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Functional Material Systems Enabled by Automated Data
Extraction and Machine Learning

Payam Kalhor, Nicole Jung, Stefan Bräse, Christof Wöll, Manuel Tsotsalas,*
and Pascal Friederich*

The development of new functional materials is crucial for addressing global
challenges such as clean energy or the discovery of new drugs and antibiotics.
Functional material systems are typically composed of functional molecular
building blocks, organized across multiple length scales in a hierarchical
order. The large design space allows for precise tuning of properties to
specific applications, but also makes it time-consuming and expensive to
screen for optimal structures using traditional experimental methods.
Machine learning (ML) models can potentially revolutionize the field of
materials science by predicting chemical syntheses and materials properties
with high accuracy. However, ML models require data to be trained and
validated. Methods to automatically extract data from scientific literature
make it possible to build large and diverse datasets for ML models. In this
article, opportunities and challenges of data extraction and machine learning
methods are discussed to accelerate the discovery of high-performing
functional material systems, while ensuring that the predicted materials are
stable, synthesizable, scalable, and sustainable. The potential impact of large
language models (LLMs) on the data extraction process are discussed.
Additionally, the importance of research data management tools is discussed
to overcome the intrinsic limitations of data extraction approaches.

1. Introduction

A current challenge for research on functional material systems
is the need to simultaneously consider multiple aspects from
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different disciplines to achieve optimal
design.[1–3] This includes the components
of materials, the structure of materials
across different length scales, and every as-
pect of the final device and its operation
conditions.[4–7] Additionally, environmental
impact, circularity, and sustainability be-
come increasingly important. All these in-
dividual aspects represent objectives for
the design of functional material systems.
To navigate this multidimensional design
space with multiple objectives, researchers
need to work across different disciplines in
joint projects, considering expertise and re-
search from these different disciplines.[8–10]

To support and enable research in the area
of functional material systems, automated
data extraction from literature, using natu-
ral language processing, combined with ML
can be used to operate on large amounts
of data representing community knowledge
to complement the researchers’ own knowl-
edge and experimental results.[11–13] Thus,
a collaborative and interdisciplinary ap-
proach, coupled with the use of automated
data extraction and machine learning, is

necessary to enable the development of functional material sys-
tems that optimally meet multiple objectives. After identifying
the optimal design of functional material systems, the synthesis
of such complex hierarchically organized materials represents an
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Figure 1. Hierarchical structure of functional material systems based on metal–organic frameworks (MOFs).Reproduced with permission. [4] Copyright
2022, Wiley VCH; Reproduced with permission.[39] Copyright 2020, American Chemical Society; Reproduced with permission. [40] Copyright 2021, Wi-
ley VCH; Reproduced with permission. [41] Copyright 2018, Elsevier; Reproduced with permission. [42] Copyright 2015, Wiley VCH; Reproduced with
permission. [43] Copyright 2011, American Chemical Society.

additional challenge. The synthesis of functional material sys-
tems can be subdivided into the synthesis of molecular com-
ponents and the assembly of these components with specific
composition and morphology in the nano- or micrometer-length
scale. In the next step, the materials are processed, for example,
into thin films, membranes, or certain reactor designs, in order
to implement and “fit” the materials to the final device. All these
steps need tailored synthesis and processing conditions to ensure
their performance. Next to the design, also the synthesis, charac-
terization, and processing of functional material systems can be
supported and enabled by data extraction and ML of the material
science literature and databases.[14–16] The synthesis, character-
ization, processing, and application of functional material sys-
tems produce large amounts of hierarchical and interdependent
data. Making this data machine-readable and ready for ML and
combining it with data extracted from scientific literature repre-
sent a particular challenge.[17] The use of tailored research data
infrastructure is highly recommended, especially when work-
ing in large interdisciplinary consortia. Thus, the development
of such research data management tools represents an essential
task for the scientific community. Such tools should combine as-
pects from data collection, over data processing, to storing and
publishing, ideally the raw and processed research data along
with metadata.[18–20] In this perspective, we will briefly outline the
design, synthesis, and characterization of functional material sys-
tems using metal–organic frameworks (MOFs) as example ma-
terials. Following this outline, we will highlight selected publi-
cations on enabling functional materials systems using a com-
bination of automated data extraction and ML. We will discuss
the accomplishments, prospects, challenges, and limitations of
this approach. In the end, we will conclude with a discussion on
research data management tools and unifying material science
ontology.[21] The combination of research data management, data
extraction from scientific literature, and ML are essential to fully
explore the potential of functional material systems in addressing
urgent social, economic, and environmental challenges.

2. Data Extraction for Functional Material Systems

2.1. Functional Material Systems

Functional material systems are typically composed of functional
molecular building blocks, organized across multiple length
scales in a hierarchical order (illustrated in Figure 1). MOFs
emerged as a particularly powerful class of functional material
systems.[22–25] Their modular synthesis enables the incorpora-
tion of diverse functionalities and tuning of their structures
for desired applications.[26] The chemical design space of new
MOFs is virtually unlimited, due to the numerous possibili-
ties of combining metal nodes and organic linkers. Currently,
about 100 000 MOFs have been synthesized and over 500 000
predicted.[27,28] However, the wide design space also makes it
impossible to screen for optimal structures via brute force trial
and error or traditional high-throughput experimental screening
approaches.[29] Multiple techniques were developed for the syn-
thesis of MOFs to control their structure across multiple length
scales.[30] This starts from the synthesis of the organic linkers
and precursors of metal nodes, all the way to crystal synthesis
and further processing in the desired shape and formulation.
The synthesis of MOFs started with solvothermal synthesis via
multiple heating methods. Over time, new techniques were
added, such as mechanochemical, vapor phase synthesis, and
sacrificial or epitaxial growth.[31] The choice of synthesis condi-
tions and the synthesis method dictates the final MOF crystal
quality, defect density, crystal size, and morphology and enables
interfacial growth.[32,33] The MOF materials can afterward be pro-
cessed, for example, as thin films or freestanding membranes,
or formulated, for example, by mixing with polymers, palleted,
and processed to the required shapes for the final device.[34,35]

The enormous amount of research related to functional material
systems based on MOFs, starting from the synthesis of the
molecular components, their assembly into MOF crystals with
different topologies and morphologies, and their integration
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and testing in the final device represents a hidden treasure.[36]

Exposure of this treasure of data and making it ready for ML
applications could lead to the development of tools that guide
researchers and accelerate their efforts in the preparation of
MOF-based devices that can address global challenges.[37,38]

To fully exploit this treasure of data, a combination of tailored
research data management tools, efficient data extraction from
scientific literature, and ML are essential.

2.2. Data Extraction

One of the main challenges in applying ML to problems of high
scientific relevance is the lack of openly accessible, structured,
and machine-readable data. Existing databases, typically main-
tained and extended by particular scientific communities (e.g.,
protein structure database, certain MOF databases, crystal struc-
ture databases, etc.), can be used to train ML models for particular
tasks, for example, the prediction of materials properties. How-
ever, the majority of potentially relevant data generated in scien-
tific labs is not published at all, and from the fraction that is pub-
lished, the majority is published in the form of graphs, tables,
and non-structured text. Therefore, the extraction of data from
scientific literature opens a vast amount of yet untapped possi-
bilities to train ML models and use them to predict materials
properties, extract and learn relevant relationships in the data,
and eventually discover or design new materials. In the follow-
ing, we will describe approaches to extract structured data from
publications, focusing on text extraction but also discussing the
extraction of information from tables, graphs, and images. Data
extraction in other scientific domains, for example, biology dates
back more than 20 years,[39] with seminal work in the late 90s,
for example, Andrade et al.[40] One of the earliest attempts to
automatically extract information from chemistry literature was
OSCAR[41] and based on that the ChemicalTagger method in
2011.[42] ChemicalTagger is a rule-based multistep method based
on tokenization (preprocessing of raw text), tagging (using OS-
CAR and regular expressions), phrase parsing (assignment of
syntactical structure to text), and finally action phrase identifi-
cation (extraction of chemical information) based on parse trees.
The ChemDataExtractor Toolkit developed by Cole and coworkers
starting in 2016[43,44] extends the rule-based natural language pro-
cessing approach further, among others with ML methods, and
adds functionality for table extraction[44] During the last years,
ML approaches started to play an increasingly important role in
literature data extraction, where, for example, article section rel-
evance scores[45] and learned word embeddings[12,45] were used
to enhance existing information extraction methods, or condi-
tional random field models were used. With increasing capa-
bilities of language models such as BERT[46] and GPT,[47] new
possibilities for extracting information from literature are gener-
ated. Seminal examples of literature extraction methods based
on LLMs include MatSciBERT by Gupta et al.;[48] a fine-tuned
BERT model for materials science by Huang et al.,[49] Battery-
Bert, which among others use question-answering algorithms
to translate text to structured information; and a GPT-3 based
model by Dunn et al.[50] which uses fine tuning to directly trans-
late scientific text to structured tabular data in JSON format.
Also, semi-manual and crowd-sourcing-based approaches to ex-

tract information from chemistry and materials science literature
were reported,[51–53] also extracting information from sources
other than scientific literature, for example, lab notebooks to re-
trieve data about failed experiments which are usually not re-
ported in scientific articles.[54] The automated extraction of data
from tables, graphs, and images in many cases poses even larger
challenges than the extraction of data from text. However, a
detailed discussion of methods to extract data from tables,[44]

graphs,[49] and images, in particular optical chemical structure
recognition (OCSR), that is, the extraction of chemical struc-
tures from images[55–58] is beyond the scope of this article. Us-
ing various ways of literature data extraction, a large number
of databases was generated and published, spanning from syn-
thesis conditions[53,59–63] over materials stability[64] to materi-
als properties, for example, for magnetic and superconducting
properties,[65–67] semi-conductors,[68] battery materials,[49] ther-
moelectric materials,[69] glasses[70] and more general knowledge
graphs.[12,71] In most cases, the databases are only a means to an
end, that is, to provide sufficient training data for ML models for
the prediction of synthesis routes and conditions as well as ma-
terials properties of a wider range of materials.

2.2.1. Technical Challenges and Intrinsic Limitations

Despite fast progress and promising new avenues related to the
increasing use of ML and in particular LLMs in literature data
extraction, there are still a range of important limitations and
challenges. These can be grouped in technical challenges, which
can in principle be solved by improving the data extraction meth-
ods, and intrinsic challenges, which concern inherent problems
of unstructured literature as well as the quality and reliability
of data that can be extracted from that. Technical challenges in-
clude current limitations of LLMs such as GPT-3 and similar
models, which are either only obtainable via OpenAI’s commer-
cial APIs, or require state-of-the-art GPUs with large amounts
of memory for prediction and retraining, both of which are only
affordable for a small group of researchers worldwide. Another
limitation is the availability and free accessibility of research pa-
pers, which makes automated access difficult and again excludes
a large number of researchers who do not have access to all jour-
nals and publishers. Furthermore, if access is limited to, for ex-
ample, abstracts, the amount of information that can be extracted
is rather limited.[71] Furthermore, the use of LLMs (compared to
algorithmic, rule-based models) comes at the cost of potentially
higher processing times due to the size and computational cost of
the models (even after retraining),[49] as well as a non-negligible
amount of uncertainty regarding the question whether the out-
put of LLMs is fully trustworthy, or if they can potentially out-
put wrong information and give wrong answers or generate data,
which is not contained in the input text.[50] At the same time,
LLMs might potentially help to analyze complex texts and sen-
tence structures, which are not extractable using conventional
approaches.[72] Beyond that, one of the main challenges in lit-
erature data extraction currently is related to the fact that large
amounts of data, for example, synthesis protocols, are not tabular
data but can only be represented in more complex data structures.
Examples of that are flexible, potentially multistep processes with
dynamic data types and complex relations,[59,73] which not only
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requires the development of more sophisticated extraction meth-
ods but furthermore need flexible data blueprints for complex sci-
entific data. One development in that direction is formal descrip-
tion languages for materials science and chemistry, for example,
the XDL language by Cronin and coworkers.[74] Intrinsic limita-
tions mostly refer to the completeness, reliability, unambiguous-
ness, and precision of data reported in scientific literature. Ma-
terials entity names might not always be unique and pose fun-
damental challenges to extraction algorithms.[72] Databases con-
structed from extracted literature data might contain noise and
errors[59] due to differences in experimental setups, experimen-
tal measurement conditions, reporting accuracies, and missing
metadata. Furthermore, even if data extraction from graphs and
figures becomes possible and reliable,[49] the reported data might
be highly processed and condensed (i.e., lacks possibilities for
further analysis of raw data), has limits in accuracy and complete-
ness, and might in many cases be ambiguous. Those intrinsic
challenges are inherent to all approaches that aim to extract and
collect data from published literature, independent of the relia-
bility of the extraction methods used. Such intrinsic limitations
can only be overcome if access to high-quality data and metadata
is given directly by the research groups that produce the data,
for example, through publication in repositories and databases,
rather than through the “information bottleneck” of scientific lit-
erature. Given the rapid recent progress in the development of
data extraction methods and more generally natural language
processing tools, LLMs will likely become one of the most widely
used tools to extract (also complex and heterogeneous) data from
the literature, as LLMs are capable of systematically analyzing
natural language and also generating formal languages, for ex-
ample, tabular formats or structured data templates. Retraining
LLMs on small datasets can help to improve their accuracy for
given tasks, which will also become more affordable due to the
development of smaller and more efficient LLMs. Major break-
throughs can be expected in the next years regarding systematic,
wide-spread efforts to disclose data and knowledge currently hid-
den in scientific publications. The sustainable provision of—if
possible—FAIR data, that is, findable, accessible, interoperable,
and re-usable data in suitable databases and repositories could
maximize the benefit for the whole scientific community. Main
challenges on the way there include the development of more
flexible yet formal and thus computer-readable descriptions of
complex data structures, the standardization of data and meta-
data, as well as the further development of data extraction meth-
ods to reduce the amount of data missed during extraction as well
as to reduce the error rate. However, intrinsic limitations of data
extractable from scientific literature indicate that loss of data is
unavoidable if the publication of data will not change in the fu-
ture, implying that further development and use of methods for
research data management and FAIR data publication[75] is of
the highest importance, to ensure best possible outcomes in data
science and ML approaches applied to questions in materials sci-
ence, chemistry, and beyond.[76]

2.3. Research Data Management to Publishing Data in a FAIR
Way

So far, we discussed approaches to extract published data from
text, tables, and graphs of research papers and other scientific

texts, along with associated limitations and perspectives. How-
ever, even if data extraction methods can be perfected, one of the
main challenges cannot be solved with this approach, which is
the fact that a lot of valuable data is not published at all, as it was
considered not successful, not publication-relevant, or not pub-
lished for other reasons. Nonetheless, this data can be highly rele-
vant and thus valuable in other contexts, indicating the relevance
of approaches to decrease the difficulty and thus the barrier to
publishing the majority of generated data in a FAIR way, to make
it accessible and also findable for other researchers.

It is well-accepted that the systematic collection of research
data in digital form and its disclosure is highly important for the
transparency and reproducibility of scientific work. If research
data management (RDM) can be tied to the FAIR data princi-
ples, RDM processes have enormous potential to systematically
provide any data the research community needs for a variety of
projects. In past decades, the use of efficient tools for digital RDM
was difficult to achieve for the wider materials science commu-
nity due to the lack of the necessary software tools, storage re-
sources, and policies. Meanwhile, great progress has been made
in all three areas, especially in recent years, thus at least par-
tial digitization of research processes and modern methods of
RDM are technically achievable goals for scientists of many dis-
ciplines now. For best-practice guides, we refer to Talley et al.[77]

and Herres-Pawlis et al.[78] Nevertheless, for a broad adaptation of
RDM processes by scientists, a cultural change—that is, a change
of the mindset with respect to the importance of research data
and its appropriate storage—is needed.

While this cultural change is progressing only very slowly
worldwide, scientists in Germany are facing an important turn-
ing point: After several years of preparation, the requirements for
the practice of data provision have been changed by the German
Research Foundation (DFG), one of the most important fund-
ing agencies in Germany, and an extension of the obligation to
disclose research data will come into force in 2023.[79,80] Addi-
tionally, the importance of a FAIR provision of research data has
recently been reaffirmed and strengthened by establishing the
National Research Data Infrastructure (NFDI),[81] an infrastruc-
ture to store and preserve FAIR research data in Germany. As a
result of these and many other changes in the scientific system,
researchers are making more and more efforts to adopt existing
RDM offerings which can make valuable contributions to the pro-
vision of high-quality, standardized, machine-readable data in the
long run. In this regard, three essential steps can be described:

2.3.1. Methods and Software for Digitalization Strategies and Data
Availability

Electronic laboratory journals (ELNs) or Laboratory Information
and Management Systems (LIMS) have been used for decades in
the industry as valuable RDM tools for the digitization of research
processes. With the availability of powerful open-source software
as an alternative to commercial systems, many academic institu-
tions can use these RDM tools now. Thus, research data can be
digitally stored and tagged with the relevant metadata as soon as
they are created. Open source ELNs such as Chemotion ELN,[82]

eLAB,[83] NOMAD ELN,[20] Kadi4Mat,[84] and many others, bring
direct advantages, especially with regard to potential subsequent

Adv. Funct. Mater. 2023, 2302630 2302630 (4 of 11) © 2023 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

 16163028, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adfm

.202302630 by K
arlsruher Inst F. T

echnologie, W
iley O

nline L
ibrary on [07/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



www.advancedsciencenews.com www.afm-journal.de

use of the data: Since they can be extended by own developments
and thus, if necessary, also reflect changing requirements, the
necessary data and metadata schemas can be made available to
the scientists on a permanent basis. Open source ELN software
allows the scientists themselves to specify the type and level of
detail of the stored information. Automatic test protocols and al-
gorithms can be integrated and used to achieve high data quality
and, if necessary, to offer correction suggestions to the scientists.
In this way, open source systems in particular form an impor-
tant basis for the self-determined acquisition of research data and
content. The central collection of data enables the collection of all
relevant data via one UI. If data from measurement devices are
consistently integrated into the ELN/LIMS process, the experi-
ments can be linked to the measurement data without data loss
or errors. Especially with regard to the importance of the com-
pleteness of data and its quality for ML, this step is a milestone
to improve the data situation for various reuse purposes. ELNs
are on the one hand the means for complete documentation of
research processes for the individual scientist and on the other
hand a powerful tool for building community-driven databases
that can be searched and reused.

2.3.2. Standardization of Discipline-Specific Data, Processes, and
Metadata

In addition to the systematic digital recording and linking of re-
search processes and data, the standardization of data and meta-
data is particularly important in order to ensure their efficient
subsequent use by others. The goal of standardization is to en-
sure the completeness of reported data and metadata, that is,
all relevant variables and parameters should be included in a
data standard to ensure qualitative reproducibility, which also in-
cludes external conditions which are known to be crucial for the
respective experiment. Furthermore, the data accuracy should be
high enough to ensure also quantitative reproducibility. Meta-
data schemas and ontologies are helpful for the standardization
of data and processes, as well as to link data published by dif-
ferent researchers. The use of metadata schemas and ontologies
becomes accessible to a broad range of scientists through their in-
tegration into ELNs. Currently, tools for standardizing data and
metadata are also being developed in many initiatives. Examples
are the long-existing working groups within IUPAC,[85] NIST,[86]

and many others, but also newer interest groups of RDA[87] and
subgroups of the NFDI consortia.[88–91] With the mostly direct
involvement of scientists, freely available descriptions and soft-
ware can thus be obtained to enable uniform storage of infor-
mation. As an example within the Excellence Cluster 3DMM2O,
data converters are developed to obtain open, standardized data
from non-standard, proprietary file formats that are available for
comparative display, analysis, and interpretation.[92] This allows
to extract also metadata and to merge it with standardized meta-
data schemas in a way that enables reuse without the need to de-
velop custom scripts. When these digital tools and standardiza-
tion elements are embedded in ELNs, the standardized data and
metadata can then be made directly usable with appropriate in-
terfaces and form an ever-growing resource for ML by machine-
readable data.

2.3.3. Data Publication in Openly Accessible Repositories

If all locally available resources such as ELNs are brought to-
gether, there is huge potential for making data available across
the entire materials science and chemistry community. This
is possible, for example, through the use of research data
repositories.[19,93,94] Research data repositories, especially if they
provide a subject focus with appropriate support for relevant data
and metadata standards, can serve as a central resource for de-
centralized provided data. In the case of curated repositories, the
data can be further enhanced by author-independent, partly au-
tomated checks for consistent data quality.[95] Repositories offer
many more options to host data in the long run: In addition to
the most prominent functions to date for storing and providing
research data contributed by the authors themselves, reposito-
ries can also be used to provide data extracted from the literature.
This can provide a combination of research data repository and
database, which may be able to provide a much larger number of
data sets than would be possible through direct active contribu-
tion by the community based on actual papers. An example of this
can be given with the extraction of chemical reactions from sev-
eral supplementary information files, which has been used in the
past to enrich the database of the Chemotion repository.[96] Meth-
ods of data extraction can, of course, be used to enrich data avail-
able in internal environments such as ELNs—but then the ben-
efit to the community is limited. Being openly accessible, repos-
itories could become a key infrastructure for materials science
and the development of new AI methods in the future: Reposi-
tories could become the primary resource for obtaining data for
ML and many other methods in the future. They could also be
the perfect environment for many models obtained through AI
to be tested and, if necessary, put to long-term use. AI models, for
example, that enable data simulation, data analysis, or curation
could enrich repositories with important functions that can be
directly harnessed by scientists.[97] Thus, in the long term, repos-
itories could provide the solution to current problems by making
data available: Models trained on repository data could contribute
to the curation of new data in the future and thus successively
increase data quality (for previously non-curated repositories) or
decrease processing time and time investment (for curated repos-
itories). Furthermore, when it comes to computational studies,
including the development and application of ML methods, not
only data but also code should be published to improve repro-
ducibility and accelerate development cycles within the scientific
community. Repositories for sharing of open-access code, for ex-
ample, GitHub are widely used. Best practice guides can be found
in Coudert,[98] Wang et al.[99] and Artrith et al.[76]

3. Examples Where Data Mining and Machine
Learning Enabled the Design and Application of
Functional Material Systems

In this section, we will briefly describe the reuse of structured
data with ML models and the benefit for the synthesis and op-
timization of functional materials systems. The selected exam-
ples focus on literature data extraction and ML related to MOF
research, but the application of both is of course not limited to
the scientific challenges of MOFs and could be applied to many
other topics.
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The most general use-case of data about materials, molecules,
and their properties is computational (inverse) design. To intro-
duce new materials, the conventional trial-and-error approach
which involves a long stepwise procedure from molecule design
down to experimental assessment has been recently proposed to
be replaced by the fully data-driven inverse design methodology
to directly design the target molecules.[100,101] Inverse design of
materials focuses on identifying the desired properties of mate-
rials first and then determining the optimal structure and com-
position to achieve those properties. The traditional forward de-
sign process involves synthesizing and testing a large number
of materials in order to find one with the desired characteris-
tics. Inverse design relies on computational methods, in particu-
lar ML and thus large amounts of data, to explore vast chemical
and structural design spaces more efficiently.[102] As the early ap-
plications of inverse design in materials science, Zunger et al.
used a genetic algorithm to design solid-state materials with de-
sired electronic properties.[103,104] More recent applications of in-
verse design were focused on the generative design of polymer
dielectrics,[105] MOF membranes,[106] nanomaterials,[107] mul-
tilayer metasurfaces,[108] metamaterials,[109] and high entropy
alloys.[110]

One of the most important aims of materials design is the
improvement of sustainability of technologies, implied by, for
example, the sustainable development goals by the UN, aim-
ing to provide a more sustainable future for human society. A
paradigm shift in how materials and chemicals discovery is ap-
proached, that is, a shift from conventional experimental explo-
ration to computer-aided design and AI-facilitated experimenta-
tion, can help to reach sustainability goals. Using ML methods
to learn from existing data as much as possible, in order to avoid
redundant computations and experiments which consume en-
ergy and resources is critical. Without efficiently collecting and
reusing previously published data and without reporting newly
generated data in FAIR ways, this potential cannot be fully used.
At the same time, ML methods can be used to develop materi-
als for sustainable technology. For example, Hardian et al. de-
scribed how ML methods can be used to produce MOFs in an en-
vironmentally friendly way.[111] Kumar et al. investigated several
green solvents for the sustainable synthesis of covalent organic
frameworks.[112] ML techniques can also be used in most steps
of a conventional environmental risk assessment of, for exam-
ple, smart nanomaterials to ensure sustainability.[113] Moreover,
to develop sustainable and eco-friendly alkali-activated material
(AAM) or geopolymers, Shah et al. employed ML methods to fa-
cilitate and accelerate the development of a one-part AAM binder
with the desired properties.[114] Electrocatalysis has received enor-
mous attention as a clean and sustainable technology. In this re-
gard, Chen et al. reviewed the application of ML in electrocatalyst
design as a circumvention of the traditional trial-and-error prepa-
ration method.[115]

3.1. Synthesis of FMS

The synthesis of MOF-based functional material systems in-
volves multiple steps, starting from the molecular precursors,
over the topology and morphology until the final device inte-
gration. Pioneering articles showed the possibilities to support

researchers in finding suitable conditions using ML optimiza-
tion algorithms, such as Bayesian optimization or genetic algo-
rithms. Examples by Shields et al.[116] for the synthesis of organic
molecules with improved yield and Moosavi et al.[117] for the syn-
thesis of MOFs with improved crystallinity and BET surface area
demonstrated the possibilities of using ML to rationally optimize
the synthesis conditions for organic molecules and MOF crys-
tals. Chen et al.[118] demonstrated the possibility to employ ML
techniques to design MOFs with desired shapes or morphologies
and Pilz et al.[119] demonstrated the possibility to optimize crys-
tallinity preferential orientation of interfacially grown SURMOF
thin films. However, these approaches rely on the generation of
synthesis data on which the algorithms can operate and addition-
ally require the knowledge of the involved scientists to set the pa-
rameter and condition space for the optimization algorithms. By
operating on large synthesis databases, Segler et al.[120] demon-
strated that retrosynthesis design is possible for small organic
molecules. The work by Park et al.[73] and Luo et al.[59] demon-
strated that automated data extraction can be combined with ML
models to predict the synthesis conditions of new MOFs and gain
insights into the synthesis process. Taken together, these selected
examples demonstrate that automated data extraction and ML
techniques are well suited for synthesis planning, parameter pre-
diction, and further optimization of MOF-based functional mate-
rial systems, starting from the molecular components up to the fi-
nal MOF structures with desired topology, morphology, and crys-
tal orientation. The combination of such tools promises to accel-
erate the discovery of new MOFs, especially if additional data be-
come available via extraction from scientific literature or collected
in tailored electronic lab notebooks and deposited in openly ac-
cessible repositories.

3.2. Optimization of MOF-Based FMS

The design of ideal MOF structures using high throughput com-
putational screening and ML is a highly active and quickly de-
veloping area of intense research,[121] enabled by well-structured
databases such as the MOF Cambridge structural database
subset[28] and curated databases such as CoREMOF,[122] MOFX-
DB,[123] ToBaCCo,[124] QMOF,[125] and others.[126] Starting from
suitable databases allows the automated screening for ideal struc-
tures from a large pool of already synthesized or predicted
materials.[127] Despite numerous publications on the design of
MOFs via high-throughput computational screening and inverse
design, there are only very few experimentally realized target
structures.[11,128,129] The reasons why many interesting structures
have not been realized experimentally are on the one hand their
difficult or very expensive synthesis and on the other hand, their
poor stability.[73,130,131] In addition, the communication between
theoretical and experimental groups is often challenging, lead-
ing to missed opportunities to cooperate.[14,129] Addressing these
issues, pioneering work based on simulation and ML for the pre-
dictions of mechanical stability by Moghadam et al.[132] and syn-
thesizability by Anderson et al.[133] could be realized. The alterna-
tive approach of automated data mining from scientific literature
combined with ML proved also a valuable strategy to predict im-
portant features of MOF. Important prediction tools were devel-
oped by Batra et al.[134] for water stability and Nandy et al.[64,135]
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Figure 2. Automated data extraction and machine learning enable researchers to select and synthesize functional material systems tailored for their
desired applications.

for thermal stability and stability toward solvent removal. Exploit-
ing the large community knowledge hidden within the scientific
literature will further refine these tools and enable the prediction
of tailored MOF-based functional material systems for desired
applications, that simultaneously fulfill multiple objectives im-
posed by the processing and operation conditions. Figure 2 de-
scribes the identification of functional material systems for a tar-
get application, biased by multiple objectives. The relevant data
for such ML-based predictions can be mined from scientific lit-
erature via automated data extraction. In addition, the synthesis
of the target structure can be facilitated via ML prediction and
optimization tools.

4. Conclusions and Outlook

Simulation and machine learning (ML) have evolved as impor-
tant tools for guiding researchers and for identifying materials
of interest. By replacing the traditional heuristic approach, asso-
ciated with labor and time-intensive trial and error experiments,
the computational discovery or inverse design promises to speed
up the development of new materials. However, ML approaches
rely on sufficient data in machine-readable formats. Combining
ML with automated data extraction from scientific literature, us-
ing natural language processing, allows not only to gain insights
into the ideal design of functional material systems for a desired
application but also allows to collect information on important
features such as thermal or mechanical stability. An ML work-
flow can be implemented to utilize the extracted data and identify
the ideal design, starting from the composition over the struc-
ture across several length scales to the final device. The addi-
tional features, such as stability, cost, or abundance of the compo-
nents can be implemented in the ML workflow as a bias to iden-
tify the ideal material under the operating conditions of the de-
sired application. In addition, the use of automatically extracted

data on synthesis conditions, in combination with ML, can guide
researchers to realize the target materials experimentally. Effi-
ciently operating with such complex interconnected and hierar-
chical data, involved in functional materials systems, requires
the use of advanced research data management tools. In addi-
tion, electronic lab notebooks can facilitate the implementation
of feedback loops and the complementary use of new experimen-
tal data. Although at an early stage, the combination of automated
data extraction and ML already showed promising results for the
prediction of important properties and synthesis conditions as
well as for high throughput computational screening and inverse
design of functional material systems. The development of ad-
vanced tools such as LLMs (e.g., GPT-3) allows domain special-
ists in material science to automatically extract datasets to feed
ML models. This workflow holds promise to accelerate the devel-
opment of new functional material systems, urgently needed to
tackle global challenges.

Acknowledgements
C.W. and S.B. acknowledge funding by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy via the Excellence Cluster “3D Matter Made to Order” (3DMM2O,
EXC-2082/1-390761711, Thrust A1 and A3). P.F. acknowledges support by
the Federal Ministry of Education and Research (BMBF) under Grant No.
01DM21001B (German-Canadian Materials Acceleration Center). M.T. ac-
knowledges support by the DACStorE project, funded by the Initiative and
Networking Fund of the Helmholtz Association (grant agreement number
KA2-HSC-12). Initial versions of parts of the manuscript were generated
using Chat-GPT based on keypoint lists but fully rewritten by the authors.

Open access funding enabled and organized by Projekt DEAL.

Conflict of Interest
The authors declare no conflict of interest.

Adv. Funct. Mater. 2023, 2302630 2302630 (7 of 11) © 2023 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

 16163028, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adfm

.202302630 by K
arlsruher Inst F. T

echnologie, W
iley O

nline L
ibrary on [07/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



www.advancedsciencenews.com www.afm-journal.de

Author Contributions
P.F., M.T., N.J., S.B. and C.W. contributed to the conceptualization of the
article. P.K., P.F., N.J. and M.T. contributed to the writing of the original
draft. All authors contributed to review and editing of the final draft. M.K.
and P.F. contributed to the visualizations.

Keywords
FAIR data, functional materials, large language models, literature data ex-
traction, machine learning, research data management

Received: March 7, 2023
Revised: April 21, 2023

Published online:

[1] X. Zhang, T. Zhou, K. Sundmacher, AIChE J. 2022, 68, e17788.
[2] E. Ren, P. Guilbaud, F.-X. Coudert, Digital Discov. 2022, 1, 355.
[3] A. S. Rosen, J. M. Notestein, R. Q. Snurr, Curr. Opin. Chem. Eng.

2022, 35, 100760.
[4] Y. Luo, M. Ahmad, A. Schug, M. Tsotsalas, Adv. Mater. 2019, 31,

1901744.
[5] R. Lakes, Nature 1993, 361, 511.
[6] A. L. Goodwin, Nat. Commun. 2019, 10, 4461.
[7] B. Seoane, S. Castellanos, A. Dikhtiarenko, F. Kapteijn, J. Gascon,

Coord. Chem. Rev. 2016, 307, 147.
[8] S. Wuttke, D. D. Medina, J. M. Rotter, S. Begum, T. Stassin, R.

Ameloot, M. Oschatz, M. Tsotsalas, Adv. Funct. Mater. 2018, 28,
1801545.

[9] B. Hosseini Monjezi, K. Kutonova, M. Tsotsalas, S. Henke, A.
Knebel, Angew. Chem., Int. Ed. 2021, 60, 15153.

[10] M. Taddei, C. Petit, Mol. Syst. Des. Eng. 2021, 6, 841.
[11] R. L. Greenaway, K. E. Jelfs, Adv. Mater. 2021, 33, 2004831.
[12] V. Tshitoyan, J. Dagdelen, L. Weston, A. Dunn, Z. Rong, O.

Kononova, K. A. Persson, G. Ceder, A. Jain, Nature 2019, 571, 95.
[13] E. A. Olivetti, J. M. Cole, E. Kim, O. Kononova, G. Ceder, T. Y.-J. Han,

A. M. Hiszpanski, Appl. Phys. Rev. 2020, 7, 041317.
[14] M. Rahimi, S. M. Moosavi, B. Smit, T. A. Hatton, Cell Rep. Phys. Sci.

2021, 2, 4.
[15] M. Ahmad, Y. Luo, C. Wöll, M. Tsotsalas, A. Schug, Molecules 2020,

25, 4875.
[16] K. M. Jablonka, D. Ongari, S. M. Moosavi, B. Smit, Chem. Rev. 2020,

120, 8066.
[17] O. Kononova, T. He, H. Huo, A. Trewartha, E. A. Olivetti, G. Ceder,

Iscience 2021, 24, 102155.
[18] L. Himanen, A. Geurts, A. S. Foster, P. Rinke, Adv. Sci. 2019, 6,

1900808.
[19] P. Tremouilhac, C.-L. Lin, P.-C. Huang, Y.-C. Huang, A. Nguyen, N.

Jung, F. Bach, R. Ulrich, B. Neumair, A. Streit, S. Bräse, Angew.
Chem., Int. Ed. 2020, 59, 22771.

[20] M. Scheffler, M. Aeschlimann, M. Albrecht, T. Bereau, H.-J.
Bungartz, C. Felser, M. Greiner, A. Groß, C. T. Koch, K. Kremer, W.
E. Nagel, M. Scheidgen, C. Wöll, C. Draxl, Nature 2022, 604, 635.

[21] L. M. Ghiringhelli, C. Baldauf, T. Bereau, S. Brockhauser, C.
Carbogno, J. Chamanara, S. Cozzini, S. Curtarolo, C. Draxl, S.
Dwaraknath, A. Fekete, J. Kermode, C. T. Koch, M. Kühbach, A. N.
Ladines, P. Lambrix, M.-O. Lenz-Himmer, S. Levchenko, M. Oliveira,
A. Michalchuk, R. Miller, B. Onat, P. Pavone, G. Pizzi, B. Regler, G.-
M. Rignanese, J. Schaarschmidt, M. Scheidgen, A. Schneidewind, T.
Sheveleva, et al., arXiv:2205.14774 2022.

[22] R. Freund, S. Canossa, S. M. Cohen, W. Yan, H. Deng, V. Guillerm,
M. Eddaoudi, D. G. Madden, D. Fairen-Jimenez, H. Lyu, L. K.
Macreadie, Z. Ji, Y. Zhang, B. Wang, F. Haase, C. Wöll, O. Zaremba,
J. Andreo, S. Wuttke, C. S. Diercks, Angew. Chem., Int. Ed. 2021, 60,
23946.

[23] O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi,
J. Kim, Nature 2003, 423, 705.

[24] S. Kitagawa, R. Kitaura, S.-i. Noro, Angew. Chem., Int. Ed. 2004, 43,
2334.

[25] D.-H. Chen, H. Gliemann, C. Wöll, Chem. Phys. Rev. 2023, 4, 011305.
[26] R. L. Siegelman, E. J. Kim, J. R. Long, Nat. Mater. 2021, 20, 1060.
[27] Y. G. Chung, E. Haldoupis, B. J. Bucior, M. Haranczyk, S. Lee, H.

Zhang, K. D. Vogiatzis, M. Milisavljevic, S. Ling, J. S. Camp, B. Slater,
J. I. Siepmann, D. S. Sholl, R. Q. Snurr, J. Chem. Eng. Data 2019, 64,
5985.

[28] P. Z. Moghadam, A. Li, S. B. Wiggin, A. Tao, A. G. Maloney, P. A.
Wood, S. C. Ward, D. Fairen-Jimenez, Chem. Mater. 2017, 29, 2618.

[29] S. M. Moosavi, K. M. Jablonka, B. Smit, J. Am. Chem. Soc. 2020, 142,
20273.

[30] S. Furukawa, J. Reboul, S. Diring, K. Sumida, S. Kitagawa, Chem. Soc.
Rev. 2014, 43, 5700.

[31] N. Stock, S. Biswas, Chem. Rev. 2012, 112, 933.
[32] S. Dissegna, K. Epp, W. R. Heinz, G. Kieslich, R. A. Fischer, Adv.

Mater. 2018, 30, 1704501.
[33] H. Gliemann, C. Wöll, Mater. Today 2012, 15, 110.
[34] J. Dechnik, J. Gascon, C. J. Doonan, C. Janiak, C. J. Sumby, Angew.

Chem., Int. Ed. 2017, 56, 9292.
[35] M. Tsotsalas, A. Umemura, F. Kim, Y. Sakata, J. Reboul, S. Kitagawa,

S. Furukawa, J. Mater. Chem. 2012, 22, 10159.
[36] X. Yin, C. E. Gounaris, Comput. Chem. Eng. 2022, 167, 108022.
[37] H. Lyu, Z. Ji, S. Wuttke, O. M. Yaghi, Chem 2020, 6, 2219.
[38] S. Chong, S. Lee, B. Kim, J. Kim, Coord. Chem. Rev. 2020, 423,

213487.
[39] A. M. Cohen, W. R. Hersh, Briefings Bioinf. 2005, 6, 57.
[40] M. A. Andrade, A. Valencia, In Proc. Int. Conf. Intell. Syst. Mol. Biol.

1997, 5, 25.
[41] P. Corbett, P. Murray-Rust, in Proceedings of theComputational Life

Sciences II: Second International Symposium, CompLife, Springer,
Berlin, Heidelberg 2006, pp. 107–118.

[42] L. Hawizy, D. M. Jessop, N. Adams, P. Murray-Rust, J. Chem. 2011,
3, 17.

[43] M. C. Swain, J. M. Cole, J. Chem. Inf. Model. 2016, 56, 1894.
[44] J. Mavracic, C. J. Court, T. Isazawa, S. R. Elliott, J. M. Cole, J. Chem.

Inf. Model. 2021, 61, 4280.
[45] E. Kim, K. Huang, A. Tomala, S. Matthews, E. Strubell, A. Saunders,

A. McCallum, E. Olivetti, Sci. Data 2017, 4, 170127.
[46] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, arXiv:1810.04805 2018.
[47] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, OpenAI

blog 2019, 1, 9.
[48] T. Gupta, M. Zaki, N. A. Krishnan, npj Comput. Mater. 2022, 8, 102.
[49] S. Huang, J. M. Cole, Chem. Sci. 2022, 13, 11487.
[50] A. Dunn, J. Dagdelen, N. Walker, S. Lee, A. S. Rosen, G. Ceder, K.

Persson, A. Jain, arXiv:2212.05238 2022.
[51] L. Ghadbeigi, J. K. Harada, B. R. Lettiere, T. D. Sparks, Energy Environ.

Sci. 2015, 8, 1640.
[52] S. R. Young, A. Maksov, M. Ziatdinov, Y. Cao, M. Burch, J.

Balachandran, L. Li, S. Somnath, R. M. Patton, S. V. Kalinin, R. K.
Vasudevan, J. Appl. Phys. 2018, 123, 115303.

[53] F. Baum, T. Pretto, A. Köche, M. J. L. Santos, J. Phys. Chem. C 2020,
124, 24298.

[54] P. Raccuglia, K. C. Elbert, P. D. Adler, C. Falk, M. B. Wenny, A. Mollo,
M. Zeller, S. A. Friedler, J. Schrier, A. J. Norquist, Nature 2016, 533,
73.

Adv. Funct. Mater. 2023, 2302630 2302630 (8 of 11) © 2023 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

 16163028, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adfm

.202302630 by K
arlsruher Inst F. T

echnologie, W
iley O

nline L
ibrary on [07/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



www.advancedsciencenews.com www.afm-journal.de

[55] J. R. McDaniel, J. R. Balmuth, J. Chem. Inf. Comput. Sci. 1992, 32,
373.

[56] M. Oldenhof, A. Arany, Y. Moreau, J. Simm, J. Chem. Inf. Model.
2020, 60, 4506.

[57] K. Rajan, A. Zielesny, C. Steinbeck, J. Cheminf. 2020, 12, 65.
[58] S. Yoo, O. Kwon, H. Lee, in ICASSP 2022-2022 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE,
Piscataway, NJ 2022, pp. 3393–3397.

[59] Y. Luo, S. Bag, O. Zaremba, A. Cierpka, J. Andreo, S. Wuttke,
P. Friederich, M. Tsotsalas, Angew. Chem., Int. Ed. 2022, 61,
e202200242.

[60] A. Davariashtiyani, Z. Kadkhodaie, S. Kadkhodaei, Commun. Mater.
2021, 2, 115.

[61] Z. Jensen, E. Kim, S. Kwon, T. Z. Gani, Y. Román-Leshkov, M.
Moliner, A. Corma, E. Olivetti, ACS Cent. S. 2019, 5, 892.

[62] C. Karpovich, E. Pan, Z. Jensen, E. Olivetti, Chem. Mater. 2023.
[63] O. Kononova, H. Huo, T. He, Z. Rong, T. Botari, W. Sun, V. Tshitoyan,

G. Ceder, Sci. Data 2019, 6, 203.
[64] A. Nandy, G. Terrones, N. Arunachalam, C. Duan, D. W. Kastner, H.

J. Kulik, Sci. Data 2022, 9, 74.
[65] C. J. Court, J. M. Cole, npj Comput. Mater. 2020, 6, 18.
[66] C. J. Court, A. Jain, J. M. Cole, Chem. Mater. 2021, 33, 7217.
[67] C. J. Court, J. M. Cole, Sci. Data 2018, 5, 18.
[68] Q. Dong, J. M. Cole, Sci. Data 2022, 9, 193.
[69] O. Sierepeklis, J. M. Cole, Sci. Data 2022, 9, 648.
[70] M. Zaki, Jayadeva, N. A. Krishnan, Chem. Eng. Process. 2022, 180,

108607.
[71] Z. Nie, S. Zheng, Y. Liu, Z. Chen, S. Li, K. Lei, F. Pan, Adv. Funct.

Mater. 2022, 32, 262201437.
[72] T. He, W. Sun, H. Huo, O. Kononova, Z. Rong, V. Tshitoyan, T. Botari,

G. Ceder, Chem. Mater. 2020, 32, 7861.
[73] H. Park, Y. Kang, W. Choe, J. Kim, J. Chem. Inf. Model. 2022, 62, 1190.
[74] S. H. M. Mehr, M. Craven, A. I. Leonov, G. Keenan, L. Cronin, Science

2020, 370, 101.
[75] J. D. Evans, V. Bon, I. Senkovska, S. Kaskel, Langmuir 2021, 37, 4222.
[76] N. Artrith, K. T. Butler, F.-X. Coudert, S. Han, O. Isayev, A. Jain, A.

Walsh, Nat. Chem. 2021, 13, 505.
[77] K. R. Talley, R. White, N. Wunder, M. Eash, M. Schwarting, D.

Evenson, J. D. Perkins, W. Tumas, K. Munch, C. Phillips, A.
Zakutayev, Patterns 2021, 2, 100373.

[78] S. Herres-Pawlis, F. Bach, I. J. Bruno, S. J. Chalk, N. Jung, J. C.
Liermann, L. R. McEwen, S. Neumann, C. Steinbeck, M. Razum, O.
Koepler, Angew. Chem., Int. Ed. 2022, 61, e202203038.

[79] Good research practice, https://www.dfg.de/en/research_funding/
principles_dfg_funding/good_scientific_practice (accessed: May
2023).

[80] Deutsche Forschungsgemeinschaft, Code of Conduct 2019
https://zenodo.org/record/6472827#.ZGeOedJBwUE (accessed:
May 2023).

[81] N. Hartl, E. Wössner, Y. Sure-Vetter, Inf. Spektrum 2021, 44, 370.
[82] P. Tremouilhac, A. Nguyen, Y.-C. Huang, S. Kotov, D. S. Lütjohann,

F. Hübsch, N. Jung, S. Bräse, J. Cheminf. 2017, 9, 54.
[83] N. CARP, A. Minges, M. Piel, J. Open Source Software 2017, 2, 146.
[84] N. Brandt, E. Schoof, P. Zschumme, M. Selzer, A Research Data In-

frastructure for Materials Science, Heidelberg, University, Heidelberg
2021.

[85] International union of pure & applied chemistry, https://iupac.org/
who-we-are (accessed: May 2023).

[86] National institute of standards and technology, https://www.nist.
gov (accessed: May 2023).

[87] RDA/CODATA materials data, infrastructure & interoperability
IG, https://www.rd-alliance.org/groups/rdacodata-materials-data-
infrastructure-interoperability-ig.html (accessed: May 2023).

[88] C. Eberl, M. Niebel, E. Bitzek, T. Dahmen, F. Fritzen, P. Gumbsch, T.
Hickel, S. Klein, F. Mücklich, M. S. Müller, et al., 2021 https://doi.
org/10.5281/zenodo.5082836.

[89] C. Steinbeck, O. Koepler, S. Herres-Pawlis, F. Bach, N. Jung, M.
Razum, J. C. Liermann, S. Neumann, Chem. Int. 2023, 45, 8.

[90] C. Steinbeck, O. Koepler, F. Bach, S. Herres-Pawlis, N. Jung, J.
Liermann, S. Neumann, M. Razum, C. Baldauf, F. Biedermann, T.
W. Bocklitz, F. Boehm, F. Broda, P. Czodrowski, T. Engel, M. G.
Hicks, S. M. Kast, C. Kettner, W. Koch, G. Lanza, A. Link, R. A. Mata,
W. E. Nagel, A. Porzel, N. Schlörer, T. Schulze, H.-G. Weinig, W.
Wenzel, L. A. Wessjohann, S. Wulle, Res. Ideas Outcomes 2020, 6,
e55852.

[91] H. Junkes, P. Oppermann, R. Schlögl, A. Trunschke, M. Krieger,
H. Weber, in 18th Int. Conf. on Accelerator and Large Experimental
Physics Control Systems, JACoW Publishing, 2021, pp. 558–563.

[92] J. Klar, M. Starman, P. C. Huang, Complat - compound platform
@ karlsruhe institute of technology (kit) 2023, https://github.com/
ComPlat/chemotion-converter-app (accessed: May 2023).

[93] C. Henken, M. Schmidt, Chemotion eln and repository, https://
www.youtube.com/watch?v=tZHaP6DW-Dw (accessed: May 2023).

[94] C. Draxl, M. Scheffler, MRS Bull. 2018, 43, 676.
[95] P. Tremouilhac, P.-C. Huang, C.-L. Lin, Y.-C. Huang, A. Nguyen, N.

Jung, F. Bach, S. Bräse, Chem. Methods 2021, 1, 8.
[96] A. Nguyen, Y.-C. Huang, P. Tremouilhac, N. Jung, S. Bräse, J. Chem-

inf. 2019, 11, 77.
[97] L. Sbailò, Á. Fekete, L. M. Ghiringhelli, M. Scheffler, npj Comput.

Mater. 2022, 8, 250.
[98] F.-X. Coudert, Chem. Mater. 2017, 29, 2615.
[99] A. Y.-T. Wang, R. J. Murdock, S. K. Kauwe, A. O. Oliynyk, A. Gurlo, J.

Brgoch, K. A. Persson, T. D. Sparks, Chem. Mater. 2020, 32, 4954.
[100] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-

Lobato, B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre,
T. D. Hirzel, R. P. Adams, A. Aspuru-Guzik, ACS Cent. Sci. 2018, 4,
268.

[101] B. Sanchez-Lengeling, A. Aspuru-Guzik, Science 2018, 361, 360.
[102] K. Kim, S. Kang, J. Yoo, Y. Kwon, Y. Nam, D. Lee, I. Kim, Y.-S. Choi, Y.

Jung, S. Kim, W.-J. Son, J. Son, H. S. Lee, S. Kim, J. Shin, S. Hwang,
npj Comput. Mater. 2018, 4, 67.

[103] S. Dudiy, A. Zunger, Phys. Rev. Lett. 2006, 97, 046401.
[104] P. Piquini, P. A. Graf, A. Zunger, Phys. Rev. Lett. 2008, 100, 186403.
[105] R. Gurnani, D. Kamal, H. Tran, H. Sahu, K. Scharm, U. Ashraf, R.

Ramprasad, Chem. Mater. 2021, 33, 7008.
[106] M. Zhou, A. Vassallo, J. Wu, J. Membr. Sci. 2020, 598, 117675.
[107] S. Li, A. S. Barnard, Adv. Theory Simul. 2022, 5, 2100414.
[108] P. Naseri, S. V. Hum, IEEE Trans. Antennas Propag. 2021, 69, 5725.
[109] Y. Wang, Q. Zeng, J. Wang, Y. Li, D. Fang, Comput. Methods Appl.

Mech. Eng. 2022, 401, 115571.
[110] Y. Zeng, M. Man, C. K. Ng, D. Wuu, J. J. Lee, F. Wei, P. Wang, K. Bai,

D. C. Cheh Tan, Y.-W. Zhang, APL Mater. 2022, 10, 101104.
[111] R. Hardian, Z. Liang, X. Zhang, G. Szekely, Green Chem. 2020, 22,

7521.
[112] S. Kumar, G. Ignacz, G. Szekely, Green Chem. 2021, 23, 8932.
[113] J. J. Scott-Fordsmand, M. J. Amorim, Sci. Total Environ. 2023, 859,

160303.
[114] S. F. A. Shah, B. Chen, M. Zahid, M. R. Ahmad, Constr. Build. Mater.

2022, 360, 129534.
[115] L. Chen, X. Zhang, A. Chen, S. Yao, X. Hu, Z. Zhou, Chin. J. Catal.

2022, 43, 11.
[116] B. J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani, J. I. M.

Alvarado, J. M. Janey, R. P. Adams, A. G. Doyle, Nature 2021, 590,
89.

[117] S. M. Moosavi, A. Chidambaram, L. Talirz, M. Haranczyk, K. C.
Stylianou, B. Smit, Nat. Commun. 2019, 10, 539.

Adv. Funct. Mater. 2023, 2302630 2302630 (9 of 11) © 2023 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

 16163028, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adfm

.202302630 by K
arlsruher Inst F. T

echnologie, W
iley O

nline L
ibrary on [07/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



www.advancedsciencenews.com www.afm-journal.de

[118] P. Chen, Z. Tang, Z. Zeng, X. Hu, L. Xiao, Y. Liu, X. Qian, C. Deng, R.
Huang, J. Zhang, Y. Bi, R. Lin, Y. Zhou, H. Liao, D. Zhou, C. Wang,
W. Lin, Matter 2020, 2, 1651.

[119] L. Pilz, C. Natzeck, J. Wohlgemuth, N. Scheuermann, P. G. Weidler,
I. Wagner, C. Wöll, M. Tsotsalas, Adv. Mater. Interfaces 2023, 10,
2201771.

[120] M. H. Segler, M. Preuss, M. P. Waller, Nature 2018, 555, 604.
[121] Y. J. Colón, R. Q. Snurr, Chem. Soc. Rev. 2014, 43, 5735.
[122] Y. G. Chung, J. Camp, M. Haranczyk, B. J. Sikora, W. Bury, V.

Krungleviciute, T. Yildirim, O. K. Farha, D. S. Sholl, R. Q. Snurr,
Chem. Mater. 2014, 26, 6185.

[123] N. S. Bobbitt, K. Shi, B. J. Bucior, H. Chen, N. Tracy-Amoroso, Z. Li,
Y. Sun, J. H. Merlin, J. I. Siepmann, D. W. Siderius, R. Q. Snurr, J.
Chem. Eng. Data 2023, 68, 483.

[124] Y. J. Colón, D. A. Gomez-Gualdron, R. Q. Snurr, Cryst. Growth Des.
2017, 17, 5801.

[125] A. S. Rosen, S. M. Iyer, D. Ray, Z. Yao, A. Aspuru-Guzik, L. Gagliardi,
J. M. Notestein, R. Q. Snurr, Matter 2021, 4, 1578.

[126] S. M. Moosavi, A. Nandy, K. M. Jablonka, D. Ongari, J. P. Janet, P.
G. Boyd, Y. Lee, B. Smit, H. J. Kulik, Nat. Commun. 2020, 11, 4068.

[127] H. Daglar, H. C. Gulbalkan, G. Avci, G. O. Aksu, O. F. Altundal,
C. Altintas, I. Erucar, S. Keskin, Angew. Chem., Int. Ed. 2021, 60,
7828.

[128] D. A. Gomez-Gualdron, O. V. Gutov, V. Krungleviciute, B. Borah, J.
E. Mondloch, J. T. Hupp, T. Yildirim, O. K. Farha, R. Q. Snurr, Chem.
Mater. 2014, 26, 5632.

[129] A. Li, R. Bueno-Perez, D. Madden, D. Fairen-Jimenez, Chem. Sci.
2022, 13, 7990.
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