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The use of dissipation for the controlled creation of nontrivial quantum many-body correlated states is of much
fundamental and practical interest. What is the result of imposing number conservation, which, in closed system,
gives rise to diffusive spreading? We investigate this question for a paradigmatic model of a two-band system,
with dissipative dynamics aiming to empty one band and to populate the other, which had been introduced
before for the dissipative stabilization of topological states. Going beyond the mean-field treatment of the
dissipative dynamics, we demonstrate the emergence of a diffusive regime for the particle and hole density
modes at intermediate length- and timescales, which, interestingly, can only be excited in nonlinear response to
external fields. We also identify processes that limit the diffusive behavior of this mode at the longest length-
and timescales. Strikingly, we find that these processes lead to a reaction-diffusion dynamics governed by the
Fisher-Kolmogorov-Petrovsky-Piskunov equation, making the designed dark state unstable towards a state with
a finite particle and hole density.
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I. INTRODUCTION

Recently the driven-dissipative dynamics of open quantum
many-body systems has become an arena of active research
[1–7]. Such open quantum systems have nonthermal station-
ary states with nontrivial nonequilibrium transient dynamics.
This paves the way towards the possibility of nonequilibrium
phases of matter [8–12] and of phase transitions between them
[13–19] in different universality classes as compared with
their equilibrium counterparts.

A central role is played by driven-dissipative dynam-
ics described by the Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) master equation [1]. The driving and dissipation often
act to suppress quantum coherence. However, it has been real-
ized that, by proper tuning of the coupling between the system
and the reservoirs, one may tailor design an intricate dark
state, and thus obtain a many-body steady state, which inherits
its nontrivial properties from the dissipation rather than from
the internal Hamiltonian dynamics [20–27]. Particular effort
was centered around the dissipative creation of topological
states [28–45].

An important role in quantum many-body dynamics is
played by symmetries and the ensuing conservation laws. In
closed systems, diffusive dynamics may then be induced by
the combination of conservation laws and disorder averaging,
or, alternatively, by dephasing caused by a coupling to a bath
[46–49] or by the degrees of freedom of the system itself
[50]. But in dissipative-state preparation one tries to avoid
disorder, and to implement bath couplings, which enforce
rather than suppress coherence. How would the dynamics
look then? While most studies considered particle-number

changing dynamics, a recent paper [37] introduced a paradig-
matic two-band model, with particle-conserving Lindblad
operators, which empty one band and fill the other. Mean-
field analysis shows that the system converges to the desired
dark state at a rate independent of the system size, and
leads to quantized response functions if the bands are
also topologically-nontrivial (as opposed to the particle-
nonconserving case [36]). What happens beyond mean field?
This is the problem addressed by this paper.

To provide a complete characterization of the dynam-
ics, we employ a two-pronged strategy. In one direction,
we investigate the question of diffusion by introducing
the beyond-mean-field vertex corrections into the Lindblad
Keldysh diagramatics, motivated by their importance in disor-
dered electronic systems [50]. Using this tool we demonstrate
the existence of a diffusive regime for the particle and
hole density modes at an intermediate range of length- and
timescales. Interestingly, in contrast to the textbook examples
for Hamiltonian dynamics, this diffusive density mode cannot
be induced by the linear response to a scalar potential. How-
ever, we demonstrate that the diffusive mode can be excited in
the nonlinear response, cf. Eq. (70).

In the second direction we address the limitations (on
long length- and timescales) to the diffusive behavior of
the particle-hole density mode due to transitions between
the bands. In addition to the expected recombination (an-
nihilation between particles in the emptied band and holes
in the filled band), which are second order in the devia-
tion of the densities from the steady state, we surprisingly
find first-order contributions, which actually create particles
and holes, resulting in an instability of the desired dark
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(a) (b) (c)

FIG. 1. Sketch of the action of the jump operators. L1/2 redistributes a particle in the upper band (a) or transfers it to the lower band (c).
L3/4 redistributes a particle in the lower band (b) or creates a particle in the lower band by annihilating it in the upper band (c).

state. The diffusion and transitions between the band com-
bine to give rise to reaction-diffusion dynamics governed by
the iconic Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP)
equation, cf. Eq. (91). We expect it to arise generically in
number-conserving state preparation.

The outline of the paper is as follows. In Sec. II we specify
the model of dissipative dynamics, then translate it to Keldysh
form in Sec. III. Next, in Sec. IV we study the structure
of the dark state within the mean-field approximation, that
is, a self-consistent solution for the self-energy. The linear
response of the density to an external scalar potential is ana-
lyzed in Sec. V, followed by nonlinear response in Sec. VI.
The recombination rate for the particles due to dissipative
dynamics is computed in Sec. VII, while in Sec. VIII the
rate of change of the number of particles due to transitions
of particles from lower band to the upper band is estimated.
We end the paper with discussions and conclusions in Secs. IX
and X, respectively. Some details of calculations are presented
in the Appendices.

II. MODEL

We consider the dissipative model of Ref. [37], whose time
evolution is governed by the GKSL equation for the density
matrix,

dρ

dt
=

∫
x

(
i[ρ, H0] +

4∑
α=1

γα (2LαρL†
α − {L†

αLα, ρ})

)
, (1)

where
∫

x ≡ ∫
dd x. The unitary part of the evolution

is described by the two-band Hamiltonian H = ∫
x H0 =∫

q �†
q H0(q)�q, parameterized as

H0(q) = dq·σ, dq = {2mqx, 2mqy, q2 − m2}, (2)

where �q = {ψ1,q, ψ2,q}, and σ0,x,y,z are the standard Pauli
matrices acting in a spin space (“1” and “2” indexes). We also
introduced shorthand notations for momentum integrals,

∫
q ≡∫

dd q/(2π )d . Below we shall focus on the cases of d = 1 and
d = 2 dimensions. In the former case the y component of mo-
mentum vanishes, whereas in the latter case, the Hamiltonian
in Eq. (2) describes a two-dimensional Chern insulator with a
Chern number θ = −1 for any finite m2. In the eigenbasis, the
Hamiltonian density H0(q) in Eq. (2) becomes |dq|σz, where
|dq| = q2 + m2 is the spectrum.

The dissipative part of dynamics in (1) is defined through
the jump operators Lα ,

L1/2 = ψ
†
1/2(x)lu(x), L3/4 = ψ1/2(x)l†

d (x), (3)

where the operators l = {lu, ld} bring the Hamiltonian to a
diagonal form H = ∫

q l†
q σzlq, and could be expressed in terms

of the original operators ψ as

lq = √
dqU

†
q �q, Uq = qxσ0 − iqyσz − imσy√

dq
. (4)

Here dq = |dq| = q2 + m2, the unitary matrix Uq diagonalizes
H0(q), and the extra factor

√
dq in the definition of lq is

introduced to ensure the locality of the operators lu/d(x) in
the coordinate space [i.e., l (x) contains only the first spatial
derivatives of �(x)]. The labels u/d are referring to the “up”
and “down” bands in the eigenbasis of H0(q). The jump op-
erators Lα not only transfer a particle from the upper band
to the lower one but also move a particle within the bands,
see Fig. 1. In real space, the jump operators Lα may transfer
a particle to a distance �1/m. We note in passing that some
possible ways to experimentally engineer such local jump op-
erators conserving the total number of particles are discussed
in Refs. [28–30,33,51].

We are going to focus on the half-filled configuration, cor-
responding to the ground state |D〉 of H with a fully occupied
“down” band and an empty “up” band (we will be referring
to this state as the dark state). As one can easily check, the
density matrix ρD = |D〉〈D| is a steady state of the dynamics,
Eq. (1), as it obeys Lα|D〉 = 0. In fact, the Lindblad operators
Lα are designed so as to stabilize this state, even in the absence
of the Hamiltonian H.

One of the crucial aspects of the model outlined above
is that the total number of particles is conserved. Indeed,
let us define the operator of the total number of particles
as N̂ = ∫

x[ψ†
1 (x)ψ1(x) + ψ

†
2 (x)ψ2(x)]. Using the following

commutation relations,

[ψ†
1/2(x), N̂] = −ψ

†
1/2(x), [ψ1/2(x), N̂] = ψ1/2(x),

[l†
u/d(x), N̂] = −l†

u/d(x), [lu/d(x), N̂] = lu/d(x), (5)

one can check that [L†
α, N̂] = 0. This implies that the dynam-

ics of the density matrix described by Eq. (1) conserves the
total number of particles, dtr(N̂ρ)/dt = 0. As we shall see be-
low, the conservation of the number of particles in dissipative
dynamics has important consequences, reminiscent of the case
of unitary evolution. However, we stress that the number of
particles in the upper (lower) band is not separately conserved,
and thus, the response of the associated density modes to
external perturbations is expected to decay at sufficiently long
times.
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III. KELDYSH FIELD THEORY APPROACH

In order to study the long time/distance dynamics gov-
erned by Eq. (1), we reformulate this equation as the action
on the Keldysh contour (see Ref. [1] for details). The corre-
sponding Keldysh partition function reads as

Z =
∫

D[�,�] eiS0[�,�]+iSL[�,�], (6)

which is expressed in terms of spin 1/2 fermionic anni-
hilation and creation fields on the “+” and “−” parts of
the Keldysh contour, � = {ψ1,+, ψ2,+, ψ1,−, ψ2,−}T and � =
{ψ1,+, ψ2,+, ψ1,−, ψ2,−} [we emphasize that these fields
must be distinguished from their counterparts used in the
operator formalism of Eq. (1)]. The part of the Keldysh action
corresponding to the unitary (Hamiltonian) dynamics of the
density matrix is given by

S0 =
∫

q,t
�q(t )(iσ0∂t − H0(q))τz�q(t ). (7)

Here H0(q) is defined in Eq. (2), τ0,x,y,z are the standard
Pauli matrices acting in Keldysh space (“±” indices), and∫

t ≡ ∫ ∞
−∞ dt stands for the integration in the time domain.

The dissipative part of the Keldysh action (6) reads in the
coordinate representation

SL = −i
∫

x,t

4∑
α=1

γα[2Lα,+(t−)Lα,−(t ) − Lα,+(t )Lα,+(t−)

− Lα,−(t )Lα,−(t+)]. (8)

The times t± = t ± δ with δ = 0+ take into account the spe-
cific regularization of equal time terms that is of crucial
importance for correct causality of the Keldysh action (see
Ref. [1] for details).

In order to define Lα,± and Lα,± corresponding to the jump
operators Lα and L†

α of Eq. (3) on the Keldysh contour, it
is convenient to introduce two additional sets of fermionic
fields. First we define the fields C = cu,+, cd,+, cu,−, cT

d,− and

C = cu,+, cd,+, cu,−, cd,−, which form the eigenbasis (“up”
and “down” states) of the Hamiltonian H0,

S0 =
∫

q,t
C̄q(t )(iσ0∂t − ξqσz )τzCq(t ). (9)

Here we introduce a parameter ξq ≡ dq = |dq| = q2 + m2,
which is the same as dq, but will allow us to distinguish

the contributions from unitary and dissipative parts of the
dynamics. In particular, it allows us to consider the case in
which Hamiltonian dynamics is absent, by setting ξq to zero.
We note that the two sets of fermionic fields, � and C, are
related by a canonical transformation,

�q = UqCq, �q = CqU
†
q , (10)

where the matrix Uq was introduced in Eq. (4). Second, we
introduce the fermionic fields � = {lu,+, ld,+, lu,−, ld,−}T and
� = {lu,+, ld,+, lu,−, ld,−} that are related with the fields C and
C as [cf. Eq. (4)]

�q = √
dqCq, �q = √

dq Cq. (11)

Then the jump operators Lα and L†
α can be written in the

Keldysh theory by (we suppress the Keldysh indices)

L1/2 = ψ1/2(x)lu(x), L3/4 = ψ1/2(x)l̄d(x),

L1/2 = lu(x)ψ1/2(x), L3/4 = ld(x)ψ1/2(x). (12)

Expressing ψ , ψ and �, � in terms of c and c, we represent the
jump operators in the following form [52]:

Lα =
∫

qp
ei(p−q)x cpL(α)

pq cq, Lα =
∫

qp
ei(p−q)x cpL

(α)
pq cq.

(13)
Here L(α) and L(α)

are 2×2 matrices in the space of up/down
states, which are constructed as[

L(1/2)
pq

]
ab = √

dq[U †
p ]a,1/2δbu,[

L(3/4)
pq

]
ab = −√

dp[Uq]1/2,bδad, (14)

and L(α)
pq = [L(α)

qp ]†. For convenience, we write the matrices
L(α) explicitly

L(1)
pq =

√
dq

dp

(
px + ipy 0

−m 0

)
, L(2)

pq =
√

dq

dp

(
m 0

px − ipy 0

)
,

L(3)
pq =

√
dp

dq

(
0 0

−qx + iqy m

)
,

L(4)
pq = −

√
dp

dq

(
0 0
m qx + iqy

)
. (15)

Now we can write the dissipative part of the action in terms
of the C and C fields explicitly,

SL = −i(2π )d
∫

pj ,t
δ(p1 − p2 + p3 − p4)

4∑
α=1

γα

[
2cp1,−(t )L(α)

p1 p2
cp2,−(t+εα )cp3,+(t − δ)L(α)

p3 p4
cp4,+(t − δ − εα ) − cp1,+(t + εα )

× L(α)
p1 p2

cp2,+(t )cp3,+(t − δ)L(α)
p3 p4

cp4,+(t − δ − εα ) − cp1,−(t − εα )L̄(α)
p1 p2

cp2,−(t )cp3,−(t + δ)L(α)
p3 p4

cp4,−(t + δ + εα )
]
. (16)

Here we indicate regularization at coinciding times explicitly
by ε1,2 = 0+ and ε3,4 = 0−. We note that, as a consequence
of the conservation of the total number of particles, the
Keldysh action S0 + SL [(9) and (16)] has a strong symme-
try being invariant under global U(1)×U(1) transformations,

cσ→e−iασ cσ and cσ →eiασ cσ , where σ = ±. At the same time,
translation invariance is only a weak symmetry in this model
[1,53,54], meaning that the Keldysh action SL is invariant only
under translations acting simultaneously on the forward and
backward branches of the Keldysh contour. As a consequence,
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the jump operators Lα can lead to momentum relaxation, as
depicted in Fig. 1.

It is worth noting that the interaction in Eq. (16) could
be formally decoupled by introducing some auxiliary bosonic
fields, which represent bath degrees of freedom. The latter,
however, can be shown to be far from thermal equilibrium,
as they would violate the principle of detailed balance. In
particular, the correlation functions of such auxiliary bath
fields disobey the fluctuation-dissipation theorem reflecting
the non-Hermitian nature of the jump operators Lα .

IV. SELF-CONSISTENT SOLUTION
FOR THE DARK STATE

We now demonstrate how the dark state appears within the
Keldysh field theory, see Eqs. (9) and (16).

A. Definitions

We are interested in the single-particle Green’s function for
the theory (9) and (16). The structure of the exact Green’s
functions in the Keldysh space has the standard form [50],

〈cq,+(t )cq,−(t ′)〉 = iG<
q (t, t ′),

〈cq,−(t )cq,+(t ′)〉 = iG>
q (t, t ′), (17)

and

〈cq,±(t )cq,±(t ′)〉 = iGT/T̃
q (t, t ′) = i

{
G>/<

q (t, t ′), t > t ′,

G</>
q (t, t ′), t < t ′.

(18)

We note that the Green’s functions are 2×2 matrices in the
“up/down” space. The standard relation GT + G T̃ = G> +
G< holds to preserve causality.

Using the action S0, Eq. (9), we find that the bare Green’s
functions are diagonal in the “up/down” space,

iG>
u/d,q(t, t ′) = (1 − nu/d,q)e∓iξq (t−t ′ ),

iG<
u/d,q(t, t ′) = −nu/d,qe∓iξq (t−t ′ ). (19)

Here nu,q (nd,q) denotes the momentum distribution function
for the particles in the upper (lower) band.

As usual, in order to proceed further it is convenient to
make the Keldysh rotation from c± to classical and quantum
components ccl/q [50,55],(

ccl
cq

)
= 1√

2

(
1 1
1 −1

)(
c+
c−

)
,

(ccl cq) = (c+ c−)
1√
2

(
1 1

−1 1

)
. (20)

After the Keldysh rotation, the Green’s function acquires the
familiar form

−i〈cq(t )cq(t ′)〉 = Gq(t, t ′) =
(
GR

q (t, t ′) GK
q (t, t ′)

0 GA
q (t, t ′)

)
. (21)

The bare retarded and advanced Green’s functions are given
by (in the energy representation)

GR/A
q (ε) = 1

ε − ξqσz ± i0+ . (22)

(a) (b)

FIG. 2. Self-energy diagrams of the Fock- and Hartree-type in
the self-consistent Born approximation. The solid blue line is the
full Green’s function. The dashed orange semicircle indicates the
parameter γα controlling dissipation-induced interaction. The orange

filled circles correspond to operators L(α)
, while the empty circles

denote operators L(α). There are similar diagrams with the operators

L(α)
and L(α) interchanged.

The exact and bare Green’s functions are related to each other
via the Dyson equation,

[
GR/A

q

]−1 = [
GR/A

q

]−1 − �R/A
q , (23)

where �
R/A
q stands for the self-energy. The Keldysh compo-

nent of the Green’s function is given by

GK
q (ε) = GR

q (ε)�K
q (ε)GA

q (ε). (24)

B. Self-consistent equation for the self-energy

The self-energy is induced by the dissipative part of the
action, Eq. (16). In order to compute it we consider the
simplest (Born-type) diagram shown in Fig. 2. We apply a
self-consistent scheme, assuming that the internal line is the
exact Green’s function (we will refer to this approximation as
the “self-consistent Born approximation”, SCBA, in analogy
with the theory of disordered systems [50]). Then we find the
following expressions for the retarded/advanced self-energy:

�R/A
q =

2∑
α=1

γα

∫
p

[
L(α)

qq trL̄(α)
pp G<

p (t, t ) − L̄(α)
qq trL(α)

pp G<
p (t, t )

]

+
4∑

α=3

γα

∫
p

[
L(α)

qq trL̄(α)
pp G>

p (t, t ) − L̄(α)
qq trL(α)

pp G>
p (t, t )

]

∓
4∑

α=1

γα

∫
p

[
L(α)

qp G<
p (t, t )L̄(α)

pq − L̄(α)
qp G>

p (t, t )L(α)
pq

]
.

(25)

We stress that the Keldysh structure of terms produced by
the jump operators L1/2 and L3/4 are different. The Keldysh
component of the self-energy becomes

�K
q = 2

4∑
α=1

γα

∫
p

[
L(α)

qp G<
p (t, t )L̄(α)

pq + L̄(α)
qp G>

p (t, t )L(α)
pq

]
.

(26)
We note that the self-energy in the steady state is inde-
pendent of time t , as expected. Taking into account the
relation G>/<

q = (GK
q ± GR

q ∓GA
q )/2, Eqs. (25) and (26) are

self-consistent equations for the self-energies.
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In order to solve Eqs. (25) and (26) we parametrize the
exact Green’s functions at equal times as follows:

G<
p (t, t ) = i

(
nu,p ηp

η∗
p nd,p

)
, G>

p (t, t ) = −i + G<
p (t, t ),

(27)
and, consequently,

GK
p (t, t ) = −iFp, Fp =

(
1 − 2nu,p −2ηp

−2η∗
p 1 − 2nd,p

)
. (28)

Here nu,p and nd,p denotes the momentum distribution of
particles in the “up” and “down” states, respectively. The off-
diagonal parameter ηp describes possible correlations between
particles in the upper and lower bands.

Using the ansatz (27) and the expressions (15), we
straightforwardly find a somewhat lengthy expression for the
self-energy in the self-consistent Born approximation (see

Fig. 2),

�K
q = 2i

∫
p

{
dp

dq

(
γ[1,3]q2 + γ[2,4]m2 (γ[2,4] − γ[1,3])mq+
(γ[2,4] − γ[1,3])mq− γ[1,3]m2 + γ[2,4]q2

)

− dq

dp

(
�(12,>)

p 0
0 −�(34,<)

p

)

− 2mRe(p−ηp)
dq

dp

(
γ

(−)
1,2 0

0 γ
(−)

4,3

)}
. (29)

Here for the sake of a brevity we introduced shorthand
notations, γ[α,β] = γαnu,p − γβ (1 − nd,p), γ

(±)
α,β = γα ± γβ ,

and �
(αβ,<)
p = γα[p2nu,p + m2nd,p] + γβ[p2nd,p + m2nu,p].

The quantity �
(αβ,>)
p is obtained from �

(αβ,<)
p by replacing

nu/d,p with 1 − nu/d,p.
The retarded component of the self-energy reads

�R
q = i

∫
p

(
2iγ1[p × q]nu,p + 2imIm[(γ1q− − γ2 p−)ηp] (γ{1,4} p+ − γ{2,3}q+)m − (γ (+)

1,4 m2 + γ
(+)

2,3 q+ p−)ηp

(γ{2,3}q− − γ{1,4} p−)m + (γ (+)
1,4 m2 + γ

(+)
2,3 q− p+)η∗

p −2iγ4[p × q](1 − nd,p) − 2imIm[(γ4q− − γ3 p−)ηp]

)

− i
∫

p

{
dp

dq

(
γ{1,3}q2 + γ{2,4}m2 (γ{4,2} − γ{3,1})mq+
(γ{4,2} − γ{3,1})mq− γ{1,3}m2 + γ{2,4}q2

)
+ dq

dp

[(
�(12,>)

p 0

0 �(34,<)
p

)
+ 2mRe(p−ηp)

(
γ

(−)
1,2 0

0 γ
(−)

4,3

)]}
,

(30)

where γ{α,β} = γαnu,p + γβ (1 − nd,p). The expression for the
advanced self-energy �A

q can be obtained from Eq. (30) by
Hermitian conjugation.

The self-consistent Green’s functions can be then written
as follows: [

GR/A
q (ε)

]−1 = ε − ξqσz − �R/A
q ,

GK
q (ε) = GR

q (ε)�K
q GA

q (ε). (31)

Taking into account the parametrization (28), the self-
consistent equation for nu/d,q and ηq becomes

GK
q (t, t ) =

∫
dε

2π
GR

q (ε)�K
q GA

q (ε). (32)

C. The dark-state solution

Using Eqs. (29) and (30), one can check that the self-
consistent equations (25) and (26) have the solution

nu,p = ηp = 0, nd,p = 1, (33)

corresponding to the dark state. In the self-consistent Born ap-
proximation the retarded/advanced Green’s functions become

GR/A
q (ε) =

(
1

ε−ξq±iγundq
0

0 1
ε+ξq±iγdndq

)
, (34)

where we introduced

γu/d =
∫

p

γ1/4 p2 + γ2/3m2

n(p2 + m2)
, n =

∫
p

1. (35)

We note that the total particle density n is determined by the
ultraviolet scale (lattice spacing). The dimensionless quantity
γu/dn determines the decay rate for single-particle excitations
in the upper and lower bands, respectively. In what follows,
we take for simplicity γα = γ for all α, so that γu/d = γ .
We note though that our main results do not depend on this
simplification. In Appendix A we demonstrate that the dark
state, cf. Eq. (33), is the only solution for the Green’s function
in the self-consistent Born approximation.

It is worth emphasizing that the same single-particle decay
rate as in Eq. (34) can be formally reproduced by means
of the following replacement: L1/2→lu, L3/4→l†

d, γ→γ n,
which was initially suggested in Ref. [37] as some sort of
“mean-field” (MF) approach to the present problem. However,
the underlying physical mechanism for such a decay rate is
different: In the MF model, the decay rate corresponds to the
fact that particles can escape the system completely, and has
nothing to do with transitions between the upper and lower
bands (in fact, the MF model does not couple them at all).
On the other hand, in the full model, the SCBA single-particle
decay rate is purely elastic, and corresponds to momentum
relaxation within the upper (lower) band, analogously to the
single-particle decay rate induced by disorder in closed sys-
tems [50].

The Keldysh component of the Green’s function for the
dark state can be expressed in terms of retarded and advanced
Green’s functions as

GK
q (ε) = GR

q (ε)σz − σzGA
q (ε). (36)

In Appendix B we compute the self-energy to the sec-
ond order in γ , thus going beyond the self-consistent Born
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approximation. This analysis demonstrates that the dark state
solution (33) exists beyond the self-consistent Born approx-
imation as expected, since, as noted above, the Lindbladian
dynamics (1) was designed so as to have ρD = |D〉〈D| as
a steady state. We further find that corrections to the self-
consistent Born approximation are controlled by the small
parameter md/n�1.

In the next section, we consider relaxation dynamics in-
duced by perturbing the dark state with external fields. As we
shall see below, the total numbers of particles in the upper
and lower bands (denoted as Nu and Nd, respectively) are both
approximately conserved within the self-consistent Born ap-
proximation at the linear order in the density deviations from
the dark state, precluding exponential decay of Nu. However,
at the quadratic order in the density deviations, recombination
of particles in the upper band and holes in the lower band
emerges (see Sec. VII), favoring eventual slow decay of Nu
at late times. This behavior is strongly opposed to the “mean-
field” predictions, which imply exponentially fast decay of
Nu irrespective of the density of holes in the lower band. In
addition, the effect of corrections beyond the SCBA on the
time evolution of Nu is discussed in Sec. VIII.

V. LINEAR RESPONSE

Let us now consider the response of the density of the
particles in the “up” and “down” states to an external scalar
potential φ(x, t ) coupled to the density of original fermions
ψ . In the basis of the “up” and “down” states such a scalar
potential transforms into a matrix in the u/d space, which is
nonlocal in coordinate space,

�(x, x′, t ) =
∫

pqω

�p,q;ω e−ip(x−x′ )−iq(x+x′ )/2−iωt ,

�p,q;ω = Up+U †
p−φq,ω, φq,ω =

∫
xt

φ(x, t )eiqx+iωt ,

(37)

where p± = p ± q/2, and
∫
ω

≡ ∫ ∞
−∞ dω/(2π ) stands for the

integration in the frequency domain. We assume that it has
only the classical component, i.e., that it is the same for the
“+” and “−” parts of the Keldysh contour, �±(x, x′; t ) =
�(x, x′; t ). Under such a perturbation the bare retarded and
advanced Green’s functions get modified

[GR/A]−1 → [GR/A]−1 − �. (38)

In turn, the presence of � affects the self-energies and the
exact Green’s functions.

We note that due to the presence of �, the Green’s func-
tions become dependent on both spatial coordinates and both
times. For example, Eq. (24) now reads

GK (x, t ; x′, t ′) =
∫

y,y′,t1,t2
GR(x, t ; y, t1)�K (y, t1; y′, t2)

× GA(y′, t2; x′, t ′), (39)

or GK = GR◦�K◦GA in the shorthand notation, which we shall
use below.

In this and the following section we will employ a trick,
which allows to account for vertex corrections without having
to sum over an infinite series of diagrams. The change of the
retarded and advanced Green’s functions due to the external
potential � (to the linear order) is given as, cf. Eq. (23),

δGR/A = GR/A ◦ � ◦ GR/A + GR/A ◦ δ�R/A ◦ GR/A. (40)

The shift of the Keldysh Green’s function due to the external
potential reads

δGK = GR ◦ δ�K ◦ GA + δGR ◦ �K ◦ GA + GR ◦ �K ◦ δGA

= GR ◦ � ◦ GK + GK ◦ � ◦ GA + GR ◦ δ�K ◦ GA

+ GR ◦ δ�R ◦ GK + GK ◦ δ�A ◦ GA. (41)

Here we used the relation (40) in the last line. The variation of
the self-energy can be read from Eqs. (25) and (26). First, one
needs to rewrite them in the coordinate representation. Sec-
ond, one needs to take into account that δGR/A(t, t ) = 0. This
follows from Eq. (40) since, as we shall see below, the vari-
ation of the self-energy is nonzero at coinciding times only.
Therefore, we can write δG>/<(x, t ; x′, t ) = δGK (x, t ; x′, t )/2.
Thus we find the following change of the Keldysh self-energy

δ�K (x, t ; x′, t ′) = γ

∫
y,y′,z

[L(α)(x − z, y − z)δGK (y, t ; y′, t )

× L̄(α)(y′ − z, x′ − z) + (L ↔ L̄)]δ(t − t ′).

(42)

Here and afterwards the summation over repeated index α is
assumed. We introduced the coordinate representation for the
matrices L(α) and L̄(α),

L(α)(x, y) =
∫

qp
eipy−iqxL(α)

qp , (43)

and similarly for L̄(α)(x, y). The variations of the retarded/advanced self-energies are given by

δ�R/A(x, t ; x′, t ′) = −γ

2

∫
y,y′,z

[L̄(α)(x − z, x′ − z)trL(α)(y − z, y′ − z)δGK (y′, t ; y, t )

± L(α)(x − z, y − z)δGK (y, t ; y′, t )L̄(α)(y′ − z, x′ − z) − (L ↔ L̄)]δ(t − t ′). (44)

We note that the variation of the Keldysh Green’s function determines the change in the density of the particles in the upper and
lower bands due to the application of the external potential,

δn̂(x, t ) = − i

2
δGK (x, t ; x, t ). (45)

174312-6



REACTION-DIFFUSIVE DYNAMICS OF … PHYSICAL REVIEW B 107, 174312 (2023)

(a) (b) (c) (d)

FIG. 3. Diagrams for the linear response. [(a), (b)] Polarization bubbles with Green’s functions in the self-consistent Born approximation.
[(c), (d)] Polarization bubbles with vertex corrections. δn stands for either of δu, δd , δη.

Next we obtain the closed-form equation for the change of the Keldysh component of the Green’s function due to the presence
of the external potential

�p,q;ω = δGK
p,q;ω − γ

∫
k,ε

GR
p+,ε+

[
L(α)

p+k+δGK
k,q;ωL̄

(α)
k− p−

+ L̄(α)
p+k+δGK

k,q;ωL
(α)
k− p−

]
GA

p−,ε− + γ

2

∫
k,ε

GR
p+,ε+

[
L̄(α)

p+ p− trL(α)
k−k+δGK

k,q;ω

− L(α)
p+ p− trL̄(α)

k−k+δGK
k,q;ω + L(α)

p+k+δGK
k,q;ωL̄

(α)
k− p−

− L̄(α)
p+k+δGK

k,q;ωL
(α)
k− p−

]
GK

p−,ε− + γ

2

∫
k,ε

GK
p+,ε+

[
L̄(α)

p+ p− trL(α)
k−k+δGK

k,q;ω

− L(α)
p+ p− trL̄(α)

k−k+δGK
k,q;ω − L(α)

p+k+δGK
k,q;ωL̄

(α)
k− p−

+ L̄(α)
p+k+δGK

k,q;ωL
(α)
k− p−

]
GA

p−,ε− . (46)

Here, we introduced for brevity, p± = p ± q/2, k± = k ±
q/2, and ε± = ε ± ω/2. Also we used the following represen-
tation for the spatial and temporal dependence of the Keldysh
component of the Green’s function,

δGK (x, t ; x′, t ) =
∫

pqω

δGK
p,q;ωe−ip+x+ip−x′−iωt . (47)

The bare density-density bubble (retarded polarization op-
erator) is given by

�p,q;ω =
∫

ε

[
GR

p+,ε+�p,q;ωGK
p−,ε− + GK

p+,ε+�p,q;ωGA
p−,ε−

]
.

(48)

We note that the terms proportional to γ on the right-hand side
of Eq. (46) describe vertex corrections (see Fig. 3).

Replacing the Green’s functions in the density-density
bubble by their expressions in the self-consistent Born approx-
imation, cf. Eqs. (34) and (36), we find

�p,q;ω =
⎛
⎝ 0 2i�(ud)

p,q;ω

ω−ξp,q+iγ̄ dp,q

−2i�(du)
p,q;ω

ω+ξp,q+iγ̄ dp,q
0

⎞
⎠, (49)

where ξp,q = ξp+ + ξp− and dp,q = dp+ + dp− , while, as be-
fore, γ̄ = γ n. We also represented �p,q;ω as an auxiliary 2×2
matrix in u/d space,

�p,q;ω =
⎛
⎝�

(uu)
p,q;ω �

(ud)
p,q;ω

�
(du)
p,q;ω �

(dd)
p,q;ω

⎞
⎠. (50)

We emphasize that the matrix �p,q;ω has vanishing diagonal
elements, which follows from the fact that the distribution
function for the dark state Fp = σz [see Eq. (28)] is momen-
tum independent. As a result, both poles of the integrand in
Eq. (48) are always in the same complex half-plane, and the
integral vanishes. Note that this cancellation has nothing to do

with the symmetries of the Hamiltonian or with the relation
between the external frequency and the spectral gap (the latter
becomes important for linear response of the off-diagonal
modes ηp,q,ω since they have a finite lifetime). In the case
of an external scalar potential applied to the ψ particles, cf.
Eq. (37), the off-diagonal components of �p,q;ω read

�(ud)
p,q;ω = −m(qx + iqy)√

dp+dp−
φq,ω, �(du)

p,q;ω = m(qx − iqy)√
dp+dp−

φq,ω.

(51)
In order to solve Eq. (46), we use the following

parametrization:

δGK
p,q;ω = 2i

(
δup,q;ω δηp,q;ω

δη∗
p,q;ω δdp,q;ω

)
. (52)

In addition, we replace all the Green’s functions by their
expressions in the self-consistent Born approximation, cf.
Eqs. (34) and (36). We then arrive at the following equa-
tion for δup,q;ω:

2iδup,q;ω + 4γ√
dp+dp−

dp − q2/4 + i[p×q]

[ω + ξp− − ξp+ + iγ̄ (dp− + dp+ )]

×
∫

k

√
dk+dk− δuk,q;ω = �(uu)

p,q;ω ≡ 0. (53)

Therefore, the external potential does not induce a change in
the density of the “up” band, δup,q;ω = 0, and similarly for
the “down” band, δdp,q;ω = 0. We emphasize, however, that
linear response is absent only for the densities of the eigen-
modes (i.e., δup,q;ω and δdp,q;ω). In contrast, the response of
the density of original ψ fermions ψ

†
1 ψ1 + ψ

†
2 ψ2 is nonzero

because it also involves contributions from the off-diagonal
mode [i.e., the matrix element ηp,q,ω in the Keldysh Green’s
function, δGK

p,q;ω, see Eq. (52)]. The decay of this mode is
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(a) (b)

FIG. 4. Sketch of the diagrams for the density-density response corresponding to Eqs. (53) and (54). δn stands for either of δu, δd , δη. The
response is given by the bubble diagram (a), with the density vertex (b). Here the blue curves correspond to the Green’s functions computed in
the self-consistent Born approximation.

governed by the following equation:

[ξp+ + ξp− − iγ̄ (dp+ + dp− ) − ω]δηp,q;ω − iγ
∫

k
δηk,q;ω

×
[

(m2 + k+ p+ + i[k+×p+])

√
dk−dp−
dk+dp+

+ (m2 + k− p− + i[k−×p−])

√
dk+dp+

dk−dp−

]

= −�(ud)
p,q;ω. (54)

Taking the limit q→0, we find the following solution:

δηp,q;ω� 1

ω − 2ξp + 2iγ̄ dp

[
�(ud)

p,q;ω −
∫

k

2iγ m2�
(ud)
k,q;ω

ω−2ξk+2iγ̄ dk

1 + ∫
k

2iγ m2

ω−2ξk+2iγ̄ dk

]
.

(55)

We mention that the second term in the square brackets on
the right-hand side of Eq. (55) describes the effect of vertex
corrections. They correspond to the summation of the infinite
series of ladder-type diagrams (see Fig. 4). However, these
vertex corrections for δη disappear in the limit γ̄→0. Eq. (55)
has clear physical meaning: In order to excite a particle from
the filled “down” band to the empty “up” band, the external
potential has to overcome the energy gap equal to 2ξp. The
decay rate of such an exciting state is finite and is given
by 1/τp = 2γ̄ dp. In the time domain Eq. (55) translates into
exponential decay of the linear response with the rate 1/τ =
2γ̄ m2 (cf. Ref. [37]).

VI. NONLINEAR RESPONSE

Since the external potential � does not lead to finite δu and
δd within linear response, let us compute the second-order
response. The variations of the Green’s function to second
order in � can be written straightforwardly,

δGK = δGR◦�K◦GA + GR◦�K◦δGA + GR◦δ�K◦GA

+ δGR◦�K◦δGA + δGR◦δ�K◦GA + GR◦δ�K◦δGA,

(56)

and

δGR = GR◦�◦GR + GR◦�◦GR◦�◦GR + GR◦δ�R◦GR

+ GR◦�◦GR◦δ�R◦GR + GR◦δ�R◦GR◦�◦GR

+ GR◦δ�R◦GR◦δ�R◦GR. (57)

The expression for δGA can be obtained from Eq. (57) after
replacing all the retarded Green’s functions by the correspond-
ing advanced ones.

Using Eqs. (56) and (57), we obtain the following equa-
tion for the second-order contribution δGK

2 to the variation of
the Keldysh Green’s function:

δGK
2 −GR◦δ�K

2 ◦GA −GR◦δ�R
2 ◦GK −GK◦δ�A

2 ◦GA = T +V.

(58)
Here δ�

R/A/K
2 are expressed in terms of δGK

2 in accordance
with Eqs. (42) and (44). The bare triangle diagram (see Fig. 5)
is given as

T = GR◦�◦GR◦�◦GK + GK◦�◦GA◦� ◦ GA

+ GR◦�◦GK◦�◦GA. (59)

The contribution V describes vertex corrections [see
Figs. 5(b)–5(d)],

V = GR◦δ�R
1 ◦GK◦�◦GA + GR◦�◦GK◦δ�A

1 ◦GA

+ GR◦δ�R
1 ◦GK◦δ�A

1 ◦GA + GR◦�◦GR◦δ�K
1 ◦GA

+ GR◦δ�K
1 ◦GA◦�◦GA + GR◦δ�K

1 ◦GA◦�◦GA

+ GR◦δ�R
1 ◦GR◦δ�K

1 ◦GA + GR◦δ�K
1 ◦GA◦δ�A

1 ◦GA

+ GR◦�◦GR◦δ�R
1 ◦GK + GK◦�◦GA◦δ�A

1 ◦GA

+ GR◦δ�R
1 ◦GR◦�◦GK + GK◦δ�A

1 ◦GA◦�◦GA

+ GR◦δ�R
1 ◦GR◦δ�R

1 ◦GK + GK◦δ�A
1 ◦GA◦δ�A

1 ◦GA.

(60)

Here δ�1 is the contribution to the self-energy due to the
correction to the δη in the first order in �. However, as
we have seen in the previous section, the mode δη decays
at long times, t�τ = 1/(2γ̄ m2). Therefore, for the study of
the long-time dynamics, we can safely neglect the mode δη

and, consequently, by all contributions involving δ�1. In other
words, we can omit V on the right-hand side of Eq. (58).

Using parametrization (52), we then obtain the following
equation for δup,q;ω, cf. Eq. (53),

2iδup,q;ω + 4γ (dp − q2/4 + i[p × q])√
dp−dp+ [ω + ξp− − ξp+ + iγ̄ (dp− + dp+ )]

×
∫

k

√
dk+dk− δuk,q;ω = T (uu)

p,q;ω. (61)

The uu component of the triangle diagram evaluated with
the Green’s functions computed in the self-consistent Born
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(a) (b) (c) (d)

FIG. 5. Diagrams for the nonlinear response. (a) The triangle diagram with Green’s functions in the self-consistent Born approximation.
(b) The triangle diagram with the vertex correction of the density. [(c),(d)] The triangle diagrams with the vertex correction of the external
potential. Diagrams (c) and (d) are the analogs of the diagrams in Fig. 3(b) with the self-energy corrected due to the presence of the external
potential.

approximation, Eqs. (34) and (36), becomes

T (uu)
p,q;ω = − 2T̃ (uu)

p,q;ω

ω + ξp− − ξp+ + iγ̄ (dp− + dp+ )
. (62)

Here we singled out the denominator, which vanishes in the
limit q→0, ω→0, and γ̄→0; the remainder,

T̃ (uu)
p,q;ω = i

∫
Q,�

�
(ud)
p++Q−/2,−Q−;�+�

(du)
p−+Q+/2,Q+;−�−

(ξp+ + ξp+Q − iγ̄ (dp+ + dp+Q) − �+)

× (ξp+ − ξp− − iγ̄ (dp+ + dp− + 2dp+Q) − ω)

(ξp− + ξp+Q + iγ̄ (dp− + dp+Q) − �−)
.

(63)

Solving Eq. (61) we obtain

δup,q;ω = i

ω + ξp− − ξp+ + iγ̄ (dp− + dp+ )

[
T̃ (uu)

p,q;ω

−
iγ (dp − q2/4 + i[p × q])

∫
k T (uu)

k,q;ω

√
dk− dk+
dp− dp+

1 − 2iγ
∫

k
(dk−q2/4+i[k×q])

ω+ξk− −ξk++iγ̄ (dk−+dk+ )

]
.

(64)

We emphasize that the second line of Eq. (64) describes the
effect of vertex corrections. A striking feature of the latter is
the divergence of the denominator at q = ω = 0.

The solution for δdp,q;ω is obtained from Eq. (64) by the
following steps. At first, one reverses the sign of the vec-
tor q. Secondly, one replaces T (uu)

k,−q;ω by T (dd)
k,q;ω and T̃ (uu)

k,q;ω by

−T̃ (dd)
k,q;ω. The expressions for T (dd)

k,q;ω and T̃ (dd)
k,q;ω are obtained

from Eqs. (62) and (63) by interchanging the indices u and
d and changing the signs in front of ξp+ , ξp− , and ξp+Q. These
relations between solutions for δup,q;ω and δdp,q;ω imply that

δn(u)
q,ω + δn(d)

q,ω = 0, (65)

where the Fourier transforms of the density variations of the u
and d fermions are defined as

δn(u)
q,ω =

∫
p
δup,q;ω, δn(d)

q,ω =
∫

p
δdp,q;ω. (66)

We note that Eq. (65) implies the conservation of the total
density.

We now concentrate on the long wavelength and low-
frequency regime, |q|�γ̄ m and |ω|�γ̄ m2. Expanding the
exact solution (64) in powers of q and ω, we find the following
result for the Fourier transform of the density variation of the
u particles:

δn(u)
q,ω =

∫
p
δup,q;ω = 1

Dq2 − iω

∫
k

T̃ (uu)
k,q;ω. (67)

We emphasize that it has a diffusive-pole structure that comes
from the vertex correction alone. The diffusion coefficient
reads

D = γ̄ + 2

d γ̄

∫
k k2/d2

k∫
k 1/dk

= 1

γ̄

[
1 − (d − 1)

ln
(
1 + 4πn

m

)
]

+ γ̄ . (68)

The expression (68) for the diffusion coefficient can be ex-
pressed as

D = 1

d

〈
v2

kτ
2
k

〉
k

〈τk〉k
+ γ̄ , (69)

where vk = ∂ξk/∂k = 2k is the velocity. Here 〈. . . 〉k denotes
averaging over the momentum k. We note that the first term
in Eq. (69) originates from the interplay between the unitary
(Hamiltonian) and dissipative dynamics in the GKSL equa-
tion (1), whereas the second one is purely dissipative.

In the absence of any Hamiltonian (H = 0), Eq. (69) sug-
gests that the diffusion coefficient remains finite (yet small),
D = γ̄ . Physically, this stems from the fact that the jump op-
erators involve derivatives, and thus allow particle transport.
We verified that there are no corrections to the diffusion coef-
ficient due to the appearance of the real part of the self-energy
to the second order in γ (see Appendix B). However, it is
quite possible that additional perturbative-in-γ corrections to
D could appear from higher-order vertex diagrams.

Assuming that the external potential φq,ω varies slowly
enough in both space and time, |q|�γ̄ m and |ω|�γ̄ m2, we
reduce Eq. (67) to the following diffusion equation:(

∂

∂t
− D∇2

)
δn(u)(x, t ) = γ̄ χ

1 + γ̄ 2
E2(x, t ) (70)

where E = −∇φ is the electric field induced by a scalar
potential and where

χ =
∫

k

m2

ξ 3
k

=
{

3/(16m3), d = 1,

1/(8πm2), d = 2.
(71)
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For purely dissipative dynamics, one needs to set D to zero
and replace the denominator 1 + γ̄ 2 by γ̄ 2 in the diffusion
equation (70). We note that the appearance of the electric field
on the right-hand side of Eq. (70) is not accidental, but rather
guaranteed by gauge invariance [56]. Let us also note that for
a static field E, the right-hand side of Eq. (70) would seem
to lead to an unbounded growth of the density δn(u). This is
countered by the recombination term discussed in the next
section.

There is a similar equation for δn(d)(x, t ) to ensure the
conservation of the total particle density, cf. Eq. (65),

δn(u)(x, t ) + δn(d)(x, t ) = 0. (72)

The range of applicability of this constraint deserves a sep-
arate comment. In this section, Eq. (72) is derived assuming
the noncrossing approximation [corresponding to ladder di-
agrams depicted in Fig. 4(b)]. However, strictly speaking,
the total density mode n(u)(x) + n(d)(x) is not conserved be-
yond this approximation, since the jump operators Lα involve
derivatives. As a consequence, Eq. (72) holds in a “coarse-
grained” sense only, i.e., for distances greater than 1/m (which
is much shorter than the averaged mean-free path). In other
words, local deviations of the total density mode (and their
coupling to the particle-hole mode) emerge only at the higher
order in the spatial gradients.

Our result (70) demonstrates that one does not need a time-
dependent potential with a characteristic frequency greater
than the spectral gap 2m2 to induce a finite density response
by the applied external field. The reason is that the density
operator of the ψ fermions has off-diagonal matrix elements
in the u/d representation. These off-diagonal components of
�, cf. Eq. (51), allow for hybridization between the states
from the upper and down bands, and thus, effectively induce
a nonzero occupation in the upper band. The corresponding
density appears even in the absence of dissipation, γ = 0, and
can be estimated as (see Appendix C)

δn(u)
0 (x, t ) ∼ χE2(x, t )/m2. (73)

This deviation of the density stems from the first term in
Eq. (64). Diagrammatically, it corresponds to the bare triangle
with no ladder insertions [see Fig. 5(a)], and thus, it does not
contain a diffusive pole [only the second term in Eq. (64)
does], but it remains finite in the limit q = ω = 0, γ = 0.
Therefore, the density deviations in Eq. (70) should be under-
stood as deviations from this zeroth-order density shift δn(u)

0 .

We emphasize, however, that δn(u)
0 is much smaller than the

density variation obtained from the solution of Eq. (70).
We note that this behavior of Eq. (73) can be understood

from the toy example of a 2×2 Hamiltonian

HTM =
(

m2 �

� −m2

)
. (74)

The Hamiltonian HTM has two eigenstates |±〉� with energies
±√

m2 + �2. Let us consider the case of a fully occupied
lowest energy band and a fully empty upper energy band.
Then the occupancy of the upper state for the Hamiltonian
(74) is nonzero once � �= 0. In the limit |�| � m2 this oc-
cupancy is proportional to �2/m4. This well-known result is
fully analogous to Eq. (73).

VII. RECOMBINATION

The above analysis of the linear and nonlinear response of
the particle density to an external scalar potential has been
restricted to the linear order in δn(u). Terms of the second
order in the density variation describe the recombination of
the particles from the “up” and “down” bands. According to
the Lindblad dynamics, cf. Eq. (1), such processes appear
already to the first order in γ , but only in the quadratic order
in the deviation of the density from the steady state. Thus,
their analysis requires appropriate modifications of the linear
integral equation (46).

There is, however, a slightly more convenient way to ac-
count for recombination. One can make use of the following
exact equation governing the time decay of the total number
of particles in the “up” band,

dNu

dt
= γ

∑
α

∫
x

Trρ{[L†
α, N̂u]Lα − L†

α[Lα, N̂u]}. (75)

Here we introduced the operator of the total number of parti-
cles in the upper band, N̂u = ∫

x c†
u(x)cu(x) [the definition of

the operators cu/d is analogous to the definition of the fields
cu/d in the Keldysh formulation, see Eq. (10)]. Employing the
following commutation relations:

[l†
u (x), N̂u] = −l†

u (x), [lu(x), N̂u] = lu(x),

[l†
d (x), N̂u] = [ld(x), N̂u] = 0,

[ψ†
1/2(x), N̂u] = −ψ

†
1/2;u(x), [ψ1/2(x), N̂u] = ψ1/2;u(x),

(76)

we obtain the exact equation

dNu

dt
= −γ

∑
β=1,2

∫
x

Trρ{l†
u[ψβ,dψ

†
β + ψβψ

†
β,d]lu

+ ld[ψ†
βψβ,u + ψ

†
β,uψβ]l†

d}. (77)

Here the subscript u (d) in ψ1/2;u (ψ1/2;d) denotes the part of
ψ1/2 that involves cu (cd) operators only.

The right-hand side of Eq. (77) can be computed by means
of the Keldysh path integral theory described in the previous
sections. To the lowest order in fluctuations the averages over
four fermionic fields could be performed at the Gaussian level
with the help of the Wick’s theorem but allowing for nonlinear
order in the deviations from the dark state. We then find

dNu

dt
� −2γ

∑
β=1,2

∫
x
[〈l†

u lu〉〈ψβ,dψ
†
β,d〉

+ 〈ldl†
d〉〈ψ†

β,uψβ,u〉]. (78)

Here we omit the averages, which are off-diagonal in u/d
space, e.g., 〈ψβ,uψ

†
β,d〉, since such averages are proportional

to δη. Indeed, as we have shown in Sec. V, δη decays on
short timescales of the order of τ . We emphasize that at the
level of the self-consistent Born approximation, each of the
averages involved in Eq. (78) vanishes. Going beyond the
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self-consistent Born approximation, we write

〈l†
u (x, t )lu(x, t )〉 =

∫
p,q;ω

√
dp+dp−δup,q;ωe−iqx−iωt ,

〈ld(x, t )l†
d (x, t )〉 = −

∫
p,q;ω

√
dp+dp−δdp,q;ωe−iqx−iωt ,

〈ψ†
β,u(x, t )ψβ,u(x, t )〉 =

∫
p,q;ω

dp − i[q×p]√
dp+dp−

δup,q;ωe−iqx−iωt ,

〈ψβ,d(x, t )ψ†
β,d(x, t )〉= −

∫
p,q;ω

dp + i[q×p]√
dp+dp−

δdp,q;ωe−iqx−iωt .

(79)

Here summation over the repeated index, β = 1, 2, is as-
sumed. Substituting the averages (79) into Eq. (78), we find

dNu

dt
� 4γ

∫
x
δn(u)(x, t )

∫
p,q;ω

dp δdp,q;ωe−iqx−iωt

� − 1

nτR

∫
x
[δn(u)(x, t )]2. (80)

Here we used the following relations:∫
p

dpδup,q;ω = −
∫

p
dpδdp,q;ω � n∫

p 1/dp
δn(u)

qω (81)

that follows from Eq. (53) in the absence of the external scalar
potential. The recombination rate 1/τR is given by

1

τR
= 4γ̄ n∫

p 1/dp
= 8γ̄ n

{
m, d = 1,

π/ ln(n/m2), d = 2.
(82)

We note that the obtained result, cf. Eq. (80), suggests the
existence of the additional term −[δn(u)(x, t )]2/(nτR) on the
right-hand side of Eq. (70). Noting Eq. (72), this term is
actually δn(u)(x, t )δn(d)(x, t )/(nτR), which highlights its role
as recombination of u particles and d holes.

(a) (b)

FIG. 6. Examples of diagrams for the correction to the rate of
change of the number of particles in the upper band.

VIII. PUMPING OF THE PARTICLES INTO THE UPPER
BAND BEYOND THE SELF-CONSISTENT BORN

APPROXIMATION

Since there is no conservation of the number of particles
in “up” and “down” bands, in general, one cannot expect
perfect cancellation between the self-energy and vertex cor-
rections. Within the self-consistent Born approximation, such
a cancellation does occur since self-energy and renormalized
density vertex are elastic-like, i.e., they are independent of the
energy. To second order in γ , beyond the self-consistent Born
approximation, the self-energy becomes energy dependent
(see Appendix B). Similar energy dependence is expected
for the vertex corrections [57] The computation of the vertex
correction beyond the self-consistent Born approximation is
out of the scope of the present paper. In order to account
for these effects, one can once more resort to Eq. (77). This
time, however, the averages on the right-hand side should be
computed to the second order in γ (and linear order in the
deviations of the density from the steady state), by expanding
the dissipative part of the Keldysh action (16) and performing
irreducible contractions only. Examples of such diagrams are
shown in Fig. 6.

We start by rewriting Eq. (77) in the following way:

dNu

dt
= −γ

4

∫
k j

δ(k1 − k2 + k3 − k4)
√

dk1 dk4

∑
s=0,1

∑
a,b=u,d

{
[1 − δauδbu + δadδbd]

[
U †

k2
Uk3

]
ab

〈(
c̄k4,uτsck1,u

)(
ck3,bτsc̄k2,a

)〉

+ [1 − δadδbd + δauδbu]
[
U †

k3
Uk2

]
ab

〈(
ck4,dτsc̄k1,d

)(
c̄k3,aτsck2,b

)〉}
. (83)

Here τ0 and τ1 are standard Pauli matrices acting in the Keldysh space (after Keldysh rotation). Next we perform averaging of
the correlation functions in accordance with the diagrams shown in Fig. 6. Expanding the result to the first order in deviation of
the Green’s functions due to the presence of δup,q;ω and δdp,q;ω, we obtain

dNu

dt
= − (2π )dγ 2

2

∫
t ′

∫
pj

δ(p1 − p2 + p3 − p4)dp1

∑
a=u,d

[√
dp2

U †
p4

Up3
−

√
dp4

U †
p2

Up3

]
aā

[√
dp2

U †
p3

Up4
−

√
dp4

U †
p3

Up2

]
āa

× {
GA

a;p2
(t ′, t )GR

ā;p3
(t, t ′)GA

a;p4
(t ′, t )

[
δGX

p1,0

](aa)
(t, t ′) − GR

a;p2
(t, t ′)GA

ā;p3
(t ′, t )GR

a;p4
(t, t ′)

[
δGX

p1,0

](aa)
(t ′, t )

}
, (84)

Here we introduced ā = u(d) if a = d(u), respectively. Also we define

[
δGX

p1,0

](aa)
(t, t ′) =

{
[δG<

p1,0
](uu)(t, t ′), a = u,

−[δG>
p1,0

](dd)(t, t ′), a = d.
(85)
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Now using Eqs. (40) and (41), we express δG</>

p1,0
(t, t ′) in terms of δup,q;ω and δdp,q;ω as follows:

[δG<
p1,0

](uu)(t, t ′) =
∫

ω

δup1,0;ω
[
GA

u;p1
(t, t ′)e−iωt − GR

u;p1
(t, t ′)e−iωt ′]

. (86)

The expression for [δG>
p1,0

](dd)(t, t ′) is obtained by substitution of u and δup1,0;ω by d and δdp1,0;ω, respectively. Then, integrating
over t ′, we find

dNu

dt
� 2(2π )dγ 3nm2

∫
pj

δ(p1 − p2 + p3 − p4)
dp1

dp3

∣∣∣∣∣
√

dp2

dp4

(p4x − p3x + i(p4y − p3y)) −
√

dp4

dp2

(p2x − p3x + i(p2y − p3y))

∣∣∣∣∣
2

×
∫

ω

e−iωt
(
dp1

+ dp2
+ dp3

+ dp4

)
δup1,q=0;ω(

ξp2
+ ξp3

+ ξp4
− ξp1

)2 + γ̄ 2
(
dp1

+ dp2
+ dp3

+ dp4

)2 . (87)

Here we used the relation δup1,q=0;ω + δdp1,q=0;ω = 0 and ne-
glected ω in comparison with 1/τ = 2γ̄ m2.

In order to estimate the integrals over momenta in Eq. (87)
we take into account that the integral over p3 is convergent
in d = 1 while is logarithmically divergent in d = 2. The
integral over p4 is determined by the ultraviolet. We then find

dNu

dt
� 1

τpm2

∫
p

∫
ω

e−iωt dpδup,q=0;ω. (88)

Here the corresponding rate can be estimated as (for d = 1, 2)

1

τp
∝ γ̄

md+2

n
lnd−1(n/md )

{
γ̄ 2, γ̄ � 1,

1, γ̄ � 1.
(89)

We note that τp�τ due to smallness of two factors: γ̄�1 and
md/n�1.

We emphasize the positivity of the right-hand side of
Eq. (88). This implies pumping of particles into the up-
per band, and suggests the presence of an additional term,
δn(u)(x, t )/τp, on the right-hand side of Eq. (70). Similar terms
will appear for the lower band. Such terms destabilize the dark
state. We turn to discuss their physical meaning, as well as the
meaning of the previously-obtained diffusive dynamics.

IX. DISCUSSION OF THE MAIN RESULTS: DIFFUSION
AND INSTABILITY OF THE DARK STATE

The structure of the jump operators involved in the GKSL
equation, cf. Eq. (1), allows a particle to move back and
forth both in momentum space and in real space, see Fig. 1.
Such motion resembles a random walk, leading to a diffusive
dynamics of the particle density. In the leading approximation
in γ̄ the jump processes induce elastic-like mean free time τ

for a single-particle excitation. In the presence of the unitary
part of evolution, assuming the spectrum of the Hamiltonian is
not flat, a particle has a finite velocity. Together with the mean
free time this is enough to generate diffusive dynamics with
the diffusion coefficient expressed in a standard way in terms
of the velocity and the mean free path, cf. Eq. (69). However,
since the system is more complicated than a random walk,
and, strictly speaking, the jumps are not elastic processes,
the diffusive dynamics for the GKSL equation (1) is limited
to a finite range of length and timescales. In other words,
Eq. (70) cannot describe dynamics of δn(u)

q,ω down to q→0 and
ω→0. More formally, one could anticipate this conclusion by

recalling the number of particles in upper and down bands are
not conserved separately by the dissipative part of the action,
cf. Eq. (16).

As we have shown in Secs. VII and VIII above, there are
two competing processes that affect diffusion: recombination
of particles in the upper band with holes in the lower band, and
pumping of particles into the upper band, leaving behind holes
into the lower band. Considering first the former process, and
using the expression (82) for the rate 1/τR, we find that the
purely diffusive kernel in Eq. (70) is limited to frequencies
and momenta 1/τ � |ω|, Dq2 � δn(u)/(mdτ ). Provided that
the change in the density of the particles in the upper band is
small, δn(u)�md , there is a wide interval for diffusive dynam-
ics (more on this below).

Let us now turn to the latter process. As expected from
the absence of exact cancellation between self-energy and
vertex corrections, we find a nonzero contribution to the rate
of change of the total number of the particles in the upper
band Nu, see Eq. (88). Surprisingly, this rate is positive, i.e.,
particles are pumped into the upper band. An example of a
process that results in the growth of the number of particles
in the upper band is shown in Fig. 7. This process directly
follows from the so-called “non-Hermitian Hamiltonian” part
of the Lindblad equation, involving the combinations L†

αLα .
For instance, this operator acting on a pure state with the lower
eigenband filled and the upper eigenband occupied by a single
fermion results in a superposition of states, one of which has
one hole in the lower eigenband and two fermions in the upper
one. This stems from the fact that in the jump operators Lα ,
one of the fermion operators is not an eigen-operator, but a

FIG. 7. An example of the process in which there is a pumping
of the particles in the upper band. The initial state of a particle with
a momentum p1 in the upper band and a particle with a momentum
p3 in the lower band is transformed into the state with two particles
with momenta p2 and p4 in the upper band and a hole state with a
momentum p3 in the down band.
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linear combination of such, enabling additional mixed terms
in L†

αLα . In Appendix D, we further illustrate this peculiar
property within a toy two-band model where the dissipative
dynamics also results in pumping of the population in the
upper band.

Provided that md�n, the pumping time τp is parametrically
longer than the elastic scattering time τ . Putting together all
the above considerations, we find that the diffusive kernel in
Eq. (70) is valid in a broad range,

1

τ
� |ω|, Dq2 � 1

τp
,

δn(u)

mdτ
. (90)

Combining the results of Secs. VII and VIII suggests that
the diffusion equation (70) should be modified as(

∂

∂t
− D∇2

)
δn(u)(x, t ) − δn(u)(x, t )

τp
+ [δn(u)(x, t )]2

nτR

= γ̄ χ

1 + γ̄ 2
E2(x, t ). (91)

After defining appropriate dimensionless variables, t = t/τp,
x = x/

√
τpD, f(x, t) = (τp/τR)δn(u)(x, t )/n, and J(x, t) =

γ̄ χτ 2
p E2(x, t )/[nτR(1 + γ̄ 2)], Eq. (91) attains the universal

form(
∂

∂t
− ∇̃2

)
f(x, t) − f(x, t)(1 − f(x, t)) = J(x, t), (92)

where ∇̃ corresponds to derivatives with respect to the
dimensionless coordinates x. We note that the left-hand
side of Eq. (92) is nothing but the famous Fisher-
Kolmogorov-Petrovsky-Piskunov (FKPP) reaction-diffusion
equation [58,59], which appears in numerous applications,
including the propagation of advantageous genes and combus-
tion fronts, the dynamics of domain walls and fluids, chemical
reactions, bacterial spreading, decoherence propagation, etc.;
see e.g., Refs. [60–64]. A striking hallmark of this equa-
tion is the existence of two stationary solutions f(x, t) = 1,
and f(x, t) = 0, with the latter one being unstable due to a
formation of a propagating wave with a constant velocity.
Therefore, we arrive at the conclusion that the dark state with
δnu ≡ n(τR/τp)f = 0 is unstable towards a new steady state
with a nonzero density of particles in the upper band and holes
in the lower one. The source of this instability can be either
the right-hand side of Eqs. (91) and (92), that is, an external
electric field, or a nonzero small initial δnu, see Appendix C.
In the simplest, spatially-homogeneous case [i.e., assuming
some uniform initial density δnu = n(τR/τp)f0, and a constant
external field J], Eq. (92) can be easily solved as follows:

f(t) = 1

2

{
1 +

√
1 + 4J tanh

[
arctanh

(
2f0 − 1

1 + √
4J

)

+ t
2

√
1 + 4J

]}
. (93)

The resulting time evolution of δn(u/d)(t ) is depicted in Fig. 8.
The steady-state density of the u particles and d holes is
given by |δn(u/d)

∞ | = n(τR/τp)(1 + √
1 + 4J)/2, which, in the

FIG. 8. The solution of Eq. (91) in a spatially-homogeneous
case. The red curve corresponds to the time evolution with
the initial condition δn(u)(x, 0)/|δn(u)

∞ | = 0.1, and in the absence
of external fields. The blue curve represents the solution with
δn(u)(x, 0)/|δn(u)

∞ | = 0, while the right-hand side of Eq. (91) is set
to 0.1 in units of nτR/τ 2

p .

absence of the external constant source, J = 0, reduces to

∣∣δn(u/d)
∞

∣∣ ∼ n

(
τR

τp

)
∝ nγ̄ 2

(
md

n

)2

ln2(d−1)

(
n

md

)
, (94)

for γ̄�1, with d = 1, 2 the dimensionality. Note also that
|δn(u/d)

∞ |�md . The real-space propagation of the instability,
seeded by either initial local particle density δn(u)(x, 0) or a
spatially-localized external field, is depicted in Figs. 9(a) and
9(b), respectively. After some initial diffusive relaxation, the
solution assumes the form of a traveling kink with a constant
velocity ∝√

D/τp, where the exact proportionality coefficient
is determined by the initial condition [58,59]. The detailed
study of the resulting steady state with nonzero particle and
hole densities is left for future work.

Let us finally note that, if one would fine-tune the bath
couplings (beyond requiring them to vanish on the dark state),
and replace the ψ operators in the definitions of the Lind-
blad operators (3) by the corresponding l operators, that is,
switch L1/2→l†

u/dlu, L3/4→lu/dl†
d , the pumping term would

not arise and only the diffusive kernel and the recombination
term would remain on the left-hand side of Eq. (91), hence
the dark state would be stable. However, deviations of the
density from the dark state would decay much more slowly
than exponentially. Indeed, an excitation composed of a single
particle and a single hole localized at far-away points would
need a long time (proportional to the initial distance squared)
to diffuse around till they would meet and recombine. Since
the initial distance could be of the order of the system size,
the exponential decay rate would vanish in the thermody-
namic limit. Another way to see this is to note that, assuming
spacial homogeneity, one would obtain an equation of the
form (∂/∂t )δn(u)(t ) = −[δn(u)(t )]2/(nτR), which leads to an
algebraic decay of δn for t�τR. In order to emphasize the
striking difference between this pure recombination dynamics
and the full propagating instability shown in Fig. 9(a), we
present a numerical solution of Eq. (92) in the absence of the
linear “pumping” term in Fig. 9(c).
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FIG. 9. Numerical solution of the reaction-diffusion equation (91) in the one-dimensional case on a finite interval x/
√

τpD∈(−L, L) with
L = 50, and the boundary conditions δn(u)(±L, t ) = 0, (a) in the absence of external fields, and with a spatially-localized initial condition
δn(u)(x, 0) = exp{−100(x/L

√
τpD)2}; (b) with vanishing initial density, δn(u)(x, 0) = 0, but with a local source term 0.1 exp{−20(x/L

√
τpD)2}

in units of nτR/τ 2
p . The steady-state density in the central region is slightly greater than 1 due to the presence of the source. (c) The same as in

(a), but the “pumping” term is ignored, and only recombination is included. In all cases, the density deviation δn(u)(x, t ) is measured in units
of δn(u)

∞ , see Eq. (94).

X. CONCLUSIONS

To summarize, we studied the emergence of the diffusive
regime within the two-band dissipative quantum many-body
state preparation dynamics proposed in Ref. [37]. Although
this dissipative model conserves the total number of particles
only, we demonstrate the existence of a diffusive regime for
the particle and hole density modes. This diffusive mode can
be induced by the second-order response to a scalar potential.
The diffusive regime persists up to length- and timescales
determined by the recombination processes and by pumping
of particles from the “down” to the “up” band. The latter
suggests an instability of the designed dark state, that is, the
state with fully occupied “down” and empty “up” bands. The
kinetic properties discussed above remain qualitatively the
same in either one or two spatial dimensions (and even in the
absence of the Hamiltonian dynamics), and as such, are not
related to the Berry curvature.

These results open up many future research directions. It
would be interesting to characterize the new steady state with
nonzero particle and hole densities. It would also be worth-
while to study implications of the existence of a diffusive
regime for nontrivial topological properties of the considered
model (in particular, the effect of Berry curvature on the
kinetic equation in a new steady state, similarly to [65]). In
addition, one could try to derive a nonlinear sigma-model-
like description of the diffusive regime following the lines
of Ref. [7,66]. Other potential directions include quantum
absorbing phase transitions [67], as well as the dynamics of
systems with anyonic excitations, which cannot be created
or annihilated individually even if no conservation law is
imposed [68–71].
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APPENDIX A: SELF-CONSISTENT EQUATION FOR THE
GREEN’S FUNCTION IN THE BORN APPROXIMATION

In this Appendix, we demonstrate that, in the Born ap-
proximation, the self-consistent equations admit only the dark
state solution. We consider the case γα = γ for simplicity. As
one can check, a solution of Eq. (32) exists provided that the
self-energies are related as

�K
q = �R

q Fq − Fq�
A
q + ξq[σz,Fq]. (A1)

As one can further verify, the off-diagonal element of Fq can
be written as ηq = q+μq. In what follows we assume that
nu/d,q and μp depend only on the length of the vector q. The
self-energies (29) and (30) then become

�K
q = −2iγ (dq�0 + �1 + dqnσz ) (A2)

and

�R
q = −iγ [dqn + δ1 + (dq�0 + i2mκ)σz]

+ γ�(q+w)σy + γ�(q+w)σx. (A3)

Here we introduced the following notations:

�k =
∫

q
dk

q (1 − nu,q − nd,q), δk =
∫

q
dk

q (1 + nu,q − nd,q),

w = mδ0 +
∫

q
q2μq, κ = �

∫
q

q2μq. (A4)

Then, Eq. (A1) can be rewritten as the set of three equations,

γw(nu,q − nd,q) = 2μq[γ (dqn + δ1 + i2mκ) + iξq] (A5)

and

[dq(n ± �0) + δ1](1 − 2nu/d,q)

= dq(�0 ± n) + �1 ± 2q2Reμqw
∗. (A6)

Let us impose the physical constraint that the total number of
particles is fixed,

∫
q(nu,q + nd,q) = n, i.e., �0 = 0.
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(c)

(d)

FIG. 10. Diagrams for the self-energy to second order in γ , beyond self-consistent Born approximation.

First, we consider the case ξq �= 0, and prove that there is
no other solution independent of γ except the dark state, cf.
Eq. (33). In this case, Eq. (A5) implies that μq = w = δ0 = 0.
Next, we express nu/d,q from Eq. (A6) as

1 − nu,q − nd,q = �1

dqn + δ1
, 1 + nu,q − nd,q = δ1

dqn + δ1
.

(A7)

Hence we obtain that the only consistent solution is δk =
�k = 0, which corresponds to the dark state: nu,q = 0 and
nd,q = 1.

Second, let us consider the case ξq = 0. Then Eq. (A5) im-
plies that we can take μq to be real. Consequently, κ = 0 and
w is also real. Then Eq. (A6) results in Eq. (A7). Therefore,
we find again the dark-state solution. Since δ0 = 0, Eq. (A5)
leads to μq = w = 0.

Finally, we consider the case ξq �= 0, and demonstrate that
the dark state is the only solution for γ̄�1. In this case,
Eq. (A7) is modified as follows:

1 − nu,q − nd,q = �1

dqn + δ1
,

1 + nu,q − nd,q = δ1 − 2q2Re(μqw
∗)

dqn + δ1
. (A8)

Hence, we find �1 = 0, i.e., nu,q + nd,q = 1. The other un-
knowns, μq, w, κ, and δ0,1, satisfy the following set of
nonlinear equations:

δ0 =
∫

q

δ1 − 2q2Re(μqw
∗)

dqn + δ1
, κ =

∫
q

q2�μq,

(A9a)∫
q

δ2
1

dqn + δ1
= −

∫
q

q2dqnRe(μqw
∗)

dqn + δ1
, (A9b)

μq = − γw[dqn + 2q2Re(μqw
∗)]

2(dqn + δ1)[γ (dqn + δ1 + i2mκ) + iξq]
,

(A9c)

w = mδ0 +
∫

q
q2μq

δ1 − 2q2Re(μqw
∗)

dqn + δ1
. (A9d)

We note that δ0,1 are real and nonnegative. As follows
from Eq. (A9b), these conditions imply that Re(μqw

∗) < 0.
Solving Eq. (A9c) to the lowest order in γ̄ , we find, indeed,
Re(μqw

∗) � −γ̄ 2dqn|w|2/(2ξ 2
q ) < 0. However, according to

Eqs. (A9a) and (A9b), it results in δ0,1 ∼ γ̄ . Then, as follows
from Eq. (A9d), w ∼ γ̄ . But if it is so, Re(μqw

∗) � γ̄ 4 and
we can neglect it in Eqs. (A9a) and (A9b). Then the only
solution is simply δ0,1 = 0. Consequently, we find μq = w =
κ = 0, i.e., the dark state again.

APPENDIX B: CORRECTIONS TO THE SELF-CONSISTENT BORN APPROXIMATION

In this Appendix, we compute corrections to the self-energy beyond the self-consistent Born approximation. The correspond-
ing diagrams are depicted in Fig. 10.

1. Diagram 10(a)

We start from the contributions to the self-energy to the second order in γ shown in Fig. 10(a). The corresponding corrections
to the retarded, advanced, and Keldysh components of the self-energy read

�a,(2),R
q,ε = γ 2

4

∫
p,k;ω,�

L(α)
q,p+

{
GR

p+,ε+ωL
(β )
p+,p+kGK

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+� − GK
p+,ε+ωL

(β )
p+,p+kGK

p+k,ε+ω+�L
(α)
p+k,k+

× GR
k+,ε+� + 2GR

p+,ε+ωL
(β )
p+,p+kGK

p+k,ε+ω+�L
(α)
p+k,k+GR

k+,ε+� + GK
p+,ε+ωL

(β )
p+,p+kGA

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�

+ 2GK
p+,ε+ωL

(β )
p+,p+kGA

p+k,ε+ω+�L
(α)
p+k,k+GR

k+,ε+� − GR
p+,ε+ωL

(β )
p+,p+kGA

p+k,ε+ω+�L
(α)
p+k,k+GR

k+,ε+�

}
L(β )

k+,q, (B1)

�a,(2),A
q,ε = −γ 2

4

∫
p,k;ω,�

L(α)
q,p+

{
GA

p+,ε+ωL
(β )
p+,p+kGK

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+� − GK
p+,ε+ωL

(β )
p+,p+kGK

p+k,ε+ω+�L
(α)
p+k,k+

× GA
k+,ε+� + 2GA

p+,ε+ωL
(β )
p+,p+kGK

p+k,ε+ω+�L
(α)
p+k,k+GA

k+,ε+� − GK
p+,ε+ωL

(β )
p+,p+kGR

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�

+ 2GA
p+,ε+ωL

(β )
p+,p+kGR

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+� + GA
p+,ε+ωL

(β )
p+,p+kGR

p+k,ε+ω+�L
(α)
p+k,k+GA

k+,ε+�

}
L(β )

k+,q, (B2)
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and

�a,(2),K
q,ε = γ 2

4

∫
p,k;ω,�

L(α)
q,p+

{
GA

p+,ε+ωL
(β )
p+,p+kGK

p+k,ε+ω+�L
(α)
p+k,k+GA

k+,ε+� − 2GK
p+,ε+ωL

(β )
p+,p+kGK

p+k,ε+ω+�L
(α)
p+k,k+

× GA
k+,ε+� + 2GK

p+,ε+ωL
(β )
p+,p+kGA

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+� − GK
p+,ε+ωL

(β )
p+,p+kGK

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�

− GR
p+,ε+ωL

(β )
p+,p+kGA

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+� + 2GR
p+,ε+ωL

(β )
p+,p+kGK

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�

− GK
p+,ε+ωL

(β )
p+,p+kGR

p+k,ε+ω+�L
(α)
p+k,k+GA

k+,ε+� + GA
p+,ε+ωL

(β )
p+,p+kGR

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�

− 2GK
p+,ε+ωL

(β )
p+,p+kGR

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+� + GK
p+,ε+ωL

(β )
p+,p+kGA

p+k,ε+ω+�L
(α)
p+k,k+GR

k+,ε+�

+ GR
p+,ε+ωL

(β )
p+,p+kGK

p+k,ε+ω+�L
(α)
p+k,k+GR

k+,ε+�

}
L(β )

k+,q. (B3)

Substituting the self-consistent Green’s function G for G and using the relations [L(α)
qp ](ud) = [L(α)

qp ](du) = 0, we find

[
�a,(2),R/A

q,ε

](uu) �
∫

p,k

γ 2m2(dq/dp+k)(k− p− + i[k−×p−])

ε − ξp+ − ξk+ − ξp+k ± iγ̄ (dp+ + dk+ + dp+k)
,

[
�a,(2),K

q,ε

](uu) = [
�a,(2),R

q,ε

](uu) − [
�a,(2),A

qω

](uu)
,

[
�a,(2),R/A/K

q,ε

](ud) = [
�a,(2),R/A/K

q,ε

](du) = [
�a,(2),R/A/K

q,ε

](dd) = 0. (B4)

2. Diagram 10(b)

The diagram on Fig. 10(b) reads

�b,(2),R
q,ε = γ 2

4

∫
p,k;ω,�

L(α)
q,p+

{
GR

p+,ε+ω

{
tr
[(

GA
p+k,ε+ω+�L

(α)
p+k,k+GR

k+,ε+� + GK
p+k,ε+ω+�L

(α)
p+k,k+GK

k+,ε+�

)
L(β )

k+,p+k

]
− 2tr

[
GK

p+k,ε+ω+�L
(α)
p+k,k+GR

k+,ε+�L
(β )
k+,p+k

] − 2tr
[
GA

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�L
(β )
k+,p+k

]}
− GK

p+,ε+ω

{
tr
[
GK

p+k,ε+ω+�L
(α)
p+k,k+GR

k+,ε+�L
(β )
k+,p+k

] + tr
[
GA

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�L
(β )
k+,p+k

]}}
L(β )

p+,q, (B5)

�b,(2),A
q,ε = γ 2

4

∫
p,k;ω,�

L(α)
q,p+

{
GA

p+,ε+ω

{
tr
[(

GR
p+k,ε+ω+�L

(α)
p+k,k+GA

k+,ε+� + GK
p+k,ε+ω+�L

(α)
p+k,k+GK

k+,ε+�

)
L(β )

k+,p+k

]
+ 2tr

[
GK

p+k,ε+ω+�L
(α)
p+k,k+GA

k+,ε+�L
(β )
k+,p+k

] + 2tr
[
GR

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�L
(β )
k+,p+k

]}
− GK

p+,ε+ω

{
tr
[
GK

p+k,ε+ω+�L
(α)
p+k,k+GA

k+,ε+�L
(β )
k+,p+k

] + tr
[
GR

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�L
(β )
k+,p+k

]}}
L(β )

p+,q, (B6)

and

�b,(2),K
q,ε = γ 2

4

∫
p,k;ω,�

L(α)
q,p+

{
GK

p+,ε+ω

{
tr
[
GK

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+� + GR
p+k,ε+ω+�L

(α)
p+k,k+GA

k+,ε+�

)
L(β )

k+,p+k

]
+ 2tr

[
GK

p+k,ε+ω+�L
(α)
p+k,k+GA

k+,ε+�L
(β )
k+,p+k

] − 2tr
[
GK

p+k,ε+ω+�L
(α)
p+k,k+GR

k+,ε+�L
(β )
k+,p+k

]
+ 2tr

[
GR

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�L
(β )
k+,p+k

] − 2tr
[
GA

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�L
(β )
k+,p+k

]
+ tr

[
GA

p+k,ε+ω+�L
(α)
p+k,k+GR

k+,ε+�L
(β )
k+,p+k

]} − GA
p+,ε+ω

{
tr
[
GK

p+k,ε+ω+�L
(α)
p+k,k+GA

k+,ε+�L
(β )
k+,p+k

]
+ tr

[
GR

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�L
(β )
k+,p+k

]} − GR
p+,ε+ω

{
tr
[
GK

p+k,ε+ω+�L
(α)
p+k,k+GR

k+,ε+�L
(β )
k+,p+k

]
+ tr

[
GA

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�L
(β )
k+,p+k

]}}
L(β )

p+,q. (B7)

Again, after substituting the self-consistent Green’s function G for G, we obtain

[
�b,(2),R/A

q,ε

](uu) = −
∫

p,k

γ 2m2k2
− dqdk+/(dp+kdp+ )

ε − ξp+ − ξk+ − ξp+k ± iγ̄ (dp+ + dk+ + dp+k)
,

[
�b,(2),K

q,ε

](uu) = [
�b,(2),R

q,ε

](uu) − [
�b,(2),A

q,ε

](uu)
,

[
�b,(2),R/A/K

q,ε

](ud) = [
�b,(2),R/A/K

q,ε

](du) = [
�b,(2),R/A/K

q,ε

](dd) = 0. (B8)
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3. Diagram 10(c)

The next contribution, diagram 10(c), corresponds to diagram 10(a) with all matrices L(α)
qp and L(β )

qp interchanged with L(α)
qp

and L(β )
qp , respectively. We obtain

�c,(2),R
q,ε = γ 2

4

∫
p,k;ω,�

L(α)
q,p+

{
GR

p+,ε+ωL
(β )
p+,p+kGK

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+� − GK
p+,ε+ωL

(β )
p+,p+kGK

p+k,ε+ω+�L
(α)
p+k,k+

× GR
k+,ε+� − 2GR

p+,ε+ωL
(β )
p+,p+kGK

p+k,ε+ω+�L
(α)
p+k,k+GR

k+,ε+� + GK
p+,ε+ωL

(β )
p+,p+kGA

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�

− 2GK
p+,ε+ωL

(β )
p+,p+kGA

p+k,ε+ω+�L
(α)
p+k,k+GR

k+,ε+� − GR
p+,ε+ωL

(β )
p+,p+kGA

p+k,ε+ω+�L
(α)
p+k,k+GR

k+,ε+�

}
L(β )

k+,q, (B9)

�c,(2),A
q,ε = −γ 2

4

∫
p,k;ω,�

L(α)
q,p+

{
GA

p+,ε+ωL
(β )
p+,p+kGK

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+� − GK
p+,ε+ωL

(β )
p+,p+kGK

p+k,ε+ω+�L
(α)
p+k,k+

× GA
k+,ε+� − 2GA

p+,ε+ωL
(β )
p+,p+kGK

p+k,ε+ω+�L
(α)
p+k,k+GA

k+,ε+� − GK
p+,ε+ωL

(β )
p+,p+kGR

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�

− 2GA
p+,ε+ωL

(β )
p+,p+kGR

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+� + GA
p+,ε+ωL

(β )
p+,p+kGR

p+k,ε+ω+�L
(α)
p+k,k+GA

k+,ε+�

}
L(β )

k+,q, (B10)

and

�c,(2),K
q,ε = γ 2

4

∫
p,k;ω,�

L(α)
q,p+

{[
GA

p+,ε+ωL
(β )
p+,p+kGK

p+k,ε+ω+�L
(α)
p+k,k+ + 2GK

p+,ε+ωL
(β )
p+,p+kGK

p+k,ε+ω+�L
(α)
p+k,k+

]
GA

k+,ε+�

− 2GK
p+,ε+ωL

(β )
p+,p+kGA

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+� − GK
p+,ε+ωL

(β )
p+,p+kGK

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�

− GR
p+,ε+ωL

(β )
p+,p+kGA

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+� − 2GR
p+,ε+ωL

(β )
p+,p+kGK

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�

− GK
p+,ε+ωL

(β )
p+,p+kGR

p+k,ε+ω+�L
(α)
p+k,k+GA

k+,ε+� + GA
p+,ε+ωL

(β )
p+,p+kGR

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�

+ 2GK
p+,ε+ωL

(β )
p+,p+kGR

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+� + GK
p+,ε+ωL

(β )
p+,p+kGA

p+k,ε+ω+�L
(α)
p+k,k+GR

k+,ε+�

+ GR
p+,ε+ωL

(β )
p+ p+kGK

p+k,ε+ω+�L
(α)
p+k,k+GR

k+,ε+�

}
L(β )

k+,q. (B11)

Substituting the self-consistent Green’s function G instead of G, we find

[
�c,(2),R/A

q,ε

](dd) =
∫

p,k

γ 2m2(dq/dp+k)(k− p− − i[k−×p−])

ε + ξp+ + ξk+ + ξp+k ± iγ̄ (dp+ + dk+ + dp+k)
,

[
�c,(2),K

q,ε

](dd) = −[
�c,(2),R

q,ε

](dd) + [
�c,(2),A

q,ε

](dd)
,

[
�c,(2),R/A/K

q,ε

](uu) = [
�c,(2),R/A/K

q,ε

](ud) = [
�c,(2),R/A/K

q,ε

](du) = 0. (B12)

4. Diagram 10(d)

The last contribution, diagram 10(d), is obtained from diagram 10(b) upon interchanging all matrices L(α)
qp and L(β )

qp with L(α)
qp

and L(β )
qp , respectively. We obtain

�d,(2),R
q,ε = γ 2

4

∫
p,k;ω,�

L(α)
q,p+

{
GR

p+,ε+ω

{
tr
[(

GA
p+k,ε+ω+�L

(α)
p+k,k+GR

k+,ε+� + GK
p+k,ε+ω+�L

(α)
p+k,k+GK

k+,ε+�

)
L(β )

k+,p+k

]
+ 2tr

[
GK

p+k,ε+ω+�L
(α)
p+k,k+GR

k+,ε+�L
(β )
k+,p+k

] + 2tr
[
GA

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�L
(β )
k+,p+k

]}
− GK

p+,ε+ω

{
tr
[
GK

p+k,ε+ω+�L
(α)
p+k,k+GR

k+,ε+�L
(β )
k+,p+k

] + tr
[
GA

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�L
(β )
k+,p+k

]}}
L(β )

p+,q, (B13)

�d,(2),A
q,ε = γ 2

4

∫
p,k;ω,�

L(α)
q,p+

{
GA

p+,ε+ω

{
tr
[(

GR
p+k,ε+ω+�L

(α)
p+k,k+GA

k+,ε+� + GK
p+k,ε+ω+�L

(α)
p+k,k+GK

k+,ε+�

)
L(β )

k+,p+k

]
− 2tr

[
GK

p+k,ε+ω+�L
(α)
p+k,k+GA

k+,ε+�L
(β )
k+,p+k

] − 2tr
[
GR

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�L
(β )
k+,p+k

]}
− GK

p+,ε+ω

{
tr
[
GK

p+k,ε+ω+�L
(α)
p+k,k+GA

k+,ε+�L
(β )
k+,p+k

] + tr
[
GR

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�L
(β )
k+,p+k

]}}
L(β )

p+,q, (B14)
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and

�d,(2),K
q,ε = γ 2

4

∫
p,k;ω,�

L(α)
q,p+

{
GK

p+,ε+ω

{
tr
[(

GK
p+k,ε+ω+�L

(α)
p+k,k+GK

k+,ε+� + GR
p+k,ε+ω+�L

(α)
p+k,k+GA

k+,ε+�

)
L(β )

k+,p+k

]
− 2tr

[
GK

p+k,ε+ω+�L
(α)
p+k,k+GA

k+,ε+�L
(β )
k+,p+k

] + 2tr
[
GK

p+k,ε+ω+�L
(α)
p+k,k+GR

k+,ε+�L
(β )
k+,p+k

]
− 2tr

[
GR

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�L
(β )
k+,p+k

] + 2tr
[
GA

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�L
(β )
k+,p+k

]
+ tr

[
GA

p+k,ε+ω+�L
(α)
p+k,k+GR

k+,ε+�L
(β )
k+,p+k

]} − GR
p+,ε+ω

{
tr
[
GA

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�L
(β )
k+,p+k

]
+ tr

[
GK

p+k,ε+ω+�L
(α)
p+k,k+GR

k+,ε+�L
(β )
k+,p+k

]} − GA
p+,ε+ω

{
tr
[
GR

p+k,ε+ω+�L
(α)
p+k,k+GK

k+,ε+�L
(β )
k+,p+k

]
+ tr

[
GK

p+k,ε+ω+�L
(α)
p+k,k+GA

k+,ε+�L
(β )
k+,p+k

]}}
L(β )

p+,q. (B15)

Substitution of the self-consistent Green’s function G for G yields

[
�d,(2),R/A

q,ε

](dd) = −
∫

p,k

γ 2m2k2
−dqdk+/(dp+kdp+ )

ε + ξp+ + ξk+ + ξp+k ± iγ̄ (dp+ + dk+ + dp+k)
,

[
�d,(2),K

q,ε

](dd) = −[
�d,(2),R

q,ε

](dd) + [
�d,(2),A

q,ε

](dd)
,

[
�d,(2),R/A/K

q,ε

](uu) = [
�d,(2),R/A/K

q,ε

](ud) = [
�d,(2),R/A/K

q,ε

](du) = 0. (B16)

5. The total result

There are also contributions, which are similar to diagrams 10(a) and 10(b) with L(α)
qp interchanged with L(α)

qp , or, alternatively,

L(β )
qp interchanged with L(β )

qp . However, once the self-consistent Green’s functions are substituted, these diagrams vanish.
Therefore, in total, we find the following nonzero components:[

�(2),R/A
q,ε

](uu) = γ̄ 2dqϒ±(q, ε),
[
�(2),R/A

q,ε

](dd) = −γ̄ 2dqϒ∓(q,−ε), �(2),K
q,ε = �(2),R

q,ε σz − σz�
(2),A
q,ε ,

ϒ±(q, ε) = − m2

2n2

∫
p,k

1

dp+k

(k−
√

dk+/dp+ − p−
√

dp+/dk+ )2

ε − ξp+ − ξk+ − ξp+k ± iγ̄ (dp+ + dk+ + dp+k)
. (B17)

Evaluating ϒ±(q, ε) at q = ε = 0, we obtain

ϒ±(0, 0) = 1

4π

1

1 ∓ iγ̄

md

n

{
3, d = 1,

ln(n/m2), d = 2.
(B18)

Here we assumed that n � md for d = 1, 2. This result suggests that deviations from the self-consistent Born approximation
(due to crossing diagrams) is fully controlled by the small parameter md/n � 1 (even for γ̄ of the order of unity).

If the unitary dynamics is absent, ξp = 0, we find that

ϒ±(0, 0) = ± i

4πγ̄

md

n

{
3, d = 1,

ln(n/m2), d = 2.
(B19)

Again, the above result suggests that deviations from the self-consistent Born approximation are fully controlled by the small
parameter md/n � 1.

In the absence of unitary dynamics, ξq = 0, the real part of the self-energy (B17) could in principle have resulted in the
appearance of an effective spectrum for the particles. Let us examine this. Writing ε = ε′ + iε′′, we obtain the following
equation for the real part of the spectrum ε′:

ε′ = −γ̄ 2dq
m2

2n2

∫
p,k

ε′

dp+k

k2
−dk+/dp+ + p2−dp+/dk+ − 2k− p−

ε′2 + [γ̄ (dp+ + dk+ + dp+k) + ε′′]2
. (B20)

However, since k2
−dk+/dp+ + p2−dp+/dk+ − 2k− p− � 0, the only solution of Eq. (B20) is ε′ = 0.

APPENDIX C: HYBRIDIZATION OF THE “UP” AND “DOWN” BANDS BY AN EXTERNAL SCALAR POTENTIAL

Due to the presence of the off-diagonal matrix elements �(ud) and �(du), an external scalar potential results in a nonzero
density of the particles in the upper band. This effect was illustrated by a toy model at the end of Sec. VI. In this Appendix, we
estimate the corresponding density δn(u)

q,ω induced by transitions caused by the external potential. Since such hybridization occurs
even in the absence of dissipation we set γ = 0 for the sake of simplicity.
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Using Eqs. (62) and (63) for γ = 0, we write

T (uu)
p,q;ω = 2π i

∫
ε

�
(ud)
p++Q−/2,−Q−;�+�

(du)
p−+Q+/2,Q+;−�−

[
F (u)

ε− δ(ε− − ξp− )

(ε+ − ξp+ + i0+)(ε − � + ξp+Q + i0+)

+ F (u)
ε+ δ(ε+ − ξp+ )

(ε − � + ξp+Q − i0+)(ε− − ξp− − i0+)
+ F (d)

ε−�δ(ε − � + ξp+Q)

(ε+ − ξp+ + i0+)(ε− − ξp− − i0+)

]
. (C1)

Here F (u/d)
ε stands for the distribution function of the “up”/“down” particles, respectively. For the dark state we have F (u)

ε =
−F (d)

ε = 1. Integrating over ε and using Eq. (61) strictly at γ = 0, we obtain the following result:

δn(u)
q,ω = i

2

∫
p

T (uu)
p,q;ω =

∫
p,Q,�

�
(ud)
p++Q−/2,−Q−;�+�

(du)
p−+Q+/2,Q+;−�−

(−�− + ξp− + ξp+Q + i0+)(−�+ + ξp+ + ξp+Q − i0+)
. (C2)

The above equation suggests the following interpretation. We
set q = ω = 0 on the right-hand side for simplicity. The ma-
trix element �(ud) corresponds to the transition from a state
with the energy ξp+ in the upper band to a virtual state with the
energy ξp + ξp+Q − � in the down band. The matrix element
�(du) corresponds to the transition back from the virtual state
with the energy ξp + ξp+Q − � in the down band to a state
with the energy ξp− in the upper band.

As expected, the imaginary part of the response function
(C2) is nonzero for � > 2m2 only. For the real part, we obtain
at low frequencies

δn(u)
0 (x, t ) � E2(x, t )

∫
p

m2

4ξ 4
p

∝ χ

m2
E2(x, t ). (C3)

In the derivation we took into account that a typical p ∼ m is
much larger than both Q and q.

APPENDIX D: CARTOON EXAMPLE
OF THE DARK-STATE INSTABILITY

In this Appendix, we consider a simple discrete 1D two-
band model, which mimics some aspects of the full model
investigated in the main text. Specifically, we start with the
following Hamiltonian:

H0 = t
∑

j

(ψ†
↑, j+1ψ↓, j + H.c.). (D1)

Note that H0 is block diagonal as only the pairs of states
(↑, j + 1) and (↓, j) for all j are coupled. Formally, this
Hamiltonian is equivalent to the Su–Schrieffer–Heeger model
[72] in the maximally-dimerized limit t ′/t = 0.

One can easily check that Eq. (D1) can be brought to the
diagonal form

H0 = t
∑

j

(l†
u, j lu, j − l†

d, j ld, j ) (D2)

by means of the following transformation:

ψ↑, j = 1√
2

(lu, j−1 − ld, j−1), ψ↓, j = 1√
2

(lu, j + ld, j ),

lu, j = 1√
2

(ψ↓, j + ψ↑, j+1), ld, j = 1√
2

(ψ↓, j − ψ↑, j+1).

(D3)

The operators lu/d, j correspond to the hybridized orbitals be-
longing to a single dimer. Note that, similarly to the operators
lu/d(x) introduced in the main text [cf. Eq. (4)], our lu/d, j can
be expressed through linear combination of the lattice deriva-
tives δ j ≡ ψ↑, j+1 − ψ↑, j as well as the sum and difference of
the two on-site annihilation operators, n j ≡ ψ↑, j + ψ↓, j and
mj ≡ ψ↑, j − ψ↓, j ,

lu, j = 1√
2

(n j + δ j ), ld, j = − 1√
2

(mj + δ j ). (D4)

At half-filling, the ground state of H0 consists of all the d
orbitals being occupied on all sites, while all u orbitals are
empty. Following the notation introduced in the main text, we
will refer to this state as a “dark state” and denote it by |D〉.

The dynamics is governed by the GKSL equation, taking
the form

dρ

dt
= −i[H0, ρ] +

∑
σ=↑/↓

γσ

∑
j

(
2L(σ )

j ρ
(
L(σ )

j

)†

− {(
L(σ )

j

)†
L(σ )

j , ρ
})

. (D5)

The dissipative part of dynamics is specified by the following
jump operators:

L(σ )
j = ψ

†
σ, j lu, j, σ =↑,↓, (D6)

with the associated coupling constants γ↑ and γ↓, respectively.
We emphasize that this particular choice of L(σ )

j is very similar
to L1/2(x) introduced in the main text [cf. Eq. (3)]. It is con-
venient to make use of Eq. (D3) and rewrite these operators in
terms of lu/d, j only. As a result, we obtain

L(↑)
j = 1√

2
(l†

u, j−1 − l†
d, j−1)lu, j, L(↓)

j = 1√
2

(l†
u, j + l†

d, j )lu, j .

(D7)
The physical process represented by these operators is simple:
They take a particle from the “up” band on a given site, and
either dump it into the “down” band, or keep it in the “up”
band. In both cases, L(↑)

j also slightly shifts the particle in real

space, while L(↓)
j keeps it on the same site. Let us now high-

light some of the important features of these jump operators
[which they, in part, share with their more involved relatives
L1/2(x)]. First of all, L(σ )

j are not products of eigen-operators
of H0, but rather consist of a linear combination of such. In
simple terms, L(σ )

j can be written as L(σ )
j = A(σ )

j + B(σ )
j , where
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A(σ )
j and B(σ )

j correspond to only one of particular physical
processes just described (interband and intraband transitions).
This is different from the case when A(σ )

j and B(σ )
j act as sepa-

rate jump operators, since the GKSL equation contains terms
quadratic in L. Therefore, our choice of L(σ )

j allows for mixed

operators of the form (A(σ )
j )†B(σ )

j , etc. Second, while L(↓)
j is

purely local (i.e., it only acts on a single site j), L(↑)
j actually

couples nearest neighbors j and j − 1. As we will see, this
condition enables the mixed operators to act nontrivially and
produce additional excitations. Finally, we have L(σ )

j |D〉 = 0,
implying that the density matrix ρD = |D〉〈D| is a possible
steady-state solution of the corresponding GKSL equation.
Since both L(σ )

j contain terms that move particles from the
“up” band to the “down” band (and not the other way around),
one could naïvely expect that at sufficiently long times local
perturbations around the dark state ρD should relax towards it.
We shall now see that this is not the case.

Our strategy will be to contrast the two limiting cases:
(a) t = γ↑ = 0, and (b) t = γ↓ = 0. We will show that ρD

is a unique (and “attractive”) steady state only in the case
(a), whereas (b) features a continuous family of attractive
steady-state solutions with a finite occupation number in the
“up” band.

As a warm-up, let us start with case (a), t = γ↑ = 0. Since
the dynamics is purely local, it is sufficient to consider only
the following two states:

|..u..〉 = l†
u, j |.. ◦ ..〉, |..d..〉 = l†

d, j |.. ◦ ..〉, (D8)

where the symbol “◦” denotes a completely empty site j,
while the rest of the sites can have arbitrary occupation (the
density matrix is factorized). Note that the states of the form
l†
u, j l

†
d, j |.. ◦ ..〉 are allowed, but they cannot relax under the

dynamics introduced by L(↓)
j (clearly, L(↓)

j acting on these
states gives zero), so we ignore them. One can make use of
the operator identity

(L(↓)
j )†L(↓)

j = 1

2
l†
u, j lu, j (1 − l†

d, j ld, j ), (D9)

which leads to the following matrix elements:

L(↓)
j = 1√

2

(
1 0
1 0

)
j

, (L(↓)
j )†L(↓)

j =
(

1 0
0 0

)
j

. (D10)

The index j refers to the local basis (D8). The most general
ansatz for the site- j reduced density matrix is given by

ρ j (t ) =
(

1 − ρD(t ) ρm(t )
ρm(t ) ρD(t )

)
j

. (D11)

After substituting this expression into the corresponding
GKSL equation, and making use of the matrix representation
(D10), we obtain

ρ̇D(t ) = 1 − ρD(t ), ρ̇m(t ) = 1 − ρD(t ) − ρm(t ). (D12)

The initial condition ρD(0) = ρm(0) = 0, leads to ρD(t ) =
1 − exp(−t ), ρm(t ) = t exp(−t ), with the attractive steady-
state solution ρD(t = ∞) = 1, ρm(t = ∞) = 0. This result
indeed confirms our naïve expectations regarding the dynam-
ics of this system.

Case (b), t = γ↓ = 0, is much more involved. To see how
the complications arise, one can use the identity

(L(↑)
j )†L(↑)

j = 1
2 l†

u, j lu, j (2 − l†
u, j−1lu, j−1 − l†

d, j−1ld, j−1

+ l†
u, j−1ld, j−1 + l†

d, j−1lu, j−1), (D13)

and act by this operator on the initial state l†
u, j ld, j |D〉 corre-

sponding to a simple one-particle excitation around the dark
state (i.e., only one particle in the “up” band). The result reads

(L(↑)
j )†L(↑)

j l†
u, j ld, j |D〉 = 1

2 l†
u, j ld, j |D〉 + 1

2 l†
u, j−1ld, j−1l†

u, j ld, j |D〉,
(D14)

where the last term stems from the interference between the
two terms in L(↑)

j . Crucially, this extra contribution represents
a state with two particles in the “up” band. The corresponding
physical process is the following: We first use the operator
l†
u, j−1lu, j appearing L(↑)

j to move an “up” particle from the

site j to j − 1, and then use l†
u, j ld, j−1 from (L(↑)

j )† to move a
“down” particle to the “up” band. Thus, this process provides
a mechanism for “pumping” of particles to the “up” band.
Importantly, this process competes with the recombination of
“up” particles and “down” holes (described by the remaining
terms in the GKSL equation), which tends to relax the system
towards the dark state. In order to analyze this competition in
more detail, we will solve a two-site version of this problem
only (which is sufficient to illustrate the general situation).

The full basis of a two-site model at half-filling consists of
six states,

|u, u〉 = l†
u,1l†

u,2|◦, ◦〉, |u, d〉 = l†
u,1l†

d,2|◦, ◦〉,
|d, u〉 = l†

d,1l†
u,2|◦, ◦〉,

|u/d, ◦〉 = l†
u,1l†

d,1|◦, ◦〉, |◦, u/d〉 = l†
u,2l†

d,2|◦, ◦〉,
|d, d〉 ≡ |D〉 = l†

d,1l†
d,2|◦, ◦〉. (D15)

The matrix elements of the jump operators read as follows:

L(↑)
1 = 1√

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
1 1 0 0 0 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

L(↑)
2 = 1√

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

−1 0 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (D16)

Here we assumed periodic boundary conditions. One can
easily check that the right-hand side of the corresponding
GKSL equation vanishes if evaluated with the following two-
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FIG. 11. Numerical solution of the GKSL equation for the toy two-band model on two sites (fort = γ↓ = 0) prepared in the initial state
|u, d〉 [see Eq. (D15) for the definition]. Left panel: The time dependence of the diagonal elements ρk,k of the density matrix ρ(t ). Right panel:
The expectation value of the total number of particles in the “up” band. The red dashed line corresponds to the steady-state limit Nu = 2/3.

parameter density matrix:

ρ∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρu −ρu −ρu 0 0 ρm

−ρu ρu ρu 0 0 −ρm

−ρu ρu ρu 0 0 −ρm

0 0 0 0 0 0
0 0 0 0 0 0
ρm −ρm −ρm 0 0 1 − 3ρu

⎞
⎟⎟⎟⎟⎟⎟⎠

, (D17)

with the condition (1 − 6ρu)2 + 12ρ2
m � 1, required for the

eigenvalues of ρ∗ to remain nonnegative (note that Tr ρ∗ = 1
as it should be). In fact, Eq. (D17) is the most general form of
the steady-state solution in this model. In particular, the choice
ρm = ρu = 0 gives the dark state ρ∗ = ρD. The expectation
value of the total number of particles in the “up” band can be
easily computed as

Nu =
∑

j

tr(l†
u, j lu, jρ∗) = 4ρu. (D18)

The resulting steady state (with particular ρu and ρm) de-
pends on the initial conditions. Let us consider ρ(t = 0) =

|u, d〉〈u, d| [thus, Nu(t = 0) = 1], and study how the system
evolves with time. In Fig. 11, we demonstrate a numerical
solution of the corresponding GKSL equation. One can see
that the diagonal matrix elements corresponding to the states
|u, u〉, |D〉 and |d, u〉 grow with time monotonically (although
with different rates), while the amplitude for |u, d〉 decays,
and eventually saturates at a finite value. At the same time,
the amplitudes for |◦, u/d〉 and |u/d, ◦〉 initially increase,
but then quickly approach zero, in full agreement with the
steady-state structure of Eq. (D17). We emphasize that the
competition between recombination and “pumping” results in
a finite expectation value for the total number of particles in
the “up” band (see the right panel in Fig. 11). This aspect of
the toy model resembles our results for the full model studied
in the main text. As a final remark, we note that in addition
to the jump operators L(↑)

j containing lu, j , one could include

operators with l†
d, j since they also annihilate the dark state.

In particular, it is easy to verify that the following choice
L̃(↓)

j = ψ↓, j−1l†
d, j = (lu, j−1 + ld, j−1)l†

d, j/
√

2 leads to the same
steady density matrix as in Eq. (D17).
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