
(as constrained by cosmology), offer additional independent probes of flavour models, it is
conceivable that a believable BSM theory will also make falsifiable predictions for a subset of
the aforementioned, unresolved constituent flavour parameters. Complicating matters further,
many (most) BSM flavour models introduce a number of UV theory parameters that are
difficult to numerically sample in a fully generic manner, and so extracting concrete predictions
from said models is challenging in its own right.

In light of this experimental situation, and in response to the need for more robust analysis
routines for exploring viable model parameter spaces, we will re-examine the Universal Texture
Zero (UTZ) Model originally presented in [1]. The UTZ is an effective theory (EFT) valid
at mass scales above those characteristic of the SM, but below those of hypothetical (and
potentially unfalsifiable), renormalizable UV completions, e.g. those incorporating ultra-heavy
fermionic messenger fields V: Ay > Ayrz > Agy. Its Yukawa sector is therefore generated
only at the non-renormalizable level, with EFT expansion parameters in inverse powers of the
messenger masses M;. The UTZ Lagrangian is symmetric under a A(27) ~ (Z3 x Z3) x Z3
[6-10] non-Abelian discrete family symmetry and a further Zy discrete shaping symmetry,
and is consistent with an underlying stage of SO(10) grand unification as all fermions and
their conjugates — including right-handed (RH) gauge-singlet neutrinos — are assigned as
triplets 3 under A(27). Critically, the additional scalars introduced are charged such that
a A(27)-invariant scalar potential exists that drives family-symmetry breaking as mentioned
above, yielding symmetric mass matrices with a characteristic texture zero in the (1,1) position
for all family sectors. As shown in [1], this UTZ structure is capable of explaining quark and
lepton flavour data with as few as nine infrared (IR) theory parameters, and therefore amounts
to an appealing and predictive theory for the origin of SM flavour patterns. The UTZ stands
as a continuation of similar solutions employing texture zeroes, explored already in e.g. |[11,/12].

However, the numerical exploration of the UTZ parameter space presented in [1] only
achieved a ‘proof-in-principle’ fit demonstrating the model’s phenomenological viability. It
did not exhaustively explore the predictions of the UTZ Lagrangian at leading order (LO) in
its EFT expansion parameters, nor did it consider the complete set of corrections generated
by operators present at next-to-leading order (NLO) in 1/M;. Most importantly, the analysis
in [1] did not present robust predictions for the aforementioned unresolved leptonic flavour
parameters nor any other observables (e.g. [-decay rates) that depend on them, and hence
it did not provide a reliable means of falsifying the UTZ model space as data continues to

'In what follows we use the label [ for leptons, ¢ for quarks, and u, d, e, v for individual families of either.
We also include neutrino mass and mixing when we reference ‘SM’ flavour parameters in the text, despite
these being fundamentally BSM objects.
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Table 1: The fields and A(27) x Zy family symmetry content of the UTZ flavour model. Note
that 0x only appears in the scalar potential, and hence the only restriction on its Zy charge
is that it does not contribute significantly to the fermionic mass matrices. Its Zy charge can
therefore be left generic, as shown.

improve. In this paper we aim to remedy these shortcomings by applying a Markov Chain
Monte Carlo (MCMC) fitting algorithm to the UTZ. Inspired by similar analyses [13}|14], the
MCMC technology we employ allows for a robust exploration of multi-parameter models and
their associated likelihoods. It also allows one to simultaneously extract predictions for poorly-
constrained observables which are controlled (in part and in different combinations) by the
same parameters that control exceptionally well-constrained observables, thereby accounting
for the intricate correlations between UTZ theory parameters and their associated phenomenol-
ogy. In this way we are capable of presenting predictions in experimentally-preferred regions
of the UTZ parameter space, for both the LO and NLO UTZ Lagrangian. As we will show,
the theory is phenomenologically viable at both orders in its operator product expansion, with
the latter NLO terms yielding only minor corrections to the dominant LO predictions. The
UTZ is therefore a stable, predictive, and minimal theory of flavour.

The remainder of the paper develops as follows: in Section [2| we review the UTZ model
as conceived in [1], including the field and symmetry content composing the (N)LO contri-
butions to its operator product expansion, as well as its qualitative predictions in the quark
and lepton sectors. Then in Section [3] we review the most up-to-date experiment that con-
strains its predictions in the Yukawa sector, and also discuss the uncertainties associated to
renormalization group evolution (RGE) from the UV to the IR. In Section {4 we discuss the
MCMC algorithm we have developed to explore the UTZ parameter space, and also present
the results and analysis following from our scans. We conclude in Section [5]

2 The Universal Texture Zero Model

The field and A(27) x Zy symmetry content of the UTZ [1] is given in Table [l There one
observes that all SM fermions 1), are assigned as triplets 3 under the family symmetry, as are
additional gauge singlet ‘sterile’ neutrinos that participate in a seesaw mechansim. Besides
the fermionic content, we also have a set of BSM scalar familons 6;, charged as A(27) anti-
triplets 3, a lepton-number-violating (LNV) anti-triplet familon 6 necessary for describing
the Majorana neutrino mass sector, and finally a triplet familon #x necessary for successful
vacuum alignment. All such familons are SM gauge singlets. There is also a A(27) singlet
sector composed of the > and Higgs H scalars, both associated to an underlying stage of grand
unification consistent with the following symmetry-breaking chain:

SO(10) — SU(4) x SU(2), x SU(2), — SU(3) x SU(2) x U(1), (1)
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where the SO(10) breaking proceeds via an H vev and where (X) oc B— L+ kT3 is associated
to Pati-Salam breaking. As seen below, this latter X field selects unique Dirac textures for
distinct fermion families out of an otherwise universal mass matrix structure. Finally, the
A(27) singlet scalar S is a shaping field that, along with the Zy shaping symmetry, restricts
the class of operators that appear in the UTZ EFT. Its main role is to indirectly forbid terms
X #1236123 in the UV Majorana Lagrangian presented in , which would destroy the desirable
UTZ texture. We note that this field and symmetry content exhibits explicit discrete gauge
anomaly freedom at the relevant scale of our EFT — see (e.g.) [10,/15-22].

Besides the Yukawa Lagrangian to be discussed in upcoming Sections, the familons 6;, 0x
and @ also compose an associated scalar potential V = V4 + Vp,

Va= Y (Vi) +Va(6:) + Vs + Vi + Vs,

i=3,123
Vg = Vi(0) + Va(0) + Vs . (2)

While we leave the complete description of the vacuum alignment mechanism to [1], we recall
that the individual components V; of V' are given by

Vi(6:) = m2|6:[%, Val8:) = hi(0:)2(87)°, Vi = knfix 0100105,68  (ky > 0), Vi = kymofi6%6%

Vs = k3923,29;(6g%9§ + k’40237i9§i6‘3,i ;g (l{?g >0 and ks < 0) , Ve = k’5937i9ﬂ0i9§i (l{?5 < O) .
(3)

The first term V) sets the scale of the scalar familon fields, and is sufficient to break the
family symmetry spontaneously upon m? being driven to negative values, perhaps via radiative
corrections in the manner of [23]. Then the second term V5 aligns the 63123 vevs in flavour
space as a function of the sign of h;; hias = h; > 0 while h3 = h; < 0. The terms Vi456
account for the final alignment of the 023 x and 6 vevs, with V3 sourcing the dominant coupling
of Ox, Vj selecting (0x) o (2,—1,1) out of the two degenerate vacua V3 allows, and V5 and Vj
respectively driving the final 63 and @ orientations upon minimization ]

All subtleties considered, the potential in aligns the scalar familon fields in special
directions in flavour-space,

0 e 0 2¢8
v . A% . \% .
(03)) =voe | 0|, (b123) = 172; e |, (b)) = % e |, <9§(> = 7)% —el |
1 —1 1 1

where the parentheses on the first term indicate that both 63 and 6 are aligned in the third-
family direction, and where we have included the generic phases «,  for completeness, al-
though we will eventually set these to zero following the discussion in [24]. We note that, of
the above potential terms, many are not invariant under SU(3)#, and so the use of A(27), a
non-Abelian discrete subgroup of SU(3), was instrumental in the above discussion.

2Observe that in we have only included terms that are consistent with a spontaneously broken, super-
symmetric (SUSY) underlying theory with triplet mediators. Additional quartic terms may appear, but must
be suppressed in order to preserve . All other aspects of the tree-level phenomenology of the UTZ model
can be studied without reference to hypothetical UV completions, and we adopt this agnosticism to be as
generic as possible in what follows.



2.1 The Leading-Order Effective Yukawa Lagrangian

Upon demonstrating that a successful vacuum alignment is plausible upon family-symmetry
breaking, a meaningful BSM Yukawa sector can be subsequently formed from the field and
symmetry content of Table[I} This leads to the following LO UTZ effective Lagrangian in the
Dirac sector of the theory:

(6) (7) (7)
LO 3 pipgi . _©23 i €123 (pi pi i g ¢
= (M—;,f?ﬁ?” 3, "0 g, Vit 6230{23)5) .

where f € {u, d, e, v}. Here an) are free Wilson coefficients whose superscript denotes the
mass dimension n of the operator, while M, s represent the mass scales associated to heavy
messenger fields that have been integrated out of the spectrum in forming the EFT, a 14
the Froggatt-Nielsen mechanism [25]. These messenger fields are associated to distinct UV
completions and are typically taken to be vector-like fermions, although we do not wish to
commit ourselves to any particular scenario. In what follows we will simply point out the
implications and constraints on said UV messengers coming from the (falsifiable) IR spectrum
associated to (4)).

To that end, one quickly notices that a natural hierarchy for the third-family fermions is
realized, thanks to the power suppression (assuming only mild hierarchies amongst messenger
masses) of the second and third terms with respect to the first, which only contributes to
the (3,3) entry of the Dirac mass matrices. While this helps realize an approximate SU(2)
symmetry of the quark mass matrices and associated CKM mixing matrix, it also implies that
the ratio 05 /M3 f is large [26], at least in the up sector. This is acceptable if 63 is the dominant
contributor to the messenger mass, which we assume for all charged fermion sectors. For an
alternative solution to this issue involving Higgs mediators, see [27].

Besides , the field and symmetry content of Table [1| also permits a Majorana mass
Lagrangian, which at leading order in the OPE is of the following form:

(5)
c 1 L
Ly =i ( Y007 + W[ 53035 (0°6"0155) + CMz (550755 + 91239%3)(9k9k912€3)]> Y5 (5)

Here one notices that there are two insertions of the LNV scalar 6 in each operator, as is
consistent with our underlying SO(10) — SU(4)xSU(2),xSU(2)g GUT embedding, and also
that the leading contributions in this effective Lagrangian are at dimension five and eight
in the 1/M expansion of the EFT, as opposed to six and seven in the case of the Dirac
Lagrangian given in . This results in an extremely dominant third-family hierarchy that has
important phenomenological implications in the neutrino sector upon applying the seesaw, as
mentioned below. Further discussion regarding the relative power suppression between Dirac
and Majorana sectors will be given in Section [2.2]

Qualitative Charged Fermion Masses and Sum Rules

While the SM’s quark and charged lepton flavour sector is exceptionally well-measured and
therefore offers little opportunity for novel predictions, we do note that the UTZ Lagrangian



above has been designed to realize successful charged fermion mass ratios, as well as two long-
standing and successful phenomenological ansatze: the Georgi-Jarlskog mechanism and the
Gatto-Sartori-Tonin sum rule. This is due to the UTZ structure of the Dirac mass matrices,
given qualitatively by

3 3
0 e} ¢
MP =~ ms b rperper [ rua=1/3, re=-1, (6)
e rped 1
with f again indicating the family sector, f € {u,d, e} and €; associated small parameters.

Phenomenologically viable values are given by ¢, ~ 0.05 and €4, ~ 0.15. This family splitting
is accommodated via the UTZ relations
(023)* (%) M3,

2 3
Tf €, = . s €
= My, (6s)? d

(023) (P13) (S) M3,
M1323,f <93>2 ’ (7)

which hold up to O(1) coefficients and signs. Here one sees that €, < ¢; is realized if
M3, /Mo, < Msq/Mas 4, and of course €, and €4 can be equal given the symmetry breaking
in and the fact that both are Tp3 = —1/2 states which (in SUSY models) acquire their
mass from the same Higgs boson (H;). Note that we assume the messenger masses carry both
lepton and quark quantum numbers, and so it is important that RH messengers associated to
SU(2)r breaking in dominate for €, < €4, as opposed to the LH messengers associated to
SU(2)z, whose up and down masses are of course equal due to SU(2),, invariance.

Also associated to this pattern of family suppression are the 7, coefficients in @, which are
sourced from the 3 vev and therefore implement the Georgi-Jarlskog mechanism [28|, resulting

in
1
mr =my, M, =3ms, me:§md (8)

at the scale of grand unification, as is consistent with RGE and threshold corrections [12].
In addition to these characteristic mass relations, the quark sector realizations of @ also
implement the Gatto-Sartori-Tonin mixing sum rule |29],

. myq . m
sinf,. = — e 2
mg me

relating the Cabibbo angle 6. ~ 67, to mass ratios from the first- and second-generation

quarks of both the up and down families. Setting § ~ 7/2 and again accounting for RGE and

threshold corrections [12] (cf. Section, both (8) and (9)) remain successful predictions that
|

are maintained in our UTZ framework!

: (9)

Qualitative Neutrino Masses and Sum Rules

As discussed above, the bulk of the parameters left to be constrained experimentally are in
the neutrino sector, and so it is worthwhile to discuss the qualitative, analytic predictions

3These predictions are a consequence of the texture zeroes in the charged fermion structures and are
therefore not unique to the UTZ, see e.g. [11126}30].



of the UTZ construction in this area. As with other flavour models, we employ the Type-I
seesaw mechanism [31H34]. In this framework the right-handed (RH) Majorana mass terms
generated by are parametrically heavier than the Dirac neutrino masses coming from .
Integrating the RH neutrino fields out of the spectrum generates a left-handed (LH) Majorana

neutrino mass term,

1
M, = LMD MG MPT, (10)

which is of course naturally light due to the heavy M), suppression. In the presence of a
sequentially dominant [35-38] RH neutrino spectrum

Mz > Myro > My, (11)

which is naturally realized thanks to the hierarchical suppression of the second term in (18
with respect to the dominant (third-family) first term, the see-saw contribution coming from
vs exchange is negligible. This results in the lightest active neutrino having a parametrically
smaller mass compared to the two heaviest active neutrinos. This spectrum is described by
an effective 2x2 neutrino mass structure in the IR, which can be analyzed analytically. In
particular, after application of the Type-I seesaw mechanism, one can extract sum rules for
the PMNS mixing angles as a function of neutrino mass eigenvalues,

m 1 : 1
3_m23’ sin 655 ~ ]E—emsinelfﬂ, sin@ll’Qzﬁ,
where the phase 7 is defined from the predicted ratio of the heavy neutrino masses msy/ms
(see the discussion in [1]). One notes that the relationships in are similar to the renowned
“Tri-Bimaximal’ (TBM) texture [39] (sin 6%5M = 0, sin 0LPM = 1/1/2, sin 6LPM = 1/4/3) that
is often a starting point for neutrino mass model building. However, the salient difference
with respect to prior models of this type — see e.g. [26]30] or the more recent [40-42] — is
that the (1,1) texture zero of the mass matrix remains after application of the seesaw, such
that our UTZ setup leads to a non-negligible departure from the TBM texture and naturally
allows for a large(r) reactor mixing angle 6, (which also receives corrections from the charged-
lepton sector), in accord with data. Finally, we note that our A(27) family-symmetry breaking
realizes the Zy x Z [43] residual symmetry of the IR neutrino mass term only ‘indirectly, ff] in
that it is not a subgroup of A(27) and appears only accidentally thanks to (4]).

sin %, ~ (12)

2.2 Higher-Order Contributions

The Lagrangians in — represent the LO contributions to the UTZ operator product
expansion. Higher-order terms in this series are suppressed by further powers of the relevant
mediator masses, and should therefore represent small corrections to the qualitative structures
and predictions discussed above. However, these corrections can a priori be non-negligible as
noted in [1], and so it is important that we consider them robustly as we revisit the UTZ.

4. following the classification system of [44]. For a pedagogical algorithm and exhaustive discussion re-
garding the reconstruction of effective Lagrangians analogous to - in the alternative ‘direct’ symmetry-
breaking scenario, see [45].



In the Dirac sector, the NLO A(27) x Zy invariant terms composed of the same field
content as in Table [I| arise at mass-dimension eight, i.e. with four powers of mediator mass
suppression,

(8) (8)

C i . i ni c i . i ni .
Eg,(; = (ﬁ;( 5305 + 03053) XS + sz( 12303 + 939{23)52> %‘H- (13)

While these terms contribute at the same order in the EFT’s power counting, we have already
identified in the discussion below that the LO Dirac mass contribution o (3) is paramet-
rically larger than that oc S. If one assumes roughly universal messenger masses, one finds

that
~O(E), W o = <<0012233>><<28>> e (1) -

from which once can readily conclude that the HO contributions o S? in are also para-
metrically smaller than those o< ¥5:
(65) (023) (Z)(S) 1 (05)(0r25)(S)*

T v (15)

(0a3) (023) ()
M3,

In [1] we used to justify ignoring the S? contribution to the Dirac mass matrix entirely.
However, we will now include both terms in for completeness.

The UTZ’s operator product expansion is of course infinite-dimensional in the absence of
an explicit UV completion. Hence further, next-to-next-to-leading order contributions can
also be written down. However, these operators will have at least three additional insertions
of A(27) triplets, and are therefore highly suppressed. We neglect their contributions as a
result. We also note that the NLO contributions to the Dirac Lagrangian given in enter
at the same mass-dimension as LO contributions to the Majorana Lagrangian given in (),

O ~ O ~ O(1/M*), (16)

and so we do not consider any corrections to to be consistent in our power counting.

2.3 Complete Effective Mass Matrices in the Ultraviolet

The discussions in the Subsections above lead to the LO and NLO Lagrangians of ,
and . After family- and electroweak-symmetry breaking, these Lagrangians generate the
following Dirac and Majorana fermion UTZ mass matrices:

0 a ei(a+ﬂ+7) a ei(ﬂ'i"‘/) +c ez(ﬁ"'C)
./\/lD ~ q etlatB+7) (b e~ 4+ 2q e—i&) et(20+y+90) p eilatd) + c eiletd) 4 d eiletv)

a !B 4 Bt peilatd) o ceilatd) 4 deiletd) 1 — 2qe" +he — 2ce’ + 2d e
(17)



0 y eila+B+p) Y et(B+p)
MM o [y eilatBrn) (g e=ip | 9y ei0) i2atote) g pila+e) . (18)
y et (B+p) T etlate) 1—2y e 1 g et

Here the matrices have been renormalized such that M = M}D /sp, MM = MM/ M,, where
My and s are the overall scale-setting parameters of - which, along with the relative-
scale-setting parameters {a, b, c,d, z,y}, are defined in terms of scalar vevs and other coeffi-
cients:

ADyviasvas (S) Y cS9rvEs (%) Aoyviasva(S)? g — 57 vava (2)(S)

a/ = , = s CI = y - )
! \/éMigés,f ! 2]\4233,1” ! \/ngzzs,f ! \/§M§3,f

B céﬁ)vg ;L C${1V§3<@123> ;o C%Z{QV23V123<923> Mo — cg\?vg 19

Sf - M32f 3 r = Wy y = \/6M4 ) 0 — M ) ( )

with ry g0, = (1,1, -3, —-3)/3 and (Oa3123) = (91“9'@0’2“37123% i.e. the vev of the singlet contrac-
tions with k superscript in . The relationship between primed and unprimed parameters,
along with associated complex phases, is then given by

!/ / / / / / ! !

a a b bl . , c c d , ,
—=|—|e7"=ae", — = |—|e® =bev, — = |=|e = ce, — =|—|e" =devY,
s s S s S s s

/ / / /

_ i — i¢ _ ip — ip

— = |—|e%=1xe —— =|=|e? =ye 20
My My ’ My ‘Mg ’ (20)

and it is clear that ¢ and d account for the HO Dirac corrections in .

Given -, the values of the ‘physical’ fermionic mass, mixing, and CP-violating
parameters can be extracted numerically as described in [1] or analytically, using flavour-
invariant theory as described in (e.g.) [46H48]. Then, given (19)-(20)), one can compare the
number of IR theory parameters vs. IR physical parameters as a measure of the predictivity
of the UTZ. At LO, there are a priori two coefficients (a,b) and two phases (v, d) for each
charged fermion sector, plus the additional two family-universal phases (o, ) from vacuum
alignment. However, following [24], we can set all but two of these phases to zero without
loss of generality. Assuming the GUT embedding discussed above to relate the down quarks
to charged leptons taking into account the Georgi-Jarlskog factors, one then has (2 + 2) - 3 +
2 —4 — 4 = 6 UTZ model parameters (including two phases) to describe three CKM mixing
angles, one CKM Dirac phase, four quark mass ratios and two charged lepton mass ratios,
totalling 10 physical parameters. The neutrino sector’s predictivity is even more striking, in
the sequentially dominant limit of . There, only three parameters, including a phase and
an overall mass scale, are necessary to reproduce the neutrino mass differences, which when
combined with the aforementioned charged lepton parameters also generate PMNS angles and

phases. In total, we see that only nine theory parameters are required to reproduce 18 physical
parameters at LO in the UTZ OPE.



3 Experimental Constraints

The core experimental constraints on the UTZ model presented in Section [2| are of course
the fermionic mass eigenvalues and CKM/PMNS mixings extracted from a host of low- and
high-energy flavour experiments. Regarding the charged fermion sector, this information is
regularly collated in the PDG review [4], which reports bounds on fermion masses and mixing
angles. We have reported these IR bounds for the mass sector in Table (3| translating the
uncertainties on individual masses into uncertainties on mass ratios, given that the UTZ only
predicts the charged fermion mass spectrum up to a common scale. On the other hand,
uncertainties on mixing angles and the Dirac CP phase can be extracted from global fits to
the CKM matrix and Jarlskog invariant given by [4]

(0.97419) (0.22433) <0.00358)

0.97451) \0.22567) \0.00388
v — Uty e (0.22419) (0.97333) <0.04108> , GKM€<3.23>.10—5, 921
Voru| = UVl 0.22553) \0.97365) \0.04267 J 2.95 (21)
(0.00839) (0.04038) <0.999082>
0.00877) \0.04193) \0.999149

where the left equality defines the CKM as the overlap of the matrices U, 4 diagonalizing the
up / down Yukawa couplings. The translation of these bounds to the 9%- and 9, basis is given
in Table 2

Leptonic mass and mixing constraints are of course deeply sensitive to ongoing neutrino
oscillation, cosmology, and S-decay experiments. The authors of [5] have compiled a global fit
to the available oscillation data, finding (e.g.)

(0.801> <0.513> <0.144>
0.845/ \0.579/) \0.156

v, — U] e (0.244) (0.505) (0.631) , -
Vearns| = U/ U 0.499) (0:693) \0.768 (22)

(0.272) (O.471> <0.623>
0.518/ \0.669/ \0.761
where the LHS again gives the standard definition of the PMNS matrix as it appears in
the charged-current interactions in terms of constituent charged-lepton and neutrino mixing
matrices U, and the 30 confidence bounds on the RHS further assume a unitary Vpyys and
include Super-Kamiokande atmospheric data — see [5] for details. As seen in [5] and also
in Table [2 current 30 oscillation constraints do not yet fully determine the quadrant of the
atmospheric mixing angle 5, and, at least in the normal ordering scenario, have only excluded
~ 43% of the available domain of the leptonic CP-violating phase ', i.e. ¢ is only constrained
within a ~ 200" arc. This is reduced to an exclusion of only ~ 20% of the phase domain when
not including SK data.

The authors of [5] have also obtained global constraints on the differences of squared
neutrino mass eigenvalues, finding at the 30 confidence level

Am?, =m3 —m? € {6.82,8.04}*7 - 107°eV?,

sol

Am?

atm

=m3 —mj € {2.430,2.593}> - 102 eV?, (23)
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Uncertainties on Fermionic Mixing Parameters

CKM Parameters | sin6f, sin 6, sin 67, sin ¢ p

_ 0.226 0.427\ . 1n-1 0.380Y\ . 1n-2 0.921

(= Mig) (6:355) | (©437) 20~ | (§388) 10| (3850)

_ 0.226 0.463\ . 1n-1 0.409Y . 10-2 1.000

(= Myv) (0:355) | (§:35%) -0~ | (§489) 2072 | (5999)
PMNS Parameters || sin 6, sin 6, sin 6!, sin 6 p
(=M ) (0.586) (0.776) (0.156) (0.588)

H= Mirvv 0.519 0.639 0.144 -1.000

Table 2: Uncertainty estimates for fermionic mixing parameters. In the CKM sector, the
(experimental) IR bounds are given in [4], while the UV bounds are estimated by considering
various input RGE/threshold correction parameter choices from [12], and accounting for the
propagated IR experimental uncertainties. In the PMNS sector we take 3o global bounds from
NuFit, in the normal ordering scenario and incorporating Super-Kamiokande atmospheric
data.

in the normal-mass-ordering scenario relevant to the UTZ construction, and again including
Super-Kamiokande atmospheric datal] We have translated this to a bound on the ratio £ =
Am?2,,/Am2,,, in Table 3]

A second class of neutrino mass constraints comes directly from cosmological probes. For
example, assuming the ACDM model and using data from the Cosmic Microwave Background’s
(CMB) angular spectra, the Planck experiment has put an upper bound on the sum of cos-

mologically stable neutrino masses my of [50]

my = Z my, < 0.26 eV (24)
at the 95 % confidence level. When also including data from Baryon Acoustic Oscillations this
bound is reduced to my, < 0.12 €V [50], which can be yet further reduced to my < 0.09 eV when
including Type Ia supernova luminosity distances and growth rate parameter determinations
[53] — see [54] for a recent review.

Finally, additional constraints in the neutrino mass and mixing sector originate in the
effective mass terms controlling electron-neutrino Ov55 decay and single 3 decays,

(mgg) = > VZmy| < (61 —165)-107% eV, (25)

mg = /ZH/ele? < 0.8 eV,

where V,; is the matrix element of the first row and ¢-th column of the PMNS matrix defined in
, and m; is the corresponding neutrino mass eigenvalue. Robust bounds for these quantities

(26)

SNote that, by definition, the mass eigenvalues are labeled according to their relative magnitudes, i.e.
mg3 > Mo > my in the normal-ordering scenario.
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Uncertainties on Fermionic Masses

Quarks M, /My me/my M/ My, ms/my,
=) | (156%) 107 | (3399) 10 | (1685) - 107 | (33%) -10”
o) | (235) 0| (B3 | (5390) 0~ | (1320) 0

Leptons Me /M~ my/m; Am?,/Amy,,
= | () |G 0| () v
=My || (3553) 10 | (350) 10 | (383) 10 | (§35) 107
Neutrinos mg [GeV] (mgp) [GeV] my [GeV]
(= Mrg) 8-10710 6-10" 1.2-107% US\(/%eEtset}i(rtng?;res
(u=Mpy) || 1.12-107 8.4-10712 1.68 10710

Table 3: The same as Table[2] but for fermion masses. We estimate the neutrino mass squared
difference in the UV from [49], and recall that the £ ratio only differs from the IR when tan 3
is large and/or the neutrino mass spectrum is partially degenerate (see text), hence the two
UV bounds for ¢ in the last row, with the left (right) cell corresponding to the low (high)
tan 3 scenario. IR bounds for mgs) and my are taken from [50-52], and their corresponding
UV bounds are given by conservatively setting s = 1.4 (see text).

are provided by dedicated terrestrial experiments. In we have cited the KamLAND-Zen
collaboration [51], while the limit in is the 90% confidence-level bound from KATRIN [52].
KATRIN’s future sensitivity is expected to reach mg < 0.2 eV [55][]

At this point we should clarify that, while in practice we must specify a numerical value
for the scale My when applying the seesaw formula E] and must therefore count this as
a relevant IR model parameter in our theory (unlike the charged fermion case), this choice
completely determines the overall neutrino mass scale. As this is a free UTZ model parameter,
we can vary it between sensible UV seesaw scales to accommodate (e.g) -, and probe
said variation’s effect on the relative-scale-setting parameters {a,,b,,z,y}. We have done so
between My € 1019712 GeV, and observe in Figure [1] that, at least qualitatively, larger values
of My are preferred. Regardless, as with the charged fermion spectrum, we only consider
UTZ predictions for ratios of observables that depend on the overall neutrino mass scale,
where My cancels, as truly meaningful. For this reason we will present &, (mggs))/ms, and
(mpg)/mgp as predictions in Section [4] but not their individual constituent parameters m,,

6See e.g. |56,57] and references therein for a recent summary review of these independent flavour constraints
and the ability to use them to probe neutrino mass models.

7...which amounts to specifying both the Dirac and Majorana neutrino mass scales and hence their relative
hierarchy, as we have no way of differentiating My from My = 52 /My in the seesaw formula...
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or mg(g), although we can report these based on the various Mj’s identified in the MCMC
evolution, and indeed mg(s), Am2, 41, and my should be seen as giving reliable constraints
on the MCMC algorithm, in that once a value for My has been settled on, their associated

values must still be consistent with observation.

3.1 Renormalization Group Evolution Uncertainties

A critical uncertainty for any prediction of the UTZ model comes from the fact that (17)-(L8)
are the textures associated to the UV theory. Any comparison with data must be made at
the scale where said experimental constraints are obtained, which in the case of the UTZ
model is orders of magnitude below where (I7)-(18) hold. Thankfully the Renormalization
Group (RG) evolution required to account for this scale separation is well-studied in the con-
text of a background SM or minimally-SUSY SM (MSSM) spectrum (consistent with our
vacuum alignment mechanism discussed above), for both the charged fermion [12}58,59] and
neutrino sectors [23,49,60-63]. For example, assuming a large flavour-breaking scale and
a background SUSY spectrum allowing for high-scale gauge-coupling unification, the phe-
nomenological charged-fermion structures discussed between @-@ are already consistent
with RGE and threshold corrections from the IR to UV — see e.g. |12] — up to uncertainties
regarding (e.g.) the underlying SUSY breaking scale and parameter spaces (in particular the
ratio of Higgses, tan 3), which can drive some mass and mixing-angle splittings. As we do
not specify tan 3 or other parameters and/or fields beyond those of the Yukawa sector of the
EFT presented in Section [2.1] we have used [12] to estimate the overall uncertainty associated
to UV quark mass and mixing parameters, accounting for the broad range of possible theory
parameters studied therein, and of course propagating updated IR experimental uncertainties
from [4] to the UV. These estimates are reported in Table
Moving to the neutrino sector and assuming a Type-I seesaw mechanism, detailed RGE
and threshold correction analyses can be found in [49,60] and references therein. There one
concludes that, in the absence of a conspiracy between special alignments of phases, large
tan 8, and/or a (partially—)degeneratdﬂ light neutrino spectrum, radiative corrections to PMNS
mixing angles and phases between disparate scales is generally minimal,
ABL =0 (Apy,) — 0L (Apr,) ~ LM s (1+tan*B) - T (27)
iy — Yij 1 ij z 92 MZ enh 5
for the lowest seesaw scale of My, and with Tepy, = {1, V&, 1,/E/05, €} for {6,605, 64, 6", &},
respectively. Taking rough order-of-magnitude estimates for I'c,;, and allowing for M, as large
as Mgur ~ 10'% GeV and tan § as large as 50, one sees that typically Ag; < O(107%), which
is largely insignificant in comparison to the experimental uncertainties on mixing parameters
given in Table , except for possible corrections to @};. Given that we predict a normally-
ordered, hierarchical mass spectrum as a result of the sequential dominance condition of EI

8Here a ‘degenerate’ spectrum corresponds to Am?2,, < m3 ~ m3 ~ m?, while a ‘partially degenerate’
spectrum corresponds to Am?2 ; < m? < Am?,,,. Hierarchical neutrinos satisfy m? < Am?; in the normal-
ordering scenario.

9Note that the presence of a dominant scale M3 in the RH neutrino mass matrix also minimizes the inter-
threshold radiative effects between M; [60].
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we can take the 30 bounds of to hold in the UV, implying that the experimental uncer-
tainties are large in comparison to radiative effects.

On the other hand, the light neutrino mass eigenvalues are far more sensitive to RGE than
are the PMNS parameters, even in a hierarchical system. Assuming small tan 8, neutrino
mass eigenvalues generally evolve with a common scaling, m, (1) =~ S(u, to) myi(po) with
(e.g.) s~ 1.1 —1.2 for tan 8 =~ 10 or $ &~ 1.35 — 1.4 for SM-like running. This obviously leads
to a UV enhancement of the neutrino mass differences in o 2, but this effect cancels in the
ratio £. On the other hand, large tan § can drive UV flavour splittings amongst the neutrino
mass eigenvalues, evolving both Am?ol’atm and &, an effect which is especially enhanced in the
case of a (partially-)degenerate spectrum, and which is considerably uncertain when allowing
for generic phase configurations. We have used [49] to estimate the effect on £ in this regime
in Table 2, where one sees that an uncertainty greater than an order of magnitude in principle
exists, although this is quite conservative given the neutrino mass domain considered in [49],
and the fact that we can constrain our MCMC scan to prefer a hierarchical mass spectrum,
ie. Am2,/m2 > 1.@ Finally, we note that RGE discussed above also impacts the UV values
of (24)-(26), which serve as constraints on the MCMC system. In Table [3] we have estimated
these in the (conservative) SM-like scenario, with s = 1.4 for all neutrino species..

In summary, we will apply the UV bounds in Tables 23] to account for a rather generic class
of RGE and threshold corrections to fermionic mass and mixing in the UTZ. They will allow
us to robustly explore the UTZ’s predictions without introducing unnecessary assumptions
about the background field content and/or non-flavour parameter spaces that are irrelevant
to the EFT construction at hand, which is designed to be as model-independent as possible.

4 An MCMC Scan of Parameter Space

A proof-in-principle numerical analysis of the UTZ predictions derived from (17)-(18) was
originally performed in [1], in order to show that the model was consistent with available mass
and mixing data at the time. This semi-analytic study, while successful, relied on a largely
heuristic contour analysis to identify a viable region of the UTZ parameter space. However,
the analysis was incomplete in many ways, in that it did not

1. exhaustively explore the available UTZ model space, robustly accounting for all theory
correlations amongst its Lagrangian parameters and therefore conclusively determine
whether the LO UTZ effective Lagrangian adequately describes nature;

2. explore the complete set of corrections coming from NLO effective operators as discussed
in Section[2.2] Only the largest corrections identified in the Dirac Lagrangian were briefly
considered in |1, and only in the down-quark sector (the corrections parameterized by
dd and ’QZJd)

10While sequential dominance naturally generates a hierarchical spectrum, variations of the relative-
scale-setting neutrino coefficients {a,,b,,x,y} can in principle edge the spectrum towards partial degeneracy.
We have applied a likelihood of 1 to any value of Am?_,/ m?jl > 10 found in our MCMC scans, and have applied
a smoothing, Gaussian-like corrective factor to assign likelihoods for values close to this threshold.
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3. identify sufficiently generic predictions for (e.g.) the CP-violating phases §' and ¢, 5 or
PMNS atmospheric angle 6},, when all other (well-measured) flavour parameters were
simultaneously resolved by the UTZ;

4. consider in any way the experimental constraints from, nor predictions for, neutrino-
sector observables like Ov(3f3, single 5-decay rates, or the sum of neutrino masses msy,.

Furthermore, the experimental datasets available for theory comparison have been updated
since the original publication of [1]. All of these considerations motivate us to revisit our
phenomenological analysis of the UTZ in order to better determine its viability and identify
means of falsifying it. However, given the number of free parameters introduced by ,
(B). and even (13), numerical techniques more sophisticated than those applied in [1] will be
necessary to achieve [I4l To that end, in this work we consider a Markov Chain Monte Carlo
(MCMC) algorithm for exploring the UTZ.

4.1 The Generic MCMC Algorithm

Our numerical analysis will rely on a Metropolis-Hasting MCMC algorithm. The purpose
of this approach is to find the posterior distribution of the model after applying relevant
experimental constraints, thereby obtaining viable, high-likelihood UTZ parameter regions.
The MCMC technique has proven to be very powerful when applied to the exploration of
high-dimensional parameter spaces, with physics applications originating in cosmology [64]
and extending to (e.g.) phenomenological studies of SUSY extensions of the SM [65] 66|
and the determination of parton distribution functions [67]. More recently, two publications
have used this approach to study the viability of a flavoured SUSY SU(5) model [13] and a
scotogenic model for loop-induced neutrino masses [14], from which we will follow most of the
methodology.

The algorithm is based on an iterative process where every new proposed parameter point
is selected in an area near to the previous one, and its estimated viability drives its acceptance
in the chain. To be more explicit, every Markov chain starts on a randomly selected point
within the parameter interval ranges. Then, on every iteration, a new point with parameters
g+l is proposed in the vicinity of the previous point with parameters 0. Tn our study, the
new proposed parameter value is computed according to

ortt =11{07, K (6] — 6™}, (28)

where II{a,b} is a Gaussian distribution with mean value a and standard deviation b. The
parameter x parametrizes the allowed jump length between two iterations, and its value is
chosen empirically in order to maximize the efficiency of the algorithm. If the calculated value
exceeds the limits of the defined intervals for the model parameters, the point is rejected.
We then compute the global likelihood associated with the proposal point £+, which is
accepted with a probability
p=min (1, £"/L") , (29)

which enforces the acceptance of points with higher likelihood and conditions the acceptance to
the viability of the proposal point with respect to the previously accepted one. For simplicity,
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we assume here that our experimental constraints are not correlated and that the global
likelihood is simply the products of the individual likelihoods, i.e

£ = £6",0) = [[cer@ oy, (30)

where O is the set of experimental observables used as constraints. Furthermore, we assume
a Gaussian shape for all the constraint likelihoods where uncertainties are given in Table [2H3]
except for constraints that only correspond to upper or lower bounds. In these latter cases
we apply a step function whose likelihood is assigned to 1 if the bound is satisfied, and which
otherwise employs a Gaussian ‘corrective’ factor that diminishes the likelihood assigned to
the phase-space point as a function of the extent to which the bound is violated. Within this
numerical setup, the chain will converge to high-likelihood domains whose area represents the
viability of the models according to the applied uncertainties on the constraints.

Additionally, in order to speed up the convergence process, we modify our jump parameter
k to include a memory of proposal tries

k() = (1 - )'ko , (31)

where t is the number of tries before accepting a new point in the chain. This becomes
extremely helpful as the chain converges since some parameters might have a very thin data-
compatible range. As soon as one point is accepted, t is set to 0 again, maintaining the chain’s
ability to jump to another parameter region.

Finally, we focus solely on points within a chain for which the convergence already occurred
(i.e. where maximums of likelihoods are reached). Therefore, we set up a ‘burning-length’
parameter which automatically removes the first Ny, points of each chains. This parameter
is once again chosen empirically during the pre-runs by studying multiple likelihood evolution
plots.

To summarize, we present the different MCMC hyper-parameters that we use in our setup
: Npum, Ko, €, the number of chains launched Ng,.ins, and the length of the chains Lg,,.in which
determine the target number of accepted points for every chain. All these parameters are
chosen empirically depending on the model and the final statistics desired for the distributions.
As a final comment, we note that it is usually better to allow for more chains, rather than
longer chains, as this ensures a more reliable parameter exploration.

4.2 UTZ Specifics

Following the algorithm above, we now specify the constraints that will guide our likelihood
evolution in the MCMC, and also the hyper- and model-parameter choices that control our
statistics. Regarding the former, we have identified / implemented the following set of MCMC
constraints and predictions:

Constraints : {Ry, s, (f € u,d,e), sin ij?l,sin 8 AM2,) 4 Mp(s), M, €, nh}

Predictions : {R,..,, mgs/ms, mg/ms, mgg/mg, sin ¢y, sin ¢}

Quasi-Predictions : {sin§?', ¢} (32)
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Figure 1:  Histograms demonstrating the distribution of MCMC iterations for the Dirac
(Majorana) scale-setting UTZ parameters {a,b,c,d}qu, ({z,y,M}), in the LO (blue) and
HO (red) scans. We have distributed our results across 100 horizontal bins, while the sum
of all vertical histogram values in a given plot is equal to Ng. By and large, phases, like the
{c,d} s shown, do not exhibit strong preferential values.
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LO UTZ Model Parameter MCMC Ranges & Global Best Fits

((l, b)d : ]-03 (a7 b)u . 105 (CL, b)l/ : 101 (l’, y) ’ 103
Range || ([2,6],[10,20]) | (30, F800) F5 F5
LO || (3.579,15.924) | (6.720, —192.922) | (—1.166,1.818) | (—0.146, —4.641)

HO | (3.415,15.416) | (7.604, —200.279) | (—1.819,2.440) | (3.728,3.501)

(7:6)a (7, 6)w (p,¢) My - 107 [GeV]
Range [0, 27] [0, 27] [0, 27] (0.1, 10]
LO (3.910,5.782) (3.163,4.553) (2.964,4.784) 3.084
HO || (4.228,6.134) | (0.464,2.203) | (3.636,3.976) 9.918

HO UTZ Model Parameter MCMC Ranges & lo-Preferred Fits

(c,d)q-10° (¢,d), - 10° (¢,d), - 10°
Range | (F5, F50) (F5, F50) (75, F50)
HO | (0.640,10.811) | (0.916,—37.298) | (—0.896, —1.565)

Table 4: The scan ranges of UTZ model parameters, along with the value of the model
parameter in the global best-fit dataset, for both LO and HO fits. Recall that only two
charged-fermion phase parameters are non-redundant at LO [24], and so we have chosen
{74, 64}, as in [1]. Graphical representations of the MCMC evolution of these parameters are
given in Figure [I] Also recall that there are no relevant HO Majorana corrections, that we
have kept the HO corrections real, and that the global best-fit values identified for the phases
are not terribly meaningful, as we do not observe very strong MCMC preferences for any phase
values in our scans (they are all relatively evenly distributed across [0, 27]).

where Ry, s, corresponds to the ratio of the ith generation over third-generation mass (R;3 =
my,/mys) for the corresponding family f, and where ‘n.h.” corresponds to the constraint
Am?,/m?2 > 1, which enforces a strictly-hierarchical normal-ordered light neutrino spec-
trum. The associated numerical constraints correspond to the UV bounds from Tables [2}{3]
Hence there are Ngns = 21 constraints to guide the MCMC likelihood evolution, and Ng,s = 7
additional predictions that depend on correlated theory parameters, but which do not im-
pact MCMC likelihoods. Observe that sin 69! and ¢ are listed as quasi-predictions because,
as discussed above, the UV bounds associated to them are extremely large, either due to IR
experimental uncertainties (sin ') or due to theory uncertainties associated to radiative cor-
rections (sind?, £). We will therefore use Tables as (weak) MCMC constraints, but will
also present these results as novel predictions of the UTZ framework, along with those already
listed as such in (32)).
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Given ([32)), we then set the values of the MCMC hyper-parameters we have employed to
Nehains = 2500,  Lehains = 500,  Npun =40, ko =0.01, €= 0.00005, (33)

while Table [4] gives the ranges scanned over for the actual UTZ model parameters outlined
in Section E The ranges listed for both were identified from successful preliminary MCMC
runs with broader model-parameter ranges, coarser hyper-parameter specifications and, most
importantly, general physics considerations from Section [2, which we now discuss.

Considering the Majorana sector, we heuristically observe that establishing the sequential
dominance condition in with M3/My ~ 10" GeV requires max(z,y) ~ O(107"), and
this is largely independent of the scale My. We have required n > 3, to truly establish the
third-family Majorana dominance implied by . Requiring M, > M; of course requires
further suppression between x and y, such that My/M; ~ 10" GeV (roughly) corresponds to
min(z, y) ~ max(z,y) - 1072, and we recall that the qualitative physics leading to does
indeed imply said additional hierarchy. However, we also notice from that the two coeffi-
cients are sourced from Lagrangian terms that enter at the same power counting (suppressed
by M*). While the combinations of vevs and coefficients can lead to additional suppression,
in Table |4| we have kept the scan range for y on the same generic order of magnitude as =z,
which of course allows for the additional suppression, but does not enforce it.

Scan ranges for the LO Dirac parameters {a,b}; are determined by observing that the
LO Dirac Lagrangian in only exhibits one order of messenger mass suppression w.r.t. the
leading third-generation scale-setting terms. Allowing for a broad range of Wilson coefficients
and flavon vevs, we consider —5 - 107! < {a,b}; < 5- 107" as a reasonable first constraint
on preliminary MCMC scans, which we then iteratively refine given observed preferential
domains. Following this procedure, we have noticed that the up-family parameters prefer to
be (roughly) symmetrically distributed around zero, and extend to £O(107%) (O(107?)) for
the a, (b,) terms. The down-quark and charged-lepton parameters are also symmetric about
zero, but with centers around O(107%) (O(107%)) for aq (bg). In Table {4 and Figure [1| we
have only considered the positive branch of these parameters. Finally, the Dirac neutrino
parameters are also distributed in a roughly symmetric way about zero, with both a, and b,
peaked around O(1071).

Upon identifying the final LO scan ranges as above, we then consider the HO Dirac pa-
rameters {c,d}y, which we recall from (I3)) contribute at 1/M}; in the UTZ OPE, i.e. at
one order higher than the leading terms. Consistent with our power-counting philosophy at
LO, we require these terms be at least one order of magnitude smaller than their LO coun-
terparts. We then consider the analytic hierarchy between the HO operators identified in
(15]) suggesting the ¢; correction o< S? be yet further suppressed w.r.t. d;. To this end, if
we have identified a scan range of |min{a, b};| < O(10™™), we require |d;| < O(107""!) and
lcr] < O(107™~2). While this of course does not forbid the possibility that |df| ~ |cf| (as
is also in principle allowed given slightly non-universal messenger masses and/or hierarchical

HUNote that we have performed a preliminary scan with the same statistics, but without applying the
constraints of (all model parameter configurations generate a likelihood of 1), in order to confirm that
the UTZ does not exhibit built-in preferred regions. Taking the generic scan range —5-107! < {af,bs, z,y} <
5-107', we find that all parameter distributions are flat. In other words, the shapes of the distributions
presented in Fig. |1| are truly driven by .
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Phase Combos {va:9a} | {vas vt | {74y 0u} | {7, 0a} | {0u,0a} {Vu, 0u}
LO Max Likelihood x100 3.22 3.57 4.35 1.17 1.30 2.35 1073

Table 5: The maximum likelihoods returned from preliminary LO MCMC scans with
Nehains = 900, Lenain = 250, and Ly, = 20, upon choosing different charged fermion phase
configurations. Note that we have shown the results for the {74, d4} configuration in Figures
to readily compare with [1].

Wilson coefficients), it is sufficiently generic for our purposes and, in any event, we observe
that these HO corrections do not converge on highly-preferential domains regardless, which is
clearly visible in the last two rows of Figure [I Note that, for simplicity, we have kept these
HO corrections real.

Finally, we note that in all of the above considerations we have allowed for generic LO phase
configurations in the neutrino sector[”J] but have chosen the two non-redundant LO phases in
the charged fermion sector as in [1], i.e. we allow for non-zero ; and d4. This allows us to
readily compare the physical conclusions of our analysis with those of [1]. In Table [5| we show
that this choice is amongst the higher-likelihood configurations given the six possible pairings,
having considered other configurations in preliminary MCMC scans with limited statistics.
Up to this choice, we have otherwise allowed for arbitrary phases in our MCMC scans; all are
constrained to [0, 27], and we observe that there is typically no strong MCMC preference for
said phase domains. For this reason we do not show their MCMC histogram distributions in

Fig. [1

4.3 Results and Analysis

We implement the MCMC scan as described above on a computing cluster. The output is
a data-set composed of UTZ model parameters, associated values for the constraints and
predictions from , and the corresponding likelihood of said predictions for each saved
MCMC iteration. We denote the corresponding data-set @g , where our notation implies that
the ith data-set has j entries corresponding to the model / physical / likelihood parameter(s).
Hence i € {1,2, ..., No}, where

N@ = Nchains . (Lchains - Nburn) ) (34)
i.e the overall number of data-sets, each of which has j € {1,2,..., Lg} constituents, where
L@ = Nmodel + Ncons + Nobs +1 ) (35)

with the additional unit in Lg’s counting coming from the standard likelihood function £ for
a set of model predictions compared to experiment. Given , Ng = 1.15-10%, and we now
examine the physical and model parameters embedded therein.
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Global Best-Fit UV Fermionic Mass Parameters
Quark Masses My /Ty me/my ma/my ms/my
LO Fit 2.518-107% | 1.805- 1073 | 7.738 - 107* | 1.563 - 1072
HO Fit 3.126-107% | 1.862-1073 | 7.397-107* | 1.490 - 102
Lepton Masses Me/ M my/m, Moy, [ My My [ My
LO Fit 2.621-107* | 5.423-1072 | 8.450-1073 | 1.149 - 107!
HO Fit 2.475-107% | 5.341-1072 | 2.540-1073 | 1.298 - 107!
Global Best-Fit UV Fermionic Mixing Parameters
CKM Parameters || sin 67, sin 03, sin 6, sin 0g p
LO Fit 0.225 | 1.762-1072 | 3.429 - 1073 | 0.485
HO Fit 0.225 | 1.752-1072 | 3.247-1073 | 0.446
PMNS Parameters || sin 6, sin 6, sin 6!, sin 6L p
LO Fit 0.550 0.704 0.146 —0.845
HO Fit 0.547 0.714 0.150 —0.975

Table 6: The UTZ global best-fits for fermionic mass (top) and mixing (bottom) parameters
in the UV, as determined from the MCMC scan described in Section [l The upper lines
correspond to the fit allowing for only LO UTZ Lagrangian parameters, while the lower lines
also account for HO parameters, both of whose MCMC distributions are given in Table [
Figures show the total spread of MCMC predictions in this sector, and also highlight the
LO global fits presented in this table with a black target marker.
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Figure 2: MCMC density plots for UTZ quark and lepton flavoured mass ratio predictions.
Plots are generated with the hyper-parameter choices in with model-parameter variations
as given in Table 4] The blue (red) regions correspond to the LO (HO) MCMC scan results,
with darker regions corresponding to places of higher density. Gray regions represent the UV
bounds for the mass ratios as presented in Table |3, and the black target markers correspond
to the global best-fit values shown numerically in Table [6]

Fermion Flavour Mass Ratios

We first examine the MCMC results for the UTZ’s predictions in the fermion mass sector.
Figure [2| illustrates these for mass ratios in the up quark, down quark, charged lepton, and
neutrino families. Both Figure 2| (and upcoming figures) and Table |§| give results for the LO
and, when indicated, HO MCMC scans, with the former given in blue and the latter in red.
Note that these figures represent density plots, in that darker regions correspond to parameter
domains where more Markov chains evolved. Also, the black ‘target’ marker in Figures
corresponds to the location of the overall (global) best-fit data-set ©;, which is also given
numerically in Table [6]

The gray bands correspond to the global data available from the PDG (NuFit) collab-
orations for the charged fermion (neutrino) masses, corrected to the UV according to the

12 Although recall that in the sequentially-dominant IR limit only one neutrino phase, formed from a com-
bination of said UV phases, dominates the phenomenology.
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Figure 3: The same as Figure [2 but for the CKM and PMNS mixing angles and Dirac
CP-violating phases.

discussion in Section Comparing these to the blue and red regions, we see that the UTZ
is capable of successfully resolving the entire charged fermion mass spectrum, for both quarks
and leptons, up to the RGE and threshold correction uncertainties. Furthermore, the UTZ
predictions for (currently unmeasured) neutrino mass ratios are shown in the bottom-right
panel; given the model parameter ranges explored in Table EI, the ratio R;3 = m,,/m,, is
densely populated within 2.5 - 1072 < Ra3 < 2 - 107! for the heavier generations while the
smaller mass ratio is densely populated between 1.5 - 1072 < Rij3 < 2- 1072, However, we
see that, albeit less frequent, much larger neutrino mass hierarchies are also resolved, with
Ri3 (Rys) falling below 1076 (5 - 1073).

Finally, we notice from the up-family plot that the inclusion of the red HO corrections
sourced from do not qualitatively change the physics conclusions of the blue LO regions.
We have in fact observed this quite generically across family and observable sectors, and hence
for visual clarity we only display the dominant LO results in what follows, unless otherwise
specified.
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Figure 4: The same as Figure 3, but now comparing the quark and lepton Dirac CP-violating
phases, and presenting the novel predictions for the Majorana CP-violating phases ¢ 2.

Fermion Mixings and CP-Violation

In Figure 3| we have presented the MCMC UTZ predictions for the CKM (top two plots) and
PMNS (bottom two plots) mixing angles HZ-qj’.l as well as the associated Dirac CP-violating phases
§%!. Here we again compare to (radiatively corrected) data from the PDG and NuFit given in
gray, and notice that the blue (red) LO (HO) UTZ Lagrangian is again highly successful at
resolving these parameters. Indeed, while we observe that the overlap with PMNS uncertainty
bands is perhaps qualitatively more successful than that of the quarks, the regions overlap
with the UV bounds for all fermion families.

Note that this conclusion differs from the naive analysis in [1], which found elements in the
third row and column of the CKM to be outside of the UV uncertainty bands considering only
the LO UTZ Lagrangian, a deviation sourced by the 63, mixing angle. While we observe that
the bulk of the MCMC sample points for sin f3, are indeed lower than the allowed uncertainty
region, a significant number of LO points do overlap successfully. Studying [12], one concludes
that lower values of 04, tend to correspond to higher tan 5 RGE scenarios. Hence independent
evidence that a background spectrum imitating this UV MSSM structurelﬂ is not physical
would in principle also disfavor the UTZ theory of flavor, up to the extent the bounds on
sin 0, drive our current MCMC likelihoods.

13 .assuming a certain threshold correction structure and SUSY breaking scale, of course...
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Figure 5: The same as Figure [2, but now comparing the neutrino mass ratio observables
predicted by the UTZ.

In addition to 63, the bottom-right panel of Figure [3| suggests that resolving values of
sind! ~ 0 simultaneously with 64, in the UTZ is disfavored compared to larger |sind'| in
the UV. Hence the {6.,,5'} sector of the PMNS represents an exceptional opportunity to
constrain significant portions of the UTZ parameter space, as information on §' from neutrino
oscillations continues to improve.

To fully present the CP-violating sector of the UTZ, we have also presented our MCMC
results for sin §%! side-by-side in Figure 4| along with results for the Majorana CP-violating
phases ¢, 2 of the PMNS matrix. Reliable experimental constraints on ¢; o are presently non-
existent, and so they also represent opportunities to falsify / further constrain our model
space. However, one observes that a broad range of Majorana phases are predicted in the
UTZ. We have contextualized this observation by including the MCMC histograms for these
phases, analogous to the model parameters presented in Fig. [1} in the bottom two panels of
Fig. These histograms reveal that, while it is true that virtually all values of sin¢; o are
acceptable, a huge number of Markov chains evolved to |sin ¢; 5| ~ 1. Hence improving data
(and therefore more rigid constraints in (32])) could allow us to resolve more precise predictions
for these Majorana phases.

Finally, as with the masses presented in Figure we have noticed that HO corrections (as
shown in red the top left panel of Fig. |3| and in the histograms of E[) do not qualitatively alter
the LO physical conclusions we present above. This is because we have been conservative in
Table [] regarding the relative magnitude of said HO corrections w.r.t. LO parameters, which
is of course motivated by the relative suppression of these Lagrangian termsﬂ

f-Decay and Cosmological Probes

We now focus on the sector of observables sensitive to the absolute neutrino mass scale and
the Majorana (vs. Dirac) nature of the neutrino field, i.e. my and mg(g). As mentioned above,
we only consider ratios of these observables as highly meaningful predictions in the UTZ, and

14We did not enforce this suppression on dg in [1] and hence allowed it to be comparatively large.
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Figure 6: MCMC scatter results for S-decay and absolute neutrino mass scale observables.
Gray regions correspond to IR bounds from KamLAND-Zen (mgg), KATRIN (mg), and Planck
(mx), corrected to the UV (if stated) with the conservative s evolution factor for the heaviest
generation. As noted in the text, these results are presented as consistency tests of our
approach.

we present their regions in Fig. [f] where it is clear that, at least for the parameter-space we
have explored, the UTZ largely prefers values for the ratios mg(g)/ms and mgz/mg given by

591071 <P < 73007, 70100 < 2 <84.107,  7.81071 < 8 < 99.90
mx ms mpg
(36)

In the event that a positive signal for mgs) is ever observed, will serve as an excellent
probe of the UTZ construction. One also notices in the right panel of Fig. |5/ that the MCMC
has evolved such that relatively small values of the neutrino-mass-squared difference ratio &
are preferred, with respect to the possible UV upper bound in Table [3] However, the observed
region is still consistent with both the low-tan 5 / SM-like RGE and high-tan g-like RGE
scenarios discussed in Section 3.1

5For consistency with the quark sector we have trained our MCMC on the more uncertain UV scenario for
&, which allows for the possibility of high-tan 8-like RGE. If we instead train on the low-tan 8 / SM-like RGE
scenario, the 1o regions in Fig. |§| shift upwards to center on the darker, smaller UV /IR uncertainty band.
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Of course, as mentioned, we can also report the actual values of the constituent functions
my and mgg), despite them being less meaningful due to their sensitivity to My. For com-
pleteness we do so in Figure @ As expected due to their use as constraint in , we observe
that the UTZ readily evades available bounds from (e.g.) KATRIN, Planck, and KamLAND-
Zen. However we emphasize that this statement effectively amounts to a consistency check on
the MCMC framework implemented.

4.4 Summary Comments

Before concluding, we summarize the results in the above Sections:

e The LO UTZ Lagrangian in and is sufficient to describe all available data on
fermionic mass and mixing, as well as data constraining the overall scale of neutrino
masses. This result is novel, and represents a substantial improvement on the phe-
nomenological findings of 1], which found that HO corrections were necessary to describe
the third row and column of the CKM matrix (due to 03,). This illustrates the power of
our MCMC algorithm to robustly explore viable UTZ parameter spaces, in comparison
to less sophisticated methods. However, 01, still represents an excellent parameter to
exclude UTZ parameter spaces in the future.

e The MCMC algorithm also allows us to present robust predictions for observables that
are not well constrained by data — e.g. leptonic CP-violating phases sin{d’, ¢, ¢}
and neutrino mass ratios m,, /m.,, &, mgs)/mx, and mgz/mg — despite the fact that
said observables depend sensitively on theory parameters that are highly-correlated to
other, well-constrained observable sectors. These findings provide excellent opportunities
for the falsification / exclusion of UTZ parameter spaces. We have presented these
predictions using the (N)LO UTZ Lagrangian in Figs. [255]

e The HO corrections generated by the operators in do not qualitatively change
the physics conclusions driven by the dominant operators in —. This is due to
our (natural) assumption that said HO parameters are suppressed with respect to LO
parameters, a constraint that we did not impose as rigorously in [1]. As a result, the
UTZ’s predictions are dominated by as few as nine IR theory parameters. Hence the
UTZ is realized as a well-defined, stable, and predictive effective theory of flavour.

e The results we have presented are of course sensitive to the hyper- and model-parameter
ranges we have explored, which are presented in and Table . While we have taken
care in identifying these ranges, and have indeed demonstrated that they are successful,
they are not necessarily unique. Exploring alternative parameter spaces, possibly with
even more statistics than implied by , will be especially motivated in the event data
fully excludes the predictions presented in Figures , and/or a specific renormalizable
completion (with exact RGE / threshold behavior) of the UTZ is identified.
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5 Summary and Outlook

We have re-examined the Universal Texture Zero (UTZ) model of flavour presented in [1]
in light of updated experimental constraints and in the context of a novel Markov Chain
Monte Carlo (MCMC) analysis routine. We have considered the UTZ’s predictions at both
leading- and next-to-leading orders in its effective theory operator product expansion, and
the associated phenomenological pre- and post-dictions are given in Figures 2[5l There we
observe that the UTZ is capable of fully resolving the fermionic mass and mixing spectrum
as constrained by global data sets, for both the quark and lepton sectors, up to uncertainties
regarding radiative corrections to/from the ultraviolet. We have also presented a host of novel,
robust predictions for poorly-constrained leptonic observables, in particular the PMNS CP-
violating phases &', ¢ and neutrino mass-sector ratio observables mgg) /ms and mgg/mg.
These latter results offer a route to UTZ falsification and/or parameter-space exclusions.

Our analysis therefore greatly improves on the proof-in-principle phenomenology pursued
in the original UTZ publication [1], which was incapable of yielding a robust prediction for
even (e.g.) 0', and which did not consider observables like mpg(g) and my. Indeed, our updated
MCMC analysis revises the claim from [1] that the leading UTZ Lagrangian is insufficient
to account for all fermionic data, before considering next-to-leading corrections. However, as
discussed at the end of Section [d] there is still room for improvement, as a yet more exhaustive
scan of the UTZ parameter space is in principle possible. We also note that, while our MCMC
algorithm fully accounts for theory correlations amongst UTZ model parameters, we have not
accounted for experimental correlations, beyond what is already accounted for in the global
fits presented in Section [3] While we do not expect such correlations to qualitatively change
our conclusions, pursuing such an analysis in the future could be interesting.

Besides these future technical/phenomenological improvements, we also note that signif-
icant progress has recently been made in rigorously connecting theories of flavour controlled
by non-Abelian discrete symmetries (and additional shaping symmetries) to string theories
with toroidal orbifold compactifications — see e.g. [68-71]. It would be interesting to de-
termine whether the UTZ (or a close cousin) could be formally embedded into one of these
structures, thereby providing a UV origin for the field and symmetry content of Table [1, and
an unambiguous background spectrum that would minimize the radiative uncertainties that
we have considered agnostically in our effective field theory setup. After all, the absence of
A(27) contractions with non-trivial singlets in (4)), (5), and is already consistent with the
stringy models examined in [72].

We leave these questions to future work, and simply conclude that Figures indicate that
the UTZ represents an appealing, minimal, and phenomenologically viable model of flavour
physics, and therefore provides some support for the idea that observed flavour patterns are
the result of yet-discovered Beyond-the-Standard Model dynamics, rather than (e.g.) random
chance.
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