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Abstract

Here we introduce a new evolutionary algorithm called the Lotus Effect Algorithm,
which combines efficient operators from the dragonfly algorithm, such as the
movement of dragonflies in flower pollination for exploration, with the self-cleaning
feature of water on flower leaves known as the lotus effect, for extraction and local
search operations. The authors compared this method to other improved versions of
the dragonfly algorithm using standard benchmark functions, and it outperformed all
other methods according to Fredman’s test on 29 benchmark functions. The article
also highlights the practical application of LEA in reducing energy consumption
in IoT nodes through clustering, resulting in increased packet delivery ratio and
network lifetime. Additionally, the performance of the proposed method was tested
on real-world problems with multiple constraints, such as the welded beam design
optimization problem and the speed-reducer problem applied in a gearbox, and the
results showed that LEA performs better than other methods in terms of accuracy.
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1 Introduction

Classic mathematical optimization methods mostly do not have the proper
capability to solve complicated optimization problems, lacking the reliability to
find the global optimum for problems [1]. Novel intelligent optimization methods
and algorithms emerged due to the limitations and defects of these classic
algorithms. They gradually proceed toward the optimum locations of the problem
based on an intelligent search [2].

The existing results and evidence from articles indicate that utilizing high-
convergent metaheuristic algorithms in different types of routing over IoT
networks enabled with wireless sensors results in high-accurate routing [3, 4].

Many studies have addressed collective intelligence algorithms. The
Cheetah Optimizer (CO) algorithm successfully solved large-scale challenging
optimization problems by improving population diversity and convergence. It
provided a significant advantage over different standards and improved hybrid
algorithms [5]. The Starling Murmuration Optimizer (SMO) algorithm is
presented to solve complicated engineering optimization problems. The empirical
results show its competitiveness against other high-level algorithms in terms
of the quality of the solution and convergence ratio, which provides a more
accurate solution [6]. The Pelican Optimizer Algorithm (POA) is presented to
solve optimization problems. Its simulation and analytics in providing optimum
solutions for optimization problems indicate it provides better performance and
more competitiveness over eight competing algorithms by establishing a relative
balance between exploration and exploitation [7]. The Artificial Hummingbird
Algorithm (AHA) is more competitive than other metaheuristic algorithms,
providing higher-quality solutions with lower control parameters. It outperforms
existing optimization techniques regarding computational load and solution
accuracy [8]. African Vulture Optimization Algorithm (AVOA), a new meta-
heuristic algorithm inspired by the lifestyle and foraging behaviors of African
vultures for food, was proposed for global optimization problems. To evaluate
the performance of AVOA, 36 standard benchmark functions were used, and the
results indicate the superiority of the proposed algorithm over several existing
ones [9]. Reptile Search Algorithm (RSA) is a nature-inspired meta-heuristic
optimizer. The performance of RSA was evaluated using twenty-three classical
test functions. Results showed that RSA performed significantly better than other
well-known optimization algorithms and can handle various constraint problems
and solve single-objective optimization problems involving controversial
variables [10]. Coati Optimization Algorithm (COA) has been proposed to
model the natural behavior of coatis. COA’s performance was evaluated on
fifty-one objective functions, with its results compared to those of eleven well-
known meta-heuristic algorithms. Simulated results showed that COA, by
balancing exploration in global search and exploitation in local search, had a
clear superiority over the compared algorithms and is much more competitive
[11]. Remora Optimization Algorithm (ROA) is a bionic-based, meta-heuristic
algorithm inspired by nature. This algorithm is more inclined to provide a new
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idea for the memetic algorithm. A total of 29 benchmark functions and five real
engineering problems are used to test the validity of ROA. The experimental
results demonstrate ROA’s remarkable competitive capability against many high-
level algorithms [12]. Whale Optimization Algorithm (WOA) has been tested
on 29 mathematical optimization problems and six structural design problems.
The results indicate that it can compete sufficiently with other modern meta-
heuristic methods [13]. Hawk fire optimizer (FHO) as a new meta-heuristic
algorithm has provided acceptable results in dealing with real size optimization
problems of CEC 2020. From a computational point of view, FHO can converge
on the best global mathematical test functions by requiring a lower number of
objective function evaluations [14]. Energy Valley Optimizer (EVO) as a new
meta-heuristic algorithm that can outperform other alternative meta-heuristic
algorithms in unconstrained mathematical test functions and converge to the best
global solution with the least evaluation of the objective function[15]. The dung
beetle optimizer (DBO) considers both global exploration and local exploitation,
and has a fast convergence rate and satisfactory solution accuracy, which can be
effectively used to solve real-world application problems[16].

Numerous studies are also performed on dragonfly-based collective intelligent
algorithms(which used in the method proposed in this article) in recent years.
Hybrid Memory-Based Dragonfly Algorithm with Differential Evolution (DADE)
is a hybrid of the dragonfly and differential evolution algorithms. Its search power
is enhanced using the leap and crossover mechanism, and its convergent power is
increased by being enabled with memory for utilizing the best solutions through-
out the whole process of optimization [17]. A hybrid of Sine—Cosine and Dragon-
fly algorithm (SC-DA) utilizes the angular behavior of the sine and cosine func-
tions in the sine—cosine algorithm; the accuracy of the dragonflies in converging
to the optimal point is increased due to its angular movements [18]. Biogeogra-
phy-based and Mexican hat wavelet algorithms has combined to improve the drag-
onfly algorithm(BMDA algorithm). It enhanced the search power in the hybrid
model compared to the standard dragonfly algorithm due to the search variety of
the two applied algorithms [19]. A Modified Dragonfly Optimization Algorithm
Using Brownian Motion (DABM algorithm) adds a local search to the dragon-
fly algorithm using the kinetic energy equation, enhancing the convergence power
to the optimum point [20]. A hybridization of Opposition-Based Learning (OBL)
algorithm and dragonfly algorithm (DA-OBL) has enhanced the extraction power
using bidirectional movement in dragonfly algorithm operators [21]. Consider-
ing the weakness of the extraction phase in the dragonfly algorithm, [22] and [23]
used quantum physics and gradient, respectively, to enhance the convergent power
of the algorithm. In another study, based on binary dragonfly optimization algo-
rithm, a multi-level method for optimal planning of network capacity expansion
considering distributed generations with the aim of minimizing investment cost,
operation, maintenance and reliability cost for network development is presented
[24]. One of the capabilities of the dragonfly algorithm, which is used to detect
tool wear in the manufacturing industry and leads to increased quality, increased
productivity, and reduced downtime, is using it discretely in selecting features in
creating effective machine learning methods [25]. The dragonfly algorithm can
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be improved in determining the optimal size of the hybrid energy system based
on wind-solar, and lead to an increase in productivity in the energy production
industry [26]. In multi-objective optimization, dragonfly algorithm can be used in
electricity distribution industry to reduce its losses [27]. To study the efficiency of
improved dragonfly methods, a conceptual comparison of its types for optimiza-
tion problems has been done. And seven methods including hybrid memory-based
dragonfly algorithm with differential evolution (DADE), quantum-behaved and
Gaussian mutational dragonfly algorithm (QGDA), memory-based hybrid dragon-
fly algorithm (MHDA), chaotic dragonfly algorithm (CDA), biogeography-based
Mexican hat wavelet dragonfly algorithm (BMDA), hybrid Nelder—-Mead algo-
rithm and dragonfly algorithm (INMDA) and hybridization of dragonfly algorithm
and artificial bee colony (HDA) have been investigated and the Friedman test was
used for ranking, which showed the effectiveness of the QGDA method [28].

One application of the metaheuristic algorithms is in the clustering of Internet
of Things network nodes. For example, a study entitled " Cluster-Based Energy-
Efficient Routing in Internet of Things," attempts to choose the best cluster heads
among the sensors to reduce energy consumption in the network nodes and eventu-
ally reduce the whole network’s energy consumption [29].

Some research employed metaheuristic algorithms in the field of network
routing and clustering, including energy-based clustering energy in inter-vehicular
networks [30], routing of massive data transmission in the IoT network [31], routing
in mobile wireless networks [32, 33], consumed energy in the whole network, data
transmission power and the effect of the distance of mobile wireless network’s nodes
on its stability [34-37], network self-stability [38], data transmission protocol in
IoT networks [39], and routing in IoT networks considering energy reduction and
stability enhancement simultaneously [40].

Routing and clustering in wireless networks and the Internet of Things network
severely depend on the number of network nodes and evaluation criteria, including
energy consumption reduction and enhancing stability. Research results indicate
using metaheuristic methods or a hybrid of such methods in wireless networks is
one of the most common methods to achieve higher accuracy in the routing process.

Utilizing metaheuristic methods—including ant colony, particle algorithm, a
hybrid of the ant colony and particle algorithm, and hybrid of the ant colony and
firefly algorithm [41-45] for routing in various kinds of Internet of things networks
indicates their efficiency in choosing the best path and improving the results.
Furthermore, Metaheuristic methods’ analogy shows their capability to solve
problems by single-objective and multi-objective approaches, optimizing multiple
effective factors in routing at their best [46].

The most crucial IoT network clustering method is the "Low-Energy Adaptive
Clustering Hierarchy (LEACH)" protocol. Some researchers have compared
LEACH-based hierarchical routing protocols such as LEACH-C, MM- LEACH,
TL- LEACH, V- LEACH, and MOD- LEACH, based on energy waste or specific
criteria like the number of CHs and the number of leaps [47, 48].

The proposed algorithm in this study upgrades some main objectives to develop
LEACH-derived protocols for wireless sensor networks (WSN), including enhanced
WSN performance, energy efficiency, energy distribution among nodes, increased
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scalability, selecting the best node in each cluster as the cluster head, increased
security in WSN, decreased network delay, and increased network stability.

Therefore, this article introduces a novel algorithm entitled "Lotus Effect
Algorithm (LEA)" derived from the dragonfly algorithm [49] to improve the routing
process and further reduce the consumed energy. The remaining is as follows:

Section 2 provides the source of inspiration and biological basics of the
algorithm. The mathematical models and the Lotus Flower Algorithm are presented
in Sect. 3 The applications of the LEA for node clustering in IoT are also introduced
in this section. Section 4 covers the evaluation and results of performing the
proposed LEA on test functions. The algorithm is also applied to two real-world
engineering optimization problems with multiple restrictions Such as welded beam
design optimization problem and the speed-reducer problem applied in a gearbox
practical to confirm its performance. In the rest of Sect. 4, LEA application results
on improving the clustering of IoT' networks are compared to the results captured
from other dragonfly-based methods. Finally, the paper concludes with Sect. 5,
which includes the conclusion and proposal for future studies.

2 Inspiration

The effect of lotus indicates the super-hydrophobic and self-cleaning characteristics
of the lotus leaves. This effect has attracted much attention, introducing various
applications in different levels of the Lotus effect since its explanation by Professor
Wilhelm Bartlett for the first time in 1977 [50, 51]. However, super-hydrophobic
surfaces have been studied and considered since the 1950s [52].

The self-cleaning feature is a Nano-science achievement inspired by the Lotus
leaves. Investigating these flowers’ leaves on a Nano-scale indicates water droplets
fall down the leaves due to the hydrophobicity property of their uneven surfaces
[53].

The property of the plant’s leaves causes water to collect the soil on the leaves
and slide down the leaves without being absorbed. This case could be considered a
local search in terms of the movements of the drops on the leaves, which is described
in its best way in Fig. 1—a picture of a Lotus flower and its leaves with some water
droplets on them [54, 55].

The pollination of the Lotus flower and its leaves’ properties has inspired the
proposed LEA. This algorithm is founded based on the efficiency of the dragonfly
algorithm, enabled by pollination [56] and a local search related to water movement
on the leaves of the Lotus flower.

The pollination comprises two main processes, including the biological process
(cross-pollination) and the non-biological process (self-pollination) which are the
exploration and extraction phases in the LEA.

In biological pollination, the pollen is transferred from one flower to various
plants’ flowers with the help of pollinators such as insects and birds. This process
takes place over a long period. It is considered a global pollination and search of the
whole problem space (exploration), which is modeled by the mathematical model of
the dragonfly optimization algorithm [49].
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Fig. 1 Lotus (Nelumbo nucifera) plant ( adopted from Barthlott et al. [S4] and Collins et al. [55])

In the non-biological process (self-pollination), fertilization is performed
from the flowers’ pollen of the same plant. In this kind of pollination, factors
such as wind and release in water helps pollinate these kinds of flowering plants.
This self-pollination (self-fertilization) is considered local pollination and is used
for searching and extracting the local optimum. For the property of the leaves on
which water slides down without being absorbed by them, a double local search is
considered for the movement of the droplets over the leaves.

3 Lotus flower algorithm introduction

Considering the necessity of the exploration and extraction processes in
metaheuristic algorithms as well as their existence in the Lotus flower’s life, the idea
is based on the following items:

e FExploration as insects like dragonflies spread the seed, their movements are
extendable in this regard (refer to the dragonfly optimization algorithm)

e Extraction as the flower blooms cluster around the center of a focal core, it may
be an inspiration for local search by using a multi-population through clustering
the search factors (derived from Lotus blooms).

e Extraction reinforcement moving water over this plant’s leaves and exiting
from the closest opening on the leave’s surface may inspire a local search in the
algorithm to find the optimum points (utilizing local search algorithms such as
the Hill Climbing Algorithm—HCA)

Note: all variables used in this article are explained in Appendix A.

3.1 LEA exploration phase

Global pollination (biological) is performed by dragonflies [49] in the LEA,
which is identical to the exploration phase of the proposed algorithm. Three basic
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principles of the swarms of insects—separation, alignment, and cohesion—as well
as two concepts of food and enemy, are considered in the dragonfly algorithm to
simulate the intelligent behavior of dragonflies. Separation indicates preventing an
individual from colliding with neighboring individuals. Alignment indicates the
velocity matching of individuals to that of other individuals in the neighborhood.
Cohesion indicates the tendency of individuals toward the center of the mass of
the neighborhood. The main objective for each swarm is to survive. Therefore,
individuals must all be attracted toward food sources and distracted from enemies.
Considering these two behaviors, there are five factors in updating the individuals’
positions in the swarm, each of which could be mathematically modeled. Separation
is calculated as follows [49]:

N
S=-2X%-X ()
i=1

where X; indicates the current individual’s position with index i in the evolution

iteration 7, X; indicates the position of jth individual in the neighborhood in the

evolution iteration #, and N is the number of individuals in the neighborhood.
Alignment is calculated as follows:

Nyt
2%
N

Al = @
where X; indicates the velocity of jth individual in the neighborhood in the evolution
iteration t.

Cohesion is calculated as follows:

5%
=" x 3
where X; indicates the current individual’s position with index i in the evolution
iteration 7, N is the number of neighbors, and X; indicates the position of jth
individual in the neighborhood in the evolution iteration ¢.

Attraction toward food sources is calculated as follows:

Tyt 1
Fi=X, - X 4

where X; indicates the current individual’s position with index i in the evolution
iteration 7, X! is the location of the food source which is resulted from the current
evolution iteration, i.e., ¢, and is the best-found answer.

Enemy distraction is calculated as follows:

E'=X +X! )

where X indicates the current individual’s position with index i in the evolution
iteration f, X' is the enemy position which is resulted from the current evolution
iteration, i.e., t, and is the worst-found answer.
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The behavior of dragonflies is a combination of these five assumed patterns. In
order to update artificial dragonflies’ position in the search space and simulate their
movements, two vectors are considered: step length and position. The step length (in
brief, step) is similar to the velocity vector in the Particle Swarm Optimization (PSO)
algorithm and the dragonfly algorithm is developed based on the framework of the PSO
algorithm. The step or velocity vector shows the movement direction of the dragonflies
and is defined as follows:

AXI*! = (sS04 aAl + cCl + fF! + ¢E!) + wAX! (6)

where s is the separation coefficient, S; is the separation degree of the ith individual
in evolution iteration i, a is the alignment coefficient, A; is the alignment of the ith
individual, c is the cohesion coefficient, Cl’. is the cohesion of the ith individual, f'is
the food factor, F' l’ is the food source of the ith individual, e is the enemy factor, Ef is
the enemy of the ith individual, w is the inertia weight, and finally, ¢ is the iteration
counter of the algorithm.

After calculating the step vector, the position vectors are calculated as follows:

Xt =X+ wAx!t! (7)

where ¢ is the iteration counter of the algorithm.

Utilizing factors separation (s), alignment (a), cohesion (c), food (f), and enemy (e),
various explorative and exploitative behaviors can be performed during optimization.
The location of the food source and the position of the enemy are obtained from the
best and the worst answers found among the whole swarm. This causes convergence
to the promising locations of the search space and divergence from the undesired
locations in the search space. In order to improve the random/stochastic behaviors in
the exploration of the artificial dragonflies, they need to fly around the search space
with a random step length when there is no solution in their neighborhood. In this case,
the position of the dragonflies is updated using the following relation:

+1 _ 1 t

X7 =X + Levy(d) X X; (8)

where ¢ is the current iteration counter, and d is the dimensions of the position
vector. Levy is calculated using the following relation:

}’IXU

! 9

|ra|?

Levy(x) = 0.01 x

where r1 and 72 are two random numbers in the interval between zero and one, and
f is a constant number. ¢ is calculated using the following relation:
1
L(1 + B) X sin (’;-”) !
o= (10)
-1
£<ﬂ> X f X 2(7)

2
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where in:

L(x)=(x—-1)! an

3.2 LEA exploitation phase

Local pollination (self-fertilization) is the extraction phase of the proposed
algorithm. In this kind of pollination, a coefficient specifies the size of the growth
area for each flower around the best-found flower. The best-found solution is the
basis of movement and other solutions move toward it. The steps are taken longer at
the beginning of the movement algorithm and shorter at the end.

X =X +R(X] - g") (12)

where X, is the location of the pollen in (z+ 1)th iteration and g* is the best-
found pollen location among all evolution iterations so far. R is the growth area,
shrinking following algorithm iterations. In fact, the movement steps are longer at
the beginning of the algorithm and get shorter by reaching the end of the algorithm
until it converges to the optimum.

R= 26_<%>2 (13)

where ¢ is the current evolution iteration of the algorithm and L is the ultimate
iteration number.

Note In the proposed algorithm, the values of the neighborhood radius of
dragonflies(in the exploration phase) and R(in the exploitation phase) are used to
balance between exploration and exploitation. The radius of the dragonflies is an
incremental value that ultimately makes them cohesive And the variable R is
adjusted according to the number of repetitions of the algorithm and controls the
movement steps from long to small steps.

3.3 LEA exploitation phase reinforcement

A local search is considered to model the movement of water over the Lotus flower’s
leaves, using water drops. By moving the water drops toward the first pits over the
leaf, they will be filled and the water overflows the leaf. Each swarm member, i.e.,
solution is called a drop with position (X;) and initial velocity (V;), moving in the
problem search space to find the optimal solution. A drop is positioned in the nearest
local optimum to it, after formation on the leaf. This local optimum is called a pit.
Each pit has a capacity for holding drops depending on its depth (fitness). Figure 2a
illustrates some pits with different capacities.

The deepest pit is considered the most valuable pit (the pit with the best fitness) in
each iteration. In the local search modeling, a velocity vector is considered for each
drop whose initial value is the length of the primitive step that is received from the
input; after each iteration, the movement vector adds up to its velocity vector, then is
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(a) pits with different capacities in the problem space; (b) five pits after the first iteration; (c) water overflowing two limited-capacity pits in the
first iteration of the algorithm execution and identifying a pit with better capacity.

Fig.2 Some pits with different capacities and the search operation of the overflowed water in the state
space

added to its velocity vector. The drop movement equation is shown in relation (17).
These stages are repeated f times, and the f coefficient is received from the input.
In this modeling, each pit has a capacity whose depth determines its fitness.
The more the depth, the more the capacity. The capacity of all pits is calculated as
follows in each iteration:
. (v,t _f Max

C. =
l (lfMin _fMax|)

where c! is the capacity of the pit i in the evolution iteration #, f] is the size of the ith
pit in the evolution iteration ¢, fy,, is the size of the biggest fitness among the pits,
and fyy, is the size of the smallest fitness among the pits. Const is a constant num-
ber indicating the maximum capacity of a pit for an objective function. Figure 2b
illustrates five pits in the first iteration of algorithm execution. In each iteration, a
random amount of the pits’ average capacity is added to each pit. In each pit, if the
drops exceed the capacity, that pit is excluded and its water flows on the leaf surface.
Figure 2c illustrates water overflow from two limited-capacity pits in the first itera-
tion and the identification of a pit with more capacity. The direction of e overflowed
water is toward a pit with more capacity compared to it. The pit is selected randomly
among existing pits with higher capacity. The selection is based on a priority such
that the more a pit’s capacity, the more its selection probability. Relation (15) cap-
tures the probability of selecting a pit among the existing pits.

) X const
(14

r_
Selectl. =<r (15)

=0 "j

where Selecti is the probability of selecting a pit in the evolution iteration #, clf is the
capacity of the ith pit in the evolution iteration #, and & is the number of pits whose
capacity is higher than the overflowed pit.

After selecting a pit, the overflowed water moves toward that pit. While encounter-
ing a pit with more capacity than the source pit along the way, as much as the over-
flowed water pours into the higher-capacity pit and movement stops; otherwise, it
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continues to reach the selected pit, and as much as the overflowed water is poured into
it. The source pit is removed at the end of the movement. The more the capacity of
a pit, the more the probability of reusing it during algorithm execution (it will not be
removed); it is more likely selected to capture the overflowed water flowing toward it.
In this movement, unlike the PSO algorithm, the particles (drops) have no memory for
holding the best position during the search. The knowledge of reasonable solutions is
not maintained for any drop. A drop can locate other drops’ current position, and the
best drop’s position is known at any moment.

Relation (16) shows the velocity and position of the drops’ movement during local
search, and relation (17) shows the velocity and position of the drops’ movement
overflowing from a pit on the surface.

Vit =qxV/ and X' =X +V* (16)
1 1 1
Vi = Vi Rand(Xep — X)) and X=X+ ViF (17)
In relations 16 and 17, X| . is the current position of the deepest pit in the
eeppit

evolution iteration t, Vl.’ is the current velocity of drop i in the evolution iteration ¢,
X! is the current position of drop i in the evolution iteration ¢, and g is the speed
increment coefficient.

In an iterative process, two interactions take place between the drops by evalu-
ating their competency and fitness criteria in order to improve the swarm experi-
ence (the deepest pit): 1. a pit candidating to receive the overflowed water from
other pits (represented by a drop), and 2. increasing drops’ competency. The exe-
cution steps of the LEA and its flowchart are provided in the remaining.

3.4 LEA steps

The algorithm starts with generating initial solutions. Then, the best solution is
specified after evaluation. The best solution is based on the other drops’ move-
ment in each iteration. In the proposed method, the possible solutions are called
"flower" or "dragonfly" which are structurally alike and solely provided for
a better understanding of the steps. The search process for each possible solu-
tion is performed either using the dragonfly algorithm’s mechanism or using
local search. The pseudo-code and Flow chart of the algorithm is provided in the
following.
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Random generation of the initial population (n items)
if t<T then
Calculate the fitness of the search agents, the best search agent (better fitness) 2 g*, determine
pollination probability (P), generate a random number (rand) in the interval [0, 1]
If rand < p then://global pollination through dragonfly movement
Update a, c, f, s, w, and e parameters and S, A, C, F, and E values using relations

1-5

Update dragonflies' neighboring radius (r)
If X; <r then:// the intended dragonfly is in the neighboring radius
Update velocity and position vectors using relations 6 and 7
Otherwise: // if the intended dragonfly is not in the neighboring radius
| Update position vector using relation 8
If fit(F;) fit(X;) < then F « X;
If fit(E; ) fit(X;) > then E; « X;
Otherwise: // local pollination
| Update flowers' growth area and new flower's position using relation 12
If fit(X;"*") fit(X;*) < then remove X;**' otherwise X;* « X;***
For i:l ton

Local search using relation 16, calculate each pit's capacity using relation 14, and add
water to the pits randomly
if fit(C;) < fit(X;) then select pit using relation 15 and water movement using relation 17

End
End
return g*

Figure 3 shows the flow chart of the proposed model.

3.5 LEA application in node clustering in loT

One application of the LEA is in improving clustering and the accurate selection of
the proper cluster heads in IoT networks. Sensors’ performance changes according
to the hierarchical models. Some sensors collect data and some send it. In the LEA,
the network is divided into separate clusters; the cluster head collects data from
each wireless sensor periodically according to the Time Division Multiple Access
(TDMA) and compresses it (to seme low extent). The data, then, are sent directly/
indirectly to the base station in multiple phases. The proposed method changes the
cluster head periodically, causing load balancing in the network. The primary LEA
operations are categorized into two different phases: first, setup which is composed
of two steps: clustering and cluster head determination; and second, steady-state
which focuses on data integration, collection, and sending to the base station. The
first phase imposes less overload on the protocols. In the setup phase, the accurate
selection of the cluster head is performed periodically and the consumed energy is
distributed among network nodes. Accurate periodic selection of the cluster head
requires each node for which a random number to be generated in the [0, 1] interval.
The random number is compared to the cluster head threshold (captured by relation
18) [29].

n—R—1
Ty =4 1=r(rmd(;)) (18)
0 others

where T is the cluster head threshold, r is the current iteration, p is the percentage
of headers relative to all nodes in the network, and 7 is the number of the nodes not
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Creating a random
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For all possible answers,
conducting local search and
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flowers a,6,0s,w,e each pit
y ¥ y
Evaluating the position Updating food and enemy Adding a random amount
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marked with <
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Yes 1

Calculating the fitness

If the random
number is <p

No

i

Updating the position of the
newly produced flowers

Updating the growth are-
as of flowers

Fig.3 Flow chart of the proposed model

selected as a cluster head in the 1/p final iteration [21]. At last, a node is selected as
the cluster head whose value is less that the threshold. In this method, the clusters
are managed locally and information on the general network is not required. Each
cluster integrates data and saves energy, and there is no need for the nodes to send
data directly toward the base station. Finally, the selected cluster head declares new
roles for the other network nodes; then they link to the cluster. Each cluster’s cluster
head generates a TDMA-based schedule—the allocated time intervals to each clus-
ter member—and distributes it in the cluster. The second phase starts after the com-
pletion of the first phase. In this step, the nodes gather the data which are assigned
to them during different periods and send it to the cluster head node. Note that data
collection performs periodically. The steps of the proposed method for cluster heads
selection are as follows:

1. Generating a network including different sensors in the application space.
Random generation of the cluster heads as search agents using the Lotus effect
algorithm.

3. Spreading the sensors among the cluster heads according to the second step.
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3-1. Fitness evaluation of each search engine.

3-2. Changing the search agents based on the Lotus effect algorithm’s operators.

3-3.  Stop condition, completion of Lotus effect algorithm’s iterations, otherwise
go to step 3-1.

4. Sending data over the network for a specific period based on time.
5. End of the algorithm if the lifetime of the network is inspired; otherwise, go to
step 2 with live sensors (changing the length of the search agents).

Therefore, accurate and optimal selection of the cluster heads is vital in a
network, such that on the one hand, the data transmission energy for the wireless
sensors to the cluster heads be minimal and, on the other hand, a desired multi-step
path could be designed among the cluster heads for sending their data to the base
station. In this case, the sensor network’s lifetime would be increased.

A solution is provided for the given problem (cluster head selection in the network)
based on the proposed method. For this purpose, a network is considered in which
some wireless sensors are distributed randomly and stochastically. The base station
is assumed to be aware of the physical position of all nodes using a geolocator-like
tool; the aim is to cluster the wireless sensors. After clustering, each sensor collects
data from the environment and directly (single step) sends it to its related cluster head.
Each cluster head collects the received data and sends it through multiple steps (using
other cluster heads) to the base station. After selecting the cluster heads, each wireless
sensor is assigned to the closest cluster head among the surrounding cluster heads in its
communication range. Accurate selection of the cluster heads and finding a multi-step
path among the cluster heads is performed in a centralized manner in the base station
and is sent to all nodes. In this article. it is assumed that the base station has no energy
constraint and the network is fixed, i.e., the position of the sensors and cluster heads
will be fixed and the same after placement in the environment.

Each time, data collection and the gathered data transmission from all the cluster
heads to the base station is considered as one period. Therefore, network lifetime is
defined as the number of elapsed periods until the first cluster head’s energy depletes
as in relation (19):

E;=Ep +Er, (19)

where Ej is the consumed energy of node i for receiving data and is calculated using
relation (20):
Ep =ap.b; (20)

where b, represents the number of bits received by the ith cluster head in one period
and «, is the energy coefficient of the received energy. In relation (19), E is the
consumed energy by node i for sending data to node j (j could be a base station or a
different cluster head) and is calculated using relation (21):

Ep = ay.b+ p.b.d;.dj] 1)
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where d;’} is the Euclidean distance between nodes i and j, a, is the transmission
energy coefficient, variable b is the reinforcement coefficient, and m is the path
attenuator coefficient, a number between 2 and 4.

The proposed method selects the desired cluster heads in the LEA. This research
aims to select nodes as cluster heads that make energy consumption minimum
and be able to establish an appropriate multi-step path among them. The proposed
method is employed with binary encoding to evaluate LEA’s application in cluster
head selection in the network. Each solution is equivalent to one cluster head selec-
tion style. Each solution is considered a binary array whose length is equal to the
number of whole network sensors (each bit is equivalent to one sensor). A bit of
value "1" in the array means its equivalent node is selected as a cluster head and
value "0" represents ordinary nodes.

After determining the cluster heads, it can be said that each ordinary cluster node
depends on the closest cluster head. The initial population of the proposed algorithm
is generated randomly and stochastically and each member of the proposed popula-
tion’s appropriateness is evaluated using a fitness function. Each solution’s fitness
value is provided based on the network lifetime. The network lifetime is defined as
relation (22)—the number of data collection periods until the first cluster head’s
energy depletes:

_ Einitial

(22)

max

where E; ;. is the cluster’s initial energy which is considered identical for all clus-
ter heads. E, . is the consumed energy of a cluster head that consumed the most
amount of energy in one period of data collection. Given the number of selected

cluster heads, n, it is calculated according to relation (23):

E..=MAXE. 1<Zi<n (23)

where Eqy; is the ith cluster’s consumed energy. L, in relation (22), represents the
network’s lifetime, i.e., the number of data collection periods until the most energy
consumed cluster head’s energy depletes. It should be noted that cluster heads
consume energy for two purposes: 1—receiving data from the sensors located in
their cluster, and 2—playing an intermediate role between sending and receiving
data processes in multi-step routing among the cluster heads. Therefore, a cluster
head’s consumed energy in one data collection period is calculated using relation
(24):
ECH,- = Eilfma Cluster; + Einter Cluster; (24)
Note The objective function in node clustering is Eq. 24, where the objective

is to minimize the energy consumption in the network.where EX is the
intra Cluster;

amount of energy that the ith cluster head consumes to receive data from sensors
inside ith cluster and is calculated by relation (25):

@ Springer



E. Dalirinia et al.

EilfllraCIuster,- = Z EgHiS (25)
SeC;

where C; is the number of the ith cluster’s sensors, and EgH[S is the energy consumed
by the ith cluster head to receive data from sensor S and is calculated by relation
(20) pertaining to the first-order radio style. E; . cjuser 10 T€lation (24) is the amount
of energy consumed by the cluster head for routiﬁg among the cluster heads,
receiving data from the preceding cluster heads, and sending data to the succeeding
cluster head. The amount of this energy depends on the multi-step routing performed

among the selected cluster heads.

4 Evaluation and conclusion

The results of the proposed LEA are evaluated and compared against other opti-
mization algorithms in three parts. First, considering the basis of the proposed
algorithm is the dragonfly algorithm inspired by the Lotus flower, the LEA results
are compared against other dragonfly-based algorithms using benchmark function
set CEC-BC-2017 including 29 benchmark functions which includes 23 optimi-
zation functions and 6 combination optimization functions of these 23 functions
[57, 58]. Second, the results of applying the LEA for two engineering optimiza-
tion problems with multiple constraints are compared to the results of a series of
optimization methods. Third, the results of the LEA applied to the clustering of
IoT networks improvement are compared to the results of other dragonfly-based
methods applied for the same purpose In addition, all simulation environments
are implemented under the MATLAB platform With Windows 10.
Note The specifications of the test functions are explained in Appendix B.

4.1 LEA results on test functions

Because the basis of the proposed algorithm is the dragonfly algorithm inspired
by the Lotus flower, the LEA results are compared against improved dragonfly
algorithms on the test functions. These benchmark test functions include high-
dimension and hybrid functions and pose a good comparison challenge for
optimization methods. There used 30 search agents with 500 iterations and a
maximum of 15,000 evaluation functions for all the benchmark functions to be
pretty compared to the proposed method. To evaluate the methods on the set of
benchmark functions, ranking with Fredman’s benchmark was used.

Functions 1-7 comprise two dimensions and have one optimum, functions
8—13 are high-dimension functions with multiple optima, functions 14-23 are
fixed-dimension functions with multiple optima, and finally, functions 24-29
comprise hybrid functions with high complexity. Evaluation of the benchmark
function set is performed using Fredman’s ranking test.

Table 1 compares the results to a series of collective intelligence algo-
rithms including DA [49], DADE [17], SC-DA [18], BMDA [19], DABM [20],
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DA-OBL [21], QGDA [22], and DACG [23]. To thoroughly test the LEA, the
benchmark function set CEC-BC-2017, including 29 benchmark functions, is
used [57]. Figure 4 shows a view of some benchmark functions.

As shown in Table 1, the LEA is the best method in functions F1-F7 and has a
low standard deviation in converging to the global optimum. For function F5, the
LEA is situated after QGDA. The results indicate the LEA outperforms other meth-
ods in higher-dimension problems in F9-F11. Moreover, in F9 and F10, the LEA
has attained the global optimum, while most other methods could not. In F8, the
most challenging function in this benchmark class, the LEA holds the second rank
after QGDA, almost reaching the global optimum. For F12 and F13, BMDA outper-
forms other methods. This is while the LEA still wins the competency, especially for
F12. In benchmark functions F8-F13, the LEA holds the second performance rank
after BMDA. All methods’ performance is similar in problems with fixed dimen-
sions (F14-F23). However, the LEA’s results are incredibly competitive. The LEA
achieved the global optimum in functions—F14, F16, F17, F18, and F19. The LEA’s
results are very close to the global optimum for the rest of the functions.

The hybrid functions are the most challenging benchmark functions that
could be used to avoid convergence to the local optimum. The results for func-
tions F24-F29 indicate the outperformance of the DACG method compared to
the others. The LEA ranks fourth in most of these functions, behind DACG,
QGDA, and DADE. However, its results are competitive with QGDA and DADE
methods in most applications.
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Fig.4 Shows a view of some benchmark functions
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Figure 5 illustrates the comparison between all results over 29 benchmark
functions of Fredman’s test.

According to Fig. 5, the least number belongs to the LEA, the QGDA, and the
third rank belongs to the DACG.

4.2 The LEA results on optimization problems in real world

In the following, the LEA is applied to two practical engineering optimization prob-
lems real world with multiple constraint space [59], and the results are compared
against QGDA [22] and DACG [23], SSO [59], ABC [60], FF [61], PS O[62],
AOA1 [63], AOA2 [64] and GOA [65] algorithms. The practical problems include
welded beam design optimization problem and the speed-reducer problem applied
in a gearbox [59].

The first applied problem is the welded beam design, in which a beam is designed
with a uniform cross section welded to a base to endure a 6,000-pound force. Fig-
ure 6 illustrates a schematic of the beam design and the respective variables.

Length L in Fig. 6 is 14 inches. The design aims to minimize construction expenses
such that an admissible composition of weld thickness %, weld length 7, beam thickness
t, and beam width b is found. The objective function is stated in relation (26):

Minf = (1+ ¢, )*l+ ¢ tb(L+1) (26)

where fis the expense relation including the cost of welding and material. Parameter
C1 is the welding material in the volume unit (equivalent to 10,471 dollars per
square inch), and C2 is the cost of the consumable raw material in the volume unit
(equivalent to 4811 dollars per square inch). Any composition of #, [, h, and b is not
acceptable and there are limitations on the mechanical specifications of the weld and
beam. For instance, shear and normal tensions, physical limitations (length cannot
be less than zero), and maximum displacement create limitations for design. The
problem constraints are defined in relations (27)—(35):

Ty () = 1.1047 1,23 — 0.01481 Ly, (14 + x,) 27)

including the below constraints:

g0 = 7(x) — 13600 < 0 (28)
2,(x) = o(x) — 30000 < 0 (29)
g =x,—x, <0 (30)
g(x)=x,-x,<0 (31)
g5(x) =0.125—-x, <0 (32)
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Fig.5 Ranking results of the optimization methods using Fredman’s test

86 =6(x)—025<0 (33)

87(x) = 6000 — p.(x) <0 (34)
with the below variable domains:

0,1 <x;<20.1<x,<100.1 <x;,<100.1 <x,<2 (35)

The second applied problem is the speed-reducer in a car’s gearbox system that
is applied in many other applications. The problem includes seven variables (x;—x;)
composing the size of different parts and aims to minimize the objective function for
constraint number 9 for all variables [59]. Its mathematical equation is captured in
relation (36):

k=
\O‘

2

Fig.6 The variables of the welded beam design problem [59]
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J2(x) =0.7854x,x3(3.3333x; + 14.9334x,43.0934)
— 1.508x, (x; +x3) + 7.477 (x}x3) (36)
+0.7854 (x4x§ + xsxg)

including the below constraints:

8100 = xligxz ~1<0 -
800 = 23 10 %)
1%5%3

&) = xziigxg ~1<0 9)

8400 = xziiéxé ~1<0 o)
\/(ﬂ)2 +157.5 % 106 )

8e(¥) = - 85x3 -1<0

g (x) = )Z—)(? -1<0 43)

83(x) = xlsizl -1<0 (44)

go(x) = %62 ~1<0 45)

with the below variable domains:

6<x <307<x <0817 <x3 <2873 <x, <8373 < x5

<8329 <x, <395 <x; <55 (46)

The results of the proposed method over 30 different executions in terms of the
average of the objective function and standard deviation are provided against the
results of the other methods.

According to Table 2, the least amount over 30 different executions is bet-
ter for the LEA compared to the other methods. In the welding beam design
problem, after the LEA, the AOA, and SOS methods are situated, respectively.

@ Springer



E. Dalirinia et al.

In the speed-reducer problem, after the LEA, the AOA, and AOA, methods are
situated with an insignificant difference, respectively. As it is known, the results
of the best methods in Table 1, which include DACG and QGDA methods, could
not have better results than the proposed method.

4.3 The LEA results on loT network clustering

This section provides the results comparison of the LEA with recent dragonfly-
based algorithms in different Internet of Things network applications, including
BDA [24], CH-DA [29] and DA-FA [66].

Different networks with 5-100 nodes and the parameters indicated in Table 3
are generated using MATLAB and then evaluated.

4.3.1 Investigating the proposed method in terms of packet delivery ratio

The performance of the proposed method is investigated in terms of three param-
eters packet delivery ratio, energy consumption, and network lifetime of up to
200 nodes. The packet delivery rate is defined as the number of packets success-
fully sent over the number of whole packets injected into the network. Figure 7
shows the linear diagram of the packet delivery ratio for 20 different networks in
Gigabits with 10-200 nodes. The X-axis is the number of nodes, and the Y-axis is
the number of delivered packets over whole packets in the network.

According to Fig. 7, generally, in a network with a high number of nodes,
the packet delivery ratio is higher due to existing more paths among the nodes.
However, approximating the current network situation and tuning the transmission
power of the nodes are more challenging with increasing the number of nodes in
the network and require more accuracy. The LEA has a more packet delivery ratio
than DA-FA, CH-DA, and BDA methods, according to Fig. 6. The evaluation
of the proposed method and the other methods over 20 networks of different
numbers of nodes is provided in Table 4. The results indicate that increasing the
number of nodes increases the packet delivery ratio linearly, and the proposed
method could deliver 0.9317 percent of the packets on average.

4.3.2 Investigating the proposed method in terms of energy consumption

Figure 8 compares energy consumption in the network using the LEA and the other
mentioned methods. The X-axis shows the number of nodes, and the Y-axis shows
the amount of consumed energy in millijoules.

According to Fig. 8, the consumed energy rate with increasing the number of
nodes is lower in the proposed method compared to the others. In the LEA, the
best path selection to send messages is approximated considering the current sit-
uation of the network; the optimal paths include passing through lower nodes but
with high energy; because the transmission power of the nodes is also considered
to consume lower energy and accurate transmission of the packet. Table 5 shows
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Table 3 Simulation parameters

Parameter Abbreviation  Value

Number of nodes of the network N 5-100
Environment width and length Area 100*100
Primary energy Eo 0.57

Electric energy Eelec 50 n J/bit
Transmission energy Etx 10 p I/bit/m?
Retrieval energy Erx 0.0013 p J/bit/m*
Data collection energy EDA 5 n J/bit/signal
Packet size Packet size 4000 Bits

Packet delivery ratio (gigabit)

2 4 6 8 10 12 14 16 18 20
number of node *10

Fig.7 Comparing the packet delivery ratio between the LEA and other methods

the consumption comparison for four different methods. The results are compared
in terms of the consumed energy in KJ in networks with different numbers of nodes
over 300 message transmission iterations in the network, and the amount of con-
sumed energy of the network is measured for the number of iterations of fixed mes-
sage transmission in the network.

According to Table 5, the average consumed energy of the LEA in 20 different
networks is 94.95 KJs and is lower than the other methods.

4.3.3 Investigating the proposed method in terms of the network lifetime

Figure 9 shows the network lifetime for the LEA and the other methods. The X-axis
shows the number of nodes, and the Y-axis shows the network lifetime in seconds.
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Table 4 Comparing the packet

. . Number of BDA LEA DA-FA CH-DA
delivery ratio among the network nodes
methods
10 0.7980 0.8148 0.7963 0.7948
20 0.8347 0.8550 0.8314 0.8299
30 0.8684 0.8868 0.8655 0.8671
40 0.9043 0.9087 0.9004 0.9009
50 0.9095 0.9195 0.9073 0.9080
60 0.9177 0.9271 0.9163 0.9143
70 0.9245 0.9288 0.9240 0.9210
80 0.9275 0.9358 0.9250 0.9271
90 0.9329 0.9414 0.9297 0.9316
100 0.9377 0.9413 0.9360 0.9365
110 0.9433 0.9474 0.9429 0.9399
120 0.9461 0.9530 0.9450 0.9418
130 0.9497 0.9511 0.94905 0.9479
140 0.9523 0.9558 0.9511 0.9483
150 0.9546 0.9606 0.9528 0.9512
160 0.9560 0.9569 0.9538 0.9559
170 0.9566 0.9600 0.9547 0.9535
180 0.9585 0.9636 0.9549 0.9565
190 0.9606 0.9615 0.9585 0.9560
200 0.9615 0.9643 0.9577 0.9614

Energy Consumption (millijoule)

14 16
number of node “10

20

Fig. 8 Comparing energy consumption between the proposed method and the other methods

According to Fig. 9, the network lifetime is more for the LEA compared to the
others. Table 6 shows the time when all network nodes are dead for 20 different
networks. According to Fig. 9, the LEA has a higher network lifetime than the three

@ Springer



E. Dalirinia et al.

methods DA-FA, CH-DA, and BDA. For the network lifetime, this is considered that
the method which consumes more energy for sending messages through the nodes
and comprises nodes with higher energy consumption certainly depletes its energy
earlier. Therefore, the energy consumed by the nodes should be less to improve the
network lifetime. It should be noted that the nodes with lower energy are not able to
send/receive data and are considered dead. Table 6 shows the comparison between
the proposed method and the others.

The lifetime values inserted in Table 6 are calculated in seconds for different net-
works; the calculation criterion is the death of the last node of the network. The
results indicate the network average lifetime in the proposed method is 1656.9 s
which is higher compared to the other methods.

4.3.4 Investigating the proposed method in terms of the death time of the nodes

In this section, the LEA is compared to the BDA [24], CH-DA [29] and DA-FA
[66] methods. The death time of the first node is the number of the round in which
the first node of the network stops working due to energy depletion, the death time
of half of the nodes is the number of the round in which half of the network nodes
stop working due to energy depletion. Finally, the death time of the last node of the
network is the number of rounds in which the last node stops working due to energy
depletion.

Figure 10 shows the performance comparison of the methods in terms of the
number of live nodes over rounds’ number.

According to Fig. 10, the network lifetime based on the death time of the first
node comes with a lower delay in the proposed method compared to the other
methods in 100 nodes, but in the BDA method [24], the death of the last node
comes with more delay.

Table 7 provides the results comparison of the proposed method and the other
methods in terms of the death of the nodes. The results are yielded by averaging
over the statistical society for 20 executions per algorithm in a network with 100
nodes and 400 rounds.

According to Table 7 and Fig. 10, the death time of the first node in the LEA
comes with more delay compared to the other methods, but the death time of the
last node in the BDA method [24] comes with more delay. Accordingly, the pro-
posed method guarantees the network lifetime better than the CH-DA [29] and
DA-FA [66] methods. This feature is of special privilege in applications in which
network coverage is important. Moreover, the death time of the first node in the
LEA indicates that it can be a superior model for monitoring or tracking applica-
tions that require very accurate data. In these applications, delaying the first death
time is far more important than the last. On the contrary, in some applications
like periodic weather monitoring, increasing the overall network lifetime (delay-
ing the last death time) is more desirable, whereas the BDA method is superior.
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Table 5 Comparing the

Number of BDA LEA DA-FA CH-DA

consumed energy between the network nodes

proposed method and the other

methods 10 76 74 78 77
20 85 81 88 85
30 91 86 92 94
40 88 85 89 91
50 87 84 88 89
60 88 86 88 90
70 91 90 94 92
80 90 89 92 93
90 94 91 96 95
100 91 88 92 91
110 95 93 98 98
120 93 92 95 94
130 94 92 95 95
140 100 96 102 101
150 97 94 98 97
160 99 98 99 99
170 101 101 102 104
180 121 118 121 124
190 128 127 129 130
200 139 134 140 139

3500

3000

2500

2000

1500

network lifetime (S)

1000

500

Fig.9 Comparing the network lifetime between the proposed method and the other methods

8 10 12
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Table 6 Comparing the network
lifetime between the proposed
method and the other methods

Number of BDA LEA DA-FA CH-DA
network nodes

10 89 92 74 57
20 181 189 158 151
30 392 411 385 360
40 601 637 555 547
50 790 821 735 767
60 950 974 906 895
70 1112 1141 1078 1079
80 1280 1298 1228 1277
90 1410 1460 1358 1398
100 1580 1662 1526 1529
110 1790 1881 1739 1757
120 1991 2005 1915 1980
130 2011 2086 1994 1987
140 2201 2256 2144 2158
150 2353 2395 2334 2340
160 2461 2512 2451 2409
170 2552 2632 2503 2535
180 2701 2790 2665 2637
190 2812 2881 2775 2793
200 2980 3015 2927 2926

5 Conclusion

A novel algorithm inspired by the Lotus flower is presented in this article. This
plant’s propagation method, along with its leaves’ self-cleaning property, is the
main inspiration for a new optimization method. Since the Internet of Things is con-
sidered one of the most important applications in today’s world, reducing energy
consumption in the network and increasing the lifetime of nodes (considering the
energy limitation of nodes) are important challenges in this field. This research pre-
sents a new method for clustering energy-based sensors, and the cluster heads are
determined using the proposed algorithm. The proposed method is compared to
the recently improved methods of the dragonfly algorithm in clustering Internet of
Things networks. The results indicate the LEA is better than other methods in terms
of network throughput, packet delivery rate, and network lifetime (in terms of the
death of the first node). It also decreases energy consumption.

The experiment results of a set of different types of benchmark functions indicate
that the proposed method is the best in single optimal functions and is one of the best
methods in methods with multiple optimums and high dimensions. The results of
the proposed method on the hybrid benchmark functions indicate that the proposed
method is not the best method among all the functions in this field. However, it pro-
vides competitive results and generally shows the best performance in Fredman’s rank-
ing test over 29 benchmark functions. Also, the efficiency of the proposed method is
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Number of nodes alive

Rounds

Fig. 10 Comparing the method’s performance in terms of the number of live nodes over the rounds’
number

Table 7 Comparing the results
of the methods in terms of the Method
death time of the nodes

First node death ~ Half nodes death ~ Last node
time time death time

Number of nodes: 100

DA-FA 2 131 179
LEA 33 191 393
CH-DA 3 165 362
BDA 5 203 399

tested on two real-world optimization problems with multiple constraints. One exam-
ple is the welded beam design optimization problem and the speed-reducer problem
applied in a gearbox. It turns out that it has higher accuracy than other methods.

For future work, one may use the proposed method in discrete applications,
including feature selection in data mining. Moreover, improving this method by
using the fuzzy inference system to control the exploration and extraction phases
could be investigated. Multi-objective optimization and high-objective optimiza-
tion problems are other areas where this method could be developed. Furthermore,
multi-modal optimization has numerous applications for which this algorithm could
be investigated and developed.

Appendix A

See Table 8.
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Appendix B
See Table 9.

Table 9 Test function specifications
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