
Towards a Formal Verification of the Lightning
Network with TLA+

Matthias Grundmann, Hannes Hartenstein
KASTEL Security Research Labs

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

Abstract—Payment channel networks are an approach to
improve the scalability of blockchain-based cryptocurrencies.
Because payment channel networks are used for transfer of
financial value, their security in the presence of adversarial par-
ticipants should be verified formally. We formalize the protocol
of the Lightning Network, a payment channel network built for
Bitcoin, and show that the protocol fulfills the expected security
properties. As the state space of a specification consisting of
multiple participants is too large for model checking, we formal-
ize intermediate specifications and use a chain of refinements to
validate the security properties where each refinement is justified
either by model checking or by a pen-and-paper proof.

Index Terms—TLA+, Model Checking, Blockchain, Payment
Channel Networks

I. INTRODUCTION

Blockchain-based cryptocurrencies do not scale well with
respect to their transaction throughput. One approach to im-
prove said scalability are Payment Channel Networks – a
second layer on top of a blockchain that processes transactions
without writing each transaction to the blockchain. A payment
channel between two users is opened by performing one
transaction on the underlying blockchain. Once a payment
channel is open, it allows for performing an unlimited number
of transactions between its participating users without writing
to the blockchain. Finally, a payment channel is closed by
publishing a second transaction on the blockchain. In a pay-
ment channel network, the participating users are connected
by payment channels and can perform multi-hop transactions
so that the sender and the recipient of a transaction do not
need to have a payment channel directly connecting them but
it suffices that a path between sender and recipient over a set
of payment channels exists.

The security model for payment channels requires that
honest users cannot loose their funds even if all other users
behave adversarially. To avoid financial loss caused by design
flaws in a payment channel protocol, it should be verified that
the protocol is secure. In this paper, we analyze the security of
the protocol of the Lightning Network [1], a payment channel
network for Bitcoin [2], for which different implementations
exist and which is used in practice. Our goal is to verify secu-
rity properties of the Lightning Networks’ protocol. While this
goal has already been approached in previous work [3], we aim
at verifying the properties in a largely machine-checked way
because the complexity of the Lightning Network’s protocol
is difficult to handle. Our general approach is to formalize

the Lightning Network’s protocol in TLA+ and verify using
model checking that the protocol fulfills the security property
that honest parties retrieve at least their correct balance. Due to
the complexity of the Lightning Networks’ protocol, we cannot
directly model check the protocol specification. Instead, we
use model checking for the most difficult proof steps and we
provide pen-and-paper proofs to extend the statements about
specifications that we can model check to the whole protocol
specification.

To concretize, we formalize an ideal functionality of a
payment channel that abstracts the behavior of the Lightning
Network’s protocol. We show that the formalized protocol
specification of a payment channel refines the ideal channel
functionality by explicitly specifying a refinement mapping
between the formalized protocol specification and the ideal
channel functionality. We verify the validity of the refinement
mapping using a model checker. By using the ideal chan-
nel functionality, we specify an abstraction of the Lightning
Network’s protocol for multi-hop payments. We use a model
checker to verify that this specification of idealized channel
functionalities implements the security properties for multi-
hop payments (e.g., dishonest parties cannot steal money). As
the formalized protocol specification refines the specification
of idealized channel functionalities, it follows that the formal-
ized protocol also implements the security properties.

We describe the Lightning Network’s protocol in more detail
in Section II and give a brief summary of related work in
Section III. We give an overview of our approach in Section IV
and describe how we show the individual proof steps. Our
work is still in-progress and, thus, not all steps are complete
but with this work-in-progress report we aim to give an
introduction to the overall approach. We do not provide the
proof steps in detail but elaborate on the proof ideas.

II. FUNDAMENTALS

A. Payment Channels: Single-Hop Payments

A payment channel is a protocol between two users that
enables these two users to deposit coins into the payment
channel during opening, perform transactions between the two
users by updating the payment channel, and retrieving their
final funds by closing the payment channel. At every state
of the protocol, each user is guaranteed to be able to close
the channel to retrieve their current balance independent of
cooperation of the other user. Even with an actively malicious



channel partner, an honest user cannot loose their funds as
long as the user actively monitors the underlying blockchain
and reacts to malicious closing attempts.

On a high level, a payment channel is implemented as
a shared account: The two users open the shared account
by depositing coins into the shared account and store the
allocation of the funds, i.e., which user owns how many coins,
in their current state. To perform a transaction sending x coins
from one user to the other user, both users agree on a new
allocation of funds in which x coins are deducted from the
sender’s share of funds and added to the recipient’s share
of funds. By updating their state, both users can perform
an unlimited amount of transactions between each other just
based on communication between each other. To fulfill the
security guarantees, it needs to be ensured that the payment
channel can be closed only in a state that represents the latest
allocation of funds. Particularly, the channel may not be closed
with an outdated allocation of funds and an honest user must
be able to close a channel in a state with the latest allocation
of funds.

More technically, a payment channel is opened in the
Lightning Network by creating a funding transaction1. The
funding transaction has an input spending an output from the
funding user (funder)2 and the funding transaction has a multi-
sig output that is spendable only by the two users in the
channel together. Just publishing the funding transaction on
the blockchain would create a dependence of the funder on
the other user for spending the funding transaction’s output
as the funding transaction’s output can only be spent by the
two users together. To prevent such a dependence, an initial
commitment transaction that spends the funding transaction’s
output is created by the two users and the non-funding user
sends their signature for the initial commitment transaction
to the funder who only publishes the funding transaction after
receiving this signature. A commitment transaction has at least
two outputs: One output for each user that is redeemable only
by this user and has an amount that corresponds to the balance
the user currently has. In the initial commitment transaction,
all funds are spendable by the funder.3

For a payment from one user to the other, an HTLC (Hash
Timelocked Contract) is added to the channel. These HTLCs
will also be used for multi-hop payments. An HTLC is a
contract that encodes the agreement that the recipient receives
a specified amount if the recipient proves knowledge of a
preimage to a specified hash before a specified time has
passed. To make a payment using an HTLC, the channel is
updated to add the HTLC. The HTLC is added by adding a
dedicated output that represents the HTLC to a new commit-
ment transaction. The amount of coins that are part of the

1See BOLT 2 and BOLT 3, https://github.com/lightning/bolts/blob/master/
00-introduction.md.

2At present, the Lightning Network supports only single-funded channels,
i.e. only one user deposits coins into the channel during opening.

3This is a simplification; the Lightning Network’s specification allows the
funder to send a small amount to the non-funding user already in the initial
commitment transaction (see push_msat).

HTLC are deducted from the payment’s sender’s output in the
new commitment transaction. After the HTLC is committed to
the payment channel, the recipient of the payment fulfills the
HTLC by sending the preimage to the sender of the payment.
Then, the channel is updated by creating a new commitment
transaction without the HTLC output to remove the HTLC and,
in the new commitment transaction, the HTLC’s amount is
added to the recipient’s balance. If the recipient does not fulfill
the HTLC before the timelock, the HTLC is also removed but
the HTLC’s amount is added back to sender’s balance.

For an update of the channel, the sender of the payment cre-
ates a new commitment transaction and sends a signature for
this new commitment transaction to the payment’s recipient.
Now, the recipient has two valid versions of the commitment
transaction: The current and the new commitment transaction
which are both signed by the payment’s sender. Both versions
of the commitment transaction are valid and can be published
on the blockchain. As a malicious user might publish an
outdated commitment transaction, commitment transactions
should be ‘revoked’ so that they cannot be published anymore.
As a signature to a commitment transaction cannot be undone,
the Lightning Network uses an approach for revocation that
relies on incentives: A user can be punished for publishing
an outdated commitment transaction. For each commitment
transaction there exists a revocation key pair. With knowledge
of the private revocation key, one user can spend all outputs of
the commitment transaction that the user’s counterpart in the
channel has published. In this way, the transaction’s outcome
is revoked while the transaction itself is persisted. During an
update of a channel, both users send each other their signature
for the new commitment transaction and reply by sending
the private revocation key for the now outdated commitment
transaction to revoke the outdated commitment transaction.
As the users do not have the private revocation key for
the current commitment transaction of their counterpart, they
cannot punish each other for correct behavior like publishing
the current commitment transaction. For the security of the
protocol it is crucial that each user has the necessary private
revocation keys for the states that are outdated and that the
other user in the channel does not have the private revocation
key for a state that is considered the latest state.

B. Payment Channel Networks: Multi-Hop Payments

If two users do not have a common payment channel
but they are connected over a path of payment channels of
other users, they can make multi-hop payments between each
other. The intermediate users forward the payment over their
channels and might receive a small fee for their service.
To prevent intermediaries from stealing or loosing coins, it
should be guaranteed for a multi-hop payment that each
intermediary receives an incoming payment on one channel
iff the intermediary forwards the payment on another channel.
Also the sender should send the payment to an intermediary iff
the recipient receives the payment from an intermediary. The
Lightning Network uses HTLCs for multi-hop payments to
achieve these security properties. The recipient of a payment



draws a random value x and calculates the hash value y =
H (x ) using a cryptographic hash function H . The recipient
sends y to the sender of the payment. The sender of the
payment creates an HTLC with the first intermediary using y
as the hash condition for the HTLC. The intermediary creates
an HTLC with the next hop and each intermediary repeats
this process until the last intermediary creates an HTLC
with the recipient of the payment. The recipient knows the
preimage x for the hash condition y and fulfills the HTLC by
sending x to the last intermediary. By fulfilling the HTLC, the
payment’s recipient receives the payment’s amount from the
last intermediary. Again, each intermediary forwards the secret
value x fulfilling the HTLCs along the route until the sender
receives x and pays the first intermediary. The timelocks of
the HTLCs are chosen in a descending order from the sender
to the recipient, so that each intermediary has enough time to
fulfill the incoming HTLC from the previous hop if the next
hop fulfills the outgoing HTLC.

C. TLA+

The Temporal Logic of Actions (TLA) [4] is a temporal
logic to reason about properties of a system. The language
TLA+ is based on TLA and can be used to formalize the
behavior of system. Using tools like a model checker (TLC)
or a theorem prover (TLAPS), invariants and properties can
be shown to be valid for a formalized system. In TLA+, the
state of a system is described by a set of variables vars . A
system is defined by defining a set of initial states for which
the formula Init is valid and by defining an action Next that
determines which steps are allowed for the system to change
its state. Using these components, a system is represented as
a formula Init ∧ 2[Next ]vars . An additional conjunct may
be a fairness condition that asserts that certain steps must be
taken if they are continuously allowed. The Next action is
typically a disjunct of multiple subactions the define different
ways for the system’s state to be updated. These (sub)actions
can be grouped into modules. Each module can be instantiated
multiple times for different sets of variables.

III. RELATED WORK

TLA+ is used in the industry [5], [6] and there are also
examples in the scientific literature how TLA+ has been
used to reason about the properties of protocols: Narayana
et al. [7] used TLA+ to search for vulnerabilities in IEEE
802.16 WiMAX protocols. Lu et al. [8], [9] used TLA+ to
verify properties of core algorithms of the Pastry protocol.
Braithwaite et al. [10] used TLA+ for specifying and model
checking a core protocol of Tendermint blockchains. Further,
TLA+ was used to verify firewalls [11], the ZooKeeper atomic
broadcast protocol [12], a design for state channels [13], for
checking security properties of smart contracts [14], and for
proving properties of Cross-Chain swaps [15].

The Lightning Network’s protocol was formalized before
by Kiayias and Thyfronitis Litos [3]. They formalized an ideal
functionality and used the UC framework [16] to prove that the
Lightning Network’s protocol securely implements this ideal

functionality. Compared to our formalization, the protocol
formalization of [3] considers more details about the crypto-
graphic aspects. While working on our TLA+ formalization of
the Lightning Network’s protocol, we found two subtle flaws
in the formalization of [3] of the Lightning Network’s protocol
that render the formalized protocol insecure. However, we
believe that these flaws can be corrected and that the Lightning
Network’s protocol fulfills the ideal functionality formalized in
[3]. The first flaw concerns an incomplete description of how
a user reacts to maliciously published outdated transactions.
The second flaw is more subtle and concerns how the data
in an input is linked to the spending methods of an output
that is spent by this input. A detailed description of the flaws
can be found in Appendix D. While we found the first flaw
by comparison of our formalization to the formalization in the
paper, we found the second flaw only by model checking when
we had a similar flaw in a draft of our formalization. While
the specific flaws can be fixed with low effort, it is difficult
and tedious to find such flaws in a pen-and-paper proof. Using
our approach of model checking instead, such issues can be
revealed automatically.

IV. VERIFICATION OF SECURITY PROPERTIES OF THE
LIGHTNING NETWORK’S PROTOCOL

A. Overview

1) Formalization of the Lightning Network’s Protocol:
For the formalization of the specification of the protocol
we build upon and extend the work of Grundmann et al.
[17]. The formalization describes all possible actions how a
user of the payment channel initiates transactions or reacts
to messages or events. Messages are exchanged by the two
users inside a payment channel by writing messages to a
message queue per user. Messages can be arbitrarily delayed
but are delivered in-order. In its structure, the formalization
of the protocol specification follows the specification of the
Lightning Network4. The formalization abstracts, however,
multiple implementation details and parts that are not part of
the main functionality such as fees and error messages. The
TLA+ specification of the protocol consists of three modules:
Two modules concern the specification of actions that a user
performs for the execution of the payment channel protocol:
HTLCUser specifies the actions concerning HTLCs for multi-
hop payments, e.g., sending an invoice, creating an HTLC,
fulfilling an HTLC. PaymentChannelUser specifies how the
payment channel is created, how the payment channel is
updated when a new HTLC is added or a fulfilled HTLC
is persisted, how the payment channel is closed, how an
adversary can cheat, and how the honest user punishes a
cheating user. More specifically, these actions include for
example actions for creating and sending a signature of a
new commitment transaction to the other user, processing
messages from the other user, or publishing a commitment
transaction on the blockchain to close the channel. The third
module is LedgerTime, the clock that increases the current

4https://github.com/lightning/bolts/blob/master/02-peer-protocol.md



Next
∆
=

∨ LedgerTime
∨HTLCUser(Alice)
∨HTLCUser(Bob)
∨HTLCUser(Charlie)
∨ PaymentChannelUser(AB ,Alice)
∨ PaymentChannelUser(AB ,Bob)
∨ PaymentChannelUser(BC ,Bob)
∨ PaymentChannelUser(BC ,Charlie)

Fig. 1. Next action of the specification of a payment channel network with
three users and two payment channels.

Fig. 2. Pictorial representation of the full specification of a payment channel
network with three users and two payment channels. The clock represents
the LedgerTime module; the blue lines represent three users who exchange
messages through the HTLCUser module; the black arrows represent a
payment channel in which two instances of the PaymentChannelUser module
exchange messages.

time. Time is measured in the Lightning Network’s protocol
by the block count of the Bitcoin blockchain. Thus, it is
represented as a natural number and increased in integer
steps. The specification puts these three modules together by
having a single LedgerTime module and by instantiating the
HTLCUser module for each modeled user and one instance
of PaymentChannelUser per channel for each user. Formally,
the TLA+ specification is defined by a set of initial states and
a Next action that describes possible steps that can lead from
one state to a new state. The Next action for a specification
with three users and two channels can be found in Fig. 1. This
formal specification is pictorially represented in Fig. 2.

2) Security Properties: Our goal is to show that this spec-
ification implements functional properties and fulfills security
properties, e.g., (1) an honest user finally receives the user’s
correct balance even if other users act maliciously by publish-
ing outdated states on the blockchain, or (2) the balances after
a multi-hop payment are correct, i.e., the payment’s amount is
deducted from the sender’s balance, any intermediate’s balance
stays the same5, and the payment’s amount is added to the
recipient’s balance. We formalized the security properties in
form of an idealized payment network functionality whose full
specification can be found in Appendix A. This ideal payment
network functionality models a payment network in which
users start with an external balance (stored in variable ExtBal-
ances), deposit assets, make payments (variable Payments),
and withdraw their assets. User can be dishonest (variable
Honest). The ideal functionality specifies that dishonest users
cannot steal money from other users. Instead, dishonest users
might be punished for cheating by loosing a part of their bal-

5An intermediate’s balances change in the two payment channels that the
intermediate uses for forwarding a payment but the overall balance of the
intermediate in all payment channels of the intermediate should stay the same.

Next
∆
=

∨ LedgerTime
∨HTLCUser(Alice)
∨HTLCUser(Bob)
∨HTLCUser(Charlie)
∨ IdealChannel(AB)
∨ IdealChannel(BC )

Fig. 3. Next action of a payment channel network using the ideal function-
ality for payment channels.

Fig. 4. Pictorial representation of the idealized multi-hop specification of a
payment channel network with three users and two payment channels. Each
ideal channel is modeled by an instance of IdealChannel.

ance. A system for which the external variables ExtBalances,
Payments, and Honest have values that are allowed by the
ideal payment network functionality is secure, i.e., balances
are computed correctly and dishonest users can only loose but
not gain assets.

3) Challenge: Exploring the State Space: Because the order
of how messages are sent and processed in the payment
channel protocol can vary, there are many different possible
executions of the protocol. The state space explodes if two
or more payment channels are modeled because there is a
large amount of different combinations of the states the pay-
ment channels can be in. Therefore, a specification modeling
multiple payment channels is too large for model checking.
To verify the security properties of a specification for mul-
tiple payment channels nevertheless, we use the following
approach.

4) Approach: Abstracting Specification of a Payment Chan-
nel : We specify an idealized multi-hop specification that
uses an ideal functionality of a payment channel instead
of a formalization of the real protocol. For the idealized
multi-hop specification, we replace the two instances of Pay-
mentChannelUsers per channel by an instance of the module
IdealChannel. A pictorial representation is shown in Fig. 4
and the Next action is shown in Fig. 3. The module Ideal-
Channel specifies the functionality of a payment channel
on a coarser granularity: The actions describe the changes
to both parties’ state simultaneously and abstract from the
exchange of messages on the protocol level as specified in
PaymentChannelUser. Abstracting the behavior of one pay-
ment channel reduces the state space and, together with an
optimization of the LedgerTime module, it allows for model
checking the combination of multiple payment channels in
multi-hop payments.

We use the idealized multi-hop specification to show that
the specification of the Lightning Network’s protocol fulfills
the security properties: We show that the idealized multi-hop



specification fulfills the security properties and we extend this
result to the protocol specification by showing that the pro-
tocol specification is a refinement of the idealized multi-hop
specification. The protocol specification refines the idealized
multi-hop specification iff for every behavior of the protocol
specification there exists a behavior of the idealized multi-hop
specification for which the externally visible variables (i.e.,
ExtBalances, Payments, Honest) have the same values. As
the security properties rely on the externally visible variables
only, the protocol specification fulfills the security properties
if the idealized multi-hop specification does. From a security
perspective the refinement means that every attack that is
possible in the protocol specification must also be possible
in the idealized multi-hop specification. Showing the absence
of attacks in the idealized multi-hop specification, thus, shows
that the protocol specification is secure.

B. Proof sketch

In the following, we given an overview of our proof and the
most important arguments. The proof’s structure is graphically
shown in Fig. 5. In the following, we refer to specifications
with Roman numbers (I ) to (X ) as represented in Fig. 5
and (partially) defined in Appendix B. In the proof sketch
shown in in Fig. 5, the ideal payment network functionality
is depicted as (X ). Our goal is to show that the specification
of the Lightning Network’s protocol (I ) fulfills the security
properties, i.e. we show the validity of the formula (I ) ⇒ (X )
in which the free variables are ExtBalance, Payments, and
Honest.

As specification (I ) is too complex for model checking,
we specify two abstractions of this specification ((VIII ) and
(IX )) so that abstraction (IX ) can be model checked. The
first abstraction step is to abstract the formalization of multi-
hop payments using the Lightning Network’s protocol to
a formalization of multi-hop payments using the idealized
channel specification ((I ) ⇒ (VIII )). The second abstraction
is to abstract time by grouping equivalent behaviors that differ
only by the timestamps ((VIII ) ⇒ (IX )). Then, we use a
model checker to show that multi-hop payments with idealized
payment channels (IX ) are a refinement of the idealized
payment network specification (X ).

To show that (I ) ⇒ (VIII ), we decompose the speci-
fication of multiple payment channels into the specification
of a single payment channel and show that each payment
channel implemented by the Lightning Network’s protocol is
a refinement of the idealized payment channel specification.
To include a specification of the environment of a single
payment channel, we specify the module MultiHopMock. An
instance of the module MultiHopMock for one specific user
abstracts the behavior that other payment channels and users
can have on this user’s variables, i.e., every action that can
happen in the payment channel between Alice and Bob is
an action of the instance of MultiHopMock for Charlie who
has a channel with Bob. Having the module MultiHopMock
abstracting other users and payment channels allows us to
compose the specifications of single payment channels back

to multi-hop payments when using the idealized specification
for a payment channel ((VI ) ⇒ (VII )). We show that multi-
hop payments using the Lightning Network’s protocol and the
MultiHopMock are a refinement of multi-hop payments using
the idealized channel specification and the MultiHopMock
((II ) ⇒ (VII )).

We show that (II ) ⇒ (VII ) by first decomposing the
specification of multiple payment channels into a single pay-
ment channel ((II ) ⇒ (IV )). Then, we show by specifying
a refinement mapping verified by a model checker that the
specification of the Lightning Network’s protocol refines the
idealized channel specification ((IV ) ⇒ (V )). As this step
reduces the complexity of the Lightning Network’s protocol
into a simpler ideal functionality, this step is the most difficult
part of the proof. To verify the correctness of the step, we
use a model checker. Then, we show how this result ex-
tends to multi-hop payments using idealized payment channels
((V ) ⇒ (VII )). Having shown that there exists a refinement
mapping for (II ) ⇒ (VII ), we show that (I ) ⇒ (VIII )
by showing that the subset of specification (II ) that equals
specification (I ) is mapped by the refinement mapping to the
subset of specification (VII ) that equals specification (VIII ).

In the following, we elaborate on the intuition behind these
proof steps.

1) (II ) ⇒ (III ): Compared to the protocol specification
(I ), the specification (II ) adds for each modeled user an
instance of MultiHopMock, a module that abstracts effects that
other users can have on one user. We show that each single
payment channel in specification (II ) behaves as specified
by specification (III ). In informal words, this means that
if we look at only the variables that are relevant for one
single payment channel then specification (II ) refines spec-
ification (III ). Specification (II ) consists of an instance of
LedgerTime, one instance of HTLCUser per user, one instance
of MultiHopMock per modeled user, and two instances of
PaymentChannelUser per payment channel. A step of the
specification (II ) can be a step of any of these modules.
We refer to the set of variables of specification (II ) that
concern the payment channel AB as vAB . Considering vAB ,
we show that the instances of PaymentChannelUser of any
other payment channel and the instances of HTLCUser of
any user not being part of the payment channel AB are a
refinement of the instance of MultiHopMock for channel AB .
Intuitively, this means for a channel AB that every step that
happens in another payment channel does either not affect the
variables of AB or is also a step by MultiHopMock which
is also part of specification (III ). Therefore, each step of
specification (II ) that changes the variables vAB , is also a
step of specification (III ) for the same set of variables.

2) (III ) ⇒ (IV ): While specification (III ) includes an
instance of LedgerTime that allows incrementing the current
time by single time steps, specification (IV ) uses an instance
of an optimized LedgerTime module that skips points in time
that lead to equivalent future behaviors. The intuition why
this is possible is that, in the payment channel protocol, the
current time is only used for checking whether a point in time



A

B

⇒ A is a refinement of B: For every behavior α

of A, there exists a behavior β of B so that 

the free variables (ExtBalances, Payments, 

Honest) have the same values in α and β.

Ideal Channel

Protocol for 

Payment Channel
HTLCUserMultiHopMock

LedgerTime

(optimized/regular)

Legend

Statement on variables: 

ExtBalances, Payments, 

Honest

Ideal Channel

Ideal Channel

Ideal Channel Ideal Channel

Ideal Channel Ideal Channel

$ xx

$ xx

$ xx

⇒

Statement on 

variables: 

ExtBalances, 

Payments, Honest

Idealized payment network 

fulfills security properties.

⇐

Statement on variables: 

ExtBalances, Payments, 

Honest

⇒

Ideal Channel Ideal Channel

⇐⇒

⇐⇒

ExtBalances is calculated by 

OnChainBalances

Model

Checking

Model

Checking

HTLCUser

(I)

(II)

(III)

(IV) (V)

(VI)

(VII)

(VIII)

(IX)(X)

⇐

⇐

⇐

(III)

⇐

(IV) (V)

(VI)

⇒

⊇ ⊇

R

R

R

R

R

R
R

R R

R

R

R

R

R

Fig. 5. Proof sketch showing how we show that the protocol for multi-hop payments (I) implements the idealized payment network (X) which fulfills the
security properties. The definitions of the Next actions of specifications (I ) to (IX ) can be found in Appendix B. The definition of specification (X ) is
shown in Appendix A.

has already passed or not. For each such condition, two points
in time that are both on the same side of the comparison lead
to the same possible steps. We show that (III ) ⇒ (IV ) by
showing that for each behavior of specification (III ) there
exists a behavior of specification (IV ) where the time might
be different but all other variables have the same values.

3) (IV ) ⇒ (V ): On the one hand, showing that speci-
fication (IV ) formalizing the Lightning Network’s protocol
is a refinement of specification (V ) formalizing an idealized
payment channel is the most difficult refinement of the chain
of refinements that we show. On the other hand, the simplifi-
cations of the previous refinements from specification (I ) to
(IV ) result in specification (IV ) having a state space that

is explorable using model checking. We show that (IV ) ⇒
(V ) by explicitly formalizing a refinement mapping between
specification (IV ) and specification (V ) and validating this
refinement mapping by model checking.

4) (V ) ⇒ (VI ): Specification (V ) trivially refines spec-
ification (VI ) because the only change between the two
specifications is that specification (V ) uses an optimized
LedgerTime instead of the regular LedgerTime and each step
of the optimized LedgerTime is also a step of the regular
LedgerTime module.

5) (VI ) ⇒ (VII ): Compared to specification (VI ) for a
single payment channel, specification (VII ) composes mul-
tiple payment channels. A behavior of specification (VI ) is



also a behavior of specification (VII ) in which no steps are
taken in other payment channels. Thus, (VI ) ⇒ (VII ).

6) (I ) ⇒ (VIII ): From above, we conclude that (II ) ⇒
(VII ). The composition of refinement mappings of the indi-
vidual steps defines a refinement mapping from (II ) to (VII )
that we call f in the following. We argue that the protocol
implementation without the module MultiHopMock also re-
fines the idealized specification without the module MultiHop-
Mock ((I ) ⇒ (VIII )) because restricting the domain of the
refinement mapping f to the behaviors allowed by specification
(I ) results in a refinement mapping from (I ) to (VII ). This
follows from the fact that by construction of the individual re-
finement mappings that the refinement mapping f is composed
of, the refinement mapping f affects only steps of the module
PaymentChannelUser which are mapped to stuttering steps or
steps of the module IdealChannel. The refinement mapping
f maps a step of the module MultiHopMock or the module
HTLCUser or the module LedgerTime in specification (II ) to
a step of MultiHopMock (resp. HTLCUser, LedgerTime) in
specification (VII ). It follows that the refinement mapping f
is a also a refinement mapping for (I ) ⇒ (VIII ).

7) (VIII ) ⇒ (IX ): To get a specification with a reduced
state space, we replace the regular LedgerTime module in
specification (VIII ) by an optimized LedgerTime module
and retrieve specification (IX ). Analogously to the refinement
(III ) ⇒ (IV ), this optimization does not drop any behaviors
and, thus, (VIII ) ⇒ (IX ).

8) (IX ) ⇒ (X ): Through model checking, we show that
specification (IX ) is a refinement of the idealized payment
network functionality (X ) and, thus, fulfills the security prop-
erties.

9) Conclusion: From the refinements above, we conclude
that (I ) ⇒ (X ), i.e. the specification of the Lightning Net-
work’s protocol is an implementation of an idealized payment
network and fulfills the security properties.

V. CONCLUSION

While the Lightning Network’s protocol is complex and
many different states can be reached by a model checker, we
have presented an approach that makes it possible to verify the
security of the protocol in a partially machine-checked way.
The approach uses model checking for two proof steps that
are difficult to reason about: Showing that a single payment
channel refines the ideal channel functionality and showing
that the protocol for multi-hop payments is secure. We are
currently working on fully formalizing every step of the proof.

REFERENCES

[1] J. Poon and T. Dryja, “The Bitcoin Lightning Network: Scalable Off-
Chain Instant Payments,” Tech. Rep., 2016.

[2] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Tech.
Rep., 2008.

[3] A. Kiayias and O. S. Thyfronitis Litos, “A Composable Security
Treatment of the Lightning Network,” in 2020 IEEE 33rd Computer
Security Foundations Symposium (CSF), Jun. 2020, pp. 334–349, iSSN:
2374-8303.

[4] L. Lamport, “The temporal logic of actions,” ACM Transactions on
Programming Languages and Systems, vol. 16, no. 3, pp. 872–923,
May 1994. [Online]. Available: https://doi.org/10.1145/177492.177726

[5] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and
M. Deardeuff, “How Amazon web services uses formal methods,”
Communications of the ACM, vol. 58, no. 4, pp. 66–73, Mar. 2015.
[Online]. Available: https://dl.acm.org/doi/10.1145/2699417

[6] S. Resch and M. Paulitsch, “Using TLA+ in the Development of a
Safety-Critical Fault-Tolerant Middleware,” in 2017 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW),
Oct. 2017, pp. 146–152.

[7] P. Narayana, R. Chen, Y. Zhao, Y. Chen, Z. Fu, and H. Zhou, “Automatic
Vulnerability Checking of IEEE 802.16 WiMAX Protocols through
TLA+,” in 2006 2nd IEEE Workshop on Secure Network Protocols, Nov.
2006, pp. 44–49.

[8] T. Lu, S. Merz, and C. Weidenbach, “Towards Verification of the Pastry
Protocol Using TLA+,” in Formal Techniques for Distributed Systems,
ser. Lecture Notes in Computer Science, R. Bruni and J. Dingel, Eds.
Berlin, Heidelberg: Springer, 2011, pp. 244–258.

[9] T. Lu, “Formal Verification of the Pastry Protocol Using TLA+,” in
Dependable Software Engineering: Theories, Tools, and Applications,
ser. Lecture Notes in Computer Science, X. Li, Z. Liu, and W. Yi, Eds.
Cham: Springer International Publishing, 2015, pp. 284–299.

[10] S. Braithwaite, E. Buchman, I. Konnov, Z. Milosevic, I. Stoilkovska,
J. Widder, and A. Zamfir, “Formal Specification and Model Checking
of the Tendermint Blockchain Synchronization Protocol (Short Paper),”
in 2nd Workshop on Formal Methods for Blockchains (FMBC
2020), ser. OpenAccess Series in Informatics (OASIcs), B. Bernardo
and D. Marmsoler, Eds., vol. 84. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2020, pp. 10:1–10:8, iSSN:
2190-6807. [Online]. Available: https://drops.dagstuhl.de/opus/volltexte/
2020/13423

[11] Y.-M. Kim and M. Kang, “Formal Verification of SDN-Based Firewalls
by Using TLA+,” IEEE Access, vol. 8, pp. 52 100–52 112, 2020,
conference Name: IEEE Access.

[12] J.-Q. Yin, H.-B. Zhu, and Y. Fei, “Specification and Verification of
the Zab Protocol with TLA+,” Journal of Computer Science and
Technology, vol. 35, no. 6, pp. 1312–1323, Nov. 2020. [Online].
Available: https://doi.org/10.1007/s11390-020-0538-7

[13] T. Close, “Breaking state channels with TLA+,” Jun. 2020. [Online].
Available: https://blog.statechannels.org/breaking-state-channels/

[14] J. Kolb, J. Yang, R. H. Katz, and D. E. Culler, “Quartz:
A Framework for Engineering Secure Smart Contracts,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2020-178, Aug. 2020. [Online]. Available: http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2020/EECS-2020-178.html

[15] Z. Nehaı̈, F. Bobot, S. Tucci-Piergiovanni, C. Delporte-Gallet, and
H. Fauconnier, “A TLA+ Formal Proof of a Cross-Chain Swap,”
in Proceedings of the 23rd International Conference on Distributed
Computing and Networking, ser. ICDCN ’22. New York, NY,
USA: Association for Computing Machinery, Jan. 2022, pp. 148–159.
[Online]. Available: https://dl.acm.org/doi/10.1145/3491003.3491006

[16] R. Canetti, “Universally composable security: a new paradigm for
cryptographic protocols,” in Proceedings 42nd IEEE Symposium on
Foundations of Computer Science, Oct. 2001, pp. 136–145, iSSN: 1552-
5244.

[17] M. Grundmann and H. Hartenstein, “Verifying Payment Channels with
TLA+,” in 2022 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), May 2022, pp. 1–3.

[18] A. Kiayias and O. S. Thyfronitis Litos, “A Composable Security
Treatment of the Lightning Network,” 2019, report Number: 778.
[Online]. Available: https://eprint.iacr.org/2019/778

APPENDIX

A. Idealized Payment Network Specification

Fig. 6 shows the specification of an idealized payment
network. It can easily be checked that this specification is
secure, i.e., an honest party can withdraw at least their correct
balance. The Next action of the specification is a disjunct
of five actions: DepositBalance is for one user to deposit
balance into the payment network. WithdrawBalance can be
used to withdraw the balance of one or two users from the
payment network. ProcessPayment processes a payment that



has initially been specified in the Payments variable. This
action simply removes the payment’s amount from the sender’s
balance and adds the same amount to the recipient’s balance.
AbortPayment models aborted payments by removing the
payment from the Payment variable without any further change
to the state. PunishCheating models a cheating dishonest
party that is punished by another party. As a punishment
the punishing party retrieves a part of the dishonest party’s
balance.

B. Next Actions of Specifications

Each specification shown in Fig. 5, is defined by an Init
predicate that defines the set of initial states, a Next action
that defines possible steps, and a fairness condition. In the
following, we show how the Next action of each specification
is composed. The Next actions of the modules used in these
definitions are shown in Appendix C.

Next I
∆
=

∨ LedgerTime Next
∨HTLCUserNext(Alice)
∨HTLCUserNext(Bob)
∨HTLCUserNext(Charlie)
∨ PaymentChannelUserNext(AB , Alice)
∨ PaymentChannelUserNext(AB , Bob)
∨ PaymentChannelUserNext(BC , Bob)
∨ PaymentChannelUserNext(BC , Charlie)

Next II
∆
=

∨ LedgerTime Next
∨HTLCUserNext(Alice)
∨HTLCUserNext(Bob)
∨HTLCUserNext(Charlie)
∨ PaymentChannelUserNext(AB , Alice)
∨ PaymentChannelUserNext(AB , Bob)
∨ PaymentChannelUserNext(BC , Bob)
∨ PaymentChannelUserNext(BC , Charlie)
∨MultiHopMockNext(Alice)
∨MultiHopMockNext(Bob)
∨MultiHopMockNext(Charlie)

Next III
∆
=

∨ LedgerTime Next
∨HTLCUserNext(Alice)
∨HTLCUserNext(Bob)
∨ PaymentChannelUserNext(AB , Alice)
∨ PaymentChannelUserNext(AB , Bob)
∨MultiHopMock Next

Next IV
∆
=

∨OptimizedLedgerTime Next
∨HTLCUserNext(Alice)
∨HTLCUserNext(Bob)
∨ PaymentChannelUserNext(AB , Alice)
∨ PaymentChannelUserNext(AB , Bob)
∨MultiHopMock Next

Next V
∆
=

∨OptimizedLedgerTime Next
∨HTLCUserNext(Alice)
∨HTLCUserNext(Bob)
∨ IdealChannelNext(AB)
∨MultiHopMock Next

Next VI
∆
=

∨ LedgerTime Next
∨HTLCUserNext(Alice)
∨HTLCUserNext(Bob)
∨ IdealChannelNext(AB)
∨MultiHopMock Next

Next VII
∆
=

∨ LedgerTime Next
∨HTLCUserNext(Alice)
∨HTLCUserNext(Bob)
∨HTLCUserNext(Charlie)
∨ IdealChannelNext(AB)
∨ IdealChannelNext(BC )
∨MultiHopMockNext(Alice)
∨MultiHopMockNext(Bob)
∨MultiHopMockNext(Charlie)

Next VIII
∆
=

∨ LedgerTime Next
∨HTLCUserNext(Alice)
∨HTLCUserNext(Bob)
∨HTLCUserNext(Charlie)
∨ IdealChannelNext(AB)
∨ IdealChannelNext(BC )

Next IX
∆
=

∨OptimizedLedgerTime Next
∨HTLCUserNext(Alice)
∨HTLCUserNext(Bob)
∨HTLCUserNext(Charlie)
∨ IdealChannelNext(AB)
∨ IdealChannelNext(BC )

C. Next Actions of Modules

In the following, we list Next actions of the modules used
in our specifications. Each action is a conjunct of multiple
subactions of which the definitions are not printed.

LedgerTime Next
∆
=

∨AdvanceLedgerTime

OptimizedLedgerTime Next
∆
=

∨OptimizedAdvanceLedgerTime

HTLCUser Next
∆
=

∨ RequestInvoice
∨GenerateAndSendPaymentHash
∨ ReceivePaymentHash
∨AddAndSendOutgoingHTLC
∨ ReceiveUpdateAddHTLC
∨ SendHTLCPreimage



MODULE IdealPaymentNetwork

EXTENDS Naturals, Sequences, FiniteSets
VARIABLES ExternalBalances, Payments, Honest , Balances
vars

∆
= ⟨ExternalBalances, Balances, Payments, Honest⟩

CONSTANT NumUsers
UserIds

∆
= 1 . . NumUsers

Init
∆
=
∧ ExternalBalances ∈ [UserIds → Nat ]
∧ Balances = [i ∈ UserIds 7→ 0]
∧ Payments ∈ SUBSET [amount 7→ Nat , sender 7→ UserIds, recipient 7→ UserIds]
∧Honest ∈ [UserIds : {TRUE, FALSE}]

DepositBalance
∆
=

∧ ∃ user ∈ UserIds :
∧ ∃ amount ∈ 1 . . ExternalBalances[user ] :
∧ ExternalBalances ′ = [ExternalBalances EXCEPT ! [user ] = @− amount ]
∧ Balances ′ = [Balances EXCEPT ! [user ] = @ + amount ]

∧ UNCHANGED ⟨Payments, Honest⟩

WithdrawBalance
∆
=

∧ ∃ userA ∈ UserIds : ∃ userB ∈ UserIds :
∧ ∃ amountA ∈ 1 . . Balances[userA] : ∃ amountB ∈ 0 . . Balances[userB ] :
∧ Balances ′ = [Balances EXCEPT ! [userA] = @− amountA, ! [userB ] = @− amountB ]
∧ ExternalBalances ′ = [ExternalBalances EXCEPT ! [userA] = @ + amountA, ! [userB ] = @ + amountB ]

∧ UNCHANGED ⟨Payments, Honest⟩

ProcessPayment
∆
=

∧ ∃ payment ∈ Payments :
∧ Balances ′ = [Balances EXCEPT ! [payment .sender ] = @− payment .amount , ! [payment .recipient ] = @ + payment .amount ]
∧ Payments ′ = Payments \ {payment}

∧ UNCHANGED ⟨ExternalBalances, Honest⟩

AbortPayment
∆
=

∧ ∃ payment ∈ Payments : Payments ′ = Payments \ {payment}
∧ UNCHANGED ⟨ExternalBalances, Balances, Honest⟩

PunishCheating
∆
=

∧ ∃ dishonestUser ∈ UserIds :
∧Honest [dishonestUser ] = FALSE
∧ ∃ otherUser ∈ UserIds :
∧ otherUser ̸= dishonestUser
∧ ∃ amount ∈ 1 . . Balances[dishonestUser ] :
∧ Balances ′ = [Balances EXCEPT ! [dishonestUser ] = @− amount , ! [otherUser ] = @ + amount ]

∧ UNCHANGED ⟨ExternalBalances, Honest⟩

Next
∆
=

∨DepositBalance
∨ ProcessPayment
∨AbortPayment
∨ PunishCheating
∨WithdrawBalance

Spec
∆
=

∧ Init
∧2[Next ]vars
∧ WFvars(WithdrawBalance)

Fig. 6. Idealized payment network that fulfills the security properties.



∨ ReceiveHTLCPreimage
∨ SendHTLCFail
∨ ReceiveHTLCFail

IdealChannel Next
∆
=

∨OpenPaymentChannel
∨UpdatePaymentChannel
∨ CommitHTLCsOnChain
∨ FulfillHTLCsOnChain
∨WillPunishLater
∨ ClosePaymentChannel

PaymentChannelUser Next
∆
=

∨ SendOpenChannel
∨ SendAcceptChannel
∨ CreateFundingTransaction
∨ SendSignedFirstCommitTransaction
∨ ReplyWithFirstCommitTransaction
∨ ReceiveCommitTransaction
∨ PublishFundingTransaction
∨NoteThatFundingTransactionPublished
∨ SendNewRevocationKey
∨ ReceiveNewRevocationKey
∨ SendSignedCommitment
∨ ReceiveSignedCommitment
∨ ReceiveSignedCommitmentDuringClosing
∨ RevokeAndAck
∨ ReceiveRevocationKey
∨ ReceiveRevocationKeyForTimedoutHTLC
∨ CloseChannel
∨ Cheat
∨ Punish
∨NoteThatOtherPartyClosedHonestly
∨NoteThatOtherPartyClosedButUnpunishable
∨NoteThatOtherPartyClosedDishonestly
∨NoteCommittedAndUncommittedAndPersistedHTLCs
∨NotePunishedHTLCs
∨UpdatePunishedHTLCs
∨NoteAbortedHTLCs
∨ RedeemHTLCAfterClose
∨NoteThatHTLCFulfilledOnChain
∨NoteThatHTLCTimedOutOnChain
∨WillPunishLater
∨ InitiateShutdown
∨ ReceiveInitiateShutdown
∨ IgnoreMessageDuringClosing
∨NoteThatChannelClosedAndAllHTLCsRedeemed

MultiHopMock Next
∆
=

∨AddNewForwardedPayment
∨ ReceivePreimageForIncomingHTLC

D. On the Formalization of [3]

While working on the formalization of the Lightning Net-
work’s protocol in TLA+, we found the following two flaws
in the formalization of [3]. While these flaws render the
formalized protocol insecure, they are easy to fix and it seems

that the security proof could work for the corrected protocol.
The following references to figures and page numbers refer to
the paper’s version on ePrint [18, version 20220217:205237].

The first flaw concerns the punishment of the publication
of an outdated commitment transaction for which the protocol
is specified in Fig. 37, lines 21-25 (page 64). A problem
arises for example in the following situation: Before the
current time, user Alice has sent an outgoing HTLC to
user Bob. The HTLC was committed and has been fulfilled.
Now, the HTLC’s absolute timelock has passed. Now, Alice
has an outdated commitment transaction that commits the
HTLC and Alice has Bob’s signature on the HTLC timeout
transaction corresponding to that HTLC. Alice is malicious
and publishes this outdated commitment transaction together
with the HTLC timeout transaction which is valid because
the HTLC’s absolute timelock has passed. Bob runs the
protocol specified in Fig. 37 and arrives at line 22. In line
22, a revocation transaction is created whose inputs spend
all outputs of the outdated commitment transaction. In the
situation described, such a revocation transaction cannot be
valid because the HTLC output in the outdated commitment
transaction is already spent. Instead of an input referencing
the outdated commitment transaction’s HTLC output, the
revocation transaction must have an input that references the
output of the HTLC timeout transaction. While the protocol as
formalized in Fig. 37 is incorrect, the security proof on page
90 does not mention the case that a second-stage (timeout or
success) HTLC transaction might have been published for an
outdated commitment transaction and, thus, the protocol seems
to be correct. While the protocol can be corrected by adding
a specification of how such cases are handled, it is hard to
detect such flaws by inspecting the proof manually.

For a scenario that shows the impact of the second
flaw, assume that in the payment channel between users
Alice and Bob there is currently an unfulfilled HTLC
for a payment from Alice to Bob. The HTLC’s absolute
timelock passes and the HTLC times out. Bob unilater-
ally closes the payment channel by publishing the latest
commitment transaction. The commitment transaction con-
tains an output for the HTLC with the spending method
ptrev,n+1∨ (pthtlc,n+1, CltvExpiry absolute)∨ (pthtlc,n+1∧
phhtlc,n+1, on preimage of h) (see Fig. 40, line 8) where
pt are public keys for which Alice has the private key, ph
are public keys for which Bob has the private key, and
CltvExpiry is the HTLC’s absolute timelock. Now, Alice
could spend the output of the commitment transaction corre-
sponding to the HTLC by creating a transaction with an in-
put that uses the disjunct (pthtlc,n+1, CltvExpiry absolute)
because the absolute timelock has passed. Bob holds the
HTLC success transaction that was signed by Alice with the
private key corresponding to pthtlc,n+1 (Fig. 43, line 13).
If Bob has the preimage for the HTLC, Bob can add the
preimage to the HTLC success transaction and can spend
the HTLC’s output in the commitment transaction using the
disjunct (pthtlc,n+1 ∧ phhtlc,n+1, on preimage of h) of the
spending method. However, the HTLC success transaction is



also valid without the preimage as it fulfills the conditions
of the disjunct (pthtlc,n+1, CltvExpiry absolute) because the
HTLC’s absolute timelock has passed. Because Bob published
his latest commitment transaction, Alice cannot revoke the
transaction and this would result in Bob receiving the amount
of the HTLC without releasing (or even without having) the
preimage. One way to correct this problem is to use the
possibility that the transaction model of the paper [18, Section
12] allows an output to specify a list of spending conditions
and an input spending this output to reference a specific
spending condition. The correction would be to transform the
disjunction in Fig. 40, line 8 into a list of spending methods
and add the corresponding indices to the inputs in Fig. 43,
line 13. Another way is taken by the Lightning Network’s
specification which uses in the output’s spending method
for a timeout the operator CHECKLOCKTIMEVERIFY that
verifies that a spending transaction has a certain timelock set
(locktime). As Bob’s HTLC success transaction has the
locktime set to 0, the success transaction cannot fulfill this
spending method. We found this flaw by model checking when
we had a similar flaw in a draft of our formalization. We fixed
the flaw in our formalization by modeling the locktime field
for transactions and adding a validity condition modeling the
operator CHECKLOCKTIMEVERIFY.


