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a b s t r a c t

Riemann theta functions play a crucial role in the field of nonlinear Fourier analysis,
where they are used to realize inverse nonlinear Fourier transforms for periodic signals.
The practical applicability of this approach has however been limited since Riemann
theta functions are multi-dimensional Fourier series whose computation suffers from the
curse of dimensionality. In this paper, we investigate several new approaches to compute
Riemann theta functions with the goal of unlocking their practical potential. Our first
contributions are novel theoretical lower and upper bounds on the series truncation
error. These bounds allow us to rule out several of the existing approaches for the
high-dimension regime. We then propose to consider low-rank tensor and hyperbolic
cross based techniques. We first examine a tensor-train based algorithm which utilizes
the popular scaling and squaring approach. We show theoretically that this approach
cannot break the curse of dimensionality. Finally, we investigate two other tensor-
train based methods numerically and compare them to hyperbolic cross based methods.
Using finite-genus solutions of the Korteweg–de Vries (KdV) and nonlinear Schrödinger
equation (NLS) equations, we demonstrate the accuracy of the proposed algorithms. The
tensor-train based algorithms are shown to work well for low genus solutions with real
arguments but are limited by memory for higher genera. The hyperbolic cross based
algorithm also achieves high accuracy for low genus solutions. Its novelty is the ability
to feasibly compute moderately accurate solutions (a relative error of magnitude 0.01)
for high dimensions (up to 60). It therefore enables the computation of complex inverse
nonlinear Fourier transforms that were so far out of reach.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Riemann theta function

θ (z | Ω) =

∑
n∈Zg

e2π i
(
1
2 n·Ωn+n·z

)
, z ∈ Cg , (1)

where Ω = ΩT
∈ Cg×g has a strictly positive definite imaginary part and · indicates the dot product, is a particular

multi-dimensional Fourier series that plays a key role in the area of nonlinear Fourier analysis [1,2]. There, it is used
to synthesize periodic signals as part of inverse nonlinear Fourier transforms. Periodic nonlinear Fourier analysis has
recently received a lot of attention in nonlinear signal processing problems arising in fiber-optic communications [3–7]
and coastal and ocean engineering [8–14]. The Riemann theta function also sees application in quantum coding [15],
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algebraic geometry [16–18], number theory [19], discrete mathematics [20], machine learning [21,22], cryptography [23]
and statistics [24]. Despite its applicability in many fields, the practical utility of the Riemann theta function is limited to
low number of dimensions due to its high computational cost. While there has been much work on designing efficient
algorithms for the computation of the Riemann theta function [8,25–28], the complexity of these methods nevertheless
increases exponentially with the number of dimensions. Hence, they are limited to low-dimensional problems. In this
paper we propose novel approaches that overcome this limitation and allow us to synthesize high-dimensional non-trivial
signals for fiber-optic communications and coastal engineering problems.

Algorithms for computing the Riemann theta function can be primarily classified into two categories. The first category
f algorithms concentrate on computing the Riemann theta function value up to a certain number of bits [26]. The
econd category of algorithms aim at computing the theta function value up to a small threshold. In this paper we focus
n the second category of algorithms [8,25,27,28]. These methods approximate the theta function value by summing a
runcated series. The number of terms in the summation grows exponentially with the number of dimensions g . Hence,
he computational cost grows exponentially as well. It becomes infeasible to compute the sum even for moderate values
f g . This is famously known as the curse of dimensionality. The curse is seen in many high-dimensional problems where
he number of operations required for a particular action grow exponentially with the underlying dimensionality [29]. In
ecent years tensor based methods have been increasingly employed to mitigate the curse of dimensionality. They have
een applied with great success in signal processing, statistics, data mining, and machine learning [30–38]. In particular,
hey have been used to develop efficient algorithms for computing multi-dimensional Fourier series [39,40]. Another
pproach used to reduce the computation cost of the multi-dimensional Fourier series is the utilization of special index
ets [41–45].
In this paper we study the applicability of tensor based algorithms and special index sets to efficiently compute

pproximations of the high-dimensional Riemann theta function. Our main contributions are: (1) Lower and upper bounds
n the error introduced from the series truncation for certain index sets, (2) theoretical proof that a standard scaling-and-
quaring approach applied to tensor-train approximations cannot break the curse of dimensionality, and (3) numerical
nvestigations of other tensor-train and hyperbolic-cross based algorithms. To the best of our knowledge, this is the first
ime that tensor-train and hyperbolic-cross methods have been proposed for the computation of Riemann theta functions.
n our numerical experiments, we are able to compute Riemann theta function values for very high number of dimensions
g = 60) that dramatically exceed the current state of the art in this area, which significantly extends the range of practical
roblems to which Riemann theta functions can be applied.
The remainder of this paper has the following structure. In Section 2 we introduce some preliminaries about the

iemann theta function and the tensor-train decomposition. In Section 3 we derive some lower bounds and an upper
ound on the series truncation error for certain index sets. In Section 4 we provide a theoretical analysis to prove that a
ensor-train based approach using scaling and squaring cannot break the curse of dimensionality. In Section 5 we present
wo alternatives for the tensor-train based algorithm and use the hyper-elliptic solutions of the KdV and NLS equations
s numerical examples to study the accuracies of the algorithms. We conclude our findings in Section 6.

otations. C — complex numbers; N — Natural numbers; Z — Integers; #A denotes the number of elements in the set
. We use e(·) and exp (·) interchangeably to indicate the exponential function (applied element-wise for tensors).

. Preliminaries

In this section, we recapitulate several results related to the computation of the Riemann theta function from the
iterature. First, the most common ways to truncate the infinite series (1) are introduced. Then, a technique to make
runcation more efficient by transforming the Riemann matrix Ω that is known as Siegel transform is discussed. Finally,
ensor trains are introduced as a potential tool to evaluate the truncated series.

.1. Truncated Riemann theta functions

For numerical purposes, the Riemann theta function (1) is typically approximated by a truncated series of the form

θ̂ (z | Ω) =

∑
n∈N g (N)

C(n)e2π i(n·z), (2)

where C is a g-dimensional tensor with

C(n) = eiπn·Ωn. (3)

The index set N g
= N g (N) depends on a truncation parameter N ∈ N. Before we can introduce several popular index

sets, the definition of the matrix p-norms has to be recalled.

Definition 1. Let p ∈ N ∪ {∞}. The p-norm of z ∈ Cg is ∥z∥p := (|z1|p + · · · + |z|pg )
1/p for p < ∞ and ∥z∥p :=

max{|z1|, . . . , |zg |} for p = ∞. The corresponding induced p-norm of a matrix A ∈ Cg×g is ∥A∥p := max z∈Cg
∥z∥p≤1

∥Az∥p.

The first popular family index set, Ig , is defined as follows.
2
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Definition 2. For any N ∈ N and p ∈ N ∪ {∞}, we set

Ig
= Ig (p,N) :=

{
n ∈ Zg

: ∥n∥p ≤ N
}
.

The most common choices of p are p = 1 (summation over a cross-polytope), p = 2 (summation over a hypersphere),
and p = ∞ (summation over a hypercube). The symmetric hyperbolic cross Hg is another interesting index set [46, Fig.
2.1(b)]. It is defined as follows.

Definition 3. For any N ∈ N, we set

Hg
= Hg (N) :=

⎧⎨⎩n ∈ Zg
:

g∏
j=1

max
(
1, 2|nj|

)
≤ N

⎫⎬⎭ .

The hyperbolic cross Hg can be built recursively using the algorithm given in [47, Sec. 2.6]. In contrast to the index
sets Ig (p,N), the number of elements in the hyperbolic cross Hg does not grow exponentially in the genus g if N is fixed.

Lemma 1. The number of elements in Hg (N) satisfies

#Hg (N) ≤ e2N2g log2 N .

Proof. Since 1 + |nj| ≤ max(1, 2|nj|), we have that max(1, 2|nj|) ≤ N ⇒ 1 + |nj| ≤ N . Therefore, Hg (N) ⊆ {n ∈ Zg
:∏g

j=1(1+|nj|) ≤ N}. The bound [48, Eq. 10.2.3] implies #Hg (N) ≤ e2N2+log2 g
= e2N2N log2 g . The lemma now follows since

N log2 g
= (2log2 N )log2 g

= (2log2 g )log2 N
= g log2 N . □

The Riemann theta function is well-known to converge absolutely and uniformly in z [49, Ch. II.1]. Therefore, we have
the following result.

Theorem 1 (Convergence). Let Z ⊂ C be compact. Then

lim
N→∞

max
z∈Z

⏐⏐⏐θ (z | Ω) − θ̂ (z | Ω)
⏐⏐⏐ = 0

for any of the index sets Ig and Hg .

2.2. Siegel transform

For certain Riemann matrices Ω, it may happen that an index set contains many coefficients that could be neglected
during the summation. If we sum over a hypersphere, this issue would for example arise if the indices of the non-negligible
coefficients form an hyper-ellipsoid with high eccentricity. An algorithm for finding an hyper-ellipsoid of indices that
includes all terms above a threshold is given in [25, Section 4]. The algorithm for identifying the hyper-ellipsoid of indices
however unfortunately has a significant computational cost itself that grows sharply with increasing g . Furthermore, even
if the hyper-ellipsoid is known, the number of terms inside it can still be very large [25, p. 1734]. In [25, Sec. 7], it was
therefore proposed to use a modular transform of the form

Ω ↦→ Ω̂ = (AΩ + B)(CΩ + D)−1, A,B, C,D ∈ Zg , (4)

where the integer matrices A, B, C and D must satisfy[
A B
C D

][
0g Ig
−Ig 0g

][
A B
C D

]T
=

[
0g Ig
−Ig 0g

]
, (5)

known as Siegel transformation to reduce the eccentricity of the set of non-negligible indices. The relation between the
two Riemann theta functions that correspond to the two Riemann matrices Ω and Ω̂ is then given by [49, Eq. 5.1]

θ (z | Ω) =
θ ((CΩ + D)−1z | Ω̂)

ζ
√
det(CΩ + D)eπ iz·(CΩ+D)−1Cz

, (6)

where ζ is an eighth root of one, i.e., ζ 8
= 1. The main computational step in the construction of the modular transform

is the approximation of the shortest vector in a lattice. In [25], the authors employed the Lenstra–Lenstra–Lovász (LLL)
lattice basis reduction algorithm [50] for that purpose. The complexity of the LLL algorithm is only polynomial in the g ,
but the error in the approximation increases exponentially in g . Several authors therefore investigated replacements for
the LLL algorithm [24,27].

The authors of [51] mention that once a Siegel transform has been applied, the summation can be carried over a
hyper-cube instead of the hyper-ellipsoid as it was done in [25], at an additional cost.
3
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2.3. Tensor-train decomposition

The truncated Riemann theta function (2) is a multi-dimensional Fourier series. In [39], it was observed that if the
oefficient tensor has a low-rank representation in the tensor-train format [52], a multi-dimensional Fourier series can be
valuated with low computational complexity. The idea was to exploit that a multi-dimensional Fourier series constitutes
he inner product between the coefficient tensor and the rank one tensor formed by the terms e2π in·z, which can be then
omputed efficiently using the method in [52, Sec. 4.2]. Later in this paper, we will exploit this idea for the computation
f the truncated Riemann theta function. Since this requires us to investigate approximations of the coefficient tensor (3),
e now quickly recall some facts about the tensor-train format.
Any given tensor Y can be approximated arbitrarily well by a tensor X ≈ Y of the form X = G(1)

×
1G(2)

×
1
· · ·×

1G(g), [52],
where ×

1 is the contracted product [53, Sec. 2.2] and the G(k) are 3rd-order tensors with sizes Rk−1×Nk×Rk, k = 1, . . . , g
and R0 = Rg = 1. Any tensor of this form is said to be a tensor train. The tensors G(k) are called the tensor-train cores,
hile the integers R1, . . . , Rg−1 are called the tensor-train ranks. A tensor-train can alternatively be written entry-wise
s a product of slice matrices,

xn = xn1,n2,...,ng = G(1)
n1 G

(2)
n2 · · ·G(g)

ng , (7)

where G(k)
nk = G(k)(:, nk, :) ∈ CRk−1×Rk is the lateral slice of the nth tensor-train core, k = 1, . . . , g , and G(1)

n1 ∈ C1×R1 and
G(g)
ng ∈ CRg−1×1. There exist efficient algorithms with which a tensor-train approximation of a given tensor can be found

under accuracy and rank constraints, see e.g. [52,54]. In the following we will refer to the highest rank in a tensor-train
as the rank of the tensor-train.

3. Analysis of the truncation error

For the numerical evaluation of the truncated Riemann theta function θ̂ (z | Ω), the truncation parameter N has to be
chosen large enough such that the truncation error

|θ (z | Ω) − θ̂ (z | Ω)| =

⏐⏐⏐⏐⏐⏐
∑

n/∈N g (N)

cne2π in·z

⏐⏐⏐⏐⏐⏐ (8)

is sufficiently small. The truncation error depends on the choice of the index set N g (N). The parameters g and N
furthermore determine the complexity of evaluation methods for the truncated Riemann theta function. In this section,
we show that the two parameters are connected. We derive lower and upper bounds on the truncation parameter N such
that a certain truncation error can be guaranteed. Since we are interested in high dimensional cases, their behavior is
studied for large g . The consequences of these studies are discussed.

3.1. Lower bounds on the truncation error

Some authors have proposed to choose the truncation parameter N such that the truncated tensor coefficients satisfy
|cn| < ε, where ε > 0 denotes some small parameter such as machine precision [51, Sec. 3.3], [27, p. 150], [8]. However,
even if the errors in the individual coefficients cn are very small, the truncation error (8) can be large since the number of
neglected coefficients grows exponentially with the genus g . (Note that it is possible to sum terms accurately even when
the numbers have significantly different orders of magnitude and are smaller than the machine precision [55]. Hence,
it would be possible to include coefficients below machine precision also in finite precision arithmetic.) The following
proposition, which is our first contribution, formalizes this observation for most of the index sets Ig . It demonstrates that
the strategy of truncating coefficients below machine precision can achieve small truncation errors only for small values
of g with these index sets since the truncation error in general grows exponentially in the number of dimensions g if N
s fixed.

roposition 1. Let the index set be N g
= Ig (p,N) for any p ∈ N, p ≥ 2. The truncation error is then lower bounded as

⏐⏐⏐θ (z | Ω) − θ̂ (z | Ω)
⏐⏐⏐ ≥ e

g

(
log(2)−πλmax

⌈
N+1
p√g

⌉2)
(9)

at z = 0g×1 whenever ℜ{Ω} = 0g , where λmax denotes the largest eigenvalue of ℑ{Ω}.

roof. Let J g (N +1) denote the index set that contains all n ∈ Zg of the form n =

⌈
N+1
p√g

⌉ [
s1 s2 · · · sg

]T where sk = ±1
or k = 1, 2, . . . , g . Then

n ∈ J g (N + 1) ⇒ ∥n∥ ≥ N + 1 ⇒ n /∈ Ig (p,N). (10)
p

4



S. Chimmalgi and S. Wahls Communications in Nonlinear Science and Numerical Simulation 123 (2023) 107266
The truncation error thus satisfies⏐⏐⏐θ (z | Ω) − θ̂ (z | Ω)
⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐
∑

n/∈Ig (p,N)

cn exp(2π in · z)  
=1

⏐⏐⏐⏐⏐⏐
(cn ∈ R+) =

∑
n/∈Ig (p,N)

cn

(10) ≥

∑
n∈J g (N+1)

e−πn·ℑ{Ω}n

(n · ℑ{Ω}n ≤ λmax∥n∥
2
2) ≥

∑
n∈J g (N+1)

e
−πλmaxg

⌈
N+1
p√g

⌉2

(since #J g (N + 1) = 2g ) = 2ge
−πλmaxg

⌈
N+1
p√g

⌉2

= e
g

(
log(2)−πλmax

⌈
N+1
p√g

⌉2)
□

To the best of our knowledge, this is the first lower bound on the approximation error of Riemann theta functions.
Note that in order to keep the lower bound (9) on the truncation error from blowing up as g increases, the truncation
parameter N should grow at least proportionally to p√g .

The previous result did not cover the cases p ∈ {1, ∞}. The next proposition provides a weaker but more lower general
bound on the truncation error, which shows that it must grow at least linearly in the genus g .

Proposition 2. Let the index set be N g
= Ig (p,N) for any p ∈ N ∪ {∞}. The truncation error is then lower bounded as⏐⏐⏐θ (z | Ω) − θ̂ (z | Ω)

⏐⏐⏐ ≥ ge−πλmax(N+1)2

for z = iRg×1 whenever ℜ{Ω} = 0g , where λmax denotes the largest eigenvalue of ℑ{Ω}.

Proof. Let J g (N + 1) denote the index set that contains all n ∈ Zg for which exactly one element is non-zero, and this
element is given by

nk = −sign{ℑ{zk}}(N + 1).

Then

n ∈ J g (N + 1) ⇒ ∥n∥p = N + 1 ⇒ n /∈ Ig (p,N). (11)

The truncation error thus satisfies⏐⏐⏐θ (z | Ω) − θ̂ (z | Ω)
⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐
∑

n/∈Ig (p,N)

cn exp(2π in · z)

⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐
∑

n/∈Ig (p,N)

cn exp(2π in · (iℑ{z}))

⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐⏐
∑

n/∈Ig (p,N)

cn
≥0

exp(−2πn · ℑ{z})  
≥0

⏐⏐⏐⏐⏐⏐⏐
=

∑
n/∈Ig (p,N)

cn exp(−2πn · ℑ{z})

(11) ≥

∑
n∈J g (N+1)

cne2π mink |ℑ{zk}|(N+1)

(n · ℑ{Ω}n ≤ λmax∥n∥
2
2) ≥

∑
n∈J g (N+1)

e2π mink |ℑ{zk}|(N+1)e−πλmax(N+1)2

(since #J g (N + 1) = g) = ge2π mink |ℑ{zk}|(N+1)e−πλmax(N+1)2

≥ ge−πλmax(N+1)2 □

The next proposition finally provides a similar bound for the hyperbolic cross.
5
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Proposition 3. Let the index set be N g
= Hg (N). The truncation error is then lower bounded as⏐⏐⏐θ (z | Ω) − θ̂ (z | Ω)

⏐⏐⏐ ≥ ge−πλmax
⌈
N+1
2

⌉2
t z = iRg×1 whenever ℜ{Ω} = 0g , where λmax denotes the largest eigenvalue of ℑ{Ω}.

roof. Let J g (N + 1) denote the index set that contains all n ∈ Zg for which exactly one element is non-zero, and this
lement is given by

nk = −sign{ℑ{zk}}
⌈
N + 1

2

⌉
.

Then

n ∈ J g (N + 1) ⇒

g∏
j=1

max
(
1, 2|nj|

)
≥ N + 1

⇒n /∈ Hg (N).

(12)

ollowing the same steps as in the proof of Prop. 2, we arrive at the lower bound on the truncation error for Hg . □

.2. An upper bound for Ig (∞,N)

The lower bounds in the previous subsection have shown that the truncation parameter N in general has to grow
with the genus g if small truncation errors are desired. We are now investigating upper bounds. Upper bounds for the
truncation errors of transformed Riemann theta functions that are summed over ellipsoids are provided in [25, Thm.
3], [28, Thm. 3.1]. Upper bounds with respect to the hyperbolic cross Hg (N) and Ig (1,N) are provided in [45, Ch. 8.1] for
the case z ∈ Rg , but the influence of the genus on these bounds is unfortunately not investigated.

The following proposition, which is our next contribution, shows that the truncation error can be bounded indepen-
dently of the genus for the hypercube if the truncation parameter grows slightly faster than Ω(

√
g) for real z, or Ω(g) for

non-real z where Ω notation provides the asymptotic lower bound. This case is later of special interest since it is possible
to evaluate the truncated Riemann theta function fast over the hypercube if the coefficient tensor is in some sense low
rank.

Proposition 4. Let the index set be Ig (∞,N) and fix any δ ∈ (0, 1) and a > 0. Then there exists a constant c > 0 (independent
of g and N) such that the truncation error is upper bounded as⏐⏐⏐θ (z | Ω) − θ̂ (z | Ω)

⏐⏐⏐ ≤

∞∑
k=N+1

e−(π/2)∥ℑ{Ω}
−1

∥
−1
p k2

whenever cN2−δ
≥ g and ℑ{z} = 0g×1. If ∥ℑ{z}∥∞ ≤ a, the same bound holds whenever cN ≥ g (for a different c > 0).

Proof. Recall that from the proof of Theorem 1 that⏐⏐⏐θ (z | Ω) − θ̂ (z | Ω)
⏐⏐⏐

≤

∞∑
k=N+1

eg log(2k+1)+2π∥ℑ{z}∥∞gk−π∥ℑ{Ω}
−1

∥
−1
p k2 .

We first consider the case g ≤ cN2−δ and ℑ{z} = 0g×1. The constants are then chosen as M := maxx>0
log(1+2x)

xδ > 0, which

s finite because x−δ log(1+2x) is continuous and converges to zero for both x → 0 and x → ∞, and c :=
π∥ℑ{Ω}

−1
∥
−1
p

2M > 0.
The bound on the truncation error becomes⏐⏐⏐θ (z | Ω) − θ̂ (z | Ω)

⏐⏐⏐
≤

∞∑
k=N+1

ecN
2−δ log(2k+1)−π∥ℑ{Ω}

−1
∥
−1
p k2

≤

∞∑
k=N+1

eck
2−δ log(2k+1)−π∥ℑ{Ω}

−1
∥
−1
p k2

=

∞∑
e
(
ck−δ log(2k+1)−π∥ℑ{Ω}

−1
∥
−1
p

)
k2
k=N+1

6
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I

w

≤

∞∑
k=N+1

e
(
cM−π∥ℑ{Ω}

−1
∥
−1
p

)
k2

=

∞∑
k=N+1

e−(π/2)∥ℑ{Ω}
−1

∥
−1
p k2 .

n the case g ≤ cN and ℑ{z} ̸= 0g×1, we instead choose M := maxx>0
log(1+2x)

x > 0, c :=
π∥ℑ{Ω}

−1
∥
−1
p

2(M+2πa) > 0. We arrive at
the same bound as before:⏐⏐⏐θ (z | Ω) − θ̂ (z | Ω)

⏐⏐⏐
≤

∞∑
k=N+1

ecN log(2k+1)+2π∥ℑ{z}∥∞cNk−π∥ℑ{Ω}
−1

∥
−1
p k2

≤

∞∑
k=N+1

e
(
cM+2πac−π∥ℑ{Ω}

−1
∥
−1
p

)
k2

≤

∞∑
k=N+1

e−(π/2)∥ℑ{Ω}
−1

∥
−1
p k2 . □

3.3. Discussion

In this section, we have found that the truncation parameter N needed to achieve a certain truncation error (8) increases
with the genus g . Therefore, the complexity of numerical methods for the large genus regime has to scale not only well directly
in the genus g, but also in the truncation parameter N! The exact behavior of the error depends on the choice of the index
set N g (N). We have shown that for the hypersphere Ig (2,N), N has in general to grow at least as

√
g for real z. Since we

have to sum approximately Vg (N) ∼
1

√
gπ

(
2πe
g

)g/2
Ng terms for the naive evaluation of the truncated Riemann function,

we see that this approach quickly becomes infeasible as the genus g increases. For the hypercube Ig (∞,N), we have
shown that the truncation parameter N has to grow at most slightly faster than

√
g for real z. Naive evaluation of the

truncated Riemann theta function requires us to sum (2N + 1)g terms, which also becomes quickly infeasible. In [39],
it was shown that multi-dimensional Fourier series such as the Riemann theta function can be summed efficiently over the
hypercube if the coefficient tensor is approximated well by a low-rank tensor-train, even if the dimension g and the truncation
parameter N are both large. Therefore, we will investigate this case further in the next section.

The behavior of the hyperbolic cross is less clear at the moment. We will later investigate its performance numerically.

4. Summing over hypercubes using tensor trains and scaling and squaring

The truncated Riemann theta function θ̂ (z | Ω) in (2) over a hypercube can be represented as the inner product
between the tensor C in (3) and the tensor e2π in·z. If the tensor C has a low rank approximation in the tensor-train format,
the complexity of computing the Riemann theta function value will be low since the tensor-train rank of the second
tensor is one [52, Sec. 4.2]. The tensor C is the point-wise exponential of the tensor formed from iπn · Ωn, which can
be represented exactly in the tensor-train format (see Appendix B). The most common approach to approximate the
pointwise exponential of a tensor is the scaling and squaring method. In our case, this means that the truncated Riemann
theta function is approximated with

θ̃ (z | Ω) =

∑
n∈Ig (∞,N)

c̃ne2π in·z, (13)

here the coefficient tensor C̃ with terms

c̃n :=

[
K−1∑
k=0

1
k!

(qn
s

)k]s

, qn := π in · Ωn, K , s ∈ N,

is an approximation of the true coefficient tensor C with terms

cn = eqn = [eqn/s
]
s
=

[
∞∑
k=0

1
k!

(qn
s

)]s

,

in tensor-train format. The scaling and squaring approach is easy to implement and has been proven to work well
for matrices [56]. It has been used for computing the elementwise exponential of tensor-trains and other tensor
formats [57,58]. It is also the method implemented in the tt_exp function in the TT-toolbox [59].
7
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In this section, we analyze the applicability of the scaling and squaring method for computing the tensor-train
pproximation of the tensor C in (3). For all its merits we nevertheless show in this section that it is not suitable for

our problem.

4.1. Complexity analysis for fixed K and s

We now provide a lower bound for the computational cost of evaluating θ̃ (z | Ω) using the efficient inner product
approach discussed above. That is, θ̃ (z | Ω) is computed as the inner product between the tensor C̃ and the tensor
ith terms e2π in·z using the inner product algorithm in [52, Sec. 4.2] for tensor trains. (A full description is provided

n Appendix B.) We start by noticing that the tensor C̃ has the following special diagonal representation in the tensor
train format.

Lemma 2. Let ĝ :=
g2+g

2 , R :=
ĝK−1
ĝ−1 , and R̂ := Rs. The terms c̃n = psn of the tensor C̃ have the tensor train representation

c̃n =
(
P(1)
n1

)⊗s (P(2)
n2

)⊗s
· · ·

(
P(g)
ng

)⊗s
,

where the inner cores are diagonal R̂ × R̂ matrices, and A⊗s
:= A ⊗ · · · ⊗ A (s times) denotes the s-fold Kronecker product of

a matrix with itself.

Proof. See Appendix B. □

In the proof of the lemma, it is shown that the rank of the tensor Q is not larger than R. Since rank(A⊗s) = rank(A)s,
he rank of C̃ therefore cannot be larger than R̂ = Rs. In general, the rank of Q is equal to R. In that case, the rank of C̃
will be equal to R̂. Otherwise, R̂ provides an upper bound on the rank of C̃.

roposition 5. The computational cost of evaluating θ̃ (z | Ω) using the standard tensor-train inner product algorithm [52,
Sec. 4.2] applied to the diagonal representation in Lemma 1 is lower bounded by Ω ((g − 1)(2N + 1)sRs

+ (2N + 1)Rs).

roof. See Appendix B. □

Note that this lower bound grows exponentially with s even for small parameter values such as R = 2 and N = 1.

.2. Complexity analysis for a given error bound

Scaling and squaring can be implemented in different ways, where the freedom mostly lies in the choice of K and s.
hese parameters should be chosen such that the approximation error is below a given bound. Here we consider a simple
trategy for choosing K and s that is similar to the one used in older versions of MATLAB (with Padé approximations
instead of Taylor expansions) [60]. The Taylor polynomial

PK (x) =

K−1∑
k=0

xk

k!
(14)

s a good approximation of exp(x) at x = 0. The worst case approximation error for |x| < 1 can be made arbitrarily small
y increasing K . Once such a K is found, the argument z has to be rescaled such that |z/s| < 1. Since ez = [ez/s]s, the
erms of the coefficient tensor c̃n = [PK (qn/s)]s approximate cn. The strategy for choosing the parameters therefore is as
ollows.

• Choose K large enough so that | exp(x) − PK (x)| ≤ ϵ for all |x| < 1, where ϵ > 0 is a error parameter [61].
• Choose s large enough so that |z/s| < 1 ∀ z ∈ Z ⊂ C.

he following proposition provides a lower bound on the computational complexity of the scaling and squaring method
f K and s are chosen in this way.

roposition 6. If K and s are chosen as above and we have ℜ{Ω} = 0g , then the numerical complexity of evaluating θ̃ (z | Ω)
sing the standard tensor-train inner product algorithm applied to the diagonal representation in Lemma 1 is lower bounded
y Ω

(
(g − 1)(2N + 1)πλmingN2RπλmingN2

)
with λmin being the smallest eigenvalue of ℑ{Ω}.

roof. For the Riemann theta function we have z = qn = π in · Ωn. For the index vector n = [N N . . . N]
T , we have

≤ −πλmingN2. Thus, to have |z/s| < 1 we need s ≥ πλmingN2. Hence, even for a fixed N , s would grow linearly in
. (Recall from Proposition 2 that N actually has to grow with g to keep the error of the truncated Riemann theta sum
ounded.) Application of Proposition 3 with s ≥ πλmingN2 now provides the following lower bound on the complexity,(

(g − 1)(2N + 1)πλ gN2RπλmingN2
)

. □
min

8
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The lower bound on the computational complexity thus grows exponentially in g even if there are lower and upper
ounds on the eigenvalues of ℑ{Ω} that are independent of g . Since we sum over (2N + 1)g coefficients in the truncated

Riemann theta sum, ϵ should actually decrease with g to keep the error introduced by the approximation of the coefficient
tensor fixed. The constant K is inversely proportional to ϵ and hence K increases with g increasing the computational
complexity even further. Thus, scaling and squaring is not suited for the numerical computation of high dimensional
Riemann theta functions.

We finally remark that in practice, a rounding procedure is applied to the tensor-trains to reduce their ranks (like in
the implementation tt_exp in the TT-toolbox [59]). We nevertheless observed in numerical experiments that even with
rounding, scaling and squaring was ill-suited for our purposes.

5. Numerical experiments

In this section, several methods for computing truncated Riemann functions (2) are investigated numerically and
compared with respect to accuracy, for both low and high genus cases. First, the choice of algorithms is motivated. Then,
the background of the numerical experiments is discussed. Finally, the results are presented.

5.1. Choice of benchmark algorithms

We so far considered two different approaches to approximate the Riemann theta function (1). The first approach is
the naive computation of the truncated Riemann theta function (2) over the index sets N g (N) = Ig (p,N) and Hg (N), that
were introduced in Section 2. Even for N = 2, the number of elements in Ig (p,N) grows exponentially in the genus g for
any p. Hence, naive evaluation of (1) can be applied when the genus g is small for these index sets, but it is not well-suited
for computing high-genus solutions. For the index set Ig (∞,N), we will refer to this approach as the Hcube algorithm.
When the Riemann matrix is diagonal, the multi-dimensional Riemann theta function can be computed efficiently using
multiple one-dimensional Riemann theta functions. We will refer to the algorithm that neglects the off-diagonal elements
in order to exploit this fact to facilitate fast computation as Diag_approx in the following. This algorithm will allow us
to verify that the Riemann matrices used in the examples cannot be approximated well with just the diagonal part of
the matrix. We furthermore know from Lemma 1 that the complexity of naive computation over the hyperbolic cross
N g (N) = Hg (N) grows at a slower rate. Therefore, it might be better suited for high genus cases. We will refer to this
algorithm as HC in the following.

The second approach to approximate the Riemann theta function is to replace the true coefficient tensor in the
truncated Riemann function (2) with an approximation in the tensor-train format. The resulting approximation (13) of
the Riemann theta function can then be evaluated with low numerical complexity since it is an inner product between
low-rank tensor-trains. There are different ways to obtain the tensor-train approximation of the coefficient tensor. In the
previous section, we showed that the popular scaling and squaring approach is not a good choice when then the genus g
is high. However, there are other methods for this task. The first method we consider is from the paper [54] and will be
referred to as TT_cross. Specifically, we employ the dmrg_cross routine from the TT-toolbox [59]. We also investigate
the performance of the funcrs routine from the toolbox, for which unfortunately no reference is provided. This algorithm
will be referred to as TT_funcrs in the following.

5.2. Generation of test data

Riemann theta functions play, as was already mentioned in the introduction, a fundamental role in the area of nonlinear
Fourier analysis [1]. The (quasi-)periodic solutions of many integrable systems can be approximated arbitrarily well using
so-called hyperelliptic (or also finite-gap, finite-genus or finite-band) solutions, which have especially simple closed-
form representations that involve the Riemann theta function. For the numerical demonstrations we make use of the
hyperelliptic solutions of the normalized KdV equation

ut + uxxx + 6uux = 0 (15)

and the normalized NLS equation

iqx + qtt + 2|q|2q = 0. (16)

The hyperelliptic solutions of the KdV equation are given in terms of the Riemann theta function as [51, Eq. (19)]

u(x, t) = 2
∂2

∂x2
log θ (z | Ω), z = kx − ωt + ϕ, (17)

where Ω is typically called the period matrix in the literature, and k, ω and ϕ are constant real vectors. The matrix
Ω is of size g × g , where g is as before called the genus. The parameters Ω, k, ω and ϕ cannot be chosen freely. The
heory of integrable systems shows that the parameters provide a valid solution if and only they can be derived from a
o-called hyperelliptic Riemann surface, which is a special kind of one-dimensional complex manifold. In our examples,
9
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Table 1
Error in computing θ (z | Ω) for a genus-2 solution of the KdV equation.
Algorithm N #terms Run time E1 = maxz{E(z)} E2 = medianz{E(z)}
Hcube 4 81 0.1181 s 0 by definition 0 by definition

TT_funcrs 4
125∗

3.4557∗ s
max{E1} over 20 runs: 7.3286 × 10−13 max{E2} over 20 runs: 5.1681 × 10−13

median{E1} over 20 runs: 7.3286 × 10−13 median{E2} over 20 runs: 5.1681 × 10−13

1 × 9 × 1 min{E1} over 20 runs: 7.3286 × 10−13 min{E2} over 20 runs: 5.1681 × 10−13

TT_cross 4
101∗

3.2160∗ s
max{E1} over 20 runs: 7.3319 × 10−13 max{E2} over 20 runs: 5.1692 × 10−13

median{E1} over 20 runs: 7.3313 × 10−13 median{E2} over 20 runs: 5.1686 × 10−13

1 × 7 × 1 min{E1} over 20 runs: 7.3308 × 10−13 min{E2} over 20 runs: 5.1675 × 10−13

Diag approx 4 9 0.0951 s 8.3307 × 10−2 5.3869 × 10−2

HC 28 121 0.1712 s 8.1535 × 10−13 5.7232 × 10−13

HC 20 81 0.1261 s 2.4035 × 10−9 1.5476 × 10−9

HC 14 49 0.0777 s 6.2153 × 10−6 4.3970 × 10−6

HC 3 5 0.0276 s 8.5271 × 10−2 5.9622 × 10−2

HC 1 2 0.0076 s 3.3724 × 10−1 1.1661 × 10−1

we computed the parameters numerically using the methods given in [51, Section 3.2], [8, Section 14.4]. The hyperelliptic
Riemann surfaces that we used are specified by their so-called branch points, which we provide for each example.

The finite-genus solutions of the NLS equation are given by

q(x, t) = K0
θ
( z−
2π | Ω

)
θ
( z+
2π | Ω

)eiω0t+ik0z, z± = kx + ωt + δ±, (18)

here Ω, k,ω, δ±, k0, ω0 and K0 are again constant parameters [6]. The vectors δ± can be complex valued and hence
rguments to the Riemann theta function z± can be complex valued. As before, these parameters have to be obtained
rom a hyperelliptic Riemann surface, which is specified by branch points. In our test we used the period matrix and
arameter vectors provided in [6, Table II].
In the following we will look at three scenarios. In the first case we will assess the accuracy of the algorithms for a

enus-2 and a genus-6 solution of the KdV equation. In the second case we will test the accuracy in computing a genus-3
olution of the NLS equation for which the Riemann theta function has complex arguments. In the third case, we compute
olutions of the KdV equation up to the very high genus of 60. To the best of our knowledge, a successful computation of
on-trivial Riemann theta functions for genera this large has never been reported in the literature before.

.3. Accuracy for genus-2 and genus-6 KdV solutions

In this scenario, we evaluate the accuracy of computing the Riemann theta function for z ∈ Rg with z as defined in
17). The period matrices Ω were derived from the finite-genus KdV solutions in [51, Section 4]. First we have the genus-
solution of the KdV equation with branch points [0 0.5 1 1.5 5]. We compute the Riemann theta function for 16384
rguments z corresponding to the grid formed by 128 equispaced values of x in [0, 4] and 128 equispaced values of t in
−0.5, 0.5]. Secondly we have the genus-6 solution with branch points [0 0.5 2 2.5 4 4.5 6 6.5 8 8.5 10 10.5 12]. We again
compute the Riemann theta function for 16384 arguments z corresponding to the grid formed by 128 equispaced values
of x in [0, 3] and 128 equispaced values of t in [−0.3, 0.3]. The values of x and t chosen are sufficiently representative
for the respective solutions. The phases ϕ are set to 0. We then define the point-wise error as

E(z) =

⏐⏐⏐θ̂ (z | Ω) − θ̃ (z | Ω)

⏐⏐⏐ (19)

where θ̂ (z | Ω) is the reference value and θ̃ (z | Ω) is the value computed by the other methods. The reference value
θ̂ (z | Ω) is computed using the Hcube algorithm. The truncation parameter for each example is fixed by starting with
N = 1 and increasing it until

max
z

⏐⏐⏐θ̂ (z | Ω) |N+1 − θ̂ (z | Ω) |N

⏐⏐⏐ < 1 × 10−14, (20)

where θ̂ (z | Ω) |N is the Riemann theta function calculated by the Hcube algorithm with the truncation parameter N .
If Eq. (20) is satisfied for N = N̂ , then the values θ̂ (z | Ω) |N̂+1 are set as the reference values in (19). Note that we
can compute the solution classically only because the genera are low in this example. For the algorithms TT_cross and
TT_funcrs, we set the accuracy parameter of the coefficient tensor C approximation to 10−12.

In Table 1 we see the median and maximum of the error E(z), the truncation parameter N and the number of terms
in the summation used for the genus-2 solution. As the coefficient tensor approximation step in the TT_cross and
10
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Table 2
Error in computing θ (z | Ω) for a genus-2 solution of the KdV equation (with Siegel transform).
Algorithm N #terms Run time E1 = maxz{E(z)} E2 = medianz{E(z)}

Hcube 4 81 0.2294 s 1.7763 × 10−15 2.2216 × 10−16

TT_funcrs 4
124∗

3.4185∗ s
max{E1} over 20 runs: 1.4664 × 10−5 max{E2} over 20 runs: 6.6613 × 10−15

median{E1} over 20 runs: 1.4664 × 10−5 median{E2} over 20 runs: 6.6613 × 10−15

1 × 9 × 1 min{E1} over 20 runs: 1.4664 × 10−5 min{E2} over 20 runs: 6.6613 × 10−15

TT_cross 4
104∗

3.4777∗ s
max{E1} over 20 runs: 2.9409 × 10−5 max{E2} over 20 runs: 3.5527 × 10−15

median{E1} over 20 runs: 2.9409 × 10−5 median{E2} over 20 runs: 3.5527 × 10−15

1 × 7 × 1 min{E1} over 20 runs: 2.9409 × 10−5 min{E2} over 20 runs: 3.5527 × 10−15

Diag approx 4 9 0.3276 s 2.2379 4.3191 × 10−2

HC 28 121 0.2498 s 3.6859 × 10−14 2.2204 × 10−16

HC 20 81 0.2219 s 3.6859 × 10−14 2.2204 × 10−16

HC 14 49 0.2160 s 1.6653 × 10−5 2.9109 × 10−8

HC 3 5 0.2036 s 3.5881 × 10−1 2.5139 × 10−2

HC 1 2 0.1996 s 7.7519 × 10−1 2.7817 × 10−1

Table 3
Error in computing θ (z | Ω) for a genus-6 solution of the KdV equation.
Algorithm N #terms Run time E1 = maxz{E(z)} E2 = medianz{E(z)}
Hcube 5 1771561 2423.8738 s 0 by definition 0 by definition

TT_funcrs 5
69005∗

26.4751 s
max{E1} over 20 runs: 1.3615 × 10−11 max{E2} over 20 runs: 1.8069 × 10−12

1 × 12 × 40 × 73 median{E1} over 20 runs: 7.8933 × 10−12 median{E2} over 20 runs: 1.2623 × 10−12

×34 × 11 × 1 min{E1} over 20 runs: 3.6349 × 10−12 min{E2} over 20 runs: 6.4602 × 10−13

TT_cross 5
37904∗

22.4916 s
max{E1} over 20 runs: 7.8628 × 10−9 max{E2} over 20 runs: 8.7031 × 10−10

1 × 9 × 37 × 42 median{E1} over 20 runs: 1.4163 × 10−9 median{E2} over 20 runs: 3.4114 × 10−10

×31 × 9 × 1 min{E1} over 20 runs: 1.2142 × 10−9 min{E2} over 20 runs: 3.1115 × 10−10

Diag_approx 5 11 0.2792 s 1.027 10 1.1549 × 10−1

HC 1430 1753893 2406.2909 s 8.2058 × 10−11 3.9893 × 10−11

HC 715 615521 871.8843 s 5.9266 × 10−9 2.3027 × 10−9

HC 143 47353 69.5281 s 8.3491 × 10−6 1.2015 × 10−6

HC 15 545 1.2000 s 1.3741 × 10−1 1.0142 × 10−2

TT_funcrs algorithms is non-deterministic, we report the errors for both the algorithms over 20 runs. For the TT_cross
nd TT_funcrs algorithms, the number of terms corresponds to the number of non-zero terms in the tensor-train
pproximation of the coefficient tensor C̃. The ∗ symbol over the number indicates that the value listed is the median

value over 20 runs. Correspondingly, we report the maximum, median and minimum over the 20 runs of the median
and maximum of the pointwise error E(z). For the Diag_approx algorithm we use the same truncation parameter as the
reference Hcube algorithm. For the HC algorithm we initially choose the truncation parameter NHC such that the number
of terms in the sum is close to that of the Hcube algorithm. We also run the HC algorithm with approximately 50%,
10% and 1% of NHC as the truncation parameter. The errors for the Diag_approx algorithm are high indicating that the
period matrix has significant non-diagonal components. Both the TT_cross and TT_funcrs algorithms have very low
errors and the variation over the multiple runs is very small. The error for the HC algorithm with NHC as the truncation
parameter is also low. However, it is higher than that of the tensor-train based methods. The tensor-train methods on
the other hand use more terms. The errors of the HC algorithm increase slowly with decreasing truncation parameter.

In Table 2 we again show the errors for the genus-2 case. The only difference being the application of the Siegel
transform Section 2.2 in all the algorithms. The process to calculate the truncation parameter is repeated as described
previously. For this example the Siegel transform does not lead to a reduction in the truncation parameter. The main
differences in between Tables 1 and 2 are the maximum errors for the tensor-train based methods. The maximum errors
are significantly higher when the Siegel transform is applied. The median error for the HC algorithm decreases for higher
alues of N while the max error increases significantly for the Diag_approx algorithm.
In Tables 3 and Table 4 we have the results for the genus-6 example. Without the Siegel transform the truncation

parameter was fixed to 5. The Diag_approx algorithm has high errors indicating the presence of significant non-
diagonal terms. Both TT_cross and TT_funcrs algorithms have low errors while using significantly less number of terms
compared to the classical Hcube algorithm. The HC algorithm also performs well but is less accurate when compared to the
ensor-train based methods for the same number of terms. Application of the Siegel transform helps reduce the truncation
arameter to 4 in Table 4. Both the TT_cross and TT_funcrs algorithms fail for this genus-6 example when the Siegel
11
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Table 4
Error in computing θ (z | Ω) for a genus-6 solution of the KdV equation (with Siegel transform).
Algorithm N #terms Run time E1 = maxz{E(z)} E2 = medianz{E(z)}

Hcube 4 531441 313.9509 s 3.7750 × 10−14 5.8950 × 10−15

TT_funcrs 4
18138∗

11.7017 s
max{E1} over 20 runs: 9.7672 × 1012 max{E2} over 20 runs: 1.4351
median{E1} over 20 runs: 1.7581 × 1012 median{E2} over 20 runs: 7.3642 × 10−1

1 × 10 × 24 ×

34 × 22 × 9 × 1
min{E1} over 20 runs: 6.0793 × 1011 min{E2} over 20 runs: 2.3702 × 10−1

TT_cross 4
13494∗

11.5948 s
max{E1} over 20 runs: 1.3213 × 1013 max{E2} over 20 runs: 5.6102 × 10−1

median{E1} over 20 runs: 5.6749 × 1011 median{E2} over 20 runs: 1.0112 × 10−1

1 × 7 × 21 × 31 ×

19 × 7 × 1
min{E1} over 20 runs: 1.0188 × 108 min{E2} over 20 runs: 8.6124 × 10−5

Diag_approx 4 9 0.7420 s 1.2994 5.0057 × 10−1

HC 640 549113 301.8520 s 2.3065 × 10−7 4.0635 × 10−14

HC 320 188993 101.0471 s 1.6138 × 10−5 3.5885 × 10−11

HC 64 15241 7.7543 s 6.153 86 × 10−3 2.4742 × 10−6

HC 7 97 0.3319 s 1.0231 1.6241 × 10−1

transform is applied. We attribute this to numerical ill-conditioning arising from the faster decay of the coefficients cn. It
eems to become harder to approximate the tensor C̃ with a tensor-train as the range of magnitudes of the coefficients
cn increases. For the HC algorithm, the maximum errors are slightly higher however the median errors are lower when
the Siegel transform is applied.

The number of terms listed in Tables 1–4 indicate the memory requirements of the algorithms and is also related to
the computational complexity. The total computation cost for the HC algorithm is the sum of the cost for generating the
ndex set Hg and the sum (2) over Hg . Even with the recursive algorithm from [47, Sec. 2.6], the cost of generating the
index set grows quickly with N and g . The cost of the summation depends on the specific implementation and can be
made quite efficient using parallelized implementations. For the TT_cross and TT_funcrs algorithms the computation
ost is divided into the cost of computing the tensor-train approximations and the cost of computing the inner-product.
iven the rank of the tensor-train approximation of C̃, the computation cost of the inner-product can be estimated (see

Appendix B or [52, Sec. 4.2]). The cost of computing the tensor-train approximation C̃ is however non-trivial due to the
terative nature of both the dmrg_cross and funcrs routines. The actual complexity of all three algorithms depends
significantly on the specific implementations. Hence, we have chosen to avoid a detailed comparison of the computational
complexity and instead provided only the number of terms as an indicator. Furthermore, they are also an indicator for the
memory requirements of the algorithms, which in our experience has been the major limiting factor for larger genera.

5.4. Accuracy for genus-3 NLS solution

The solution of the NLS equation is given as the ratio of Riemann theta function values (18). We use the genus-3
example from [6, Fig. 3]. We did not have to compute the period matrix and parameter vectors from the branch points
in this case since they are provided in [6, Table II]. The theta function values are computed for 16384 arguments z± as
efined in (18) for 128 equispaced points x ∈ [−0.002, 0.002] and for 128 equispaced points t ∈ [−0.08, 0.08]. For both
he Riemann theta functions in the numerator and denominator of (18), the truncation parameter was fixed to be 6 using
he procedure described for the KdV solutions in the previous subsection. The tensor-train methods were run 20 times
nd the truncation parameter for the HC algorithm was set to have similar number of terms as the Hcube algorithm.
In Tables 5 and 6, we list the errors in computing the Riemann theta function with arguments z− and the Riemann

heta function with arguments z+. In this example the arguments z− are complex valued while the arguments z+ are real
alued. Both the tensor-train based algorithms TT_cross and TT_funcrs fail to compute the Riemann theta function
alues correctly. We suspect the reason to be the same ill-conditioning that we observed for the genus-6 KdV solution in
he previous subsection. The HC algorithm appears to be moderately accurate even for lower number of terms. Application
f the Siegel transform did not lead to a reduction in the truncation parameter. Hence we have not mentioned specific
rror values for the same. From the results for the NLS example and the KdV examples in the previous subsection, the HC
lgorithm emerges as a practical algorithm for computing the Riemann theta function.

.5. Computing high genus KdV solutions

In this subsection we will test the ability of the HC algorithm to compute the Riemann theta function value for high
umber of dimensions. Unfortunately, both the TT_funcrs and TT_cross algorithms were limited by memory even
or moderate number of dimensions. Hence we only test the HC algorithm in the following. As there are no non-trivial
iemann matrices for which the Riemann theta function value is known analytically and using the Hcube algorithm is not
12
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Table 5
Error in computing θ

( z−
2π | Ω

)
for a genus-3 solution of the NLS equation.

Algorithm N #terms Run time E1 = maxz{E(z)} E2 = medianz{E(z)}
Hcube 6 2197 2.7474 s 0 by definition 0 by definition

TT_funcrs 6
1918∗

8.0290∗ s
max{E1} over 20 runs: 1.4971 max{E2} over 20 runs: 1.3031
median{E1} over 20 runs: 3.9583 × 10−1 median{E2} over 20 runs: 3.5048 × 10−1

1 × 10 × 13 × 1 min{E1} over 20 runs: 2.0053 × 10−3 min{E2} over 20 runs: 1.355 39 × 10−3

TT_cross 6
1224∗

4.4811∗ s
max{E1} over 20 runs: 4.4819 × 1012 max{E2} over 20 runs: 9.9790 × 1011

median{E1} over 20 runs: 2.1824 × 107 median{E2} over 20 runs: 2.0426 × 107

1 × 7 × 11 × 1 min{E1} over 20 runs: 2.0406 × 10−1 min{E2} over 20 runs: 1.7638 × 10−1

Diag_approx 6 13 0.1096 s 1.5084 1.1001

HC 112 2237 2.8121 s 3.7768 × 10−11 2.9799 × 10−11

HC 56 885 1.1673 s 9.3304 × 10−6 9.3077 × 10−6

HC 12 105 0.1419 s 3.4411 × 10−2 3.0213 × 10−2

HC 2 7 0.03720 s 1.5242 1.0956

Table 6
Error in computing θ

( z+
2π | Ω

)
for a genus-3 solution of the NLS equation.

Algorithm N #terms Run time E1 = maxz{E(z)} E2 = medianz{E(z)}
Hcube 6 2197 2.6247 s 0 by definition 0 by definition

TT_funcrs 6
1918∗

8.0483∗ s
max{E1} over 20 runs: 1.4971 max{E2} over 20 runs: 1.3031
median{E1} over 20 runs: 3.9583 × 10−1 median{E2} over 20 runs: 3.5048 × 10−1

1 × 10 ×

13 × 1
min{E1} over 20 runs: 2.0053 × 10−3 min{E2} over 20 runs: 1.355 39 × 10−3

TT_cross 6
1224∗

4.4682∗ s
max{E1} over 20 runs: 4.4819 × 1012 max{E2} over 20 runs: 9.9790 × 1011

median{E1} over 20 runs: 2.1824 × 107 median{E2} over 20 runs: 2.0426 × 107

1×7×11×1 min{E1} over 20 runs: 2.0406 × 10−1 min{E2} over 20 runs: 1.7638 × 10−1

Diag_approx 6 13 0.1368 s 9.1129 × 10−2 3.2034 × 10−2

HC 112 2237 2.5279 s 4.8849 × 10−15 1.3323 × 10−15

HC 56 885 1.0758 s 8.9268 × 10−10 3.9137 × 10−10

HC 12 105 0.1381 s 3.6694 × 10−4 2.5105 × 10−4

HC 2 7 0.03814 s 9.1123 × 10−2 3.2032 × 10−2

feasible, we resort to an alternative approach to verify the correctness of the approximations. We use the hyperelliptic
solutions of the KdV equations with the branch points λj = 0.5j, j = 0, 1, . . . , g for different values of the genus g .
We would like to remark that to compute the period matrices Ω reliably we had to use 1000 bits of precision. We
accomplished this using the Julia programming language. For a given g and N the Riemann theta function value is
computed for xj = −2.0518 + 0.0120j, j = 0, 1, . . . , 340 and t = [−0.2460 − 0.2457 − 0.2455]. The approximate
solution ũ(x, t) is computed using central-difference to calculate the derivatives in (17).

To quantify the error in the calculated solutions, we first compute approximations of the time derivative ut and space
derivatives ux and uxxx using central differences. We then calculate the relative error

Er =

√∑
i | LHSi − RHSi |2√∑

i 0.25(| LHSi | + | RHSi |)2
, (21)

here LHSi = −ut (xi, t) and RHSi = uxxx(xi, t) + 6u(xi, t)ux(xi, t). Due to the absence of the true values of LHSi or RHSi,
we have used the mean value 0.5(| LHSi | + | RHSi |) as the reference value in the relative error. We discard the values at
he boundaries for which the numerical derivative cannot be calculated correctly using central-difference. As an example,
or the solution computed using the HC algorithm for g = 30 and N = 4, we plot −ut and uxxx + 6uux in Fig. 1. We can
ee that the lines almost overlap which indicates that the error is small and that the computed values do correspond to
solution of the KdV equation. In Fig. 2 we show the error Er for the HC algorithm for varying values of g and N . The
hoices of g and N were limited by the available system memory. We can observe that the relative error is small even
or high genus solutions. From our understanding, this is the first instance in literature where such high genus solutions
ave been computed. Additional details on the impact of N for the case g = 60 are provided in Table 7.
We can thus surmise that the HC algorithm is suited for computing remarkably high genus Riemann theta function

ith moderate accuracy. The tensor-train based algorithms TT_funcrs and TT_cross work well for low genus but do
ot scale well with the number of dimensions. We would like to remark that for both the tensor-train based algorithms
nd the HC algorithm, the truncation parameter N can be chosen independently for each dimension to further reduce the
omputation cost. The impact of such a choice would be a topic for future research.
13
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Fig. 1. Checking the genus-30 solution computed using the HC algorithm with N = 4. We can see that −ut ≈ uxxx + 6uux verifying that u(x, t) is a
good approximation of the finite-gap KdV solution.

Fig. 2. The error Er for KdV solutions computed using the HC algorithm for varying values of g and N .

Table 7
Error in computing θ (z | Ω) for a genus-60 solution of the KdV equation.
Algorithm N #terms Run time E1 E2

HC 2 121 0.0447 s 6.5482 × 10−3 4.7278 × 10−2

HC 4 7321 1.6434 s 2.9494 × 10−3 2.6739 × 10−2

HC 6 7441 1.7087 s 2.9494 × 10−3 2.6739 × 10−2

HC 8 295481 82.7293 s 2.9494 × 10−3 2.5345 × 10−2

HC 10 295601 82.8343 s 2.9494 × 10−3 2.5345 × 10−2

HC 12 309881 86.4405 s 2.9494 × 10−3 2.5345 × 10−2

Diag_approx 2 300 0.0728 s 1.3595 × 10−2 1.0730 × 10−1

Diag_approx 4 540 0.0931 s 1.3595 × 10−2 1.0730 × 10−1

Diag_approx 6 780 0.1107 s 1.3595 × 10−2 1.0730 × 10−1

Diag_approx 8 1020 0.1510 s 1.3595 × 10−2 1.0730 × 10−1

Diag_approx 10 1260 0.1486 s 1.3595 × 10−2 1.0730 × 10−1

Diag_approx 12 1500 0.1824 s 1.3595 × 10−2 1.0730 × 10−1

6. Conclusion

The Riemann theta function plays a crucial role in the nonlinear Fourier analysis of signals in fields such as fiber-optic
ommunications and coastal engineering. It is used to synthesize periodic signals through the inverse nonlinear Fourier
ransforms. Numerical computation of the Riemann theta function as a multi-dimensional Fourier series is challenging
ue to the curse of dimensionality. This significantly limits the practical applicability despite much interest. To better
14
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understand the limitations, we derived some lower bounds and an upper bound on the series truncation error for certain
index sets in Section 3. We investigated a tensor-train method to compute the function which utilizes the scaling and
squaring approach for computing the exponential. We theoretically proved in Section 4 that such a tensor-train based
approach cannot break the curse of dimensionality. Following that we proposed to exploit two other tensor-train based
algorithms and another algorithm based on the hyperbolic cross index set. Using hyperelliptic solutions of the KdV and
NLS equations as numerical examples, in Section 5 we showed that while the two tensor-train based algorithms work
for low genus examples with real arguments, they are prone to numerical ill-conditioning. Their memory requirement
is a limiting factor for high genera. While the algorithm based on the hyperbolic-cross index set can also achieve high
accuracy for the low genus solutions, its novelty is the ability to compute moderately accurate solutions of high genera (up
to 60) with relatively low computational cost. It therefore enables the computation of high dimensional inverse nonlinear
Fourier transforms that were so far impractical. Similar algorithms based on related yet more general index sets such as
the weighted Zaremba cross [47] may provide further reduction in the computation cost of high genus solutions.
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Appendix A

Lemma 3. Let p ∈ N ∪ {∞} and N̄ ∈ N. Then

n /∈ Ig (p, N̄) ⇒ |cn| ≤ exp
(

−π
(N̄ + 1)2

∥ℑ{Ω}−1∥p

)
. (A.1)

Proof. The matrix lower bound ℓ(A) of a matrix A is the smallest number m such that m∥x∥p ≤ ∥y∥p whenever
y = Ax [62]. Since ℑ{Ω} is symmetric and positive definite,

min
n/∈Ig (p,N̄)

n · ℑ{Ω}n = min
n/∈Ig (p,N̄)

∥n · ℑ{Ω}n∥p

≥ min
n/∈Ig (p,N̄)

ℓ(nT
ℑ{Ω})∥n∥p

≥ min
n/∈Ig (p,N̄)

ℓ(nT )ℓ(ℑ{Ω})∥n∥p

≥ min
n/∈Ig (p,N̄)

 n
n · n

−1

p
∥ℑ{Ω}

−1
∥

−1
p ∥n∥p

= min
n/∈Ig (p,N̄)

∥ℑ{Ω}
−1

∥
−1
p n · n

≥ ∥ℑ{Ω}
−1

∥
−1
p (N̄ + 1)2,

here we used [62, Lem. 4.4] in the third step, and [62, Lem. 2.2] in the fourth step (twice). Hence,

|cn| = | exp(π in · Ωn)|
= | exp(π in · [ℜ{Ω} + iℑ{Ω}]n)|
= | exp(π in · ℜ{Ω}n)|  

=1

exp(−π n · ℑ{Ω}n  
>0

)

≤ exp(−π∥ℑ{Ω}
−1

∥
−1(N̄ + 1)2). □ (A.2)
p
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The following results is well-known, but we present an explicit proof for the convenience of the reader. The explicit
ounds given in the proof will furthermore be useful later.

roof of Theorem 1 for p = ∞. Let us look at the sets Ig (∞,N + k)\Ig (∞,N + k − 1), where k ∈ N. The number of
elements satisfy

#Ig (∞,N + k)\Ig (∞,N + k − 1)

= (2(N + k) + 1)g − (2(N + k − 1) + 1)g (A.3)
< (2(N + k) + 1)g ,

Using Lemma 3 with N̄ = N + k − 1 shows that

n ∈ Ig (∞,N + k)\Ig (∞,N + k − 1) (A.4)
⇒ n /∈ Ig (∞,N + k − 1)

⇒ |cn|
(A.1)
≤ exp(−π∥ℑ{Ω}

−1
∥

−1
p (N + k)2).

ote that for any column vector x, the matrix norm ∥xT∥∞ is equal to the vector norm ∥x∥1. We thus have

|e2π in·z
| = e−2πnTℑ{z}

≤ e2π∥nT ∥∞∥ℑ{z}∥∞ = e2π∥n∥1∥ℑ{z}∥∞

≤ e2πg(N+k)∥ℑ{z}∥∞ , ∀ n as in (A.4).

ith these results, we find that

max
z∈Z

|θ (z | Ω) − θ̂ (z | Ω)| ≤

∑
n/∈Ig (∞,N)

|e2π in·z
||cn|

=

∞∑
k=1

∑
n∈Ig (∞,N+k)\Ig (∞,N+k−1)

|e2π in·z
||cn|

≤

∞∑
k=1

(2(N + k) + 1)ge2π∥ℑ{z}∥∞g(N+k)−π∥ℑ{Ω}
−1

∥
−1
p (N+k)2

=

∞∑
k=N+1

(2k + 1)ge2π∥ℑ{z}∥∞gk−π∥ℑ{Ω}
−1

∥
−1
p k2

=

∞∑
k=N+1

eg log(2k+1)+2π∥ℑ{z}∥∞gk−π∥ℑ{Ω}
−1

∥
−1
p k2

→ 0, for N → ∞. □

ppendix B

emma 4. The quadratic form tensor

Q
(
n1, n2, . . . , ng

)
:= π in · Ωn, n ∈ Ig

has a tensor-train representation with rank not larger than g2+g
2 .

Proof. Recall that the Riemann matrix Ω is symmetric, thus we have π in·Ωn =
∑g

k=1 π iΩkkn2
k+
∑g

k=1
∑g

l=k+1 2π iΩklnknl.

The tensors Skl = skln := π iΩklnknl, n ∈ Ig , can be written in the tensor-train form skln = Skl
(1)

n1 Skl
(2)

n2 · · · Skl
(g)

ng with

Skl
(m)

=

⎧⎨⎩
1, m /∈ {k, l}
π iΩklu, m = k
2u, m = l

∈ C(2N+1)×1

for k ̸= l, u = [−N − N + 1 · · · 0 · · · N]T and

Skk
(m)

=

{
1, m /∈ {k, l}

2 ∈ C(2N+1)×1
π iΩklu , m = k

16



S. Chimmalgi and S. Wahls Communications in Nonlinear Science and Numerical Simulation 123 (2023) 107266

i

c
t
Q

c
b

f

o

with u2
=
[
(−N)2 (−N + 1)2 · · · 0 · · · N2

]T . Thus, all Skl are tensor-trains of rank one. It implies that

Q =

g∑
k=1

Skk +

g∑
k=1

g∑
l=k+1

Skl (B.1)

s a tensor-train with rank at most ĝ =
g2+g

2 . □

Trivial implementation of the tensor-train Q contains ((g − 2)ĝ2
+ 2ĝ)(2N + 1) elements. The first and last tensor

ores Q(1) and Q(g) consist of rank one matrices (vectors) while all other cores consist of rank ĝ matrices. However, the
ensor-train Q is a sum of rank one tensors. Therefore each of the rank ĝ matrix is a diagonal matrix. Hence the tensor-train
can be represented using only ĝg(2N + 1) non-zero elements.

Proof of Lemma 2. The scaling and squaring based approximation of cn is given by c̃n = psn, where pn := 1 +
1
1! q̂n +

1
2! q̂

2
n + · · · +

1
(K−1)! q̂

K−1
n and q̂n = qn/s. Let q̂n = Q̂

(1)
n1 Q̂

(2)
n2 · · · Q̂

(g)
ng . The tensor cores Q̂

(k)
nk can be obtained from the tensor

ores Q(k)
nk as Q̂

(k)
nk = Q(k)

nk for k = 2, 3, . . . , g and Q̂
(1)
n1 = Q(1)

n1 /s. The terms pn can be written as pn = P(1)
n1 P

(2)
n2 · · · P(g)

ng . Then
y the properties of the tensor-train format [52]

P(k)
nk =

⎡⎢⎢⎢⎢⎢⎣
1 (

Q̂
(k)
nk

)⊗1

. . . (
Q̂

(k)
nk

)⊗(K−1)

⎤⎥⎥⎥⎥⎥⎦
or k /∈ {1, g}, and

P(1)
n1 =

[
1 1

√
1!

(
Q̂

(1)
n1

)⊗1
· · ·

1
√
(K−1)!

(
Q̂

(1)
n1

)⊗(K−1)
]

,

P(g)
ng =

[
1 1

√
1!

(
Q̂

(g)
ng

)⊗1
· · ·

1
√
(K−1)!

(
Q̂

(g)
ng

)⊗(K−1)
]T

.

The inner cores P(k)
nk , k /∈ {1, g} thus are diagonal R × R matrices with R =

(
ĝK−1
ĝ−1

)
. Therefore c̃n = psn has the tensor-

train representation c̃n =
(
P(1)
n1

)⊗s (P(2)
n2

)⊗s
· · ·

(
P(g)
ng

)⊗s
. It follows that the inner cores are diagonal R̂ × R̂ matrices with

R̂ = Rs. □

Remark 1. As the cores P(k) consist of only diagonal matrices, the number of non-zero elements in the tensor-train P is
only ĝK−1

ĝ−1 g(2N + 1).

Proof of Proposition 5. Computing the approximation of the Riemann theta function is equivalent to the inner product
f two tensors in the tensor-train format. We can work it out as the following.

θ̃ (z | Ω) =

∑
n∈{−N,...,N}g

c̃n exp(2π in · z)

=

∑
n∈{−N,...,N}g

e2π in1z1
(
P(1)
n1

)⊗s
· · · e2π ing zg

(
P(g)
ng

)⊗s

= Γ1Γ2 · · ·Γg , Γk :=

N∑
j=−N

e2π ijzk
(
P(k)
j

)⊗s
.

Note that γg := Γg is a column vector. With

γk−1 := Γk−1γk =

N∑
j=−N

e2π ijzk−1

((
P(k−1)
j

)⊗s
γk

)
,

we have θ̃ (z | Ω) = γ1.
We count the number of multiplications required to compute γ1 as a measure of the computation cost. For computing

θ̃ (z | Ω), we start with γg which requires Ω ((2N + 1)Rs) multiplications for R =
ĝK−1
ĝ−1 . In the next stage, as

the matrices P(g−1) are diagonal, the matrix–vector products
(
P(g−1))⊗s

γ can be evaluated as the Hadamard product
nk nk g
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diag
{(

P(g−1)
nk

)⊗s
}

⊙ γg . Here diag{·} means the vector of the diagonal elements of a matrix. Using the ideas from [63–65]

the computation of the term
(
P(g−1)
nk

)⊗s
γg given P(g−1)

nk ∈ CR×R and γg ∈ CRs×1 requires at least Ω (sRs) multiplications.
Computing γg−1 given γg thus requires Ω ((2N + 1)sRs) multiplications. Continuing the same way, we can see that
computing γ1 requires at least Ω ((g − 1)(2N + 1)sRs

+ (2N + 1)Rs) multiplications. □
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