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Non-enveloped virus-like particles (VLPs) are versatile protein nanoparticles with
great potential for biopharmaceutical applications. However, conventional protein
downstream processing (DSP) and platform processes are often not easily
applicable due to the large size of VLPs and virus particles (VPs) in general. The
application of size-selective separation techniques offers to exploit the size
difference between VPs and common host-cell impurities. Moreover, size-
selective separation techniques offer the potential for wide applicability across
different VPs. In this work, basic principles and applications of size-selective
separation techniques are reviewed to highlight their potential in DSP of VPs.
Finally, specific DSP steps for non-enveloped VLPs and their subunits are reviewed
as well as the potential applications and benefits of size-selective separation
techniques are shown.
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1 Introduction

Virus-like particles (VLPs) are multimeric structures that resemble viruses but lack the
viral genome which makes them non-infectious (Chackerian, 2007). The dense and
repetitive structure of antigens leads to a high immunogenicity of VLPs. The high
immunogenicity in combination with their non-infectivity makes VLPs potent vaccine
candidates (Chackerian, 2007). Non-enveloped VLPs consist of at least one structural
protein, several of which assemble into capsids of one or more layers (Roy & Noad,
2009). Non-enveloped VLP-based vaccines licensed for human use protect against hepatitis
B virus, human papillomavirus (HPV), hepatitis E virus, and one chimeric VLP-based
vaccine protects against malaria (Lua et al., 2014; Nooraei et al., 2021). Another application
of non-enveloped VLPs is their utilization as viral vectors for the delivery of nucleic acids,
peptides, or drugs (Garcea & Gissmann, 2004; Le & Müller, 2021). In the case of enveloped
VLPs, an additional lipid membrane layer is formed by the budding of capsids from the host
cell (Fuenmayor et al., 2017). Enveloped VLPs can also consist of a layer of host cell lipid
membrane containing viral proteins (Lua et al., 2014). The insertion of antigens or epitopes
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into the subunit proteins (of non-enveloped and enveloped VLPs),
for example by genetic fusion or chemical conjugation, leads to
chimeric VLPs (Grgacic & Anderson, 2006; Roldão et al., 2010).
Chimeric VLPs were developed as prophylactic and therapeutic
vaccines against several diseases including infectious diseases and
cancers (Roldão et al., 2010; Mohsen et al., 2020). Illustrations and
further information on the different VLP types can be found in Lua
et al. (2014).

VLPs can be produced in bacteria, yeast, insect, plant, or
mammalian cells (Kushnir et al., 2012; Fuenmayor et al., 2017).
VLP properties influence the choice of the host cell for recombinant
production of VLPs, for example, eukaryotic cells for lipid envelopes
or post-translational protein modifications. Enveloped VLPs are
released from cells by budding while viral proteins may also be
released by cell lysis. Non-enveloped VLPs can spontaneously self-
assemble in host cells (in vivo), even in prokaryotic ones such as
Escherichia coli (E. coli) (Kushnir et al., 2012). Therefore, non-
enveloped VLPs are often produced in microbial cells which usually
requires cell lysis, such as for hepatitis B core antigen (HBcAg) in
E. coli (Schumacher et al., 2018) or HPV in Saccharomyces cerevisiae
(Cook et al., 1999). The necessity of a lysis step or low cell viability
leads to a release of host cell impurities into the VLP-containing
process solution impacting the downstream processing (DSP)
(Moleirinho et al., 2020).

DSP is divided into recovery and purification in this review. The
recovery of non-enveloped VLPs is similar to the one in
conventional protein DSP. The purification of non-enveloped
VLPs can be subdivided into two parts (Pattenden et al., 2005).
The first part is the purification of the particles as a whole by
removing process-related impurities, for example host cell

impurities. This initial purification is referred to as VLP capture
and shown as the first step in Figure 1A. It is similar to or
overlapping with the purification of non-enveloped viruses and
to some extent also with enveloped VLPs and viruses. These
different virus-based or viral particles are referred to as virus
particles (VPs) in this review. The second part of purification is
more specific to non-enveloped VLPs and is optional depending on
the VLP and its application. It aims to improve the particle quality
since the in vivo assembly of VLPs may lead to malformed particles
(Roldão et al., 2012), thus product-related impurities. The in vitro
disassembly of VLPs into subunit proteins and subsequent
reassembly (Figure 1A) were shown to improve VLP properties
such as immunogenicity and stability (Mach et al., 2006; Zhao, et al.,
2012a; Zhao, et al., 2012b). Furthermore, this process sequence
enables to remove entrapped impurities (Vicente, et al., 2011a; Link
et al., 2012; Strods et al., 2015; Mohsen et al., 2018). For gene therapy
applications, bound nucleic acids need to be removed to ensure
product safety and free binding sites for target nucleic acids (Strods
et al., 2015; Petrovskis et al., 2021). Another approach is performing
purification of VLP subunits in the disassembled state, followed by
in vitro assembly (Liew et al., 2012; Gerstweiler et al., 2021) as shown
in Figure 1B. This approach offers the possibility to use purification
techniques applied in conventional protein purification without
adaptions due to the particulate structure of VLPs. However,
prevention of self-assembly during processing is required, for
example by supplementing reducing, chelating, or chaotropic
agents. The presence of these substances may impact or limit the
unit operations available. Furthermore, VLPs consisting of different
subunit proteins would require multiple downstream processes. This
processing route also prevents exploiting the size difference between
particles and impurities during purification (Morenweiser, 2005).
Using size-selective separation techniques offers the possibility to
process different variants of a VP or VLP subunit similarly. For
example, different virus strains, chimeric VLP candidates, or
therapeutic cargo within the particle could be purified using the
same platform process. However, compared to monoclonal
antibodies, platform processes for VPs are not well established
(Moleirinho et al., 2020).

2 Virus particles

This section focuses on the removal of process-related
impurities which is usually performed early in DSP. Typical
process-related impurities resulting from host cells are proteins,
nucleic acids, and cell debris. Product-related impurities are
aggregated VPs, fragmented VPs, or empty viral vectors
(Gagnon, 2009). Co-packaged host cell deoxyribonucleic acid
(DNA) and non-infectious or empty particles are considered
product-related impurities in the case of viral vectors (European
Medicines Agency Committee for Advanced Therapies CAT, 2018).
Further considerations for product-related impurities of non-
enveloped VLPs are reviewed in Section 3.

Table 1 lists recently published DSP approaches for a variety of
VPs. It provides an overview of state-of-the-art strategies with the
potential for DSP of non-enveloped VLP, even though not all listed
VPs are non-enveloped VPs or VLPs. The capture step, at the
beginning of the purification train, aims to remove most of the

FIGURE 1
Overview of purification steps and approaches for non-
enveloped VLPs. (A) Initial purification of assembled VLPs followed by
dis- and reassembly. (B) Purification of VLP subunits followed by
reassembly. The purification techniques presented in Section 2
and Section 3 can be applied in the process steps highlighted in blue
and orange, respectively. Note, depending on the impurity profile and
purity demands, process steps might require more than one unit
operation.
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TABLE 1 Examples of recently published downstream processes (recovery and purification with step yield in parentheses when available) for VPs. If the recovery
steps do not contain a lysis step, culture supernatants were processed.

VP Type Host cell Recovery Purification Reference

Adenovirus Non-enveloped A549 Lysis UF/DF (92%) Moleirinho et al. (2018)

Nuclease AEX (72%)

MFd (60%) UF/DF (79%)

MFd (94%) SEC (56%)

HBcAg VLP Non-enveloped E. coli Lysis AMS precipitation Zhang et al. (2021)

Centrifug. Disassembly (89%)

Nuclease

imAC

Reassembly

Hepatitis C virus Enveloped Huh7.5 MFd (~100%) UF (45%) Lothert, et al. (2020a)

MFd (~100%) Inactivation

Nuclease

SXCm (99%)

psACm (50%)

Influenza A virus Enveloped MDCK MFm SXCm (≥100%) Bissinger et al. (2021)

Nuclease psACm (84%)

Inactivation

MFm

Influenza A VLP Enveloped High five Nuclease UF/DF (94%) Carvalho et al. (2019)

MFd UF/DF (81%)

MFm

Lentiviral vector Enveloped HEK293 Nuclease UF/DF (≥100%) Valkama et al. (2020)

MFd (≥100%) AEXm (22%)

Measles virus vector Enveloped Vero MFd (≥100%) Nuclease (≥100%) Steppert et al. (2022)

mmSEC (87%)

UF/DF (85%)

Orf virus Enveloped Vero Lysis Nuclease (~100%) Lothert, et al. (2020b)

MFd (91%) SXCm (92%a)

MFd (77%) mmSEC (97%a)

Adeno-associated virus Non-enveloped HEK293 MFm UF (59%a) Tomono et al. (2018)

Nuclease

Heat precipitation

AMS precipitation

AEX (63%a)

UF

SEC (87%a)

Zika/Yellow fever VLP Enveloped HEK293 MFm (82%a) AEX (91%a) Lima et al. (2019)

mmSEC (90%a)

Abbreviations: AMS, ammonium sulfate; centrifug, centrifugation; imAC, immobilized metal affinity chromatography; MF, microfiltration; psAC, pseudo affinity chromatography. For

abbreviations of the host cells, refer to the respective reference. Superscripts: a, step yield was averaged over studied VP variants. Subscripts: d, depth filtration; m, membrane (filtration).
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process-related impurities. For chromatographic separation, highly
selective affinity ligands are available, for example, protein A for
monoclonal antibodies. However, for VPs, the number of
commercially available affinity ligands is small or non-existent
requiring costly and custom-made solutions. Alternatives for VPs
are separations based on size promising universal processing
independent of strain, construct, or candidate. Additionally, size-
selective separation is beneficial due to the large size differences
between VPs and common impurities. This is also reflected in
Table 1 in which the size-selective separation techniques
filtration, steric exclusion chromatography (SXC), size-exclusion
chromatography (SEC), multimodal SEC (mmSEC), and
precipitation are frequently used. These techniques are
highlighted in the following paragraphs.

Filtration, such as (cross-flow) microfiltration and cross-flow
ultrafiltration/diafiltration (UF/DF), is commonly used during DSP
of VPs as indicated by Wolff & Reichl (2011) and in Table 1.
Microfiltration, mostly in normal-flow mode, is used for
clarification during recovery whereas both cross-flow mirco- and
UF/DF are used during purification. VPs are either retained by the
membrane and smaller impurities (for example host cell proteins and
DNA) are depleted or larger particles (for example cell debris or
aggregates) are retained and VPs permeate through the membrane
(Wickramasinghe et al., 2005; Grzenia et al., 2008). Cross-flowUF/DF
has several advantages compared to other commonly used
purification techniques for VPs. The small pore size of UF
membranes makes them an alternative to ultracentrifugation
(Reiser, 2000; Peixoto et al., 2007). Compared to UF/DF,
ultracentrifugation, both density gradient and continuous, is
generally considered to be poorly scalable, costly, time-consuming,
and requires an additional buffer exchange in case of density gradients
(Morenweiser, 2005; Vicente, et al., 2011b;Wolff & Reichl, 2011; Ladd
Effio & Hubbuch, 2015; Nestola et al., 2015; Moleirinho et al., 2020).
Carvalho et al. (2019) showed that the purification of Influenza A
VLPs using two UF/DF steps is more efficient in terms of process
duration and buffer consumption when compared to ion exchange
chromatography and SEC, however with the drawback of low DNA
removal. The use of UF/DF during purification offers potential
integration of a formulation step which can also be performed by
UF/DF (Liew et al., 2012; Wagner et al., 2014; Carvalho et al., 2019;
Valkama et al., 2020; Moreira et al., 2021).

SEC separates molecules according to their ability to penetrate
the pores of porous resin beads within a column. Therefore, larger
particles are excluded from either all or some of the pores depending
on the pore and particle size. With decreasing size, solutes diffuse
into an increasing fraction of the pores leading to a longer residence
time in the column. SEC thus has a high selectivity for the separation
of VPs and host cell impurities, and is mostly independent of the
liquid phase conditions (Gagnon, 2009). SEC with pore sizes that
exclude VPs enables their elution in the void volume of the column
while impurities elute later. This enables higher flow rates, shorter
columns, and higher loads, reducing some of the drawbacks in
conventional protein SEC (Gagnon, 2009). However, SEC leads to
dilution and is limited by restricted loading volumes, especially for
separation problems with similar size magnitudes, such as VPs and
their aggregates. SEC thus benefits from reduced process volumes
and is therefore often performed toward the end of purification as
shown in Table 1 and other studies (Peixoto et al., 2007; Rodrigues

et al., 2007; Tomono et al., 2016). Similarly to UF/DF mentioned
above, the polishing of VPs by SEC is often performed in
combination with a formulation step (Peixoto et al., 2007;
Dormond et al., 2010; Merten et al., 2011; Moleirinho et al., 2018).

Next to SEC as a conventional chromatographic technique for
VP purification (Gagnon, 2009), modern mmSEC (commercially
available as Capto Core 400/700 by Cytiva) is increasingly applied
for purification in recent publications [Table 1 and (Weigel et al.,
2014; Reiter et al., 2019)]. mmSEC is based on the core-shell bead
technology where the core withmultimodal ligands is surrounded by
an inert size-restricting shell. This technology enables the binding of
smaller impurities and recovery VPs in the flow-through. The
drawback of mmSEC is that the required capacity is determined
by the impurity content, not the target species content. This property
makes it more attractive in later process stages with a lower impurity
burden, for example during polishing.

Another chromatographic technique that is beneficial for the
purification of VPs and larger proteins is SXC (J. Lee et al., 2012).
Here, the addition of polyethylene glycol (PEG) to the VP solution
increases the free energy of the system. The increase in free energy is
attributed to the steric exclusion of PEG molecules from the VP
surface and other surfaces leading to an energetically unfavorable
discontinuity in PEG concentration. This excluded volume effect is
highly correlated to the VP or protein hydrodynamic radius but is also
affected by other solute and solvent properties (J. Lee et al., 2012). The
association of VPs with each other and hydrophilic surfaces reduces
the free energy, which is thermodynamically more favorable. Using
monolith columns (J. Lee et al., 2012) or membranes (Marichal-
Gallardo et al., 2017) as stationary phases allows for the binding and
elution of VPs by increasing and decreasing the PEG concentration in
the mobile phase, respectively. In addition to the examples in Table 1,
SXC is applied as a capture step for adeno-associated viruses achieving
a high recovery (Marichal-Gallardo et al., 2021). The advantages of
SXC are binding and elution under practically any conditions only
requiring the addition and removal of PEG, respectively, as well as low
costs and good scalability using membranes (Marichal-Gallardo et al.,
2017).

Purification of VPs using PEG precipitation underlies similar
principles as SXC (J. Lee et al., 2012). As for SXC, larger proteins or
particles tend to precipitate earlier than smaller species at identical
conditions (Rothstein, 1994). Besides using non-ionic polymers
such as PEG, protein precipitation is performed by increasing the
salt concentration (salting-out), for example using ammonium
sulfate as a precipitant (Wingfield, 1998). Salting-out is
dominated by a preferential exclusion of the precipitant from
the hydrated protein surface leading to self-association and
precipitation (Timasheff & Arakawa, 1988; Wingfield, 1998).
Precipitation is usually applied for capturing at the beginning of
purification. Examples are the precipitation of norovirus VLPs
using PEG (Koho et al., 2012) or precipitation of different HBcAg
VLP candidates (Schumacher et al., 2018; Zhang et al., 2021) and
adeno-associated virus strains using ammonium sulfate (Tomono
et al., 2016; 2018). For the screening of VLP precipitation
conditions, advanced analytical and predictive tools were
recently developed (Vormittag et al., 2020; Wegner & Hubbuch,
2022). Integration of precipitation, wash, and re-dissolution with
cross-flow filtration led to synergies improving process
performance (Hillebrandt et al., 2020).
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2.1 Discussion of non-size-selective
separation techniques

A benchmark for host cell DNA of continuous cell lines
according to the European Pharmacopoeia is a reduction to a
maximum of 10 ng per vaccine dose to minimize tumorigenic
potential (Council of Europe, 2017). The reduction of host cell
nucleic acids in DSP of VPs is often performed enzymatically by
nucleases at the end of upstream processing or early in DSP.
Nuclease application is present in almost all processes listed in
Table 1 and in older downstream processes such as for HPV VLPs
(Cook et al., 1999). However, nucleases require specific conditions
for optimal activity and thus temperature, pH, or ion composition
may have to be adapted. Especially for high nucleic acid burden after
cell lysis, efficient processing may require a trade-off between
incubation time and product loss due to instability at the chosen
conditions (Kawka et al., 2021). However, also short processing
within 30 min, at room temperature, and without product loss was
demonstrated (Lothert, et al., 2020a). Nevertheless, even for long
incubation times, nucleic acid removal was observed to be
incomplete (Weigel et al., 2014; Lothert, et al., 2020b; Kawka
et al., 2021). At a large production scale, the use of nuclease and
required conditioning steps may considerably increase production
costs. Nuclease removal during further DSP is another important
consideration for patient safety. For gene therapy applications, the
removal of nucleases is a crucial step as it prevents the digestion of
target nucleic acids.

Apart from size-selective separations, heparin and sulfated
cellulose are applied as adsorbers for (pseudo) affinity
chromatography. Both have a similar molecular structure and
were shown to preferentially bind certain VPs (Opitz et al., 2007;
2009). Heparin ligands were applied for the separation of human
immunodeficiency virus-1 gag VLPs and extracellular vesicles
(Reiter et al., 2019) as well as HPV VLP purification (Kim et al.,
2010). Sulfated cellulose membrane adsorbers were used for pseudo
affinity capture of influenza virus (Opitz et al., 2009; Weigel et al.,
2016) and VLPs (Carvalho et al., 2018) as well as for polishing of
hepatitis C and influenza virus (Table 1). Further chromatography
types are also used where anion exchange chromatography (AEX) is
often applied for purification of enveloped (Table 1) and non-
enveloped VPs such as adenovirus (Kawka et al., 2021),
norovirus VLPs (Koho et al., 2012), and HPV VLPs (Cook et al.,
1999). A potential disadvantage of ion exchange chromatography is
the elution at a high ionic strength or a different pH, which might
lead to VP aggregation or instability and thus requires optimization
for each new strain or candidate. Overall, bead-based bind-elute
chromatography of VPs, such as ion-exchange or affinity, often
suffers from low dynamic binding capacities due to size-exclusion
and low diffusion coefficients of VPs (Gagnon, 2009). These
disadvantages can be mitigated using stationary phases for which
convective mass transfer of VPs to the ligands is dominant, for
example membranes or monoliths (Gagnon, 2009).

3 Non-enveloped VLPs

As described above, non-enveloped VLPs can be produced as
subunits, purified, and assembled (Figure 1B) or first purified as a

whole, optionally disassembled into subunits, and subsequently
reassembled (Figure 1A). With regards to the latter approach,
Section 2 elaborates on the purification of VPs as a whole which
enables to exploit their size for purification. This section reviews
subsequent purification steps including VLP dis- and reassembly
which are specific for non-enveloped VLP and their subunits. For
each process step, one or more size-selective purification approaches
are presented.

The disassembly of non-enveloped VLPs can be achieved by
changing the liquid phase conditions, for example by the addition of
dithiothreitol in combination with a pH increase for HPV VLPs
(Mach et al., 2006), the addition of urea or guanidine hydrochloride
at low ionic strength for HBcAg VLPs (K. W. Lee & Tan, 2008; Singh
& Zlotnick, 2003), or a pH increase at low ionic strength for Norwalk
VLPs (Ausar et al., 2006). Liquid phase conditions for disassembly at
a laboratory scale are achieved by the direct addition of substances
(Zlotnick et al., 1996), by the addition of stock solutions (Hillebrandt
et al., 2021; K. W; Lee & Tan, 2008; Valentic et al., 2022), or by
dialysis (Ausar et al., 2006; Porterfield et al., 2010; Holmes et al.,
2015; Strods et al., 2015). At a larger scale, DF was shown to achieve
efficient disassembly processing and purification while avoiding
target protein loss due to local urea concentration or pH peaks
(Hillebrandt et al., 2021). Another option is pelleting the target
protein in form of inclusion bodies (Suffian et al., 2017) or by
precipitation (Zhang et al., 2021) with subsequent re-solubilization
at disassembly conditions. However, pelleting the target protein by
centrifugation was shown to entrap impurities and leads to longer
re-solubilization times due to floc compaction when compared to
DF-based processing (Hammerschmidt et al., 2016; Hillebrandt
et al., 2020).

At a laboratory scale, the purification of the disassembled
VLP subunits is often performed by SEC (Strods et al., 2015;
Schumacher et al., 2018) or poly-histidine tags with
corresponding affinity chromatography (Middelberg et al.,
2011; Zhang et al., 2021). However, SEC has limited scalability
and affinity tags may lead to undesired alterations in the protein
structure or require subsequent removal of the tag. Alternatively,
disassembled VLPs were separated from nucleic acids by cross-
flow DF and from higher molecular weight species by dead-end
UF (Hillebrandt et al., 2021). Other (chromatographic)
separations, for example ion exchange, are also conceivable,
when compatible with disassembly agents as mentioned above.
Strods et al. (2015) suggested and applied alkaline hydrolysis of
nucleic acid impurities which, however, requires sufficient
stability of the subunit proteins.

Reassembly is usually initiated by reversing the disassembly
conditions, hence by increasing ionic strength, decreasing pH to the
neutral range, or removing chaotropic or reducing agents (Wingfield
et al., 1995; Mach et al., 2006; Ren et al., 2006; Porterfield et al., 2010;
Zhang et al., 2021). For gene therapy applications, reassembly can be
induced by the addition of nucleic acids which are subsequently
encapsulated similarly as in natural virus assembly (Porterfield et al.,
2010; Strods et al., 2015; Petrovskis et al., 2021). It is worth
mentioning, that different molecular variants of a VLP show
different dis- and (re-) assembly behavior, which also affects
process development (Rüdt et al., 2019; Hillebrandt et al., 2021;
Valentic et al., 2022). VLP dis- and reassembly were investigated in
the frame of DF providing a scalable process and the opportunity to
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improve VLP yield by controlled buffer exchange (Liew et al., 2012;
Hillebrandt et al., 2021). Furthermore, process monitoring
approaches were developed to monitor product and process
properties during DF-based VLP dis- and reassembly (Rüdt et al.,
2019; Hillebrandt et al., 2022).

4 Conclusion

This review summarizes the fundamentals and applications of
several different size-selective separation techniques for the DSP of
VPs. Recently published processing routes and advantages of size-
selective separation for VPs and non-enveloped VLPs are
highlighted. In the future, the presented size-selective
approaches can serve as building blocks for platform
downstream processes. A combination of different size-selective
techniques may lead to synergistic effects in process performance
while promising wide applicability.
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