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Hydroclimatic extremes contribute to asymmetric
trends in ecosystem productivity loss
Jun Li1,2, Emanuele Bevacqua 1, Zhaoli Wang 2, Stephen Sitch 3, Vivek Arora4, Almut Arneth5,

Atul K. Jain 6, Daniel Goll 7, Hanqin Tian8 & Jakob Zscheischler 1✉

Gross primary production is the basis of global carbon uptake. Gross primary production

losses are often related to hydroclimatic extremes such as droughts and heatwaves, but the

trend of such losses driven by hydroclimatic extremes remains unclear. Using

observationally-constrained and process-based model data from 1982-2016, we show that

drought-heat events, drought-cold events, droughts and heatwaves are the dominant drivers

of gross primary production loss. Losses associated with these drivers increase in northern

midlatitude ecosystem but decrease in pantropical ecosystems, thereby contributing to

around 70% of the variability in total gross primary production losses. These asymmetric

trends are caused by an increase in the magnitude of gross primary production losses in

northern midlatitudes and by a decrease in the frequency of gross primary production loss

events in pantropical ecosystems. Our results suggest that the pantropics may have become

less vulnerable to hydroclimatic variability over recent decades whereas gross primary pro-

duction losses and hydroclimatic extremes in northern midlatitudes have become more

closely entangled.
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The terrestrial ecosystem is an essential component of the
current global carbon sink1, sequestering around one-third
of the annual anthropogenic carbon emissions and there-

fore mitigates the increase in atmospheric CO2 concentration and
the associated global warming2. Terrestrial gross primary pro-
duction (GPP), the total amount of CO2 fixed by plants via
photosynthesis, is the largest global carbon flux driving the net
carbon balance of the terrestrial ecosystem3, 4. However, terres-
trial ecosystems are adapted to a limited range of hydroclimatic
conditions and GPP is highly sensitive to hydroclimatic extremes,
which can cause persistent GPP reductions5, 6.

Droughts, extremely wet conditions, heatwaves and cold spells,
as well as the corresponding compound hydroclimatic events
(e.g., compound drought-heat events) are commonly studied
climate extremes7. These hydroclimatic extremes are one of the
major contributors to GPP variability, via water scarcity, soil
waterlogging, thermal stress, hypoxic conditions, and frost
damage8. Changes in frequency and intensity of hydroclimatic
extremes are one consequence of global climate change9–11. For
instance, the water vapor content of the atmosphere has increased
over the past few decades due to global warming, affecting the
global hydrological cycle12. Consequently, changes in hydrocli-
matic extremes can impact GPP and hence the terrestrial carbon
sink13, 14. Most studies have concluded that the occurrence of
severe droughts or heatwaves generally decreased GPP on a
regional or global scale15–18. In addition, GPP losses arising from
compound drought-heat events usually outpace those of indivi-
dual droughts or heatwaves19–21. Recently, the risk and cumula-
tive effects of drought on global GPP have been investigated22, 23.
Overall, these research results confirm the close relationship
between GPP losses and hydroclimatic extremes. Cold spells and
extreme wetness are another type of climate extreme that can
affect vegetation growth and photosynthesis. The GPP responses
to cold spells and extreme wetness has attracted some attention,
given that such events still occur frequently, despite ongoing
global warming24, 25. The ample evidence of systematic impacts
from hydroclimatic extremes raises concerns about whether
hydroclimatic extremes have contributed to a shift in GPP losses
across regional and global scales. However, the conclusions
regarding the trend in GPP response to hydroclimatic extremes
are uncertain due to the varying sensitivities of terrestrial eco-
systems to hydroclimatic extremes26–29. For instance, some stu-
dies have shown an increase in drought-induced GPP losses and
drought-sensitive areas in the vast northern regions4, 30, while
others have suggested a weakened drought impacts in some wet
regions31, 32. Furthermore, which extreme events are significantly
associated with GPP losses remain unclear. Therefore, it is rele-
vant to thoroughly study the effects of hydroclimatic extremes on
changes in GPP losses during last three decades, which is critical
for deepening our understanding of the terrestrial carbon cycle
and its future evolution.

Here, we investigated the role of hydroclimatic extremes
on global GPP losses over the last three and a half decades. We
attributed the GPP losses to drought, wet extremes, heat,
cold extremes, and corresponding compound hydroclimatic events
based on the coincidence of significant climate anomalies (Meth-
ods). We employed long-term (1982–2016) observationally-
constrained and state-of-the-art modeled GPP products produced
with different approaches, including light use efficiency (LUE)33,
near-infrared reflectance (NIRv)34, upscaled eddy covariance flux
tower measurements (FLUXCOM)35, and an ensemble of 12
dynamic global vegetation models (DGVMs)36. We used two
compound event indices to characterize compound hydroclimatic
conditions (i.e., drought-heat extreme, drought-cold extreme, wet-
cold extreme, and wet-heat extreme). In general, drought and wet
extremes were identified via soil moisture from the Global Land

Evaporation Amsterdam Model, the Global Land Data Assimila-
tion System (GLDAS), and ECMWF Reanalysis v5, while heat and
cold extremes were identified by temperature (Methods).

Result
GPP losses associated with hydroclimatic extremes. We quan-
tified the GPP losses attributed to hydroclimatic extremes across
the globe during 1982–2016. Globally, GPP losses show a strong
association with a variety of hydroclimatic extremes. Drought-
heat extremes explain the largest contribution to global GPP
losses (30.9 ± 5.1%), followed by droughts (29.9 ± 5.2%), drought-
cold extremes (27.9 ± 3.4%), heat extremes (24.2 ± 2.8%), and
cold extremes (16.8 ± 2.1%) (Fig. 1a). In contrast, wet-heat
extremes, wet-cold extremes, and wet extremes are not sig-
nificantly related to GPP losses at the global scale, explaining
13.7 ± 2.0%, 13.1 ± 2.6%, and 11.1 ± 2.6% of the global GPP losses,
respectively (Fig. 1a). The GPP losses associated with hydrocli-
matic extremes show clear spatial patterns. Drought-heat,
drought, and heat extremes cause widespread negative effects, and
the corresponding hotspots of their impacts are predominantly
situated in mid-to-low latitudes (Fig. 1b, c, e). The effects of wet-
cold and wet extremes are mostly localized in boreal northern
high latitudes (Fig. 1h, i). Areas associated with cold extremes
mainly occur in northern high latitudes and eastern Asia (Fig. 1f).
Notably, drought-cold impacts are widely distributed in much of
the global land (Fig. 1d), while wet-heat impacts are scattered in
southern America and central Africa (Fig. 1g).

All the above results based on GPP and extreme indices with
linear trends removed are similar when employing GPP and
indices with non-linear trends removed and utilizing different soil
moisture products (Supplementary Figs. S1–3). Taken together,
drought-heat, drought, drought-cold, and heat extremes are
identified as the dominant hydroclimatic extremes causing GPP
losses over large areas of the global land, indicating the dominant
adverse impact of these hydroclimatic extremes on global
terrestrial carbon uptake.

Given the strong seasonality and regionality of the response of
GPP to hydroclimatic variations24, we investigated the latitudinal
and monthly patterns of GPP losses associated with hydroclimatic
extremes (Supplementary Fig. S4). The highest GPP losses related
to each extreme is mainly concentrated at mid-to-low latitudes.
Furthermore, the effect of hydroclimatic extremes on GPP shows
a clear temporal pattern. In the northern mid-to-low latitudes,
GPP losses associated with hydroclimatic extremes predomi-
nantly occur during the growing season (i.e., May to September),
while in the pantropics, hydroclimatic extremes cause higher GPP
losses during wet season months (i.e., January–April and
October–December).

Trends in GPP loss associated with hydroclimatic extremes.
Next, we assessed trends in the magnitude of GPP losses asso-
ciated with hydroclimatic extremes over recent decades. Since
high GPP losses mostly occur in the global mid-to-low latitudes,
where drought-heat, drought-cold, drought, and heat extremes
are the dominant drivers (Fig. 1 and Supplementary Fig. S4), we
investigated GPP loss trends associated with these hydroclimatic
extremes. Globally, GPP losses associated with drought-cold
extremes present an intensification, while GPP losses related to
drought and heat show little changes (Supplementary Fig. S5). In
general, the spatial pattern of the losses shows both increasing
and decreasing trends. Areas of increasing trends of GPP losses
are broadly situated in northern midlatitudes, whereas areas
with decreasing trends are more localized in the pantropics
(Supplementary Fig. S5).
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We then performed a regional analysis, focusing on the
northern midlatitudes (23.5-65°N) and pantropics (23.5°S-
23.5°N), which play important roles in regulating the global
carbon cycle and atmospheric CO2 concentration13, 37. In both
regions, drought-heat, drought-cold, drought, and heat extremes
are the dominant drivers of GPP losses (Fig. 2a, b). Specifically,
52.1 ± 4.1% and 55.2 ± 6.6% of GPP losses are associated with
these extremes in the northern midlatitudes and pantropics,
respectively, implying strong impacts of these hydroclimatic
extremes on GPP losses20, 38. The GPP losses associated with the
identified dominant drivers have asymmetrical trends in the two
regions, with losses increasing in northern midlatitudes (Fig. 2c)
but decreasing across the pantropics (Fig. 2d). We further
investigate how well the trends from dominant drivers determine
regional GPP losses. For the two focus-regions, the trends of
regional total GPP losses are strongly correlated with the trends
of GPP losses attributed to these extreme drivers across GPP
datasets (P < 0.01), explaining about 66% and 82% of the variance
in total trends in the northern midlatitudes and pantropics,
respectively (Fig. 2e, f). These results suggest that these
hydroclimatic extremes contribute primarily to the rising adverse
impacts on plant productivity in the northern midlatitudes and
the weakening impacts across the pantropics.

Results are similar when using GPP products and indices with
removed non-linear trends, different moving windows, and
different soil moisture products (Supplementary Figs. S6–10).
Taken together, drought-heat, drought-cold, drought, and heat
extremes play a dominant role in increasing and decreasing GPP

losses across the northern midlatitudes and pantropics over the
last three decades, respectively.

The identified asymmetry may be related to changes in the
frequency of GPP loss associated with the dominant drivers or
changes in the magnitude of GPP loss per event associated with
the dominant drivers. We disentangled these effects (Methods)
and find that in the northern midlatitudes, datasets that exhibit
strongly enhanced GPP losses associated with dominant drivers
show a strong strengthening of event-based GPP loss related to
the dominant drivers (r2= 0.71; P < 0.01, Fig. 3a). Changes in the
frequency of GPP loss associated with dominant drivers only
contribute weakly (r2= 0.22) (Fig. 3b). In contrast, the weakening
GPP losses in pantropics are strongly associated with the decrease
in the frequency of event-based GPP loss (r2= 0.65; P < 0.01,
Fig. 3c). Here, the magnitude of each GPP loss event related to
dominant drivers does not explain any variation across datasets
(r2= 0.00) (Fig. 3d). We again used GPP products and indices
with removed non-linear trends, different moving windows, and
different soil moisture products (Supplementary Figs. S11–15),
and found similar results. These analyses suggests that an
intensification of GPP losses in northern midlatitudes is induced
by an increase in the magnitude of each event-based GPP loss,
while a decrease in GPP losses in the pantropics is caused by the
reduction in frequency of event-based GPP loss.

We also analyzed seasonal trends of GPP losses associated with
hydroclimatic extremes in the two regions. A consistent large
increase in GPP losses associated with drought-heat, drought,
and heat extremes is found from June to August in northern

Fig. 1 GPP losses attributed to hydroclimatic extremes during 1982-2016. a Fraction (%) of global GPP losses associated with drought-heat extremes
(DH), drought (D), drought-cold extremes (DC), heat extremes (H), cold extremes (C), wet-heat extremes (WH), wet-cold extremes (WC), and wet
extremes (W). The spatial pattern of GPP losses associated with drought-heat extremes (b), drought (c), drought-cold extremes (d), heat extremes (e),
cold extremes (f), wet-heat extremes (g), wet-cold extremes (h), and wet extremes (i). In (a), the bar show values averaged over all GPP datasets, and the
error bars indicate one standard deviation between GPP products; blue lines within the bar indicate the 0.05 significant level. In (b–i), values for which less
than half of the products are significant at the 0.1 level are masked in white. The results are based on GPP products and extreme indices with the removed
linear trends as well as GLEAM soil moisture.
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midlatitudes, while increasing losses related to drought-cold
extremes are also detected in the early part of the growing season
(Supplementary Fig. S16a). The drought-cold extremes impacts in
spring can induce direct and lagged negative effects39, and
subsequent summers may suffer from persistent water deficit stress
from drought and heat, consequently leading to increased losses in
northern midlatitudes. In the pantropics, GPP losses associated with
hydroclimatic extremes tend to decrease in most months without
any clear seasonal patterns (Supplementary Fig. S16b).

Impacts on specific vegetation types and their changes. The
vegetation type can modulate the influence of hydroclimatic
extremes on GPP16. An analysis stratified by vegetation types
reveals consistent large GPP losses associated with drought-heat,
drought, drought-cold, and heat extremes in cropland, evergreen
broadleaved forest, grassland, and shrubland (Fig. 4a, c and
Supplementary Fig. S17a–g), suggesting a high vulnerability of

these land cover types to these hydroclimatic extremes. In addi-
tion, drought-cold and cold extremes show strong impacts on
evergreen needleleaf forests and mixed forests in high latitudes,
where vegetation growth is highly controlled by temperature
variations40. A certain amount of GPP losses is associated with
extremely wet conditions across evergreen needleleaf forests and
mixed forests, indicating the important role of wet extremes in
affecting vegetation productivity in these two land cover types41.
The trend analyses for specific vegetation types indicate the
increase in GPP losses associated with drought-heat, drought-
cold, drought, and heat extremes across croplands (Fig. 4b). In
addition, the magnitudes of the increased trends are higher than
those associated with decreased trends (Fig. 4b). These results
imply an increasing stress of hydroclimatic extremes to cropland
vegetation productivity. In contrast, GPP losses associated with
hydroclimatic extremes show an overall decrease for evergreen
broadleaf forests (Fig. 4d).

Fig. 2 Asymmetric changes in GPP losses attributed to hydroclimatic extremes between northern midlatitude and pantropical ecosystems.
a Percentage of GPP losses attributed to each dominant extreme hydroclimatic driver relative to total GPP losses in northern midlatitudes (23.5-65°N).
Dominant extreme hydroclimatic drivers are drought-heat extremes (DH), drought-cold extremes (DC), drought (D), and heat extremes (H). c Trends of
GPP losses associated with dominant drivers in northern midlatitudes. e Trends of GPP losses associated with dominant drivers (x-axis) against that of
total GPP losses (y-axis) for each dataset. b, d, f The same as (a, c, d) but for pantropics (23.5°S-23.5°N). In (a, b), blue lines within the bar indicate the
0.05 significant level. In (c, d), positive trends indicate an increase in GPP loss, and vice versa for negative trends; the * indicates that the ensemble
Z-values of Mann-Kendall are at the 0.05 significant level. In (e) and (f), the shaded areas indicate one standard deviation and the blue lines are the fitting
curves according to the trends of GPP losses associated with dominant drivers (Trend_DD) and trends of total GPP losses. The presented error bars in
(a–d) indicate one standard deviation between GPP datasets. The pink shading in (e, f) indicate the 95% confidence range for the fitted linear model. The
results are based on GPP products and extreme indices with removed linear trend, 5-year moving windows as well as GLEAM soil moisture.
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The identified adverse impacts of hydroclimatic extremes on
GPP across croplands could be potentially alleviated through
management measures, such as irrigation and fertilization. To
investigate this question, an additional set of model simulations
without enabled land use management (TRENDY S2) was
compared with the above-used model simulations, which include
land use management (TRENDY S3) (Methods). Results indicate
lower GPP losses in the simulations that additionally considered
land use management in comparison to the models only driven by
climate and CO2 datasets (Fig. 4e). This result implies that land
management options such as irrigation and fertilization could
alleviate the adverse impact of hydroclimatic extremes on cropland
GPP losses to some extent. However, the trends and magnitudes of
changes in GPP losses with and without considering land use
management show only a small difference (P= 0.18 for a two-sided
t-test) and are strongly correlated across models (r2= 0.78, Fig. 4f).
Moreover, for the simulations with enabled land management, the
magnitude of increasing trends is on average 15.8% higher than
that of decreasing trends in croplands. These results suggest that
the present land management practices might be limited in their
ability to reverse the increasingly adverse impacts of hydroclimatic
extremes on GPP losses over croplands.

In summary, these results suggest a high vulnerability of
cropland vegetation productivity to drought-heat, drought,
drought-cold, and heat extremes, and that improving the ability
to cope with impacts of hydroclimatic extremes through adequate
management practices over croplands may be required.

Discussion
The effect of hydroclimatic impacts on GPP has been the topic of
numerous studies worldwide during the past decades17, 42, 43. Many
studies have analyzed the impact of droughts or heatwaves on
regional or global GPP and mostly concluded that severe droughts
or heatwaves cause significant GPP losses44–46. Notably

drought-induced GPP losses have been detected in many regions
such as North America47, 48, Europe49, 50, Inner Asia51, and
Australia52. However, whether terrestrial GPP losses associated with
hydroclimatic extremes (droughts, extremely wetness, heatwaves and
cold spells, as well as the corresponding compound extremes) during
the past three and half decades are becoming more or less remains
unclear. The conclusions on the GPP response to hydroclimatic
extremes are subject to large uncertainties due to the varying sensi-
tivities of different types of terrestrial ecosystems to hydroclimatic
extremes7, 53. Moreover, which extreme events are significantly
associated with GPP losses received limited attention, since most
studies focus on individual droughts or heatwaves. Our analysis based
on observationally-constrained and state-of-the-art modeled GPP
datasets over multiple decades show a widespread strengthening and
weakening of GPP losses associated with the identified significant
hydroclimatic extreme drivers (i.e., drought-heat extremes, drought-
cold extremes, drought, and heat extremes) across global terrestrial
ecosystems. The strongest regional imprints are found in the north-
ern midlatitudes (23.5-65°N) and pantropics (23.5°S-23.5°N).

Our result suggested that negative impacts associated with
drought-heat extremes, drought, and heat extremes across the
pantropics are decreasing, contributing to a weakening of GPP
losses. This is consistent with previous studies that suggested that
the future magnitude of extreme GPP losses could be projected to
decrease due to elevated CO2 concentration4, 38, 54. Our results
suggest that the projected reduction in GPP losses associated with
hydroclimatic extremes in the pantropics may already be
underway. A higher partial pressure of CO2 can stimulate pho-
tosynthesis and reduce stomatal conductance55, leading to
decreased water use and soil water savings56, 57. The elevated CO2

thus can boost vegetation growth and enhance ecosystem
productivity58, 59. In addition, the tendency towards positive or
negative responses to hydroclimatic extremes could be modulated
by vegetation types16. Extensive forests in the pantropics with
deep and strong roots can obtain more groundwater from the

Fig. 3 Drivers of the trends in GPP losses associated with hydroclimatic extremes. a The changes in the magnitude of GPP loss per event associated with
dominant drivers (x-axis) against GPP loss trends associated with dominant drivers (y-axis) in northern midlatitudes. b The changes in frequency of GPP
loss related to dominant drivers (x-axis) against GPP loss trends associated with dominant drivers (y-axis) in northern midlatitudes. c, d The same as (a, b),
but for pantropics. In (a) and (c), Trend_PD (x-axis label) refers to the change in the magnitude of GPP loss per event associated with dominant drivers. In
(b) and (d), Trend_FD (x-axis label) refers to the change in frequency of GPP loss events related to dominant drivers. The pink shading indicates the 95%
confidence range for the fitted linear model. The results are based on GPP products and extreme indices with removed linear trend, 5-year moving windows
as well as GLEAM soil moisture.
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deeper soil and are likely less affected by heatwaves and short-
term drought stress60, 61. Forests thus seem to present higher
resilience to drought and heat anomalies, which is reflected in a
potential positive GPP anomalies during the events62. Moreover,
GPP usually can recover to the normal state due to high resis-
tance and resilience to extremes, suggesting that irreversible
damage associated with extremes might not occur17. However,
vegetation productivity could be impaired due to the future
increase of temperatures above optimal temperature thresholds63.
Ambient air is often warmer than the optimal temperature in the
tropics. Consequently, future warming is not beneficial for plant
productivity and carbon uptake48. Global warming is projected to
decrease GPP64, and the negative effects could outweigh CO2

fertilization, especially for the Amazon region65.
The situation is very different and much more worrisome in

the northern midlatitudes, where GPP losses associated with
drought-heat extremes, drought-cold extremes, drought, and heat
extremes are already increasing. Widespread warmer tempera-
tures may decrease soil water availability across most northern
hemisphere66, and sustained soil water deficit causes sensible heat
increase, enhancing the heating of the near-surface air. The
enhanced feedback between temperature and soil water further
exacerbates the severity of compound drought-heat extremes in
northern regions67. An increase in drought-heat severity can
interfere with numerous biochemical and physiological processes
of ecosystems, including photosynthesis, respiration, as well as
nitrogen and protein metabolisms68. Enhanced drought-heat
anomalies can also indirectly influence ecosystem productivity by

increasing pest and disease infestations. Moreover, frequent
droughts and heatwaves can increase vegetation damage and even
result in mortality due to hydraulic failure or carbon starvation.
When the increase in frequency and intensity of extremes outruns
the vegetation’s adaptive or acclimation capacities, additional
reduction in productivity are likely to occur and even vegetation
productivity experiences substantial changes in some cases69. In
addition, rapid Arctic warming has resulted in the dramatic
melting of Arctic Sea ice, potentially leading to more frequent and
intense cold spells in early spring and autumn over most of the
northern hemisphere13, 25. Drought-cold spring conditions can
pose direct and lagged negative impacts on plant productivity by
leaf frostbite, shortening growing season, and nutrient storage70,
and together with adverse synergistic effects and increasing sub-
sequent summer drought-heat events39, raising GPP losses in
northern midlatitudes. The increasing impacts of the identified
dominant extremes on GPP in the northern midlatitudes could
threaten the stability and balance of global carbon gross update.

Our results further indicate the increasingly adverse impacts from
the dominant extreme hydroclimatic drivers on crop productivity,
and that such negative effects might not be tackled with current land
management options. The hydroclimatic extremes usually result in
large productivity reduction in croplands. This is due to the fact that
crop systems are known to be very directly vulnerable to hydrocli-
matic extremes, which can lead to increased mortality and function
collapse71. Therefore, our results suggest that investments in miti-
gation measures to improve the adaptive capacity and resilience
of agricultural systems may be required. Overall, our study

Fig. 4 Comparison and changes in GPP losses for specific land cover types from 1982-2016. a The GPP losses associated with hydroclimatic extremes in
cropland. b The temporal trends of GPP losses in cropland associated with a certain hydroclimatic extreme. c, d The same as (a, b), but for evergreen
broad-leaved forest. e The GPP losses difference between TRENDY S2 (no management) and S3 (with management) simulations. f Scatterplot for
temporal trends (Tg C/yr) of cropland GPP losses associated with each hydroclimatic extreme between TRENDY S2 (no management) and S3 (with
management) simulations. In (e) the ratio was computed as the difference between S3 and S2 simulation divided by the S3 simulation, and the presented
error bars indicate one standard deviation between GPP products. In (a) and (c), blue lines within the bar indicate the 0.05 significant level. WC wet-cold
extreme, WH wet-heat extreme, C cold extreme, W wet extreme. For details on the barplot see caption of Fig. 2.
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demonstrates changing vulnerabilities of photosynthetic carbon
uptake to different types of hydroclimatic extremes across regions.

Methods
GPP data. Five long-term monthly global GPP datasets from 1982 to 2016 were
utilized in this study.

First, we used GPP (8 km spatial resolution) based on the satellite-driven light
use efficiency approach (LUE) driven by time-varying satellite GIMMS FPAR3g
and CRUNCEP v.8 meteorological forcing (here abbreviated as LUE GPP33). The
GPP was improved with optimized spatially and temporally explicit LUE values
derived from selected FLUXNET tower site data. Second, the FLUXCOM GPP
(0.5° spatial resolution), which was produced by upscaling of local eddy covariance
carbon flux tower measurements to global fields via machine learning methods. In
this product, the interannual variability and trend patterns are derived from time-
varying ERA5 or CRU meteorological input variables exclusively (here abbreviated
as Flux-ERA5 and Flux-CRU GPP), while the seasonal cycle of plant growth is
constrained by satellite vegetation data35. Third, we used GPP from satellite-based
NIRv. NIRv, which is available at a 0.05° spatial resolution and monthly scale, is a
newly developed satellite vegetation index that combines NDVI and near-infrared
band reflectivity of vegetation and is a well-recognized proxy of GPP. This product
was produced by upscaling the relationship between NIRv and observed GPP to the
global scale and was judged to perform well in capturing the seasonal and inter-
annual trends of GPP associated with climate variability and atmospheric CO2

variation34. Fourth, we use the GLASS GPP (0.05° spatial resolution, 8-day
temporal resolution), computed from the eddy covariance-LUE (EC-LUE) model
driven by time-varying GLASS leaf area index. In the EC-LUE model, the
regulations of several major environmental variables (i.e., atmospheric CO2

concentration, radiation components, and atmospheric vapor pressure deficit) were
integrated. The product reproduces well interannual variations and long-term
trends of GPP72. Overall, the above introduced GPP dataset have all been validated
with in-situ FLUXNET dataset and show good agreement with independent
observations33–35, 72.

Fifth, we employed GPP data from 12 process-based terrestrial biosphere
models participating in the TRENDY v.9 multi-model intercomparison36. The GPP
data in the TRENDY v.9 ensemble used in this study is based on simulations with
CLASSIC, CLM5.0, DLEM, ISAM, ISBA-CTRIP, JSBACH, LPX-Bern, LPJ-GUESS,
ORCHIDEE, ORCHIDEE-CNP, SDGVM, and VISIT. TRENDY simulation S3 that
was forced by time-varying atmospheric CO2, climate and land use was used in this
study to analyze GPP losses associated with hydroclimatic extremes. The TRENDY
GPP ensemble analyzed in this study consisted of 12 GPP members. In addition, to
estimate the potential of land management activities to mitigate the impact of
hydroclimatic extremes over croplands, such as irrigation and fertilization, we
compared TRENDY simulation S3 with land use management and TRENDY
simulation S2 only forced by climate and CO2. The specific products include CLM
5.0, DLEM, ISAM, and LPJ-GUESS. Notably, irrigation in TRENDY is often
implicit, by assuming no plant water stress/zero root zone water deficit, and this
may be considered optimal irrigation management (that is, represent the maximum
potential mitigation ability through elevating soil water deficit).

Hydroclimatic data. We used gridded monthly temperature and soil moisture to
compute compound and individual hydroclimatic extreme indices. Temperature
data (0.5° spatial resolution and monthly scale) were obtained from the Climatic
Research Unit Time Series 4.0573. Root-zone soil moisture was obtained from the
Global Land Evaporation Amsterdam Model (GLEAM)74. The GLEAM soil
moisture has a 0.25° spatial resolution with monthly time step, and is strongly
constrained by observations through assimilating multisource satellite-observed
soil moisture, vegetation optical depth, and snow water equivalents from different
satellite sensors74. We utilized the GLEAM soil moisture for the analyses shown in
the main text. In addition, to test the impacts of different soil moisture products on
our results, we also used the root-zone soil moisture from GLDAS catchment land
surface model and ECMWF Reanalysis v5 (ERA5), which both have 0.25° reso-
lution and monthly scale. GLDAS used data assimilation to incorporate satellite
and observation in advanced land surface models to generate optimum land surface
states and fluxes75. For ERA5, the third layer (28–100 cm) soil moisture was
employed as this study focuses on extreme events that usually cause the reduction
in soil moisture in deep layers. The two soil moisture products show well agree-
ment with the independent observations75, 76.

Land cover data. We used two types of land cover dataset, i.e., MODIS MCD12Q1
(500 meter spatial resolution) from 2001-2016 and the Climate Change Initiative
product (300 meter spatial resolution) from 1992–201577, to mask the grids with
extensive land cover change. The definition of extensive land cover change area is
that the maximum changed land cover area between two consecutive years was
larger than 20% of the total area in a 0.5° pixel65. Only a few grid cells (<1%) were
detected at the coarse target resolution (0.5°) and were consequently masked in the
final land-cover map applied in this study (Supplementary Fig. S18). These masked
areas have been excluded from the land-cover analyses and all presented results in
the manuscript. In addition, land cover data in 2016 from MCD12Q1 product was
employed to analyze the impacts of hydroclimatic extremes on GPP losses over

different vegetation types. In line with the International Geosphere-Biosphere
Programme classification, the original land cover classes were aggregated into
evergreen needleleaf forests, evergreen broadleaf forests, deciduous needleleaf
forests, deciduous broadleaf forests, mixed forests, shrublands, savannas, grassland,
and cropland, with 0.5° spatial resolution. The spatial pattern of land use cover
used in this study is shown in Supplementary Fig. S18.

The fine-scale and/or coarse-scale spatial dataset used in this study were all
resampled to 0.5° spatial resolution using bilinear interpolation.

Detection of GPP losses and attribution of hydroclimatic extremes
Detection of GPP losses. As the focus was to investigate GPP losses, the linear (or
non-linear) trend was first removed from all GPP datasets individually to avoid
misleading results due to a regional positive (or negative) trend induced by CO2

concentration and climate change that shifts the overall mean. Non-linear trends
were obtained via smoothing splines, which was implemented by using losses
function in the R language. Additionally, as GPP shows distinguishable seasonality,
the seasonal cycle at annual scale was subtracted from all datasets for each grid cell
individually by using the seasonal-trend decomposition procedure based on loess.
In general, local negative GPP extremes (hereafter termed GPP losses throughout
the manuscript) were detected using the tenth percentile threshold of the local de-
trended and de-seasonalized GPP time series at grid cell level (a common and
standard for detecting GPP loss18), and further classified according to the occur-
rence of anomalies below the threshold.

Attribution of hydroclimatic extreme drivers. Since droughts, extremely wet con-
ditions, heats and cold spells, as well as the corresponding compound events
(drought-heat, drought-cold, wet-cold extremes, and wet-heat extremes) are fre-
quently recurring hydroclimatic extremes, the identified GPP loss events were then
attributed to these potential hydroclimatic extreme drivers.

To capture individual hydroclimatic extremes (i.e., droughts, wet extremes, heat
extremes, and cold extremes), standardized temperature index (STI) and
standardized soil moisture index (SSMI) were utilized in this study, so that allowing
for a comparison of hydroclimatic anomalies across different climatic regions and
seasons. The STI was applied to identify cold and heat extremes, while the SSMI
was employed to characterize drought and wet extremes.

Building on earlier studies39, 78, 79, the two univariate indices incorporating both
soil moisture and temperature were used to identify compound events via a
compound drought-heat index (CDHI) and a compound drought-cold index
(CDCDI). CDHI generally describes variations from compound drought-heat
conditions to compound extreme wet-cold conditions, while CDCI from
compound drought-cold conditions to compound extreme wet-heat conditions. By
considering compound conditions, the two indices can better explain vegetation
productivity dynamic associated with hydroclimatic anomalies than typical
univariate indices (e.g., STI or SSMI individually)39. Estimating the probability
distribution is required to compute the indices. Here, to avoid making assumption
on the most suitable theoretical distribution, we computed the indices based on an
empirical cumulative distribution function. A detailed description of the two
compound event indices can be found in the study of Li et al. 39. The pronounced
trend of hydroclimatic variables can induce confounding positive (or negative)
impacts on GPP80. Following previous studies18, 80, the linear (or non-linear) trend
of the compound and univariate indices used in this study were thus removed at
each grid cell. We used 3-month compound and individual indices so that they can
capture the short-term water deficit81. In addition, we note that the compound and
univariate indices follow the normal distribution, and thus the frequency of
extremes identified by compound and univariate indices are identical.

The GPP loss events were attributed to hydroclimatic extremes on the basis of
coinciding significant climate anomalies18. A GPP loss event was attributed to a
potential driver if two criteria are met, i.e., at least one coinciding significant (i)
extreme anomaly (P ≤ 0.1, or P ≥ 0.9) and (ii) a mean anomaly (P ≤ 0.3, or P ≥ 0.7)
were detected within the three months preceding the GPP event. The first criterion
is to ensure that there is at least one significant extreme anomaly that induced a
GPP loss. However, hydroclimatic anomaly conditions during some months might
be substantial while those during other months can decay due to temporary
recovery of hydroclimatic conditions82. Therefore, abnormal mean hydroclimatic
conditions (P ≤ 0.3, or P ≥ 0.7) indicate lingering impacts after significant
hydroclimatic extremes83 or precondition anomalies preceding significant
hydroclimatic extremes84, ensuring an overall hydroclimatic anomaly. Given the
possible lagged responses of vegetation ecosystems to hydroclimatic extremes70, 85,
we consider a maximum of three months prior to the GPP event to detect
hydroclimatic anomalies. For example, a GPP loss was attributed to heat extreme if
at least one significant (P ≥ 0.9) anomalous STI value and mean (P ≥ 0.7)
anomalous STI value within three months preceded this GPP loss.

Notably, multiple hydroclimatic extreme drivers can be anomalous during a
GPP loss event and thus can be counted toward the attribution of that event. For
example, if coinciding anomalies in drought and heat were detected, the
corresponding GPP event was assigned to both. The attribution analyses were
conducted for each GPP dataset. The presented results throughout the manuscript
were derived as the mean of the results of all GPP dataset, and the error bars
indicated by one standard deviation show uncertainty between GPP dataset. In
addition, we used percentiles to represent the magnitude of GPP losses associated
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with hydroclimatic extremes, which can provide a more intuitive understanding of
the impact of hydroclimatic extremes on GPP. For trend analysis, we present the
actual change in GPP loss values.

Statistical analysis. Bootstrapping-based significance test86 is applied for each
hydroclimatic extreme driver to asses whether the association between the driver
and the GPP loss is significant. We test the null hypothesis that a hydroclimatic
extreme caused GPP loss in each grid cell can be reproduced by chance. Thereby,
we used the bootstrapping method to generate 1000 alternative time series of an
extreme index in each grid cell, and then attributed the GPP losses to the
hydroclimatic extreme based on the resampled timeseries and above attribution
method. If observed GPP losses are higher than 95% of the 1000 resampled datasets
(this corresponds to a p value of 0.05 or below) at a specific grid cell or a specific
region, the result is considered statistically significant.

To investigate the changes in hydroclimatic extreme impacts, the trend and
statistical significance of GPP losses associated with hydroclimatic extremes were
analyzed for each GPP dataset and each vegetation type using the Mann-Kendall
trend test. We used a 5-year moving window in our trends analysis to smooth out
time series fluctuations and highlight trends. 10-year and 15-year moving windows
were also applied in this study to evaluate the robustness of the trend analyses.
Moreover, to estimate the potential of land management activities to mitigate the
impact of hydroclimatic extremes over croplands, the impact difference associated
with hydroclimatic extremes between TRENDY S2 and S3 simulations in cropland
was computed for specific products (i.e., CLM 5.0, DLEM, ISAM, and LPJ-GUESS).

In addition, we explored the mechanism responsible for the asymmetrical
changes in GPP losses attributed to hydroclimatic extremes between northern
midlatitudes (23.5-65°N) and pantropics (23.5°S-23.5°N). To this end, we first
counted the frequency of GPP losses associated with the dominant hydroclimatic
extreme drivers (drought-heat, drought-cold, drought, and heat) over 5-years
moving windows, and then computed the trends in these counts via the Mann-
Kendall trend test (Fig. 3). Similarly, we computed the average magnitude of the
GPP losses associated with the dominant hydroclimatic extreme drivers over
individual 5-years moving windows, and then computed associated trends.

The flow diagram for analyzing GPP losses associated with hydroclimatic
extremes is shown in Supplementary Fig. S19.

Data availability
Model outputs generated by TRENDY v9 ecosystem models are available from Stephen
Stich (s.a.sitch@exeter.ac.uk) or Pierre Friedlingstein (p. friedlingstein@exeter.ac.uk)
upon request. The MODIS land-cover maps are available at https://lpdaac.usgs.gov/
products/mcd12q1v006/; The climatic variables from the CRU TS4.03 data are available
at https://crudata.uea.ac.uk/cru/data/hrg/; The soil moisture from the GLEAM v3.2a data
is available at https://www.gleam.eu/; The soil moisture from the GLDAS is available at
https://disc.gsfc.nasa.gov/datasets?page=1; The ERA5 soil moisture is available at https://
cds.climate.copernicus.eu/cdsapp#!/search?type=dataset. The data to reproduce the main
results presented can be accessed from https://doi.org/10.6084/m9.figshare.22817252.
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