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Abstract
Here we introduce a new evolutionary algorithm called the Lotus Effect Algorithm, 
which combines efficient operators from the dragonfly algorithm, such as the 
movement of dragonflies in flower pollination for exploration, with the self-cleaning 
feature of water on flower leaves known as the lotus effect, for extraction and local 
search operations. The authors compared this method to other improved versions of 
the dragonfly algorithm using standard benchmark functions, and it outperformed all 
other methods according to Fredman’s test on 29 benchmark functions. The article 
also highlights the practical application of LEA in reducing energy consumption 
in IoT nodes through clustering, resulting in increased packet delivery ratio and 
network lifetime. Additionally, the performance of the proposed method was tested 
on real-world problems with multiple constraints, such as the welded beam design 
optimization problem and the speed-reducer problem applied in a gearbox, and the 
results showed that LEA performs better than other methods in terms of accuracy.
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1  Introduction

Classic mathematical optimization methods mostly do not have the proper 
capability to solve complicated optimization problems, lacking the reliability to 
find the global optimum for problems [1]. Novel intelligent optimization methods 
and algorithms emerged due to the limitations and defects of these classic 
algorithms. They gradually proceed toward the optimum locations of the problem 
based on an intelligent search [2].

The existing results and evidence from articles indicate that utilizing high-
convergent metaheuristic algorithms in different types of routing over IoT 
networks enabled with wireless sensors results in high-accurate routing [3, 4].

Many studies have addressed collective intelligence algorithms. The 
Cheetah Optimizer (CO) algorithm successfully solved large-scale challenging 
optimization problems by improving population diversity and convergence. It 
provided a significant advantage over different standards and improved hybrid 
algorithms [5]. The Starling Murmuration Optimizer (SMO) algorithm is 
presented to solve complicated engineering optimization problems. The empirical 
results show its competitiveness against other high-level algorithms in terms 
of the quality of the solution and convergence ratio, which provides a more 
accurate solution [6]. The Pelican Optimizer Algorithm (POA) is presented to 
solve optimization problems. Its simulation and analytics in providing optimum 
solutions for optimization problems indicate it provides better performance and 
more competitiveness over eight competing algorithms by establishing a relative 
balance between exploration and exploitation [7]. The Artificial Hummingbird 
Algorithm (AHA) is more competitive than other metaheuristic algorithms, 
providing higher-quality solutions with lower control parameters. It outperforms 
existing optimization techniques regarding computational load and solution 
accuracy [8]. African Vulture Optimization Algorithm (AVOA), a new meta-
heuristic algorithm inspired by the lifestyle and foraging behaviors of African 
vultures for food, was proposed for global optimization problems. To evaluate 
the performance of AVOA, 36 standard benchmark functions were used, and the 
results indicate the superiority of the proposed algorithm over several existing 
ones [9]. Reptile Search Algorithm (RSA) is a nature-inspired meta-heuristic 
optimizer. The performance of RSA was evaluated using twenty-three classical 
test functions. Results showed that RSA performed significantly better than other 
well-known optimization algorithms and can handle various constraint problems 
and solve single-objective optimization problems involving controversial 
variables [10]. Coati Optimization Algorithm (COA) has been proposed to 
model the natural behavior of coatis. COA’s performance was evaluated on 
fifty-one objective functions, with its results compared to those of eleven well-
known meta-heuristic algorithms. Simulated results showed that COA, by 
balancing exploration in global search and exploitation in local search, had a 
clear superiority over the compared algorithms and is much more competitive 
[11]. Remora Optimization Algorithm (ROA) is a bionic-based, meta-heuristic 
algorithm inspired by nature. This algorithm is more inclined to provide a new 
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idea for the memetic algorithm. A total of 29 benchmark functions and five real 
engineering problems are used to test the validity of ROA. The experimental 
results demonstrate ROA’s remarkable competitive capability against many high-
level algorithms [12]. Whale Optimization Algorithm (WOA) has been tested 
on 29 mathematical optimization problems and six structural design problems. 
The results indicate that it can compete sufficiently with other modern meta-
heuristic methods [13]. Hawk fire optimizer (FHO) as a new meta-heuristic 
algorithm has provided acceptable results in dealing with real size optimization 
problems of CEC 2020. From a computational point of view, FHO can converge 
on the best global mathematical test functions by requiring a lower number of 
objective function evaluations [14]. Energy Valley Optimizer (EVO) as a new 
meta-heuristic algorithm that can outperform other alternative meta-heuristic 
algorithms in unconstrained mathematical test functions and converge to the best 
global solution with the least evaluation of the objective function[15]. The dung 
beetle optimizer (DBO) considers both global exploration and local exploitation, 
and has a fast convergence rate and satisfactory solution accuracy, which can be 
effectively used to solve real-world application problems[16].

Numerous studies are also performed on dragonfly-based collective intelligent 
algorithms(which used in the method proposed in this article) in recent years. 
Hybrid Memory-Based Dragonfly Algorithm with Differential Evolution (DADE) 
is a hybrid of the dragonfly and differential evolution algorithms. Its search power 
is enhanced using the leap and crossover mechanism, and its convergent power is 
increased by being enabled with memory for utilizing the best solutions through-
out the whole process of optimization [17]. A hybrid of Sine–Cosine and Dragon-
fly algorithm (SC-DA) utilizes the angular behavior of the sine and cosine func-
tions in the sine–cosine algorithm; the accuracy of the dragonflies in converging 
to the optimal point is increased due to its angular movements [18]. Biogeogra-
phy-based and Mexican hat wavelet algorithms has combined to improve the drag-
onfly algorithm(BMDA algorithm). It enhanced the search power in the hybrid 
model compared to the standard dragonfly algorithm due to the search variety of 
the two applied algorithms [19]. A Modified Dragonfly Optimization Algorithm 
Using Brownian Motion (DABM algorithm) adds a local search to the dragon-
fly algorithm using the kinetic energy equation, enhancing the convergence power 
to the optimum point [20]. A hybridization of Opposition-Based Learning (OBL) 
algorithm and dragonfly algorithm (DA-OBL) has enhanced the extraction power 
using bidirectional movement in dragonfly algorithm operators [21]. Consider-
ing the weakness of the extraction phase in the dragonfly algorithm, [22] and [23] 
used quantum physics and gradient, respectively, to enhance the convergent power 
of the algorithm. In another study, based on binary dragonfly optimization algo-
rithm, a multi-level method for optimal planning of network capacity expansion 
considering distributed generations with the aim of minimizing investment cost, 
operation, maintenance and reliability cost for network development is presented 
[24]. One of the capabilities of the dragonfly algorithm, which is used to detect 
tool wear in the manufacturing industry and leads to increased quality, increased 
productivity, and reduced downtime, is using it discretely in selecting features in 
creating effective machine learning methods [25]. The dragonfly algorithm can 
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be improved in determining the optimal size of the hybrid energy system based 
on wind-solar, and lead to an increase in productivity in the energy production 
industry [26]. In multi-objective optimization, dragonfly algorithm can be used in 
electricity distribution industry to reduce its losses [27]. To study the efficiency of 
improved dragonfly methods, a conceptual comparison of its types for optimiza-
tion problems has been done. And seven methods including hybrid memory-based 
dragonfly algorithm with differential evolution (DADE), quantum-behaved and 
Gaussian mutational dragonfly algorithm (QGDA), memory-based hybrid dragon-
fly algorithm (MHDA), chaotic dragonfly algorithm (CDA), biogeography-based 
Mexican hat wavelet dragonfly algorithm (BMDA), hybrid Nelder–Mead algo-
rithm and dragonfly algorithm (INMDA) and hybridization of dragonfly algorithm 
and artificial bee colony (HDA) have been investigated and the Friedman test was 
used for ranking, which showed the effectiveness of the QGDA method [28].

One application of the metaheuristic algorithms is in the clustering of Internet 
of Things network nodes. For example, a study entitled " Cluster-Based Energy-
Efficient Routing in Internet of Things," attempts to choose the best cluster heads 
among the sensors to reduce energy consumption in the network nodes and eventu-
ally reduce the whole network’s energy consumption [29].

Some research employed metaheuristic algorithms in the field of network 
routing and clustering, including energy-based clustering energy in inter-vehicular 
networks [30], routing of massive data transmission in the IoT network [31], routing 
in mobile wireless networks [32, 33], consumed energy in the whole network, data 
transmission power and the effect of the distance of mobile wireless network’s nodes 
on its stability [34–37], network self-stability [38], data transmission protocol in 
IoT networks [39], and routing in IoT networks considering energy reduction and 
stability enhancement simultaneously [40].

Routing and clustering in wireless networks and the Internet of Things network 
severely depend on the number of network nodes and evaluation criteria, including 
energy consumption reduction and enhancing stability. Research results indicate 
using metaheuristic methods or a hybrid of such methods in wireless networks is 
one of the most common methods to achieve higher accuracy in the routing process.

Utilizing metaheuristic methods—including ant colony, particle algorithm, a 
hybrid of the ant colony and particle algorithm, and hybrid of the ant colony and 
firefly algorithm [41–45] for routing in various kinds of Internet of things networks 
indicates their efficiency in choosing the best path and improving the results. 
Furthermore, Metaheuristic methods’ analogy shows their capability to solve 
problems by single-objective and multi-objective approaches, optimizing multiple 
effective factors in routing at their best [46].

The most crucial IoT network clustering method is the "Low-Energy Adaptive 
Clustering Hierarchy (LEACH)" protocol. Some researchers have compared 
LEACH-based hierarchical routing protocols such as LEACH-C, MM- LEACH, 
TL- LEACH, V- LEACH, and MOD- LEACH, based on energy waste or specific 
criteria like the number of CHs and the number of leaps [47, 48].

The proposed algorithm in this study upgrades some main objectives to develop 
LEACH-derived protocols for wireless sensor networks (WSN), including enhanced 
WSN performance, energy efficiency, energy distribution among nodes, increased 
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scalability, selecting the best node in each cluster as the cluster head, increased 
security in WSN, decreased network delay, and increased network stability.

Therefore, this article introduces a novel algorithm entitled "Lotus Effect 
Algorithm (LEA)" derived from the dragonfly algorithm [49] to improve the routing 
process and further reduce the consumed energy. The remaining is as follows:

Section  2 provides the source of inspiration and biological basics of the 
algorithm. The mathematical models and the Lotus Flower Algorithm are presented 
in Sect. 3 The applications of the LEA for node clustering in IoT are also introduced 
in this section. Section  4 covers the evaluation and results of performing the 
proposed LEA on test functions. The algorithm is also applied to two real-world 
engineering optimization problems with multiple restrictions Such as welded beam 
design optimization problem and the speed-reducer problem applied in a gearbox 
practical to confirm its performance. In the rest of Sect. 4, LEA application results 
on improving the clustering of IoT networks are compared to the results captured 
from other dragonfly-based methods. Finally, the paper concludes with Sect.  5, 
which includes the conclusion and proposal for future studies.

2 � Inspiration

The effect of lotus indicates the super-hydrophobic and self-cleaning characteristics 
of the lotus leaves. This effect has attracted much attention, introducing various 
applications in different levels of the Lotus effect since its explanation by Professor 
Wilhelm Bartlett for the first time in 1977 [50, 51]. However, super-hydrophobic 
surfaces have been studied and considered since the 1950s [52].

The self-cleaning feature is a Nano-science achievement inspired by the Lotus 
leaves. Investigating these flowers’ leaves on a Nano-scale indicates water droplets 
fall down the leaves due to the hydrophobicity property of their uneven surfaces 
[53].

The property of the plant’s leaves causes water to collect the soil on the leaves 
and slide down the leaves without being absorbed. This case could be considered a 
local search in terms of the movements of the drops on the leaves, which is described 
in its best way in Fig. 1—a picture of a Lotus flower and its leaves with some water 
droplets on them [54, 55].

The pollination of the Lotus flower and its leaves’ properties has inspired the 
proposed LEA. This algorithm is founded based on the efficiency of the dragonfly 
algorithm, enabled by pollination [56] and a local search related to water movement 
on the leaves of the Lotus flower.

The pollination comprises two main processes, including the biological process 
(cross-pollination) and the non-biological process (self-pollination) which are the 
exploration and extraction phases in the LEA.

In biological pollination, the pollen is transferred from one flower to various 
plants’ flowers with the help of pollinators such as insects and birds. This process 
takes place over a long period. It is considered a global pollination and search of the 
whole problem space (exploration), which is modeled by the mathematical model of 
the dragonfly optimization algorithm [49].
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In the non-biological process (self-pollination), fertilization is performed 
from the flowers’ pollen of the same plant. In this kind of pollination, factors 
such as wind and release in water helps pollinate these kinds of flowering plants. 
This self-pollination (self-fertilization) is considered local pollination and is used 
for searching and extracting the local optimum. For the property of the leaves on 
which water slides down without being absorbed by them, a double local search is 
considered for the movement of the droplets over the leaves.

3 � Lotus flower algorithm introduction

Considering the necessity of the exploration and extraction processes in 
metaheuristic algorithms as well as their existence in the Lotus flower’s life, the idea 
is based on the following items:

•	 Exploration as insects like dragonflies spread the seed, their movements are 
extendable in this regard (refer to the dragonfly optimization algorithm)

•	 Extraction as the flower blooms cluster around the center of a focal core, it may 
be an inspiration for local search by using a multi-population through clustering 
the search factors (derived from Lotus blooms).

•	 Extraction reinforcement moving water over this plant’s leaves and exiting 
from the closest opening on the leave’s surface may inspire a local search in the 
algorithm to find the optimum points (utilizing local search algorithms such as 
the Hill Climbing Algorithm—HCA)

Note: all variables used in this article are explained in Appendix A.

3.1 � LEA exploration phase

Global pollination (biological) is performed by dragonflies [49] in the LEA, 
which is identical to the exploration phase of the proposed algorithm. Three basic 

Fig. 1   Lotus (Nelumbo nucifera) plant ( adopted from Barthlott et al. [54] and Collins et al. [55])
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principles of the swarms of insects—separation, alignment, and cohesion—as well 
as two concepts of food and enemy, are considered in the dragonfly algorithm to 
simulate the intelligent behavior of dragonflies. Separation indicates preventing an 
individual from colliding with neighboring individuals. Alignment indicates the 
velocity matching of individuals to that of other individuals in the neighborhood. 
Cohesion indicates the tendency of individuals toward the center of the mass of 
the neighborhood. The main objective for each swarm is to survive. Therefore, 
individuals must all be attracted toward food sources and distracted from enemies. 
Considering these two behaviors, there are five factors in updating the individuals’ 
positions in the swarm, each of which could be mathematically modeled. Separation 
is calculated as follows [49]:

where Xi indicates the current individual’s position with index i in the evolution 
iteration t, Xj indicates the position of jth individual in the neighborhood in the 
evolution iteration t, and N is the number of individuals in the neighborhood.

Alignment is calculated as follows:

where Xj indicates the velocity of jth individual in the neighborhood in the evolution 
iteration t.

Cohesion is calculated as follows:

where Xi indicates the current individual’s position with index i in the evolution 
iteration t, N is the number of neighbors, and Xj indicates the position of jth 
individual in the neighborhood in the evolution iteration t.

Attraction toward food sources is calculated as follows:

where Xi indicates the current individual’s position with index i in the evolution 
iteration t, Xt

+
 is the location of the food source which is resulted from the current 

evolution iteration, i.e., t, and is the best-found answer.
Enemy distraction is calculated as follows:

where Xt
i
 indicates the current individual’s position with index i in the evolution 

iteration t, Xt
−
 is the enemy position which is resulted from the current evolution 

iteration, i.e., t, and is the worst-found answer.
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The behavior of dragonflies is a combination of these five assumed patterns. In 
order to update artificial dragonflies’ position in the search space and simulate their 
movements, two vectors are considered: step length and position. The step length (in 
brief, step) is similar to the velocity vector in the Particle Swarm Optimization (PSO) 
algorithm and the dragonfly algorithm is developed based on the framework of the PSO 
algorithm. The step or velocity vector shows the movement direction of the dragonflies 
and is defined as follows:

where s is the separation coefficient, St
i
 is the separation degree of the ith individual 

in evolution iteration i, a is the alignment coefficient, At
i
 is the alignment of the ith 

individual, c is the cohesion coefficient, Ct
i
 is the cohesion of the ith individual, f is 

the food factor, Ft
i
 is the food source of the ith individual, e is the enemy factor, Et

i
 is 

the enemy of the ith individual, w is the inertia weight, and finally, t is the iteration 
counter of the algorithm.

After calculating the step vector, the position vectors are calculated as follows:

where t is the iteration counter of the algorithm.
Utilizing factors separation (s), alignment (a), cohesion (c), food (f), and enemy (e), 

various explorative and exploitative behaviors can be performed during optimization. 
The location of the food source and the position of the enemy are obtained from the 
best and the worst answers found among the whole swarm. This causes convergence 
to the promising locations of the search space and divergence from the undesired 
locations in the search space. In order to improve the random/stochastic behaviors in 
the exploration of the artificial dragonflies, they need to fly around the search space 
with a random step length when there is no solution in their neighborhood. In this case, 
the position of the dragonflies is updated using the following relation:

where t is the current iteration counter, and d is the dimensions of the position 
vector. Levy is calculated using the following relation:

where r1 and r2 are two random numbers in the interval between zero and one, and 
� is a constant number. � is calculated using the following relation:
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where in:

3.2 � LEA exploitation phase

Local pollination (self-fertilization) is the extraction phase of the proposed 
algorithm. In this kind of pollination, a coefficient specifies the size of the growth 
area for each flower around the best-found flower. The best-found solution is the 
basis of movement and other solutions move toward it. The steps are taken longer at 
the beginning of the movement algorithm and shorter at the end.

where Xt+1 is the location of the pollen in (t + 1)th iteration and g∗ is the best-
found pollen location among all evolution iterations so far. R is the growth area, 
shrinking following algorithm iterations. In fact, the movement steps are longer at 
the beginning of the algorithm and get shorter by reaching the end of the algorithm 
until it converges to the optimum.

where t is the current evolution iteration of the algorithm and L is the ultimate 
iteration number.

Note In the proposed algorithm, the values of the neighborhood radius of 
dragonflies(in the exploration phase) and R(in the exploitation phase) are used to 
balance between exploration and exploitation. The radius of the dragonflies is an 
incremental value that ultimately makes them cohesive And the variable R is 
adjusted according to the number of repetitions of the algorithm and controls the 
movement steps from long to small steps.

3.3 � LEA exploitation phase reinforcement

A local search is considered to model the movement of water over the Lotus flower’s 
leaves, using water drops. By moving the water drops toward the first pits over the 
leaf, they will be filled and the water overflows the leaf. Each swarm member, i.e., 
solution is called a drop with position ( Xi ) and initial velocity ( Vi ), moving in the 
problem search space to find the optimal solution. A drop is positioned in the nearest 
local optimum to it, after formation on the leaf. This local optimum is called a pit. 
Each pit has a capacity for holding drops depending on its depth (fitness). Figure 2a 
illustrates some pits with different capacities.

The deepest pit is considered the most valuable pit (the pit with the best fitness) in 
each iteration. In the local search modeling, a velocity vector is considered for each 
drop whose initial value is the length of the primitive step that is received from the 
input; after each iteration, the movement vector adds up to its velocity vector, then is 

(11)L(x) = (x − 1)!

(12)Xt+1
i

= Xt
i
+ R

(
Xt
i
− g∗

)

(13)R = 2e
−

(
4t

L

)2



	 E. Dalirinia et al.

1 3

added to its velocity vector. The drop movement equation is shown in relation (17). 
These stages are repeated β times, and the β coefficient is received from the input.

In this modeling, each pit has a capacity whose depth determines its fitness. 
The more the depth, the more the capacity. The capacity of all pits is calculated as 
follows in each iteration:

where ct
i
 is the capacity of the pit i in the evolution iteration t, f t

i
 is the size of the ith 

pit in the evolution iteration t, fMax is the size of the biggest fitness among the pits, 
and fMin is the size of the smallest fitness among the pits. Const is a constant num-
ber indicating the maximum capacity of a pit for an objective function. Figure 2b 
illustrates five pits in the first iteration of algorithm execution. In each iteration, a 
random amount of the pits’ average capacity is added to each pit. In each pit, if the 
drops exceed the capacity, that pit is excluded and its water flows on the leaf surface. 
Figure 2c illustrates water overflow from two limited-capacity pits in the first itera-
tion and the identification of a pit with more capacity. The direction of e overflowed 
water is toward a pit with more capacity compared to it. The pit is selected randomly 
among existing pits with higher capacity. The selection is based on a priority such 
that the more a pit’s capacity, the more its selection probability. Relation (15) cap-
tures the probability of selecting a pit among the existing pits.

where Selectt
i
 is the probability of selecting a pit in the evolution iteration t, ct

i
 is the 

capacity of the ith pit in the evolution iteration t, and k is the number of pits whose 
capacity is higher than the overflowed pit.

After selecting a pit, the overflowed water moves toward that pit. While encounter-
ing a pit with more capacity than the source pit along the way, as much as the over-
flowed water pours into the higher-capacity pit and movement stops; otherwise, it 

(14)ct
i
=

(|||f ti − fMax
|||
)
× const

(||fMin − fMax
||
)

(15)Selectt
i
=

ct
i∑k

j=0
ct
j

Fig. 2   Some pits with different capacities and the search operation of the overflowed water in the state 
space
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continues to reach the selected pit, and as much as the overflowed water is poured into 
it. The source pit is removed at the end of the movement. The more the capacity of 
a pit, the more the probability of reusing it during algorithm execution (it will not be 
removed); it is more likely selected to capture the overflowed water flowing toward it. 
In this movement, unlike the PSO algorithm, the particles (drops) have no memory for 
holding the best position during the search. The knowledge of reasonable solutions is 
not maintained for any drop. A drop can locate other drops’ current position, and the 
best drop’s position is known at any moment.

Relation (16) shows the velocity and position of the drops’ movement during local 
search, and relation (17) shows the velocity and position of the drops’ movement 
overflowing from a pit on the surface.

In relations 16 and 17, Xt
deeppit

 is the current position of the deepest pit in the 
evolution iteration t, Vt

i
 is the current velocity of drop i in the evolution iteration t, 

Xt
i
 is the current position of drop i in the evolution iteration t, and q is the speed 

increment coefficient.
In an iterative process, two interactions take place between the drops by evalu-

ating their competency and fitness criteria in order to improve the swarm experi-
ence (the deepest pit): 1. a pit candidating to receive the overflowed water from 
other pits (represented by a drop), and 2. increasing drops’ competency. The exe-
cution steps of the LEA and its flowchart are provided in the remaining.

3.4 � LEA steps

The algorithm starts with generating initial solutions. Then, the best solution is 
specified after evaluation. The best solution is based on the other drops’ move-
ment in each iteration. In the proposed method, the possible solutions are called 
"flower" or "dragonfly" which are structurally alike and solely provided for 
a better understanding of the steps. The search process for each possible solu-
tion is performed either using the dragonfly algorithm’s mechanism or using 
local search. The pseudo-code and Flow chart of the algorithm is provided in the 
following.

(16)Vt+1
i

= q × Vt
i

and Xt+1
i

= Xt
i
+ Vt+1

i

(17)Vt+1
i

= Vt
i
+ Rand
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Xt
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− Xt
i

)
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i
= Xt

i
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Figure 3 shows the flow chart of the proposed model.

3.5 � LEA application in node clustering in IoT

One application of the LEA is in improving clustering and the accurate selection of 
the proper cluster heads in IoT networks. Sensors’ performance changes according 
to the hierarchical models. Some sensors collect data and some send it. In the LEA, 
the network is divided into separate clusters; the cluster head collects data from 
each wireless sensor periodically according to the Time Division Multiple Access 
(TDMA) and compresses it (to seme low extent). The data, then, are sent directly/
indirectly to the base station in multiple phases. The proposed method changes the 
cluster head periodically, causing load balancing in the network. The primary LEA 
operations are categorized into two different phases: first, setup which is composed 
of two steps: clustering and cluster head determination; and second, steady-state 
which focuses on data integration, collection, and sending to the base station. The 
first phase imposes less overload on the protocols. In the setup phase, the accurate 
selection of the cluster head is performed periodically and the consumed energy is 
distributed among network nodes. Accurate periodic selection of the cluster head 
requires each node for which a random number to be generated in the [0, 1] interval. 
The random number is compared to the cluster head threshold (captured by relation 
18) [29].

where T is the cluster head threshold, r is the current iteration, p is the percentage 
of headers relative to all nodes in the network, and n is the number of the nodes not 

(18)T(n) =

{ p

1−p
(
rmod

(
1

p

)) ∈ n

0 others
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selected as a cluster head in the 1/p final iteration [21]. At last, a node is selected as 
the cluster head whose value is less that the threshold. In this method, the clusters 
are managed locally and information on the general network is not required. Each 
cluster integrates data and saves energy, and there is no need for the nodes to send 
data directly toward the base station. Finally, the selected cluster head declares new 
roles for the other network nodes; then they link to the cluster. Each cluster’s cluster 
head generates a TDMA-based schedule—the allocated time intervals to each clus-
ter member—and distributes it in the cluster. The second phase starts after the com-
pletion of the first phase. In this step, the nodes gather the data which are assigned 
to them during different periods and send it to the cluster head node. Note that data 
collection performs periodically. The steps of the proposed method for cluster heads 
selection are as follows:

1.	 Generating a network including different sensors in the application space.
2.	 Random generation of the cluster heads as search agents using the Lotus effect 

algorithm.
3.	 Spreading the sensors among the cluster heads according to the second step.

Fig. 3   Flow chart of the proposed model
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	 3-1.	 Fitness evaluation of each search engine.
	 3-2.	 Changing the search agents based on the Lotus effect algorithm’s operators.
	 3-3.	 Stop condition, completion of Lotus effect algorithm’s iterations, otherwise 

go to step 3–1.

4.	 Sending data over the network for a specific period based on time.
5.	 End of the algorithm if the lifetime of the network is inspired; otherwise, go to 

step 2 with live sensors (changing the length of the search agents).

Therefore, accurate and optimal selection of the cluster heads is vital in a 
network, such that on the one hand, the data transmission energy for the wireless 
sensors to the cluster heads be minimal and, on the other hand, a desired multi-step 
path could be designed among the cluster heads for sending their data to the base 
station. In this case, the sensor network’s lifetime would be increased.

A solution is provided for the given problem (cluster head selection in the network) 
based on the proposed method. For this purpose, a network is considered in which 
some wireless sensors are distributed randomly and stochastically. The base station 
is assumed to be aware of the physical position of all nodes using a geolocator-like 
tool; the aim is to cluster the wireless sensors. After clustering, each sensor collects 
data from the environment and directly (single step) sends it to its related cluster head. 
Each cluster head collects the received data and sends it through multiple steps (using 
other cluster heads) to the base station. After selecting the cluster heads, each wireless 
sensor is assigned to the closest cluster head among the surrounding cluster heads in its 
communication range. Accurate selection of the cluster heads and finding a multi-step 
path among the cluster heads is performed in a centralized manner in the base station 
and is sent to all nodes. In this article. it is assumed that the base station has no energy 
constraint and the network is fixed, i.e., the position of the sensors and cluster heads 
will be fixed and the same after placement in the environment.

Each time, data collection and the gathered data transmission from all the cluster 
heads to the base station is considered as one period. Therefore, network lifetime is 
defined as the number of elapsed periods until the first cluster head’s energy depletes 
as in relation (19):

where ERi
 is the consumed energy of node i for receiving data and is calculated using 

relation (20):

where bi represents the number of bits received by the ith cluster head in one period 
and �1 is the energy coefficient of the received energy. In relation (19), ETi

 is the 
consumed energy by node i for sending data to node j (j could be a base station or a 
different cluster head) and is calculated using relation (21):

(19)Ei = ERi
+ ETi

(20)ERi
= �1.bi

(21)ETi
= �2.b + �.bi.di.d

m
i.j
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where dm
i.j

 is the Euclidean distance between nodes i and j, �2 is the transmission 
energy coefficient, variable b is the reinforcement coefficient, and m is the path 
attenuator coefficient, a number between 2 and 4.

The proposed method selects the desired cluster heads in the LEA. This research 
aims to select nodes as cluster heads that make energy consumption minimum 
and be able to establish an appropriate multi-step path among them. The proposed 
method is employed with binary encoding to evaluate LEA’s application in cluster 
head selection in the network. Each solution is equivalent to one cluster head selec-
tion style. Each solution is considered a binary array whose length is equal to the 
number of whole network sensors (each bit is equivalent to one sensor). A bit of 
value "1" in the array means its equivalent node is selected as a cluster head and 
value "0" represents ordinary nodes.

After determining the cluster heads, it can be said that each ordinary cluster node 
depends on the closest cluster head. The initial population of the proposed algorithm 
is generated randomly and stochastically and each member of the proposed popula-
tion’s appropriateness is evaluated using a fitness function. Each solution’s fitness 
value is provided based on the network lifetime. The network lifetime is defined as 
relation (22)—the number of data collection periods until the first cluster head’s 
energy depletes:

where Einitial is the cluster’s initial energy which is considered identical for all clus-
ter heads. Emax is the consumed energy of a cluster head that consumed the most 
amount of energy in one period of data collection. Given the number of selected 
cluster heads, n, it is calculated according to relation (23):

where ECH i
 is the ith cluster’s consumed energy. Lnet , in relation (22), represents the 

network’s lifetime, i.e., the number of data collection periods until the most energy 
consumed cluster head’s energy depletes. It should be noted that cluster heads 
consume energy for two purposes: 1—receiving data from the sensors located in 
their cluster, and 2—playing an intermediate role between sending and receiving 
data processes in multi-step routing among the cluster heads. Therefore, a cluster 
head’s consumed energy in one data collection period is calculated using relation 
(24):

Note The objective function in node clustering is Eq. 24, where the objective 
is to minimize the energy consumption in the network.where ER

intra Cluster
i

 is the 
amount of energy that the ith cluster head consumes to receive data from sensors 
inside ith cluster and is calculated by relation (25):

(22)Lnet =
Einitial

Emax

(23)E
max

= MAXE
CH

i
1 ≤ i ≤ n

(24)E
CH

i
= E

R

intra Cluster
i

+ E
inter Cluster

i
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where Ci is the number of the ith cluster’s sensors, and ER
CHiS

 is the energy consumed 
by the ith cluster head to receive data from sensor S and is calculated by relation 
(20) pertaining to the first-order radio style. EintraClusteri

 in relation (24) is the amount 
of energy consumed by the cluster head for routing among the cluster heads, 
receiving data from the preceding cluster heads, and sending data to the succeeding 
cluster head. The amount of this energy depends on the multi-step routing performed 
among the selected cluster heads.

4 � Evaluation and conclusion

The results of the proposed LEA are evaluated and compared against other opti-
mization algorithms in three parts. First, considering the basis of the proposed 
algorithm is the dragonfly algorithm inspired by the Lotus flower, the LEA results 
are compared against other dragonfly-based algorithms using benchmark function 
set CEC-BC-2017 including 29 benchmark functions which includes 23 optimi-
zation functions and 6 combination optimization functions of these 23 functions 
[57, 58]. Second, the results of applying the LEA for two engineering optimiza-
tion problems with multiple constraints are compared to the results of a series of 
optimization methods. Third, the results of the LEA applied to the clustering of 
IoT networks improvement are compared to the results of other dragonfly-based 
methods applied for the same purpose In addition, all simulation environments 
are implemented under the MATLAB platform With Windows 10.

Note The specifications of the test functions are explained in Appendix B.

4.1 � LEA results on test functions

Because the basis of the proposed algorithm is the dragonfly algorithm inspired 
by the Lotus flower, the LEA results are compared against improved dragonfly 
algorithms on the test functions. These benchmark test functions include high-
dimension and hybrid functions and pose a good comparison challenge for 
optimization methods. There used 30 search agents with 500 iterations and a 
maximum of 15,000 evaluation functions for all the benchmark functions to be 
pretty compared to the proposed method. To evaluate the methods on the set of 
benchmark functions, ranking with Fredman’s benchmark was used.

Functions 1–7 comprise two dimensions and have one optimum, functions 
8–13 are high-dimension functions with multiple optima, functions 14–23 are 
fixed-dimension functions with multiple optima, and finally, functions 24–29 
comprise hybrid functions with high complexity. Evaluation of the benchmark 
function set is performed using Fredman’s ranking test.

Table  1 compares the results to a series of collective intelligence algo-
rithms including DA [49], DADE [17], SC-DA [18], BMDA [19], DABM [20], 

(25)E
R

intra Cluster
i

=
∑
S∈C

i

E
R

CH
i
S
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DA-OBL [21], QGDA [22], and DACG [23]. To thoroughly test the LEA, the 
benchmark function set CEC-BC-2017, including 29 benchmark functions, is 
used [57]. Figure 4 shows a view of some benchmark functions.

As shown in Table 1, the LEA is the best method in functions F1–F7 and has a 
low standard deviation in converging to the global optimum. For function F5, the 
LEA is situated after QGDA. The results indicate the LEA outperforms other meth-
ods in higher-dimension problems in F9–F11. Moreover, in F9 and F10, the LEA 
has attained the global optimum, while most other methods could not. In F8, the 
most challenging function in this benchmark class, the LEA holds the second rank 
after QGDA, almost reaching the global optimum. For F12 and F13, BMDA outper-
forms other methods. This is while the LEA still wins the competency, especially for 
F12. In benchmark functions F8–F13, the LEA holds the second performance rank 
after BMDA. All methods’ performance is similar in problems with fixed dimen-
sions (F14–F23). However, the LEA’s results are incredibly competitive. The LEA 
achieved the global optimum in functions—F14, F16, F17, F18, and F19. The LEA’s 
results are very close to the global optimum for the rest of the functions.

The hybrid functions are the most challenging benchmark functions that 
could be used to avoid convergence to the local optimum. The results for func-
tions F24–F29 indicate the outperformance of the DACG method compared to 
the others. The LEA ranks fourth in most of these functions, behind DACG, 
QGDA, and DADE. However, its results are competitive with QGDA and DADE 
methods in most applications.

Fig. 4   Shows a view of some benchmark functions
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Figure  5 illustrates the comparison between all results over 29 benchmark 
functions of Fredman’s test.

According to Fig. 5, the least number belongs to the LEA, the QGDA, and the 
third rank belongs to the DACG.

4.2 � The LEA results on optimization problems in real world

In the following, the LEA is applied to two practical engineering optimization prob-
lems real world with multiple constraint space [59], and the results are compared 
against QGDA [22] and DACG [23], SSO [59], ABC [60], FF [61], PS O[62], 
AOA1 [63], AOA2 [64] and GOA [65] algorithms. The practical problems include 
welded beam design optimization problem and the speed-reducer problem applied 
in a gearbox [59].

The first applied problem is the welded beam design, in which a beam is designed 
with a uniform cross section welded to a base to endure a 6,000-pound force. Fig-
ure 6 illustrates a schematic of the beam design and the respective variables.

Length L in Fig. 6 is 14 inches. The design aims to minimize construction expenses 
such that an admissible composition of weld thickness h, weld length I, beam thickness 
t, and beam width b is found. The objective function is stated in relation (26):

where f is the expense relation including the cost of welding and material. Parameter 
C1 is the welding material in the volume unit (equivalent to 10,471 dollars per 
square inch), and C2 is the cost of the consumable raw material in the volume unit 
(equivalent to 4811 dollars per square inch). Any composition of t, l, h, and b is not 
acceptable and there are limitations on the mechanical specifications of the weld and 
beam. For instance, shear and normal tensions, physical limitations (length cannot 
be less than zero), and maximum displacement create limitations for design. The 
problem constraints are defined in relations (27)–(35):

including the below constraints:

(26)Min f =
(
1 + c1

)
h2l + c1tb(L + I)

(27)Jp1(x) = 1.10471x2x
2
1
− 0.014811x3x4(14 + x2)

(28)g1(x) = �(x) − 13600 ≤ 0

(29)g2(x) = �(x) − 30000 ≤ 0

(30)g
3(x) = x

1
− x

4
≤ 0

(31)g
3(x) = x

1
− x

4
≤ 0

(32)g
5(x) = 0.125 − x

1
≤ 0
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with the below variable domains:

The second applied problem is the speed-reducer in a car’s gearbox system that 
is applied in many other applications. The problem includes seven variables (x1–x7) 
composing the size of different parts and aims to minimize the objective function for 
constraint number 9 for all variables [59]. Its mathematical equation is captured in 
relation (36):

(33)g6(x) = �(x) − 0.25 ≤ 0

(34)g7(x) = 6000 − pc(x) ≤ 0

(35)0, 1 ≤ x1 ≤ 20.1 ≤ x2 ≤ 10.0.1 ≤ x3 ≤ 10.0.1 ≤ x4 ≤ 2

7.49

6.11 5.81
5.09 4.86 4.81

3.39
3.75

3.11

0

1
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3

4

5

6

7

8
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Fr
ed

m
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lt

Methods 

Fig. 5   Ranking results of the optimization methods using Fredman’s test

Fig. 6   The variables of the welded beam design problem [59]
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including the below constraints:

with the below variable domains:

The results of the proposed method over 30 different executions in terms of the 
average of the objective function and standard deviation are provided against the 
results of the other methods.

According to Table  2, the least amount over 30 different executions is bet-
ter for the LEA compared to the other methods. In the welding beam design 
problem, after the LEA, the AOA2 and SOS methods are situated, respectively. 

(36)

Jp2(x) = 0.7854x1x
2
2

(
3.3333x2

3
+ 14.9334x343.0934

)

− 1.508x1
(
x2
6
+ x2

7

)
+ 7.477

(
x3
6
x3
7

)

+ 0.7854
(
x4x

2
6
+ x5x

2
7

)

(37)g1(x) =
27

x1x
2
2
x2

− 1 ≤ 0

(38)g2(x) =
397.5

x1x
2
2
x2
3

− 1 ≤ 0

(39)g3(x) =
1.93

x2x3x
3
4
x4
6

− 1 ≤ 0

(40)g4(x) =
1.93

x2x3x
3
5
x4
7

− 1 ≤ 0

(42)
g6(x) =

√(
745x4

x2x3

)2

+ 157.5 ∗ 106

85x3
7

− 1 ≤ 0

(43)g7(x) =
x2x3

40
− 1 ≤ 0

(44)g8(x) =
5x2

x1 − 1
− 1 ≤ 0

(45)g9(x) =
x1

12x2
− 1 ≤ 0

(46)
6 ≤ x1 ≤ 3.0.7 ≤ x2 ≤ 0.8.17 ≤ x3 ≤ 28.7.3 ≤ x4 ≤ 8.37.3 ≤ x5

≤ 8.32.9 ≤ x6 ≤ 3.9.5 ≤ x7 ≤ 5.5
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In the speed-reducer problem, after the LEA, the AOA1 and AOA2 methods are 
situated with an insignificant difference, respectively. As it is known, the results 
of the best methods in Table 1, which include DACG and QGDA methods, could 
not have better results than the proposed method.

4.3 � The LEA results on IoT network clustering

This section provides the results comparison of the LEA with recent dragonfly-
based algorithms in different Internet of Things network applications, including 
BDA [24], CH-DA [29] and DA-FA [66].

Different networks with 5–100 nodes and the parameters indicated in Table 3 
are generated using MATLAB and then evaluated.

4.3.1 � Investigating the proposed method in terms of packet delivery ratio

The performance of the proposed method is investigated in terms of three param-
eters packet delivery ratio, energy consumption, and network lifetime of up to 
200 nodes. The packet delivery rate is defined as the number of packets success-
fully sent over the number of whole packets injected into the network. Figure 7 
shows the linear diagram of the packet delivery ratio for 20 different networks in 
Gigabits with 10–200 nodes. The X-axis is the number of nodes, and the Y-axis is 
the number of delivered packets over whole packets in the network.

According to Fig.  7, generally, in a network with a high number of nodes, 
the packet delivery ratio is higher due to existing more paths among the nodes. 
However, approximating the current network situation and tuning the transmission 
power of the nodes are more challenging with increasing the number of nodes in 
the network and require more accuracy. The LEA has a more packet delivery ratio 
than DA-FA, CH-DA, and BDA methods, according to Fig.  6. The evaluation 
of the proposed method and the other methods over 20 networks of different 
numbers of nodes is provided in Table 4. The results indicate that increasing the 
number of nodes increases the packet delivery ratio linearly, and the proposed 
method could deliver 0.9317 percent of the packets on average.

4.3.2 � Investigating the proposed method in terms of energy consumption

Figure 8 compares energy consumption in the network using the LEA and the other 
mentioned methods. The X-axis shows the number of nodes, and the Y-axis shows 
the amount of consumed energy in millijoules.

According to Fig.  8, the consumed energy rate with increasing the number of 
nodes is lower in the proposed method compared to the others. In the LEA, the 
best path selection to send messages is approximated considering the current sit-
uation of the network; the optimal paths include passing through lower nodes but 
with high energy; because the transmission power of the nodes is also considered 
to consume lower energy and accurate transmission of the packet. Table  5 shows 
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the consumption comparison for four different methods. The results are compared 
in terms of the consumed energy in KJ in networks with different numbers of nodes 
over 300 message transmission iterations in the network, and the amount of con-
sumed energy of the network is measured for the number of iterations of fixed mes-
sage transmission in the network.

According to Table 5, the average consumed energy of the LEA in 20 different 
networks is 94.95 KJs and is lower than the other methods.

4.3.3 � Investigating the proposed method in terms of the network lifetime

Figure 9 shows the network lifetime for the LEA and the other methods. The X-axis 
shows the number of nodes, and the Y-axis shows the network lifetime in seconds.

Table 3   Simulation parameters Parameter Abbreviation Value

Number of nodes of the network N 5–100
Environment width and length Area 100*100
Primary energy Eo 0.5 J
Electric energy Eelec 50 n J/bit
Transmission energy Etx 10 p J/bit/m2

Retrieval energy Erx 0.0013 p J/bit/m4

Data collection energy EDA 5 n J/bit/signal
Packet size Packet size 4000 Bits

Fig. 7   Comparing the packet delivery ratio between the LEA and other methods
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According to Fig. 9, the network lifetime is more for the LEA compared to the 
others. Table  6 shows the time when all network nodes are dead for 20 different 
networks. According to Fig. 9, the LEA has a higher network lifetime than the three 

Table 4   Comparing the packet 
delivery ratio among the 
methods

Number of 
network nodes

BDA LEA DA-FA CH-DA

10 0.7980 0.8148 0.7963 0.7948
20 0.8347 0.8550 0.8314 0.8299
30 0.8684 0.8868 0.8655 0.8671
40 0.9043 0.9087 0.9004 0.9009
50 0.9095 0.9195 0.9073 0.9080
60 0.9177 0.9271 0.9163 0.9143
70 0.9245 0.9288 0.9240 0.9210
80 0.9275 0.9358 0.9250 0.9271
90 0.9329 0.9414 0.9297 0.9316
100 0.9377 0.9413 0.9360 0.9365
110 0.9433 0.9474 0.9429 0.9399
120 0.9461 0.9530 0.9450 0.9418
130 0.9497 0.9511 0.94905 0.9479
140 0.9523 0.9558 0.9511 0.9483
150 0.9546 0.9606 0.9528 0.9512
160 0.9560 0.9569 0.9538 0.9559
170 0.9566 0.9600 0.9547 0.9535
180 0.9585 0.9636 0.9549 0.9565
190 0.9606 0.9615 0.9585 0.9560
200 0.9615 0.9643 0.9577 0.9614

Fig. 8   Comparing energy consumption between the proposed method and the other methods
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methods DA-FA, CH-DA, and BDA. For the network lifetime, this is considered that 
the method which consumes more energy for sending messages through the nodes 
and comprises nodes with higher energy consumption certainly depletes its energy 
earlier. Therefore, the energy consumed by the nodes should be less to improve the 
network lifetime. It should be noted that the nodes with lower energy are not able to 
send/receive data and are considered dead. Table 6 shows the comparison between 
the proposed method and the others.

The lifetime values inserted in Table 6 are calculated in seconds for different net-
works; the calculation criterion is the death of the last node of the network. The 
results indicate the network average lifetime in the proposed method is 1656.9  s 
which is higher compared to the other methods.

4.3.4 � Investigating the proposed method in terms of the death time of the nodes

In this section, the LEA is compared to the BDA [24], CH-DA [29] and DA-FA 
[66] methods. The death time of the first node is the number of the round in which 
the first node of the network stops working due to energy depletion, the death time 
of half of the nodes is the number of the round in which half of the network nodes 
stop working due to energy depletion. Finally, the death time of the last node of the 
network is the number of rounds in which the last node stops working due to energy 
depletion.

Figure  10 shows the performance comparison of the methods in terms of the 
number of live nodes over rounds’ number.

According to Fig. 10, the network lifetime based on the death time of the first 
node comes with a lower delay in the proposed method compared to the other 
methods in 100 nodes, but in the BDA method [24], the death of the last node 
comes with more delay.

Table 7 provides the results comparison of the proposed method and the other 
methods in terms of the death of the nodes. The results are yielded by averaging 
over the statistical society for 20 executions per algorithm in a network with 100 
nodes and 400 rounds.

According to Table 7 and Fig. 10, the death time of the first node in the LEA 
comes with more delay compared to the other methods, but the death time of the 
last node in the BDA method [24] comes with more delay. Accordingly, the pro-
posed method guarantees the network lifetime better than the CH-DA [29] and 
DA-FA [66] methods. This feature is of special privilege in applications in which 
network coverage is important. Moreover, the death time of the first node in the 
LEA indicates that it can be a superior model for monitoring or tracking applica-
tions that require very accurate data. In these applications, delaying the first death 
time is far more important than the last. On the contrary, in some applications 
like periodic weather monitoring, increasing the overall network lifetime (delay-
ing the last death time) is more desirable, whereas the BDA method is superior.
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Table 5   Comparing the 
consumed energy between the 
proposed method and the other 
methods

Number of 
network nodes

BDA LEA DA-FA CH-DA

10 76 74 78 77
20 85 81 88 85
30 91 86 92 94
40 88 85 89 91
50 87 84 88 89
60 88 86 88 90
70 91 90 94 92
80 90 89 92 93
90 94 91 96 95
100 91 88 92 91
110 95 93 98 98
120 93 92 95 94
130 94 92 95 95
140 100 96 102 101
150 97 94 98 97
160 99 98 99 99
170 101 101 102 104
180 121 118 121 124
190 128 127 129 130
200 139 134 140 139

Fig. 9   Comparing the network lifetime between the proposed method and the other methods
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5 � Conclusion

A novel algorithm inspired by the Lotus flower is presented in this article. This 
plant’s propagation method, along with its leaves’ self-cleaning property, is the 
main inspiration for a new optimization method. Since the Internet of Things is con-
sidered one of the most important applications in today’s world, reducing energy 
consumption in the network and increasing the lifetime of nodes (considering the 
energy limitation of nodes) are important challenges in this field. This research pre-
sents a new method for clustering energy-based sensors, and the cluster heads are 
determined using the proposed algorithm. The proposed method is compared to 
the recently improved methods of the dragonfly algorithm in clustering Internet of 
Things networks. The results indicate the LEA is better than other methods in terms 
of network throughput, packet delivery rate, and network lifetime (in terms of the 
death of the first node). It also decreases energy consumption.

The experiment results of a set of different types of benchmark functions indicate 
that the proposed method is the best in single optimal functions and is one of the best 
methods in methods with multiple optimums and high dimensions. The results of 
the proposed method on the hybrid benchmark functions indicate that the proposed 
method is not the best method among all the functions in this field. However, it pro-
vides competitive results and generally shows the best performance in Fredman’s rank-
ing test over 29 benchmark functions. Also, the efficiency of the proposed method is 

Table 6   Comparing the network 
lifetime between the proposed 
method and the other methods

Number of 
network nodes

BDA LEA DA-FA CH-DA

10 89 92 74 57
20 181 189 158 151
30 392 411 385 360
40 601 637 555 547
50 790 821 735 767
60 950 974 906 895
70 1112 1141 1078 1079
80 1280 1298 1228 1277
90 1410 1460 1358 1398
100 1580 1662 1526 1529
110 1790 1881 1739 1757
120 1991 2005 1915 1980
130 2011 2086 1994 1987
140 2201 2256 2144 2158
150 2353 2395 2334 2340
160 2461 2512 2451 2409
170 2552 2632 2503 2535
180 2701 2790 2665 2637
190 2812 2881 2775 2793
200 2980 3015 2927 2926
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tested on two real-world optimization problems with multiple constraints. One exam-
ple is the welded beam design optimization problem and the speed-reducer problem 
applied in a gearbox. It turns out that it has higher accuracy than other methods.

For future work, one may use the proposed method in discrete applications, 
including feature selection in data mining. Moreover, improving this method by 
using the fuzzy inference system to control the exploration and extraction phases 
could be investigated. Multi-objective optimization and high-objective optimiza-
tion problems are other areas where this method could be developed. Furthermore, 
multi-modal optimization has numerous applications for which this algorithm could 
be investigated and developed.

Appendix A

See Table 8.

Fig. 10   Comparing the method’s performance in terms of the number of live nodes over the rounds’ 
number

Table 7   Comparing the results 
of the methods in terms of the 
death time of the nodes

Method First node death 
time

Half nodes death 
time

Last node 
death time

Number of nodes: 100
DA-FA 2 131 179
LEA 33 191 393
CH-DA 3 165 362
BDA 5 203 399
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Appendix B

See Table 9.

Table 9   Test function specifications
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