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Abstract. Sharp Strichartz estimates are proved for Schrödinger and wave equations with Lipschitz co-
efficients satisfying additional structural assumptions. We use Phillips functional calculus as a substitute
for Fourier inversion, which shows how dispersive properties are inherited from the constant-coefficient
case. Global Strichartz estimates follow provided that the derivatives of the coefficients are integrable.
The estimates extend to structured coefficients of bounded variations. As applications we derive Strichartz
estimates with additional derivative loss for wave equations with Hölder-continuous coefficients and solve
nonlinear Schrödinger equations. Finally, we record spectral multiplier estimates, which follow from the
Strichartz estimates by well-known means.

1. Introduction and main results

In the following, we show Strichartz estimates for Schrödinger and (half-)wave
equations with time-independent Lipschitz coefficients under additional structural as-
sumptions. Let d ≥ 1, and ai ∈ C0,1(R) satisfy an ellipticity condition for i =
1, . . . , 2d:

∃λ,Λ > 0 : ∀x ∈ R : λ ≤ ai (x) ≤ Λ, i ∈ {1, . . . , 2d}. (1)

We consider the Dirac operators

i Da j =
(

0 −ia j+d(x j )∂ j (·)
ia j (x j )∂ j 0

)
.

We further write

L = D2
a =

d∑
j=1

D2
a j

=
(

− ∑d
j=1 a j+d (x j )∂ j (a j (x j )∂ j ) 0

0 −∑d
j=1 a j (x j )∂ j (a j+d(x j )∂ j )

)
,

|DL | = L
1
2 , and |D| = |∇|. We consider the homogeneous Schrödinger

{
i∂t u + Lu = 0, (t, x) ∈ R × R

d ,

u(0) = u0 ∈ Hs(Rd;C2)
(2)
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and half-wave equation{
i∂t u + L

1
2 u = 0, (t, x) ∈ R × R

d ,

u(0) = u0 ∈ Hs(Rd;C2).
(3)

The homogeneous Strichartz estimates quantify dispersive effects by estimates

‖u‖L p([0,T ],Lq (Rd )) �T,d,p,q,s ‖u0‖Hs (Rd ) (4)

for solutions to (2) or (3). In the constant-coefficient case, i.e., ai = 1 for i = 1, . . . , 2d
global Strichartz estimates

‖u‖L p(R,Lq (Rd )) �d,p,q ‖u0‖Ḣ s (Rd )

hold true with s determined by scaling, see below. Our first result are local-in-time

Strichartz estimates for L and L
1
2 .

Theorem 1. Let d ≥ 1, 2 ≤ p ≤ ∞, 2 ≤ q < ∞, s� = d
( 1
2 − 1

q

) − �
p , � ∈ {1, 2}.

Suppose that ai ∈ C0,1(R), i = 1, . . . , 2d satisfy (1). Then, we find the half-wave
Strichartz estimate to hold

‖|D|−s1eit L
1
2 u0‖L p([0,T ],Lq (Rd )) � μ

1
p ‖u0‖L2(Rd ) (5)

with μ = T maxi ‖ai‖Ċ0,1 ≥ 1 provided that 2
p + d−1

q = d−1
2 .

Furthermore, the Schrödinger Strichartz estimate holds true

‖|D|−s2eit Lu0‖L p([0,T ],Lq (Rd )) � μ
1
p ‖u0‖

H
1
p (Rd )

(6)

with μ = T maxi ‖ai‖2Ċ0,1 ≥ 1 provided that 2
p + d

q = d
2 .

Remark 1. For q = ∞, the above estimates remain true after changing toBesov norms
Ḃ−s�,q
2 , except at the double endpoints (p, q, d) 
= (2,∞, 2) for the Schrödinger

equation or (p, q, d) 
= (2,∞, 3) for the wave equation.

If the coefficients have integrable derivatives with small L1-norm, we can show
global estimates:

Theorem 2. Let d ≥ 1, 2 ≤ p, q ≤ ∞, s� = d
( 1
2 − 1

q

) − �
p , � ∈ {1, 2}, and

ai ∈ C0,1(R), i = 1, . . . , d satisfy (1). Let ai = 1 for i = d + 1, . . . , 2d. Suppose
that V ar(log((ai )) < 2π . Then, we find the following estimate to hold

‖|D|−s1eit L
1
2 u0‖L p(R;Lq (Rd )) � ‖u0‖L2(Rd ) (7)

provided that 2
p + d−1

q = d−1
2 and (p, q, d) 
= (2,∞, 3).

Furthermore, the Schrödinger Strichartz estimate holds true

‖|D|−s2eit Lu0‖L p(R;Lq (Rd )) � ‖u0‖L2(Rd ) (8)

provided that 2
p + d

q = d
2 and (p, q, d) 
= (2,∞, 2).



J. Evol. Equ. Strichartz estimates for equations Page 3 of 34    45 

Recall that p ≥ 2 and q ≥ 2 are necessary due to convolution structure. The
Knapp counterexample for constant coefficients gives the necessary conditions for the
integrability indices. For the Schrödinger equation, this reads

2

p
+ d

q
≤ d

2
, (9)

and for the half-wave equation, this is

2

p
+ d − 1

q
≤ d − 1

2
. (10)

Estimates (5)–(8) follow for the strict inequalities in (9) or (10), respectively, by
Sobolev embedding for q 
= ∞. The double endpoints (p, q) = (2,∞) in two dimen-
sions for the Schrödinger equation and three dimensions for the wave equation are
ruled out by more sophisticated counterexamples due to Montgomery–Smith [29] and
Stein (cf. [40, p. 81]), respectively. Tuples (s, p, q, d), for which the necessary con-
ditions hold, will be referred to as Schrödinger or wave Strichartz pairs, respectively.
If equality holds in (9) or (10), the pairs are referred to as sharp.

Clearly, on a finite time intervalwe can useHölder in time andBernstein’s inequality
to estimate low frequencies. Hence, on a finite time interval we can as well consider
inhomogeneous Sobolev spaces. The estimates are named after Strichartz’s pioneering
work [38] on constant coefficients, where the relation with L2-Fourier restriction was
established (cf. [43]). Ginibre–Velo [17] covered awider range of integrability indices,
and finally Keel–Tao [23] covered the time-integrability p = 2 endpoints.
It was clarified in [23] that Strichartz estimates follow from a dispersive estimate

and an energy estimate, see Theorem 5. In the constant-coefficient case, the required
dispersive estimate reads as

‖P1eit (−Δ)k/2u0‖L∞(Rd ) � (1 + |t |)−σ(k)‖u0‖L1(Rd ) (t 
= 0),

where P1 denotes a smooth frequency projection to unit frequencies, σ(k) denotes a
decay parameter, and the energy estimate is given by

‖P1eit (−Δ)k/2u0‖L2(Rd ) � ‖u0‖L2(Rd ).

By the interpolation arguments due to Keel–Tao [23] these yield Strichartz estimates
for unit frequencies. The claim follows by rescaling for any dyadic frequency range
and the dyadic frequency pieces are assembled by Littlewood–Paley theory.
We follow this strategy also in the current setup of Lipschitz coefficients as square

function estimates and scaling symmetries are still available. The key step remains the
proof of the dispersive estimate at unit frequencies. In the constant-coefficient case
the crucial kernel estimate is a consequence of stationary phase estimates. Here we
can use Phillips functional calculus as substitute for Fourier inversion.
Previously, the first author proved fixed-time L p-estimates for wave equations with

structured Lipschitz coefficients in joint work with Portal [16]. In [16], an adapted



   45 Page 4 of 34 D. Frey and R. Schippa J. Evol. Equ.

scale of Hardy spaces was introduced on which the time-evolution is bounded. Wave
packet analysis is not required in the following. We believe that it is worthwhile to
track the time-evolution of wave packets also in the current setup.

Without imposing additional structural assumptions, Tataru proved sharp Strichartz
estimates for wave equations with rough coefficients in Cs , 0 < s ≤ 2 in [41] (see
also [2,24,42]). As counterexamples due to Smith–Tataru [34] show, in the general
case there is derivative loss for Cs-coefficients, 0 < s < 2 compared to the constant-
coefficient case; for C2-coefficients the usual Strichartz estimates hold true (see also
Smith [33]). In the present work, the additional structural assumptions rule out the
trapping examples bySmith–Tataru,which allowsus to recover theStrichartz estimates
for constant coefficients.

General Strichartz estimates for Schrödinger equations with variable coefficients
were firstly derived by Staffilani–Tataru [37] for C2-coefficients under non-trapping
assumptions, see also Burq–Gérard–Tzvetkov [8] for estimates on smooth compact
manifolds and Marzuola–Metcalfe–Tataru [27]. Moreover, in one spatial dimension
Burq–Planchon [9] showed Strichartz estimates only for coefficients with bounded
variation; see also Beli–Ignat–Zuazua [4]. It is conceivable that the proof of Burq–
Planchon [9] also applies in higher dimensions. There is a huge body of literature on
Strichartz estimates for wave or Schrödinger equations, local- and global-in-time, for
Laplacians associated with a Riemannianmetric g, and the above list is by nomeans of
exhaustive; see also [5,6,28]. However, we are not aware of sharp Strichartz estimates
for metrics having regularity below C2 and satisfying structural assumptions, but see
[35] for the quasilinear case.

We shall also discuss inhomogeneous estimates and Strichartz estimates for Hölder
coefficients. A straightforward consequence of Theorem 1 by Duhamel’s formula and
Minkowski’s inequality, which is already useful to handle nonlinear equations, is the
following:

Corollary 1. Let � ∈ {1, 2}, and (ρ, p, q, d) be sharp wave (� = 1) or Schrödinger
(� = 2) admissible Strichartz pairs. Then, we find the following estimates to hold:

‖|D|−ρ〈D〉− �−1
p u‖L p

t ([0,T ],Lq (Rd )) �T,‖ai‖Ċ0,1 ‖u(0)‖L2(Rd )

+‖(i∂t + L
�
2 )u‖L1

t ([0,T ],L2(Rd )).

(11)

A standard argument invoking the Christ–Kiselev lemma [13] yields more inhomo-
geneous estimates with precise dependence on time scale and Lipschitz norm of the
coefficients. However, this misses endpoint estimates:

Corollary 2. Let � ∈ {1, 2}, and (ρ, p, q, d), (ρ̃, p̃, q̃, d) be sharp wave (� = 1) or
Schrödinger (� = 2) admissible Strichartz pairs. Suppose that p < p̃′. Then, we find
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the following estimates to hold:

‖|D|−ρ〈D〉− �−1
p

∫ t

0
ei(t−s)L

�
2 F(s) ds‖L p

t ([0,T ],Lq (Rd ))

� μ
1
p + 1

p̃ ‖|D|ρ̃〈D〉 �−1
p̃ F‖

L p̃′
t ([0,T ],Lq̃′

(Rd ))
(12)

with μ = maxi T ‖ai‖�

Ċ0,1 .

More inhomogeneous estimates are available by the bilinear interpolation due to
Keel–Tao [23]. The estimates were further refined by Foschi [15] (see also [26,31,39,
45]). For the sake of brevity, we only record the estimates due to Keel–Tao, but remark
that the estimates from [15] hold in a wider range.

Theorem 3. Let � ∈ {1, 2}, and let (ρ, p, q, d), (ρ̃, p̃, q̃, d) be sharp wave (� = 1) or
Schrödinger (� = 2)admissible Strichartz pairs. Let ai = 1 for i = d+1, . . . , 2d. Sup-
pose that V ar(log(ai )) < 2π . Then, we find the following inhomogeneous Strichartz
estimates to hold:

‖|D|−ρ

∫ t

0
ei(t−s)L

�
2 F(s) ds‖L p

t (R,Lq
x (R

d )) � ‖|D|ρ̃F‖
L p̃′
t (R,Lq̃′

x (Rd ))
. (13)

We remark that in the case of the half-wave equation, we can also apply the Keel–
Tao argument for finite times. In Sect. 4, we give further applications of the analysis.
Since the dispersive estimate hinges on integrals of the derivatives, we can extend the
results to coefficients with (locally) bounded variation.We refer to Sect. 4.1 for details.
Next, we use a refined version of Corollary 1 to derive wave Strichartz estimates for
Hölder coefficients. We truncate the coefficients in Fourier space, which allows to
use Strichartz estimates for Lipschitz coefficients for frequency localized functions
and use commutator estimates. Similar arguments were previously used by Tataru
[41]; see also [2]. Below (SN )N∈2N0 denotes an inhomogeneous Littlewood–Paley
decomposition in spatial frequencies.

Theorem 4. Let d ≥ 2, s ∈ (0, 1), T > 0, P = ∂2t − ∑d
i=1 ∂xi ai (xi )∂xi , and

ai ∈ Ḃs∞,1(R) satisfy (1) for i = 1, . . . , d. Suppose that T s‖ai‖Ḃs∞,1(R) ≤ μ for some

μ ≥ 1. Then, we find the following estimate to hold:

sup
N∈2N0

N 1−ρ− σ
p ‖SNu‖L p([0,T ],Lq (Rd )) � μ

1
p ‖∇u‖L∞([0,T ],L2(Rd ))

+μ
− 1

p′ ‖|D|−σ Pu‖L1([0,T ],L2(Rd )) (14)

provided that (ρ, p, q, d) is a wave Strichartz pair and σ = 1 − s.

We also apply Strichartz estimates to nonlinear Schrödinger equations. With the
same Strichartz estimates as in case of constant coefficients at hand, the arguments to
show analytic well-posedness for (sub-)critical nonlinear Schrödinger equations are
standard by now (cf. [40,44]). We refer to Sect. 4.3 for details. In Sect. 5, we point out
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how the global Schrödinger Strichartz estimates of Theorem 2 yield Bochner–Riesz
and spectral multiplier estimates for the scalar operator L = −∑d

i=1 ∂xi (ai (xi )∂xi )
with ai ∈ BV (R) satisfying ellipticity conditions. For thiswe apply the abstract results
due to Chen et al. [11,12] and Sikora–Yan–Yao [32].
Outline of the paper In Sect. 2, we recall basic facts about elliptic operators with

Lipschitz coefficients as resolvent estimates and the Phillips functional calculus. In
Sect. 3, we show Strichartz estimates for Lipschitz coefficients, and in Sect. 4 we
record applications. We extend the Strichartz estimates to BV -coefficients, derive
wave Strichartz estimates for Hölder coefficients, and also record well-posedness
results for nonlinear Schrödinger equations with BV -coefficients. In Sect. 5, we show
Bochner–Riesz means and spectral multiplier estimates.

2. Preliminaries

We recall the basic setup of Frey and Portal [16] with an emphasis on the Phillips
functional calculus. We also collect basic resolvent estimates and the square function
estimate. Recall that for i ∈ {1, . . . , 2d}, ai ∈ C0,1(R), which satisfy the ellipticity
condition

∃λ,Λ > 0 : ∀x ∈ R : λ ≤ ai (x) ≤ Λ. (15)

The ellipticity constants will be fixed for the rest of the paper.

Definition 1. For j ∈ {1, . . . , 2d}, leta j ∈ C0,1(R) satisfy (15). For ξ = (ξ1, . . . , ξd) ∈
R
d , we define

ξ.Da =
d∑
j=1

ξ j

(
0 −a j+d(x j )∂ j (·)

a j (x j )∂ j 0

)
,

ξ.

√
D2
a =

d∑
j=1

ξ j

(√−a j+d(x j )∂ j (a j (x j )∂ j ) 0
0

√−a j (x j )∂ j (a j+d(x j )∂ j )

)
,

which we view as unbounded operator in L2(Rd;C2) with domain W 1,2(Rd ;C2).

The Dirac operators Dai are not commuting. The remedy is to use the cosine group,

which is aswell generated by
√
D2
ai , and the operators

√
D2
ai and

√
D2
a j
are commuting.

Recall the following about the generator of the transport group:

Proposition 1. [16, Proposition 3.1] The operator a d
dx generates a bounded C0-

group in L p(R) for all p ∈ [1,∞). Moreover, φ(x) = ∫ x
0

1
a(y) dy is a global C1-

diffeomorphism, and we have

(eta∂x f )(x) = f (χ(t, x)) for f ∈ C∞
c (R)

with χ(t, x) = φ−1(t + φ(x)), χ ∈ C1(R2;R).

We can now prove the following basic property of the Dirac operator:
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Proposition 2. Let a, b ∈ C0,1(R) satisfy (15). Then, the operators

A : W 1,p(R;C2) → L p(R;C2), A =
(

0 b∂x (·)
a∂x 0

)
, i D̃a = i

(
0 −b∂x (·)
a∂x 0

)

with the same domain generate C0-groups in L p(R;C2) for 1 ≤ p < ∞.

Proof. It will be enough to show the claim for A as we shall see that the proof extends
to i D̃a . For the proof, we diagonalize A up to an L p bounded operator. The principal
symbol is given by

iξ

(
0 b(x)

a(x) 0

)
.

The eigenvalues are given by ±iξ(ab)1/2(x), and it suffices to note a matrix M of
eigenvectors is given by

M =
(
b1/2 b1/2

a1/2 −a1/2

)
, M−1 = 1

2

(
b−1/2 a−1/2

b−1/2 −a−1/2

)
.

With this, it is straightforward that

1

2

(
b−1/2(x) a−1/2(x)
b−1/2(x) −a−1/2(x)

) (
0 ∂x (b(x)·)

a(x)∂x 0

)(
b1/2(x) b1/2(x)
a1/2(x) −a1/2(x)

)

=
(

(ab)1/2(x)∂x 0
0 −(ab)1/2(x)∂x

)
+ E(x),

where E is a 2 × 2 matrix consisting of linear combinations of derivatives of the
coefficients, which are bounded. Hence, we can transform the equation

∂t

(
u1
u2

)
=

(
0 b∂x (·)
a∂x 0

) (
u1
u2

)

to

∂t

(
v1

v2

)
=

((
(ab)1/2∂x 0

0 −(ab)1/2∂x

)
+ E

) (
v1

v2

)

with(
v1

v2

)
= 1

2

(
b−1/2 a−1/2

b−1/2 −a−1/2

) (
u1
u2

)
, ‖E‖L p→L p ≤ C(λ,Λ) max

c=a,b
(‖c‖Ċ0,1).

(16)

For v, we have the following representation by Duhamel’s formula:

v =
(
et (ab)

1/2(x)∂x v1

e−t (ab)1/2(x)∂x v2

)
+

∫ t

0
Tt−s(Ev)(s) ds, (17)
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with (Tt ) denoting the C0-transport group generated by

B = diag((ab)1/2(x)∂x ,−(ab)1/2(x)∂x ). (18)

From (17) is immediate that v0 �→ v(t) is a C0-group in L p(R;C2) for 1 ≤ p < ∞,
and so is u0 �→ u(t). In a similar spirit, we can show that i D̃a generates a C0-group in
L p(R2;C) for 1 ≤ p < ∞ because the diagonalization still applies, and after change
of basis, i D̃a generates the transport group up to an L p-bounded error. �
We find a representation in terms of solutions to wave equations by squaring the
transport group. Let (

u
v

)
(t) = eit Da

(
u0
v0

)
.

By taking two time derivatives, we find{
∂2t u = b∂x (a∂x )u,

∂2t v = a∂x (b∂xv).

Let L1 = −b∂x (a∂x ), L2 = −a∂x (b∂x ). Then, we can write the solution as{
u(t) = cos(t L1)u0 − i sin(t L1)

L1
b∂xv0,

v(t) = cos(t L2)v0 + i sin(t L2)
L2

a∂xu0,

or, concisely,

eit Da =
(

cos(t L1) −i sin(t L1)
L1

(b∂x )

i sin(t L2)
L2

a∂x cos(t L2)

)
.

A similar computation yields for(
u
v

)
(t) = eit

√
D2
a

(
u0
v0

)
,

the representation {
u(t) = cos(t L1)u0 + i sin(t L1)u0,
v(t) = cos(t L2)v0 + i sin(t L2)v0,

or, concisely,(
u(t)
v(t)

)
=

(
cos(t L1) + i sin(t L1) 0

0 cos(t L2) + i sin(t L2)

)(
u0
v0

)
= eit

√
D2
a

(
u0
v0

)
.

The Dirac operators (Da) are bisectorial operators (cf. [16, Definition 2.4], [22, Chap-
ter 10]), but not commuting. However, the cosine groups of the operators coincide:

eit
√

D2
a + e−i t

√
D2
a = eit Da + e−i t Da .

This allows us to recover a Phillips functional calculus, for which we follow the
argument in [16]:
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Definition 2. For ∈ S (Rd), we define(
√
D2
a) using Phillips functional calculus

associated with the commutative group
(
exp(iξ.

√
D2
a)

)
ξ∈Rd :

(

√
D2
a) = 1

(2π)d

∫
Rd

̂(ξ) exp(iξ.

√
D2
a) dξ.

We consider functions  which are even in every coordinate, i.e.,  = s with

s(x) = 2−d
∑

(δ j )
d
j=1∈{−1,1}d

(δ1x1, . . . , δd xd).

For such functions, we have that

(

√
D2
a)

= 1

(2π)d

∫
Rd−1

∫
R

̂s(ξ)
1

2

(
exp(iξ1e1

√
D2
a) + exp

(
−iξ1e1

√
D2
a

))
exp

(
i(ξ − ξ1e1)

√
D2
a

)

= 1

(2π)d

∫
Rd

̂s(ξ)

d∏
j=1

exp(iξ j Da j ) dξ,

since Da and
√
D2
a generate the same cosine family. For the sake of brevity, we write

s(

√
D2
a) = s(Da) = 1

(2π)d

∫
Rd

̂s(ξ) exp(iξ.Da) dξ.

Moreover, we have

L = D2
a =

√
D2
a ·

√
D2
a =

(
− ∑d

j=1 a j+d (x j )∂x j (a j (x j )∂x j ) 0

0 − ∑d
j=1 a j (x j )∂x j (a j+d (x j )∂x j )

)
.

As another consequence of the close relation with the transport group, the group
generated by iξ.Da satisfies a strong form of finite speed of propagation (cf. [16,
Remark 4.2]). We summarize the finite speed of propagation property in the following
lemma:

Lemma 1. Let u0 ∈ C∞
c (R;C2), and ∂t u = i D̃au, u(0) = u0. Then, we find

u(t, x) = 0 if dist(x, supp(u0)) ≥ C |t |.
Moreover, after introducing the scalar product in L2(R;C2),

〈(
u1
v1

)
,

(
u2
v2

)〉
(a,b)

:=
〈(

u1
v1

)
,

(
b−1 0
0 a−1

) (
u2
v2

)〉
,

we find i Da to be a self-adjoint operator, which implies the following global L2-
estimates.

Proposition 3. Let u0 ∈ L2(R;C2) and ∂t u = i D̃au, u(0) = u0. Then, we find the
following estimate to hold:

‖u(t)‖L2(R;C2) � ‖u0‖L2(R;C2). (19)
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In subsequent sections, we need the following properties of the operators Da and
L:

Proposition 4. There is N = N (d) such that we find the following estimate to hold:

‖(1 + L)−N‖L1(Rd )→L∞(Rd ) ≤ C(λ,Λ). (20)

We shall also make use of Littlewood–Paley theory associated with L
1
2 = |DL |.

For this purpose, we consider a radially decreasing function

φ(ξ) ≡ 1 for |ξ | ≤ 1, supp(φ) ⊆ B(0, 2).

Let ψ(ξ) = φ(ξ/2) − φ(ξ) and ψk(ξ) = ψ(2−kξ) such that

φ(ξ) +
∑
k∈N

ψk(ξ) = 1,
∑
k∈Z

ψk(ξ) ≡ 1 (ξ 
= 0).

In view of the previous paragraph, we note that φ = φs and  = s . We have the
following square function estimate:

Proposition 5. Let 1 < p < ∞. Then, we find the following estimate to hold

‖ f ‖L p(Rd ) ∼
∥∥∥∥∥∥
(∑
k∈Z

|ψk(

√
D2
a) f |2

) 1
2

∥∥∥∥∥∥
L p(Rd )

(21)

with implicit constant only depending on d, p, and ‖a‖C0,1 .

This follows from Lq -boundedness of F(L
1
2 ) provided that F satisfies the usual

Mikhlin condition (cf. [46]). The square function estimate is concludedbyaRademacher
function argument.
It turns out that the Besov norms for structured L∞-coefficients remain equivalent.

Let (ai )i=1,...,d ⊆ L∞(R) satisfy (15). Let L = −∑d
i=1 ∂xi (ai (xi )∂xi ). Let SL(t) =

etL denote the associated heat kernel and ΔL
j = 4− j LSL(4− j ) the dyadic projection.

We define Besov spaces associated with L as

‖ f ‖Ḃs,p
q,L

=
⎛
⎝∑

j∈Z
2sq j‖ΔL

j f ‖qL p

⎞
⎠

1
q

Proposition 6. Under the above assumptions, for 1 < p < ∞ and −1 < s < 1,
we have Ḃs,p

q = Ḃs,p
q,L with equivalence of the norms only depending on the ellipticity

constants.

Proof. In the present case, the heat kernel factors as a consequence of

[∂xi (ai (xi )∂xi ), ∂x j (a j (x j )∂x j )] = 0.
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Since theoperators (∂xi (ai (xi )∂xi )i are commuting, the properties of the one-dimensional
heat kernel of Li = −∂xi (ai (xi )∂xi ) are inherited for L:

KL(x, y, t) = SL(t)(x, y) = etL(x, y) =
d∏

i=1

etLi (xi , yi ).

The one-dimensional casewas discussed in detail in [9,AppendixA]. By the properties
of the one-dimensional kernel, there exists c depending only on the ellipticity constants
such that

|KL(x, y, t)| � t−
d
2 e− |x−y|2

t . (22)

Moreover,

|∂yi KL(x, y, t)| + |∂xi KL(x, y, t)| � t−
d
2 − 1

2 e− |x−y|2
t

and

|LKL(x, y, t)| � t−
d
2 −1e− |x−y|2

t .

By the Gaussian bounds, it follows that SL(t) is continuous on L p, as well as ΔL
j =

4− j LSL(4− j ). By the kernel estimate, we can derive equivalence of Besov norms as
in [9, Appendix A.2]. �

Remark 2. We remark that the argument strongly hinges upon the structure of the
operator. For general elliptic operators with Hölder coefficients, the equivalence of
Besov norms fails.

We shall also need the following square function estimate, which even holds for
general elliptic L∞-coefficients (cf. [1]):

Proposition 7. (One-dimensional Kato square-root estimate) Under the above as-
sumptions, we have

‖|DL | f ‖L2 ∼λ,Λ ‖ f ‖Ḣ1 . (23)

3. Strichartz estimates for Lipschitz coefficients

This section is devoted to the proof of Strichartz estimates for structured Lipschitz
coefficients. The key ingredient in our proof are as in the constant-coefficient case
dispersive estimates. Recall how dispersive estimates imply Strichartz estimates by
the following abstract result due to Keel–Tao [23]:

Theorem 5. (Keel–Tao) Let (X, dx) be a measure space and H a Hilbert space.
Suppose that for each t ∈ R we have an operator U (t) : H → L2(X) which satisfies
the following assumptions for σ > 0:
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(i) For all t and f ∈ H we have the energy estimate:

‖U (t) f ‖L2(X) � ‖ f ‖H .

(ii) For all t 
= s and g ∈ L1(X) we have the decay estimate

‖U (s)(U (t))∗g‖L∞(X) � (1 + |t − s|)−σ ‖g‖L1(X).

Then, for σ -admissible exponents (p, q), which satisfy 1
p + σ

q ≤ σ
2 and (p, q, σ ) 
=

(2,∞, 1), the estimate

‖U (t) f ‖L p
t L

q
x (R×X) � ‖ f ‖H

holds. Furthermore, for two σ -admissible pairs (p, q) and ( p̃, q̃), the estimate∥∥∥∥
∫
s<t

U (t)(U (s))∗F(s) ds

∥∥∥∥
L p
t L

q
x (R×X)

� ‖F‖
L p̃′
t Lq̃′

x
(24)

holds true.

Weshall see byLittlewood–Paley decomposition and rescaling that it will be enough
to show estimates for unit frequencies. The energy estimate required by Theorem 5(i)
is Proposition 3. We have to show the dispersive estimate:

Proposition 8. Let ai ∈ C0,1(R) satisfy (15). Then, we find the following estimate to
hold: ∥∥∥∥eit L

�
2
ψ

(√
D2
a

)∥∥∥∥
L1(Rd )→L∞(Rd )

� (1 + |t |)−σ(�) (25)

for � ∈ {1, 2}, 0 < t ≤ C(λ,Λ)max(‖ai‖Ċ0,1), and

σ(�) =

⎧⎪⎨
⎪⎩

d − 1

2
, � = 1,

d

2
, � = 2.

Proof. By Phillips functional calculus, we have to prove

sup
x∈Rd

∣∣∣∣
∫

Kt (ξ)eiξ.Dau0(x) dξ

∣∣∣∣ � (1 + |t |)−σ(�)‖u0‖L1(Rd ), (26)

where

Kt (ξ) = 1

(2π)d

∫
Rd

eit |y|�ψ(y)eiy.ξ dy

denotes the kernel of the half-wave equation for � = 1 or the Schrödinger equation for
� = 2 at unit frequencies. Note that Kt (ξ) = Ks

t (ξ) and Definition 2 applies. Recall
that

|Kt (ξ)| �
{

(1 + |t | + |ξ |)−N , |t | 
∼ |ξ |,
(1 + |t |)−σ(�), |t | ∼ |ξ | (27)
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by (non-)stationary phase (cf. [36, Chapter 1]). Hence, to show the dispersive estimate
(25), it suffices to prove∫

Rd

∣∣eiξ.Da f (x)
∣∣dξ �

∫
Rd

| f (x)| dx .

We show this after suitable localization.
By the L2-estimate, Phillips functional calculus, and the rapid decay of the ker-

nel (27) for |ξ | � |t |, we can localize the integral in (26) to |ξ | ≤ T : Let χT ∈
C∞
c (B(0, 2T )) be a radially decreasing function with χT (ξ) = 1 for ξ ∈ B(0, T ). Let

ηT = 1 − χT . We estimate by integration by parts, the L2-estimate from Proposition
3, and the resolvent estimate from Proposition 4:∥∥∥∥

∫
Rd

ηT (ξ)Kt (ξ)eiξ.Dau(x) dξ

∥∥∥∥
L∞(Rd )

�
∥∥∥∥
∫
Rd

ηT (ξ)Kt (ξ)(1 − Δξ)
2N (1 + L)−2Neiξ.Dau(x) dξ

∥∥∥∥
L∞

�
∥∥∥∥
∫
Rd

(1 − Δξ)
N (ηT (ξ)Kt (ξ))eiξ.Da (1 + L)−Nu(x) dξ

∥∥∥∥
L2

�
∫

|ξ |≥T
(1 + |ξ |)−N dξ‖(1 + L)−Nu‖L2

� (1 + T )−M‖u‖L1 .

Thus, it is enough to show the estimate

sup
x∈Rd

∣∣∣∣
∫

|ξ |≤T
Kt (ξ)eiξ.Dau0(x) dξ

∣∣∣∣ � (1 + |t |)−σ(�)‖u0‖L1(Rd ), (28)

which follows from

sup
x∈Rd

∫
|ξ |≤T

∣∣eiξ.Dau0(x)
∣∣ dξ � ‖u0‖L1(Rd ). (29)

ByLemma1,we can suppose that supp(u0) ⊆ B(x,CT ) to show (29). Furthermore,
by commutativity of the Dirac operators under the radial frequency constraint, we can
write ∫

B(0,T )

∣∣eiξ.Dau0(x) dξ
∣∣

≤
∫ T

−T
dξ2 . . .

∫ T

−T
dξd

(∫ T

−T
dξ1

∣∣eiξ1.Da1
(
eiξ

′.D′
a u0(x1, x

′)
)∣∣) (30)

with ξ ′ = (ξ2, . . . , ξd) and D′
a = (Da2 , . . . , Dad ). It suffices to prove the estimate

for a one-parameter group as the estimate for the above expression then follows by
iteration. Thus, the proof will be complete once we show the following estimate:

∫ T

−T
|eit D̃a u0(x)| dt � ‖u0‖L1(R) (31)
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for u0 ∈ L1(R) and supp(u0) ⊆ B(x,CT ). We write u(t, x) = eit Da u0(x) and with
the notations from the proof of Proposition 2, we find by change of basis

∫ T

−T
|u(t, x)| dt �

∫ T

−T
|v(t, x)| dt (32)

with

v(t, x) = Ttv0(x) +
∫ t

0
Tt−s Ev(s, x) ds,

where Tt = exp diag(t (ab)1/2(x)∂x ,−t (ab)1/2(x)∂x ). We can write Ttv0(x)
= v0(χ(t, x)) with χ(x, ·) a C1-diffeomorphism and∫

R

|Ttv0(x)| dt ≤ C(λ,Λ)‖v0‖L1(R;C2).

Hence, integration in time of v(t, x) yields
∫ T

−T
|v(t, x)| dt ≤ C(λ,Λ)‖v0‖L1(R;C2) +

∫ T

−T
dt

∫ T

−T
ds|Ev(s, χ(t − s, x))|.

(33)

We estimate the second term by the diffeomorphism property of χ(x, · − s), Fubini’s
theorem, and L1-boundedness of E :∫ T

−T
dt

∫ T

−T
ds|Ev(s, χ(x, t − s))| ≤ C(λ,Λ)

∫ T

−T
ds‖Ev(s)‖L1

≤ C(λ,Λ)

∫ T

−T
ds‖E‖L1→L1‖v(s)‖L1

x

≤ C(λ,Λ)‖E‖L1→L1

∫ T

−T
ds

∫ CT

−CT
dx ′|v(s, x + x ′)|

≤ C(λ,Λ)‖E‖L1→L1CT sup
x

‖v(t, x)‖L1
t ([−T,T ]).

(34)

We use the bound for ‖E‖L1→L1 from (16): Let T = 1
2‖E‖L1→L1 ·C ·C(λ,Λ)

such that we

can absorb (34) into the right-hand side of (33) to find
∫ T

−T
|v(t, x)| dt � ‖v0‖L1(R2;C).

Conclusively, (31) follows from (32), the previous estimate, and a final change of
basis. The proof is complete. �

In the following, we show the dispersive estimate for arbitrary finite times. We start
with the following growth bound as consequence of Grønwall’s lemma:

Lemma 2. Let u(t, x) = eit Da u0. Then, we find the following estimate to hold:

‖u(t)‖L1 ≤ eC(‖ai‖Ċ0,1 ,λ,Λ)t‖u0‖L1 .
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Proof. Starting with the representation by Duhamel’s formula after change of basis

v(t, x) = Ttv0(x) +
∫ t

0
Tt−s Ev(s, χ(t − s, x)) ds,

we obtain
∫
R

|v(t, x)| dx ≤
∫
R

|v0(χ(t, x))| dx +
∫ t

0

∫
R

|(Ev)(s, χ(t − s, x))| dx ds

≤ C(λ,Λ)‖u0‖L1(R) +
∫ t

0
C(λ,Λ)‖E‖L1→L1‖v(s)‖L1 ds.

By ‖E‖L1→L1 ≤ C(λ,Λ, ‖ai‖Ċ0,1), the proof is concluded by applying Grønwall’s
lemma and inverting the change of basis. �

In the following, we show that the dispersive estimate remains true on arbitrary time
intervals, but with a bad constant.

Lemma 3. Let � ∈ {1, 2} and A = maxi ‖ai‖Ċ0,1 . Then,we find the following estimate
to hold:

‖P1eit L
�
2 ‖L1→L∞ ≤ C1e

C2T A(1 + |t |)−σ(�) (0 < |t | ≤ T ).

Proof. As in the proof of Proposition 8 by the localization and decay of the half-wave
or Schrödinger kernel at unit frequencies (27), it suffices to prove

∣∣∣∣
∫

|ξ |≤T
eiξ.Dau0

∣∣∣∣ ≤ C1e
C2T A‖u0‖L1(Rd ).

As above, it suffices to prove the estimate for oneDirac operator by their commutativity
and iteration. Let u(t, x) = eit D̃a u0(x). We show

∫ T

−T
|u(t, x)| dt ≤ C1e

C2T A‖u0‖L1(R).

Proposition 8 yields T ′(A, λ,Λ) such that

∫ T ′

0
|u(t, x)| dt � ‖u0‖L1(R).

We partition [0, T ] into N = �T/T ′� + 1 intervals Ik = [ak, bk] of length T ′ such
that

∫
I ′ |u(t, x)| dt � ‖u(ak)‖L1 . Hence, by Lemma 2 we find

∫ T

0
|u(t, x)| dt ≤

N+1∑
k=0

∫
Ik

|u(t, x)| dt �
N+1∑
k=0

ekT
′C‖u0‖L1 � eTC‖u0‖L1(R).

�
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For the proof of the global results and extending the above to coefficients with
bounded variation, we use the following result due to Beli–Ignat–Zuazua:

Theorem 6. [4, Theorem1.1] For anya ∈ BV (R) satisfying (15)and Var(log(a)) <

2π there exists a positive constant C(Var(a), λ,Λ) such that the solution u to
{

∂t t u = ∂x (a(x)∂x )u, (t, x) ∈ R × R,

u(0) = u0 ∈ L1(R), u̇(0) = 0

satisfies

sup
x∈R

∫
R

|u(t, x)| dt ≤ C(Var(a), λ,Λ)‖u0‖L1(R). (35)

Remark 3. We note that Beli et al. showed the threshold for Var(log(a)) to be sharp
for (35) to hold.

Weshow the corresponding result toProposition8 for functionswith locally bounded
variation. To this end, let

VarT (a) = sup{
∫
I
d|a′(x)| : I ⊆ R interval, |I | = T }.

Proposition 9. Let ai ∈ BVloc(R), i = 1, . . . , d satisfy (15) such that there is T > 0
with VarT (log(ai )) < 2π and ai = 1 for i = d + 1, . . . , 2d. Then, there is T̃ =
T̃ (T, λ,Λ) such that

‖P1eit L
�
2 ‖L1→L∞ � (1 + |t |)−σ(�) (0 < |t | ≤ T̃ ).

If V ar(log(ai )) < 2π , then we can choose T̃ = ∞.

Proof. By the reductions from above, it is enough to prove

∫ T̃

−T̃
|eiξ.Dau0(x)| dξ ≤ C(VarT (a), λ,Λ)‖u0‖L1(R).

T̃ will be determined from T and λ, Λ. It suffices to show the above display in one
dimension:

∫ T̃

−T̃
|eit.Dau0(x)| dt ≤ C‖u0‖L1(R).

By the symmetry of the kernel, we change to the cosine group, and it is enough to
prove

∫ T̃

−T̃
| cos(t L)u0(x)| dt ≤ C‖u0‖L1(R)

for L = √−∂x (ai (x)∂x ). Note that the second entry on the diagonal can be recast
into divergence form after change of variables as pointed out in [9]. By finite speed
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of propagation, we can localize u0 to an interval of length l = C(λ,Λ)T̃ such that
cos(t L)u0(x) = cos(t L)ũ0(x) for |t | ≤ T̃ . Secondly, we can localize the coefficients
of L such that

cos(t L̃)ũ0(x) = cos(t L)u0(x).

Note that this strictly speaking only works for piecewise constant coefficients, but
we can assume this by approximation arguments (cf. [4]). Moreover, the localization
of a can be chosen in an interval of length C(λ,Λ)T̃ around x . By hypothesis, for
C(λ,Λ)T̃ < T , we have by the localization and Theorem 6
∫ T̃

−T̃
| cos(t L)u0(x)| dt ≤

∫
R

| cos(t L̃)u0(x)| dt ≤ C(VarT (a), λ,Λ)‖u0‖L1(R).

�
Remark 4. The hypothesis on locally bounded variation is satisfied for ai ∈ C1(R)

with ‖∂xai‖L1(R) < ∞ or ai ∈ C1(R) being τ -periodic.

We begin the proof of Theorem 1 in earnest:

Proof of Theorem 1. We have the scaling symmetry

x → ‖ai‖Ċ0,1x, t → ‖ai‖�

Ċ0,1 t,

with � = 1 for the half-wave equation and � = 2 for the Schrödinger equation, which
reduces the estimate to

‖|D|−s�eit L
�
2 u0‖L p([0,T ],Lq ) � T

1
p ‖u0‖L2

with ‖a‖Ċ0,1 ≤ 1. For a sharp Strichartz pair (s, p, q, d) we always have 0 ≤ s < 1.
Hence, for Lipschitz coefficients the homogeneous Sobolev spaces Ẇ s,p and Ẇ s,p

L
are equivalent for −1 < s < 1, and it suffices to estimate

‖|DL |−s�eit L
�
2 u0‖L p([0,T ],Lq ) � T

1
p ‖u0‖L2 .

The estimate for the low frequencies

‖|DL |−s�eit L
�
2
φ(|DL |)u0‖L p([0,T ],Lq (Rd )) � T

1
p ‖|DL | �

p eit L
1
2
φ(|DL |)u0‖L∞([0,T ],L2(Rd ))

� T
1
p ‖u0‖L2(Rd )

follows by Hölder’s and Bernstein’s inequality and boundedness of the group on
L2(Rd).
We turn to the estimate for the high frequencies: The square function estimate (21)

and Minkowski’s inequality, recall that p, q ≥ 2, yield

‖|DL |−s�eit L
�
2 u0‖L p([0,T ],Lq (Rd )) ∼

∥∥∥∥∥∥∥

⎛
⎝∑

k≥1

||DL |−s�ψk(|DL |)eit L
�
2 u0|2

⎞
⎠

1
2

∥∥∥∥∥∥∥
L p([0,T ],Lq (Rd ))

�
⎛
⎝∑

k≥1

2−2ks�‖ψk(|DL |)eit L
�
2 u0‖2L p([0,T ],Lq (Rd ))

⎞
⎠

1
2

. (36)



   45 Page 18 of 34 D. Frey and R. Schippa J. Evol. Equ.

Hence, it suffices to show the frequency localized estimate

‖ψk(|DL |)eit L
�
2 u0‖L p([0,T ],Lq (Rd )) � T

1
p 2ks�2

k(�−1)
p ‖ψk(|DL |)u0‖L2(Rd ) (37)

We use the scaling x ′ = 2k x , t ′ = 2�k t , which yields ∂x = 2k∂x ′ and Da
2k

= Dã ,

ãi (x) = ai (2−k xi ). Note that

‖ai (2−k ·)‖Ċ0,1 � 2−k‖ai‖Ċ0,1 � 2−k . (38)

This reduces (37) to unit frequencies:

‖ψ(|DL̃ |)eit L̃
�
2 u0‖L p([0,T 2�k ],Lq (Rd )) �

(
T 2(�−1)k) 1

p ‖u0‖L2(Rd ). (39)

We note that as a consequence of (38) by Proposition 8 there is C independent of
k ∈ N0 such that the dispersive estimate

‖ψ(|DL̃ |)eit L̃
�
2 u0‖L∞(Rd ) � (1 + |t |)−σ(�)‖u0‖L1(Rd ) (40)

holds for 0 ≤ |t | ≤ C2k with implicit constant independent of k and t . Thus, by the
energy estimate from Proposition 3, the dispersive estimate (40), and Theorem 5, we
find

‖ψ(|DL̃ |)eit L̃
�
2 u0‖L p([0,C2k ],Lq (Rd )) � ‖u0‖L2(Rd ). (41)

Hence, by partitioning [0, T 2�k] into O(T 2(�−1)k) intervals (Im) of length C2k , we
conclude

‖ψ(|DL̃ |)eit L̃
�
2 u0‖L p([0,T 2�k ],Lq (Rd ))

=
(∑

m

‖ψ(|DL̃ |)eit L̃
�
2 u0‖p

L p(Im ,Lq (Rd ))

) 1
p

�
(
#Im

) 1
p ‖u0‖L2(Rd ).

We have additionally used that eit L̃
�
2 conserves the L2-norm independently of k.

Thus, by change of variables, we can conclude the Strichartz estimates for high
frequencies of the original operators from estimates for unit frequencies of the rescaled
operator:

‖eit L
�
2
ψk(|DL |)u0‖L p([0,T ],Lq ) � 2− �k

p 2− dk
q ‖eit L̃

�
2
ψ(|DL̃ |)ũ0‖L p([0,T 2�k ],Lq )

� (T 2(�−1)k)
1
p 2− �k

p 2− dk
q ‖ψ(|DL̃ |)ũ0‖L2

� (T 2(�−1)k)
1
p 2− �k

p 2− dk
q 2

dk
2 ‖ψk(|DL |)u0‖L2

= (T 2(�−1)k)
1
p 2ks�‖ψk(|DL |)u0‖L2 .

The proof is concluded by (36) and square summing the above display. �
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Next, we turn to the proof of global-in-time Strichartz estimates. The additional
hypothesis on small variation allows for dispersive estimates with uniform constant
for arbitrary times, from which global Strichartz estimates follow.

Proposition 10. Let ai ∈ C0,1(R) satisfy (15) and suppose that V ar(log(ai )) < 2π
for i = 1, . . . , d and ai = 1 for i = d + 1, . . . , 2d. Then, we find the following
estimates to hold:

‖eit L
1
2
ψ(|DL |)‖L1→L∞ � (1 + |t |)− d−1

2 , (42)

‖eit L‖L1→L∞ � |t |− d
2 (t 
= 0) (43)

with implicit constant only dependingon the ellipticity constants and V ar(log(aiai+d)).

Proof. As in the proof of Proposition 8, by the decay of the half-wave kernel at unit
frequencies, to show (42), it suffices that∫

Rd

∣∣eiξ.Da f (x)
∣∣ dξ �

∫
Rd

| f (x)| dx . (44)

For the proof of (43), we write by Phillips functional calculus without frequency
localization

eit Lu0(x) =
∫
Rd

Gt (ξ)eiξ.Dau0(x) dξ

with

Gt (ξ) = 1

(2π)d

∫
Rd

eiy.ξ eit |y|2 dy = 1

(4π i t)
d
2

eitξ
2
.

Thus,

|eit Lu0(x)| � sup
ξ∈Rd

|Gt (ξ)|
∫
Rd

|eiξ.Dau0(x)| dξ � |t |− d
2

∫
Rd

|eiξ.Dau0(x)| dξ,

and (43) follows likewise from (44).
As in the proof of Proposition 8, by commutativity of the generators and iteration,

it suffices to show ∫
R

∣∣eit D̃a u(x)
∣∣ dt �

∫
R

|u(x)| dx (45)

for u ∈ C∞
c (R). We write u(t, x) = eit D̃a u(x). Since we can change to the cosine

group by radial frequency constraint, (45) is immediate from Theorem 6. �

With global dispersive estimates at hand, we turn to the proof of Theorem 2:

Proof of Theorem 2. We begin with the proof of (8), which does not require an addi-
tional Littlewood–Paley decomposition. We have to show

‖eit Lu0‖L p(R;Lq (Rd )) � ‖u0‖L2(Rd )
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for 2
p + d

q = d
2 , (p, q, d) 
= (2,∞, 2). This is a consequence of Theorem 5 due to the

global energy and dispersive estimates from Proposition 3 and 10.
For the proof of (7), it suffices again to consider only sharp Strichartz pairs. We use

the square function estimate and Minkowski’s inequality to find

‖|D|−s1eit L
1
2 u0‖L p(R;Lq (Rd )) ∼

∥∥∥∥∥∥
(∑
k∈Z

||DL |−s1ψk(|DL |)eit L
1
2 u0|2

) 1
2

∥∥∥∥∥∥
L p(R;Lq (Rd ))

�
(∑
k∈Z

2−2s1k‖ψk(|DL |)eit L
1
2 u0‖2L p(R;Lq (Rd ))

) 1
2

. (46)

We rescale similarly as in the proof of Theorem 1 to reduce to unit frequencies. It
suffices to prove that

‖ψ(|DL̃ |)eit L̃
1
2 ũ0‖L p(R;Lq (Rd )) � ‖ũ0‖L2(Rd ) (47)

with implicit constant uniform in the rescalings. This is true as the rescaled coefficients
are given by ai,k(x) = ai (2−k x) and hence, ‖∂xai,k‖L1(R) = ‖∂xai‖L1(R). Thus, the
global dispersive estimate derived in Proposition 10 holds uniformly in k, so does
the energy estimate by Proposition 3, and hence (47) holds true independently of
k ∈ Z. Plugging (47) into (46) and square summing over the spectrally localized
pieces finishes the proof. �
Next, we discuss inhomogeneous estimates. The involved arguments are standard by

now, so we shall be brief. The most straightforward estimate is recorded in Corollary
1. By local well-posedness of the half-wave and Schrödinger equation in L2, we can
make use of Duhamel’s formula:

u = eit L
�
2 u0 +

∫ t

0
ei(t−s)L

�
2
(P�u)(s) ds

with P� = i∂t + L
�
2 . Corollary 1 now follows from Minkowski’s inequality and

homogeneous estimates. For details we refer to [8, Corollary 2.10].
For the proof of Corollary 2, we use the following tailored version of the Christ–

Kiselev lemma [13]:

Lemma 4. [19, Lemma 8.1] Let X and Y be Banach spaces and for all s, t ∈ R let
K (s, t) : X → Y be an operator-valued kernel from X to Y . Suppose we have the
estimate ∥∥∥∥

∫
R

K (s, t) f (s) ds‖Lq (R,Y ) ≤ A‖ f

∥∥∥∥
L p(R,X)

for some A > 0 and 1 ≤ p < q ≤ ∞, and f ∈ L p(R; X). Then, we have∥∥∥∥
∫
s<t

K (s, t) f (s) ds‖Lq (R,Y ) ≤ Cp,q A‖ f

∥∥∥∥
L p(R,X)

.

Theorem 3 is another consequence of Theorem 5 with the dispersive estimate at
hand. Additionally, a Littlewood–Paley decomposition is required.
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4. Applications

In this section we give applications of the preceding analysis. First, we show
Strichartz estimates for coefficients of bounded variation by limiting arguments. Next,
we prove wave Strichartz estimates for Hölder coefficients under the additional struc-
tural assumptions. In this case, they improve the general estimates due to Tataru [41].
Finally,we indicate applications to thewell-posedness theory of nonlinear Schrödinger
equations.

4.1. Strichartz estimates for BV coefficients

In the following, we see that by approximation arguments due to Burq–Planchon
[9, Proposition 1.3], we can drop the hypothesis that the coefficients are Lipschitz and
allow for BVloc(T )-coefficients, which norm is defined by

‖a‖BVloc(T ) = sup

{∫
I
d|a′|(y) : I ⊆ R interval, |I | = T

}

for a′ being a locally finite measure. The backbone is the dispersive estimate only
depending on the ellipticity constants and ‖a‖BVloc(T ). We have the following:

Theorem 7. Let (ai )i=1,...,d ⊆ L∞ satisfy (15)and let T > 0 such that‖ log(ai )‖BVloc(T ) <

2π and L = −∑d
i=1 ∂xi (ai (xi )∂xi ). Then, we find the following estimates to hold:

‖eit L
�
2 u0‖L p([0,T ],Ḃ−s�,q

2 (Rd ))
� ‖u0‖

H
�−1
p (Rd )

for � ∈ {1, 2}, s� = d
( 1
2 − 1

q

) − �
p , (p, q, d) being wave (� = 1) or Schrödinger

(� = 2) admissible.

A straightforward modification of the proof of [9, Proposition 1.3] yields the fol-
lowing:

Proposition 11. Let (ai )di=1 ⊆ C0,1(R;R) satisfy (15) and ‖ai‖BVloc(T ) < ∞.

Denote L = −∑d
i=1 ∂xi (a(xi )∂xi ). Suppose that the C0-group Sa(t) generated by i L

satisfies

‖Sa(t)u0‖B ≤ C(λ,Λ, ‖ai‖BVloc(T ))‖u0‖L2(Rd )

with B a Banach space (weakly) continuously embedded inD ′(Rd+1), whose unit ball
is weakly compact. Then, the same result holds for (ai )di=1 ⊆ L∞(R) satisfying (15)
and ‖ai‖BVloc(T ) < ∞.

This yields the Schrödinger Strichartz estimates of Theorem 7.We turn to Strichartz
estimates for wave equations locally-in-time with coefficients ‖ai‖BVloc(T ) < ∞:
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Proposition 12. Let d ≥ 2 and (ai )di=1 ⊆ C0,1(R;R) satisfy (15). Denote L =
−∑d

i=1 ∂xi (ai (xi )∂xi ). Suppose that the C0-group Sa(t) generated by

(
0 1
L 0

)
on H1 × L2

satisfies

‖(Sa(t)(u0, v0))1‖B ≤ C(λ,Λ, ‖ai‖BVloc(T ))‖(u0, ∂t u0)‖H1×L2

with B a Banach space (weakly) continuously embedded in D ′([0, T ] × R
d), whose

unit ball is weakly compact. Then, the same result holds for (ai )di=1 ⊆ BVloc(T )

satisfying (15).

Proof. Let (ai )di=1 ⊆ BVloc(T ) satisfy (15). Let (ρε)ε>0 be a family of positive
mollifiers and consider aε

i = ρε ∗ ai . We have (aε
i ) ⊆ C∞ and ‖∂x (aε

i )‖L1
loc(T ) ≤

‖ai‖BVloc(T ). Hence, by assumption

‖(Saε (t)(u0, v0))1‖B ≤ C(λ,Λ, ‖ai‖BVloc(T ))‖(u0, v0)‖H1×L2

and (Saε (t)(u0, v0))1 converges weakly in D ′([0, T ] × R
d). As in [9], it suffices to

prove that Saε (t)(u0, v0) → Sa(t)(u0, v0) in H1 × L2 because by energy estimates
this yields convergence to Sa(·)(u0, v0) in D ′([0, T ] × R

d). For this purpose, it is
enough to show the strong convergence of

L −1
ε =

(
i 1
Lε i

)−1

toL −1 =
(
i 1
L i

)−1

by Reed and Simon [30, Theorem VIII.21]. Clearly, L −1
ε : L2 × H−1 → H1 × L2

uniformly in ε as well asL −1 : L2 × H−1 → H1 × L2. By the resolvent formula,

L −1 − L −1
ε = L −1

ε (Lε − L )L −1.

Hence, L −1
ε converges strongly to L −1 as operators from L2 × H−1 to H1 × L2.

Hence,L −1
ε converges toL −1 strongly as operators from H1 × L2 to H1 × L2. The

proof is complete. �

Now we can prove the Strichartz estimates for half-wave equations stated in Theo-
rem 7.

Proof of Theorem 7, Half-wave Strichartz estimates. Thehalf-waveStrichartz estimates
for Lipschitz coefficients read

‖eit L
1
2 u0‖L p

T Ḃ
−s1,q
2

� ‖u0‖L2(Rd ).

These yield wave Strichartz estimates for C0,1-coefficients:

‖|D|1−s(Sa(t)(u0, v0))1‖L p
T L

q � ‖u0‖Ḣ1 + ‖v0‖L2 .
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We have (Sa(t)(u0, v0))1 = cos(t L)u0+ sin(t L)v0

L
1
2

. Since it is enough to consider sharp

Strichartz pairs with q > 2, we have 0 < 1 − s < 1 and have equivalence of Besov
norms by Proposition 6. We estimate

‖(Sa(t)(u0, v0))1‖L p
T Ḃ

1−s,q
2

� ‖ cos(t L)u0‖L p
T Ḃ

1−s,q
2,L

+ ‖ sin(t L)v0‖L p
T Ḃ

−s,q
2,L

� ‖|DL |u0‖L2 + ‖v0‖L2 � ‖u0‖Ḣ1 + ‖v0‖L2 .

At this point, we invoke Proposition 12, which yields estimates

‖(Sa(t)(u0, v0))1‖L p
T Ḃ

1−s,q
2

� ‖u0‖Ḣ1 + ‖v0‖L2

for BVloc(T )-coefficients. We apply this estimate to v0 = i L
1
2 u0, which gives

‖eit L
1
2 u0‖L p

T Ḃ
1−s,q
2,L

� ‖u0‖Ḣ1 .

The half-wave Strichartz estimate now follows from trading derivatives and the sub-
stitution v0 = |DL |u0. �

As an example for new local-in-time Strichartz estimates for Schrödinger equations
with BVloc-coefficients, we consider the Kronig–Penney model: let x0 ∈ (0, 1), and
b0 
= b1 > 0 with b0x0 = b1(1 − x0). Consider the 1-periodic function a : R → R

defined by

a(x) =
{
b−2
0 for x ∈ [0, x0),
b−2
1 for x ∈ [x0, 1).

Banica [3, Theorem 1.2] showed that the dispersive estimate

‖u(t)‖L∞(R) � |t |− 1
2 ‖u0‖L1(R) (t 
= 0)

fails for solutions {
i∂t u + ∂x (a(x)∂x )u = 0 (t, x) ∈ R × R,

u(0) = u0.

Still we find the Strichartz estimates with derivative loss

‖u‖L p([0,1],Lq (R)) � ‖u0‖
H

1
p (R)

(48)

for 2
p + 1

q ≤ 1
2 , p, q ≥ 2 to hold, which indicates dispersive properties on frequency

dependent time scales

‖SA
Nu(t)‖L∞(R) � |t |− 1

2 ‖SA
Nu0‖L1(R)

for 0 < |t | � N−1 with SA
N denoting the spectral projection to [N , 2N )of−∂x (a(·)∂x ).

This is reminiscent of the short-time dispersive estimates on smooth compact mani-
folds due to Burq–Gérard–Tzvetkov [8].
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4.2. Strichartz estimates for Hölder coefficients

To show Strichartz estimates for Hölder coefficients, we firstly derive Strichartz
estimates with inhomogeneity in L1L2 and with precise dependence on the Lipschitz
norm and time interval. We show the following refinement of Corollary 1:

Proposition 13. Let (ρ, p, q, d) a wave admissible Strichartz pair. Then, we find the
following estimate to hold:

‖|D|−ρu‖L p([0,T ],Lq ) � μ
1
p ‖u‖L∞L2(Rd ) + μ

− 1
p′ ‖P1u‖L1([0,T ],L2) (49)

with μ = T ‖a‖�

Ċ0,1 ≥ 1 and P1 = i∂t + L
1
2 .

Proof. We find by Minkowski’s inequality and the homogeneous Strichartz estimate
for admissible exponents

‖|D|−ρu‖L p([0,T ],Lq ) � μ
1
p ‖u0‖L2 +

∫ T

0
μ

1
p ‖P1u(s)‖L2 ds

� μ
1
p ‖u‖L∞L2 + μ

1
p ‖P1u‖L1L2 .

We shall see that we can improve the constants: suppose that ‖a‖Ċ0,1 � 1 (by rescal-
ing). Divide [0, T ] into intervals I j = [t j , t j+1] such that

‖P1u‖L1([t j ,t j+1],L2) ≤ T−1‖P1u‖L1([0,T ],L2)

and t j+1 − t j ≤ 1. Then, there are roughly T intervals I j and for each interval I j , we
find by the above argument

‖|D|−ρu‖L p(I j ,Lq ) � ‖u(t j )‖L2 + T−1‖P1u‖L1([0,T ],L2).

Taking the �p-sum over intervals I j , we find

‖|D|−ρu‖L pLq � T
1
p ‖u‖L∞L2 + T

− 1
p′ ‖P1u‖L1([0,T ],L2).

For arbitrary ‖a‖Ċ0,1 -norm, we find

‖|D|−ρu‖L p([0,T ],Lq ) � μ
1
p ‖u0‖L2 + μ

− 1
p′ ‖P1u‖L1L2 .

�

In the following,wederiveStrichartz estimates for coefficientswith lower regularity.
The estimates are supposed to be understood as a priori estimates for smooth solutions
to equations with smooth coefficients (but only depending on the rough norms). Later
it becomes useful that for smooth solutions to wave equations

∂2t u =
d∑

i=1

∂xi (ai (xi )∂xi u), (t, x) ∈ R × R
d ,
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the energy

Ea(u) =
∫
Rd

|∂t u|2 +
d∑

i=1

ai (xi )(∂xi u)2 (50)

is conserved. The arguments are adapted from Tataru’s works [41,42] to our setting.
Dealing with time-independent coefficients simplifies matters. The idea remains the
same: After truncating the coefficients in frequency, we arrive at Lipschitz coefficients
with large Lipschitz norm. The argument only works for operators in divergence
form. Let P = ∂2t − ∑d

i=1 ∂i (ai (xi )∂i ) and let (SN )N∈2N0 denote inhomogeneous
Littlewood–Paley projectors. We record the following consequence of Proposition 13:

Corollary 3. Let d ≥ 2, T > 0, and ai ∈ C0,1(R), i = 1, . . . , d satisfy (15). Suppose
that T ‖ai‖Ċ0,1 ≤ μ for some μ ≥ 1. Then, we find the following estimate to hold:

‖|D|1−ρu‖L p([0,T ],Lq (Rd )) � μ
1
p ‖∇u‖L∞L2 + μ

− 1
p′ ‖Pu‖L1([0,T ],L2(Rd ) (51)

provided that (ρ, p, q, d) is a sharp wave Strichartz pair.

We turn to the proof of Theorem 4:

Proof of Theorem 4. Byscaling invariance,wecan suppose thatT = 1and‖ai‖Ḃs∞,1
≤

μ. Let ai,≤N denote the coefficients with Fourier transform smoothly truncated at fre-
quencies N

10 , and PN = ∂2t − ∑d
i=1 ∂i (ai,≤N ∂i ). We first argue that it is enough to

show

N 1−ρ− σ
p ‖SNu‖L pLq � μ

1
p ‖∇SNu‖L∞L2 + μ

− 1
p′ ‖|D|−σ PN SNu‖L1L2 . (52)

Since the spatial frequencies of PN SNu are comparable to N , (52) is equivalent to

N 1−ρ‖SNu‖L pLq � (Nσ μ)
1
p ‖∇SNu‖L∞L2 + (μNσ )

− 1
p′ ‖PN SNu‖L1L2 . (53)

After observing that ‖ai,≤N‖Ċ0,1 � μNσ , (53) follows from Corollary 3. To see that
(52) implies (14), it suffices to see that

‖|D|−σ (SN P − PN SN )u‖L1L2 � μ‖∇u‖L∞L2 .

Let v = ∇xu, which is compactly supported in time, and since P is in divergence
form, it suffices to show the fixed-time estimate

‖|D|1−σ (SNai − ai,≤N SN )v(t)‖L2 � μ‖v(t)‖L2

or

‖(SNai − ai,≤N SN )v(t)‖L2 � N−sμ‖v(t)‖L2 .
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We prove this by considering dyadic blocks SK ai = ai,K . We have Ks‖ai,K ‖L∞ � μ.
For K � N

10 , the estimate reads

‖SN (ai,K v(t))‖L2 � N−s K s‖ai,K ‖L∞‖v(t)‖L2 ,

which is immediate. For K � N
10 , we have to prove

‖(SNai,K − ai,K SN )v(t)‖L2 � N−s K s‖ai,K ‖L∞‖v(t)‖L2 .

By rescaling K → 1, N → N
K , it suffices to prove

‖[SN , ai,1]v(t)‖L2 � N−s‖ai,1‖L∞‖v(t)‖L2 ,

or, equivalently,

‖[SN , ai,1]v(t)‖L2 � N−s‖∇xai,1‖L∞‖v(t)‖L2 .

This is a well-known commutator estimate as the kernel is given by

|K (x, y)| = |kN (x, y)(ai,1(x) − ai,1(y))| �M (1 + N |x − y|)−M |x − y|‖∇xai,1‖L∞ .

The proof is complete.

Note that there is slack in the proof as the commutator estimate gives

‖[SN , ai,1]v(t)‖L2 � N−1‖∇xai,1‖L∞‖v(t)‖L2 .

Moreover, Strichartz estimates for P are suitable to handle lower order perturbations as∑d
i=1 bi (t, x)∂i +c(t, x). However, the above argument cannot deal with Schrödinger

equations with rougher coefficients as the free part is estimated in L2 and not in H1.
The Duhamel integral does not gain one derivative.
To obtain more inhomogeneous estimates for the wave equation, we record the

following consequence of Theorem 4 for solutions to

{
∂2t u = Pu, (t, x) ∈ R × R

d ,

u(0) = f, ∂t u(0) = g.
(54)

combined with conservation of energy (50).

Corollary 4. Let d ≥ 2, s ∈ (0, 1), σ = 1− s, and ai ∈ C∞(R), i = 1, . . . , d satisfy
(15), and let (ρ, p, q, d) be a wave Strichartz pair. Suppose that u is a smooth solution
to (54). Then, we find the following estimate to hold:

sup
N

N 1−ρ− σ
p ‖SNu‖L p([0,T ],Lq ) � ‖ f ‖Ḣ1(Rd ) + ‖g‖L2(Rd )

with implicit constant depending only on T , ‖ai‖Ḃs∞,1
, (ρ, p, q, d), and the ellipticity

constants.
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As a consequenceof tradingderivatives,wefind the followinghomogeneousStrichartz
estimate for the half-wave equation:

‖|D|−ρ− σ
p eit L

1
2 f ‖L p([0,T ],Lq (Rd )) � ‖ f ‖L2(Rd ). (55)

In fact, for the sharp Strichartz estimates, it is easy to see that it suffices to trade less
than one derivative. For non-sharp pairs one reduces to the sharp case first by Sobolev
embedding. We prove inhomogeneous estimates by using again the tailored version
of the Christ–Kiselev Lemma 4.

Proposition 14. Let d ≥ 2, s ∈ (0, 1), σ = 1 − s, and (ρ, p, q, d), (ρ̃, p̃, q̃, d) be
two wave Strichartz pairs with p > p̃′. Suppose that ai ∈ C∞(R) satisfies (15) and
u solves {

∂2t u − ∑d
i=1 ∂xi (a(xi )∂xi u) = F, (t, x) ∈ [0, T ] × R

d

u(0) = f, ∂t u(0) = g.
(56)

Then, we find the following estimate to hold for ρ1 > ρ + σ
p and ρ2 > ρ + σ

p :

‖〈D〉1−ρ1u‖L p([0,T ],Lq (Rd )) � ‖ f ‖H1(Rd ) + ‖g‖L2(Rd ) + ‖〈D〉ρ2 F‖L p̃′ ([0,T ],Lq̃′
(Rd ))

(57)

with implicit constant only depending on T , ‖ai‖Ċ0,1 , and the ellipticity constants.

Proof. We write

u(t) = cos(t L
1
2 ) f + sin(t L

1
2 )

L
1
2

g +
∫ t

0

sin((t − s)L
1
2 )

L
1
2

F(s) ds. (58)

The homogeneous components are estimated by (55). We turn to the forcing term:
Consider

T : L2(Rd) → L p([0, T ], Lq(Rd)), f �→ 〈D〉−ρ1eit L
1
2 f

whose boundedness follows from the homogeneous estimates (55). The dual operator
with respect to the L2-scalar product is given by

T ∗ : L p′
([0, T ], Lq ′

(Rd)) → L2(Rd), F �→
∫ T

0
e−isL

1
2 〈D〉−ρ1F(s) ds.

We consider the composition with different exponents

T T ∗ : L p̃′
([0, T ], Lq̃ ′

(Rd)) → L p([0, T ], Lq(Rd)),

F �→ 〈D〉−ρ1

∫ T

0
ei(t−s)L

1
2
(〈D〉−ρ2F)(s) ds,

which is also bounded. Since by assumption p̃′ < p, we can invoke Lemma 4 to find
the bound∥∥∥∥〈D〉−ρ1

∫ t

0
ei(t−s)L

1
2 F(s) ds‖L p([0,T ],Lq (Rd )) � ‖〈D

〉ρ̃+ σ
p̃

F‖L p̃′ ([0,T ],Lq̃′
(Rd ))

.

This yields the claim after trading |D| to |DL |. �
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4.3. Applications to nonlinear equations

With the usual Strichartz estimates at disposal, it is straightforward to prove well-
posedness for a large class of equations with power-type nonlinearity. Here, we con-
sider as an example Schrödinger equations with power-type nonlinearity in L2(Rd):

{
i∂t u + ∑d

i=1 ∂xi (ai (xi )∂xi )u = μ|u|p−1u, (t, x) ∈ R × R,

u(0) = u0 ∈ L2(Rd)
(59)

with d ≥ 1 and ai ∈ BV (R) satisfying (15) and Var(log(ai )) < 2π . The results in the
constant-coefficient case are due to Tsutsumi [44]. For further explanation, we refer
to [40, Sect. 3.3]. The following holds by substituting the free Strichartz estimates for
the Schrödinger equation with the estimates from Theorems 2 and 3:

Theorem 8. (L2-well-posedness) Let 1 < p < 1 + 4
d and μ ∈ {−1; 1}. Then, (59)

is analytically globally well-posed in L2(Rd) in the subcritical sense. If p = 1 + 4
d ,

then (59) is analytically locally well-posed in the critical sense.

We remark that also the Hs-theory extends as long as it is valid to trade derivatives
‖|D|s f ‖Lq ∼ ‖|DL |s f ‖Lq .

5. Spectral multiplier estimates and Bochner–Riesz means

In the following, we consider the nonnegative self-adjoint operator

L = −
d∑

i=1

∂xi (ai (xi )∂xi ) (60)

in L2(Rd) for ai ∈ BV (R) satisfying (15) and Var(log(ai )) < 2π . We derive con-
sequences of the dispersive properties worked out in Proposition 10 for spectral re-
striction, multiplier estimates, and Bochner–Riesz means. The results follow from
the analysis of Chen et al. [12] for L being a self-adjoint operator on a doubling
metric space. Since L is self-adjoint, it admits a spectral resolution EL(λ), and for
F : [0,∞) → C a bounded Borel function, the operator

F(L) =
∫ ∞

0
F(λ) dEL(λ)

defines an L2-bounded operator by the spectral theorem. A special case are the
Bochner–Riesz means: we let

Sδ
R(λ) = (1 − λ/R2)δ+

for δ > 0 and R > 0. Sδ
R(L) is referred to as Bochner–Riesz mean of order δ

corresponding to L . In the classical case L = −Δ, theBochner–Riesz conjecture states
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that Sδ
R(L) : L p(Rd) → L p(Rd) is bounded provided that δ > max

(
d
∣∣ 1
2 − 1

p

∣∣− 1
2 , 0

)
for 1 ≤ p ≤ ∞ and d ≥ 2. Note that for p = 2, δ = 0 is trivially admissible;
see also [14]. The conjecture was verified for d = 2 by Carleson–Sjölin [10] and
Hörmander [20]. By using the Stein–Tomas restriction theorem and finite speed of
propagation, Fefferman verified the conjecture for d ≥ 3 and max(p, p′) ≥ 2d+2

d−1
(note the self-duality). Further progress was closely tied to work on the restriction
conjecture [7,18,25]. In terms of the spectral measure dE√−Δ(λ) the classical Stein–
Tomas restriction theorem is equivalent to

‖dE√−Δ(λ)‖p→p′ =
∥∥∥∥ λd−1

(2π)d
R∗

λRλ

∥∥∥∥
p→p′

≤ Cλ
d
(
1
p − 1

p′
)
−1

(61)

for all p ∈ [1, (2d +2)/(d +3)]. In the first part of Chen et al. [12] spectral multiplier
estimates, which are sharp in general, were derived based on the following Stein–
Tomas restriction condition:

(
ST

)q
p,s ‖F(

√
L)‖p→s ≤ CRd

(
1
p − 1

s

)
‖δRF‖Lq .

We denote dilations by δRF(x) = F(Rx). These estimates in turn can be derived
from (61). We have the following as an instance of [12, Proposition II.4]. Note that
the required smoothing estimates

‖ exp(−t L)‖p→ 2d
d+2

≤ Kt−
d
2

(
1
p − d+2

2d

)
(62)

for all t > 0 and 1 ≤ p ≤ 2d
d+2 follow from the pointwise heat kernel estimate (22).

Proposition 15. Let d ≥ 3, and L be defined as in (60). Then, for all 1 ≤ p ≤ 2d
d+2

and λ ≥ 0, the following estimate holds:

‖dE√
L(λ)‖p→p′ ≤ Cλ

d
(
1
p − 1

p′
)
−1

. (63)

As a consequence of (63) we derive the Stein–Tomas restriction (cf. [12, p. 267])

‖F(
√
L)‖p→p′ =

∥∥∥∥
∫ R

0
F(λ) dE√

L(λ)

∥∥∥∥
p→p′

≤ C
∫ R

0
|F(λ)|λd

(
1
p − 1

p′
)
−1

dλ

≤ CR
d
(
1
p − 1

p′
)
‖δRF‖1.

By a T T ∗-argument this is (ST)2p,2. This yields the following spectral multiplier
estimates and endpoint estimates for Bochner–Riesz means by [12, Theorem II.6] and
[12, Theorem I.24].

Theorem 9. Let L be as in (60), d ≥ 3, and p ∈ [1, 2d/(d + 2)]. For each bounded
Borel function F such that supt>0 ‖ηδt F‖Wβ,2 < ∞ for some β > max

({d( 1
p −
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1
2

)
, 1
2 }

)
and non-trivial η ∈ C∞

c (0,∞), F(
√
L) is bounded on Lr (Rd) for all r ∈

(p, p′). We find the following spectral multiplier estimate to hold:

‖F(
√
L)‖r→r ≤ Cβ(sup

t>0
‖ηδt F‖Wβ,2 + |F(0)|).

Furthermore, formax(p, p′) > 2d
d−2 , theBochner–Rieszmeans S

δ(p)
R (L) : L p(Rd) →

L p(Rd) are bounded and satisfy weak endpoint bounds uniformly in R with δ(p) =
max(d

∣∣ 1
2 − 1

p

∣∣ − 1
2 , 0).

We turn to maximal Bochner–Riesz operators Sα∗ (L) defined by

Sα∗ (L) f (x) = sup
R>0

|Sα
R(L) f (x)|. (64)

These were explored in the general context described above by Chen et al. in [11].
[11, Theorem A] yields the following:

Theorem 10. Let L be as in (60), and d ≥ 3. Then, the maximal Bochner–Riesz
operator Sα∗ (L) is bounded on L p(Rd) provided that

2 ≤ p <
2d

d − 2
, and α > max

(
d

(
1

2
− 1

p

)
− 1

2
, 0

)
. (65)

In particular, we find pointwise convergence of the Bochner–Riesz means to hold:

lim
R→∞ Sα

R(L) f (x) = f (x) a.e. (66)

In [32], Sikora–Yan–Yao considered Bochner–Riesz estimates of negative index
and spectral multiplier estimates L p(Rd) → Lq(Rd). The results were likewise ob-
tained in the general context described above, hinging on heat kernel and Tomas–Stein
restriction estimates. We consider for α > −1

Sα
R(

√
L) = 1

Γ (α + 1)

(
1 −

√
L

R

)α

+
. (67)

For α = −1, we set S−1
R (

√
L) = R−1dE√

L(R). This is based on the distributional
limit (cf. [21, Eq. (3.2.17’)]):

lim
α↓−1

1

Γ (α + 1)
xα+ = δ(x).

Let L be as above (60). By the pointwise Gaussian estimates noted in (22), Davies–
Gaffney estimates of second order follow

‖P
B(x,t

1
2 )
e−t L P

B(y,t
1
2 )

‖2→2 ≤ C exp

(
−c|x − y|2

t

)
(68)
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for all t > 0, and x, y ∈ R
d . PE f (x) = χE (x) f (x) denotes multiplication with an

indicator function. Moreover, the condition

‖e−t2L‖p→2 ≤ Ct
d
(
1
2− 1

p

)
(69)

holds for all x ∈ R
d and t > 0.

The Bochner–Riesz estimates of negative index investigated in [32] for operators
satisfying (68) and (69) read

(BRα
p,q) ‖Sα

R(
√
L)‖p→q ≤ CR

d
(
1
p − 1

q

)
.

Thus, the Stein–Tomas restriction estimates (63) showed inProposition 15 corresponds
to (BRα

p,p′). Sikora–Yan–Yao [32, Theorem 3.9] proved that Bochner–Riesz estimates
of negative index imply the following spectral multiplier estimates:

Theorem 11. Let L be as in (60). Suppose that (BRα
p,q) holds for α ≥ −1 and

1 < p < q < ∞. Let p ≤ r ≤ s ≤ q, and β > d
( 1
p − 1

r

) + d
( 1
s − 1

q

) + α + 1,

supp(F) ⊆ [1/4, 4], and F ∈ Wβ,1(R), the operator F(t
√
L) is bounded from

Lr (Rd) → Ls(Rd). Moreover, the following estimate holds:

sup
t>0

td
(
1
r − 1

s

)
‖F(t

√
L)‖r→s ≤ C‖F‖Wβ,1(R). (70)

For a second result on spectral multipliers, we recall the definition of the Weyl–
Sobolev norm: the distributions

χα± = xα±
Γ (α + 1)

�α > −1. (71)

can be extended to arbitrary index ν ∈ C by respecting the recursion relation of
the derivatives (cf. [32, p. 3087]). For supp(F) ⊆ [0,∞), we then define the Weyl
fractional derivative of F of order ν by

F (ν) = F ∗ χ−ν−1− , ν ∈ C

and the Weyl–Sobolev norm by

‖F‖WSν,p = ‖F‖p + ‖F (ν)‖p.

For 1 < p < ∞ and ν ≥ 0, theWeyl–Sobolev norm is equivalent to the usual Sobolev
norm ‖F‖W ν,p ∼ ‖F‖WSν,p whereas for p = 1 we have

‖F‖WSν,1 ≤ Cε‖F‖W ν+ε,1

for any ε > 0 (cf. [32, Lemma 3.7]). The following result [32, Proposition 3.8] is not
restricted to dyadically supported multipliers:
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Proposition 16. Suppose that (BRα
p,q) holds for some α ≥ −1 and 1 ≤ p < q ≤ ∞.

Then, for every ε > 0, there exists a constant Cε such that for any R > 0 and all Borel
functions F with supp(F) ⊆ [R/2, R], we find the estimate

‖F(
√
L)‖p→q ≤ CRd

(
1
p − 1

q

)
‖δRF‖WSα+1,1(R)

to hold.

Moreover, Bochner–Riesz estimates of index −1 yield Bochner–Riesz estimates
of higher order with more admissible indices (cf. [32, Theorem 3.12]). We omit the
details.
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