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1 Introduction

Superconductivity, itself a very fascinating phenomenon, gives rise to a variety of
surprising effects: In the superconductive state the direct current resistance and
the heat conductance vanish, magnetic fields are expelled and Cooper pairs can
coherently tunnel through insulating barriers.

Going from bulk superconductors down to systems with reduced dimensions,
new effects arise. In superconducting nanowires where the diameters are of the
order of the coherence length, the response to an applied electrical field can be
dramatically different: While short wires show the same superconductive behavior
as bulk superconductors, long wires may show no electric transport at low applied
voltages. This startling behavior seems to be counter-intuitive at first glance,
but it can be explained by the strong spatial constriction of the superconducting
condensate, which leads to quantized fluctuations of the order parameter. During
such a quantum phase slip (QPS) event, the magnitude of the order parameter
is suppressed for a short moment in time, allowing the phase to slip by 2π. For
sufficiently large amplitudes, these QPS can destroy the phase coherence across the
wire, and the nature of the electrical response of the wire turns from an inductive
into a capacitive one. Thus, in this case, the superconducting state does not lead
to its name-giving property [Onn11], but exactly to the opposite, an insulating
behavior.

The research on QPS effects in nanowires has already started in the late eight-
ies of the 20th Century with the first experimental observation by N. Giordano
[Gio88] and has been an active field of research since then [BLT00; Bez12; Bol+08;
Aru+12; Lau+01; Alt+06; Mak+16; AGZ08]. A special stimulus and new direction
was generated with the proposed duality between QPS junctions and Josephson
junctions [MN06]. The exciting perspective of QPS junctions as a new key element
for quantum circuits has triggered a variety of experimental and theoretical work
[HN11; Ast+12; HZ12; Gra+18; EN21]. A particularly interesting topic for both, the
fundamental understanding of QPS effects and for their utilization in quantum
circuits, is the understanding of the superconductor to insulator transition, driven
by the QPS rate [SFK20; Moo+15; Mak+16].
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1 Introduction

One of the major challenges and a limiting factor for the experimental works
is the parameter spread of the nanowire properties. For QPS rates in the GHz
range, the diameters of the wire must be of the order of the coherence length and
the sheet resistance of the material should be high [Moo+15]. Thus, the natural
choice are high kinetic inductance materials such as niobium nitride, molybdenum
germanium or granular aluminum. In combination with the small diameters,
their inner disorder leads to a large spread in the wire parameters, since local
variations in the composition will no longer average out. This randomness is in
particular problematic for the investigation of wires with large QPS rates where
sheet resistances typically are of the order of a few kilo-Ohms and the wire lengths
are much greater than the coherence length.

In this thesis, we explore QPS effects in nanowires made from granular aluminum.
The material consists of pure crystalline aluminum grains which are embedded into
an insulating matrix. The system forms a randomly arranged network of Josephson
junctions, defining the properties of the wire. To adjust the normal state resistance
of single wires and thereby the QPS rate, we developed a new technique, which
utilizes this inner structure and allows to change the resistance of single wires by
orders of magnitude.

We use this new degree of freedom to investigate the superconductor to insulator
transition for single wires and to study the relationship between the wire resistance
and other characteristic properties like Coulomb blockades or critical currents. A
special emphasis will be put on the role of the characteristic energies, namely the
phase slip energy and the inductive energy [Moo+15]. We address the question
whether the different regimes of high and low QPS rates can be energetically
separated by means of a phase diagram.

To explore the coherent character of quantum phase slips, in the second part of
this work a new type of QPS interferometer has been studied. Such devices are
considered to be the dual [HZ12; Gra+18] counterparts to the superconducting
quantum interference device (SQUID) for Josephson junctions [Jak+64] which
has become one of the most prominent and successful quantum circuits. The
influence of several parameters like circuit homogeneity or wire length on the
performance of the QPS device has been studied. Apart from the wide range of
possible applications like transistors, detectors or the use as tunable QPS junctions,
this QPS interferometer provides the opportunity to study the impact of the QPS
amplitude on the transport behavior of the nanowires involved.

The thesis is organized as follows: The first chapter contains an introduction into
the objective, scope and aim of this work. The main part of this thesis starts with a
brief summary of important theoretical principles of superconductivity. Then, a
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1 Introduction

comprehensive introduction into basic models and concepts for the description of
phase slips is given. In the last two sections of chapter two, the operating principle
and the design of a quantum phase slip interferometer are discussed. In the third
chapter, properties of granular aluminum as a material and the techniques used
to fabricate the samples are described. The fourth chapter gives an overview of
the cryogenic setup, the measurement methods and the experimental design. The
new method developed in the course of this work for the stepwise reduction of the
normal state resistance of nanowires made from granular aluminum is discussed in
the fifth chapter. In the sixth chapter, the central results of the nanowire experiments
are presented. The first section deals with QPS phenomena in single wires. In
particular, the relationship between the transport behavior in the superconducting
state and the normal state resistance is investigated [Vos+21]. In the second part, the
measurements of the double-wire QPS interferometer are presented. Here a special
focus is put on the investigation of the superconducting to insulating transition by
means of the interference of QPS.
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2 Theoretical background

2.1 General introduction to superconductivity

In this section, a very brief introduction to superconductivity and some of the fun-
damental concepts relevant for the experimental investigation of this work is given.
The models and notations introduced here will be used throughout the following
chapters. They are important to understand the origin and key constituents for a
systematic investigation of quantum phase slips in superconducting nanowires,
the main subject of this work.

With the discovery of superconductivity in 1911, Kamerlingh Onnes has opened
a great field for theoretical and experimental work in condensed matter physics.
Onnes named the phenomenon after his most significant observation, the sudden
and dramatic increase in conductivity below a certain temperature Tc [Onn11].
Historically, the discovery fell into the time when the first steps towards quantum
mechanics were made. The new and abstract concepts, which were needed to
understand the macroscopic quantum phenomenon of superconductivity, possibly
explain why it took almost fifty years until the first microscopic description of
superconductivity was introduced by Bardeen-Cooper and Schrieffer (BCS theory)
[BCS57].

The first phenomenological description of superconductivity was already published
in 1935 by the London brothers [LL35], shortly after Walther Meissner and Robert
Ochsenfeld had discovered perfect diamagnetism in a superconductor [MO33].
For their theory, they simply assumed a certain density ns of electrons which can
propagate in the superconductor without friction. Doing so, they derived the first
London equation, describing the motion of these "superconducting" electrons under
the influence of an electrical field:

∂js

∂t
=

e2ns

me
E (2.1)
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2 Theoretical background

with current density js, electron charge e and electron mass me. The second London
equation describing the magnetic field inside a superconductor is [Sch+97]

∇× (∇× B) = − 1
λ2

L
B (2.2)

With λL =
√

mc2/4πnse2 being defined as the London magnetic field penetration
depth. Eq. 2.2 can be obtained from Eq. 2.1 by using the Maxwell equations and
integrating over time.

2.2 Ginzburg Landau theory

Based on the work of Landau on the description of phase transitions by means of
an order parameter [Lan37], V. L. Ginzburg and L. D. Landau in 1950 published
a phenomenological theory for the description of superconductivity [GL55]. Al-
though the theory does not provide a microscopic explanation for the phenomenon
of superconductivity, it does provide a good description of some of the basic prop-
erties, such as the critical magnetic field and the penetration depth of the magnetic
field close to the transition temperature Tc. The underlying idea was to use an
effective wave function to describe the superconducting electrons, in analogy to the
Bose-Einstein condensation, and to use the amplitude as the order parameter Ψ(r).
As Ψ(r) describes the additional order in the system, it should vanish above Tc and
be nonzero below Tc. The natural normalization condition therefore is: |Ψ(r)|2 = ns

with ns being the superconducting electron density. Consequently, the complex
order parameter can be expressed as:

Ψ(r) =
√

nseiφ (2.3)

Assuming a homogeneous superconductor, where Ψ(r) is constant in space (Ψ(r)→
Ψ), and there is no magnetic field, the free energy close to Tc, where |Ψ| → 0, can
be constructed as follows:

Fs = Fn + α|Ψ|2 + β

2
|Ψ|4 (2.4)

Here, Fn is the free energy in the normal state, α and β are coefficients that can
be derived from the properties of the superconductor. For a state of equilibrium,
one can minimize the free energy of the superconductor with respect to the order
parameter (dFs/d|Ψ|2 = 0) and arrives at the solution:

|Ψ0|2 = − α

β
(2.5)
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2.2 Ginzburg Landau theory

Figure 2.1: Free energy for α = 0 and α < 0 as a function of |Ψ|. The phase transition occurs at α = 0.
For values ≥ 0, the free energy has a single minimum (at Ψ = 0), which means that ns = 0. For α < 0,
the minima are at |Ψ| =

√
−α/β. The energy difference between the normal and the superconducting

phase is described by the critical magnetic field.

Inserting the result into Eq. 2.4 allows to express the energy difference between
the normal and the superconducting state by means of the coefficients α and β:
Fn − Fs = α2/(2β). Now one can use the fact that the energy difference is also
described by the critical field Hc:

α2

2β
=

H2
c

8π
(2.6)

The change of the free energy at the phase transition is shown in Fig. 2.1. From
Eq. 2.6, it follows immediately that β > 0. We also know from the temperature
dependence that for T = Tc, |Ψ|2 = 0 (α = 0) and for T < Tc, |Ψ|2 > 0 (α < 0).
Hence,

α = α′(T − Tc) (with α′ > 0); β = const., (2.7)

which with Eq. 2.6 gives the characteristic scaling H2
c ∝ α2 ∝ (T − Tc)2. If we now

go to the more general case of an inhomogeneous superconductor (Ψ → Ψ(r)) in a
magnetic field Ha, the Gibbs free energy density can be expressed in the form:

Gs = Gn + α|Ψ|2 + β

2
|Ψ|4 + 1

2m

∣∣∣∣(−ih̄∇− 2e A
c

)∣∣∣∣2︸ ︷︷ ︸
(∗)

+
1

8π
|H−Ha|2︸ ︷︷ ︸
(∗∗)

(2.8)

[Cyr73]. Here Gn is the Gibbs free energy density in the normal state, (*) ac-
counts for spatial variations of Ψ where the second part ((2eA/c)) ensures gauge
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2 Theoretical background

invariance. (**) is the magnetic energy density (H = H(r) is the field of the su-
perconductor at point r). The Gibbs energy is then given by the integral over the
volume of the superconductor. To derive the two Ginzburg-Landau equations, one
has to minimize the Gibbs energy with respect to the order parameter Ψ and the
magnetic vector potential A. The first Ginzburg Landau equation is:

αΨ + β|Ψ|2 + 1
2m

(
−ih̄∇− 2eA

c

)2
ψ = 0 (2.9)

and the second equation:

js = −
ieh̄
2m

[Ψ∗∇Ψ−Ψ∇Ψ∗]− e2

mc
|Ψ|2A =

c
4π
∇×H (2.10)

Solving these equations allows to analyse the current and magnetic field distribu-
tion for different boundary conditions. From a normalization, one can also find the
Ginzburg Landau expressions for the coherence length ξGL = (h̄2/(4m|α|))1/2 and
the penetration depth λGL = ((mc2β)/(8πe2|α|))1/2 (see e.g. [Bez12]).

2.3 BCS theory

The first microscopic theory of superconductivity was provided by John Bardeen,
Leon Cooper and John Schrieffer and is named BCS theory after its inventors
[BCS57]. In the previous sections, we already have seen some phenomenological
approaches which were able to cover some of the fundamental observations made
for superconductors. However, an understanding of the underlying mechanism,
allowing ’superconducting’ electrons to travel without friction, was missing so far.
A first indication that lattice vibrations may be involved in the formation of the
superconducting state came with the observation of the isotope effect for mercury
by Emanuel Maxwell in 1950 [Sch+97; Max50]. He was the first to observe that the
transition temperature depends on the nuclear mass (Tc Mα = const. with M being
the mass of the isotope and α ∼ 0.5 for most superconductors) [Sch+97]. The key
idea of the BCS theory is that the electrons condense into a new lower ground state
of paired electrons, the so-called Cooper pairs (named after Leon Cooper). This
is possible due to a weak attractive interaction mediated by the phonons and the
bosonic nature of the resulting Cooper pairs, having a total momentum and a spin
of zero. An important result of the BCS theory is the prediction of an energy gap
4(T) in the quasi-particle energy spectrum. It arises from the energy difference
between the Cooper pair bound state and the quasi-particle excitation spectrum.
The energy gap is given by:

4 (T = 0) = 1.765 kBTc (2.11)
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2.4 Flux quantisation

with the Boltzmann constant kB and the critical temperature Tc. For temperatures
close to Tc, the BCS gap holds:

4 (T → Tc) = 3.06 kBTc
√

1− T/Tc (2.12)

The energy gap is responsible for the lack of scattering and, therefore, for the
lossless current transport. The energy required to break a Cooper pair is at least
24, which is intuitive since two electrons together form one Cooper pair.

2.4 Flux quantisation

One of the unique properties of a superconductor is the flux quantization. It
is a consequence of the macroscopic wave function Ψ(r, t) (with phase Θ(r, t)),
describing the superconducting condensate. If we consider a superconducting ring,
which is cooled in an external magnetic field from T > Tc to T < Tc, the magnetic
field gets expelled from the inside of the ring by screening currents as soon as
Tc is reached (Meißner-Ochsenfeld effect). Inside the enclosed area, a portion of
the magnetic field freezes out and will remain, even after turning off the external
magnetic field. If we now consider a closed path around the superconducting loop,
the wave function must be single-valued. Therefore, the change of phase needs to
be zero or an integer multiple of 2π [Tin04]

�
L
∇θdl = 2πn (2.13)

The canonical momentum of a Cooper pair within an applied magnetic field is
given by the sum of the kinetic part and the part from the magnetic vector potential
A:

P = mv + qA (2.14)

Here, q is the charge, m is the mass and v is the velocity. Inserting Eq. 2.14 into Eq.
2.13 by using the De Broglie relation P = h̄k gives:

�
L

h̄k = h̄2πn =

�
L
(mv + qA) dl (2.15)

with the velocity v = (js/qns). Now one can apply Stoke’s theorem to convert
the contour integral over A into a closed surface integral over the curl of A.
Consequently, we can write ∇×A = B. Thus, Eq. 2.15 can be rewritten as:

h̄2πn = m
�

L

js

qns
dl + q

�
S

Bds (2.16)

9



2 Theoretical background

For a contour far enough away from the surface (distance d� λLondon), the mag-
netic field can be assumed to be zero. Thus, the supercurrent is zero and the integral
over the supercurrent density js vanishes:

h
q

n =
h
2e

n =

�
S

Bds = Φ (2.17)

with the flux quantum:

Φ0 =
h
2e

(2.18)

From Eq. 2.17 we see that the enclosed magnetic flux can only take values that are
integer multiples of the magnetic flux quantum.

2.5 The Josephson effect

One of the most prominent effects in superconductivity is the Josephson effect,
predicted by Brian Josephson in 1962 [Jos62] and verified one year later by Anderson
and Rowell [AR63]. In essence, it describes the tunneling of Cooper pairs between
two superconductors that are separated by a weak link (e.g. a thin insulating
barrier). In the superconducting electrodes, the condensate can be described by
means of the Ginzburg Landau approach by macroscopic wave functions Ψ1,2 =
√n1,2 exp(iΦ1,2) (see Sec. 2.2). Here n1,2 are the charge carrier densities. In the
weak link, the two wave functions will exponentially decay. For sufficiently thin
barriers, there can be a finite overlap, leading to a coupling between both functions
[Fey82]. Introducing a coupling constant k and the chemical potential E1,2, the time
dependent Schrödinger equations of the coupled superconductors can be expressed
as [BK12]:

ih̄
∂Ψ1,2

∂t
= E1,2Ψ1,2 + kΨ2,1 (2.19)

Building the time derivative of the order parameter and separating real and imagi-
nary parts leads to:

ṅ1 =
2k
h̄
√

n1n2 sin(Φ2 −Φ1) ; ṅ2 = −2k
h̄
√

n1n2 sin(Φ1 −Φ2) (2.20)

Φ̇1 =
k
h̄

√
n2

n1
cos(Φ2 −Φ1)−

eV
h̄

; Φ̇2 =
k
h̄

√
n1

n2
cos(Φ1 −Φ2) +

eV
h̄

(2.21)

Here, we also have introduced a voltage across the junction V, which leads to
different electrical potentials for the two electrodes (4E = 2eV → E1,2 = ±eV/h̄).
The phase difference Φ2 −Φ1 between the two wave functions is defined as the

10



2.5 The Josephson effect

Josephson phase ϕ. For simplification, we consider two equal charge carrier den-
sities (n1 = n2 = n). With this approximation, we arrive at the first Josephson
equation, describing the current of Cooper pairs flowing through the junction (DC
Josephson effect):

I =
2k
h̄

n sin(ϕ) = Ic sin(ϕ) (2.22)

Ic is the critical current of the junction. It depends on the geometry of the junction
and characteristic material properties like the energy gap 4 and the normal state
resistance Rn of the barrier. From Eq. 2.22, we find that a constant phase difference
ϕ leads to a supercurrent through the junction. The second Josephson equation,
describing the AC Josephson effect, can be found by reducing Eq. 2.21:

dϕ

dt
=

2eV(t)
h̄

=
Φ0

2π
V(t) (2.23)

From Eq. 2.23 we find that a voltage drop across the junction is linked with a
phase change. According to the first Josephson equation (Eq. 2.22), this results in
an alternating current (with ω = 2eV/h̄).

Using the two Josephson equations (Eq. 2.22, 2.23) and Faradays law V = −Lj İ, the
Josephson inductance Lj of a junction holds:

Lj = −
V
İ
=

h̄
2eIc cos(ϕ)

(2.24)

Here we see a remarkable property of a Josephson junction: It has a nonlinear
inductance that depends on the Josephson phase ϕ. This is what makes it a suitable
element for applications like qubits.

For a Josephson junction that carries a supercurrent, the stored energy can be
calculated from the power, defined by the first and second Josephson equation (Eq.
2.22, 2.23):

E(Φ) =

� t

0
IVdt =

� t

0

Φ0

2π
Ic

dϕ

dt
dt =

Φ0 Ic

2π
(1− cos(ϕ)) (2.25)

where Ej = Φ0 Ic/2π can be identified as the characteristic Josphson energy [BP82].
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2 Theoretical background

2.6 Ambeogaokar-Baratoff and
Kulik-Omel’yanchuk relations

In the previous derivation of the Josephson effect, we have not cared much about
the prefactor in the first Josephson equation (Eq.2.22), which was identified to
be the critical current of the junction. Naturally, the critical current of a certain
junction will highly depend on various parameters, such as geometry, material,
transport channels, and so on. Shortly after the discovery of the Josephson effect,
Vinay Ambegaokar and Alexis Baratoff used thermodynamic Greens functions to
recalculate Josephson’s results and found a general relation between the normal
state resistance Rn and the critical current Ic of the junction [AB63a; AB63b]. Their
calculation assumes S-I-S (superconductor-insulator-superconductor) junctions and
the same BCS gap for both superconducting electrodes. The resulting relation reads

Ic =
π4 (T)

2eRn
tanh

(
4(T)
2kBT

)
(2.26)

with the BCS energy gap 4(T), the Boltzmann constant kB and the electron charge
e. For temperatures close to T = 0 we can approximate Ic ≈ (π4 (T = 0))/(2eRn)

(tanh(x) ≈ 1).

In 1975, Kulik and Omelyanchuk proposed a model to describe the critical current
for short weak links in the dirty limit (length of the constriction� mean free path)
as a function of Rn. Short here means in relation to the coherence length ξ of the
superconductor Lwl < ξ. For T → 0, the average critical current can be expressed
as [GKI04]:

Ic ≈ 1.32
π4 (T = 0)

2eRn
(2.27)

Except for the prefactor, we have the same result as from Ambeogaokar-Baratof
relation. Average critical current means that, in general, Ic depends on the phase
difference across the weak link, and therefore one would need to maximize the full
expression from Ref. [GKI04] with respect to the phase to get a more exact result.

2.7 Kinetic inductance

A very special and important property of superconductors is their possible high
kinetic inductance. Every electrical conductor, whether normal or superconducting,
has a geometric and a kinetic inductance. The geometric inductance Lg can be
defined by the energy stored in the magnetic field of the conductor. The kinetic
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2.7 Kinetic inductance

inductance Lk, on the other hand, is caused by the inertia of the charge carriers
and describes their kinetic energy. For normal conductors, the contribution of
kinetic inductance usually is very small and can be neglected, except for very high
frequencies [Sch+97]. However, for thin film superconductors, this can be extremely
different. We also will see that, in contrast to the geometric inductance, the kinetic
inductance depends on the microscopic properties of the material.

For temperatures close to Tc a simple expression for Lk can be derived from
Ginzburg Landau theory. The kinetic energy of a superconductor with volume
V = (d · l · w) can be expressed by the total kinetic energy of the Cooper pairs:

Fk =

�
ns

mv2

2
dV =

1
2

mv2ns(dlw) =
1
2

Lk I2
s (2.28)

where ns is the Cooper pair density, m is the mass, v is the velocity and Is is the
supercurrent, flowing in l direction of the superconductor. Using Eq. 2.28 and
rewriting the supercurrent as Is = ns(dw)2ev (with Cooper pair charge 2e and cross
section area dw), the kinetic inductance is:

Lk =
ml

dw2n2
s

(2.29)

For temperatures close to Tc one can now use the Ginzburg Landau expression for
the temperature dependent current carrier density ns(T) = ns(0)(1− T/Tc)1/2 to
write Eq. 2.29 in the form:

Lk(T) =
ml

dw2e2
1

ns(0)(1− T/Tc)
(2.30)

with the London penetration depth λL(T) =
√

m/µ0ns(T)2e2, the kinetic induc-
tance can be written as:

Lk(T) =
µ0λ2

L(T)l
wd

= N�
µ0λ2

L(T)
d

(2.31)

Here, N� is the number of squares over a length l. Alternatively to the temperature
dependence introduced in Eq. 2.30, one can also use an empirical formula for
the entire temperature range, scaling with (1− T/Tc)1/4 instead of (1− T/Tc)1/2

[Sch+97].

For temperatures close to T = 0, a direct relation between the kinetic inductance and
the normal state resistance of a wire can be derived from the electrical conductivity.
The response of a superconductor to an alternating electrical field (with frequency
ω) can be expressed with the complex conductivity and the Drude model [Tin04]:

j = (σ1,i − iσ2,i) E =

(
nie2τi

m(1 + ω2τ2
i )
− iω

nie2τ2
i

m(1 + ω2τ2
i )

)
E, (2.32)
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2 Theoretical background

where m is the mass, e is the electron charge, ni is the density of charge carriers
and τ is the mean time between collisions. The index i stems from the two-fluid
model and accounts for the fact that a current can be either carried by Cooper pairs
(i = s) or quasiparticles (i = n). For the superconducting part (i = s), the time
between collisions of charge carriers goes to infinity. Therefore the imaginary part
is dominated by superconducting charge carriers. For frequencies ω > 0, the real
part, which accounts for dissipation, is dominated by the quasiparticle contribution
(i = n). Therefore, the conductivity can be expressed as σ(ω) = σ1,n − iσ2,s with
(σ2,s � σ1,n). The impedance of a thin film superconductor with thickness d strongly
depends on the kinetic inductance and can be expressed as [Tin04; Mau18]:

Z =
1

(σ1,n − iσ2,s)d
' σ1,n + iσ2,s

dσ2
2,s

= R + iωLk (2.33)

From the separation into an imaginary and a real part, we can identify R =

σ1,n/(dσ2
2,s) and Lk = 1/(dωσ2,s). In the low frequency limit (h̄ω � kBT) and for

T � Tc, the relation between the normal state conductivity σn and the complex
conductivity of a superconductor can be expressed by the Mattis-Bardeen formula
[MB58]

σ2,s

σn
=

π4 (T)
h̄ω

tanh
(
4(T)
2kBT

)
(2.34)

where 4(T) is the superconducting energy gap. Inserting the resulting expression
for σ2,s into the kinetic inductance gives:

Lk =
1

dωσ2,s
=

h̄

dπ4 (T) tanh
(
4(T)
2kBT

)
σn

(2.35)

Now one can use the definition for the normal state conductivity σ−1
n = ρ =

Rn A/l = R�d, with the normal state resistance Rn of a specimen with a cross
section of A (dw) and a length of l. For temperatures close to T = 0 we can use the
BCS energy gap 4(T = 0) = 1.76 kBTc and approximate tanh(4(T)/(2 kBT)) ≈ 1.
Thus, Eq. 2.35 takes the form

Lk =
h̄R�

1.76 πkBTc
= 0.18

h̄R�

kBTc
(2.36)

From Eq. 2.36 we see that the kinetic inductance can be directly controlled by the
sheet resistance of the film. In our experiments, we use granular aluminum, which
allows for resistances up to a few kilo-Ohms, leading to kinetic inductances of a
few nH per square.
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2.8 Aharonov-Bohm and Aharonov-Casher effect

The Aharonov-Bohm effect (AB) is named after the discoverers Yakir Aharonov
and David Bohm [AB59]. It is a phenomenon in quantum mechanics and describes
the influence of a magnetic vector potential on the phase of the wave function of a
charged particle when traveling through the field. The effect is even present in the
case that the magnetic field and the electric field at the trajectory of the charged
particle are zero. Thus, the AB effect simply describes the coupling between the
complex phase of the wave function and the vector potential. For example, let’s
assume a solenoid in the middle and electrons passing on both sides, as illustrated
in Fig. 2.2. Even if the magnetic field would be perfectly shielded, the accumulated
phase shift would lead to interference between the particles with wave functions
Ψ1,2 = Ψ0

1,2 exp(−iϕ1,2), depending on the relative phase shift [AB59]:

4ϕ = ϕ1 − ϕ2 =
q
h̄

(�
C1

Adr−
�

C2
Adr

)
(2.37)

=
q
h̄

�
Adr = q

�
Bds = qΦB (2.38)

Here, the indices 1, 2 are corresponding to the different trajectories/sides of the
solenoid, q is the charge of the particle, C1,2 are the contours along the paths, A is
the vector potential, B is the magnetic field of the solenoid and ΦB is the magnetic
flux enclosed between the two different trajectories. Consequently, the probability
of the superposition function of Ψ = Ψ1 + Ψ2 behind the solenoid will periodically
depend on the enclosed magnetic field:

P(Ψ) = |Ψ|2 = |Ψ0
1 |2 + |Ψ0

2 |2 + 2Ψ0
1 Ψ0

2 cos(4ϕ) (2.39)

Almost thirty years after the proposal of the Aharonov-Bohm effect, Yakir Aharonov
and Aharon Casher published a work in which they derived the effective La-
grangian, describing the interaction between a neutral particle with a magnetic
momentum µ and a charged particle with charge q and showed that the neutral
particle will exhibit an effect dual to the AB effect [AC84]. The non-relativistic
Lagrangian can be expressed in the form:

L =
1
2

mv2 +
1
2

MV2 + qA(r−R)(v−V) (2.40)

M/m, R/r, V/v denote the mass, position and velocity of the neutral particle and
the particle with charge q, respectively. As L is invariant under interchanging
of the position and velocity of the particles, it is the same whether the neutral
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B

q

solenoid charged wire

Figure 2.2: Illustration of the Aharonov-Bohm effect (AB, left) and the Aharonov-Casher effect (AC,
right). For the former, the quantum charged particles collect a relative phase shift due to the encircled
magnetic flux. This is still true if the magnetic field at the wave packets is zero since the AB effect
describes the coupling of the phase to the vector potential. For the dual AC effect, the interferometer
encloses, instead of magnetic flux, a charged wire (with charge per unit length λ). Here quantum
particles with magnetic moment µ accumulate a relative phase that depends on the encircled charge
(λ).

particle interacts with the charged particle or vice versa. This means that a particle
with a magnetic moment, when traveling through the field of an electric charge,
will collect a phase, just dual to the previously discussed AB effect. If we now
assume the dual case to the previously discussed situation, where two charged
particles were traveling around a solenoid, we may now imagine two particles with
magnetic moment µ moving around a charged line (or a narrow cylinder). This
case is illustrated in the right panel of Fig. 2.2. For the Aharonov-Casher effect, the
accumulated phase difference is given by

4 ϕ =
1
h̄

�
(E× µ)dR =

q
h̄

�
A(r−R)dR = λµp (2.41)

[AC84]. Here µp is the projection of the magnetic moment on the charge cylinder
axis. λ is the charge per unit length of the line. If we compare this result with the AB
phase in Eq. 2.37, we find the exact dual and consequently reach the conclusion that
the interference between two particles with magnetic moment µ can be controlled
by the charge of the area enclosed by their paths.
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2.9 Phase slips

Along with the advancements in technology during the last decades, it has become
possible to define structures in the nanometer range. This is in particular interesting
for the investigation of superconductivity as it allows to probe the effect of extreme
spacial restrictions on different properties of superconductors. The dimensionality
of a superconductor can be defined with respect to the coherence length, which
is a measure of the size of a Cooper pair and thus the smallest meaningful unit.
Reducing the dimension of a superconductor by shrinking the diameter to the
order of the coherence length ξ, the system may be regarded as one-dimensional.
Therefore, fluctuation effects become more relevant. Theoretically, the question of
whether superconductivity can exist at all in such systems was already addressed
in an early work by Hohenberg from 1966 [Hoh67]. He pointed out that generally
the concepts applied involving long-range order break down when going from
3D to 2D or even to 1D systems. However, his studies didn’t allow for predictions
about a possible phase transition or physical effects. In the same year, William
A. Little predicted that thermodynamic fluctuations of the order parameter in
thin wires, close to Tc, can lead to a broadened phase transition at Tc and that
the dissipation accompanying the fluctuations can cause the decay of a persistent
current in ring-shaped conductors [Lit67]. In the framework of these studies,
he introduced the concept of phase slips based on the Ginzburg-Landau model.
Below the critical temperature, the superconducting condensate of a quasi one
dimensional superconductor can be described by the complex order parameter
Ψ(x) = |Φ(x)|eiφ(x), with the real amplitude |Φ(x)| and the phase factor eiφ(x).
Here, x describes the wire axis. The dependency along the cross section is neglected,
assuming that the diameters are of the order of ξ. In order to be single-valued and
continuous, the order parameter describes a helix along the wire axis in the complex
plane. Each winding has a phase of 2π, and the total number of windings depends
on the supercurrent in the wire (see Fig. 2.3). The phase of the order parameter
is not uniquely defined. Therefore, adding or subtracting multiple integers of 2π

does not change the value of the order parameter.

Within a phase slip event, the order parameter gets suppressed at a certain point
of the wire within a coherence length and for a time period ∼ h̄/4 (∼ 10−12 s).
As illustrated in Fig. 2.3 with Argand diagrams, during this event, the number of
phase windings along the wire axis can change. According to the second Josephson
equation φ̇ = 2π/Φ0V, the loss of phase causes a voltage drop. Consequently, such
phase slips can lead to a non-vanishing resistance, even well below Tc. Generally,
without a current bias, the probability of adding or removing a phase winding is
equal, and the overall voltage is zero. For a bias greater than zero, the potential
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N = 10 N = 9
0

Figure 2.3: Illustration of a phase slip: For a thin (diameters d ∼ ξ) supercurrent carrying wire, the order
parameter describes a helix along the wire axis in the complex plane (steady-state). Before the phase
slip takes place (left panel), the total number of phase windings is 10. Once a phase slip occurs, for a
short moment in time (∼ h̄/4), the modulus of the superconducting order parameter gets suppressed
(middle). After it is restored to its initial value, the number of phase windings has changed.

gets tilted, and adding 2π becomes more likely than subtracting 2π. The rate
of these phase slips highly depends on the exact geometry of the wire and on
the temperature. So far, the appearance of phase slips was motivated by thermal
fluctuations close to Tc. Thus, approaching T = 0 K, these thermally activated
phase slips (TAPS) are highly suppressed, and no measurable resistance should
be expected. However, already in 1988, Giordano and co-workers observed that
thin wires can exhibit a non-vanishing resistance even well below Tc [Gio88].
Fig. 2.4 shows the resistance versus temperature dependence they received from
their measurements. One can clearly identify two branches (marked with red
and blue). For temperatures close to Tc, the thermal energy is high (kBT ≈ IΦ0).
Therefore, the potential barrier for a change of the phase of the superconducting
order parameter by 2π can be overcome by thermal activation. This observation
was in good agreement with the phenomenon of thermally activated phase slips
(TAPS), as they explain the non-vanishing resistance close to Tc and the exponential
decay of R with 1/T [LA67; MH70]. The second branch, however, was somehow
surprising and needed a different explanation. As the thermal energy in this region
is too small for TAPS, Giordano attributed the resistance to quantum-mechanical
tunneling of the order parameter through the free-energy barrier (see Fig 2.4, right
panel). These phase slips are therefore called quantum phase slips (QPS). In the
course of time, Giordanos results were confirmed in many experiments on very
narrow nanowires [BLT00; Lau+01; Zgi+05; Alt+06; Gio94; Web+13], and quite a
number of theories were developed to describe QPS and the consequences for the
electrical properties of such a wire [Gio94; GZ01; Zai+97; AGZ08; MN06]. In the
following sections, we will discuss some commonly used concepts and models
which are used to describe the rate of TAPS and QPS and which will be compared
with our experimental results.
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(Giordano 1988)

TAPS
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Figure 2.4: (a) First evidence of quantum phase slips (QPS), Giordano 1988 [Gio88]: The graph shows
the normalized resistance vs. the temperature difference to Tc for three In wires with different lengths
and diameters. For two of the wires, there is a non-vanishing resistance even well below the critical
temperature, which can be attributed to quantum phase slips. (b) Illustration of the processes describing
thermally activated phase slips (TAPS) and quantum phase slips (QPS). For the former, the energy
barrier is overcome by thermal activation. In the case of QPS, the phase tunnels through the barrier.

2.9.1 Thermally activated phase slips

First, the regime close to Tc, where thermal energy in the system is high and
thermally activated phase slips are dominating, will be discussed. As mentioned
before, the concept of phase slips was introduced by William Little in 1967 [Lit67].
As part of his work, he also developed a first, very simple phenomenological
theory to describe the resistance caused by thermally activated phase slips. This
model is known as Little’s fit and is based on the following assumptions: For the
instant in which a phase slip happens, the order parameter is suppressed for a
short moment in time, and the wire is in a normal conductive state in this region
of length xξ . Since the time span for an event is much shorter than the time scales
in DC measurements, only the average value is measured. Thus, RTAPS(T) can be
described by purely statistical considerations as RTAPS(T) = PnRn, where Pn is the
probability for a phase slip event and Rn is the normal state resistance of the wire.
For the time when no phase slip occurs, the resistance is assumed to be zero. The
probability Pn can be described by the law of Arrhenius as Pn = exp(−4 F/kBT).
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Here 4F is the minimum energy required for a phase slip and kB is the Boltzmann
constant. Thus, one obtains:

RLP(T) = Rn exp(
−4 F

kBT
) (2.42)

The model is generally applicable over a wide temperature range as the Arrhenius
law is also valid for the lowest temperatures (in contrast to the LAHM model
discussed below). However, there are also some weaknesses due to its simplicity.
For example, no interactions between TAPS (e.g. by a modification of the potential
barrier) are considered, which in particular becomes problematic when the temper-
ature is close to Tc where the rate of TAPS is high. Also, other contributing factors
to the conductance, like quasiparticles, are ignored.

A more sophisticated approach to calculate RTAPS is by making use of the fact that
each phase slip is accompanied by (at least) a 2π phase change and to therefore use
the Gor’kov phase evolution equation h̄ dφ

dt = 2eV to calculate the resulting voltage,
which then can be translated into a resistance. Langer, Ambegaokar [LA67], Mc-
Cumber and Halperin [MH70] have further developed Little’s model and provided
the first quantitative description of thermally activated phase slips, which is named
after its inventors LAHM theory. Based on the Ginzburg Landau equation, Langer
and Ambegaokar calculated the lowest free energy barrier between two uniform
solutions with different numbers of phase turns for temperatures close to Tc:

4 F =

√
2

3
(Hc(T)2/π)Aξ(T) =

√
2Aξ0Hc(0)2

3π

(
1− T

Tc

)3/2
(2.43)

with the critical field Hc, the cross section area of the wire A and the coherence
length ξ0. In essence, Eq. 2.43 is the volume at which the wire becomes normally
conductive times the condensation energy density. Consequently, the needed ac-
tivation energy scales with the wire cross section, which means that for smaller
diameters, the probability of TAPS will increase. For zero supercurrent Is = 0, the
probability of adding or subtracting 2π phase is equal and therefore also the rates
Γ+(T) = Γ−(T) = Γ(T) are equal. The rate itself can be expressed as the product
of an attempt frequency Ω(T) and the probability function:

Γ(T) = Ω(T) exp
(
−4F(T)

kBT

)
(2.44)

An expression for the attempt frequency was derived by McCumber and Halperin,
using the time dependent Ginzburg Landau equation [MH70]:

Ω(T) =
l(T)
√

3
2π3/2τr

√
4F(T)

kBT
(2.45)

20



2.9 Phase slips

with l(T) being the length of the wire in units of the coherence length (l = L/ξ(T))
and τr being the relaxation time of the order parameter (τr = πh̄/8 kB(T − Tc)).
Because τr approaches zero for T → Tc a weakness of the LAHM theory becomes
evident. It predicts that for T → Tc, the rate of thermally activated phase slips is
suppressed, which does not make sense as the thermal energy is high at this point.
This mismatch can be understood since the origin of this expression lies in the time
dependent Ginzburg Landau theory, which is only valid in a small temperature
range below Tc.

For finite supercurrents, the energy barrier 4F for +2π and −2π phase change
differs by (πh̄Is)/(2e) [AD64]. In the picture of a tilted washboard potential, this
can be interpreted as a reduced probability to role upwards. The resulting net rate
is:

Γ±(T) = Ω(T) exp
(
−4F(T)

kBT

) [
exp

(
− πh̄Is

2ekBT

)
− exp

(
πh̄Is

2ekBT

)]
(2.46)

Rewriting the exponential functions inside the brackets as a hyperbolic sine function
and performing a Taylor approximation for small currents (sinh(x) ≈ x), one
receives

Γ±(T) = −Ω(T) exp
(
−4F(T)

kBT

)(
πh̄Is

ekBT

)
. (2.47)

For the steady state, where the phase windings added by the bias in average
are equal to the loss of phase by TAPS, the voltage is given by V = −(π/e)h̄Γ±.
Combing this condition with Ohm’s law (R = V/Is) allows to write the TAPS
resistance as follows:

RTAPS = Rq
hΓ(T)

kBT
=

√
3
π

h̄2π

2τre2kBT
l(T)

√
4F
kBT

exp
(
−4F

kBT

)
(2.48)

Here, the attempt frequency from Eq. 2.45 was inserted. Rq is the quantum resis-
tance (h/(4e2)). Interestingly, this result does not (directly) depend on the normal
state resistance of the wire. Due to the approximation done during derivation, the
result is only valid for |Is| < |e|kBT/(πh̄).

Almost thirty years later, the problem was reanalyzed by Golubev and Zaikin (GZ)
([GZ99]). To do so, they used an effective action approach to calculate the TAPS rate
and received a prefactor that exceeded the one found by McCumber and Halperin
(see Eq. 2.45) by a factor ∼ (1− T/Tc)−1. For small currents (Is � Ic), the resulting
TAPS resistance from GZ theory reads:

RTAPS,GZ = 17
Tc

T
Rql(T)

√
4F
kBT

exp
(
−4F

kBT

)
(2.49)
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In the full GZ expression of the attempt frequency a current dependent function
k(Is) (values between 5.53 and 8.74) and a constant a = TQPS/Tc, where TQPS is the
temperature below which QPS are dominating, are included. However, here it is
assumed that a ≈ 1/2 and k(Is) ≈ 5.53. From an experimental point of view, the
prefactor plays a minor role when comparing theory to measurements. Thus, small
differences can be neglected. More importantly, the attempt frequency and with
this also RTAPS,GZ does not converge to zero for T → Tc, which is more reasonable
when comparing it with the LAHM model.

2.9.2 Quantum phase slips

Apart from thermally activated phase slips, in which the potential barrier for a
phase slip is overcome by thermal activation, it is also possible that the phase
tunnels through the barrier. These phase fluctuations have their origin in the
quantum nature of charge and phase. In the quantum regime phase and charge
are canonically conjugated variables with the associated quantum operators Φ̂ and
q̂, obeying the commutation relation

[
q̂, Φ̂

]
= −i. As a consequence, every charge

localization in the wire leads to fluctuations of the phase. In comparison to the
TAPS, the quantum phase slips (QPS) do not freeze out for T → 0 and can cause a
non-vanishing resistance or even a Coulomb blockade well below Tc.

Besides his experimental results (Fig. 2.4), Giordano also worked out a first phe-
nomenological description for the QPS rate. It is based on the analogy to the
well-developed theory of macroscopic quantum tunneling (MQT) in Josephson
junctions [Was+85]. For the latter, the tunneling rate can be expressed as:

ΓMQT = Ω exp (−S/h̄) (2.50)

with the quantum action S ∝ 4U/EzzJ, describing the ratio between the potential
barrier and the zero point energy of the junction. The zero point energy of the
junction is determined by the plasma frequency EJ

z = h̄ωp. To map the QPS problem
onto the MQT rate, one needs to find the analog for the zero point energy. Giordanos
approach was based on the LAHM theory and assumes that the rate depends on
the characteristic time of the tunneling process τ instead of the thermal energy
kBT. Therefore, he used the TDGL relaxation time τr as a time scale characterizing
the tunneling process and to define the zero point energy for the QPS wire:

Ez = h̄(1/τr) = 8kB(Tc − T)/π. (2.51)
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Taking into account that the energy barrier for a phase slip is 4F, the rate can be
expressed analog to the MQT rate (Eq. 2.50) as:

ΓQPS = ΩQPS exp
(

β
4F

h̄(1/τr)

)
. (2.52)

Here, β is introduced as a fitting parameter. For the attempt frequency ΩQPS,
Giordano used the expression from McCumber and Halperin (Eq. 2.45) but replaced
the thermal energy kBT by the zero point energy Ez. Thus, Eq. 2.52 becomes:

ΓQPS =
l(T)
√

3
2π3/2

√
4F(T)

h̄τr
exp

(
α
4F

h̄(1/τr)

)
. (2.53)

For small currents |Is| < |e|Ez/(πh̄), the QPS resistance can be derived analog to
the one for TAPS (see Sec. 2.9.1):

RQPS = αRql(T)

√
4F

h̄(1/τr)
exp

(
−β

4F
h̄(1/τr)

)
(2.54)

with α being a second fitting parameter to account for the uncertainty of the attempt
frequency. The potential barrier can be assumed to be the same as for TAPS (Eq.
2.43). With respect to the measurements performed in the framework of the present
work, where we study gradual changes in the normal state resistance and their
effect on the transport behavior of the wire, it is more convenient to express 4F as
a function of the wires normal state resistance Rn. Following Ref. [Bez12], for low
temperatures T � Tc equation 2.43 can be rewritten in the form:

4 F(T) = a 0.83
RqL
Rnξ

kBTc

(
1− T2

T2
c

)3/2

. (2.55)

with the fitting parameter a. To obtain this result, expressions from Ginzburg
Landau theory for Hc and Ic were used and combined with BCS expressions for
the penetration depth and coherence length at zero temperature.

The first macroscopic theory of quantum phase slips was developed by Zaikin
and Golubev [Zai+97]. In their work, they stressed that the model from Giordano
underestimates the actual phase slip rate by orders of magnitude [Gio94] and
therefore is not in agreement with experimental results. In particular, it is pointed
out that the expression used for the QPS action SQPS (4F/Ez) is approximately
given by the number of transverse channels (Nch ∼ k2

F A) which typically has
values between hundred and thousand, assuming diameters in the range of twenty
nanometers. Thus, the QPS rate ΓQPS ∝ exp(−SQPS) becomes extremely small.
Also, dissipation, caused by the normal conducting core, field effects, and the
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non-applicability of the time dependent Ginzburg Landau model for temperatures
far below Tc are not taken into account [Zai+97; GZ01].

As a starting point for their model, Zaikin and Golubev used an effective action
approach for BCS superconductors and assumed that in most cases, the mean free
path of the nanowire is very small and therefore falling into the dirty limit (lm � ξ).
Thus, ξ ∼

√
lmξ0, which has the effect of reducing the actual size of a QPS and,

with this, the energy barrier. From their calculations, they found that the role of
the electromagnetic field in a previous work by Duan had been overestimated
[Dua95], and that dissipative currents have a minor influence on the phase slip
rate. In detail, the calculations are rather complex and intensive. However, in the
following, a few important results from Refs. [Zai+97], [GZ01] and [AGZ08] will
be summarized.

Characteristic for each phase slip is the suppression of the order parameter in its
core and that it is accompanied by a phase winding around the core. Therefore
it is reasonable to separate the action into two parts. A core part and an outer
part SQPS = Score + Sout. The core action accounts for the condensation energy
(essentially defining the potential barrier) and for dissipation caused by its normal
conductive core. On the other hand, Sout is the hydrodynamic part, which depends
on the propagating fields. Here only the fluctuations of the phase are important.
For the outer part, the resulting action can be expressed as

Sout = µ ln
(

min(c0β, Lw)

max(c0τ0, x0)

)
(2.56)

with the Mooij-Schön mode velocity c0 = 1/(C′L′)1/2 [MS85], β = 1/T. Lw is the
wire length, xo is the typical size and τ0 the time scale of a phase slip. C′, L′ are
the capacitance and kinetic inductance per unit length. The prefactor is defined
as µ ' π/(4α)(C′/L′)1/2. For extremely long wires and at temperatures close
to T = 0, Eq. 2.56 diverges logarithmically. Thus, the outer part, describing the
interaction with other phase slips, becomes large in this limit.

The core action Score is calculated by means of a variational method with trial
functions from the effective action. To relax this task, a numerical prefactor β (of
the order of one) is introduced. The resulting core action then can be written in the
following form:

Score = πβN0 A
√

D40 = β
RqLw

Rnξ
, (2.57)

where No = m2
e vF/(2π2 h̄3) is the charge carrier density, A is the cross section area

of the wire, 40 is the superconducting gap, D is the diffusion constant, Rn is the
normal state resistance and ξ =

√
D/40 is the coherence length. This result is only
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valid for wire lengths Lw � ξ(e2N0 A)/C′ (satisfied for lengths up to ∼ 10 µm).
For longer wires, capacitive effects become important and the core action takes the
form:

S∗core = β∗
(

Rq

Rnξ

)3/2√
C′/(e2N0 A). (2.58)

For the purposes of this work, the long wire limit is not so important as typical wire
lengths are between 100 nm and 1000 nm. To derive an expression for the attempt
frequency ΩQPS, Zaikin and Golubev used instanton technique and introduced a
second fitting parameter α. Doing so, the pre-exponential factor can be expressed
in terms of the QPS action:

ΩQPS = α
SQPSLw

τ0x0
=

Score�µ
α
40RqL2

w

Rnξ2 (2.59)

where it is assumed that x0 ∼ ξ and τ0 ∼ 1/40. For sufficiently short wires and
for T → 0, one can use the BCS relation for the gap 40 = 1.764 kBTc and express
the QPS rate as:

ΓQPS = α′
kBTcRqL2

w

hRnξ2 exp
(
−β

RqLw

Rnξ

)
(2.60)

This expression for the phase slip rate at zero current and temperatures close to
Tc was later used by Mooij and co-workers to describe the phase slip energy Es,
when they investigated the superconductor-insulator transition in nanowires and
in nanowire arrays [Moo+15]. Throughout this work, we will also follow this model
for design considerations and the comparison with the experimental results.

For finite currents, the Golubev and Zaikin expression for the temperature depen-
dent QPS resistance below Tc can be written in the form:

RQPS,GZ(T) =
αβR2

qL2
w

Rnξ(T)2 exp(−β
RqLW

Rnξ(T)
) (2.61)

with ξ(T) = 0.907 ξ0(1 + (1− 0.25 tξ0/t))−1/2(1− t2)−1/2 (t = T/Tc) [Del+12].

2.10 Duality between Josephson junctions and
quantum phase slip junctions

In the previous sections, the concept of phase slips and some prominent models
describing the probability of their occurrence were discussed. The considerations
made referred to single, statistically occurring phase slips, which can be described
by means of rates. The possible existence of coherent phase slips was first suggested
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2e

Josephson junctionQPS junction

Figure 2.5: Comparison of a quantum phase slip junction and a Josephson junction: The dual to the
tunneling of Cooper pairs at the Josephson junction is the tunneling of flux quanta across the wire
(described by the energy Es, each phase slip is linked with the tunneling of one Φ0). The dual counterpart
to the charging energy Ec is the inductive energy EL.

by H. P. Büchler et al. in 2004 [BGB04]. Two years later, J. E. Mooji and Y. V. Nazarov
took up this idea and proposed a duality between the well-known Josephson
junctions and what they so-called quantum phase slip (QPS) junctions. Here, dual
means that the dynamics of the phase slip junction can be mapped onto that of
the Josephson junction by exchanging the conjugated variables charge and phase
[MN06]. In the following, the main consequences of this dual approach will be
explained. Then some examples for circuits and their dual counterpart are given. In
Sec. 2.11.2, this duality will be used to derive the essential equations describing the
behavior of a QPS interferometer. Since coherent QPS are assumed in the following,
we will speak of phase slip amplitudes instead of rates.

A Josephson junction is typically formed by two superconductors separated by
a thin insulating barrier (S-I-S). The strength of the coupling between the wave
functions of the two superconductors is defined by the Josephson energy Ej. It is
a measure for the amount of Cooper pairs that can tunnel through the junction.
Naturally, such a geometry also comes along with a characteristic charging energy
Ec = (2e)2/2C. The ratio of these two energies is crucial for the properties of the
junction. In contrast to the Josephson junction, in the case of a phase slip junction,
the two superconductors are connected by a thin superconducting wire (much
longer than the typical size of a phase slip, ∼ ξ). Here, the dual to the Josephson
energy is the Phase slip energy Es, which is proportional to the phase slip amplitude
(rate). Since each phase slip event can be associated with a fluxon tunneling across
the wire, the tunneling of fluxons can be seen as the dual to the tunneling of Cooper
pairs. The dual to the charging energy Ec is the inductive energy EL = Φ2

0/2L,
which intuitively makes sense when comparing the geometries. Just as for the
Josephson junction, the behavior of the QPS junction strongly depends on the ratio
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discrete

discrete

Figure 2.6: Energetic regimes for the Josephson junction and the QPS junction. The upper part shows
the phase regime, the lower part the charge regime. The I −V curves in the middle show the respective
characteristic transport behavior. Dual regimes are marked in the same color.

between Es and EL. An illustrative comparison of the two junction types is shown
in Fig. 2.5.

Let us now consider the different energetic regimes (see Fig. 2.6): For a Josephson
junction, in the limit Ej � Ec, the phase ϕ is a well-defined variable, and one can
apply a current without dissipation up to a critical value Ic. This critical current is
a measure for the Josephson energy Ic = 2πEj/Φ0. Dual to this is a QPS junction in
the regime Es � EL (later also called phase slip regime), where due to the strong
fluctuation of the phase, no coherent charge transport through the wire is possible
up to a critical voltage Vc. In this case, the charge q is a well-defined variable, and
the critical voltage provides a measure for the phase slip energy Vc = 2πEs/2e.
The inverse regime for the Josephson junction is Ej � Ec and for the QPS junction
Es � EL. For the former, a Josephson junction reveals a Coulomb blockade, and
the charge is well defined. For the latter, a supercurrent can flow through a QPS
junction up to a critical value, and the phase is the well-defined variable. In Fig.
2.6, the corresponding dual regimes are marked with the same color.

For a Josephson junction, the supercurrent through the junction is given by the first
Josephson equation and is a function of the phase difference of the wave functions
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ϕ: I = Ic sin(ϕ) (see also Sec. 2.5). The associated nonlinear kinetic (or Josephson)
inductance of the junction, resulting from the Josephson equations, is given by:

Lj =
Φ0

2π Ic cos(ϕ)
. (2.62)

Let us compare this with the dual equation for the QPS junction, resulting from the
transformation made in Ref. [MN06]. Instead of a phase-dependent supercurrent,
the QPS junction exhibits a threshold voltage V = Vc sin(2πq), which depends
on the injected charge q (in units of 2e). Accordingly, the dual to Lj is a kinetic,
nonlinear capacitance:

Ckin =
2e

2πVc cos(2πq)
. (2.63)

The duality between Josephson junctions and QPS junctions, but also the transfor-
mation which allows transforming circuits with Josephson junctions into their dual
circuit for QPS junctions, can be easily demonstrated by comparing the dynamics of
two systems with each other [MN06]: The first system is the well known Josephson
junction based Cooper pair box (CPB) (Ej � Ec) [Bou+98]. Here the number of
Cooper pairs on an island is quantized, and the energy spectrum is dominated by
the quadratic capacitive energy E = Ec(N − ng)2. The left panel in Fig. 2.7 shows
the CPB energy spectrum. The different parabolas correspond to a certain number
N of Cooper pairs on the charge island. At half-integer values of ng, Cooper pair
tunneling through the junction removes the degeneracy. The energy splitting at
these points is Ej. The Hamiltonian can be expressed as

HCPB = Ec(N − ng)
2 −

(
Ej

2 ∑
n
|N + 1〉 〈N|+ h.c.

)
. (2.64)

Here, ng = CV/2e is the number of charges induced on the island.

The second (dual) system is the quantum phase slip flux qubit (QPSFQ), introduced
by Mooij and Harmans in 2005 (operating in the regime Es � EL) [MH05; MN06].
This qubit consists of a superconducting loop with an inductance L that is inter-
rupted by a QPS junction. Instead of a certain number of Cooper pairs, we now find
a discrete number N of flux quanta in the loop. Accordingly, the energy spectrum
is now dominated by the parabolas from the inductive energy E = EL(N−Φ/Φ0)

2

(see the right panel in Fig. 2.7). Dual to the CPB, the degeneracy at half integer flux
quanta is now lifted by the tunneling of fluxons across the QPS junction, and the
splitting equals Es. The corresponding Hamiltonian now is

HQPS = EL(N − f )2 −
(

Es

2 ∑
n
|N + 1〉 〈N|+ h.c.

)
(2.65)
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Figure 2.7: Energy spectra of the Cooper pair box (left) and the dual quantum phase slip flux qubit
(right). The parabolas correspond to the different numbers (N) of Cooper pairs/fluxoids. For half-integer
values of ng resp. Φ/Φ0, the degeneracy is lifted by Ej resp. Es.

with the frustration f = Φ/Φ0 and the number of flux quanta N. If we now compare
the Hamiltonian of the Cooper pair box (Eq. 2.64) with that of the phase slip qubit
(Eq. 2.65), we see that both have the same structure, but the following variables are
interchanged:

Ec ⇔ EL ; Ej ⇔ Es ; ng ⇔ f (2.66)

In fact, any Josephson Hamiltonian can be mapped to the corresponding QPS
Hamiltonian using the transformation proposed by Mooij and Nazarov [MN06].
Therefore, the following parameters need to be exchanged:

Ej → Es ; Ec → EL ; R−1
q V ↔ I ; R−2

q Z(ω)↔ Y(ω) (2.67)

with the conductance quantum 1/Rq = 4e2/h, the impedance Z and the admittance
Y. For the double sided arrows, current and voltage bias are exchanged and parallel
resistors turn into serial ones and vice versa.

For example, the dual to a current biased Josephson junction in the phase regime
will become a voltage biased QPS junction in the charge regime with a serial
resistor. The Josephson junction can be modeled with the well known resistively and
capacitively shunted junction (RCSJ) model as an ideal junction which is shunted
by a resistor R and a capacitance C [McC68; Ste68]. Following the transformation
from Eq. 2.67, the ideal Josephson junction is replaced by the QPS junction, the
parallel resistor turns into a serial resistor, and instead of a capacitance, we have
an inductance. Consequently, the dynamics can be described in analogy to the
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RCSJ model by a differential equation for the injected charge q. The two differential
equations are [MN06]:

I(t) = Ic sin(ϕ) +
Φ0

2π

(
C

d2 ϕ

dt2 +
1
R

dϕ

dt

)
(2.68)

V(t) = Vc sin(2πq) + 2e
(

L
d2q
dt2 + R

dq
dt

)
. (2.69)

We already can identify that both equations have the familiar form of the dif-
ferential equation for a mechanical pendulum. Equations 2.68 and 2.69 can be
rewritten in dimensionless variables after introducing the following two character-
istic parameters. First the plasma frequency ωp, which defines the characteristic
resonance of the junction. For the Josephson junction, this resonance stems from
the capacitance C and Josephson inductance Lj of the junction. For the dual QPS
junction, we have, instead of the normal capacitance, a kinetic capacitance Ckin and
the inductance of the wire. Thus, we can write:

ω
j
p =

1√
L′j C

=

√
2EjEC

h̄2 and ωQPS
p =

1√
LC′kin

=

√
2EsEL

h̄2 (2.70)

With L′j = Φ0/2π Ic and C′kin = e/πVc. The second parameter is the so called
McCumber parameter βc and its dual counterpart, describing the damping in the
running state [McC68; MN06]:

β
j
c =

2πR2CIc

Φ0
and βQPS

c =
2πLVc

2eR2 (2.71)

With these parameters and after introducing the normalized time t′ = ω
j,QPS
p t, Eq.

2.68 and 2.69 can be rewritten as:

I(t′)
Ic

= sin(ϕ) +
d2 ϕ

dt′2
+

1√
β

j
c

dϕ

dt′
(2.72)

V(t′)
Vc

= sin(2πq) +
d2q
dt′2

+
1√

βQPS
c

dq
dt′

(2.73)

These differential equations can be treated as phase resp. charge particles with
mass (mj = C(Φ0/2π)2 and mQPS = L(2π/2e)2) moving in a washboard potential
(see Fig. 2.8). Thus the corresponding effective potentials take the form:

Uj(ϕ) = −Ej

(
I
Ic

ϕ + cos(ϕ)

)
and UQPS(q) = −Es

(
V
Vc

2πq + cos(2πq)
)
(2.74)
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R

R

Figure 2.8: Tilted washboard potential for a Josephson junction (JJ) (Ej � Ec, left) and a QPS junction
(QJ) (Es � EL, right). The dynamics can be described by a phase particle (JJ) or a charge particle (QJ).
For bias values below Ic resp. Vc, the particle is trapped in a minimum, were it oscillates with the plasma
frequency ω

j
p resp. ωQPS

p . With increasing bias values, the potential gets more and more tilted until
the barrier height (Ej resp. Es) is overcome, and the particle is in the running state. For the Josephson
junctions, the change in phase (ϕ̇) results in a voltage across the junction, while for the QPS junction,
the change of the charge (q̇) leads to a current through the wire. The friction/damping of the particles
is then described by β

j
c resp. βQPS

c . The equivalent circuits from the RCSJ model (JJ) and the dual for the
phase slip model are illustrated in the insets.

Fig. 2.8 shows the two washboard potentials for different bias values together
with the corresponding circuits. In Sec. 2.11.2 it will be shown that the differential
equation for two strongly coupled wires with serial resistors has the same form as
Eq. 2.72 for a single wire.

Superconductor-insulator transition

So far we have only discussed the phase slip junction in the extreme regimes
(Es � EL or Es � EL). Thus, the question naturally arises when the transition
from a superconducting behavior (phase regime) to an insulating behavior (phase
slip regime) occurs. In a paper by Mooji and co-workers, published in 2015, this
question of when the transition from an inductive to a capacitive response occurs,
is explored for nanowires as QPS junctions [Moo+15]. The transition is assumed
to be a non-dissipative one and to be only driven by the interplay between the
characteristic energies Es and EL.

This approach differs from the Chakravarty-Schmid-Bulgadaev (CSB) theory, which
assumes a dissipative environment and predicts a transition at a critical resistance
Rn = Rq = 6.45 kΩ. While it was reported that the CSB theory fits for some wires
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(e.g. in Ref [MOR07] for MoGe wires with Lw < 200 nm), it fails for others (e.g.
MoGe wires in Ref. [Bol+08] or NbTiN wires in Ref. [Mak+16]). These observations
fit with the considerations of Mooji and co-workers that the ratio of the energies is
decisive and not an upper bound for the normal state resistance.

In order to find a reasonable boundary for the transition from one regime to the
other, a suitable description for the link between the wire parameters and the phase
slip energy Es resp. the inductive energy EL must be found. Since for wires with
a high phase slip rate/amplitude, the kinetic inductance is typically very high, it
can be assumed that L = Lgeometric + Lkin ≈ Lkin [Moo+15]. Thus, for temperatures
close to T = 0, the inductive energy can be represented as:

EL =
Φ2

0
2L

=
Φ2

0kBTc

0.36 h̄Rn
= 17.4 kBTc

Rq

Rn
(2.75)

where we have used the expression for Lkin, derived in Sec. 2.7 (Eq. 2.36). Rq =

h/4e2 is the quantum resistance, kB the Boltzmann constant and Tc is the critical
temperature. To describe the phase slip energy Es, Mooji and co-workers were
following the expression from Zaikin and Golubev for the QPS rate in the short
wire limit and at temperatures close to T = 0 (discussed in details in Sec. 2.9.2):

Es = α

(
Lw

ξ

)2
kBTc

Rq

Rn
exp

(
−β

RqLw

ξRn

)
(2.76)

with the wire length Lw and the coherence length ξ; α and β are empirical constants
that are of the order of 1 [Moo+15]. Please note that Eq. 2.76 is just the phase slip
rate from Eq. 2.60 expressed as energy.

For Josephson junctions, the transition from superconducting to insulating behavior
happens at Ec/Ej ∼ 1 and not in a sharp manner. In the transition region, a phase
diffusion behavior is observed with a non-vanishing differential resistance, even
for smallest bias values. In the previously discussed washboard potential, this can
be understood by macroscopic quantum tunneling through the potential barrier
or by a thermally activated overcoming of the potential barrier, leading to phase
slips (see also Sec. 2.9.2). Which process is dominant in each case depends on the
respective energies Ej, Ec and kBT. Based on this knowledge, a sharp transition at a
certain value of Es/EL = α0 would not necessarily be expected for QPS junctions.
However, it can also be assumed that the crossover should be somewhere around
Es/EL ∼ 1 [Moo+15]. From Eq. 2.75 and Eq. 2.76 one already can see that two
driving parameters for the phase transition are the normal state resistance and the
length of the wire. Dividing both equations, one obtains:

Es

EL
= α

(
Lw

ξ

)2 0.18
π

exp
(
−β

RqLw

ξRn

)
= α0. (2.77)
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Figure 2.9: Phase diagram for MoGe nanowires: The two regimes, insulating and superconducting,
are associated with Es/EL � 1 and Es/EL � 1. Blue squares correspond to wires with non-vanishing
resistances below Tc, red triangles correspond to wires with clear superconducting behavior below Tc.
The solid black line follows Eq. 2.78. The diagram is reconstructed after Ref. [Moo+15]. The data are
from Bollinger et al. [Bol+08].

Thus, for the relation between wire resistance Rn and wire length Lw for a fixed
ratio between Es and EL one can write:

Rnξ

RqLw
=

Rξ

Rq
=

β

ln
(

α(Lw/ξ)2

17.4 α0

) (2.78)

with the resistance per coherence length Rξ = Rnξ/LW. To investigate whether
there is a constant ratio α0 for which the transition from the phase regime to the
charge (or phase slip) regime occurs Mooji and co-workers have used Eq. 2.78 to
probe if the experimental data, obtained in Ref. [Bol+08] for MoGe nanowires,
allow for a phase separation at a certain α0. Fig. 2.9 shows the resulting phase
diagram [MN06]. The blue squares correspond to wires which showed a strongly
increased or a non vanishing resistance below Tc (classified as insulating). The red
triangles represent wires with fully vanishing resistances below Tc (classified as
superconducting). For the separation line, Eq. 2.78 is used with α ≈ 0.2, β ≈ 0.11
and α0 ≈ 0.3.

The fact that the data can be clearly separated for a specific α0 confirms that the
ratio Es/EL determines the superconductor to insulator transition. Also the value
of α0 ≈ 0.3 fits the expected one of ∼ 1. However, similarly good results can be
obtained for other combinations of parameters [Moo+15]. This uncertainty comes
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from the indeterminacy of the empirical parameters α and β. In Fig. 2.9, samples
which did not show a clear Coulomb blockade but a non-vanishing resistance or a
pronounced zero bias anomaly (ZBA) below Tc, also fall into the insulating range.
Bollinger et al. attributed this behavior to a dynamical weak Coulomb blockade,
caused by coherent scattering [Naz99; BRB06].

This means that no precise statement can be made about a possible intermediate
regime, such as the phase diffusion regime for Josephson junctions. Nevertheless,
the data and the theory fit very well. In fact, using the same approach, it was shown
that the SIT transition of NbTiN nanowires can also be described with such a phase
diagram and similarly chosen parameters [Mak+16].

2.11 Superconducting quantum interference devices

2.11.1 The DC SQUID

The direct current SQUID is one of the most prominent superconducting quantum
circuits. It was already invented two years after the discovery of the Josephson
effect and essentially comprises a superconducting loop in which two Josephson
junctions are embedded (see Fig. 2.10). The working principle is based on phase
coherence and flux quantization. An externally applied magnetic flux allows for
controlling the phase differences at both junctions and, therefore, controlling the
maximum supercurrent across the SQUID. Using the first Josephson equation and
Kirchhoff’s law, the current can be expressed as:

Im = I1 + I2 = Ic sin(ϕ2 − ϕ1) + Ic sin(ϕ4 − ϕ3) (2.79)

= Ic sin(δ1) + Ic sin(δ2) (2.80)

I1,2 denote the supercurrent through each junction, δ1,2 are the phase differences
across the junctions. For simplicity it is now assumed that both junctions share the
same critical current Ic, and that the circuit is homogeneous. Using an addition
theorem, we find:

Im = 2Ic sin
(

δ1 + δ2

2

)
cos

(
δ2 − δ2

2

)
(2.81)

To find the gauge invariant relation between the phase differences and the magnetic
field enclosed in the loop one can integrate along the contour (see Fig. 2.10). From
the flux quantization, we know that

�
c∇ϕdl = 2πn. Rewriting the phase gradient
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Figure 2.10: Sketch of a direct current superconducting quantum interference device: The current I
enters on the left side and splits into two paths (I1, I2). The two Josephson junctions are marked with
red. The numbers 1 to 4 mark the different sections of the contour for the integration of the phase
gradient. Inside the loop, a magnetic flux is enclosed.

∇ϕ = (2π/Φ0)(µ0λ2
Lj + A) (j is the supercurrent density, A the vector potential

and λL the London penetration depth), one can find that (see e.g. Ref. [BK12]):

�
c
∇ϕdl = δ1 − δ2 +

2π

Φ0

�
c

Adl︸ ︷︷ ︸
(∗)

+
2πµ0λ2

L
Φ0

(� 4

1
jdl− 2π

Φ0

� 2

3
jdl

)
︸ ︷︷ ︸

(∗∗)

= 2πn (2.82)

where (*) defines the magnetic flux in the ring and is the crucial part for the flux
dependent modulation of Im (

�
Adl =


Bds). The external magnetic field will

also induce a circulating screening current Isc = (I1 − I2)/2, therefore, the total
flux from (*) is Φ∗ = Φex + Φi1 = SB + Lg Isc (S is the effective enclosed area of the
SQUID, Lg is the geometric inductance). The second part (**) gives the contribution
from the kinetic inductance of the loop (Φ∗∗ = Φi2 = Lk Isc). Consequently, the total
flux is given by Φt = Φex + LIsc, where L is the total inductance. Using Eq. 2.82,
the phase differences can be expressed as

δ2 − δ1 + 2πn =
2πΦt

Φ0
(2.83)

which now can be inserted into Eq. 2.79 to yield the current across the SQUID as a
function of the magnetic flux:

Im = 2Ic sin
(

πΦt

Φ0
+ δ1

)
cos

(
πΦt

Φ0
n
)

(2.84)
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Figure 2.11: (a) Simulated critical current as a function of the applied flux for different screening
parameters (βL = 0.01, 1, 5). It is assumed that both junctions share the same Ic. For large screening
parameters, the possible interference is suppressed. Adapted from Ref. [CB04] (b) Modulation of the
critical current as a function of the applied flux for different asymmetries (and βL � 1). The parameter
αIc determines the symmetry between the critical currents: Ic1 = Ic2(1− αIc )/(1 + αIc ).

Assuming that the flux Φt is fully dominated by the external flux and is constant
(which means screening effects can be neglected, Φt = Φex), Eq. 2.84 can be
maximized by finding the solution for ∂Im/∂δ1 = 0. The maximal critical current
of the SQUID therefore holds:

I∗m = 2Ic

∣∣∣∣cos
(

πΦex

Φ0

)∣∣∣∣ (2.85)

In this case the maximum possible modulation ranges from I∗m = 0 for Φex = nΦ0/2
(n ∈N) up to I∗m = 2Ic for Φex = nΦ0 (n ∈N0). For significant loop inductances,
this approximation is not valid anymore, and screening effects become important.
To distinguish between different regimes, the screening parameter βL may be
introduced. It essentially describes the ratio between the loop inductance and the
Josephson inductances of the two junctions:

βL =
2IcL
Φ0

(2.86)

For Eq. 2.85, it was assumed that βL � 1. In the opposite regime of βL � 1 the
phase of the order parameter will mainly drop over the loop inductance, and the
circulating current Isc has only a poor effect on the phase drops across the junctions.
Thus, the modulation with applied flux gets highly suppressed (by a factor 1/βL)
and only slightly modulates around 2Ic. Fig. 2.11 (a) shows the modulation of the
critical current with applied field for different βL parameters.
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So far, we have assumed that both junctions have the same critical current. In reality,
this is most likely not the case and has to be taken into consideration. Following
Ref. [Lik86], the general form for the critical current (low inductance limit βL � 1)
can be expressed as:

Im =
√

I2
c1 + I2

c2 + 2Ic1 Ic2 cos(Φex) (2.87)

For identical critical currents, we find the same modulation as before (2.85). How-
ever, if we now assume extremely different critical currents (e.g Ic2 � Ic1), Eq 2.87
can be approximated to

Im ≈ Ic1

(
1 +

Ic2

Ic1
cos(Φex)

)
, (2.88)

where the strength of the modulation is given by the ratio Ic2/Ic1 and the critical
current modulates just slightly around Ic1. Fig. 2.11 (b) shows how the modulation
of the critical current develops for different assumed asymmetries between Ic1 and
Ic2. We have seen that both, the symmetry and the ratio between loop inductance
and junction inductances, define the maximum possible modulation of Im.

2.11.2 The quantum phase slip interferometer

In the previous section, we have discussed the DC SQUID, probably the most
prominent example of a quantum interferometer. The principle of operation was
based on the phase shift of the wave function describing the Cooper pair con-
densate. In this section, the underlying idea and the most important properties
of a quantum phase slip interferometer will be presented. In the course of the
discussion, it will turn out that many of the considerations made for the SQUID
can be applied analogously. In the context of the present work, a central goal was
the realization and investigation of such a circuit.

For the QPS interferometer, the interference is caused by the Aharanov-Casher effect
(AC), describing the acquired phase shift for a particle with magnetic momentum
when traveling through the electric field of a charge [AC84]. The charge flux dual
to the tunneling of Cooper pairs through a Josephson junction is the tunneling of
flux quanta across a phase slip junction (see Sec. 2.10). Each phase slip is linked
with the tunneling of a flux quantum.

If we now imagine a charged island with charge q, around which coherent fluxons
move in different directions, they can accumulate a relative phase to each other
according to the AC effect. Depending on the phase factor, the resulting interference
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SQUIDQPS Interferometer

q

Figure 2.12: Illustration of a QPS interferometer and its dual counterpart, the SQUID for Josephson
junctions: At the SQUID, Cooper pairs flow around a magnetic flux, which manifests as field dependent
oscillations of the critical current. For the QPS interferometer, fluxons move around a charge, leading to
a charge dependent critical voltage. Note that also the respective structures correspond to the inverse of
each other. The drawing is made after Ref. [Gra+18] .

can be constructive or destructive. Combining this idea with the connection between
a phase slip and the tunneling of a fluxon, one arrives at the basic idea of a phase
slip interferometer. It should be noted at this point that in the following, instead
of phase slip rates, we speak of phase slip amplitudes. The reason for this is the
necessity of coherent phase slips for interference.

The simplest possible arrangement for such a device is to have two phase slip
junctions in series, separated by a small charge island. The two phase slip junctions
can be represented by a characteristic function with the phase slip amplitudes
V1,2 and the corresponding phase factors ϕ1,2: A1,2 = V1,2eiϕ1,2 . Thus, the effective
phase slip amplitude of the double junction system is given by Ae = A1 + A2. If
we now take into consideration that the phase slips are associated with fluxons,
tunneling across the wire, and include the Aharonov-Casher effect, we find that
the phase factor ϕ1,2 will depend on the charge on the island. In this spirit, the
QPS interferometer can be seen as dual to a DC SQUID for Josephson junctions,
where the encircled flux causes the interference between the Cooper pair wave
functions. Fig. 2.12 shows an illustrative comparison between a DC SQUID and a
QPS interferometer. The former can be seen as an implementation of the Aharonov-
Bohm effect and the second as an implementation of the dual Aharonov-Casher
effect [Gra+18]. Both effects are explained in Sec. 2.8.

To have a well-defined charge on the island, it must be isolated from the environ-
ment. For sufficiently large phase slip amplitudes, the phase coherence between
the ends of a wire can be destroyed, resulting in Coulomb blockades with asso-
ciated capacitances [MN06]. This case is given when the phase slip energy of the
wires is significantly larger than their inductive energy (Es � EL). In this case, the
induced charge on the island and thus also the interference of the phase slips can
be precisely controlled by means of a gate electrode.
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Figure 2.13: Circuit diagram of the phase slip interferometer, proposed in Ref. [HZ12]. Lk1,2 and Es1,2
are the kinetic inductance and phase slip energy of the wires. C0, Cg are the self capacitance of the
island and the gate capacitance. R1,2 are the high ohmic resistors for decoupling and damping.

In 2012, Zorin and Hongisto presented a circuit that should be the exact dual to that
of a DC SQUID for Josephson junctions but for QPS junctions, acting as a single
charge transistor [HZ12]. It is based on the proposed duality, discussed in Sec. 2.10.
To briefly repeat the main features: Instead of a periodic supercurrent I = Ic sin(ϕ),
depending on the phase difference ϕ between the two separated superconductors,
a QPS junction (for Es � EL) should have a periodic voltage VQPS = Vc sin(2πq/e),
which depends on the injected charge q and the phase slip energy (Vc = 2πEs/2e).
The dual to the Josephson inductance is a nonlinear, 2e periodic, kinetic capacitance
C−1

QPS = dVQPS/dq = (πVc/e) cos(πq/e), which is sensitive to the injected charge.

The proposed device essentially comprises two high ohmic resistors to decouple
the interferometer from its environment, two nanowires as QPS junctions, a wider
segment in between (serving as the charge island), and a capacitively coupled DC
gate. Fig. 2.13 shows a simplified circuit diagram of the device. Here, the resistors
are represented by R1,2, the kinetic inductances of the wires are Lk1,2, and the
phase slip amplitudes are represented by the diamond symbols. Cg, C0 are the
gate capacitance and self capacitance of the island. Using the relation between the
injected charge and the voltage on the QPS junction from the duality, Kirchhoff’s
equation for each branch can be expressed as:

V1,2 = Lk1,2q̈1,2 + R1,2q̇1,2 + Vc1,2 sin(2πq1,2/e) (2.89)

[HZ12]. The voltage across the device then is V = V1 + V2. Since it is assumed that
both wires have a Coulomb blockade, one can use the charge conservation relation
for the island (illustrated in Fig. 2.14) to express the injected charges q1,2 in terms
of the applied gate voltage:

q1 − q2 = −CgVg − (Cg + C0)(V1 + V2) = 0. (2.90)
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+q1 -q2 +q2-q1

Cg

Ck1Ck2

charge conservation

Qg

Figure 2.14: Illustration of the QPS interferometer: The wider section is isolated by the kinetic capaci-
tances of the nanowires. Consequently, charge conservation holds on the island. Qg is the polarization
charge from the gate, q1,2 are the injected charges on the wires. For Ck1,2 � Cg, both wires are strongly
coupled. The self capacitance of the island C0 is neglected. .

The distribution of the charges will strongly depend on the different capacitances.
The wire capacitances scale with e/Vc1,2 which means that in the limit Cg, C0 �
e/Vc1,2, the charges q1 and q2 will be fully controlled by the applied gate voltage
and Eq. 2.90 can be approximated to:

q1 − q2 = −CgVg. (2.91)

This condition is just the same as the low impedance limit for the DC SQUID.
If we compare Eq. 2.91 with Eq. 2.83 we can identify that the phase differences
are replaced by the charges and that the previously made approximation is just
the same as the neglecting of the screening current contribution to the total flux.
Instead of the Josephson inductances, which scale with 1/Ic, we now have the
wire capacitances scaling with 1/Vc. The dynamic contributions in Eq. 2.89 are
the equivalent to the shunting resistor and capacitance of the Josephson junctions
and are important to describe the current state. For now, we stick to the limit
Cg, C0 � e/Vc1,2 and the steady state.

To describe the common voltage of both wires V = Vc1 sin(2πq1/e)+Vc2 sin(2πq2/e),
Zorin and Hongisto followed the derivation from Ref. [Lik86] for the steady state
of the DC SQUID and analogously introduced an average charge Q to rewrite the
voltage as:

V = Vc(Qg) sin(πQ/e) (2.92)

with the gate induced charge Qg and the effective critical voltage:

Vc =
√

V2
c1 + V2

c2 + 2Vc1Vc2 cos(πQg/e). (2.93)
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Figure 2.15: (a) Threshold voltage of the circuits vs. induced charge for different asymmetries between
the phase slip amplitudes (Vc1,2) and a strong coupling between the nanowires. The symmetry parameter
is given by Vc1 = Vc2(1− αVc )/(1 + αVc ). (b) Gradient of the modulation. For small asymmetry and
close to Vmin

c , the modulation becomes very sensitive to small charge fluctuations in Qg.

From Eq. 2.92, we see that for the situation of strong coupling, both wires together
behave like a single wire with an average charge and a critical voltage that depends
on the gate induced charge. Eq. 2.93 is the dual to Eq. 2.87 for the SQUID, just with
exchanged variables Ic1,2 ↔ Vc1,2. Consequently, we find the same limits when
assuming a highly symmetrical or asymmetrical circuit. For the former case, when
Vc1 = Vc2, the average charge Q = q1,2 ±Qg/2 and the maximum modulation of
the circuit’s critical voltage is described by

Vc = 2Vc1
∣∣cos(πQg/e)

∣∣ . (2.94)

In the asymmetrical limit, one of the wires will fully dominate the critical voltage
and the modulation is only weak (e.g. Vc1 � Vc2 → Q ≈ q1). Thus, the maximum
modulation of the blockade is:

Vc = Vc1
[
1 + Vc2/Vc1 cos(πQg/e)

]
. (2.95)

The parameter a = Vc2/Vc1 describes the strength of the modulation but might not
be a good measure to describe the homogeneity of the circuit, as will be discussed
later. From Eq. 2.94, we see that for the strong coupling limit and equal phase
slip amplitudes on both wires, it might be possible to suppress the critical voltage
fully. If we assume that the phase slip amplitudes from both sides neutralize each
other completely by destructive interference, this is obvious. However, even at a
rest net amplitude, the blockade could vanish, since the exact point at which the
transition from blockade to no blockade takes place will depend on the cross over
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from the regime Es � EL to the regime Es � EL [Vos+21]. Here, Es and EL are the
common phase slip energy and inductive energy of both wires. Fig. 2.15 (a) shows
the modulation of the threshold voltage for different asymmetries. For devices
with almost equal amplitudes on both wires, the threshold voltage modulation be-
comes extremely sensitive to small charge fluctuations around maximal destructive
interference (see Fig. 2.15 (b)).

Since the double wire system behaves like a single wire for strong coupling,
correspondingly the dynamics can also be represented by the differential equation
for a single wire with resistance R = R1 + R2 and total inductance L = Lk1 + Lk2
[HZ12]. Using Eq. 2.92, the voltage is [MN06; HZ12]:

V = LQ̈ + RQ̇ + Vc(Qg) sin(πQ/e) (2.96)

In analogy to the resistively shunted junction model for Josephson junctions the
dual McCumber parameter βQPS

c = 2π2(Es(Qg)/EL)(Rq/R)2 = ωp
L
R with the

plasma frequency ωp =
√

2Es(Qg)EL can be introduced to describe the damping
of the system [MN06]. These equations are just the same as the ones for a single
wire (see Sec. 2.10), but now with a gate dependent phase slip energy Es(Qg).

For some applications (e.g. the synchronization of charge oscillations), a sufficiently
large damping might be necessary. However, an increase of the resistances can also
cause overheating of the circuit [EN21]. This is particularly problematic for small
phase slip amplitudes/blockades as will be discussed in Sec. 2.12.2.

So far, we have considered only the case of strongly coupled wires (Eq. 2.92). To
distinguish between the different coupling regimes, it makes sense to introduce
a parameter that is the analogous counterpart of the screening parameter βL
in SQUIDs, describing the ratio between the island capacitance and the kinetic
capacitances of the wires [EN21]:

βs =
Cisl
Ckin

=
π(Cg + C0)

2e
(Vc1 + Vc2). (2.97)

For the kinetic capacitance, the mean value of both wires is used. For sufficiently
small islands, the self capacitance C0 can be neglected. The strong coupling is
reached for βs � 1, the weak coupling for βs � 1 and the intermediate regime
regime for βs ≈ 1.

In the weak coupling regime (βs � 1), both wires effectively get decoupled by the
large capacitance, and the possible interference gets limited. The maximal threshold
voltage in this limit can be expressed as:

Vc =

(
1−

q̄g

2βs

)
(Vc1 + Vc2) (2.98)
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with q̄g = (πCgVc2/e− πCgVg/e)mod2π [EN21]. In this regime, the possible mod-
ulation is only weak even when assuming the same phase slip amplitudes for both
wires (Vc1 = Vc2). From Eq. 2.98 we find that with increasing coupling parameters,
the modulation will be more and more suppressed (roughly with 1/βs), just as we
have seen at the SQUID for large screening. While for β ≈ 3, the minimal voltage
Vmin

c is still ≈ 0.5(2Vc1), for β ≈ 50 the modulation is below ten percent of the
maximum threshold voltage. For the intermediate regime βs ≈ 1 and Vc1 = Vc2 the
minimal blockade is Vmin

c ≈ 0.2(2Vc1).

Experimentally and for possible applications, the most interesting regime is the
one of strong coupling. For moderate critical voltages Vc1,2 < 1 mV this can be
easily obtained by an island capacitance Cg + C0 ≈ 10 aF. To prevent a strong effect
from ground and gate noise, it can be advantageous to keep the island as small as
possible and the coupling to the gate not too strong.

Finally, we briefly want to discuss the effect of finite temperatures. For T > 0
the two relevant energies are the thermal energy kBT and the Coulomb energy
e(Vc1 + Vc2). Thus, at least when the thermal energy approaches the Coulomb
energy, the transition from blockade to the conductive state will become more
smooth, or the blockade will even fully vanish. In a recent study by Erdmanis
and Nazarov, the gradual temperature effects on the shape of the I −V curves of
a QPS interferometer were investigated within a semiclassical model [EN21]. In
their model, a stochastic term is introduced to account for the white noise coming
from the high ohmic resistors. Fig. 2.16 shows simulated I −V characteristics for
a device with βs = 0.1 (a) and βs = 50 (b) [EN21]. For increasing temperatures,
the blockade smears out, and the transition to the current state appears at smaller
voltages. An intuitive but also interesting finding is that when comparing the
smoothing of strongly and weakly coupled wires, caused by the temperature, the
thermal energy needed is e(Vc1 + Vc2) in the case of strongly coupled wires while it
is only eVc1,2 for weakly coupled ones. This is easily understood because for strong
coupling, one can simply consider the system as one wire with a larger blockade
to which the thermal energy compares.

Another interesting result is the limitation towards very small blockades for too
large resistors. For Vc < 0.1 mV, the equivalent temperature is already below 1 K,
and therefore, the impact of finite temperature and accompanying voltage noise
from the large resistors can become very crucial in the experiment. For example,
let us assume a strongly coupled system with a common threshold voltage of
≈ 50 µV (Vc1 = Vc2, eVc/kB ≈ 600 mK) at zero gate voltage and serial resistors
with R1 = R2 ≈ 0.5 MΩ (like in Ref. [HZ12]) and compare the resulting values
with the simulations, shown in Fig. 2.16. Even at T ≈ 5 mK (equals T′ = 0.2 for
this example), a measured Vc would be significantly reduced, and the transition to
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Figure 2.16: Simulated effect of finite temperatures on the I−V characteristics of a device with strongly
(a) and weakly (b) coupled wires. The gate charge is set to zero (Vmax

c ) and it is assumed that both wires
share the same critical voltage. The dimensionless temperature T′ is defined as T′ = 8πkBT/e(Vc1 +Vc2).
The current is measured in units of ω0 = π(Vc1 + Vc2)/e(R1 + R2). For the same set of parameters, the
strongly coupled system is less sensitive against voltage noise coming from the serial resistors. The
simulations are taken from Ref. [EN21].

the current state would be smooth (for the present example, a value of 1 on the
current axis would equal 50 pA). At T ≈ 45 mK (T′ = 2), the blockade has fully
vanished. Consequently, too large resistors could be problematic when aiming for
very small blockades/phase slip amplitudes. At this point, it should be noted that
the question up to which temperature one can still expect coherent phase slips
and how exactly the temperature dependence of the amplitude looks like must be
considered independently of the considerations made before.
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Figure 2.17: Simplified circuit representation of the interferometer: ZL, ZG are the lead and gate
impedances. Lk1,2 and Es1,2 represent the kinetic inductances and the phase slip energies of the
nanowires. C0 and Cg are the self-capacitance of the island and the gate capacitance.

2.12 Design considerations for a quantum phase
slip interferometer

2.12.1 Circuit schematic

The key components for the interferometer design are two long (LW � coher-
ence length) granular aluminum nanowires which serve as QPS junctions and
are strongly coupled by a small charge island. To decouple the device from its
environment we use two high impedance on chip leads, made from the same layer
of granular aluminum as the rest of the circuit (typically ZL ≈ 8 kΩ). The decision
not to use high resistors in the supply lines (as used for example in Refs. [APF21]
and [HZ12]) leads, on the one hand, to very low damping in the system, but on
the other hand, it prevents against thermal noise from the resistors and against
overheating. This is important for the limit of small blockades and, therefore, for the
investigation of the phase transition from insulating behavior to superconducting
behavior by the interference of QPS, which is an important objective of this work.

Neglecting the parasitic capacitances and assuming perfect symmetry, except for
the wires, the simplified circuit can be represented as shown in Fig. 2.17. Each wire
(i = 1, 2) is described by its phase slip energy Esi and its kinetic inductance Lki. C0
and Cg are the self capacitance of the charge island and the gate capacitance. The
arrows indicate the possible reduction of the phase slip amplitudes and inductances
by using IEM to reduce the common normal state resistance of both wires [Vos+21].
Following Ref. [Moo+15], the characteristic phase slip energy Esi of each wires is
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Figure 2.18: (a) Constructive interference: The induced charge equals n times 2 e (n ∈ N0). Vg is the
applied gate voltage, Vp the requiered voltage to induce a charge of 2 e and Θ the relative phase shift
between the phse slips. (b) Destructive interference: The induced charge equals n times e (n ∈N).

given by Eq. 2.76 and the inductance of the nanowire is fully dominated by the
kinetic inductance and therefore given by Eq. 2.36.

Fig. 2.18 illustrates the gate controlled phase shift between both phase slip ampli-
tudes Ai = Vcieiqiπ/e. For Qg = 2ne (n ∈ N0), Vc becomes maximal, which corre-
sponds to zero phase shift and therefore constructive interference (Fig. 2.18 (a)).
The other extreme of maximal destructive interference is reached when Qg = ne
(n ∈N). Here, the relative phase shift between the phase slip amplitudes Ai is π,
leading to a reduced effective phase slip energy (Fig. 2.18 (b)).

For the following considerations we use the results of single wire experiments,
presented in Sec. 6.1.7. For suitable parameters, the interferometer can be used to
probe the insulating to metallic to superconducting transitions.

2.12.2 Parameters

Now we will discuss some important design parameters that are crucial for the be-
havior of the intereferometer and its adjustability. The most important components
are the nanowires. On the one hand, they define the possible phase slip amplitudes,
and on the other hand, the available statistics for the Rn reduction with the IEM
method (see Sec. 5.2). To get a feel for the influence of the wire length, we first as-
sume a homogeneous circuit and strongly coupled wires (βs � 1). Thus, both wires
have the same phase slip amplitude and the same kinetic inductance. For each wire,
the phase slip energy is given by Eq. 2.76. It follows, that the common threshold
voltage of two wires in series is Vc1 +Vc2 = 2π/eEs1(Rn1) with Rn1 = Rn2. Fig. 2.19
shows the common threshold voltage as a function of the common normal state
resistance for three different wire lengths. Fig. 2.19 (a) shows a larger resistance
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Figure 2.19: (a) Threshold voltage vs. normal state resistance for different wire lengths. Rn = Rn1 + Rn2

is the common normal state resistance of both wires. For the calculation, it is assumed that both wires
have the same resistance Rn1 = Rn2. The accessible voltage range strongly depends on the wire length.
Also the slopes for certain values of the threshold voltage are rather different. (b) Zoom in for small
threshold voltages. The dashed green line marks a constant ratio between phase slip energy and
inductive energy Es/EL = α0 = 0.02. For the various wire lengths, the same ratio is reached at different
voltages/resistances.

range, while (b) is a zoom-in for small values. By comparing the different curves,
we see that the choice of the wire length sets an upper but also a lower limit for
the accessible blockades. The lower limit is defined by the transition between the
different energetic regimes (from Es � EL to Es � EL). The dashed green line
in the right plot represents a constant ratio Es/EL ≈ 0.02. It is that ratio, where
we see the transition from insulating to metallic behavior for single wires. The
slopes of the different curves are important for the adjustability through gradual
resistance changes. In reality, of course, it can be assumed that both nanowires
do not have exactly the same resistance. We, therefore, take a look at the effect of
small inhomogeneities. The right panel of Fig. 2.20 shows the modulation strength
(a = Es1/Es2) as a function of the common normal state resistance Rn for different
wire lengths, assuming inhomogeneities of ten and twenty percent. For larger
resistances, the sensitivity to resistance differences is not so strong, but it highly
increases when going to smaller Rn (resp. Vc) values. Shortly before leaving the
phase slip regime at Es/EL ≈ α0, a difference of 10 percent in Rni can reduce a by a
factor of ≈ 0.5. Apart from the energetic operating point, the sensitivity for certain
Rn values also depends on the wire length. The crossings with the green curves
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Figure 2.20: (a) Modulation strength a = Es1/Es2 as a function of the common normal state resistance
Rn. Here, a strong coupling βs � 1 and slightly different normal state resistances for both wires are
assumed (Rn1/Rn2 = 0.9 (solid lines) and Rn1/Rn2 = 0.8 for the dashed lines). The green lines show a
constant ratio for Es/EL. (b) Coupling parameter βs as a function of the maximum threshold voltage.
Here, the same resistance for both wires is assumed. The self capacitance C0 of the island is neglected.
The different curves correspond to different wire lengths and different gate capacitances (2 aF, 4.5 aF
and 9 aF).

indicate the resistances at which the transition ratio Es/EL ≈ 0.02 is reached. Here,
we also find a significant change for different degrees of homogeneity.

Finally, we take a closer look at the coupling of the wires. For strong interference, the
device should operate in the strong coupling regime (βs � 1). Since the coupling
parameter describes the ratio between the island capacitances (C0, Cg) and the
kinetic capacitances Cki of the wires (scale with 1/Vci), a change in resistance will
also affect the coupling. The right panel in Fig. 2.20 shows βs as a function of the
common threshold voltage for different gate capacitances. For the calculation it is
assumed that C0 � Cg. Over the possible tuning range with the IEM method, from
millivolts to microvolts, βs can decrease by more than one order of magnitude.
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Finding a suitable material for the investigation of quantum phase slip effects in
superconducting nanowires is not trivial and, indeed, turned out to be a rather
challenging task. In the phase slip model discussed in the previous section, it
was shown that the quantum phase slip (QPS) amplitude highly depends on
the material parameters (e.g. coherence length or normal state resistance) and
on the wire geometry. Therefore, apart from finding a suitable material, also the
fabrication process is very important as the required degrees of film homogeneity,
reproducibility and lithography resolution are extremely high. This becomes even
more crucial when dealing with systems in which more QPS junctions than one are
involved. To address these important topics, the choice of material and the utilized
fabrication techniques will be discussed in this chapter.

An important outcome of the quantum phase slip model is the exponential depen-
dence of the phase slip rate on the normal state resistance of the wire. Hence, the
material of choice should have a high sheet resistance R� in order to gain a substan-
tial phase slip energy Es which translates into the phase slip rate. Consequently,
high kinetic inductance materials, such as niobium nitride (NbN), molybdenum
germanium (MoGe) or indium oxide (InOx) turned out to be promising candidates
for QPS experiments [Web+13; Ast+12; Gra+18; BLT00; Aru+12]. A specialty of
these highly disordered superconductors is that they comprise two components
and reveal a superconductor to insulator phase transition when going from low to
highly resistive films. The specific properties of a film are extremely dependent
on parameters like the ratio of compounds or the growth conditions. On the one
hand, this allows one to vary the film parameters over a wide range, simply by
adjusting the fabrication parameters (e.g. the partial pressure of the process gases),
and therefore to fabricate films with sheet resistances up to a few kilo-Ohms, which
still become superconducting below Tc. On the other hand the sensitivity of R� to
fabrication parameters leads to unwanted effects such as a large resistance spread
for different fabrication runs, pronounced R� drifts in time (aging effects) and
strong fluctuations of R� for single films. Since the requirements to reach the
phase slip regime (Es � EL) are that the diameters of the wire should be of the
order of the coherence length ξ and that the wire length Lw is much grater than ξ,
these drawbacks become even more crucial. Thus, a precise control of the phase
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slip energy is rather difficult and therefore was a limiting factor in the systematic
exploration of phase slip phenomena in nanowires so far.

A possible strategy to get around these limitations to some extent, is by reshaping
a single wire multiple times in order to change its phase slip rate. Prominent
approaches are ion beam milling or classical electromigration [Zgi+08; Bau+16].
An ion beam milling application mainly reduces the wire thickness by physical
sputtering. The major drawbacks of this approach are the need for sufficient
protection for the surrounding structures during milling, and the fact that it can
not be easily performed in-situ at low temperatures. However, it was demonstrated
that it allows to significantly increase the phase slip rate for single devices stepwise
[Leh+12]. In comparison to milling, the second example of controlled classical
electromigration comes with the advantage that it can be performed in-situ at
cryogenic temperatures. The idea behind this method is to treat a wire with a
relatively high current (few mA) in order to create a narrow spot caused by the
current ablation of material. As the current density in this spot increases extremely
fast when reducing its dimensions, a fast feedback loop is required [Bau+16].
Therefore the controllability is rather low, and the exact shape of the narrow spot is
undefined. Overall, both techniques allow to increase the phase slip rate of a wire
or small segment in a more or less controlled manner, but due to the reshaping,
effectively a new wire or, in case of electromigration, a new weak link is formed.
Therefore these approaches are limited when investigating the dependency of
phase slips on intrinsic parameters like coherence length or the specific resistance
σ. To circumvent these restrictions we developed a new method for the modification
of the intrinsic structure of granular aluminum nanowires, presented in chapter 5.

3.1 Granular aluminum

The superconducting properties of granular aluminum (AlOx) films are already a
subject of research since the 1960s. In an early work by B. Abels and co-workers, it
was found that the critical temperature of many superconductors, including AlOx,
can be increased by reducing the crystallite size [ACC66]. Practically, this was done
by adding small amounts of oxygen to the chamber during the evaporation of
various metals. By comparing electron diffraction patterns of pure and oxidized
samples, a strong reduction of the average crystallite size was observed. Later,
the relation between preparation conditions and superconducting properties of
AlOx thin films was studied in detail [CA68]. Surprisingly, it was found that
Tc can reach values up to ≈ 3.7 K for highly oxidized films with grain sizes
below 4 nm and high normal state resistivities (compared to ≈ 1.2 K for pure
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aluminum samples). However, a detailed understanding of this behavior and how
it is related to the intrinsic structure of the films was missing so far. This changed
with the experimental and theoretical work of G. Deutscher and co-workers in 1973
[Deu+73]. In their experimental studies, they observed a dome-like dependency
between Tc and the normal state resistivity ρ. For highly resistive films, also a
broadening of the superconducting transition together with the decrease in Tc was
observed. Instead of simply assuming a homogeneous material, they introduced a
model, where the inner structure is considered as a collection of weakly coupled
grains. With an increased oxygen portion, the insulating barriers between the grains
grow, leading to more and more decoupled grains. Following this approach, it is
reasonable to describe the inter-grain matrix of such films at very low temperatures,
where the aluminum is in the superconducting state, as a random network of
Josephson weak links. The charge transport between the grains and thus the
normal-state resistance are therefore strongly dependent on the thickness and
distribution of the insulating barriers. Due to the nonlinear Josephson inductances
of the coupled grains, the transport properties of granular aluminum films are
inherently nonlinear. For larger structures with a large number of parallel grains,
this non-linearity gets washed out and therefore is only visible at large electrical
currents.

The AlOx films studied in this work were prepared by reactive pulsed magnetron
sputter deposition at room temperature (technical details are given in section 3.2).
From transmission electron microscopy, the grain size for such films was deter-
mined to be between 3 nm and 4 nm, see Fig. 3.1 (a). The thicknesses of the films
were ≈ 20 nm and typical values for the sheet resistance were several kilo-Ohms.
Reported transition temperatures for such parameters are between 1.4 K and 2 K
[Rot+16]. This stands in good agreement with a Tc of about 1.8 K observed in
our experiments. The relatively high Tc comes with the advantage that the de-
vices can be easily operated far below the transition to the superconducting state
and therefore helps to avoid thermally activated phase slips and quasi-particle
poisoning.

Due to the high sheet resistance of a few kilo-Ohms, the kinetic inductance Lk of a
nanowire made of such a film may exceed the geometric inductance by orders of
magnitude. Using Eq. 2.36 from Sec. 2.7, one finds typical values for the kinetic
inductance per square of a few nH. The high kinetic inductance in combination with
low intrinsic microwave losses [Rot+16; Grü+18], make granular aluminum thin
films a versatile material for high impedance superconducting quantum circuits,
such as kinetic inductance detectors [Val+19; Mal+18] or qubits [Sch+20; Grü+19].
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Figure 3.1: (a) Transmission electron microscope picture of a ∼ 20 nm thick granular aluminum film
with R� ∼ 2 kΩ. The film consists of pure, crystalline aluminum grains (dashed oval in the inset), which
are separated by thin oxide barriers (for more details see Ref. [Rot+16]). (b) Critical field Hc2 vs. the
reduced temperature 1− (T/Tc)

2. X1, X3 and X4 denote three 1 µm wide AlOx wires. The samples are
made from films with different sheet resistances. Sample X1 has a sheet resistance of RX1

� = 2.0 kΩ, X3
of RX3

� = 5.1 kΩ and X4 of RX4
� = 4.5 kΩ. The critical field Hc2 is approximately the same for all samples

at a certain temperature. Adopted from Ref. [Vos+21].

Coherence length

To determine the coherence length of the films used, we have measured the critical
field Hc2(T) for three 1 µm wide AlOx stripes with sheet resistances ranging from
2.0 kΩ to 5.1 kΩ (see Fig. 3.1 (b)). We found a constant Hc2(T = 0) = (4.5 ±
0.2) T/µ0, which is consistent with Ref. [DES80]. For a type 2 superconductor like
the granular aluminum thin films studied here, the relation between Hc2(T) and
the Ginzburg Landau coherence length ξGL is given by:

Hc2(T) = Φ0/(2πξGL(T)2) (3.1)

[Tin04]. Therefore ξGL(T = 0) is directly related to Hc2(T = 0). With the universal
relation: Hc2(0) = 0.69 Tc (dHc2/dT)T=Tc

for a one-gap superconductor in the dirty
limit (Werthammer at al., [WHH66]), Hc2(0) can be extracted from the slope of
Hc2(T) at T = Tc. The critical temperatures were approximately 2 K for all samples.
From the linear fits to the Hc2(T) measurements (see Fig. 3.1 (b)), together with
the measured Tc values, we receive a coherence length ξ = 8± 0.4 nm. This result
is in good accordance with the 10 nm value quoted in Refs. [Bac+15; Sóñ+19].
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3.2 Film deposition

3.2 Film deposition

The granular aluminum films studied in this work were deposited using reactive
magnetron sputtering. In essence, pure aluminum is sputtered in a slight oxygen
atmosphere, and the amount of incorporated oxide can be controlled by the oxygen
partial pressure [Rot+16]. Compared to a simple thermal evaporation [Kun+87;
CA68; Deu+80], this method comes with the advantage that the aluminum target
can be cooled during evaporation, preventing it from deep contamination with
oxygen. As tool, an in-house made deposition machine was used. It comprises
two chambers, the load lock and the main chamber, which are separated by a gate
valve. Therefore it allows to change a sample without breaking the vacuum of the
main chamber. Apart from the sputter gun, the main chamber features a quartz
oscillator to measure the evaporation rate, a shutter to protect the sample during
conditioning (pre-sputtering of ∼ 2 min), and an electrode for plasma cleaning of
the substrate surface (see Ref. [Vos17]). The pre-sputtering is performed not only
for the conditioning of the chamber bot also to remove the oxide layer that builds
on the target surface after a previous sputter run. As sputter gas, we used argon.
The sputtering process itself works as follows: A high voltage (of about 400 V) is
applied between the target cathode (pure aluminum) and the ring anode of the
sputter gun. In combination with the argon atmosphere in the chamber, this leads
to the ignition of a plasma between anode and cathode (∼ 170 W). Due to the
electric field, ionized argon atoms are accelerated towards the aluminum target
while electrons move to the anode. To increase the ionization probability for the
argon atoms, permanent magnets are placed circularly underneath the aluminum
target to force the electrons onto cycloid trajectories by a magnetic field. When the
accelerated atoms hit the target surface, clusters of aluminum atoms are ejected by
the transferred momentum. When these aluminum atoms are on their way to the
substrate and condensate on its surface, oxygen from the chamber atmosphere is
implemented into the growing film.

As explained in section 3.1, the properties of granular aluminum films are very
sensitive to small variations in deposition parameters and the amount of imple-
mented oxygen. Fig. 3.2 (a) shows the dependence of the sheet resistance on the
argon partial pressure. By increasing the amount of argon in the atmosphere, the
plasma density increases, resulting in a decreased sputter rate. Thus, more oxygen
can be implemented, which leads to increased R�.

To enhance the controllability of the amount of oxygen in the chamber, an ar-
gon/oxygen mixture with a ratio of 9/1 was used and handled with a separate
mass flow controller. The dilution of the oxygen with argon shifts the flow of the
gas to higher values for the same amount of oxygen in the chamber. Additionally,
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Figure 3.2: (a) Sheet resistance vs. argon partial pressure (from [Rot+16]). Instead of the argon flow,
we varied the oxygen partial pressure. (b) Examples for the in-situ measurement of the film resistance
during deposition (adopted from [Wil+22]). The monitoring allows for adjustment of the oxygen partial
pressure in order to adjust the film sheet resistance in-situ.

the films were grown at low sputter rates (∼ 0.02 nm/s) and the sheet resistance
was measured in-situ, which allowed one to adjust the film sheet resistance by
tuning the gas flow (see Fig. 3.2 (b)). For such monitoring, the 20 mm× 20 mm
sapphire substrates were equipped with wedge-shaped silver stripes beforehand
(for more details see Refs. [Wil+22; Sch21]).

3.3 Lithography process

For the experiments conducted in the framework of this thesis, we had several
requirements for the fabrication processes. In order to study quantum phase slip
effects in granular aluminum nanowires, the achievable resolution should be of
the order of the coherence length to reach sufficiently high phase slip energies Es.
As discussed in section 3.1, the coherence length for the films we used is ≈ 8 nm.
Therefore, the needed resolution is a few ten nanometers. Using granular aluminum
as base material, it is also important that the process temperatures should be below
200◦C in order to avoid unwanted changes in the film sheet resistance [Rot+16].
With respect to transport measurements, another requirement is to have low ohmic
contacts with the structures. Thus, no dielectrics (like e.g. resist) that can cause
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3.3 Lithography process

problems for bonding or lead to high ohmic contacts should remain on the circuits
after fabrication.

To meet these requirements, we used two in-house developed electron beam based
fabrication processes. For both approaches, we first grow the granular aluminum
layer on top of a 20 mm× 20 mm (≈ 400 µm thick) sapphire substrate by reactive
magnetron sputtering (as described in detail in Sec. 3.2). In both cases, Hydrogen
silsesquioxane (HSQ) is used as negative e-beam resist, and the structures are
transferred using anisotropic dry etch processes. The use of HSQ has the advantages
that it allows for a high resolution and that it is very robust. After e-beam exposure,
it forms a hard and glassy SiO2 layer, which serves as a hard mask during the
etching processes. Its stability, indeed, is also its main disadvantage, as the resist can
not be removed by an organic solvent after e-beam exposure. A chemical remover
would also damage the underlying structures. Therefore different strategies are
needed. A possible approach is to use a double layer stack containing a sacrificial
layer to lift the HSQ after etching. For stacks made from poly-methyl-methacrylate
(PMMA) and HSQ it has already been successfully demonstrated that this method
achieves resolutions below 20 nm [Rom+13; MT11]. The first process used for
fabricating the samples followed this approach. To increase the reliability and
yield, a second process was established, which uses, instead of a sacrificial resist
layer, a thin metal layer for protection and as an etch stop [Sch21]. Both processes
are explained below. Details about the process parameters can be found in the
appendix A.

First process (Fig. 3.3 (a)):

Before the sputter deposition of the metal film (details in Sec. 3.2), the 20 mm×
20mm saphire substrates were cleaned with piranha solution. In a next step an
about 30 nm thick layer of PMMA is spin coated on top of the granular aluminum
film (bake-out temperature ≈ 160 C). To prevent intermixing between the HSQ and
the PMMA, a ∼ 3 nm thick layer of oxidized aluminum is added by thermal evapo-
ration. Then, the about 50 nm thick layer of HSQ is spun on (bake-out temperature
≈ 200 C). For electron beam exposure, a 50 keV JEOL JBX-5500ZD machine from
the Nanostructure Service Laboratory at KIT was used. The next step is to develop
the HSQ, using MIF 726. In this step, also the thin aluminum oxide protection
layer is removed by the TMAH in the developer, except for the areas which are
protected by the exposed HSQ. To remove the PMMA everywhere besides the
written structures, an argon/oxygen (15 sccm/15 sccm) based dry etch process is
carried out (using an inductively coupled plasma etching tool Oxford ICP180).
The great etch selectivity between the HSQ and the PMMA ensures that in this
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step, mainly the PMMA is removed. This process is followed by an argon/chlorine
(12 sccm/12 sccm) process in which the imprint of the imaging mask is transferred
into the granular aluminum layer (etch rate ≈ 0.3 nm/s). During this process, the
PMMA layer experiences quite some stress which can reduce the yield (for details,
see [Sch21]). In the last step, the HSQ is lifted by removing the PMMA with NEP.

Second process (Fig. 3.3b):

For the second process, a different strategy is used to remove the HSQ after defining
the structures. In essence, the idea is to etch the HSQ away once the structuring is
completed. Instead of PMMA and a thin protection layer of oxidized aluminum,
in this process, only a thin (∼3 nm) layer of high ohmic niobium is evaporated
on top of the granular aluminum film. The HSQ is then directly spun onto the
niobium layer (bake-out temperature ≈ 200 C). After e-beam exposure, the resist is
developed using MIF 726. Here, the niobium layer protects the granular aluminum
film against the TMAH in the developer. The structure is then directly transferred
by an argon/chlorine (12 sccm/12 sccm) dry etch process (the same as in the first
process). Finally, the remaining HSQ and the niobium layer are removed using a
CF4 plasma (used device: Sentech SI 220 Plasma Etcher). Oxidized aluminum has
a high resistance towards fluorine and therefore is only barely affected by this last
step (for more details about this process, see Ref. [Sch21]).
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Figure 3.3: Illustration of the electron beam based fabrication processes, used to fabricate the nanowire
circuits. (a) Three-layer stack approach: First, the granular aluminum layer is deposited by sputter
deposition. Next, layers of PMMA, pure aluminum and HSQ are added. After e-beam exposure, the
HSQ is developed using MIF 726. In this step, also the Al layer is removed by the TMAH. In a first
etch step, the uncovered PMMA is etched away using an Ar/O2 based dry etch process. To transfer the
structures into the AlOX film, an Ar/Cl based process is used. Finally, the remaining stack on top of
the structures is removed using an organic solvent (like NEP) (b) Double layer stack approach: After
the deposition of the metal film, a thin layer of niobium is added by thermal evaporation (serves as
protective layer for the granular aluminum during the development of the HSQ with TMAH developer).
Then, a layer of HSQ is applied and developed after e-beam exposure. In the next step, the structure is
transferred into the Ar/O2 film using an Ar/Cl process. The remaining HSQ and niobium layer is then
removed using a fluorine plasma.
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4 Experimental methods

This chapter first gives an overview of the setups and measurement methods used.
Then, some general considerations about the design for the various experiments
and an overview of the chip layouts are presented. Essentially, the experiments
carried out within the framework of this thesis can be subdivided as follows. First,
single wire experiments were performed to investigate the relationship between the
transport properties of granular aluminum nanowires and quantum phase slips. In
particular, gradual resistance effects were studied. In a further step, the influence
of temperature changes on wires with a pronounced phase slip rate was studied.
The knowledge gained in these single wire experiments was then used to build
a quantum phase slip interferometer. The experimental results will be explained
in detail in chapter 6. However, in the course of the following explanations, some
more technical details for the various experiments will be presented.

4.1 Cryogenic setup

For the investigation of quantum phase slips, it is important to work at temperatures
far below the critical temperature. This is especially crucial when the characteristic
energies (Es and EL) are rather small and become comparable to the thermal
energy. For example, a Coulomb blockade of 20 µV corresponds to a temperature
of ∼ 200 mK only. To account for these circumstances, special care was taken for
the filtering and the cryogenic setup. In the following, the cryogenic setup, the
measurement schemes, and the sample boxes used will be presented.

To reach low temperatures, we employed a commercial BlueForce Cryogenics
BF-LD-250 dilution refrigerator, allowing for base temperatures below 20 mK. A
schematic illustration of the basic operation principle is shown in Fig. 4.1. For
pre-cooling, a two-stage pulse cooler is used. The operation principle can be seen
as inverse to the Stirling engine. Inside a tube, heat exchangers and a regenerator
(gas permeable material with a high heat capacity and large surface) are placed.
With an external compressor, 4He is periodically moved forward and backward.
The cooling power is generated from the periodic expansion and compression of
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the gas. During the expansion, the gas passes through the regenerator and absorbs
heat. To transfer the heat, a heat exchanger is placed next to the regenerator. An
important feature of the pulse tube is that it does not have any moving components
at the cold part. Therefore, it introduces only very little vibrations to the rest of
the cryostat. The achievable temperature limit for this pre-cooling unit is ∼ 4 K.
The cooling mechanism of the actual cryostat is based on the 3He/4He mixture
phase transition and allows to reach temperatures below 20 mK. A sketch of the
closed cooling cycle is shown in Fig. 4.1 (clockwise circulation). After pre-cooling,
the mixture flows through the Joule-Thomson valve, where it is cooled due to
isenthalpic expansion. Below ≈ 0.8 K, the condensed mixture then separates into
two phases: A 3He rich phase and a 3He poor phase. For lowest temperatures,
the 3He rich, concentrated phase almost exclusively consists of 3He, while in the
3He poor, diluted phase, only a share of about 6.5 percent of 3He remains. The
difference in density between the rich and the poor phase leads to a horizontal
separation of both phases. On the other side of the cycle, a reservoir pot is placed
at the still stage (∼ 700 mK) and connected via a tube with the dilution phase in the
mixing chamber. In the still chamber, the temperature is increased by heating, and
the pressure is lowered by pumping. Due to its lower vapor pressure compared
to 4He, mainly 3He is vaporized. The outflow of 3He from the diluted phase is
compensated by 3He diffusion from the rich phase into the mixed phase. The
required mixing enthalpy is extracted from the environment as heat.

For the temperature sweeps, we used an in-house made temperature stage which is
mounted to the base plate of the cryostat (see right panel of Fig. 4.2). To thermally
decouple the stage, the sample plate is connected via hole tubes made from stainless
steel with the base plate. To enhance the cooling power slightly, the tubes are
covered with copper band. The thermometer is placed right next to the sample.
With this configuration, it is possible to increase the sample temperature above
∼ 3 K, while the base temperature only goes up to ≈ 80 mK.

DC setup

A crucial part of transport measurements is careful filtering of the DC lines. To
ensure a low noise impact on the samples, several noise-reducing devices are
installed for all DC leads, going down from room temperature to the sample
at ≈ 25 mK. An illustrative drawing of the filtering scheme, described below, is
presented in Fig. 4.1. In total, the cryostat hosts 3 DC measurement lines, with each
having 24 DC cables. The filter scheme is as follows: First, the signals are filtered
by π-filters (cut-off frequency ∼ 10 kHz) at room temperature, then followed
by RCR-low pass filters at the 4K stage of the refrigerator. As material for the
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Pre-cooling

Figure 4.1: Measurement setup: On the left side of the sketch, the main elements and temperature
stages of the dilution refrigerator are illustrated. For pre-cooling, a pulse tube is used (not included in
the drawing). The working principle of the cryostat is explained in the main text. The wiring and the
filtering scheme are presented on the right side. The dotted area around the leads represents the copper
powder filters. The drawing is taken with permission from Ref. [Wil22] and modified.

cables, we first use high ohmic CuNi (as twisted pairs from 300 K to 4 K) and then
superconducting niobium-titanium ribbon cable (from 4 K to sample holder). The
resulting measurement bandwidth is ∼ 5 kHz. In the insulating regime, however,
the I − V characteristics are measured for a better signal to noise ratio with a
minimal sampling time of about 0.02 s. Additionally, to suppress high frequency
noise, copper powder filters of a length of several meters are installed. Since the
currents required for a resistance change by intrinsic electromigration are relatively
small (usually between ∼ nA and ∼ 100 µA) we can use the described leads also
for the in-situ tuning of the wire resistances.
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Figure 4.2: Left: Illustration of the bias schemes used to measure the I −V characteristics and to reduce
the normal-state resistance of the wires. Either the current bias scheme (red) or the voltage bias scheme
(blue) was used. To automatize the switching between the bias schemes, we implemented several
computer-controlled relays. Ip represents the applied pulse for the reduction of the wire resistance with
the IEM method (see chapter 5). Right: Picture of the in house made temperature stage. The stage is
mounted to the base plate and thermally decoupled by stainless steel tubes. The thermometer is placed
directly besides the sample.

For the transport measurements, we use different bias schemes, depending on the
regime in which the circuit operates. Fig. 4.2 shows a typical schematic diagram of
the bias schemes: To record the I −V characteristics in the metallic and supercon-
ducting regime, a current bias scheme was used (depicted in red). As current source
(Ibias, Ip), we use a voltage-controlled, in-house made tunnel electronic which uses
a Texas Instruments OPA2111 operational amplifier and current dividers as main
elements. Additionally, for small bias values (below 10 nA), an extra voltage divider
(1/10) is placed between the voltage source and the tunnel electronics. The input
voltage signal is generated by a Keithley 2636A source meter and pre-filtered by
a Stanford Instruments SR560 preamplifier. For the amplification of the output
signal (Vout), a low-noise instrumentation amplifier INA 105KP is used. The output
signal is then filtered by a Stanford Instruments SR560, before it is measured with
the second channel of the source meter. To reduce and measure the normal-state
resistance, we directly used the output and input line of the source meter (without
tunnel electronic and amplifier).

To measure samples in the insulating regime with pronounced Coulomb blockades,
we used a voltage bias scheme (see blue circuit in Fig. 4.2). Here, one side of the
sample is set to ground while on the other side, a FEMTO transimpedance amplifier
(DDPCA-300) is applied. Just as for the current bias, the input voltage signal (Vinput)
is generated by a Keithley 2636A and then filtered by a Stanford SR560. For small
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blockades (< 0.4 mV), we added a voltage divider (1/1000) between the voltage
source and the transimpedance amplifier. The output signal (Vout) is measured in
the same way as described before.

Sample holder

For all of our experiments, we used the same type of in house made sample holder.
Fig. 4.3 shows pictures of the sample holder and the shields used to protect against
external magnetic fields. The body of the sample box is made from copper. Inside
the box, a printed circuit board (PCB) is screwed tightly to the sample holder,
which features 24 DC supply lines for the transport measurements. To connect the
box with the filtered DC leads, we use micro D metal (MDM) connectors. For the
microwave experiments, two additional PCBs with impedance matched feedlines
are mounted on opposite sides of the chip. Here, sub-miniature pushon (SMP)
jacks are used to connect with the microwave input and output lines. The box is
designed to host one 5 mm× 5 mm sample. To provide proper grounding for the
backside electrode of our samples, we use conductive silver glue to mount the
sample. After the sample preparation, the box is closed with a copper lid, put into
a lead shield and successively inside a cryoperm shield to protect the experiment
against external magnetic fields.

4.2 Chip layout and general design considerations

Chip layout

As mentioned in Sec. 3.2, we use 20 mm× 20 mm sapphire substrates as the basis
for our experiments. After the fabrication, the chip is diced into nine 5 mm× 5 mm
chips. In the course of our work, small adjustments were made to the sample
design. The main features of the chip layout are discussed below. The basic design
of the experiments and important parameters are discussed together with the
measurement results in the next chapter.

Fig 4.4 shows the two different 5 mm× 5 mm layouts we used for our experiments.
The included structures can be classified as follows: (1) Single wire transport
measurements, (2) Quantum phase slip interferometer, (3) Quantum phase slip
interferometer with readout resonator, (4) Serial nanowire test arrays, (5) Test
double wire resonators. The focus of this work lies on the single-wire experiments
and the interferometers.
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Figure 4.3: Sample holder and shielding: (1,2) Sample holder with lid. The zoom-in shows a mounted
5 mm× 5mm chip. The surrounding PCB features 24 DC lines. The two PCBs on the left and right side
provide feedlines for the microwave experiments. (3) Cryoperm shield. (4) Lead shield.

The blue line in the middle represents a ≈ 100 nm thick and 200 µm wide aluminum
microwave microstrip feedline. During the fabrication, it is added by using standard
optical lithography. This is being done after the rest of the chip has been patterned
with the process described in Sec. 3.3. As backside ground plane, an aluminum
backside metallization is added.

4.2.1 Single wire circuits

The design considerations for the single wire experiments are rather simple. In
essence, the most important parameters for a high phase slip rate are sufficiently
small cross-sectional areas and a high normal-conducting resistance. The different
models for describing the phase slip rate were discussed in detail in Sec. 2.9.2. To
recap the most important dependencies: The phase slip rate exponentially depends
on the wire resistance and linearly depends on the wire length. The material of
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(1)

(2)

(3)

(a) (b)(4)

(2)

(5)

Figure 4.4: 5 mm× 5 mm chip layouts (a,b): Several experiments are hosted on the same chip. (1) Single
wire transport measurements. Each column has a different wire length (ranging from 100 nm up to
1750 nm). (2) Phase slip interferometers. Here, the wire length Lw is varied between 300 nm and 1000 nm.
Upper and lower line host samples with the same wire lengths but different island sizes. (3) Phase slip
interferometers with readout resonator (4) Serial nanowire test arrays. (5) Test double wire resonators.

choice for our experiments are granular aluminum films with sheet resistances
between 2 kΩ and 3 kΩ and a thickness of about 20 nm (see Sec. 3.1). For the wire
geometries, we aimed for a fixed width of ≈ 20 nm and we varied the length of the
wires from 50 nm up to 1000 nm.

A crucial part of the design are the on-chip leads and the direct environment
of the nanowire. Here, a high impedance is favorable to effectively decouple the
wire from the outer environment [ALR16]. The most common approaches to
achieve the decoupling are high ohmic resistors (e.g. made from chromium) or
high inductance leads. The former approach provides not only a high impedance
but also a dissipation channel and therefore damping. However, it also can lead
to overheating of the circuit and introduce Johnson noise at finite temperatures,
which results in fluctuating voltage whose root mean square reads as: Vrms =

(4kBRTB) [Web+13]. Here, kB is the Boltzmann constant, R is the resistance, T is
the temperature, and B is the bandwidth of the circuit. Additionally, the fabrication
process becomes more complex since at least one additional step is required. For
the secondary approach one simply can make a wider, and long, segment from the
same high kinetic inductance material which is used for the nanowires. Here it is
important that this on-chip impedance is made wide enough so that phase slips
from this part of the circuit are negligible. For our sample designs, we decided to
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(1)
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Figure 4.5: Designs for single wire experiments: (a) Initial, compact design. The rather large bond pads
allow for 2W and 4W probes. (b) Modified design to increase the lead impedances and ease wire
bonding for a four-point measurement. Both structures are fully made from a single layer of granular
aluminum.

follow the second approach. To prevent strong impedance mismatches between the
nanowires and the adjacent on-chip leads, we have added gradual narrowing to
the nanowire width for all our experiments. In previous works, such impedance
mismatch and the accompanying discontinuity in the number of quantum channels
was seen as a possibility for coherent scattering at the boundaries, which could
strongly affect the transport behavior of a wire [KR16].

The designs used for the single wire experiments are presented in figure 4.5.
The left panel shows the initial design, which was later modified to increase the
lead impedances and ease four-point probe bonding. For the first design, each
nanowire has AlOx leads with a width of 0.5 µm and 2.5 µm length, that contribute
to an inductance of ≈ 20 nH (assuming a sheet resistance between 2 kΩ and 3 kΩ).
Together with a stray capacitance of about 45 fF, we estimate an environmental
impedance of about 0.6 kΩ, not considering the inductance of the nanowire itself.
For the second design, the leads are 2 µm wide and 30 µm long. Here we estimate
an impedance of about 1.1 kΩ (assuming an inductance of ≈ 60 nH and a stray
capacitance of about 47 fF).
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Figure 4.6: (a) Structural layout of the interferometers. Some of the devices have a readout resonator
(see also Fig. 4.4). The coupling between gate and island / resonator and island is always designed
symmetrically. (b) Simulated frequency shift of the readout resonator. The two nanowires are modeled
by ideal capacitors, each having a capacitance of C/2. For the inductance per square L� = 1.6 nH is
used (corresponds to R� ≈ 2 kΩ) and assumed to be the same for the whole structure.

4.2.2 Double wire circuits

The phase slip interferometer design is shown in figure 4.6 (a). The two large
paddles on the left and right (150 µm× 200 µm) are used for two-probe or four-
probe measurements. The pad in the middle is used for contacting the gate electrode
(150 µm× 150 µm). In the following, typical design parameters are given.

The two high impedance leads have a length of LL = 190 µm and are 4 µm wide.
The connection line to the charge island is 13 µm long, and 1 µm wide. This results
in ≈ 60 squares for each lead (without the squares for the gradually narrowing to
the nanowire). Assuming a sheet resistance of ≈ 2.5 kΩ, this gives a total kinetic
inductance of LL

k ≈ 1.4 µH. The stray capacitances of the leads and constrictions
are CL ≈ 17 fF and Cc ≈ 0.75 fF. These numbers give an environmental impedance
of about ZL ≈ 8 kΩ, not considering the inductances of the nanowires itself. The
wider segment of the gate lead is 75 µm long and 21 µm wide, the narrow part is
35 µm long and 1 µm wide. Here, the impedance is ZG ≈ 7 kΩ.

As variation parameters for the realization of different coupling strengths between
the gate electrode and the island, we have chosen the size of the island (1.5 µm×
0.11 µm and 1µm× 0.1 µm), the distance to the electrode di (800 nm and 900 nm),
and the width of the electrode wg (800 nm and 900 nm). For samples with a readout
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resonator, the thinning at the end of the resonator was altered symmetrically with
the gate electrode. Also, the coupling distance is chosen to be the same. From
numerical simulations, we get gate capacitances of Cg ∼ 60 aF and Cg ∼ 30 aF.
The wire length on both sides is always the same and varies between 300 nm and
1000 nm for the different devices. The λ/2 readout resonators are simple stripe
geometries with resonance frequencies between 6 GHz and 8 GHz, depending on
the exact sheet resistance of the film.

To model the effect of a change in the kinetic capacitances of the nanowires on
the resonance frequency of the readout resonator, SonnetTM simulations were
performed. The wires are modeled by ideal capacitors with a capacitance of C/2.
Fig. 4.6 (b) shows the simulated resonator frequencies assuming an inductance per
square of L� = 1.6 nH and capacitances between C = 300 aF and C = 540 aF. For
this simulation, the island size was 1 µm× 0.1 µm. The coupling distance di and
the width of the gate electrode wg were 900 nm.
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5 Intrinsic electromigration (IEM)

5.1 Modeling a granular aluminum nanowire

As stressed in section 3.1, the distribution of barrier thicknesses and the grain
morphology has a great impact on the specific properties of granular aluminum
films. When formed to a nanowire, averaging effects are highly suppressed, and
local variations become more important. In order to get a better sense of how this
affects the electrical properties of a nanowire, a closer look at the internal structure
is important. Therefore, in this section, a model is presented which allows one to
make predictions of the nanowire resistance and device-to-device variations in
good accuracy [Bar+22]. The main idea is to model the intrinsic junction network
as randomly distributed resistors. Each inter-grain junction is represented by
a resistance value in a Laplace matrix from which the resistance between two
arbitrary grains can be calculated [BAR21].

Assuming a typical grain size between 3 nm and 4 nm (see 3.1), wire diameters
of d ∼ 20 nm and wire lengths of a few hundred nanometers, a single wire will
host a network of hundreds or thousands of isolated aluminum grains. Each
pair of neighboring grains forms a Josephson S-I-S (Al/AlOx/Al) junction with a
characteristic coupling energy Ej = h̄/2eIc, where Ic is the critical current, h̄ the
reduced Planck’s constant and e is the charge of an electron. For this junction type,
Ej is linked to the normal state resistance of the junction Rn via the Ambegaokar
and Baratoff relation

Ic =
π4
2eRn

tanh
(
4

2kBT

)
(5.1)

[AB63a; AB63b]. kB, 4 are the Boltzmann’s constant and the superconducting gap,
respectively (see also Sec. 2.6). Consequently, calculating Ic allows for a conversion
to Rn. For each knot of the network, Ic is given by:

Ic =
2σens h̄

δme
exp

(Sij

δ

)
(5.2)

[Chu+01; Bar+22]. Here ns is the density of cooper pairs, me is the electron mass,
σ is the interaction area between the grains, δ is a characteristic constant of the
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Figure 5.1: (a) Cross-section of two neighboring grains. It is assumed that all grains share the same
radius R (2.5 nm). Sij is the smallest distance between both spheres. The darker region marks the
interaction area over which is integrated in the model. (b) Simulated device-to-device variation of the
wire resistance for different wire lengths, assuming a constant width and thickness of 20 nm, represented
as histograms. Each data set contains 1000 values. Adopted from [Bar+22].

dielectric. Sij is the smallest distance between the grains (see Fig. 5.1 (a)). In the
low temperature limit and assuming that Rn does not change significantly when
going to cryogenic temperatures, the normal state resistance of a junction can be
calculated by combining Eq. 5.1 and Eq. 5.2. As the microstructure of the granular
aluminum films is rather uniform, it is reasonable to assume a constant grain size
(5 nm) and a Gaussian distribution for the separation distance when modeling a
whole wire (for more details, see Refs. [Bar+22], [BAR21]).

Fig. 5.1 (b) shows the resulting distributions of nanowire resistances, calculated for
wires with different lengths [Bar+22]. Each histogram corresponds to a different
wire length and contains one thousand simulated resistance values. For all calcula-
tions, the input parameters were kept constant (R = 0.25 nm, standard deviation of
separation distance 0.3 nm). There is a clear trend, that, when going from shorter to
longer wires, the distribution broadens, resulting in a large wire to wire variation.
At some point, for extremely long or very narrow wires, also open circuits become
more likely. Another interesting aspect is the dependence of the ’effective’ wire
sheet resistance Re

� (wire resistance divided by the number of squares) on the
length. The model predicts a linear increase as long as the wire diameters are
large enough (� grain diameter). For extremely narrow wires, the resistance is
fully dominated by fluctuations in single conductance channels, leading to strongly
increased wire sheet resistances [BAR21]. These results overall agree well with the
observations in our experiments. To give an example: A micrometer long nanowire,
with diameters d ≈ 20 nm and made from a film with R� ≈ 3 kΩ revealed a
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resistance ten times higher than expected from R�. Probably it is not mandatory to
restrict the model to granular aluminum films, as many cermet materials have a
similar intrinsic structure.

At first glance, the expected large resistance spread for longer wires seems to be
problematic for a systematic investigation of QPS effects in single wires or when
they are used as QPS elements in more complex circuits, because the parameter
spread will be large. But surprisingly this problem can be turned into an advantage:
A large statistic for the barrier thicknesses in combination with only very few
parallel conductance channels can be beneficial for adjusting the resistance of a
wire after the fabrication, using intrinsic electromigration (IEM).

5.2 Concept of IEM

A key element for the investigation and utilization of quantum phase slips in
superconducting nanowires is a precise control over the electrical properties of
the wire. The most common and natural approach is to do this by adjusting
the geometry. This could ideally be achieved by a single fabrication, but more
realistically by reshaping a wire multiple times (e.g. by ion beam milling) in order
to readjust the properties after fabrication. For high kinetic inductance materials,
such as granular aluminum, which are predestined as a basis for nanowires with
high phase slip amplitudes, a limit for the controllability by geometry is set by the
intrinsic disorder. As explained in Sec. 5.1, the combination of small diameters and
small variations in the inner structure leads to fluctuations of the wire’s normal
state resistance, which affects the phase slip amplitude exponentially and the kinetic
inductance linearly. Thus, the rather bad reliability of such devices i.e. strong wire
to wire and batch to batch fluctuations, turned out to be a major problem for the
systematic investigation and utilization.

These limitations have motivated us to develop a new technique, allowing to reduce
the resistance of single wires by orders of magnitude in fine steps, in situ, and also
at millikelvin temperatures. Due to its character, we named the method intrinsic
electromigration (IEM). Current pulses with increasing amplitudes are applied
to a wire in order to rearrange or short weakest links in its intrinsic network
of Josephson junctions. With a current applied to the nanowire, the voltage will
mainly drop over the oxide barriers. Above certain threshold currents Ip, the
weakest barriers may break down, and neighboring grains are merged (e.g. by a
movement of atoms at the grain boundaries [AR70; Bla69]). For single Josephson
junctions, this is a well-known and studied phenomenon [TA08]. The suggested
microscopical model is illustrated in Fig. 5.2. In contrast to widely used classical
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Ip

Figure 5.2: Illustration of the proposed microscopic process: The inner structure of a granular alu-
minum nanowire consists of pure aluminum grains (red, size ' 4 nm), which are embedded in an
aluminum-oxide matrix (orange), forming a random network of Josephson junctions (black crosses).
The current pulses lead to an intrinsic electromigration process (IEM) merging grains and / or clusters
of grains. From Ref. [Vos+21].

electromigration approaches (e.g. [Bau+16]), this method does not aim at a change
of the macroscopic shape of the nanowire.

5.3 Modeling IEM as the formation of microscopic
quantum point contacts

For single Al/AlOX/Nb junctions, the gradual breakdown of the insulating barrier
when stressed with currents I � Ic is known and can be explained by the formation
of quantum point contacts (QPC) [TA08]. Above a critical applied voltage Vc, with
a further increase of the voltage, more and more of these nano shorts in the junction
are introduced by the movement of oxygen atoms. In the normal resistive state, this
manifests as a reduction in resistance. In the superconducting state, it manifests as
an increased critical current and a change of the I-V characteristics (e.g. occurrence
of sub gap features, for details see [TA08]). As for intrinsic electromigration, the
junctions are treated similarly, and a change in resistance is observed, it might
be justified to adopt the model from Ref. [TA08] to IEM and combine it with the
resistor network model [Bar+22; BAR21]. The condition for the formation of N
QPC can be derived from the ionic current density for classical electromigration:

N = Bt sinh(Vij/Vc
ij) (5.3)

[CM49; TA08; Bar+22]. B is a temperature-dependent parameter (essentially de-
scribing the heat driven movement of ions), t is the stress duration, Vij is the voltage
across two neighboring grains. Vc

ij = (kBTSij)/(qa) with the Boltzmann constant
kB, the temperature T, the activation distance a, the ion charge q and the separation
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contacts
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Figure 5.3: (a) Condition for the formation of QPCs: (1) For BtVij < Vc
ij , no shorts are created, and the

spheres are represented without a black connection. (2) If BtVij > Vc
ij , N parallel channels are created,

each having a resistance of RQPC . These junctions are represented by the black lines, connecting two
neighboring grains. The increase of the number of QPCs N with the voltage across the barrier and
stress duration is illustrated on the right side. For details see Ref. [TA08]. (b) Illustrative example for a
simulation of the formation of QPCs (from Ref. [Bar+22]). It shows the cross-sectional view of a 3D
simulation, where an applied current of Ip ≈ 220 µA was assumed. The black lines between the grains
represent junctions where QPCs were formed by the current stress.

distance between the grains Sij. It is assumed that a single displacement of an ion
leads to one QPC and therefore adds a conductive channel with resistance RQPC.
Therefore N is rounded down to integers. Consequently, for BtVij > Vc

ij , at least one
additional channel is added, which can be seen as a parallel conductance channel,
reducing the resistance across two adjacent grains (see Fig. 5.3 (a)). Mathematically,
the voltage drop across inter grain junctions can be calculated using a matrix
representation of Ohm’s law with Kirchoff’s current law and the Moore-Penrose
pseudoinverse together with the resistance matrix, described in Sec. 5.1[Bar+22;
BAR21]. For relatively small applied currents/voltages, one can use small angle

73



5 Intrinsic electromigration (IEM)

approximation to rewrite Eq. 5.3 in the form:

N =
Btaq
kBT

Vij

Sij
(5.4)

[Bar+22]. Fig. 5.3 (b) shows a cross section view of the simulated formation of
QPCs for a wire with a length of 100 nm, a width of 75 nm and a thickness of 10 nm
[Bar+22]. The black connections between certain grains represent the QPCs which
have formed after an applied current pulse of Ip ≈ 220 µA.

5.4 IEM results

In the course of this work, the IEM method has been successfully applied to more
than a hundred samples. In the following, we present the results for two selected
wires (Lw = 1000 nm and Lw = 250 nm) and give a summary of some general
observations.

The altering procedure was carried out as follows: In a first step, a tuning pulse
with a duration of tp = 20 ms was applied. Next, after a couple of minutes waiting
time to let the system go back into thermal equilibrium, a test pulse with an
amplitude of 300 nA and a duration of 50 ms was applied to determine the new
resistance value.

Figure 5.4 shows two data sets of the wire resistance recorded at 25 mK vs. the
amplitude Ip of current pulses which were stepwise increased upwards [Vos+21].
Both wires were shaped from the same granular aluminum film with an average
sheet resistance of R� ≈ 2.7 kΩ. We have applied current pulses with increasing
amplitudes ranging from Ip ' 1 µA to Ip ≈ 400 µA in more than 200 steps to
both wires. Once some critical Ip value is reached, and the weakest link in the
wire breaks down, the wire resistance drops to a lower value which is dictated by
another slightly stronger weak link. This step-like behavior is visible in the inset of
Fig. 5.4 (a). Once a reduction of Rn at a certain threshold current Ip is observed,
applying pulses with an amplitude below the next threshold does not change Rn.

For the one micrometer long wire, the resistance was reduced from initially about
900 kΩ to only a few kilo-Ohms, for the 250 nm long wire it was still reduced
roughly by a factor of ten (12.4 kΩ to 1.5 kΩ).

The current pulses can be either applied at low temperatures (as in the case of
the present examples) or at room temperatures with very similar results. In both
cases, the change in resistance is permanent. For samples that were tuned at low
temperatures, Rn also remained stable after thermal cycling of the cryostat to room
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Figure 5.4: Normal state resistance of a 1000 nm long (a) and a 250 nm long (b) nanowire as a function
of the applied pulse current Ip, measured at 25 mK. Both wires are ∼ 20 nm wide and were fabricated
from a film with R� ≈ 2.7 kΩ. For the 1000 nm long wire, Rn was lowered from 900 kΩ to 2.5 kΩ, for
the 250 nm long wire from 12.4 kΩ to 1.5 kΩ. In the beginning, the resistance steps are rather steep, but
with a further reduction, the hight of the steps decreases. Figures adopted from Ref. [Vos+21]

temperature. For longer time scales, like days or weeks, no aging effects were
observed. In order to investigate the influence of the pulse duration on the change
in resistance, we applied pulses with different durations, ranging from milliseconds
up to minutes. At least for these time scales, no effect of the pulse duration was
observed. For much shorter (e.g. µs or ns) or longer (e.g hours) stress durations,
this might change and it therefore needs further investigation. However, to avoid
unnecessary heating, it can be advantageous to apply relatively short pulses.

These findings and the discrete drops in the nanowire resistance, which do only
depend on the current pulse height and on the history of previous drops, support
the proposed model of merging grains. Another indication that it is a critical local
electric field across the weakest oxide barrier(s) that causes, when exceeded, the
resistance drop, lies in the distribution of the resistance steps Rn and the initial
resistance value of a virgin sample. We note that both, the magnitude of the Rn

changes and the adjusting accuracy, are dependent on the wire length. The wire
resistance tends to increase with length, but does not strictly scale with it. For
example, the initial resistance of the 1 µm long wire in Fig. 5.4, is ∼ 75 times
larger than that of the 250 nm long wire. The reason for this lies in the disordered
character of the internal structure of the wire. A qualitative explanation for this
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Figure 5.5: (a) Distribution of resistance steps Rn for a 1000 nm long nanowire. Adopted from Ref.
[Vos+21]. (b) Distribution of resistance steps Rn for a 250 nm long nanowire. The related change in
resistance for both wires is presented in Fig. 5.4. For the 1000 nm wire, the larger steps of dRn > 20 kΩ
occur only at very small Ip values. For the 250 nm wire most resistance steps dRn are below 1 kΩ.

behavior may lie in the random distribution of barrier thicknesses. To first order,
the number of junctions in the network scales linearly with the length of the
nanowire. The probability of having a few very weak internal junctions dominating
Rn therefore also increases quickly with the length. As a consequence, the first
changes in resistance are very steep (Fig. 5.4). With a further reduction of resistance,
however, we observe smaller steps. Figure 5.5 displays the distributions of resistance
steps dRn for both wires from Fig. 5.4. The 250 nm wire revealed mainly small
jumps (< 1 kΩ/µA) of similar hight, while for the longer wire, at the beginning
of the tuning process, also larger steps were observed (> 30 kΩ/µA). This is in
good agreement with a random distribution of barrier thicknesses and fits to the
expectations from the theoretical model, discussed in Sec. 5.1. Of course, there is a
limit for the tuneability of a wire. At some point, for too high currents/powers,
the stress can lead to structural damage, which in turn can lead to an increase in
resistance or even to open circuits. But this limit seems to be rather high (for the
wires studied here this limit was measured to be of the order of mA).
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5.4 IEM results

Figure 5.6: SEM pictures of the same 1000 nm long nanowire, taken before and after the treatment with
current pulses. The resistance was reduced from Rn ≈ 500 kΩ to Rn ≈ 35 kΩ, at room temperature and
with pulse amplitudes up to Ip ≈ 180 µA .

Impact of IEM on the geometric shape of the wire

To look for any changes in the geometry caused by the IEM treatment, we took
scanning electron microscope (SEM) pictures of a virgin sample and of the same
sample after it was altered by IEM. Fig. 5.6 displays three micrographs of the
same micrometer long wire (initial resistance Rn = 500 kΩ) before and after the
treatment with pulses up to Ip ≈ 180 µA leading to Rn = 35 kΩ. At least at this
resolution, no changes in the geometric shape can be observed.

This is an important result for the further experiments, as it allows us to assume a
constant wire geometry and, therefore, to study gradual resistance effects such as
the relation between the phase slip energy Es and Rn.
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Figure 5.7: Normal state resistance vs. current pulse amplitude for wires of different length. The dots
correspond to experimental data (measured at 4 K), and the solid lines correspond to simulations (fit
parameter A = 0.2 nm). Adapted from [Bar+22].

Comparison between measurements and QPC model

Fig. 5.7 shows the change in resistance as a function of the applied current pulse
for four wires of different lengths (250 nm, 500 nm, 750 nm, 1000 nm), measured
and tuned at T = 4 K [Bar+22]. The samples stem from a different fabrication run
than the ones discussed before. The solid lines are fits to the QPC model. As fit
parameter, A = Bta with dimension of length was used. For all curves, A was
found to be 2 nm. Before the application of current pulses was simulated, several
runs of wire construction were computed (assuming a mean separation distance
and standard deviation of 0.35 nA) for the same geometry as in the experimental
data in order to achieve a good agreement in initial resistances between experiment
and simulation (for more details see Refs. [Bar+22; BAR21]).

In both, experiment and simulation, the resistance change rate (dRn/dI) is larger
at the beginning of the tuning and decreases with further reduction of Rn. For
longer wires, this behavior is pronounced. These findings fit well to the observed
distributions of resistance steps, discussed in the previous part of this section.
Interestingly, the model expects a linear dependence between the number of QPCs
and the pulse duration (see Eq. 5.4). As stressed before, this is something we
have not observed in the experiments. However, with tested pulse lengths between
milliseconds and minutes, this might change for different time scales. Overall,
taking into consideration the simplicity of the model, the comparison with our ex-
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periments is surprisingly good, and the formation of point contacts in the junctions
could be a possible explanation for IEM in granular aluminum nanowires.
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6 Quantum phase slip experiments
with nanowires

In this chapter, the main results of low-temperature measurements on nanowires
made from granular aluminum are presented. The chapter is divided into two
parts. In the first section, measurements on single wires are presented and the rela-
tionship between the transport behavior and quantum phase slips is discussed. In
particular, the effects of gradual resistance changes are investigated for wires with
pronounced phase slip behavior. The results are compared with the microscopic
theory for quantum phase slip rates, developed by Zaikin and Goulubev [Zai+97;
GZ01]. We then follow the approach introduced by Mooij and co-workers in Ref.
[Moo+15] to derive a phase diagram for the phase slip driven superconductor to
insulator transition and compare the result with previous works. In the last part
of this section, the temperature dependence of the wire resistance below 3 K is
investigated.

In the second section, measurements on realizations of the double wire circuit
introduced in Sec. 2.12 are presented. We investigate the gate dependent transport
behavior of circuits with different design parameters and the impact of IEM treat-
ment. For certain configurations, we observe a gate induced transition between
insulating and metallic resp. superconducting behavior. The results are compared
with the QPS model and the phase transition, found for single wires.

6.1 Single wire experiments

To investigate the relationship between the normal state resistance of a granular
aluminum nanowire and its transport behavior at milli-Kelvin temperatures, we use
the intrinsic electromigration (IEM) method [Vos+21]. This approach significantly
differs from the commonly used methods, such as ion beam milling or classical
electromigration, since the structural shape of the nanowire remains unchanged
while the intrinsic structure gets modified (see Sec. 5.2). Until now, it was not
possible to access the regimes of high and low phase slip rates at low magnetic fields
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with the same single wire [Kim+18; Bau+16; Kov+10], since the intrinsic properties,
like coherence length or nanowire resistance, were fixed by the preparation of the
wire. Apart from this new possibility, the approach we follow is very simple. In
essence, we apply current pulses and measure the changes in the normal-state
resistance of a wire together with the I −V characteristics in the superconducting
state.

The dual to the Josephson energy Ej is the phase slip energy Es, and instead of
a charging energy Ec, one has an inductive energy EL [MN06]. Consequently,
the behavior of the phase slip junction should be defined by the ratio of these
characteristic energies. To find a reasonable expression for the phase slip energy,
Mooji and co-workers followed the Zaikin and Golubev model for zero current and
temperatures close to T = 0 (see Eq. 2.76). For the inductive energy EL = Φ2

0/2Lk,
it can be assumed that the kinetic inductance of the wire is fully dominating. The
ratio between phase slip energy and inductive energy therefore can be expressed
by Eq. 2.77. When altering Rn, Es changes exponentially and EL linearly. Here, the
general problem for the investigation and utilization of wires made from highly
disordered superconductors where the resistance can strongly scatter, even under
the assumption of a constant geometry, becomes evident (see also Sec. 3.1). Already
small changes in Rn have a high impact on the ratio between Es and EL and
thus on the transport properties of the wire. For the chosen approach, this strong
dependency is actually beneficial since it allows to cover a large range of Es/EL
ratios for a single wire.

Following Mooij et al. [Moo+15], we expect the following behavior for the wires: If
EL is much larger than Es, the superconducting phase difference along the wire
is well defined, and the wire reveals a superconducting behavior. In this regime,
the coherent transport of Cooper pairs leads to a vanishing voltage drop up to a
critical current Ic. The opposite energetic regime is reached when Es is much larger
than EL. Here, the phase coherence across the wire is destroyed by phase slips, and
no conductance is observed up to an applied critical voltage of Vc = 2π/2e Es. In
this insulating regime, the critical voltage provides a measure for the phase slip
energy.

In the following, we report on the characterization of three nanowires with different
lengths (1000 nm (A), 750 nm (B), 250 nm (C)). For all samples, Lw is much larger
than the coherence length (ξ0 ≈ 8 nm) determined in Sec. 3.1, which is an important
requirement for high phase slip rates. The three nanowires are fabricated with
the three-layer stack approach (first process), described in Sec. 3.3. All samples
are placed on the same chip and made from a 20 nm thick AlOx film with a sheet
resistance of 2.7 kΩ. A detailed description of the sample layout, the surrounding
impedances, and the measurement schemes used is provided in chapter 3. Fig. 6.1
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Figure 6.1: Scanning electron micrograph of a lithographically fabricated granular aluminum nanowire
(colored in blue) on a sapphire substrate. The wire has a width and thickness of about 20 nm and is
750 nm long.

shows a scanning electron microscope picture of a 750 nm long and about 20 nm
wide wire. The characterization of the transport behavior, as well as the application
of the IEM method, were carried out in a dilution refrigerator at a temperature of
25 mK.

6.1.1 Reducing the normal state wire resistance with
current pulses

For the transport characterization and the gradual resistance changes, we used a
computer-controlled measurement protocol which includes the following steps:
First, the I − V characteristics were measured in either a voltage biased scheme
(insulating regime) or a current biased scheme (metallic regime and superconduct-
ing regime). Then, a current pulse with amplitude Ip is applied for about 20 ms
to reduce the normal state resistance Rn of the wire. This step is followed by a
waiting time of at least a few seconds (for larger currents several minutes), to allow
the samples to recover into thermal equilibrium. The new resistance value is then
determined with an excitation significantly below Ip. The measurement cycle then
is completed by the next I −V characterization [Vos19].

Fig. 6.2 shows the change in wire resistance as a function of the amplitude of the
applied IEM pulse for samples A and C. For sample A, the resistance is reduced
from 900 kΩ to 2.5 kΩ, for sample C from 12.4 kΩ to 1.5 kΩ. The colored areas in
Fig. 6.2, labeled as insulating, metallic and superconducting, reflect the observed
transport behavior for small bias values. The individual regimes will be examined
in more detail in the course of the following discussion.
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Figure 6.2: Normal state resistance Rn as a function of the applied pulse current Ip for sample A (a)
and sample C (b). The measurements are performed at 25 mK. For sample A, Rn is lowered from 900 kΩ
to 2.5 kΩ, for sample C from 12.4 kΩ to 1.5 kΩ. At low bias values, the I −V characteristics reveal an
insulating, metallic and superconducting behavior, depending on the respective resistance (see coloring).
From Ref. [Vos+21].

The wire resistances shown in Fig. 6.2 as well as those used in the further discussion
are determined by Rn = Rtot − RL − Rth, where Rtot is the respective total value of
the resistance measured. RL = 26.5 kΩ (samples A and C), RL = 39 kΩ (sample
B) are the resistances of the on-chip leads connecting the nanowires. At larger
current bias values, we also recognized a ’thermal’ resistance offset Rth, which is
of the order of 15 kΩ and can be explained by considering Joule heating [Bau+16].
Experimentally, the lead resistances and the thermal offset can be precisely de-
termined from the resistive slopes of the I −V characteristics above Ic (when the
wire is in the superconducting regime). The lead resistances found are in very
good agreement with values calculated from the geometry and the sheet resistance.
For the present samples, we determined the resistances Rtot in the insulating and
metallic regime from Ip. In the superconducting regime, we extracted the Rn values
directly from the resistive slopes.
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6.1 Single wire experiments

Table 6.1: Parameters of the samples measured at mK temperatures. All AlOx nanowires have a width
and a thickness of 20 nm. R0

n, RE
n denote the initial and final normal-state resistance (before and after

altering the nanowire), E0
s and EE

s are the corresponding phase slip energies. Rm
n , Em

s and Rs
n, Es

s are the
largest metallic and superconducting normal-state resistances / phase slip energies.

# Lw R0
n RE

n Rm
n Rs

n
R0

n
RE

n

E0
s

h
Em

s
h

Es
s

h
EE

s
h

nm kΩ kΩ kΩ kΩ GHz GHz MHz Hz
A 1000 900 2.5 37 16 360 200 2.5 1 10e-21
B 750 500 3.7 28 17 135 164 3.0 34 10e-7
C 250 12.4 1.5 12.4 4.7 8.3 0.5 0.5 2.5e-3 10e-16

6.1.2 Insulating regime

In the insulating regime, by definition, no charge transport is possible below a
certain threshold voltage. From the discussion above we expect such a behavior for
Es � EL and therefore for rather large resistance values and / or long wires (see
Eq. 2.76).

In Fig. 6.2 (a), it was already indicated that sample A initially showed an insulating
behavior. The I −V curves associated with the resistance values shown there are
presented in Fig. 6.3. For wire resistances between 900 kΩ and 37 kΩ, the measured
curves show a clear Coulomb blockade with a critical voltage that strongly depends
on the normal state resistance of the wire. For this sample, the blockade range is
from 3.6 mV to about 0.1 mV, which corresponds to a QPS rate span of ≈ 200 GHz.

Sample B also showed, prior to applying any current pulses to lower Rn and for
Rn values down to ≈ 28 kΩ, a pronounced Coulomb blockade. Sample C had an
initial Rn = 12.4 kΩ and did not show an insulating behavior. An overview of the
resistance values and associated phase slip rates for all three samples is given in
Tab. 6.1.

6.1.3 Dependence of the Coulomb blockade on the normal
state resistance

In the blockade, the measured current is below ∼ 400 fA (for samples A and B), and
the transition to the conductive state is, in general, rather sharp. Also, the I −V
characteristics are not hysteretic in the current values. Therefore, the critical voltage
can be precisely determined from a threshold current, defining the conductive
state. Only for high blockades with critical voltages Vc > 2 mV (corresponding to
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(a) sample A

V (mV)

I (
nA

)

900 kΩ

37 kΩ

Vc

Figure 6.3: (a) I−V characteristics for a 1000 nm long nanowire. The sample starts with a high Rn value
(dark) and is tuned to lower Rn (bright). The Coulomb blockade range is from 3.6 mV for a normal-state
resistance of ≈ 800 kΩ down to about 0.1 mV for the lowest resistance value (≈ 40 kΩ).

Es/h ≈ 150 GHz), we observed a continuous rounding of the I −V characteristics
close to Vc. This rounding leads to a significant error in the determination of Vc.
A possible explanation comes from the relatively low environment impedance of
0.6 kΩ (for more details about the sample design, see Sec. 4.2.1). Dissipation in the
nanowire can lead to an elevated temperature and therefore a smoothing at the
transition from blockade to conductive state [HZ12].

The extracted critical voltages for samples A and B are shown in Fig. 6.4 (a). Larger
gaps in Vc(Rn) can be explained by the initially rapid change in Rn, when using
the IEM method. In this region (see also Fig. 6.2 (a)) the resistance steps can be of
the order of ∼10 kΩ.

With the successive reduction of the wire resistance, we also expect the coherence
length to slightly increase, since the IEM treatment leads to more and more gal-
vanically connected grains inside the wire. Thus, the grain boundary scattering
gets reduced [SA92], which leads to a longer mean free path l0 and therefore to
an increased coherence length ξeff =

√
l0ξ0. This effect has also been observed in

previous experiments, where granular and amorphous systems were grown under
different conditions [Bos+06] or treated by classical electromigration [AB11].

The data presented in Fig. 6.4 (a,b) are best fitted assuming a linear ξ span from
ξ = 8 nm (Rn = 900 kΩ) to ξ = 12 nm (Rn = 37 kΩ). The overlaid curves in Fig. 6.4
(a) are fits of the Zaikin, Golubev and Mooji model to the measured values, using
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Figure 6.4: (a) Critical voltages Vc as a function of the normal-state resistance Rn. The comparison of
measured values and the predictions from Eq. 2.76 (b) and Eq. 2.77 (b) with the fitting parameters
α = 0.07± 0.01 and β = 0.49± 0.03 shows a good agreement for both wires (see black solid lines
in (a) and (b)). (b) Ratio between phase slip energy Es and inductive energy EL as a function of the
normal-state resistance of wires A and B. For both wires, the ratio converges for smaller resistances
towards the same value of Es/EL ≈ 0.02, where the metallic regime begins. From Ref. [Vos+21]

Eq. 2.76. From these fits, we find values for the empirical parameters α = 0.07± 0.01
and β = 0.49± 0.03 that are common to the data of samples A and B. The extracted
parameters are in good agreement with the values given in Ref. [Moo+15].

Interestingly, it seems that for very high Rn values (> 200 kΩ), Vc(Rn) only grows
slowly. The reason for this behavior is not yet clear. In general an upper limit
for the critical voltage is roughly given by Vc,max ∼ (Lw/ξ)(4/e) [AL22]. This
upper threshold is one order of magnitude higher than the values measured for
the present wires and therefore seems not to be the limiting factor. A possible
explanation is that this limit is reached for some sections of the wire and not for
others.

Fig. 6.4 (b) shows how the ratio between the phase slip energy and the inductive
energy develops for samples A and B. For the highest resistance values, the ratio is
∼ 60, while for the smallest Rn values it only is ≈ 0.02. The solid black curves show
the expectations from the phase slip model, using Eq. 2.77 together with the previ-
ously determined values for α and β. The agreement between the measurements
and the QPS theory is excellent, especially when considering that also the change
in inductive energy is taken into account. Below a ratio of Es/EL ≈ 0.02, both wires
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Figure 6.5: I −V characteristics of samples A (a) and C (b) in the metallic regime: For sample A the
resistance span is from ≈ 25 kΩ to 15 kΩ, for sample C from ≈ 12.4 kΩ to 4.7 kΩ. In the vicinity of zero
bias current, the slope increases when the wire resistance is reduced. For all I −V curves in the metallic
regime, the differential resistance around zero bias is dV/dI > 0. Sample C, in distinction from samples
A and B, initially showed a metallic behavior. From Ref. [Vos+21]

revealed no Coulomb blockade anymore. Instead, a metallic-like behavior is then
observed.

6.1.4 Metallic regime

For all samples with Rn values between 40 kΩ and 16 kΩ, a metallic-like behavior
is observed. Here, the I −V characteristics show a linear response for small bias
values and a non-linear response at larger bias values. The I − V curves, taken
from samples A and C in this regime, are presented in Fig. 6.5.

Following Ref. [MN06], the expectations for the transport behavior for the two
extreme regimes Es � EL and Es � EL are an insulating and a superconducting
behavior. There is no statement about a possible intermediate regime. Naturally,
one could expect a similar transition as it is observed for Josephson junctions with
the phase diffusion regime at Ej ∼ Ec, in particular at finite temperatures [Ian+89;
Fis14]. Consequently, such a regime would be something like a charge diffusion
regime, where on average neither the localization of charges in the wire nor the
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6.1 Single wire experiments

phase coherence across the wire is dominating. However, the origin of this metallic
regime is currently not clear and we can only speculate:

If we assume that the QPS model is still valid, we can estimate values for the
characteristic energies, using the previously determined parameters α and β. From
Eq. 2.76 we get a frequency span for the QPS rate, ranging from Es/h ≈ 3 GHz
down to Es/h ≈ 30 MHz. The inductive energies range from EL/h ≈ 150 GHz
to EL/h ≈ 250 GHz. To calculate these values, we used the largest and smallest
resistance values in the metallic regime (see Tab. 6.1). For the phase slip energy, the
smallest values are already of the same order as the thermal energy corresponding
to a temperature of ≈ 25 mK.

Although the exact origin of the insulating to metallic and metallic to superconduct-
ing (I-M-S) transition is not clear for the wires at hand, there are similar systems
where such a transition has also been observed. For example in 2D granular films
[KKS19; Kat95; GD10; Bel+07], metal hybrids, [AHB12] or 1D/2D arrays of Joseph-
son junctions [FZ01; Vog+15; VCS16; Ced+15; Ced+17]. Since the internal structure
of the wires can be described by a random network of Josephson junctions, it can
be expected that for the systems mentioned and for the wires similar energy scales
are relevant. In the junction model, the two characteristic energies are the finite
charging energy of the grains and the Josephson energy. The former leads to a
localization of charges, while the latter defines the energy scale for the delocaliza-
tion. Depending on which energy is dominating, a network of junctions should
reveal an insulating or superconducting behavior but also an intermediate regime
for the cross over, where some few conductance channels exist.

From the measurements on double wire systems, presented in Sec. 6.2, we see
that the phase slip energy plays a crucial role in the I-M-S transition. However,
further investigation of the dependencies on magnetic fields and on temperature
are needed to get a clearer understanding of the underlying physical processes.

6.1.5 Superconducting regime

For all samples, the metallic regime is followed by a superconducting regime, when
Rn is further reduced. Here, current transport without dissipation is observed up
to a critical value Ic. Just as for the transition from insulating to metallic behavior,
this transition is sharp.

Fig. 6.6 displays the I −V characteristics for samples A and C in this regime. The
inset in Fig. 6.6 (a) reveals an interesting detail. For relatively small critical currents,
and therefore large Rn values, the voltage develops rather smoothly around Ic. This
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Figure 6.6: Superconducting regime: I −V characteristics of sample A (a) and C (b) as a function of
normal-state resistance. Here Rn is extracted from the resistive slope above Ic at finite voltages. For
sample C, the linear subbranches above Ic are caused by the on-chip leads, where the superconductivity
breaks down sequentially in distinct steps (for sample A only visible at larger currents, outside of the
shown current range). From Ref. [Vos+21]

transition to the resistive branch looks very similar to the phase diffusion behavior,
observed for small capacitance Josephson junctions. With further reduction of
Rn, the critical current increases and the switching becomes more sharp, until
a clear voltage jump can be found. The magnitude of this voltage discontinuity
then further increases with the decrease in wire resistance, as it is typical for
superconducting nanowires.

The wire resistance per nanometer for all wires in this regime is below Rn/Lw ≈
20 Ω/nm. For the two longer wires, the total normal state resistance Rn can be far
above the resistance quantum Rq = 6.45 kΩ. Thus, these observations do not fit to
the expectations from Chakravarty–Schmid–Bulgadaev theory, which predicts a
transition at Rn = Rq, driven by dissipation and the interaction of QPS with the
environment [Cha82; Bul84; Sch83; Kat+06]. Similar observations were made for
MoGe nanowires in Ref. [Bol+08] and for NbTiN wires in Ref. [Kat+06]. These
measurements, however, are in accordance with a phase transition driven by the
Es/EL ratio, which will be discussed in Sec. 6.1.7.
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6.1 Single wire experiments

6.1.6 Dependence of the critical current on the normal state
resistance

Just as we did for the metallic regime, we can use the previously determined values
for α and β and make some estimates for the energies from the perspective of the
QPS model. While Es is of the order of a few MHz for the largest resistance values
and decreases to almost zero for the smallest Rn values, EL is of the order of a
few hundred GHz. Consequently, the inductive energy is fully dominating in this
regime, and phase coherence across the wire occurs. Therefore it might be justified
to describe the wire as a superconducting weak link, and compare some commonly
used models with the observed Ic(Rn) dependency.

In Sec. 2.6, the Ambeogaokar-Baratoff (AB) relation for S-I-S Josephson junctions
and the Kulik-Omel’yanchuk (KO1) relation for short weak links in the dirty limit
were introduced. At first glance, both systems are rather different compared to
the nanowires presented here. However, some arguments can be found which may
justify a comparison: For the AB relation, a simple S-I-S junction with the same
energy gap at both electrodes is assumed. For the nanowire, the intrinsic structure
is a random network of S-I-S Josephson junctions. Due to the relatively small wire
diameters (∼ 20 nm), compared to the aluminum grain size (∼ 4 nm), there are only
a very few parallel conductance channels. Thus, the wire could behave similarly
to a one-dimensional chain of Josephson junctions. Therefore, the critical current
of the wire would be defined by the weakest junctions in the network. Following
this idea, it is possible that the same dominating junction gets modified multiple
times by the application of IEM pulses, e.g. by a reshaping of the junction or by
the formation of nanoshorts in the barrier.

The KO1 model is valid for a short weak link in the dirty limit (Llink < ξ and
mean free path l0 � Llink). Obviously, the wire lengths are much longer than
the coherence length of ξ ∼ 8 nm. This is still true when taking into account the
possible increase of ξ by a few nanometers through the IEM treatment. The upper
limit of the applicability for the KO1 theory is given by Llink/ξ ∼ 3.49. However,
since the phase will mainly drop over the insulating barriers between the aluminum
grains, the relevant length is highly reduced. If we assume a grain size of 4 nm
and a barrier thickness of 1 nm, the effective wire length is Leff ' Lw/5. This could
even be smaller if a significant portion of the grains is galvanically shorted.

The extracted Ic(Rn) values for the three wires are presented in Fig. 6.7 together
with a comparison to the AB and KO1 models (〈Ic〉 = g′(π4BCS/2e)〈Rn〉−1 with
g′ = 1.32 (KO1, Eq. 2.27) or g′ = 1 (AB, Eq. 2.26)). Here, no fitting parameters were
introduced.
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Figure 6.7: Critical currents, when the wires are in the superconducting regime, compared with the
predicted values from the KO1 theory (black solid line) and AB theory (black dashed line). From Ref.
[Vos+21]

Considering how different the compared systems are, the agreement is surprisingly
good. The observed critical currents are ranging from Ic ∼ 25 nA up to Ic ∼ 500 nA.
This large span, combined with the good adjustibility of Ic, using the IEM method,
makes these nanowires an interesting candidate to be used as key elements in
quantum circuits, operating not only in the QPS regime [Sch21; Sch+20].

6.1.7 Phase diagram

Now that the different regimes, insulating, metallic and superconducting have been
discussed, the transition and the dependencies on the wire parameters will be
examined in more detail. We use the results to construct a tentative phase diagram.
Even though one can smoothly tune through the different regimes, using the IEM
method, at the border between two neighboring regimes a sudden and drastic
change in the I −V characteristics between two Rn values is observed.

Fig. 6.8 shows the extreme change in the transport behavior for the insulating to
metallic (a) and for the metallic to superconducting (b) transition. Of course, one
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Figure 6.8: I − V characteristics of sample A at the phase transitions (between two IEM pulses). (a)
For Rn> 37 kΩ, the response is insulating (blue line), below it is metallic (black line). (b) The second
transition appears at Rn≈ 18 kΩ. Here the behavior again changes abruptly, but now from metallic
(black line) to a superconducting behavior (red line). From Ref. [Vos+21]

can argue that there is a resistance gap between the tuning steps, and that therefore
the smoothness of the transition might only be a matter of resolution. However, in
the course of this work, over fifty wires have been examined and for all samples
the boundary was sharp enough to make a clear distinction.

To construct the phase diagram, we follow the approach from Mooji et al. and
determine the ratios Es/EL at which the insulating to metallic and the metallic to
superconducting transitions occur [Moo+15].

For the transition from insulating to metallic behavior, the ratio can be determined
from the smallest critical voltage in the insulating regime and the corresponding
resistance value. The resulting ratio is Es/EL ≈ 0.02. The transition ratio for the
metallic to superconducting transition is determined from the largest Rn value
in the superconducting regime. At this transition, in the QPS model, the ratio
Es/EL ≈ 10−4.

With these values and assuming that they are common for all wires, we can use
Eq. 2.77 to define the borders between the different regimes (see Sec. 2.10). The
resulting diagram for our nanowires is presented in Fig. 6.9. Here, the resistance
per coherence length (Rξ = Rnξ/Lw) divided by the quantum resistance is plotted
over the wire length in units of ξ. The black solid lines mark the constant Es/EL
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Figure 6.9: Tentative phase diagram for nanowires made from oxidized (granular) aluminum. For
the black lines, the ratio between the phase slip energy and the inductive energy of the wires is
constant for different geometries and specific resistances. The dots represent the altered normal-state
resistances and the colour represents the low temperature state (blue = insulating, gray = metallic,
red = superconducting). Assuming a constant wire geometry and only small changes in the coherence
length, the ratio between Es and EL decreases together with R¸. From the smallest measurable critical
voltages, we find a constant ratio of Es/EL ≈ 0.02 (see Fig. 6.4) for the insulating to metallic transition
(upper black line). The ratio at which the transition, metallic to superconducting, occurs (Es/EL ≈ 10−4,
lower black line), is determined from the smallest Rn values in the superconducting regime. For both
transition lines, the previously determined values of α = 0.07 and β = 0.49 have been used. The black
and gray squares represent the data from Bollinger et al. [Bol+08] and the model is taken from [Moo+15].
From Ref. [Vos+21]

ratios for the crossovers. Samples A, B and C are represented by the dotted lines.
Each point stands for a different resistance value. The small tilt is caused by the
change in coherence length. Even though the wires have rather different lengths,
the transitions are at approximately the same Es/EL ratios. For comparison, the
data for MoGe wires from Bollinger, et al. [Bol+08] (squares) with the proposed
phase separation from Mooji, et al. (dashed line) are added. For these data, it is not
strictly distinguished between insulating and metallic behavior. This explains why
the data for the insulating regime appear in both, the metallic, and the insulating
regime in our diagram.
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The parameters for the dashed line are α ≈ 0.2, β ≈ 0.11 and Es/EL ≈ 0.3, however,
similar good results were achieved with different sets of parameters [Moo+15]. The
reason is the indeterminacy of the empirical parameters α and β. Here, a major
difference to our approach becomes evident. Since we can determine α and β from
a single wire in the insulating regime, the only free parameter is the ratio Es/EL
which can be determined as described above.

In Ref. [Mak+16], the authors were also following the approach from Mooji, et al.
to derive a phase diagram for NbTiN nanowires (also not strictly discriminating
between metallic and insulating behavior). Doing so, they faced the same problem
with the uncertainty of α and β and therefore presented several combinations of
parameters. The parameter range is compatible with the values from Ref. [Moo+15]
and therefore also with our results. This is an indication that the separation of
phases we found for granular aluminum wires is of a more general character and
valid also for wires made from other materials.

An interesting detail of the phase diagram is that it predicts a higher tolerance for
phase slips in the metallic and superconducting state for shorter wires, which we
will use in the double wire experiments.

6.1.8 Temperature dependence of the nanowire resistance
below 3 K

For the discussion up to this point, only measurements at temperatures close to
T = 0 were considered. In the following, we will briefly discuss the temperature
dependence of the transport behavior. For this purpose, we tuned individual
wires through the phase diagram described above by using the IEM method. We
recorded the I-V curves for the different resistances/regimes as a function of the
temperature. The broad spectrum of bias excitations generated in this way also
allows to investigate the bias current dependence of the differential resistance.

Fig. 6.10 shows the R(T) measurements for a 250 nm (a) and a 500 nm (b) long
nanowire for different normal state resistances Rn and at small excitations (<
0.1 nA). The resistance offsets, coming from the leads (∼ 20 kΩ), are not subtracted.

For both wires, we initially find (for large Rn values, dark lines) a strong increase of
the resistance below Tc. At temperatures close to T = 0, we measure clear Coulomb
blockades for these resistances. For the other extreme of rather low resistance
values (bright lines), the samples reveal a superconducting behavior below Tc. At
intermediate resistances, dV/dI approaches constant non zero values, or it can
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Figure 6.10: R(T) dependence for a 250 nm (a) and 500 nm (b) long nanowire for different normal state
resistances Rn. The excitation used is below 0.1 nA. For large resistance values, R(T) increases below
Tc, for small values it decreases. Even though the normal state resistance of the wires is highly reduced,
Tc seems not to change significantly.

even increase again far below Tc. The former behavior is typical for nanowires
with pronounced QPS rate (for an overview see e.g Ref. [Bez12]). The latter is a
signature of a zero bias anomaly (ZBA). Here, dV/dI also strongly depends on
the bias current. Such ZBAs were frequently observed in nanowires of different
materials and shapes, but the origin is rather unclear and still under debate. Possible
explanations include electron heating, localization of quasi particles and interaction
between QPS pairs [RS20; Mei+11; Zai+97].

For Rn values below pronounced ZBAs, we can compare the R(T) dependence
below Tc with the QPS and TAPS (thermally activated phase slips) models, intro-
duced in Sec. 2.9. Above Tc we follow Ref. [Del+12] and compare the resistance
with the Aslamasov-Larkin (AL) model in the 1D limit, describing the additional
contribution to the conductivity which comes from the condensate, that starts
to form close to Tc: (R−1

AL(T)− R−1
n )−1 = 32 Lw

π2

(
h̄/(4e2ξ0)

)
(T/(T − Tc))

−3/2. Fig.
6.11 shows a selection of the R(T) curves from Fig. 6.10 (a), together with fits, using
the AL model for temperatures above Tc, Littel’s fit (Eq. 2.42 with Eq. 2.55) for
temperatures slightly below Tc and the Golubev and Zaikin QPS model for lower
temperatures (Eq. 2.61). For all fits it is assumed that ξ0 = 8 nm and Lw = 250 nm.
The fitting parameters (α, β, a) are of the order of one and were kept constant. The
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Figure 6.11: R(T) curves from Fig. 6.10 (a) together with a comparison to the expected temperature
dependencies of Aslamasov-Larkin (AL), TAPS and QPS models. Above Tc ≈ 1.8 K, the decrease in
dV/dI can be explained for all curves by the AL model. Slightly below Tc, the resistance follows the
typical TAPS behavior. The QPS model fits only for traces with dV/dI � Rn at lowest temperatures.

best fits are obtained for Tc = 1.9 K. In general, Tc seems not to be significantly
affected by the reduction of the wire resistance.

For temperatures above Tc, R(T) can be well explained by the AL model for all
traces. Close below Tc, the curves follow the TAPS behavior, except for lowest
resistances (bright curve). For lower temperatures, QPS start to dominate the
resistance. Here, the QPS model fits best for R(T) behaviors which are flat at
lowest temperatures (see also Fig. 6.10 (b)). For wire resistances, which are roughly
above 30 kΩ the increase in dV/dI (ZBA) is not governed by the model. This is
not surprising since the QPS model used is only applicable when RQPS � Rn. As
stressed before, the nature of the ZBA is still under investigation. In the tentative
phase diagram which was introduced earlier, these curves are associated with the
metallic phase, where neither the phase slip energy nor the inductive energy is
dominating. Interestingly, we observe a trend, that strongly pronounced ZBAs are
more likely in shorter wires (also visible when comparing Fig. 6.10 (a) for the
250 nm wire with (b) for the 500 nm wire). This agrees with the phase diagram
from Fig. 6.9 and is a hint, that the absolute value of dV/dI at temperatures close
to T = 0 and small bias values is related to Es. Overall, the observed transition is
very similar to the one found in Ref. [Mak+16] for NbTiN nanowires. Here, the SIT
transition is also well explained by the change in Es/EL ratio.

97



6 Quantum phase slip experiments with nanowires

V
c 

(m
V

)

T (K)

Figure 6.12: Temperature dependence of the critical voltages. The values are extracted from the I −V
characteristics of the 500 nm long wire. The corresponding R(T) curves, which show rapid increase
below T = Tc, are presented in Fig. 6.10 (b).

6.1.9 Temperature dependence of the critical voltage

To investigate the temperature dependence of the critical voltage, we have extracted
Vc(T) from the temperature dependent I −V curves of the previously discussed
500 nm long wire at different Rn values. The corresponding R(T) curves show a
strong increase below Tc (see Fig. 6.10 (b)).

Fig. 6.12 shows the extracted critical voltages as a function of the temperature. In the
blockade, the measured current for this sample was below 500 fA. At temperatures
close to T = 0, the critical voltage is not significantly affected by an increase
in temperature and we find plateaus. The size of the plateau depends on the
maximum value of Vc. The observed plateaus for lowest temperatures are consistent
with the observations made for NbSi nanowires with pronounced QPS behavior
[Web+13]. For the largest blockade of about 2.3 mV, the comparable thermal energy
is eVc/kB ≈ 27 K, while for the smallest (≈ 0.8 mV) it is 9 K. For higher temperatures,
the critical voltage starts to decrease rapidly until it fully vanishes significantly
before Tc is reached. In general, we have observed no blockades above Tc. An
example for the temperature dependence of a very small Coulomb blockade (Vc <

100 µV) is provided in the discussion of the double wire circuits. The system shows
qualitatively the same behavior but the blockade disappears already below 300 mK.
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6.2 Double wire circuit experiments

Figure 6.13: Optical (left) and electron micrograph (right) image of the double wire circuit. The device
basically consists of two long high impedance on chip leads (colored in blue), two nanowires (colored
in red), a charge island, and a gate electrode (colored in green). The whole structure is made from the
same about 20 nm thick layer of granular aluminum and is placed on a sapphire substrate.

6.2 Double wire circuit experiments

In the previous section, quantum phase slips in single wires were extensively
discussed. In this context, we have seen that the transport behavior can be well
explained using the phase slip model, introduced in Refs. [Zai+97; GZ01; Moo+15].
Now we will explore the interference between phase slips, originating in two dif-
ferent wires. For this purpose, a quantum phase slip interferometer was developed
in this work. The underlying idea for such a device and the principle of operation
are explained in detail in Sec. 2.11.2. An interesting possibility that opens up
with such a device is the investigation of the previously discussed superconductor
to insulator phase transition by means of interference between QPS. The special
feature here is that only the effective phase slip energy of the double-wire system
is varied in a reversible manner. The inductive energy remains constant. Apart
from its meaning for fundamental research, such a device is also interesting for
various applications like transistors, detectors, or for serving as a tunable phase
slip junction.

Experimentally, the exponential dependence of the phase slip energy Es on Rn

can be problematic. For the limit of strong interference, a very high degree of
homogeneity is required. Therefore, even the natural resistance spread, expected
for AlOx nanowires [Bar+22], or small variations in geometry can highly suppress
the possible interference. In previous experiments, this was confirmed to be one
of the major limiting factors [APF21; HZ12]. To overcome this problem, we again
use intrinsic electromigration (IEM), but this time for adjusting the normal state
resistance Rn of two nanowires which are connected in series (Rn = Rn1 + Rn2).
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6 Quantum phase slip experiments with nanowires

Apart from a simple reduction of Rn, due to its character, this method also leads to
increased homogeneity of the circuit (see Sec. 5.2). Following this approach, we
can change the amplitude and ratio of the wires’ phase slip energies Es1, Es2 and
of the kinetic inductances Lk1, Lk2 with the IEM method.

Fig. 6.13 shows an optical (left) and a scanning electron microscope (right) image
of a sample with two 500 nm long wires. The two high impedance input lines are
colored in blue, two nanowires in red, the charge island and the gate electrode in
green. The whole structure is made from a single layer of granular aluminum, using
the double stack process (second process), presented in Sec. 3.3. For all samples,
the sheet resistance is between 2 kΩ and 3 kΩ. A detailed description of the circuit
layout and the chip design can be found in Sec. 4.2.2. A theoretical discussion of
important design parameters is provided in Sec. 2.12.2. The measurements were
performed at 25 mK (unless stated otherwise). The resistance reduction of Rn was
carried out in the same way as for single wires, described in the previous section.

6.2.1 Gate dependent modulation of the critical voltage

To study the gate effect on the transport behavior of the double wire circuits, we
measured the I −V characteristics as a function of the applied gate voltage Vg.

Fig. 6.14 (a) shows the dependency of the critical voltage on Vg for a sample with
two 1000 nm long wires (A) after the resistance was reduced from Rn ≈ 1MΩ
to Rn ≈ 160 kΩ. Exemplary I −V curves for the maximal (Vg = 0 mV, blue) and
minimal (Vg = 49 mV, red) blockade can be found in Fig. 6.14 (b). The measurement
time per trace was ∼ 90 s. In the blockade, the current is below 2 pA and the
transition to the conductive state is very sharp, allowing to precisely determine Vc.

The modulation of Vc is periodic, symmetric around zero gate voltage and has a
sinusoidal shape. The overlaid curve is a fit to the effective threshold voltage for
strongly different QPS amplitudes (e.g. Vc1 � Vc2), using Eq. 2.95. The extracted
parameters are Vc1 = 1.5 mV, a = Vc2/Vc1 = 0.22 and Cg = 6.5 aF, assuming a
periodicity of 2e.

Using these values, the coupling parameter is βs ≈ 0.1, indicating that the modula-
tion strength is rather limited by inhomogeneities than by a weak coupling of the
wires. The blockades correspond to Es(Vg)/EL(Rn) ratios between 6.4 (maximal
constructive interference, ΓQPS ≈ 138 GHz) and 3.9 (maximal destructive interfer-
ence, ΓQPS ≈ 90 GHz). Thus, the device is operating deep in the phase slip regime
(Es � EL).
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Figure 6.14: (a) Critical voltage Vc vs. gate voltage Vg for a sample with two 1 µm long wires (A). The
solid line is a fit to the effective threshold voltage across the circuit, using Eq. 2.95 (Vc1 = 1.5 mV,
Cg = 6.5 aF, a = Vc2/Vc1 = 0.22). Vp = 49 mV. There is no hysteresis between the different scan
directions (dark and bright dots). The maxima correspond to constructive interference, the minima to
destructive interference (indicated with the dashed lines). (b) I −V curves for Vg = 0 mV (blue) and
Vg = 49 mV (red).

6.2.2 Time stability of the Coulomb blockade

To investigate the time stability of Vc, we recorded the I − V characteristics of
sample A at zero applied gate voltage and over a time span of four hours. Fig 6.15
shows a histogram of the extracted critical voltages. The sampling time for the
I − V curves was about 0.04 s (∼ 90 s per trace) and the histogram contains 140
values (7 bins).

The blue curve in Fig. 6.15 is a fit to a Gaussian distribution from which we extract a
median of Vc = 1.787 mV and a standard deviation of 1.3 percent. Thus, the system
is very stable in time and Vc fluctuates on average about two percent around the
gate period, presented in see Sec. 6.2.1. Fluctuations on much shorter time scales
than the measurement time for a single trace will average out and are not visible
in this measurement.

Generally, it can be added that the measured modulations were stable over days. We
see no sudden jumps of the Vc value at constant gate voltage or in the I−V charac-
teristics above Vc, as e.g. can be caused by single electron tunneling [Sch+00]. Many
of the measurements, especially for devices with strongly pronounced Coulomb
blockade, were performed over periods of several hours.
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Figure 6.15: Distribution of critical voltages for sample A at zero applied gate voltage. The measure-
ments are performed over a time span of four hours. The histogram contains 140 values. The blue curve
shows a Gaussian distribution with a median of 1.787 mV and a standard deviation of 1.3 percent.

6.2.3 Temperature dependence of the critical voltage

For small critical voltages (Vc < 100 µV), the Coulomb energy eVc compares to
a thermal energy of a few hundred mK only. Thus, already a small increase in
temperature can cause a smoothing of the transition from the insulating to the
conductive state (see Sec. 2.11.2). To investigate Vc(T) for the double wire circuits,
we measured the I −V curves as a function of the temperature.

Fig 6.16 shows the temperature dependence of the extracted Vc resp. dV/dI values
of a sample with two 500 nm long wires with a common normal state resistance
of Rn ≈ 63 kΩ at Vg = 0. At the base temperature of ≈ 25 mK, we measured
Vc ≈ 63 µV. For lowest temperatures we find a very low sensitivity of Vc regarding T
(the same behavior as presented for single wires in Sec. 6.1.9). Close to T ≈ 280 mK,
the blockade rapidly reduces. For higher temperatures the differential resistance
around zero bias reduces with an increase in T.

The Vc(T) plateau at low temperatures indicates that even for very small blockades,
the measured Vc values are not distorted by thermal effects. This conclusion
gets supported by a relatively weak smoothing around Vc, even for samples with
blockades below 50 µV (see Sec. 6.2.7, Fig. 6.22 (b)).

For the modulation of Vc with the applied gate voltage, we see no smooth transition
from 2e to e periodicity when increasing the temperature (e.g. seen for Cooper pair
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Figure 6.16: Temperature dependence of Vc (upper panel) and dV/dI around zero bias (I < 0.3 nA)
(lower panel) for a double wire circuit with two 500 nm wires (Rn ≈ 63 kΩ). At T ≈ 280 mK, the
blockade fully vanishes. For all samples, Tc ≈ 1.8 K.

transistors in Ref. [Joy95]) but a strong decrease of the modulation strength. A pos-
sible reason, why we don’t see such a transition is the suppression of quasi particle
poisoning due to the high impedance leads. However, the temperature dependence
of the modulation was not studied in detail and needs further investigation.

6.2.4 Resistance dependence of the critical voltage and the
gate modulation

In the following, we will discuss the effect of resistance changes in Rn on Vc and
on the periodicity of Vc(Vg).

Fig. 6.17 shows the I −V (a) curves and the extracted critical voltages as a function
of the applied gate voltage (b) of a sample with two 500 nm long wires (B) for three
different Rn values (300 kΩ (blue), 230 kΩ (red), 180 kΩ (green)). The dashed lines in
Fig. 6.17 (b) are fits to Eq. 2.95 from which a common gate capacitance of Cg = 8.9 aF
is extracted. The modulation strength a increased from 0.12 (Rn ≈ 300 kΩ) to 0.28
(Rn ≈ 180 kΩ). An overview of all extracted parameters and associated values for
the ratio between Es and EL is given in table 6.2.

The strong decrease of the maximum threshold voltage (from 5 mV to 1.5 mV)
together with the reduction of Rn fits the expectations from the phase slip model,
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Figure 6.17: (a) I −V characteristics for sample with two 500 nm long wires (B) at different Rn values
and at different applied gate voltages. The Rn values are 300 kΩ (blue), 230 kΩ (red), 180 kΩ (green). (b)
Extracted critical voltages vs. gate voltage. The dashed lines show fits, using Eq. 2.95.

presented for various wire lengths in Sec. 2.12.2. As the modulation frequency
remains the same for the different Rn values, the effective island size seems not
to be affected by the resistance tuning with the IEM method. This observation
provides a hint, that the charge island is well defined at the intended location in
between the wires.

Apart from the technical advantages, resulting from the tunability, the possible
large range of wire resistances also can help to distinguish the effect of the inter-
ference of QPS from other effects that could cause a gate dependent oscillation of
a Coulomb blockade, e.g., Coulomb blockades due to single Josephson junctions
(gate dependent electron tunneling) [CW94; Hav+91].

The increase in the modulation strength Vc2/Vc1 (from 0.12 to 0.28) can be explained
by an increased wire homogeneity of the resistance. Assuming that both wires have
the same geometry, one can make a rough estimate (using Eq. 2.76) for the ratio of
the single wire resistances at Rn = 180 kΩ: Rn2/Rn1 ≈ 0.6. Here, we can already
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Table 6.2: Extracted parameters for three different common wire resistances Rn (sample B): Rn is the
common normal state resistance of both wires. The values for the critical voltages and gate capacitances
are extracted from the fits, presented in Fig. 6.17 (b). The sheet resistance of the granular aluminum
film used for the fabrication of this sample was measured with a larger test structure to be R� ≈ 2.5 kΩ.

Rn Vc,min Vc,max Cg/dVg
Vc2
Vc1

Es,min
EL

Es,max
EL

300 3.5 mV 5 mV 8.9 aF / 36 mV 0.12 7 10
230 2.6 mV 3.9 mV 8.9 aF / 36 mV 0.22 5 8
180 0.9 mV 1.5 mV 8.9 aF / 36 mV 0.28 2 3

see the expected increased sensitivity to a difference in resistance for smaller Rn

values, discussed in Sec. 2.12.2 (Fig. 2.20).

6.2.5 Resistance dependence of the two wire homogeneity

For virgin samples (not treated with IEM), we found strong Coulomb blockades
of a few mV but only a weak reaction to the applied gate voltage. This changed
dramatically after first gentle treatments with current pulses. This behavior can
be explained by the increased homogeneity. Initially, very few weak junctions
dominate the properties of the single wires, leading to large differences in phase
slip amplitudes and inductances. By treating the samples with IEM pulses, these
dominating junctions die more and more out (see also Sec. 5.2).

For the implemented configuration, only the sum of Rni (Rn = Rn1 + Rn2) can be
measured directly. The single wire resistances can only be determined indirectly
from Vc(Vg) measurements after several gradual resistance changes of the same
device. The common function Vc(Rni) can be derived by solving the equations

Vc1 + Vc2 = Vc(hRn/(1 + h)) + Vc(Rn/(1 + h)) (6.1)

for a set of Rn values numerically. Here, we have introduced the two wire homo-
geneity h = Rn2/Rn1.

Fig. 6.18 (a) shows the maximum expected threshold voltage for different wire
lengths Lw vs. the common normal state resistance Rn together with a comparison
to the measurements of a sample with two 300 nm long wires (D) (at zero gate
voltage, see also Fig. 6.18 (c)). For the theory curves Eq. 2.76 is used and perfect
symmetry for the wires is assumed (Rn1 = Rn2). The green dashed line marks the
ratio Es/EL ≈ 0.02 at which the transition from insulating to metallic behavior was
found for single wires in the previous section. The gate voltage dependencies after
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Figure 6.18: (a) Expected Coulomb blockade of two wires in series as a function of the common normal
state resistance Rn (see also Fig. 2.19). The dots represent different iterations of sample D, with two
300 nm wires. The modulation with applied gate voltage is shown in the inset. For the smallest Rn

value, the device switches between insulating and metallic regime (discussed separately in Sec. 6.2.7).
Es/EL = α0 = 0.02 marks the expected transition from the insulating to the metallic regime. (b) Gate
capacitances vs. Rn, determined from the gate modulation with fits using Eq. 2.95. The mean value
of Cg ≈ 4.5 aF is represented by the dashed line. (c) Critical voltage of the circuit at zero applied gate
voltage vs. Rn.

each IEM run are presented in the inset. For all Rn values, the periodicity remains
approximately the same (Cg ≈ 4.5 aF, see Fig. 6.18 (c)). For the smallest Rn value
(41 kΩ, Vc(Vg = 0) ≈ 90 µV) a gate driven switching between an insulating and a
conductive state is observed, which will be discussed separately.

These measurements provide a set of five equations (Eq. 6.1) for the determination
of Vc(Rni). Using Eq. 2.76 for Vc(Rni), we find the common function for α ≈ 0.17
and β ≈ 0.59. This is in very good agreement with the previously found values
from single wire measurements. Fig. 6.19 shows the single wire critical voltage
as a function of the single wire resistance together with the determined function
Vc(Rni) (blue solid line). Vc1,2 is determined from fits to the gate modulation, the
Rni values are determined from the Vc(Rni) function. The modulation strength
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Figure 6.19: Critical voltages of the single wires as a function of the single wire resistance (sample
D). The Vci values are extracted from the modulation, the Rni values are determined from the Vc(Rni)

function (α ≈ 0.17 and β ≈ 0.59). The inset shows the modulation strength a = Vc2/Vc1 as a function of
Rn for different homogeneities h = Rn2/Rn1. The dots are the measured values.

a = Vc2/Vc1 vs. Rn for the different homogeneities is presented in the inset. The
dots represent the measured values from the modulation, presented in Fig. 6.18 (a).

From this analysis we find an increase of the double wire homogeneity from 0.2
to about 0.8 for a reduction of Rn from ≈ 220 kΩ to ≈ 44 kΩ. The corresponding
mean value of the double wire sheet resistance at Rn ≈ 44 kΩ is ≈ 1.5 kΩ which
is roughly 1 kΩ below the measured film sheet resistance (determined with large
test structures). The large difference between the homogeneity and the modulation
strength is explained by the enhanced sensitivity to wire inhomogeneities for small
phase slip amplitudes (see Sec. 2.12.2). For the smallest Rn value of this device
(41 kΩ), we estimate from the Vc(Vg) range in the insulating regime a h > 0.9.

6.2.6 Homogeneity of the two wire circuit in dependence of
the current pulses

Fig. 6.20 displays the increase of the homogeneity from ≈ 0.2 up to ≈ 0.9 with the
application of IEM pulses with amplitudes up to Ip = 82 µA, found for sample
D. Initially, almost exclusively, the resistance of wire 1 is reduced. The evolution
of the common wire resistance Rn with increasing current pulses is presented in
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Figure 6.20: Homogeneity vs. amplitude of the IEM pulse Ip for sample D (2× 300 nm wires). For
increasing amplitudes, the single wire resistances more and more approach similar values. The inset
shows the reduction of the common normal state resistance.

the inset. Prior to the application of any IEM pulses, Rn for this sample was above
1 MΩ and no gate modulation was observed.

For the presented Rn(Ip) values, the decrease in resistance with increasing pulse
amplitude is rather linear. For Ip values � 50 µA we observed the same rapid
change as for single wires (presented in Sec. 6.1.1). For samples that were fabricated
from the same granular aluminum film and shared the same wire length, we found
similar values for Rn(Ip) for Ip > 70µA, indicating a rather low device to device
variation of the geometric shape of the wires.

In general, it can be said that a strong increase in homogeneity was observed in
practically all samples measured. This also matches the observations made during
test measurements on serial arrays, which allowed the single-wire resistance to
be measured directly. Here, homogeneities of well over 90 percent are achieved.
Interestingly, in some cases a saturation of homogeneity can be observed. Once this
maximum value is reached, the resistances of both wires are uniformly reduced
and the homogeneity oscillates around a constant value. Naturally, an upper bound
is also given by the degree of equality of the geometric shapes.
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6.2.7 Gate dependent transport transition from insulating
to metallic

For a very high degree of homogeneity and/or small Vc(Vg = 0) values, we observe
not only a modulation of the threshold voltage with Vg, but also a periodic switching
to a conductive state. Below we discuss this gate driven transition from insulating
to a metallic behavior and compare it with the resistance driven transition for
single wires discussed in Sec. 6.1.7.

Transition for a circuit with two 300 nm long wires

For the smallest resistance value of sample D (Rn = 41 kΩ, Vc(Vg = 0) ≈ 90 µV) a
periodic switching between blockade and metallic-like behavior is observed. The
gate dependent I −V characteristics are presented in Fig. 6.21 (a). The gray lines
are fits to the resistive branch at larger bias values from which we extracted Rn. For
comparison, the minimal differential resistance (≈ 1.5 MΩ) in the metallic regime
around zero bias (I < 30 pA) is added (red dashed line). I−V curves for insulating
and metallic behavior at small bias values are shown in 6.21 (b). For the metallic
state, instead of Vc, the slope around zero bias changes with Vg.

The smallest critical voltage before the switching to the metallic regime is ≈
30 µV which corresponds to Es/h ≈ 2.3 GHz. Thus, we find a transition ratio of
Es(Vc,min)/EL(Rn) ≈ 0.022, which agrees well with the transition ratio α0 ≈ 0.02,
found in the single wire experiments. This supports the expectation, that the two
strongly coupled wires behave like a single wire with a gate tunable phase slip
energy. This also explains the much higher Rn value, compared to the resistance
of single wires with similar lengths (as both wires together) at the insulating to
metallic transition (see table 6.1).

Transition for a circuit with two 500 nm long wires

A more pronounced switching between insulating and metallic regime was found
for a sample with two 500 nm long wires (C) and a common wire resistance of
Rn ≈ 56 kΩ.

Fig. 6.22 (b) shows I −V curves for the largest blockade (≈ 37µV, upper graph)
and the smallest differential resistance (dV/dI ≈ 40 kΩ, lower graph). Fig. 6.22 (a)
presents the extracted gate dependent Vc(Vc,min) and dV/dI(Vg) values for a gate
up (blue) and a gate down (red) sweep. The blockade range in the I − V curves
is defined by the current noise in the blockade of ∼ 8 pA. Due to the rounding
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Figure 6.21: (a) Development of the I − V characteristics with Vg (sample C, Rn = 41 kΩ, see also
Fig. 6.18 (a)). Darker lines correspond to smaller gate voltages, brighter to higher. At Es/EL ≈ 0.02
(dVg ≈ 35 mV, Vc ≈ 30 µV), the device switches to a conductive state. (b) Examples for insulating and
metallic I −V curves at small bias values. The colors correspond to the colorbar from (a).

close to V = Vc, the error for the blockade values is relatively large. A possible
explanation for the smoothing are finite temperature effects, which become more
pronounced at such small blockades where the thermal energy is of the same
order of magnitude as eVc [EN21]. In both regimes, the change in Vc resp. dV/dI
develops smoothly with the gate voltage.

From the modulation pattern in Fig. 6.22 (a), we find a peak to peak gate voltage of
∼ 220 mV and therefore, assuming a 2e periodicity, a gate capacitance of Cg ≈ 1.5 aF.
This value is significantly smaller than the values which were observed for other
samples with similar geometry (∼ 4 aF to 5 aF). Thus, the deviation cannot be
explained by simple fluctuations between individual fabrication runs. A possible
explanation is an effect of the dynamic capacitances of the nanowires, which
increase with 1/Vc and for this sample are in the range of a few fF. Interestingly,
there seem to be extreme deviations in the values for the maxima and minima.
Simple explanations could be charge noise, which is more visible in these extreme
regions, or a parity effect of the charge number on the island, similar as it has been
seen in spectroscopy measurements in Ref. [Gra+18]. In the interference picture,
a sudden switching between the two extremes is associated with a π phase jump
caused by adding a charge of e onto the island.
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Figure 6.22: (a) Vc vs. Vg (upper panel) and dV/dI vs. Vg (lower panel). The values are extracted from
the gate dependent I − V curves of sample C (2× 500 nm wires, Rn ≈ 56 kΩ). The device switches
periodically (Vp ≈ 220 mV) between insulating and metallic behavior. (b) Exemplary I −V curves for
both extremes. The upper panel shows a clear Coulomb blockade of Vc(Vg = 200 mV) ≈ 37µV, the
lower an I −V curve with a dV/dI ≈ 40 kΩ around zero bias.

With the smallest blockades being ≈ 18 µV, the associated phase slip rate Es/h
is about 1.4 GHz (one GHz below the value for sample D) at the transition from
the insulating to the metallic regime. Using Rn ≈ 56 kΩ, we find a transition
ratio of Es(Vc,min)/EL(Rn) ≈ 0.0185, which is in good agreement with the values
found from sample D and in the single wire experiments. The observation that the
switching to the conductive state appears at smaller Vc values, in comparison to
sample D, agrees with the expectation that α0 is shifted towards smaller blockades
for longer wires (see Sec. 2.12.2).

6.2.8 Gate dependent transport transition from insulating
to superconducting

The charge-induced transition can even be more extreme than the one from insu-
lating to metallic, discussed above. Also a switching between an insulating state
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Figure 6.23: Raw data of the gate voltage dependent I −V characteristics for a sample with two 300 nm
wires and Rn = 130 kΩ (E), measured with voltage bias scheme (a) and current bias scheme (b). The
gate voltage range is half the period of the modulation, presented in Fig. 6.24 (a), and is the same for
both measurements.

with critical voltages Vc(Vg) and a superconducting state with switching currents
ISW(Vg) can be observed.

Fig. 6.23 shows the gate dependent I − V characteristics for a sample with two
300 nm wires and Rn = 130 kΩ (E), measured with a voltage bias scheme (a) and a
current bias scheme (b). The gate voltage range is the same for both measurements.
It is half a period of the modulation frequency. From the IV curves measured with
voltage bias Vc(Vg) is determined (the current in the blockade is below 400 fA).
The gate dependent critical currents ISW(Vg) are extracted from the current bias
measurements.

Fig. 6.24 (a) presents the extracted Vc(Vg) and ISW values for a larger range of
gate voltages. With peak values for Vc of about 0.5 mV and a corresponding phase
slip rate of ΓQPS ≈ 50 GHz, the device operates for constructive interference deep
in the QPS regime. For destructive interference on the other hand, it switches
at some point to the phase regime (Es � EL), manifesting as switching currents
with values up to 2 nA. Single traces for both extremes are shown on the right
panels of Fig. 6.24 (b). For the superconducting regime, we have no good measure
for the phase slip rate anymore and it is not clear what is limiting the maximal
critical current. Nevertheless, for the sake of completeness, we can make the same
comparison between the expected values from Ambeogaokar-Baratoff (AB)/Kulik-
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Figure 6.24: Gate induced periodic (Vp ≈ 100 mV) switching between insulating and supercurrent
regime for sample E: (a) Shows how the switching current (upper) and critical voltage (lower) evolve
with the the applied gate voltage. (b) Presents exemplary I −V curves for both regimes, measured in
either a current bias scheme (supercurrent regime) or a voltage bias scheme (insulating regime).

Omel’yanchuk (KO1) relations and the maximum measured critical current, as it
was done in the previous section for single wires. The values are 3 nA (AB) and
4.3 nA (KO1) which compare surprisingly well with the measured ≈ 2 nA.

The periodicity of Vp ≈ 100 mV compares well with the values from other samples
sharing the same design. However, the shape of the modulation is rather different.
A possible explanation for the discrepancy to the ordinary sinusoidal modula-
tion is the formation of a parasitic charge island (e.g. by a cluster of strongly
coupled grains), leading to a system where interference between more than two
QPS junctions becomes relevant and thereby to a more complex interference pat-
tern [Gra20; Pop+12]. However, expectable values for the coupling capacitance of
such a parasitic island do not really fit with the modulation frequency since they
are expected to be at least an order of magnitude smaller (when located in the
nanowire). Another reason could be the existence of uncontrolled charged defects
on the surface of the nanowires, leading to random phase offsets between different
segments [Moo+15].
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6 Quantum phase slip experiments with nanowires

Figure 6.25: (a) Optical image of a double wire circuit with readout resonator. The resonator is colored
in red, and the structure below is a microwave feedline (blue). The upper part is the same as for the
devices discussed before. (b) Simplified circuit diagram: C0, Cc and Cg are the self-capacitance of the
island, the resonator coupling capacitance and the gate capacitance. The common kinetic capacitance to
ground across both wires is represented by Ckin(Vg). Cr and Lr are the capacitance and the inductance
of the resonator.

In summary, we observe not only a transition from insulating to metallic regime but
also a transition from insulating to superconducting regime. We thus find the same
regimes and transitions as previously described in the single wire experiments but
now for much higher Rn values and driven by the interference of QPS. Also, the
value for the ratio Es/EL (≈ 0.02) at the transition point from insulating to metallic
behavior seems to remain valid for the double-wire system. This is consistent with
expectations that two strongly coupled wires should behave like a single one with
a gate-dependent phase slip energy.

6.2.9 Resonator readout of the nanowire interference circuit

For some of the devices, a capacitively coupled λ/2 readout resonator was added.
The resonators are made from the same layer of granular aluminum as the rest of
the device and typically have resonance frequencies between 6 GHz and 8 GHz.
Fig. 6.25 (a) shows an optical image of a sample with a readout resonator. The
upper part is analogous to the devices discussed before. The resonator is colored
in red, the blue colored structure below is an aluminum microstrip feedline.

The principle of operation is as follows: If both wires are strongly coupled, and
the leads are set to ground, the parallel kinetic capacitances to ground can be
modeled as a common kinetic capacitance to ground Ckin(Vg), which depends on
the induced charge on the island. Therefore, the effective island capacitance to
ground can be controlled by the gate voltage and the interference becomes visible
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Figure 6.26: (a) Resonator frequency as a function of the applied gate voltage (leads set to ground).
The modulation is around f0 ≈ 7.588 GHz, periodic and has a span of ∼ 12 MHz. The red curve shows
the modulation frequency found in the DC characterization. (b) Critical voltages as a function of Vg,
extracted from the DC characterization of the same device. The red curve is a fit to Eq. 2.95 from which
one finds Cg1 ≈ 4.2 aF and a = Vc2/Vc1 ≈ 0.26. (c) Values for the kinetic capacitances (Ckin = e/(πVc)),
associated with the Vc values from (b).

as a frequency shift of the capacitively coupled resonator. A simplified circuit
diagram is presented in Fig. 6.25 (b). C0, Cg are the self-capacitance of the island
and the gate capacitance. Cc is the coupling capacitance to the readout resonator,
which is designed symmetrically to the DC gate coupling. Therefore, it can be
assumed that Cc ≈ Cg. Lr and Cr are the inductance and the capacitance of the
resonator.

Fig. 6.26 (a) shows the modulation of the resonance frequency with the applied gate
voltage for a sample with two 300 nm long wires (Rn ≈ 50 kΩ). The modulation is
periodic around f0 ≈ 7.588 GHz and the maximal frequency shift is ≈ 12 MHz. The
rather large linewidth is explained by the strong coupling to the feedline (Qc ∼ 200).
We also observed an increased gate and current noise for measurements with
enabled low temperature HEMTs (high-electron-mobility transistors) amplifiers.
This might be due to a ground issue and can explain the noise on the signal for RF
measurements.
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6 Quantum phase slip experiments with nanowires

The Vc(Vg) values from the DC characterization for the same device at the same Rn

value are presented in Fig. 6.26 (b). Here, the modulation of the critical voltages is
between Vc ≈ 90 µV (7 GHz) and Vc ≈ 170 µV (13 GHz). The red curve is a fit, using
Eq. 2.95. To account for a small parasitic modulation with much larger periodicity,
an additional term is added (Cg2 ≈ 0.2 aF). Fig. 6.26 (c) gives the associated values
for the kinetic capacitance (Ckin = 2e/(2πVc)). The kinetic capacitance varies
between ∼ 300 aF and ∼ 600 aF. Using these values as a basis for simulations, we
find a frequency range for the shift of the readout resonator between 10 MHz and
20 MHz, which is in good agreement with the measured modulation (see Sec. 4.2.2).

Change from capacitive coupling to inductive coupling

If the resistance of the two nanowires Rn is reduced until one or both wires are
in the superconducting regime, the common kinetic capacitance disappears. For
this case, the two DC leads are connected to the island via the wire inductances
and the capacitive coupling to ground turns into an inductive coupling. This
change in coupling is illustrated in Fig. 6.27 (b) and (c). Here, ZL are the lead
impedances (∼ 8 kΩ), Lki are the kinetic inductances of the wires and Cki are the
kinetic capacitances of the wires.

Fig. 6.27 (a) shows the resonances of the readout resonator at Rn ≈ 50 kΩ (blue,
Vc ≈ 170 µV) and Rn ≈ 14 kΩ (red, Ic ≈ 80 nA). The dashed lines are Lorenzian fits
from which we extract f0 ≈ 7.588 GHz and f ′0 ≈ 7.552 GHz.

The change in resonance frequency is about 36 MHz and therefore three times
higher than the previously observed gate modulation. This jump to a lower reso-
nance frequency can be explained by the additional inductance, the resonator sees.
The decrease in the depth of the resonance dip can have its reason in the stronger
coupling to ground.
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Figure 6.27: Frequency shift of the readout resonator: The blue curve shows the resonance dip at
Rn ≈ 50 kΩ (Vc ≈ 170 µV), the red curve at Rn ≈ 14 kΩ (Ic ≈ 80 nA). Both curves are measured at
Vg = 0. The dashed lines are Lorenzian fits to determine the resonance frequency. The right panels
illustrate the different couplings to ground. If both wires are in the insulating regime, they have a
kinetic capacitance Cki (a). If the wires are in the superconducting regime, Cki disappears and the
coupling turns into an inductive one through the kinetic inductances Lki . ZL represent the on chip lead
impedances.

6.2.10 Concluding remarks

Conclusively, we will discuss the parameter range, covered in the presented exper-
iments, and summarize important findings.

Fig. 6.28 shows the Vg and Rn dependent Es/EL range for samples A to E. The
different points for fixed parameters correspond to different Vg values. For samples
that have shown a switching between insulating and metallic/superconducting
regimes, only values in the insulating region are shown (for the other values, there
is no measure for Es anymore).

The range for Es/EL ratios is from 28 down to about 0.02, with critical voltages
ranging from ≈ 5 mV down to ≈ 18 µV. Thus, we find the same lower limit for
the Es/EL ratio as for single wires. Also the Vc(Rn) (at Vg = 0) dependency agrees
well with the results from single wire measurements.

The extracted gate capacitances are all in the same range and scale with the
geometry (e.g. sample B has a larger island size, and the gate electrode is closer to
the island, compared to sample D). The values are below the calculated values of a
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Figure 6.28: Operation range of samples A to E in the insulating regime. The critical voltage range is
from ∼ 5 mV down to ∼ 18 µV and the Es/EL ratios are between ≈ 28 and ≈ 0.02 (α0). The upper x-axis
provides the associated phase slip rates. The different points for each sample/iteration correspond to
different applied gate voltages (the effective phase slip energy of the double-wire system is reduced
reversely by interference, indicated by the double-sided arrow). The table in the inset provides the
sample name (introduced during the discussion), the double wire resistance Rn, the wire length and
the gate capacitance (extracted from the gate dependent Vc modulation).

few ten aF, but in accord with measured values for similar geometries (e.g. in Refs.
[Kru+01; HZ12]). Thus we can conclude that the charge island seems to be well
defined and is not significantly affected by the IEM tuning.

Fig. 6.29 shows the corresponding coupling parameter for all samples/iterations.
Here the largest value is 0.5 and the smallest is about 10−4 (C0 � Cg). Thus, most
samples are operating deep in the strong coupling limit βs � 1. For a single device,
βs can reduce by more than one order of magnitude when reducing Rn (e.g. for
sample D from βs ≈ 0.12 down to βs ≈ 0.004).

Regarding the homogenization of the wires, we find that values of well above
Rn2/Rn1 = 0.9 for a sufficient IEM treatment are possible for the wires investigated
here. For small blockades (Vc < 100 µV), the kinetic capacitances of the wires can
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Figure 6.29: Coupling parameter βs for samples A to E as a function of the critical voltage (Vg = 0). For
the calculation, the self-capacitance of the island is neglected. Different symbols and colors are related
to the table in Fig. 6.28. The largest βs is about 0.5, the smallest about 10−4. Most devices (iterations of
devices) are operating deep in the strong coupling limit (βs � 1).

reach values well above fF, which is almost two orders of magnitude larger than
what is achievable by typical Al/AlOx/Al junctions of the same diameters as that
of the wires crosssections [Dep+04].

In general, we observe that it tends to be easier to observe switching between
regimes for devices with shorter wires. For longer wires, on the other hand, smaller
blockades can be achieved. This observation is consistent with the expectations
from the phase diagram derived in the preceding section (see also Fig. 2.20).
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7 Conclusion

In this work, we have investigated the phenomenon of quantum phase slips in
superconducting nanowires, made from granular aluminum. For this purpose, in a
first step, a new technique has been developed which allows for gradual resistance
changes of the normal state resistance by orders of magnitude, at millikelvin
temperatures, in-situ, and without changing the geometric shape of the wire. By
the application of small current pulses, the wire’s intrinsic network of Josephson
junctions is modified, leading to a reduction in the normal state resistance. As a
consequence, important properties in the superconducting state, such as the kinetic
inductance or the fluctuation rate of the superconducting order parameter can
be adjusted precisely and over a wide range. Due to its character, we named it
intrinsic electromigration (IEM).

The new degree of freedom that has thereby been generated allowed us to probe and
confirm the microscopic theory for quantum phase slips in the insulating regime,
developed by Zaikin, Goulubev and Mooji (ZGM), for its applicability to the wires
at hand [Vos+21]. Investigating the transport behavior for single wires over a large
range of normal state resistances, we find an insulating to metallic and a metallic to
superconducting (I-M-S) transition. In the insulating and superconducting regime,
the normal state resistance defines the critical voltage resp. the critical current,
while in the metallic regime it controls the nonlinear conductance around zero bias.
To derive a phase diagram, we follow the approach from Mooij and co-workers
in the spirit of the duality between quantum phase slip junctions and Josephson
junctions and separate the regimes by certain ratios between phase slip energy
and inductive energy. The shapes of the transition lines are thereby well defined
from the comparison with the QPS model in the insulating regime. The resulting
diagram is well consistent with results found for MoGe nanowires in Ref. [Moo+15]
and NbTnN wires from Ref. [Mak+16], indicating a more general character.

In the second part of this work, we use the knowledge gained from the single wire
experiments to develop a quantum phase slip interferometer. This allows us to
probe the coherent character of quantum phase slips but also gives new access to
the exploration of the I-M-S transition, observed for single wires.
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7 Conclusion

Our experimental realization includes two long (L � ξ0) nanowires, which are
strongly coupled by a small charge island in between. The interference is controlled
by a gate induced charge and caused by the Aharanov Casher effect. The serial
arrangement of the wires allows to use the IEM method to adjust the energetic
operating point of both wires simultaneously. This creates the possibility to study a
large range of wire impedances for a single device. Apart from a simple reduction
of the wire resistances, also the homogeneity of the circuit gets highly increased
with this procedure, which is particularly important for the investigation of strong
interference effects and the limit of small phase slip amplitudes.

In the insulating regime, where the effective phase slip energy of the double wire
system is much larger than the inductive energy, the interference is visible as a
periodic modulation of the critical Coulomb blockade voltage. For small blockades
or a high degree of homogeneity, we observe a switching between insulating and
metallic or even superconducting regimes. Thus, we find the same I-M-S transition
as for single wires, but at much larger wire resistances. The observations are in well
accord with the derived phase diagram, since here, in contrast to the single wire
experiments, the effective phase slip energy of the system is reduced by interference
of phase slips, and therefore in a reversible manner.

To investigate the kinetic capacitance of the wires more directly, we have developed
a second circuit design, which includes an additional readout resonator, capacitively
coupled to the charge island. Here, the gate induced charge defines the common
kinetic capacitance of both wires to ground and the interference becomes visible as
a frequency shift of the resonator.

122



Bibliography

[ACC66] B. Abeles, R. W. Cohen, and G. W. Cullen: Enhancement of Supercon-
ductivity in Metal Films. Phys. Rev. Lett. 17 (1966), pp. 632–634. doi:
10.1103/PhysRevLett.17.632 (cit. on p. 50).

[AB59] Y. Aharonov and D. Bohm: Significance of Electromagnetic Potentials in
the Quantum Theory. Phys. Rev. 115 (1959), pp. 485–491. doi: 10.1103/
PhysRev.115.485 (cit. on p. 15).

[AC84] Y. Aharonov and A. Casher: Topological Quantum Effects for Neutral
Particles. Phys. Rev. Lett. 53 (1984), pp. 319–321. doi: 10 . 1103 /

PhysRevLett.53.319 (cit. on pp. 15, 16, 37).

[AHB12] A. Allain, Z. Han, and V. Bouchiat: Electrical Control of the Superconducting-
to-Insulating Transition in Graphene–Metal Hybrids. Nature Materials 11.7
(2012), pp. 590–594. doi: 10.1038/nmat3335 (cit. on p. 89).

[Alt+06] F. Altomare, A. M. Chang, M. R. Melloch, Y. Hong, and C. W. Tu:
Evidence for Macroscopic Quantum Tunneling of Phase Slips in Long
One-Dimensional Superconducting Al Wires. Phys. Rev. Lett. 97 (2006),
p. 017001. doi: 10.1103/PhysRevLett.97.017001 (cit. on pp. 1, 18).

[AB63a] V. Ambegaokar and A. Baratoff: Tunneling Between Superconductors.
Phys. Rev. Lett. 10 (1963), pp. 486–489. doi: 10.1103/PhysRevLett.
10.486 (cit. on pp. 12, 69).

[AB63b] V. Ambegaokar and A. Baratoff: Tunneling Between Superconductors.
Phys. Rev. Lett. 11 (1963), pp. 104–104. doi: 10.1103/PhysRevLett.
11.104 (cit. on pp. 12, 69).

[AD64] P. W. Anderson and A. H. Dayem: Radio-Frequency Effects in Supercon-
ducting Thin Film Bridges. Phys. Rev. Lett. 13 (1964), pp. 195–197. doi:
10.1103/PhysRevLett.13.195 (cit. on p. 21).

[AR63] P. W. Anderson and J. M. Rowell: Probable Observation of the Josephson
Superconducting Tunneling Effect. Phys. Rev. Lett. 10 (1963), pp. 230–232.
doi: 10.1103/PhysRevLett.10.230 (cit. on p. 10).

123

https://doi.org/10.1103/PhysRevLett.17.632
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1103/PhysRevLett.53.319
https://doi.org/10.1103/PhysRevLett.53.319
https://doi.org/10.1038/nmat3335
https://doi.org/10.1103/PhysRevLett.97.017001
https://doi.org/10.1103/PhysRevLett.10.486
https://doi.org/10.1103/PhysRevLett.10.486
https://doi.org/10.1103/PhysRevLett.11.104
https://doi.org/10.1103/PhysRevLett.11.104
https://doi.org/10.1103/PhysRevLett.13.195
https://doi.org/10.1103/PhysRevLett.10.230


Bibliography

[APF21] M. S. Anwar, J. A. Potter, and J. C. Fenton: Gate-controlled conduc-
tance of superconducting NbN nanowires: coherent quantum phase-slip or
Coulomb blockade? Superconductor Science and Technology 34.11 (2021),
p. 115018. doi: 10.1088/1361-6668/ac2997 (cit. on pp. 45, 99).

[AB11] T. Aref and A. Bezryadin: Precise in Situ Tuning of the Critical Current of a
Superconducting Nanowire Using High Bias Voltage Pulses. Nanotechnol-
ogy 22.39 (2011), p. 395302. doi: 10.1088/0957-4484/22/39/395302
(cit. on p. 86).

[AGZ08] K. Arutyunov, D. Golubev, and A. Zaikin: Superconductivity in one
dimension. Physics Reports 464.1-2 (2008), pp. 1–70. doi: 10.1016/j.
physrep.2008.04.009 (cit. on pp. 1, 18, 24).

[AL22] K. Y. Arutyunov and J. S. Lehtinen: Arutyunov and Lehtinen Reply: Phys.
Rev. Lett. 128 (2022), p. 159702. doi: 10.1103/PhysRevLett.128.

159702 (cit. on p. 87).

[Aru+12] K. Y. Arutyunov, T. T. Hongisto, J. S. Lehtinen, L. I. Leino, and A. L.
Vasiliev: Quantum phase slip phenomenon in ultra-narrow superconducting
nanorings. Scientific Reports 2.1 (2012), p. 293 (cit. on pp. 1, 49).

[ALR16] K. Arutyunov, J. Lehtinen, and T. Rantala: The quantum phase slip
phenomenon in superconducting nanowires with high-impedance environ-
ment. Journal of Superconductivity and Novel Magnetism 29.3 (2016),
pp. 569–572. doi: 10.1007/s10948-015-3298-9 (cit. on p. 65).

[Ast+12] O. V. Astafiev, L. B. Ioffe, S. Kafanov, Y. A. Pashkin, K. Y. Arutyunov,
D. Shahar, O. Cohen, and J. S. Tsai: Coherent quantum phase slip. Nature
484.7394 (2012), pp. 355–358. doi: 10.1038/nature10930 (cit. on pp. 1,
49).

[AR70] M. J. Attardo and R. Rosenberg: Electromigration Damage in Aluminum
Film Conductors. Journal of Applied Physics 41.6 (1970), pp. 2381–2386.
doi: 10.1063/1.1659233 (cit. on p. 71).

[Bac+15] N. Bachar, U. Pracht, E. Farber, M. Dressel, G. Deutscher, and M.
Scheffler: Signatures of Unconventional Superconductivity in Granular
Aluminum. Journal of Low Temperature Physics 179 (2015). doi: 10.
1007/s10909-014-1244-z (cit. on p. 52).

[BCS57] J. Bardeen, L. Cooper, and J. Schrieffer: Microscopic Theory of Super-
conductivity. Physical Review 106.1 (1957), pp. 162–164 (cit. on pp. 5,
8).

124

https://doi.org/10.1088/1361-6668/ac2997
https://doi.org/10.1088/0957-4484/22/39/395302
https://doi.org/10.1016/j.physrep.2008.04.009
https://doi.org/10.1016/j.physrep.2008.04.009
https://doi.org/10.1103/PhysRevLett.128.159702
https://doi.org/10.1103/PhysRevLett.128.159702
https://doi.org/10.1007/s10948-015-3298-9
https://doi.org/10.1038/nature10930
https://doi.org/10.1063/1.1659233
https://doi.org/10.1007/s10909-014-1244-z
https://doi.org/10.1007/s10909-014-1244-z


Bibliography

[BP82] A. Barone and G. Paterno: The Physics of Superconductors: Introduc-
tion to Fundamentals and Applications. John Wiley & Sons, Ltd, 1982.
url: https : / / onlinelibrary . wiley . com / doi / abs / 10 . 1002 /

352760278X.fmatter (cit. on p. 11).

[BAR21] T. C. BARTOLO: Superconducting nanowires: the role of topology and
morphology. PhD thesis. RMIT University, 2021 (cit. on pp. 69, 70, 72,
73, 78).

[Bar+22] T. Bartolo, J. S. Smith, Y. Schoen, J. N. Voss, M. Cyster, A. V. Ustinov,
H. Rotzinger, and J. H. Cole: Microscopic quantum point contact formation
as the electromigration mechanism in granular superconductor nanowires.
New Journal of Physics (2022). url: http://iopscience.iop.org/
article/10.1088/1367-2630/ac7a58 (cit. on pp. 69, 70, 72–74, 78,
99).

[Bau+16] X. D. A. Baumans, D. Cerbu, O.-A. Adami, V. S. Zharinov, N. Verellen,
G. Papari, J. E. Scheerder, G. Zhang, V. V. Moshchalkov, A. V. Silhanek,
and J. Van de Vondel: Thermal and quantum depletion of superconductivity
in narrow junctions created by controlled electromigration. Nature Com-
munications 7.1 (2016), p. 10560. doi: 10.1038/ncomms10560 (cit. on
pp. 50, 72, 82, 84).

[Bel+07] I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov:
Granular electronic systems. Rev. Mod. Phys. 79 (2007), pp. 469–518. doi:
10.1103/RevModPhys.79.469 (cit. on p. 89).

[BLT00] A. Bezryadin, C. N. Lau, and M. Tinkham: Quantum suppression of
superconductivity in ultrathin nanowires. Nature 404.6781 (2000), pp. 971–
974. doi: 10.1038/35010060 (cit. on pp. 1, 18, 49).

[Bez12] A. Bezryadin: Superconductivity in Nanowires. Wiley-VCH Verlag GmbH
& Co. KGaA, 2012 (cit. on pp. 1, 8, 23, 96).

[Bla69] J. R. Black: Electromigration—A brief survey and some recent results. IEEE
Transactions on Electron Devices 16.4 (1969), pp. 338–347. doi: 10.
1109/T-ED.1969.16754 (cit. on p. 71).

[Bol+08] A. T. Bollinger, R. C. Dinsmore, A. Rogachev, and A. Bezryadin:
Determination of the Superconductor-Insulator Phase Diagram for One-
Dimensional Wires. Phys. Rev. Lett. 101 (2008), p. 227003. doi: 10.1103/
PhysRevLett.101.227003 (cit. on pp. 1, 32, 33, 90, 94).

[BRB06] A. T. Bollinger, A. Rogachev, and A. Bezryadin: Dichotomy in short
superconducting nanowires: Thermal phase slippage vs. Coulomb blockade.
Europhysics Letters (EPL) 76.3 (2006), pp. 505–511. doi: 10.1209/epl/
i2006-10275-5 (cit. on p. 34).

125

https://onlinelibrary.wiley.com/doi/abs/10.1002/352760278X.fmatter
https://onlinelibrary.wiley.com/doi/abs/10.1002/352760278X.fmatter
http://iopscience.iop.org/article/10.1088/1367-2630/ac7a58
http://iopscience.iop.org/article/10.1088/1367-2630/ac7a58
https://doi.org/10.1038/ncomms10560
https://doi.org/10.1103/RevModPhys.79.469
https://doi.org/10.1038/35010060
https://doi.org/10.1109/T-ED.1969.16754
https://doi.org/10.1109/T-ED.1969.16754
https://doi.org/10.1103/PhysRevLett.101.227003
https://doi.org/10.1103/PhysRevLett.101.227003
https://doi.org/10.1209/epl/i2006-10275-5
https://doi.org/10.1209/epl/i2006-10275-5


Bibliography

[Bos+06] S. Bose, P. Raychaudhuri, R. Banerjee, and P. Ayyub: Upper critical
field in nanostructured Nb: Competing effects of the reduction in density
of states and the mean free path. Phys. Rev. B 74 (2006), p. 224502. doi:
10.1103/PhysRevB.74.224502 (cit. on p. 86).

[Bou+98] V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. H. Devoret: Quantum
Coherence with a Single Cooper Pair. Physica Scripta T76.1 (1998), p. 165.
doi: 10.1238/physica.topical.076a00165 (cit. on p. 28).

[BGB04] H. P. Büchler, V. B. Geshkenbein, and G. Blatter: Quantum Fluctuations
in Thin Superconducting Wires of Finite Length. Phys. Rev. Lett. 92 (2004),
p. 067007. doi: 10.1103/PhysRevLett.92.067007 (cit. on p. 26).

[BK12] W. Buckel and R. Kleiner: Supraleitung. Weinheim, Germany: Wiley-
VCH Verlag GmbH & Co. KGaA, 2012, pp. 296–296. doi: 10.1002/
9783527668670 (cit. on pp. 10, 35).

[Bul84] S. Bulgadaev: Phase diagram of a dissipative quantum system. JETP Lett
39.6 (1984), pp. 264–267 (cit. on p. 90).

[CM49] N. Cabrera and N. F. Mott: Theory of the oxidation of metals. Reports
on Progress in Physics 12.1 (1949), pp. 163–184. doi: 10.1088/0034-
4885/12/1/308 (cit. on p. 72).

[Ced+15] K. Cedergren, S. Kafanov, J.-L. Smirr, J. H. Cole, and T. Duty: Parity
effect and single-electron injection for Josephson junction chains deep in
the insulating state. Phys. Rev. B 92 (2015), p. 104513. doi: 10.1103/
PhysRevB.92.104513 (cit. on p. 89).

[Ced+17] K. Cedergren, R. Ackroyd, S. Kafanov, N. Vogt, A. Shnirman, and T.
Duty: Insulating Josephson Junction Chains as Pinned Luttinger Liquids.
Phys. Rev. Lett. 119 (2017), p. 167701. doi: 10.1103/PhysRevLett.119.
167701 (cit. on p. 89).

[Cha82] S. Chakravarty: Quantum Fluctuations in the Tunneling between Super-
conductors. Phys. Rev. Lett. 49 (1982), pp. 681–684. doi: 10.1103/

PhysRevLett.49.681 (cit. on p. 90).

[CW94] V. Chandrasekhar and R. A. Webb: Single electron charging effects in high-
resistance In2O#x2212;x#x2212;x#x2212;x wires. Journal of Low Temper-
ature Physics 97.1 (1994), pp. 9–54. doi: 10.1007/BF00752978 (cit. on
p. 104).

[Chu+01] S. M. Chudinov, G. Mancini, M. Minestrini, R. Natali, S. Stizza, and A.
Bozhko: Critical current in granular superconductor C-Si-W with peak-type
re-entrant superconductivity. Journal of Physics: Condensed Matter 14.2
(2001), pp. 193–209. doi: 10.1088/0953-8984/14/2/307 (cit. on p. 69).

126

https://doi.org/10.1103/PhysRevB.74.224502
https://doi.org/10.1238/physica.topical.076a00165
https://doi.org/10.1103/PhysRevLett.92.067007
https://doi.org/10.1002/9783527668670
https://doi.org/10.1002/9783527668670
https://doi.org/10.1088/0034-4885/12/1/308
https://doi.org/10.1088/0034-4885/12/1/308
https://doi.org/10.1103/PhysRevB.92.104513
https://doi.org/10.1103/PhysRevB.92.104513
https://doi.org/10.1103/PhysRevLett.119.167701
https://doi.org/10.1103/PhysRevLett.119.167701
https://doi.org/10.1103/PhysRevLett.49.681
https://doi.org/10.1103/PhysRevLett.49.681
https://doi.org/10.1007/BF00752978
https://doi.org/10.1088/0953-8984/14/2/307


Bibliography

[CB04] J. Clarke and A. I. Braginski: The SQUID handbook. Vol. 1, Fundamentals
and technology of SQUIDs and SQUID systems. Wiley-VCH, 2004 (cit. on
p. 36).

[CA68] R. W. Cohen and B. Abeles: Superconductivity in Granular Aluminum
Films. Phys. Rev. 168 (1968), pp. 444–450. doi: 10.1103/PhysRev.168.
444 (cit. on pp. 50, 53).

[Cyr73] M. Cyrot: Ginzburg-Landau theory for superconductors. Reports on Progress
in Physics 36.2 (1973), pp. 103–158. doi: 10.1088/0034-4885/36/2/001
(cit. on p. 7).

[Del+12] C. Delacour, B. Pannetier, J.-C. Villegier, and V. Bouchiat: Quantum and
Thermal Phase Slips in Superconducting Niobium Nitride (NbN) Ultrathin
Crystalline Nanowire: Application to Single Photon Detection. Nano Letters
12.7 (2012), pp. 3501–3506. doi: 10.1021/nl3010397 (cit. on pp. 25, 96).

[Dep+04] F. Deppe, S. Saito, H. Tanaka, and H. Takayanagi: Determination of the
capacitance of nm scale Josephson junctions. Journal of Applied Physics
95.5 (2004), pp. 2607–2613. doi: 10.1063/1.1645673 (cit. on p. 119).

[Deu+80] G. Deutscher, B. Bandyopadhyay, T. Chui, P. Lindenfeld, W. L. McLean,
and T. Worthington: Transition to Localization in Granular Aluminum
Films. Phys. Rev. Lett. 44 (1980), pp. 1150–1153. doi: 10 . 1103 /

PhysRevLett.44.1150 (cit. on p. 53).

[DES80] G. Deutscher, O. Entin-Wohlman, and Y. Shapira: Upper critical fields
in granular superconductors. Phys. Rev. B 22 (1980), pp. 4264–4270. doi:
10.1103/PhysRevB.22.4264 (cit. on p. 52).

[Deu+73] G. Deutscher, H. Fenichel, M. Gershenson, and E. GrÃŒnbaum: Transi-
tion to Zero Dimensionality in Granular Aluminium Superconducting Films.
Journal of Low Temperature Physics 10.1/2 (1973) (cit. on p. 51).

[Dua95] J.-M. Duan: Quantum Decay of One-Dimensional Supercurrent: Role of
Electromagnetic Field. Phys. Rev. Lett. 74 (1995), pp. 5128–5131. doi:
10.1103/PhysRevLett.74.5128 (cit. on p. 24).

[EN21] J. Erdmanis and Y. Nazarov: Synchronization of Bloch oscillations by gate
voltage modulation. (2021). doi: 10.48550/ARXIV.2107.10565 (cit. on
pp. 1, 42–44, 110).

[FZ01] R. Fazio and H. van der Zant: Quantum phase transitions and vortex
dynamics in superconducting networks. Physics Reports 355.4 (2001),
pp. 235–334. doi: https://doi.org/10.1016/S0370-1573(01)00022-
9 (cit. on p. 89).

[Fey82] R. P. Feynman: Simulating physics with computers. Int. J. Theor. Phys. 21
(1982), pp. 467–488. doi: 10.1007/BF02650179 (cit. on p. 10).

127

https://doi.org/10.1103/PhysRev.168.444
https://doi.org/10.1103/PhysRev.168.444
https://doi.org/10.1088/0034-4885/36/2/001
https://doi.org/10.1021/nl3010397
https://doi.org/10.1063/1.1645673
https://doi.org/10.1103/PhysRevLett.44.1150
https://doi.org/10.1103/PhysRevLett.44.1150
https://doi.org/10.1103/PhysRevB.22.4264
https://doi.org/10.1103/PhysRevLett.74.5128
https://doi.org/10.48550/ARXIV.2107.10565
https://doi.org/https://doi.org/10.1016/S0370-1573(01)00022-9
https://doi.org/https://doi.org/10.1016/S0370-1573(01)00022-9
https://doi.org/10.1007/BF02650179


Bibliography

[Fis14] M. V. Fistul: Josephson phase diffusion in small Josephson junctions: a
strongly nonlinear regime. (2014). doi: 10.48550/ARXIV.1405.1876 (cit.
on p. 88).

[GD10] V. F. Gantmakher and V. T. Dolgopolov: Superconductor-insulator quan-
tum phase transition. (2010) (cit. on p. 89).

[GL55] V. L. Ginzburg and L. D. Landau: On the theory of superconductivity. Zh.
Eksp. Teor. Fiz. 20, 1064 (1950). English translation in: L. D. Landau,
Collected papers (Oxford: Pergamon Press, 1965) p. 546 2.6 (1955),
p. 546 (cit. on p. 6).

[Gio94] N. Giodano: Superconducting fluctuations in one dimension. Physica B:
Condensed Matter 203.3 (1994), pp. 460–466. doi: https://doi.org/
10.1016/0921-4526(94)90097-3 (cit. on pp. 18, 23).

[Gio88] N. Giordano: Evidence for Macroscopic Quantum Tunneling in One-
Dimensional Superconductors. Phys. Rev. Lett. 61 (1988), pp. 2137–2140.
doi: 10.1103/PhysRevLett.61.2137 (cit. on pp. 1, 18, 19).

[GZ99] D. S. Golubev and A. D. Zaikin: Golubev and Zaikin Reply: Phys. Rev.
Lett. 82 (1999), pp. 3191–3191. doi: 10.1103/PhysRevLett.82.3191
(cit. on p. 21).

[GZ01] D. S. Golubev and A. D. Zaikin: Quantum tunneling of the order parameter
in superconducting nanowires. Phys. Rev. B 64 (2001), p. 014504. doi:
10.1103/PhysRevB.64.014504 (cit. on pp. 18, 24, 81, 99).

[GKI04] A. A. Golubov, M. Y. Kupriyanov, and E. Il’ichev: The current-phase
relation in Josephson junctions. Rev. Mod. Phys. 76 (2004), pp. 411–469.
doi: 10.1103/RevModPhys.76.411 (cit. on p. 12).

[Gra20] S. E. de Graaf: Dual Fraunhofer interference and charge fluctuations in
long quantum phase slip wires. Phys. Rev. B 102 (2020), p. 144509. doi:
10.1103/PhysRevB.102.144509 (cit. on p. 113).

[Gra+18] S. E. de Graaf, S. T. Skacel, T. Hönigl-Decrinis, R. Shaikhaidarov, H.
Rotzinger, S. Linzen, M. Ziegler, U. Hübner, H.-G. Meyer, V. Antonov,
E. Il’ichev, A. V. Ustinov, A. Y. Tzalenchuk, and O. V. Astafiev: Charge
quantum interference device. Nature Physics 14.6 (2018), pp. 590–594.
doi: 10.1038/s41567-018-0097-9 (cit. on pp. 1, 2, 38, 49, 110).

[Grü+18] L. Grünhaupt, N. Maleeva, S. T. Skacel, M. Calvo, F. Levy-Bertrand,
A. V. Ustinov, H. Rotzinger, A. Monfardini, G. Catelani, and I. M.
Pop: Loss Mechanisms and Quasiparticle Dynamics in Superconducting
Microwave Resonators Made of Thin-Film Granular Aluminum. Physical
Review Letters 121.11 (2018), p. 117001. doi: 10.1103/PhysRevLett.
121.117001 (cit. on p. 51).

128

https://doi.org/10.48550/ARXIV.1405.1876
https://doi.org/https://doi.org/10.1016/0921-4526(94)90097-3
https://doi.org/https://doi.org/10.1016/0921-4526(94)90097-3
https://doi.org/10.1103/PhysRevLett.61.2137
https://doi.org/10.1103/PhysRevLett.82.3191
https://doi.org/10.1103/PhysRevB.64.014504
https://doi.org/10.1103/RevModPhys.76.411
https://doi.org/10.1103/PhysRevB.102.144509
https://doi.org/10.1038/s41567-018-0097-9
https://doi.org/10.1103/PhysRevLett.121.117001
https://doi.org/10.1103/PhysRevLett.121.117001


Bibliography

[Grü+19] L. Grünhaupt, M. Spiecker, D. Gusenkova, N. Maleeva, S. T. Skacel,
I. Takmakov, F. Valenti, P. Winkel, H. Rotzinger, W. Wernsdorfer, A. V.
Ustinov, and I. M. Pop: Granular aluminium as a superconducting material
for high-impedance quantum circuits. Nature Materials (2019). doi: 10.
1038/s41563-019-0350-3 (cit. on p. 51).

[Hav+91] D. B. Haviland, L. S. Kuzmin, P. Delsing, and T. Claeson: Observation
of the Coulomb Blockade of Cooper Pair Tunnelling in Single Josephson
Junctions. Europhysics Letters (EPL) 16.1 (1991), pp. 103–108. doi:
10.1209/0295-5075/16/1/018 (cit. on p. 104).

[Hoh67] P. C. Hohenberg: Existence of Long-Range Order in One and Two Dimen-
sions. Phys. Rev. 158 (1967), pp. 383–386. doi: 10.1103/PhysRev.158.
383 (cit. on p. 17).

[HZ12] T. T. Hongisto and A. B. Zorin: Single-Charge Transistor Based on the
Charge-Phase Duality of a Superconducting Nanowire Circuit. Phys. Rev.
Lett. 108 (2012), p. 097001. doi: 10.1103/PhysRevLett.108.097001
(cit. on pp. 1, 2, 39, 42, 43, 45, 86, 99, 118).

[HN11] A. M. Hriscu and Y. V. Nazarov: Coulomb blockade due to quantum phase
slips illustrated with devices. Phys. Rev. B 83 (2011), p. 174511. doi:
10.1103/PhysRevB.83.174511 (cit. on p. 1).

[Ian+89] M. Iansiti, M. Tinkham, A. T. Johnson, W. F. Smith, and C. J. Lobb: Charg-
ing effects and quantum properties of small superconducting tunnel junctions.
Phys. Rev. B 39 (1989), pp. 6465–6484. doi: 10.1103/PhysRevB.39.6465
(cit. on p. 88).

[Jak+64] R. C. Jaklevic, J. Lambe, A. H. Silver, and J. E. Mercereau: Quantum
Interference Effects in Josephson Tunneling. Phys. Rev. Lett. 12 (1964),
pp. 159–160. doi: 10.1103/PhysRevLett.12.159 (cit. on p. 2).

[Jos62] B. D. Josephson: Possible new effects in superconductive tunnelling. Physics
Letters 1 (1962), pp. 251–253. doi: 10.1016/0031-9163(62)91369-0
(cit. on p. 10).

[Joy95] P. Joyez: The single Cooper pair transistor: a macroscopic quantum system.
Theses. Université Pierre et Marie Curie - Paris VI, 1995. url: https:
//tel.archives-ouvertes.fr/tel-00534358 (cit. on p. 103).

[KKS19] A. Kapitulnik, S. A. Kivelson, and B. Spivak: Colloquium: Anomalous
metals: Failed superconductors. Rev. Mod. Phys. 91 (2019), p. 011002. doi:
10.1103/RevModPhys.91.011002 (cit. on p. 89).

[Kat95] S. Katsumoto: Single-electron tunneling and phase transitions in granular
films. Journal of Low Temperature Physics 98.5 (1995), pp. 287–349.
doi: 10.1007/BF00752273 (cit. on p. 89).

129

https://doi.org/10.1038/s41563-019-0350-3
https://doi.org/10.1038/s41563-019-0350-3
https://doi.org/10.1209/0295-5075/16/1/018
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRevLett.108.097001
https://doi.org/10.1103/PhysRevB.83.174511
https://doi.org/10.1103/PhysRevB.39.6465
https://doi.org/10.1103/PhysRevLett.12.159
https://doi.org/10.1016/0031-9163(62)91369-0
https://tel.archives-ouvertes.fr/tel-00534358
https://tel.archives-ouvertes.fr/tel-00534358
https://doi.org/10.1103/RevModPhys.91.011002
https://doi.org/10.1007/BF00752273


Bibliography

[Kat+06] N. Katz, M. Ansmann, R. C. Bialczak, E. Lucero, R. McDermott, M.
Neeley, M. Steffen, E. M. Weig, A. N. Cleland, M. M. John, and A. N. Ko-
rotkov: Coherent State Evolution in a Superconducting Qubit from Partial-
Collapse Measurement. Science 312.5779 (2006), pp. 1498–1500. doi:
10.1126/science.1126475 (cit. on p. 90).

[Kim+18] H. Kim, F. Gay, A. Del Maestro, B. Sacépé, and A. Rogachev: Pair-
breaking quantum phase transition in superconducting nanowires. Nature
Physics 14 (2018), pp. 912–917. doi: 10.1038/s41567-018-0179-8
(cit. on p. 82).

[KR16] H. Kim and A. Rogachev: Zero-bias anomaly in homogeneously disordered
MoGe nanowires undergoing a superconductor-insulator transition. Phys.
Rev. B 94 (2016), p. 245436. doi: 10.1103/PhysRevB.94.245436 (cit. on
p. 66).

[Kov+10] Y. Koval, X. Jin, C. Bergmann, Y. Simsek, L. Özyüzer, P. Müller, H. Wang,
G. Behr, and B. Büchner: Tuning superconductivity by carrier injection.
Applied Physics Letters 96.8 (2010), p. 082507. doi: 10.1063/1.3327825
(cit. on p. 82).

[Kru+01] V. A. Krupenin, A. B. Zorin, M. N. Savvateev, D. E. Presnov, and J.
Niemeyer: Single-electron transistor with metallic microstrips instead of
tunnel junctions. Journal of Applied Physics 90.5 (2001), pp. 2411–2415.
doi: 10.1063/1.1389758 (cit. on p. 118).

[Kun+87] M. Kunchur, P. Lindenfeld, W. L. McLean, and J. S. Brooks: Absence
of superconductivity in metallic granular aluminum. Phys. Rev. Lett. 59
(1987), pp. 1232–1235. doi: 10.1103/PhysRevLett.59.1232 (cit. on
p. 53).

[Lan37] L. D. Landau: On the theory of phase transitions. Zh. Eksp. Teor. Fiz. 7
(1937), pp. 19–32 (cit. on p. 6).

[LA67] J. S. Langer and V. Ambegaokar: Intrinsic Resistive Transition in Narrow
Superconducting Channels. Phys. Rev. 164 (1967), pp. 498–510. doi: 10.
1103/PhysRev.164.498 (cit. on pp. 18, 20).

[Lau+01] C. N. Lau, N. Markovic, M. Bockrath, A. Bezryadin, and M. Tinkham:
Quantum Phase Slips in Superconducting Nanowires. Phys. Rev. Lett. 87
(2001), p. 217003. doi: 10.1103/PhysRevLett.87.217003 (cit. on pp. 1,
18).

[Leh+12] J. S. Lehtinen, T. Sajavaara, K. Y. Arutyunov, M. Y. Presnjakov, and
A. L. Vasiliev: Evidence of quantum phase slip effect in titanium nanowires.
Phys. Rev. B 85 (2012), p. 094508. doi: 10.1103/PhysRevB.85.094508
(cit. on p. 50).

130

https://doi.org/10.1126/science.1126475
https://doi.org/10.1038/s41567-018-0179-8
https://doi.org/10.1103/PhysRevB.94.245436
https://doi.org/10.1063/1.3327825
https://doi.org/10.1063/1.1389758
https://doi.org/10.1103/PhysRevLett.59.1232
https://doi.org/10.1103/PhysRev.164.498
https://doi.org/10.1103/PhysRev.164.498
https://doi.org/10.1103/PhysRevLett.87.217003
https://doi.org/10.1103/PhysRevB.85.094508


Bibliography

[Lik86] K. K. Likharevl: Introduction to superconductivity, Second Edition. GOR-
DON and BREACH SCIENCE PUBLISHERS, 1986 (cit. on pp. 37, 40).

[Lit67] W. A. Little: Decay of Persistent Currents in Small Superconductors. Phys.
Rev. 156 (1967), pp. 396–403. doi: 10.1103/PhysRev.156.396 (cit. on
pp. 17, 19).

[LL35] F. London and H. London: The Electromagnetic Equations of the Supra-
conductor. Royal Society of London Proceedings Series A 149 (1935),
pp. 71–88 (cit. on p. 5).

[MT11] D. S. Macintyre and S. Thoms: Comparison of hydrogen silsesquioxane
development methods for sub-10 nm electron beam lithography using accu-
rate linewidth inspection. Journal of Vacuum Science & Technology B,
Nanotechnology and Microelectronics: Materials, Processing, Measure-
ment, and Phenomena 29.6 (2011), 06F307. doi: 10.1116/1.3634020
(cit. on p. 55).

[Mak+16] K. Makise, H. Terai, Y. Tominari, S. Tanaka, and B. Shinozaki: Du-
ality picture of Superconductor-insulator transitions on Superconduct-
ing nanowire. Scientific Reports 6.1 (2016), p. 27001. doi: 10.1038/
srep27001 (cit. on pp. 1, 32, 34, 95, 97, 121).

[Mal+18] N. Maleeva, L. Grünhaupt, T. Klein, F. Levy-Bertrand, O. Dupre, M.
Calvo, F. Valenti, P. Winkel, F. Friedrich, W. Wernsdorfer, A. V. Ustinov,
H. Rotzinger, A. Monfardini, M. V. Fistul, and I. M. Pop: Circuit quantum
electrodynamics of granular aluminum resonators. Nature Communications
9.1 (2018), p. 3889. doi: 10.1038/s41467-018-06386-9 (cit. on p. 51).

[MB58] D. C. Mattis and J. Bardeen: Theory of the Anomalous Skin Effect in Normal
and Superconducting Metals. Phys. Rev. 111 (1958), pp. 412–417. doi:
10.1103/PhysRev.111.412 (cit. on p. 14).

[Mau18] P. D. Mauskopf: Transition Edge Sensors and Kinetic Inductance Detectors
in Astronomical Instruments. Publications of the Astronomical Society of
the Pacific 130.990 (2018), p. 082001. doi: 10.1088/1538-3873/aabaf0
(cit. on p. 14).

[Max50] E. Maxwell: Isotope Effect in the Superconductivity of Mercury. Phys. Rev.
78 (1950), pp. 477–477. doi: 10.1103/PhysRev.78.477 (cit. on p. 8).

[McC68] D. E. McCumber: Effect of ac Impedance on dc Voltage-Current Character-
istics of Superconductor Weak-Link Junctions. Journal of Applied Physics
39.7 (1968), pp. 3113–3118. doi: 10.1063/1.1656743 (cit. on pp. 29, 30).

[MH70] D. E. McCumber and B. I. Halperin: Time Scale of Intrinsic Resistive Fluc-
tuations in Thin Superconducting Wires. Phys. Rev. B 1 (1970), pp. 1054–
1070. doi: 10.1103/PhysRevB.1.1054 (cit. on pp. 18, 20).

131

https://doi.org/10.1103/PhysRev.156.396
https://doi.org/10.1116/1.3634020
https://doi.org/10.1038/srep27001
https://doi.org/10.1038/srep27001
https://doi.org/10.1038/s41467-018-06386-9
https://doi.org/10.1103/PhysRev.111.412
https://doi.org/10.1088/1538-3873/aabaf0
https://doi.org/10.1103/PhysRev.78.477
https://doi.org/10.1063/1.1656743
https://doi.org/10.1103/PhysRevB.1.1054


Bibliography

[MOR07] D. Meidan, Y. Oreg, and G. Refael: Sharp Superconductor-Insulator Tran-
sition in Short Wires. Phys. Rev. Lett. 98 (2007), p. 187001. doi: 10.1103/
PhysRevLett.98.187001 (cit. on p. 32).

[Mei+11] D. Meidan, B. Rosenow, Y. Oreg, and G. Refael: Gapless Excitations in
Strongly Fluctuating Superconducting Wires. Phys. Rev. Lett. 107 (2011),
p. 227004. doi: 10.1103/PhysRevLett.107.227004 (cit. on p. 96).

[MO33] W. Meissner and R. Ochsenfeld: Ein neuer Effekt bei Eintritt der Supraleit-
fähigkeit. Naturwissenschaften 21.44 (1933), pp. 787–788 (cit. on p. 5).

[MN06] J. E. Mooij and Y. V. Nazarov: Superconducting nanowires as quantum
phase-slip junctions. Nature Physics 2.3 (2006), pp. 169–172. doi: 10.
1038/nphys234 (cit. on pp. 1, 18, 26, 28–30, 33, 38, 42, 82, 88).

[Moo+15] J. E. Mooij, G. Schön, A. Shnirman, T. Fuse, C. J. P. M. Harmans, H.
Rotzinger, and A. H. Verbruggen: Superconductor–insulator transition
in nanowires and nanowire arrays. New Journal of Physics 17.3 (2015),
p. 033006. doi: 10.1088/1367-2630/17/3/033006 (cit. on pp. 1, 2, 25,
31–33, 45, 81, 82, 87, 93–95, 99, 113, 121).

[MH05] J. E. Mooij and C. J. P. M. Harmans: Phase-slip flux qubits. New Journal
of Physics 7 (2005), p. 219 (cit. on p. 28).

[MS85] J. E. Mooij and G. Schön: Propagating plasma mode in thin superconduct-
ing filaments. Phys. Rev. Lett. 55 (1985), pp. 114–117. doi: 10.1103/
PhysRevLett.55.114 (cit. on p. 24).

[Naz99] Y. V. Nazarov: Coulomb Blockade without Tunnel Junctions. Phys. Rev.
Lett. 82 (1999), pp. 1245–1248. doi: 10.1103/PhysRevLett.82.1245
(cit. on p. 34).

[Onn11] H. K. Onnes: The resistance of pure mercury at helium temperatures. Com-
mun. Phys. Lab. Univ. Leiden 12 (1911), 120pp. (Cit. on pp. 1, 5).

[Pop+12] I. M. Pop, B. Dou çot, L. Ioffe, I. Protopopov, F. Lecocq, I. Matei, O. Buis-
son, and W. Guichard: Experimental demonstration of Aharonov-Casher in-
terference in a Josephson junction circuit. Phys. Rev. B 85 (2012), p. 094503.
doi: 10.1103/PhysRevB.85.094503 (cit. on p. 113).

[RS20] A. Rogachev and B. Sacépé: Deficiency of the scaling collapse as an indicator
of a superconductor-insulator quantum phase transition. Phys. Rev. B 101
(2020), p. 235164. doi: 10.1103/PhysRevB.101.235164 (cit. on p. 96).

[Rom+13] M. Rommel, B. E. W. Nilsson, P. Jedrasik, V. Bonanni, A. Dmitriev, and
J. Weis: Sub-10nm resolution after lift-off using HSQ/PMMA double layer
resist. 2013 (cit. on p. 55).

132

https://doi.org/10.1103/PhysRevLett.98.187001
https://doi.org/10.1103/PhysRevLett.98.187001
https://doi.org/10.1103/PhysRevLett.107.227004
https://doi.org/10.1038/nphys234
https://doi.org/10.1038/nphys234
https://doi.org/10.1088/1367-2630/17/3/033006
https://doi.org/10.1103/PhysRevLett.55.114
https://doi.org/10.1103/PhysRevLett.55.114
https://doi.org/10.1103/PhysRevLett.82.1245
https://doi.org/10.1103/PhysRevB.85.094503
https://doi.org/10.1103/PhysRevB.101.235164


Bibliography

[Rot+16] H. Rotzinger, S. T. Skacel, M. Pfirrmann, J. N. Voss, J. Münzberg,
S. Probst, P. Bushev, M. P. Weides, A. V. Ustinov, and J. E. Mooij:
Aluminium-oxide wires for superconducting high kinetic inductance circuits.
Superconductor Science and Technology 30.2 (2016), p. 025002. doi:
10.1088/0953-2048/30/2/025002 (cit. on pp. 51–54).

[SFK20] B. Sacépé, M. Feigel’man, and T. M. Klapwijk: Quantum breakdown
of superconductivity in low-dimensional materials. Nature Physics 16.7
(2020), pp. 734–746. doi: 10.1038/s41567-020-0905-x (cit. on p. 1).

[Sch83] A. Schmid: Diffusion and Localization in a Dissipative Quantum System.
Phys. Rev. Lett. 51 (1983), pp. 1506–1509. doi: 10.1103/PhysRevLett.
51.1506 (cit. on p. 90).

[Sch+97] V. Schmidt, V. Müller, V. Schmidt, P. Müller, I. Grigorieva, and A.
Ustinov: The Physics of Superconductors: Introduction to Fundamentals and
Applications. Springer, 1997. url: https://books.google.de/books?
id=8O8svNo%5C_tWoC (cit. on pp. 6, 8, 13).

[Sch+00] V. Schöllmann, J. Johansson, K. Andersson, and D. B. Haviland: Coulomb
blockade effects in anodically oxidized titanium wires. Journal of Applied
Physics 88.11 (2000), pp. 6549–6553. doi: 10.1063/1.1323522 (cit. on
p. 101).

[Sch21] Y. Schön: Superconducting Nanowires in Coherent Quantum Circuits. PhD
thesis. Karlsruher Institut für Technologie (KIT), 2021. 117 pp. doi:
10.5445/IR/1000130597 (cit. on pp. 54–56, 92).

[Sch+20] Y. Schön, J. N. Voss, M. Wildermuth, A. Schneider, S. T. Skacel, M. P.
Weides, J. H. Cole, H. Rotzinger, and A. V. Ustinov: Rabi oscillations in
a superconducting nanowire circuit. npj Quantum Materials 5.1 (2020),
p. 18. doi: 10.1038/s41535-020-0220-x (cit. on pp. 51, 92).

[SA92] R. Smith and V. Ambegaokar: Weak-localization correction to the number
density of superconducting electrons. Physical review. B, Condensed mat-
ter 45 (1992), pp. 2463–2473. doi: 10.1103/PhysRevB.45.2463 (cit. on
p. 86).

[Sóñ+19] D. Sóñora, C. Carballeira, J. J. Ponte, F. Vidal, T. Grenet, and J. Mosqueira:
Paraconductivity of granular Al films at high reduced temperatures and mag-
netic fields. Phys. Rev. B 100 (2019), p. 104509. doi: 10.1103/PhysRevB.
100.104509 (cit. on p. 52).

[Ste68] W. C. Stewart: CURRENT-VOLTAGE CHARACTERISTICS OF JOSEPH-
SON JUNCTIONS. Applied Physics Letters 12.8 (1968), pp. 277–280.
doi: 10.1063/1.1651991 (cit. on p. 29).

133

https://doi.org/10.1088/0953-2048/30/2/025002
https://doi.org/10.1038/s41567-020-0905-x
https://doi.org/10.1103/PhysRevLett.51.1506
https://doi.org/10.1103/PhysRevLett.51.1506
https://books.google.de/books?id=8O8svNo%5C_tWoC
https://books.google.de/books?id=8O8svNo%5C_tWoC
https://doi.org/10.1063/1.1323522
https://doi.org/10.5445/IR/1000130597
https://doi.org/10.1038/s41535-020-0220-x
https://doi.org/10.1103/PhysRevB.45.2463
https://doi.org/10.1103/PhysRevB.100.104509
https://doi.org/10.1103/PhysRevB.100.104509
https://doi.org/10.1063/1.1651991


Bibliography

[Tin04] M. Tinkham: Introduction to Superconductivity. 2nd ed. Dover Publica-
tions, 2004. url: http://www.worldcat.org/isbn/0486435032 (cit. on
pp. 9, 13, 14, 52).

[TA08] S. K. Tolpygo and D. Amparo: Electrical stress effect on Josephson tunneling
through ultrathin AlOx barrier in Nb/Al/AlOx/Nb junctions. Journal of
Applied Physics 104.6 (2008), p. 063904. doi: 10.1063/1.2977725 (cit.
on pp. 71–73).

[Val+19] F. Valenti, F. Henriques, G. Catelani, N. Maleeva, L. Gruenhaupt, U. von
LUEpke, S. T. Skacel, P. Winkel, A. Bilmes, A. V. Ustinov, J. Goupy, M.
Calvo, A. Benoit, F. Levy-Bertrand, A. Monfardini, and I. M. Pop: Inter-
play Between Kinetic Inductance, Nonlinearity, and Quasiparticle Dynamics
in Granular Aluminum Microwave Kinetic Inductance Detectors. Phys.
Rev. Applied 11 (2019), p. 054087. doi: 10.1103/PhysRevApplied.11.
054087 (cit. on p. 51).

[VCS16] N. Vogt, J. H. Cole, and A. Shnirman: De-pinning of disordered bosonic
chains. New Journal of Physics 18.5 (2016), p. 053026. doi: 10.1088/
1367-2630/18/5/053026 (cit. on p. 89).

[Vog+15] N. Vogt, R. Schäfer, H. Rotzinger, W. Cui, A. Fiebig, A. Shnirman,
and A. V. Ustinov: One-dimensional Josephson junction arrays: Lifting the
Coulomb blockade by depinning. Phys. Rev. B 92 (2015), p. 045435. doi:
10.1103/PhysRevB.92.045435 (cit. on p. 89).

[Vos17] J. N. Voss: “Nonlinear effects in superconducting granular aluminium
oxide nanowires”. Master Thesis. 2017 (cit. on p. 53).

[Vos19] J. N. Voss: “Patent pending: No. 102019106508.9”. German patent
office. 2019 (cit. on p. 83).

[Vos+21] J. N. Voss, Y. Schön, M. Wildermuth, D. Dorer, J. H. Cole, H. Rotzinger,
and A. V. Ustinov: Eliminating Quantum Phase Slips in Superconducting
Nanowires. ACS Nano 15.3 (2021). PMID: 33596045, pp. 4108–4114. doi:
10.1021/acsnano.0c08721 (cit. on pp. 3, 42, 45, 52, 72, 74–76, 81, 84,
87, 88, 90, 92–94, 121).

[Was+85] S. Washburn, R. A. Webb, R. F. Voss, and S. M. Faris: Effects of Dissipation
and Temperature on Macroscopic Quantum Tunneling. Phys. Rev. Lett. 54
(1985), pp. 2712–2715. doi: 10.1103/PhysRevLett.54.2712 (cit. on
p. 22).

134

http://www.worldcat.org/isbn/0486435032
https://doi.org/10.1063/1.2977725
https://doi.org/10.1103/PhysRevApplied.11.054087
https://doi.org/10.1103/PhysRevApplied.11.054087
https://doi.org/10.1088/1367-2630/18/5/053026
https://doi.org/10.1088/1367-2630/18/5/053026
https://doi.org/10.1103/PhysRevB.92.045435
https://doi.org/10.1021/acsnano.0c08721
https://doi.org/10.1103/PhysRevLett.54.2712


Bibliography

[Web+13] C. H. Webster, J. C. Fenton, T. T. Hongisto, S. P. Giblin, A. B. Zorin,
and P. A. Warburton: NbSi nanowire quantum phase-slip circuits: dc su-
percurrent blockade, microwave measurements, and thermal analysis. Phys.
Rev. B 87 (2013), p. 144510. doi: 10.1103/PhysRevB.87.144510 (cit. on
pp. 18, 49, 65, 98).

[WHH66] N. R. Werthamer, E. Helfand, and P. C. Hohenberg: Temperature and
Purity Dependence of the Superconducting Critical Field, Hc2. III. Electron
Spin and Spin-Orbit Effects. Phys. Rev. 147 (1966), pp. 295–302. doi:
10.1103/PhysRev.147.295 (cit. on p. 52).

[Wil22] M. Wildermuth: Quantum tunneling of Josephson vortices in high-impedance
long junctions. PhD thesis. Karlsruher Institut für Technologie (KIT),
2022. 117 pp. doi: 10.5445/IR/1000130597 (cit. on p. 61).

[Wil+22] M. Wildermuth, L. Powalla, J. N. Voss, Y. Schön, A. Schneider, M. V.
Fistul, H. Rotzinger, and A. V. Ustinov: Fluxons in high-impedance long
Josephson junctions. Applied Physics Letters 120.11 (2022), p. 112601.
doi: 10.1063/5.0082197 (cit. on p. 54).

[Zai+97] A. D. Zaikin, D. S. Golubev, A. van Otterlo, and G. T. Zimányi: Quantum
Phase Slips and Transport in Ultrathin Superconducting Wires. Phys. Rev.
Lett. 78 (1997), pp. 1552–1555. doi: 10.1103/PhysRevLett.78.1552
(cit. on pp. 18, 23, 24, 81, 96, 99).

[Zgi+08] M. Zgirski, K.-P. Riikonen, V. Tuboltsev, P. Jalkanen, T. T. Hongisto,
and K. Y. Arutyunov: Ion beam shaping and downsizing of nanostructures.
Nanotechnology 19.5 (2008), p. 055301. doi: 10.1088/0957-4484/19/
05/055301 (cit. on p. 50).

[Zgi+05] M. Zgirski, K.-P. Riikonen, V. Touboltsev, and K. Arutyunov: Size De-
pendent Breakdown of Superconductivity in Ultranarrow Nanowires. Nano
Letters 5.6 (2005), pp. 1029–1033. doi: 10.1021/nl050321e (cit. on
p. 18).

135

https://doi.org/10.1103/PhysRevB.87.144510
https://doi.org/10.1103/PhysRev.147.295
https://doi.org/10.5445/IR/1000130597
https://doi.org/10.1063/5.0082197
https://doi.org/10.1103/PhysRevLett.78.1552
https://doi.org/10.1088/0957-4484/19/05/055301
https://doi.org/10.1088/0957-4484/19/05/055301
https://doi.org/10.1021/nl050321e




List of publications

[Bar+20] C. Barone, H. Rotzinger, J. N. Voss, C. Mauro, Y. Schön, A. Ustinov,
and S. Pagano: Current-Resistance Effects Inducing Nonlinear Fluctuation
Mechanisms in Granular Aluminum Oxide Nanowires. Nanomaterials 10
(2020), p. 524. doi: 10.3390/nano10030524.

[Bar+22] T. Bartolo, J. S. Smith, Y. Schoen, J. N. Voss, M. Cyster, A. V. Ustinov,
H. Rotzinger, and J. H. Cole: Microscopic quantum point contact formation
as the electromigration mechanism in granular superconductor nanowires.
New Journal of Physics (2022). url: http://iopscience.iop.org/
article/10.1088/1367-2630/ac7a58.

[Gol+19] I. Golovchanskiy, N. Abramov, M. Pfirrmann, T. Piskor, J. N. Voss,
D. Baranov, R. Hovhannisyan, V. Stolyarov, C. Dubs, A. Golubov, V.
Ryazanov, A. Ustinov, and M. Weides: Interplay of Magnetization Dy-
namics with a Microwave Waveguide at Cryogenic Temperatures. Physical
Review Applied 11 (2019). doi: 10.1103/PhysRevApplied.11.044076.

[Rot+16] H. Rotzinger, S. T. Skacel, M. Pfirrmann, J. N. Voss, J. Münzberg,
S. Probst, P. Bushev, M. P. Weides, A. V. Ustinov, and J. E. Mooij:
Aluminium-oxide wires for superconducting high kinetic inductance circuits.
Superconductor Science and Technology 30.2 (2016), p. 025002. doi:
10.1088/0953-2048/30/2/025002.

[Sch+20] Y. Schön, J. N. Voss, M. Wildermuth, A. Schneider, S. T. Skacel, M. P.
Weides, J. H. Cole, H. Rotzinger, and A. V. Ustinov: Rabi oscillations in
a superconducting nanowire circuit. npj Quantum Materials 5.1 (2020),
p. 18. doi: 10.1038/s41535-020-0220-x.

[Vos+21] J. N. Voss, Y. Schön, M. Wildermuth, D. Dorer, J. H. Cole, H. Rotzinger,
and A. V. Ustinov: Eliminating Quantum Phase Slips in Superconducting
Nanowires. ACS Nano 15.3 (2021). PMID: 33596045, pp. 4108–4114. doi:
10.1021/acsnano.0c08721.

[Wil+22] M. Wildermuth, L. Powalla, J. N. Voss, Y. Schön, A. Schneider, M. V.
Fistul, H. Rotzinger, and A. V. Ustinov: Fluxons in high-impedance long
Josephson junctions. Applied Physics Letters 120.11 (2022), p. 112601.
doi: 10.1063/5.0082197.

137

https://doi.org/10.3390/nano10030524
http://iopscience.iop.org/article/10.1088/1367-2630/ac7a58
http://iopscience.iop.org/article/10.1088/1367-2630/ac7a58
https://doi.org/10.1103/PhysRevApplied.11.044076
https://doi.org/10.1088/0953-2048/30/2/025002
https://doi.org/10.1038/s41535-020-0220-x
https://doi.org/10.1021/acsnano.0c08721
https://doi.org/10.1063/5.0082197




Appendix

A Fabrication parameters

Table 1: Resist application (first process) νr is the ramp speed, tr is the ramp time, a is the acceleration
of the spin coater, νs is the maximum rotation speed, ts is the time (at rotation), TB is the bake
temperature, tB is the bake time.

resist a (rpm/s) vr (rpm) tr (s) vs (rpm) ts (s) TB (°C) tB (s)
HSQ 7500 300 4 3500 60 150 120

PMMA 7500 300 10 4000 60 160 240
S1805 4500 500 5 4500 60 115 60
S1818 4500 - - 4500 60 80 300

Table 2: e-beam resist exposure (first process) The resist was applied ∼ 30 min before the chip was
installed in the 50 keV JEOL JBX-5500ZD electron-beam writer.

resist base dose base dose (µC/cm2) wire dose multiplier
HSQ 900 11

Table 3: optical resist exposure (first process)

resist process intensity (mW/cm²) duration (s)
S1805 positive 13 4

Table 4: e-beam resist development (first process)

resist developer duration (s) stopbath
HSQ MIF 726 60 water
S1805 MF 319 32 water
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Table 5: Etching (first process)

system p (mTorr) gasses (sccm) rf power (W) ICP power (W) time (s)
ICP - Ar/Ox (15/15) 100 200 9
ICP - Ar/Cl (2/12) 100 200 80

Table 6: Resist application (second process) νr is the ramp speed, tr is the ramp time, a is the acceler-
ation of the spin coater, νs is the maximum rotation speed, ts is the time (at rotation), TB is the bake
temperature, tB is the bake time.

resist a (rpm/s) vr (rpm) tr (s) vs (rpm) ts (s) TB (°C) tB (s)
HSQ 7500 300 4 2000 60 150 120

AZ5214E 7500 500 5 6000 60 110 50
S1818 4500 - - 4500 60 80 300

Table 7: e-beam resist exposure (second process) The resist was applied ∼ 30 min before the chip was
installed in the 50 keV JEOL JBX-5500ZD electron-beam writer.

resist base dose (µC/cm2) wire dose multiplier
HSQ 850 11

Table 8: Optical resist exposure (second process) The UV light wavelength is 365 nm at a lamp power
of 500 W.

resist process intensity (mW/cm²) duration (s)
AZ5214E positive 13 5

Table 9: Optical resist development (second process)

resist developer duration (s) stopbath
AZ5214E AZ Developer (+H20 1:1) 33 water

Table 10: e-beam resist development (second process)

resist developer duration (s) stopbath
HSQ MIF 726 65 water

AZ5214E AZ Developer (+H20 1:1) 33 water

Table 11: Etching (second process)

system p (mTorr) gasses (sccm) rf power (W) ICP power (W) time (s)
ICP 10 Ar/CL (2/12) 100 200 50
RIE 15 CF4 (15) 40 - 4x15
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