KIT | KIT-Bibliothek | Impressum | Datenschutz

High‐Throughput Synthesis and Machine Learning Assisted Design of Photodegradable Hydrogels

Seifermann, Maximilian 1; Reiser, Patrick 2,3; Friederich, Pascal ORCID iD icon 2,3; Levkin, Pavel A. A. ORCID iD icon 1,4
1 Institut für Biologische und Chemische Systeme (IBCS), Karlsruher Institut für Technologie (KIT)
2 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)
3 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
4 Institut für Organische Chemie (IOC), Karlsruher Institut für Technologie (KIT)

Abstract:

Due to the large chemical space, the design of functional and responsive soft materials poses many challenges but also offers a wide range of opportunities in terms of the scope of possible properties. Herein, an experimental workflow for miniaturized combinatorial high-throughput screening of functional hydrogel libraries is reported. The data created from the analysis of the photodegradation process of more than 900 different types of hydrogel pads are used to train a machine learning model for automated decision making. Through iterative model optimization based on Bayesian optimization, a substantial improvement in response properties is achieved and thus expanded the scope of material properties obtainable within the chemical space of hydrogels in the study. It is therefore demonstrated that the potential of combining miniaturized high-throughput experiments with smart optimization algorithms for cost and time efficient optimization of materials properties.


Verlagsausgabe §
DOI: 10.5445/IR/1000160249
Veröffentlicht am 07.07.2023
Originalveröffentlichung
DOI: 10.1002/smtd.202300553
Scopus
Zitationen: 11
Web of Science
Zitationen: 6
Dimensions
Zitationen: 13
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biologische und Chemische Systeme (IBCS)
Institut für Nanotechnologie (INT)
Institut für Organische Chemie (IOC)
Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2366-9608
KITopen-ID: 1000160249
HGF-Programm 43.33.11 (POF IV, LK 01) Adaptive and Bioinstructive Materials Systems
Erschienen in Small Methods
Verlag Wiley-VCH Verlag
Band 7
Heft 9
Seiten Art.Nr. 2300553
Vorab online veröffentlicht am 07.06.2023
Schlagwörter bayesian optimization, high throughput, hydrogels, machine learning, materials acceleration platforms, stimuli-responsiveness
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page