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1 Introduction

The top quark, the known heaviest fundamental particle, has been one of the most essential
objects studied on contemporary colliders like the Tevatron and LHC since its discovery [1,
2]. Due to its substantial mass, the top quark plays a crucial part in understanding the
electroweak symmetry breaking. The top quark is the only one that decays before forming
a colorless bound state, or hadronization, due to its short lifetime. Given the enormous
quantity of top quarks produced at the LHC, this special characteristic enables direct
measurement of the top quarks’ properties.

The LHC can be regarded as a top factory on which top quarks are produced in several
ways.1 The dominant contributions come from top pair production via strong interactions
and the gluon fusion channel has the largest rate. Another important way to produce top
quarks is the production through electroweak interactions and a single top quark is found in
the final state. Single-top production thus provides a powerful probe of the charged-current
weak interactions of the top quark at hadron colliders.

Single-top production may proceed via the t-channel, the s-channel, or the associated
production of a top quark with aW boson (tW production). A space-likeW boson connects
two quark currents in the t-channel single-top production. The t-channel dominates the
single-top production and its cross section is larger than the sum of the other two production

1See ref. [3] for a recent review on the top physics.
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Figure 1. Sample Feynman diagrams for t-, tW - and s- channel single-top production at tree level.

mechanisms at LHC. In the s-channel, the quark lines are connected by a time-likeW boson.
It has the minimal cross section among three production channels. An on-shell W boson
is produced in tW associated production. The sample Feynman diagrams for the three
channels at the tree level are shown2 in figure 1.

The presence of charged-current weak interactions and the fact that top quarks decay
almost exclusively to an on-shell W boson and a b quark allow for direct probe of the tWb

couplings in the single-top production and also for constraining the anomalous couplings in
the tWb vertex [5–7]. Measurements of the single-top quark production cross section thus
provide unbiased determinations of the essential observables like the top quark width [8],
mass [9], and magnitude of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element [10,
11]. By studying the distributions of top-quark decay products the information about the
polarization of top quark can be understood from them [12, 13]. The single-top production
also plays a vital role in providing interesting probes of parton distribution functions (PDFs)
and searching for new physics signals at the LHC [14, 15].

The theoretical studies on single-top production over the decades have built a solid
foundation for understanding the electroweak properties of the top quark. The next-to-
leading order (NLO) QCD corrections to all three channels of single-top production have
been known for decades [16, 17]. The next-next-to-leading order (NNLO) QCD corrections
to t- and s- channel single-top production, in the structure function approximation, are
computed in refs. [18–21] and ref. [22], respectively. Previous studies neglect the talk be-
tween heavy and light quark lines, i.e. the non-factorizable contributions, for their small
corrections. However, it is argued in refs. [23, 24] recently that the non-factorizable contri-
butions to t-channel single-top production will be enhanced by a factor π2 and thus can not
be neglected. The complicated multi-scale two-loop Feynman integrals in refs. [23, 24] are
computed numerically by applying the auxiliary mass flow method [25–27]. As for the tW
mode, the complete corrections at NNLO QCD are still unavailable. Only partial results
have been obtained [28–32] and the complete two-loop QCD amplitudes for tW production
were studied very recently [33].

We aim to perform an independent calculation of the non-factorizable contributions to
t-channel single-top production. A fast and stable evaluation of amplitudes during phase
space integration is demanded in the phenomenological study. This evaluation will be much

2In the Feynman diagrams in this paper, the blue, thick lines are for top quarks with mass mt. The
violet, thick, waved lines are for W bosons with mass mW . The black, thin, coiled lines are for gluons,
which are massless. The black, thin, straight lines are for other massless quarks. The diagrams in this
paper are generated using TikZ-Feynman [4].
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easier if the building blocks of the amplitudes, the Feynman integrals, can be expressed by
some special functions, which are well understood and easily and precisely evaluated. Being
different from refs. [23, 24], we try to calculate the relevant two-loop Feynman integrals
analytically which is a challenging task due to the many scales.

The two-loop amplitude contribution consists of 18 non-factorizable diagrams, includ-
ing planar and non-planar diagrams. The various Feynman integrals on each diagram can
be reduced as a linear combination of a relatively smaller number of selected integrals.
Thus, for a certain diagram, only these independent integrals, called master integrals, need
to be computed analytically. The technique of the master integral computation varies.
Among them, one of the most useful methods is based on the differential equations of
uniform transcendental (UT) integral basis [34, 35]. This method derives the selected UT
master integrals by solving the canonical differential equations on the kinematic variables,
via iterative integrations. Using this method, the integrals can be expressed in form of
a Laurent expansion of the spacetime parameter ε with coefficients being transcendental
functions, such as Goncharov polylogarithm (GPL) functions. In this paper, we are trying
to use the UT basis method to evaluate the master integrals of the above diagrams. We
gave the results of all the diagrams with one internal massive propagator, including a pla-
nar diagram and two non-planar diagrams. We expressed their results in GPL functions.
We also gave a general discussion on the other diagrams.

We remark that, during the preparation of this paper, researchers working on the
same problem have made their progress [36]. In this work, the method named Simplified
Differential Equations is applied, and the master integrals for a planar diagram and a non-
planar diagram are evaluated. These two diagrams are also included in our computation.

Usually, one needs to validate his or her analytic results of Feynman integrals after
the analytic computation. There are different kinds of validation methods. One convenient
way is to make use of numerical Feynman integral evaluation tools, including AMFlow [25–
27, 37–39], Fiesta [40–44], SecDec (and pySecDec) [45–47]. The analytic results should
agree with the numerical ones if derived correctly.

This paper is organized as follows. In section 2, we provide a review of the methodology
of the integration-by-parts reduction, the canonical differential equations, and the uniform
transcendental integrals. In section 3, we provide an analysis of the NNLO Feynman dia-
grams for non-factorizable corrections to t-channel single-top production. We also provide
our computation and corresponding results of the diagrams with one internal mass in this
section. These diagrams are free of elliptic sectors. In section 4, we summarize this paper.

2 Review of methods

In this section, we are reviewing the evaluation method we are using in this paper, including
the integration-by-parts reduction, uniform transcendental integrals, and canonical differ-
ential equations.
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2.1 The integration-by-parts reduction

The Feynman integrals of a diagram can be reduced to linear combinations of scalar inte-
grals after the Passarino-Veltman reduction [48]. The scalar integrals, which form a linear
space called a Feynman integral family, can be expressed in the standard form as

Gα1,...,αn :=
∫ dDl1
iπD/2

· · · dDlL
iπD/2

1
Dα1

1 · · ·D
αn
n
, (2.1)

where L is the loop number and Di’s are the propagators of the given integral family. In
this Feynman integral family, there exist linear constraints called the integration-by-parts
(IBP) relations [49, 50]. The IBP relations are given by the derivative of certain integrals,
which vanish in the sense of dimensional regularization, as

0 =
∫ dDl1
iπD/2

· · · dDlL
iπD/2

∂

∂lµ
vµ

Dα1
1 · · ·D

αn
n
, (2.2)

where vµ is a chosen vector being a combination of external or loop momenta. The right-
hand side of (2.2) expands to a linear combination of Feynman integrals. This means that
the integrals in a family are not linearly independent and constrained by IBP relations.
Given a target integral in the family, using the IBP relations, it can be reduced as a linear
combination to a chosen basis made by finite ([51]) number of integrals, as

Itarget =
N∑
i=1

ciIi, (2.3)

where Ii’s are the chosen, linearly independent integrals, called master integrals, and c′is

are called IBP reduction coefficients. Reducing a target integral in form as the right-hand
side of (2.3) is called IBP reduction. IBP reduction can be performed via some released
computer programs or packages, such as AIR, FIRE, FiniteFlow, Kira, LiteRed and
Reduze [52–63], etc. Besides, there are packages that can be used to simplify reduction
coefficients, including pfd-parallel and MultivariateApart [64–66]. In our work, we mainly
use FIRE6 [56] to perform IBP reductions.

The procedure of computing target integrals is with two submissions. One is to perform
IBP reduction (2.3) to get the IBP reduction coefficients ci, as stated in the last paragraph.
The other is to compute the analytic expressions of master integrals. One can use the meth-
ods like Feynman representation or Mellin-Barnes [67, 68] and expansion-by-regions [69]
techniques to compute the master integrals analytically. Their power is limited because of
the involving complicated parametric integrations. In this paper, we are using the method
of differential equations and the formerly mentioned ones will serve as the auxiliary aid
when determining the boundary conditions of the differential equations. In general, Feyn-
man integrals are functions of kinematic variables, labeling as xi, and spacetime dimension
parameter ε, defined as d = 4− 2ε, where d is the spacetime dimension. The derivative of
Feynman integrals with respect to xi’s are also combinations of Feynman integrals in the
same family. After IBP reduction, they can be written as linear combinations of master
integrals. Thus, for master integrals, we have

∂

∂xi
I = (Ai)I, (2.4)

– 4 –
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where I denotes the column vector formed by master integrals, and matrices Ai’s are
differential equation matrices with respect to xi. In general, Ai’s are functions of xi’s and
ε, i.e. Ai = Ai(xj , ε).

2.2 Uniform transcendental integrals and canonical differential equations

Solving differential equations like (2.4) is not easy. However, for many diagrams, we are
able to find a better choice of master integral basis called uniform transcendental (UT)
basis [34, 35], a kind of basis made of UT integrals. The definition of UT integral is
that the coefficients of ε-expansion of UT integrals are with a transcendental weight that
matches the power of ε. Usually, for L-loop UT integrals Ii, we have

Ii = ε−2L
∞∑
k=0

I
(k)
i εk, (2.5)

where I(k)
i are transcendental functions with weight k. So far, we have not explained what

transcendental weight is. In general, a rational function whose coefficients are rational
numbers f (0) can be considered as a weight-0 transcendental function, written as T (f (0)) =
0. Weight-k functions are related to functions with lower weight by 1 as

T
(∫

f (k)dlogf (0)
)

= k + 1, (2.6)

where f (k) and f (0) are weight-k and weight-0 functions respectively. For example, we have
T (log(x)) = 1 and T (Li2(x)) = 2 since

Li2(x) = −
∫ x

0
dx′ log(1− x′)dlog(x′). (2.7)

Some irrational numbers may be of weight higher than 0 since they can be considered as
corresponding transcendental functions, such like T (π) = T (log(−1)) = 1.

After choosing a UT basis, the differential equation is proportional to ε as

∂

∂xi
I = εAi(xj)I, (2.8)

where Ai is called the matrices of canonical differential equations, whose entries are usually
rational functions (or at most algebraic functions with some square roots). With the
parameter ε factored out, we can perform integration on (2.8) to derive the analytic results
of the UT integrals in that basis, in form of ε-expansion shown in (2.5).

There is another very useful property of canonical differential equation matrix Ai(x).
Considering that [∂xi , ∂xj ]I = 0, together with (2.8), we have

∂

∂xi
Aj −

∂

∂xj
Ak = 0, (2.9)

and
[Ai, Aj ] = 0. (2.10)
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Eq. (2.9) shows that there exists a matrix Ã such that

Ai = ∂

∂xi
Ã. (2.11)

The other requirement about the canonical differential equations is that they must be in a
Fuchsian form and, more concretely, a dlog form, as follows

Ã =
∑
i

ai logWi, (2.12)

where ai’s are matrices of rational numbers and Wk’s, called symbol letters, are rational
or algebraic functions of the kinematic variables. They are closely related to the intrinsic
singularities and branch cuts of the integrals in the Feynman diagram.

2.3 UT basis determination

Before deriving the canonical differential equations, we need to find a UT basis first. Nowa-
days, there are many methods to find UT basis. Theoretical methods include leading sin-
gularity analysis [34, 35, 70, 71], dlog integrals [72–74], intersection theory [75–78], Magnus
series [79], etc. Besides, there are some algorithms and packages for UT integral de-
termination, they are: Canonica [80, 81], DlogBasis [74], epsilon [82], Fuchsia [83],
initial [84], libra [85–87], etc. These methods are with different kinds of advantages.
Usually, one often needs to try different methods for a given UT determination problem.

Here we explain the main method we use in our work on the problem involved in
this paper. Given an integral family, it is not guaranteed that we can use the methods
introduced above to generate a linearly complete UT basis. But it is important to use those
methods to find as many linear independent UT integrals as possible. Afterwards, we have
fewer UT integrals to be found, manually, to form a complete linear basis. Fortunately,
with the help of the concept of sector, the manual procedure can be made easier.

The sector of a given integral is describing whether a propagator appears as a denom-
inator (labeled 1) or numerator (labeled 0) in the integrand, i.e. the sector of an integral
Gα1,··· ,αn is (a1, · · · , an) where

ai =

 1, αi > 0
0, αi ≤ 0

(2.13)

Altering one or more 1 to 0 in the indices of a sector A gives its sub-sector B, which means
eliminating the corresponding propagator in the denominator. Equivalent speaking, we
state that A is a super-sector of B. In general, if an integral is a linear combination of
integrals, which corresponds to sector A and possibly A’s sub-sectors, we say that this
integral is in sector A.

Suppose we already have several UT integrals I ′ derived from the existing methods,
we need firstly to determine which sectors the rest UT integrals are from, and to complete
the subset of UT basis in this sector manually. This can be done by finding the subset of
the master integrals that can form an independent and complete linear space together with
I ′. The choice of such a subset is not unique. A good choice is to let the sectors of the

– 6 –
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master integrals chosen to be from lower sectors, which means, with less propagators in
the denominator. The UT integrals in these sectors are either known or easy to determine,
by introducing double (or possibly triple) propagators [35].

This sector-by-sector basis completing method can be used if I ′ is enough to form a
nearly-complete basis. Sometimes, it is not the case. We will encounter this circumstance
in section 3.3, where we found another way to determine the UT basis using Magnus series.

The Magnus series method requires that we have already obtained a linear basis. The
meaning of a linear basis is that its corresponding differential equation matrix is linear in
ε, namely,

∂

∂xi
J = (Ai,0 + εAi,1)J. (2.14)

Suppose that the UT basis is related to J by J = TI, where T is free of ε. Then, finding
the desired transformation matrix T reduces to solve the following matrix equation,

∂

∂xi
T = Ai,0T. (2.15)

The solution to the above equation can be expressed by the exponential of a series as

T = eΩ[Ai,0], (2.16)

where

Ω[Ai,0] :=
∞∑
n=1

Ωn[Ai,0], (2.17)

which is called the Magnus expansion, and

Ω1[A(t)] =
∫ t

dz1A(z1),

Ω2[A(t)] = 1
2

∫ t

dz1

∫ z1
dz2 [A(z1), A(z2)] , (2.18)

Ω3[A(t)] = 1
6

∫ t

dz1

∫ z1
dz2

∫ z2
dz3
{

[A(z1), [A(z2), A(z3)]] + [A(z3), [A(z2), A(z1)]]
}
,

...

Notice that this method works well only if the Magnus series (2.17) terminates at a
certain order. If so, one can acquire a nice transformation matrix from (2.17). This can be
done in a systematic way. The corresponding workflow can be designed as in Algorithm 1,
where N denotes the number of xi’s and the subscripts “diag” and “nd” denote the diagonal
and non-diagonal parts of the matrices, respectively. Note that in the transformation of
the diagonal part, the Magnus series terminates at order 1 since all commutators vanish
in (2.18). Finally, the product

T1 · · ·T2N (2.19)

is the matrix which transforms the original differential equation into the canonical form.

– 7 –
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Algorithm 1: Transformation by Magnus series.
Input : ∂

∂xi
J (0) =

(
A

(0)
i,0 + εA

(0)
i,1

)
J (0)

// Transforming diagonal part
1 for n← 1 to N do
2 Tn,diag = eΩ1[A(n−1)

n,0,diag] ;
3 J (n) = T−1

n,diagJ
(n−1) ;

4 A
(n)
i = Tn,diagA

(n−1)
i T−1

n,diag − Tn,diag
∂
∂xi

T−1
n,diag = A

(n)
i,0,nd + εA

(n)
i,1 ;

5 end
// Transforming non-diagonal part

6 for n← N + 1 to 2N do
7 Tn,nd = eΩ[A(n−1)

n,0,nd] ;
8 J (n) = T−1

n,ndJ
(n−1) ;

9 A
(n)
i = Tn,ndA

(n−1)
i T−1

n,nd − Tn,nd
∂
∂xi

T−1
n,nd = εA

(n)
i,1

10 end
Output: ∂

∂xi
I = εA

(2N)
i,1 I and T1 · · ·T2N

2.4 Solving the canonical differential equations

From (2.8) and (2.11), the differential equations can be written as the dlog form,

dI = ε(dÃ)I. (2.20)

Substituting the expansion of I

I = ε−2L
∞∑
k=0

I(k)εk (2.21)

back into the dlog form (2.20), one can build a recursive relation among different I(k)’s,

dI(k) =

 0 k = 0
(dÃ)I(k−1) k > 0

. (2.22)

It is straightforward to see that I(k) can be determined order by order in ε,

I(0)(x) = I(0)(xb) , (2.23)

I(1)(x) = I(1)(xb) +
∫
γ
dÃI(0)(xb) , (2.24)

I(2)(x) = I(2)(x0) +
∫
γ
dÃI(1)(xb) +

∫
γ
dÃdÃI(0)(xb) , (2.25)

...

where γ is a piecewise smooth path that connects the boundary xb and a general x in the pa-
rameter space. Then the solution is expressed by Chen’s iterated integrals [88]. The integra-
tion results are independent of the choice of path γ unless the path variation crosses a singu-
lar point with nonzero residue. A convenient choice of γ is the composed path of consequent

– 8 –
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segments with each along one of the axes in the parameter space. Without loss of generality,
let the integration be performed firstly in x1, the solution is fixed up to an undetermined
function of remaining xi’s. Substituting the obtained solution into the differential equation
of x2, one can get a new differential equation of the undetermined function in the last step
with respect to x2. Integrating the new differential equation will update the solution with
explicit dependence on x2. Repeating similar procedures on following xi’s, one eventually
gets the complete solution up to an unknown constant vector at each order in ε. Even
though the solution is, without crossing singular point(s) with a nonzero residue, invariant
under different γ, the same path should be chosen consistently in the recursive calculation.

In the special case when the integration kernel takes the general d log form

dxi
xi − r

, (2.26)

where r is an algebraic function of the remaining variables, the solution straightforwardly
evaluates to the Goncharov polylogarithms (GPLs) [89, 90] which are a class of special
Chen’s iterated integral. A wight n GPL with indices wi (i = 1, . . . , n) and argument t is
defined recursively by

G(wn, . . . , w1; t) =
∫ t

0

1
τ − wn

G(wn−1, . . . , w1; τ) dτ (2.27)

with G( ; t) = 1 and
G(~0n; t) = logn t

n! . (2.28)

The final step is to fix the unknown constant vector at each order in ε with the help
of boundary conditions. There are several ways to do it. The simplest case is that some
of the UT integrals, usually those with less propagators, can be computed at a particular
kinematic point in the exact or asymptotic form by methods like Feynman representation,
Mellin-Barnes [67, 68], and expansion-by-regions [69] techniques. For the other integrals,
another approach is to make use of the characters of UT integrals, especially the behavior
around singularities. Usually, the singularities that appear in the canonical differential
equations contain two types, physical singularities or spurious singularities. For the latter
ones, no divergence would actually show up when reaching those spurious singularities.
Thus, the linear relations among constants of distinct UT integrals can be constructed
systematically given the knowledge of whether the integrals are singular or not in some
limits. The starting step is to determine which singularities are physical and which are
spurious. This can be analyzed in two ways. The first is to perform the region analysis
under the interested limits. If only the hard region is revealed, then it’s safe to sentence
the regularity of an integral in that specific limit.3 The second way is to notice the physical
singularities are encoded in the logarithms that appear at weight 1 of each UT integral. One
can easily fit the weight 0 constant vector from a quick numerical evaluation with the help of

3Because a UT integral is often composed of several integrals, it’s not rigorous to judge the divergence
even if each term is singular. Magic cancellation might happen. A solid conclusion will take more inves-
tigation. One can just give up such a potential contribution to boundary constant determination because
other unambiguous conclusions are always sufficient (in our calculation).
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ta

∼ Tr(ta)

Figure 2. Color conservation reduces the number of diagrams for non-factorizable corrections to
the t-channel single-top production.

pySecDec [45] or AMFlow [38] since it is constituted of rational numbers. Then the weight
1 of every UT integral can be obtained by integrating the canonical differential equation in
the mentioned manner. These two methods provide a cross-check with each other in our
calculation. In our work, the above two methods, direct evaluation, and spurious singularity
constraints are used together to provide boundary conditions in each integral family.

3 The Feynman diagrams and the UT integrals

We first briefly present the setup for our later calculations of the two-loop master inte-
grals that contribute to the t−channel single-top production. Let’s consider the following
partonic scattering process,

u(p1) + b(p2)→ t(−p3) + d(−p4), (3.1)

where only t is massive, i.e. p2
1,2,4 = 0 and p2

3 = m2
t . With three independent momenta

p1,2,4, three Mandelstam variables can be constructed as

s = (p1 + p2)2, t = (p1 + p4)2, u = (p2 + p4)2. (3.2)

They sum up to the square of the top’s mass. In the following sections, we will choose s, t
as the independent ones. Together with m2

t and m2
W , which comes from the internal line,

the master integrals to be calculated are the functions of s, t,m2
t and m2

W . Note that for
single-top production, we have

s > m2
t > m2

W > 0, m2
t − s < t < 0. (3.3)

As was stated in [91], the color conservation would reduce the number of needed
two-loop Feynman diagrams for non-factorizable corrections to the t-channel single-top
production. It can be understood from the example (see figure 2) in which the interference
of two-loop and tree diagram vanishes due to the presence of single SU(3) generator in a
trace. Eventually, only 18 diagrams will survive and 9 of them are depicted in figure 3. The
remaining ones can be obtained by crossing the external legs from the 9 diagrams listed in
figure 3. It turns out that they share the same master integrals as the former 9 diagrams
up to different inputs, say t↔ u for example.

The 9 Feynman diagrams shown in figure 3 are categorized in two ways. Firstly, there
are 3 topologies of the propagators, namely, the planar double box (db) diagrams, left-
crossed double box (lxb) diagrams, and the right-crossed double box (rxb) diagrams. Each

– 10 –
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p1

p2 p3

p4

T1

p1

p2 p3

p4

T2

p1

p2 p3

p4

T3

p1

p2 p3

p4

T4

p1

p2 p3

p4

T5

p1

p2 p3

p4

T6

p1

p2 p3

p4

T7

p1

p2 p3

p4

T8

p1

p2 p3

p4

T9

Figure 3. The non-factorizable Feynman diagrams for ub→ td process at NNLO QCD.

topology contains 3 diagrams. The diagrams with the same topology are arranged in the
same row in figure 3. Secondly, the diagrams are categorized by the number of internal mas-
sive propagator(s). This number ranges from 1 to 3. The diagrams with the same number
of internal massive propagator(s) are arranged in the same column in figure 3. Among the
two categorizing criteria, the topology and the number of massive internal propagator(s),
the latter affects more on the properties of the integrals in the family. As introduced in
section 2, the canonical differential equation method is suitable to evaluate the master in-
tegrals in terms of transcendental functions like GPL. However, it is not always guaranteed
that we can find a UT basis in a family, especially for those with too-many internal massive
propagators. In these families, different kinds of square roots may appear in the attempt
to transform the differential equations into a canonical form. Sometimes we cannot find a
transformation of the kinematic variables to simultaneously rationalize all the square roots.
The above situation may cause the difficulty brought by elliptic functions. In these cases,
the solutions of the differential equations cannot be expressed in form of transcendental
functions like GPL. In many cases, they are in form of elliptic functions as well as the
iterative integration of elliptic functions [92–94]. These functions are more complicated
and their properties and numerical evaluation are not as well-studied as GPL functions.
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Figure 4. The planar double box topology.

As we will see later in this section, the diagrams with 1 internal massive propagator in
the first column of figure 3 are with good properties. The differential equations of 1-mass
(with 1 internal massive propagator) planar and left-crossed double box are free of square
roots. As for the 1-mass right-crossed diagram, there exists one square root inside and
it can be rationalized after a redefinition of kinematic variables. For these diagrams, the
canonical differential equations can be built, and the analytic results of the integrals can be
expressed in GPL functions by solving the canonical differential equations using the method
discussed in section 2. The results of the 3 diagrams are shown in the next subsections.
The construction of the differential equation in the rest 6 diagrams, with more internal
masses, are more subtle due to the existence of more square roots and possible elliptic
sectors. The maximal cut from Baikov representation [95–97] also provides us some hints
about the information of the underlining square roots and elliptic sectors. If a simultaneous
rationalization of these square roots does not exist, corresponding elliptic sectors appear
in these diagrams. In such a case, we are not aiming to express the corresponding integrals
into iterative integrations of elliptic functions. However, the expansion of the kinematic
variables provides us with another approach to get around elliptic functions. We are going
to discuss this in subsection 3.4.

3.1 The 1-mass planar double box diagram

In this section, we present the analytic results of master integrals of the planar double box
diagram with 1 internal mass. The diagram is shown in figure 4.

The propagators of the planar double box diagram are defined as

D1 = l21, D2 = (l1 + p1) 2, D3 = (l1 + p1 + p2) 2,

D4 = (l2 − p1 − p2) 2, D5 = (l2 + p4) 2 −m2
W , D6 = l22,

D7 = (l1 + l2) 2, D8 = (l1 − p4) 2, D9 = (l2 − p1) 2. (3.4)

Using FIRE6 [56], we found 31 master integrals for this diagram, which means we need
to determine 31 UT integrals to build the canonical differential equations. In this family,
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the UT integrals we chose to form the basis are listed below.

I1 = tG0,1,1,0,1,1,1,0,0 −m2
tG0,1,1,1,1,1,1,0,−1 − sG1,0,1,1,0,1,1,0,0 +m2

tG1,0,1,1,1,0,1,0,0

− sm2
WG1,0,1,1,1,1,1,0,0 + tG1,1,0,1,1,0,1,0,0 − stG1,1,1,1,1,1,0,0,0

+ sG1,1,1,1,1,1,1,−1,−1, (3.5)

I2 = − s
(
−t+m2

t

)
G0,1,1,1,1,1,1,0,0 + stG1,1,0,1,1,1,1,0,0 + s2G1,1,1,1,1,1,1,−1,0

− s2tG1,1,1,1,1,1,1,0,0, (3.6)
I3 = tG1,1,0,1,1,0,1,0,0 + sG1,1,1,1,1,0,1,−1,0 − stG1,1,1,1,1,0,1,0,0, (3.7)

I4 = − s(−1 + ε)m2
WG1,0,0,0,2,0,2,0,0

ε3
(
−m2

t +m2
W

) − 6m2
t

(
−s+m2

t −m2
W

)
G1,0,0,1,1,0,2,0,0

ε
(
m2
t −m2

W

)
+ sm2

W

(
s−m2

t +m2
W

)
G2,0,0,1,1,0,2,0,0

ε2
(
−m2

t +m2
W

) , (3.8)

I5 = − tG0,1,1,0,1,1,1,0,0 +
(
−s+m2

t

)
G0,1,1,1,1,1,1,0,−1, (3.9)

I6 = − sG0,1,1,0,1,1,1,0,0 + sG1,1,1,0,1,1,1,−1,0, (3.10)

I7 = − 2m2
WG0,0,1,0,2,0,2,0,0

ε2
+
(
m2
t −m2

W

)
G0,0,2,0,1,0,2,0,0
ε2

, (3.11)

I8 = s2
(
−t+m2

W

)
G1,1,1,1,1,1,1,0,0, I9 = −s

(
s−m2

t

)
G1,1,1,1,1,1,1,0,−1, (3.12)

I10 = s
(
−t+m2

t

)
G1,1,1,1,1,0,1,0,0, I11 = s

(
−t+m2

W

)
G1,1,0,1,1,1,1,0,0, (3.13)

I12 = s
(
−s+m2

t

)
G1,0,1,1,1,1,1,0,0, I13 = s

(
−t+m2

W

)
G0,1,1,1,1,1,1,0,0, (3.14)

I14 = s2G1,1,1,1,0,1,1,0,0, I15 = stG1,1,1,0,1,1,1,0,0, (3.15)

I16 =
(
−s− t+m2

t

)
G0,1,1,0,1,1,1,0,0, I17 =

(
−s+m2

t

)
G1,0,1,1,1,0,1,0,0, (3.16)

I18 =
(
−s+m2

t

)
G1,0,1,0,1,1,1,0,0, I19 =

(
−t+m2

t

)
G0,1,1,1,1,0,1,0,0, (3.17)

I20 = (s+ t)G1,1,0,1,1,0,1,0,0, I21 = tG1,1,0,0,1,1,1,0,0, (3.18)

I22 = sG0,1,1,1,0,1,1,0,0, I23 = −
(
−s+m2

t

)
G0,0,1,0,1,1,2,0,0
ε

, (3.19)

I24 =
(
−s+m2

t

)
G1,0,1,0,2,0,1,0,0
ε

, I25 =
(
−s+m2

t

)
G1,0,1,0,1,0,2,0,0
ε

, (3.20)

I26 =
(
−s+m2

t

)
G1,0,0,1,1,0,2,0,0
ε

, I27 = −(−1 + ε)m2
WG1,0,0,0,2,0,2,0,0
ε3

, (3.21)

I28 = sm2
WG1,0,2,0,3,0,0,0,0

ε3
, I29 = tG0,1,0,0,2,0,2,0,0

ε2
, (3.22)

I30 = sG0,0,2,0,0,2,1,0,0
ε2

, I31 = m2
tG0,0,1,0,2,0,2,0,0

ε2
(3.23)

We are explaining how we determined this UT basis. At first, we used the package
DlogBasis [74] to generate several dlog integrals. As was conjectured in [78], the dlog inte-
grals should be UT integrals. Among the dlog integrals, we selected 20 linearly independent
ones, to serve as part of the UT basis. They are Ii for

i ∈ {1 ∼ 3, 5, 6, 8 ∼ 22}. (3.24)
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sector label # of integrals
(1,0,1,0,1,0,0,0,0) {1,3,5} 1
(1,0,0,0,1,0,1,0,0) {1,5,7} 1
(0,1,0,0,1,0,1,0,0) {2,5,7} 2
(0,0,1,0,1,0,1,0,0) {3,5,7} 2
(0,0,1,0,0,1,1,0,0) {3,6,7} 1
(1,0,1,0,1,0,1,0,0) {1,3,5,7} 2
(1,0,0,1,1,0,1,0,0) {1,4,5,7} 2
(0,0,1,0,1,1,1,0,0) {3,5,6,7} 1

Table 1. Sectors to be completed of the double box diagram.

The master integrals of this diagram form a 31-dimensional linear space. Thus, the 20
dlog integrals do not form a complete basis. We need to choose additional 11 integrals to
form a linearly complete UT basis. A better choice of the sectors that need to be completed
is shown in table 1. These sectors are either sunset or bubble-triangle diagrams, we can
easily determine a UT basis in each of the sectors. There are in total 12 UT integrals
found in this step. Together with the dlog integrals in (3.24), there are 32 UT integrals.
We chose 31 (linearly independent) of them by our preference to form the complete UT
basis I1 ∼ I31 shown above.

With the UT basis determined, we derived the corresponding differential equations
and the Ã matrix. Their results are in the supplementary material. See appendix A for
details. The Ã matrix we derived are in form as (2.12), with symbol letters

W1 = m2
t , W2 = m2

W , W3 = s, W4 = t, W5 = s+ t, W6 = m2
t −m2

W , (3.25)
W7 = −s+m2

t , W8 = −t+m2
t , W9 = −t+m2

W , W10 = −s+m2
t −m2

W , (3.26)
W11 = −s− t+m2

t , W12 = −tm2
t + sm2

W + tm2
W . (3.27)

With the canonical differential equation derived, we can perform an iterative integration on
it to get the analytic results of the integrals, with some undetermined boundary constants.
Then, we need to analyze the singularities of the UT integrals. Once a singularity point
is found spurious, it generates a constraint on these undetermined constants. We can do
this analysis using the methods mentioned in 2.4. We have found that the UT integrals
I1, · · · , I31 are all finite in the limits

s→ −t, s→ m2
t −m2

W , s→ m2
t , m2

t → 0. (3.28)

By requiring regularity of all the UT integrals at the above spurious singularity points, the
undetermined constants of the boundaries can be completely fixed, up to one independent
input integral which is easy to get a compact form

I28 = Γ(1 + ε)2

ε4(m2
W )2ε

(
− s

m2
W

)−ε Γ(1− ε)2

2Γ(1− 2ε) . (3.29)
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Using these, the differential equations are solved completely. Notice that the differential
equation is solved in the physical region s > m2

t > m2
W > 0,m2

t − s < t < 0. This is the
same for the next two families.

The UT integrals are now expressed in the form of ε-expansion with the coefficient
being GPL functions, shown below.

Ī1 =O(1), Ī2 =O(1), Ī3 =O
( 1
ε2

)
, (3.30)

Ī4 =− 1
ε4

+−2iπ+2G(0,x)−2G(1,z)
ε3

+O
( 1
ε2

)
, Ī5 =O

(1
ε

)
, (3.31)

Ī6 =−G(−1,y)
2ε3 +O

( 1
ε2

)
, Ī7 = 1

ε4
− 2G(1,z)

ε3
+O

( 1
ε2

)
, (3.32)

Ī8 =− 1
4ε4 +

− iπ
2 +G(−1,y)+ 1

2G(0,x)− 1
2G(1,z)

ε3
+O

( 1
ε2

)
, Ī9 =O

( 1
ε2

)
, (3.33)

Ī10 = G(−1,y)−G(1,z)
2ε3 +O

( 1
ε2

)
, Ī11 =O

( 1
ε2

)
, Ī12 =O(1), Ī13 =O

( 1
ε2

)
, (3.34)

Ī14 = 1
4ε4 +

iπ
2 −

1
2G(0,x)
ε3

+O
( 1
ε2

)
, Ī15 =−G(−1,y)

2ε3 +O
( 1
ε2

)
, Ī16 =O

(1
ε

)
, (3.35)

Ī17 =O(1), Ī18 =O(1), Ī19 =O
( 1
ε2

)
, Ī20 =O

(1
ε

)
, Ī21 =O

( 1
ε2

)
, (3.36)

Ī22 =O
( 1
ε2

)
, Ī23 =O

( 1
ε2

)
, Ī24 =O

(1
ε

)
, Ī25 =O

( 1
ε2

)
, Ī26 =O

( 1
ε2

)
, (3.37)

Ī27 = 1
ε4

+O
( 1
ε2

)
, Ī28 = 1

2ε4 +
iπ
2 −

1
2G(0,x)
ε3

+O
( 1
ε2

)
, (3.38)

Ī29 =−G(−1,y)
ε3

+O
( 1
ε2

)
, Ī30 = 1

ε4
+ 2iπ−2G(0,x)

ε3
+O

( 1
ε2

)
, (3.39)

Ī31 =−G(1,z)
ε3

+O
( 1
ε2

)
, (3.40)

where we have defined scaleless variables as

x = s

m2
W

, y = − t

m2
W

, z = m2
t

m2
W

. (3.41)

Note that, in the results (3.30)∼(3.40), we have multiplied the UT integrals with a regulator
as

Īi = (m2
W )2ε

Γ(1 + ε)2 Ii, (3.42)

in order to keep the Euler gamma constant γE absent in the ε expansion and to keep the UT
integrals dimensionless. The results shown in (3.30)∼(3.40) only kept the expressions up to
O
(

1
ε2

)
, considering the next orders are with too-long expressions. We put the results that

are kept up to order O(1) in the supplementary material file “db1/analytic_UT.txt”, which
is a Mathematica readable list of the analytic expressions of {Ī1, · · · , Ī31}. See appendix A
for more details about the supplementary material.
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integral ε order coefficient
(Ī4)GPL ε−4 -1.00000000000000000000000000000
(Ī4)AMF ε−4 -1.00000000000000000000000000000
(Ī4)GPL ε−3 5.45574065710303313100762912852
(Ī4)AMF ε−3 5.45574065710303313100762912852
(Ī8)GPL ε−4 -0.250000000000000000000000000000
(Ī8)AMF ε−4 -0.250000000000000000000000000000
(Ī8)GPL ε−3 4.33019437410005361889679452697
(Ī8)AMF ε−3 4.33019437410005361889679452697

Table 2. Selected numeric results in the planar double box family.

We performed numerical checks on the results shown in (3.30)∼(3.40). The numerical
validation point is

s = 360000, t = −235765
2 , m2

W = 6400, m2
t = 29929. (3.43)

We evaluated (3.30)∼(3.40) on this check point using GiNaC [98–101].4 We label the nu-
meric results as (Īi)GPL. Besides, we directly computed the ε expansion of the Laporta Mas-
ter integrals using AMFlow [38], and using (3.5)∼(3.23) to convert it to numeric expressions
of the UT integrals. We label the numerical UT integrals derived from this way by (Īi)AMF.

The analytic expressions of the UT integrals in this family passed the numerical check
with5

|(Īi)GPL − (Īi)AMF| < 10−26 (3.44)

at each order from ε−4 to ε0 on the numeric point (3.43). The numerical results of
(Īi)GPL and (Īi)AMF on this check point are put in the supplementary material files
“db1/numericUT_GPL.m” and “db1/numericUT_AMF.m”, respectively. Some selected
results are digested in table 2.

3.2 The 1-mass left-crossed double box diagram

In this section, we present the analytic results of master integrals of the left-crossed double
box diagram with 1 internal mass. The diagram is shown in figure 5. The propagators of
the left-crossed double box diagram are defined as

D1 = l21, D2 = (l1 + p1) 2, D3 = (l2 − p1 − p2) 2,

D4 = (l2 + p4) 2 −m2
W , D5 = l22, D6 = (l1 + l2) 2,

D7 = (l1 + l2 − p2) 2, D8 = (l1 − p4) 2, D9 = (l2 − p1) 2. (3.45)

4Recently, there is another C++ package developed for fast GPL evaluation, named FastGPL [102].
5The precision goal in AMFlow is set to be 30 reliable digits.
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Figure 5. The left-crossed double box topology.

Using FIRE6 [56], we found 35 master integrals in this diagram. We can find their
combinations to form a UT basis which contains 35 UT integrals. The UT basis we found
in this family is as follows.

I1 = − stG0,1,1,1,1,1,1,0,0 + sm2
tG0,1,1,1,1,1,1,0,0 − sm2

WG1,0,1,1,1,1,1,0,0

+ stG1,1,1,1,0,1,1,0,0 − sm2
tG1,1,1,1,0,1,1,0,0 − stG1,1,1,1,1,0,1,0,0

+ stG1,1,1,1,1,1,0,0,0 − s2G1,1,1,1,1,1,1,−1,0 + sm2
WG1,1,1,1,1,1,1,0,−1

+ s2m2
WG1,1,1,1,1,1,1,0,0, (3.46)

I2 = sm2
tG0,1,1,1,1,1,1,0,0 − sm2

WG0,1,1,1,1,1,1,0,0 − sm2
WG1,0,1,1,1,1,1,0,0

− stG1,1,0,1,1,1,1,0,0 − stG1,1,1,1,1,0,1,0,0 + stG1,1,1,1,1,1,0,0,0

− s2G1,1,1,1,1,1,1,−1,0 + stG1,1,1,1,1,1,1,0,−1 + s2tG1,1,1,1,1,1,1,0,0, (3.47)
I3 = − sG0,1,1,1,1,1,1,0,−1 + sG1,0,1,1,0,1,1,0,0 − sm2

WG1,0,1,1,1,1,1,0,0

− sG1,1,1,1,0,1,1,−1,0 + stG1,1,1,1,0,1,1,0,0 − stG1,1,1,1,1,0,1,0,0

+ sG1,1,1,1,1,1,1,−1,−1, (3.48)
I4 = sG1,0,1,1,0,1,1,0,0 − tG1,1,0,1,0,1,1,0,0 + sG1,1,1,1,0,0,1,0,0 + tG1,1,1,1,0,1,0,0,0

− sG1,1,1,1,0,1,1,−1,0 + tG1,1,1,1,0,1,1,0,−1 + stG1,1,1,1,0,1,1,0,0, (3.49)

I5 = s(1 + ε)
(
s+ t−m2

t

)
G0,1,0,1,1,1,2,0,0

ε2
+ s

(
2m2

t +m2
W

)
G0,1,0,2,0,0,2,0,0

ε2
(
−t+m2

t

)
− s

(
2t+m2

W

)
G0,1,0,2,0,2,0,0,0

ε2
(
−t+m2

t

) − s
(
m2
t −m2

W

)
G0,2,0,1,0,0,2,0,0

2ε2
(
−t+m2

t

)
+ s

(
t−m2

W

)
G0,2,0,1,0,2,0,0,0

2ε2
(
−t+m2

t

) , (3.50)

I6 = − tG1,0,0,1,1,1,1,0,0 − sG1,0,1,1,1,1,1,0,−1 +m2
tG1,0,1,1,1,1,1,0,−1

+ stG1,0,1,1,1,1,1,0,0 + sm2
WG1,0,1,1,1,1,1,0,0, (3.51)

I7 = − tG1,1,−1,1,1,1,1,0,0 + tG1,1,0,1,1,1,1,0,−1 + stG1,1,0,1,1,1,1,0,0, (3.52)
I8 = − tG0,1,0,1,1,1,1,0,0 − sG0,1,1,1,1,1,1,0,−1 +m2

tG0,1,1,1,1,1,1,0,−1, (3.53)
I9 = − sG0,1,0,1,1,1,1,0,0 + sG1,1,0,1,1,1,1,−1,0, (3.54)

I10 = 3m2
WG1,0,1,1,0,2,0,0,0

ε
+ m2

W

(
s−m2

t +m2
W

)
G1,0,1,2,0,2,0,0,0

ε2
, (3.55)
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I11 = − 2m2
WG0,1,0,2,0,0,2,0,0

ε2
+
(
m2
t −m2

W

)
G0,2,0,1,0,0,2,0,0
ε2

, (3.56)

I12 = − s2G1,1,1,1,1,0,1,0,0 − stG1,1,1,1,1,0,1,0,0 + sm2
tG1,1,1,1,1,0,1,0,0

− sm2
WG1,1,1,1,1,0,1,0,0, (3.57)

I13 = − s2G1,0,1,1,1,1,1,0,0 − stG1,0,1,1,1,1,1,0,0 + sm2
tG1,0,1,1,1,1,1,0,0

− sm2
WG1,0,1,1,1,1,1,0,0, (3.58)

I14 = − stG1,1,1,1,1,1,0,0,0 + sm2
WG1,1,1,1,1,1,0,0,0, (3.59)

I15 = sm2
tG1,1,1,1,0,1,1,0,0 − sm2

WG1,1,1,1,0,1,1,0,0, (3.60)
I16 = − stG0,1,1,1,1,1,1,0,0 + sm2

WG0,1,1,1,1,1,1,0,0, (3.61)
I17 = sm2

WG1,1,0,1,1,1,1,0,0, I18 = sG1,1,1,0,1,1,1,0,−1, (3.62)
I19 = − sG1,0,0,1,1,1,1,0,0 − tG1,0,0,1,1,1,1,0,0 +m2

tG1,0,0,1,1,1,1,0,0, (3.63)
I20 = − tG1,0,1,1,0,1,1,0,0 +m2

tG1,0,1,1,0,1,1,0,0, (3.64)
I21 = − tG0,1,1,1,0,1,1,0,0 +m2

tG0,1,1,1,0,1,1,0,0, (3.65)
I22 = sG1,1,1,1,0,1,0,0,0 + tG1,1,1,1,0,1,0,0,0, (3.66)
I23 = sG1,1,1,1,0,0,1,0,0 + tG1,1,1,1,0,0,1,0,0, (3.67)

I24 =
(
s+ t−m2

t

)
G0,1,0,1,1,1,1,0,0, I25 = tG1,1,0,1,1,1,0,0,0, (3.68)

I26 = tG1,1,0,1,1,0,1,0,0, I27 = sG1,1,0,1,0,1,1,0,0, I28 = sG1,1,0,0,1,1,1,0,0, (3.69)

I29 = sG0,1,1,0,1,1,1,0,0, I30 =
(
−s+m2

t

)
G1,0,1,1,0,2,0,0,0
ε

, (3.70)

I31 =
(
−s+m2

t

)
G0,1,0,1,1,0,2,0,0
ε

, I32 = −(−1 + ε)m2
WG2,0,0,1,0,2,0,0,0

ε2(1 + ε) , (3.71)

I33 = −
(
−s− t+m2

t

)
G2,0,0,2,0,0,1,0,0
ε2

, I34 = tG0,1,0,2,0,2,0,0,0
ε2

, (3.72)

I35 = m2
tG0,1,0,2,0,0,2,0,0

ε2
. (3.73)

The method we use to find the above UT basis is similar to those introduced in
the former subsection. Among the 35 UT integrals found, 25 of them were found by
DlogBasis [74]. They are Ii for

i ∈ {1 ∼ 4, 6 ∼ 9, 12 ∼ 19, 21 ∼ 29}. (3.74)

Then, we found UT integrals in the following sectors manually, shown in table 3. There
are in total 11 integrals in table 3. Together with the 25 integrals found by DlogBasis,
we can select (by some preference) 35 independent UT integrals to form a complete 35-
dimensional UT basis.

The canonical differential equation and matrix Ã can be found in the supplementary
material files. Also, see appendix A for details. The symbol letters that appear in Ã are

W1 = m2
t , W2 = m2

W , W3 = s, W4 = t, W5 = s+ t, W6 = m2
t −m2

W , (3.75)
W7 = −s+m2

t , W8 = −t+m2
t , W9 = −t+m2

W , W10 = −s+m2
t −m2

W , (3.76)
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sector label # of integrals
(1,0,0,1,0,0,1,0,0) {1,4,7} 2
(0,1,0,1,0,1,0,0,0) {2,4,6} 2
(0,1,0,1,0,0,1,0,0) {2,4,7} 2
(1,0,1,1,0,1,0,0,0) {1,3,4,6} 2
(0,1,0,1,1,0,1,0,0) {2,4,5,7} 1
(0,1,0,1,1,1,1,0,0) {2,4,5,6,7} 2

Table 3. Sectors to be completed of the left-crossed box diagram.

W11 = −s− t+m2
t , W12 = −tm2

t + sm2
W + tm2

W , W13 = −s− t+m2
t −m2

W , (3.77)
W14 = −st− t2 + tm2

t + sm2
W , W15 = −sm2

t − tm2
t +m4

t + tm2
W −m2

tm
2
W . (3.78)

Similar to the last section, we found the UT integrals I1, · · · , I35 are all regular when

s→ −t, s→ m2
t −m2

W , t→ 0, t→ m2
t . (3.79)

Constrains followed by these spurious singularities fix all the boundary constants up to one
simple input integral,

I32 = Γ(1 + ε)2

ε4(m2
W )2ε

−Γ(1− ε)Γ(1 + 2ε)
Γ(1 + ε) . (3.80)

With these, the canonical differential equations are solved and the results are put in the
supplementary material file “lxb1/analytic_UT.txt”. Notice that, same as the last section,
the content of this file is a list as {Ī1, · · · , Ī35}, where Īi is still what was defined in (3.42).
The results in the files were kept up to O(1). We digested them here, up to O( 1

ε2 ), as follows

Ī1=− 3
4ε4 +

− 3iπ
2 + 3

2G(0,x)− 1
2G(1,z)−G(1−z,y)−G(y+z−1,x)

ε3
+O

(
1
ε2

)
, (3.81)

Ī2=O
(

1
ε2

)
, Ī3=O

(
1
ε2

)
, Ī4=O

(
1
ε2

)
, Ī5=G(−1,y)−G(1,z)

ε3
+O

(
1
ε2

)
, (3.82)

Ī6=O
(

1
ε2

)
, Ī7=−G(−1,y)

2ε3 +O
(

1
ε2

)
, Ī8=O

(
1
ε

)
, (3.83)

Ī9=−G(−1,y)
2ε3 +O

(
1
ε2

)
, Ī10=−iπ+G(0,x)−G(1,z)

ε3
+O

(
1
ε2

)
, (3.84)

Ī11= 1
ε4
−2G(1,z)

ε3
+O

(
1
ε2

)
, Ī12=O

(
1
ε2

)
, Ī13=O

(
1
ε2

)
, Ī14=O

(
1
ε2

)
, (3.85)

Ī15= 1
4ε4 +

iπ
2 + 1

2G(−1,y)− 1
2G(0,x)− 1

2G(1,z)+ 1
2G(1−z,y)+ 1

2G(y+z−1,x)
ε3

+O
(

1
ε2

)
, (3.86)

Ī16=O
(

1
ε2

)
, (3.87)

Ī17=−1
4ε4 +

− iπ2 −
1
2G(−1,y)+ 1

2G(0,x)− 1
2G(1,z)− 1

2G(1−z,y)− 1
2G(y+z−1,x)

ε3
+O

(
1
ε2

)
, (3.88)

Ī18=− 1
4ε4 +

− iπ2 + 1
2G(0,x)
ε3

+O
(

1
ε2

)
, Ī19=O

(
1
ε2

)
, Ī20=O

(
1
ε

)
, Ī21=O

(
1
ε2

)
, (3.89)
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integral ε order part coefficient
(Ī1)GPL ε−4 real -0.750000000000000000000000000000
(Ī1)AMF ε−4 real -0.750000000000000000000000000000
(Ī1)GPL ε−3 real 3.16478394140259919434483588045
(Ī1)AMF ε−3 real 3.16478394140259919434483588045
(Ī1)GPL ε−3 imaginary -6.28318530717958647692528676656
(Ī1)AMF ε−3 imaginary -6.28318530717958647692528676656

Table 4. Selected numeric results in the planar left-crossed box family.

p1

p2 p3

p4

Figure 6. The right-crossed double box topology.

Ī22=O
(

1
ε

)
, Ī23=O

(
1
ε2

)
, Ī24=O

(
1
ε

)
, Ī25=O

(
1
ε2

)
, Ī26=O

(
1
ε

)
, Ī27=O

(
1
ε2

)
, (3.90)

Ī28= 1
4ε4 +

iπ
2 −

1
2G(0,x)
ε3

+O
(

1
ε2

)
, Ī29=O

(
1
ε2

)
, Ī30=O

(
1
ε2

)
, Ī31=O

(
1
ε2

)
, (3.91)

Ī32=− 1
ε4

+O
(

1
ε2

)
, Ī33=G(1,z)+G(1−z,y)+G(−1+y+z,x)

ε3
+O

(
1
ε2

)
, (3.92)

Ī34=−G(−1,y)
ε3

+O
(

1
ε2

)
, Ī35=−G(1,z)

ε3
+O

(
1
ε2

)
(3.93)

where the variables x, y, and z are of the same definition as in (3.41).
We did the same numerical check on point (3.43) and got the result of

(Īi)GPL and (Īi)AMF of this family. They are put in supplementary material files
“lxb1/numericUT_GPL.m” and “lxb1/numericUT_AMF.m”, respectively. The results
passed the numeric check with

|(Īi)GPL − (Īi)AMF| < 10−25 (3.94)

at each order from ε−4 to ε0. Some selected numerical results are shown in table 4.

3.3 The 1-mass right-crossed double box diagram

In this subsection, we present the UT integrals and their corresponding analytic ε expansion
results of the right-crossed double box diagram with 1 internal mass (figure 6). In this

– 20 –



J
H
E
P
0
6
(
2
0
2
3
)
1
4
4

diagram, the propagators are defined as

D1 = l21, D2 = (l1 + p1) 2, D3 = (l1 + p1 + p2) 2,

D4 = (l2 + p4) 2, D5 = l22, D6 = (l1 + l2) 2 −m2
W ,

D7 = (l1 + l2 + p1 + p2 + p4) 2, D8 = (l1 − p4) 2, D9 = (l2 − p1) 2. (3.95)

The number of the master integrals in this family is 55, determined using FIRE6 [56].
Thus, we need to find 55 UT integrals to form a linearly independent and complete basis.
The method that we found the UT integrals in this diagram is different from what we used
in the last sections. The reason is that we encounter a square root in this family. As a
consequence, we found it difficult to generate enough dlog integrals using DlogBasis. For
the top sector, we cannot generate a dlog integral using this method. Thus, in this section,
we used the Magnus series to construct a UT basis.

At first, we need to determine a linear basis. There is no general way, according to our
knowledge, to find such a linear basis. It is always obtained in an empirical way through
trial and error. We first prepare a set of master integrals defined below.

T1 = G1,1,1,1,1,1,1,0,−1, T2 = G1,1,1,1,1,1,1,−1,0, T3 = G1,1,1,1,1,1,1,0,0,

T4 = G0,1,1,1,1,1,1,0,−1, T5 = G0,1,1,1,1,1,1,0,0, T6 = G1,0,1,1,1,1,1,0,0,

T7 = G1,1,0,1,1,2,1,0,0
ε

, T8 = G1,1,0,1,1,1,1,−1,0, T9 = G1,1,0,1,1,1,1,0,0,

T10 = G1,1,1,0,1,1,1,−1,0, T11 = G1,1,1,0,1,2,1,0,0
ε

, T12 = G1,1,1,0,1,1,1,0,0,

T13 = G1,1,1,1,0,1,1,0,0, T14 = G0,2,0,1,1,1,1,0,0
ε

, T15 = G0,1,0,1,1,1,1,0,0,

T16 = G1,0,0,1,1,1,1,0,0, T17 = G0,1,1,0,2,1,1,0,0
ε

, T18 = G0,1,1,0,1,1,1,0,0,

T19 = G1,0,1,0,1,1,2,0,0
ε

, T20 = G1,0,2,0,1,1,1,0,0
ε

, T21 = G1,0,1,0,1,1,1,0,0,

T22 = G1,1,0,0,1,1,1,0,0, T23 = G1,0,1,1,0,1,1,0,0, T24 = G1,1,0,2,0,1,1,0,0
ε

,

T25 = G1,1,0,1,0,1,1,0,0, T26 = G1,1,0,1,1,0,1,0,0, T27 = G1,1,1,0,1,0,2,0,0
ε

,

T28 = G0,1,1,1,1,2,0,0,0
ε

, T29 = G0,1,1,1,1,1,0,0,0, T30 = G1,0,1,1,1,1,0,0,0,

T31 = G1,1,0,1,1,1,0,0,0, T32 = G1,1,1,1,0,3,0,0,0
ε2

, T33 = G1,1,1,1,0,2,0,0,0
ε

,

T34 = G0,0,1,0,2,1,1,0,0
ε

, T35 = G0,1,0,0,2,2,1,0,0
ε2

, T36 = G0,1,0,0,2,1,1,0,0
ε

,

T37 = (1− 2ε)G2,0,0,0,1,1,1,0,0
ε2

, T38 = G0,2,0,1,0,1,1,0,0
ε

, T39 = G2,0,0,1,0,2,1,0,0
ε2

,

T40 = G2,0,0,1,0,1,1,0,0
ε

, T41 = G1,0,2,0,0,2,1,0,0
ε2

, T42 = G1,0,1,0,1,0,2,0,0
ε

,

T43 = G1,0,1,1,0,3,0,0,0
ε2

, T44 = G1,0,1,1,0,2,0,0,0
ε

, T45 = G0,1,0,0,2,0,2,0,0
ε2

,

T46 = G1,0,0,0,2,0,2,0,0
ε2

, T47 = G1,0,0,2,0,0,2,0,0
ε2

, T48 = G0,0,2,0,2,1,0,0,0
ε2

,
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T49 = G0,0,1,0,2,2,0,0,0
ε2

, T50 = G0,0,2,2,0,1,0,0,0
ε2

, T51 = G0,0,1,2,0,2,0,0,0
ε2

,

T52 = G0,2,0,2,0,1,0,0,0
ε2

, T53 = G0,1,0,2,0,2,0,0,0
ε2

, T54 = (1− ε)G1,0,0,2,0,2,0,0,0
ε3

,

T55 = G1,0,2,0,0,2,0,0,0
ε2

. (3.96)

The corresponding differential equation is almost linear in ε except for the homogeneous
part of sector (1, 1, 0, 1, 1, 1, 1, 0, 0). It has the following form,

1 + ε 1 + ε 1+ε+ε2
ε

ε 1 + ε 1 + ε

ε ε 1 + ε

 , (3.97)

where the entries only present the characters in ε. For instance, ε means the factorization
of the dimensional regulator. To transform the final piece into linear form, we first notice
that the leading singularity of the integral T9 is

T9|Leading Singularity =
√
t2(m2

W )2 +
[
4st(s+ t)− 2tm2

t (2s+ t)
]
m2
W + t2(m2

t )2 ≡ r. (3.98)

This means rT9 should be a UT integral. With it in mind, we make an ansatz that the
new master integrals (in this sector) defined by

T ′7

T ′8

T ′9

 =


1 0 χ/ε
0 1 0
0 0 r



T7

T8

T9

 (3.99)

would produce a linear form. Meeting such a requirement sets up a first-order differential
equation of the unknown function χ. The solution reads

χ = 2s
(
s+ t−m2

t

)
+ t

(
m2
W −m2

t

)
4sm2

W

(
s−m2

t

)
+ t

[
4sm2

W +
(
m2
t −m2

W

) 2] . (3.100)

Now the linear basis is ready, then one can use the Magnux series method to obtain a UT
one. In our practice, the Magnus series (2.17) terminates at n = 2, i.e. Ωi = 0 for i > 2.
The UT integrals given by the Magnus series method are as follows.

I1 =− 3tG0,1,0,0,2,0,2,0,0
4ε2 + 3tm2

tG1,0,0,0,2,0,2,0,0
4ε2
(
−s−t+m2

t

) + 3stG1,0,0,2,0,0,2,0,0
4ε2
(
s+t−m2

t

)
− 3t2G1,1,0,1,1,0,1,0,0

−s−t+m2
t

− 1
2 t
(
−2s+m2

t−m2
W

)
G1,1,0,1,1,1,1,0,0

− stG1,1,1,0,1,0,2,0,0
ε

−s
(
−s+m2

t

)
G1,1,1,1,1,1,1,−1,0

−s
(
−s+m2

t

)
G1,1,1,1,1,1,1,0,−1+s

(
−s+m2

t

)(
t+m2

W

)
G1,1,1,1,1,1,1,0,0, (3.101)

I2 =− 1
2 t
(
m2
t−m2

W

)
G1,1,0,1,1,1,1,0,0−s

(
−s−t+m2

t

)
G1,1,1,1,1,1,1,−1,0

+s
(
−s−t+m2

t

)
m2
WG1,1,1,1,1,1,1,0,0, (3.102)
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I3 =−
(
−t+m2

t

)(
−s+m2

t−m2
W

)
G0,1,1,1,1,1,1,0,0

+t
(
−s+m2

t−m2
W

)
G1,1,0,1,1,1,1,0,0−s

(
s−m2

t +m2
W

)
G1,1,1,1,1,1,1,−1,0

+st
(
s−m2

t +m2
W

)
G1,1,1,1,1,1,1,0,0, (3.103)

I4 =− 3t
(
−s+m2

t

)
G0,0,1,0,2,1,1,0,0

4ε
(
−s−t+m2

t

) − 3tm2
WG0,0,1,0,2,2,0,0,0

8ε2
(
−s−t+m2

t

)
+ 3t

(
s−m2

W

)
G0,0,2,0,2,1,0,0,0

16ε2
(
−s−t+m2

t

) − tG0,1,0,0,2,0,2,0,0
8ε2 − 3t

(
−s+m2

t

)
G0,1,0,1,1,1,1,0,0

4
(
−s−t+m2

t

)
+ 3tm2

WG0,1,0,2,0,2,0,0,0
8ε2
(
−s−t+m2

t

) −
(
4s2+4st+3t2−8sm2

t−7tm2
t +4m4

t

)
G0,1,1,0,1,1,1,0,0

4
(
−s−t+m2

t

)
+ t
(
s−m2

W

)
G0,1,1,0,2,1,1,0,0
8ε + 1

2 tG0,1,1,1,1,1,0,0,0+
(
−s+m2

t

)
G0,1,1,1,1,1,1,0,−1

− 1
2 t
(
−2s+m2

t +m2
W

)
G0,1,1,1,1,1,1,0,0+ 3t

(
−t+m2

t

)
G0,2,0,1,0,1,1,0,0

4ε
(
−s−t+m2

t

)
− t
(
t−m2

W

)
G0,2,0,1,1,1,1,0,0
8ε − 3t

(
t−m2

W

)
G0,2,0,2,0,1,0,0,0

16ε2
(
−s−t+m2

t

) , (3.104)

I5 =
(
−s−t+m2

t

)(
m2
t−m2

W

)
G0,1,1,1,1,1,1,0,0, (3.105)

I6 =
(
−s+m2

t

)(
−s+m2

t−m2
W

)
G1,0,1,1,1,1,1,0,0, (3.106)

I7 =m2
t

(
−s−t+m2

t

)
G0,1,0,0,2,0,2,0,0

ε2
(
m2
t +m2

W

) − 4(s+t)m2
tG0,1,0,0,2,1,1,0,0

ε
(
m2
t +m2

W

)
+ 8(s+t)m2

tG0,1,0,1,1,1,1,0,0
m2
t +m2

W

−
(
−s−t+m2

t

)(
−2tm2

t +2sm2
W +m2

tm
2
W +m4

W

)
G0,2,0,1,1,1,1,0,0

ε
(
m2
t +m2

W

)
−m

4
tG1,0,0,0,2,0,2,0,0
ε2
(
m2
t +m2

W

) − 4(s+t)m2
tG1,1,0,1,0,1,1,0,0

m2
t +m2

W

− 8(s+t)m2
tG1,1,0,1,1,1,1,−1,0
m2
t +m2

W

+
(
(2tεm4

t +2s2m2
W +2stm2

W +8s2εm2
W +8stεm2

W−2sm2
tm

2
W−tm2

tm
2
W

−8sεm2
tm

2
W +tm4

W +6tεm4
W )G1,1,0,1,1,1,1,0,0

)
/ε
(
m2
t +m2

W

)
+m2

W

(
tm4

t +4s2m2
W +4stm2

W−4sm2
tm

2
W−2tm2

tm
2
W +tm4

W

)
G1,1,0,1,1,2,1,0,0

ε
(
m2
t +m2

W

)
+ s

(
−2tm2

t +2sm2
W +m2

tm
2
W +m4

W

)
G1,1,0,2,0,1,1,0,0

ε
(
m2
t +m2

W

) , (3.107)

I8 =
(
−t−m2

t

)
G0,1,0,1,1,1,1,0,0+(s+t)G1,1,0,1,1,1,1,−1,0

− 1
2 t
(
m2
t +m2

W

)
G1,1,0,1,1,1,1,0,0, (3.108)

I9 =rG1,1,0,1,1,1,1,0,0, (3.109)
I10 =tG1,1,0,0,1,1,1,0,0+sG1,1,1,0,1,1,1,−1,0−stG1,1,1,0,1,1,1,0,0, (3.110)

I11 =−2sm2
WG1,1,1,0,1,1,1,0,0−

sm2
W

(
−s−t+m2

W

)
G1,1,1,0,1,2,1,0,0

ε
, (3.111)
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I12 =s(s+t)G1,1,1,0,1,1,1,0,0, I13 =s
(
−t+m2

t

)
G1,1,1,1,0,1,1,0,0, (3.112)

I14 =−
(
s+t−m2

t

)(
−t+m2

W

)
G0,2,0,1,1,1,1,0,0

ε
, (3.113)

I15 =
(
−s+m2

t

)
G0,1,0,1,1,1,1,0,0, (3.114)

I16 =
(
−s+m2

t

)
G1,0,0,1,1,1,1,0,0, I17 =−

(
s+t−m2

t

)(
−s+m2

W

)
G0,1,1,0,2,1,1,0,0

ε
, (3.115)

I18 =
(
−t+m2

t

)
G0,1,1,0,1,1,1,0,0, I19 =

(
−s+m2

t

)(
m2
t−m2

W

)
G1,0,1,0,1,1,2,0,0

ε
, (3.116)

I20 = s
(
s−m2

t

)
G1,0,2,0,1,1,1,0,0
ε

, I21 =
(
−s+m2

t

)
G1,0,1,0,1,1,1,0,0, (3.117)

I22 =(s+t)G1,1,0,0,1,1,1,0,0, I23 =
(
−s+m2

t

)
G1,0,1,1,0,1,1,0,0, (3.118)

I24 = s
(
−t+m2

W

)
G1,1,0,2,0,1,1,0,0
ε

, I25 =(s+t)G1,1,0,1,0,1,1,0,0, (3.119)

I26 =tG1,1,0,1,1,0,1,0,0, I27 = s
(
s+t−m2

t

)
G1,1,1,0,1,0,2,0,0
ε

, (3.120)

I28 =
(
st−sm2

W−tm2
W +m2

tm
2
W

)
G0,1,1,1,1,2,0,0,0

ε
, (3.121)

I29 =
(
−s−t+m2

t

)
G0,1,1,1,1,1,0,0,0, I30 =

(
−s+m2

t

)
G1,0,1,1,1,1,0,0,0, (3.122)

I31 =tG1,1,0,1,1,1,0,0,0, (3.123)

I32 = sm2
WG1,1,1,1,0,2,0,0,0

ε
+ sm2

W

(
−t+m2

W

)
G1,1,1,1,0,3,0,0,0

ε2
, (3.124)

I33 = stG1,1,1,1,0,2,0,0,0
ε

, I34 =
(
−s+m2

t

)
G0,0,1,0,2,1,1,0,0
ε

, (3.125)

I35 = 3m2
WG0,1,0,0,2,1,1,0,0

ε
+m2

W

(
−s−t+m2

W

)
G0,1,0,0,2,2,1,0,0

ε2
, (3.126)

I36 = (s+t)G0,1,0,0,2,1,1,0,0
ε

, (3.127)

I37 =m4
tG1,0,0,0,2,0,2,0,0

2ε2
(
m2
t−m2

W

) + (−1+ε)m2
tm

2
WG1,0,0,2,0,2,0,0,0

2ε3
(
m2
t−m2

W

)
+ (−1+2ε)m2

tm
2
WG2,0,0,0,1,1,1,0,0

ε2
(
m2
t−m2

W

) , (3.128)

I38 =
(
−t+m2

t

)
G0,2,0,1,0,1,1,0,0
ε

, (3.129)

I39 =− 3m2
WG2,0,0,1,0,1,1,0,0

ε
−m

2
W

(
s−m2

t +m2
W

)
G2,0,0,1,0,2,1,0,0

ε2
, (3.130)

I40 =
(
−s+m2

t

)
G2,0,0,1,0,1,1,0,0
ε

, I41 = sm2
tG1,0,2,0,0,2,1,0,0

ε2
, (3.131)

I42 =
(
−s+m2

t

)
G1,0,1,0,1,0,2,0,0
ε

, I43 =
(
−s+m2

t

)
m2
WG1,0,1,1,0,3,0,0,0
ε2

, (3.132)

I44 =
(
−s+m2

t

)
G1,0,1,1,0,2,0,0,0
ε

, I45 =
(
−s−t+m2

t

)
G0,1,0,0,2,0,2,0,0
ε2

, (3.133)

I46 =m2
tG1,0,0,0,2,0,2,0,0

ε2
, I47 = sG1,0,0,2,0,0,2,0,0

ε2
, (3.134)
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I48 = 2m2
WG0,0,1,0,2,2,0,0,0

ε2
+
(
−s+m2

W

)
G0,0,2,0,2,1,0,0,0
ε2

, I49 = sG0,0,1,0,2,2,0,0,0
ε2

, (3.135)

I50 =− 2m2
WG0,0,1,2,0,2,0,0,0

ε2
+
(
m2
t−m2

W

)
G0,0,2,2,0,1,0,0,0
ε2

, I51 =m2
tG0,0,1,2,0,2,0,0,0

ε2
, (3.136)

I52 = 2m2
WG0,1,0,2,0,2,0,0,0

ε2
+
(
−t+m2

W

)
G0,2,0,2,0,1,0,0,0
ε2

, I53 = tG0,1,0,2,0,2,0,0,0
ε2

, (3.137)

I54 =− (−1+ε)m2
WG1,0,0,2,0,2,0,0,0
ε3

, I55 = sG1,0,2,0,0,2,0,0,0
ε2

. (3.138)

The matrix Ã can be found in the supplementary material files (see appendix A). The
symbol letters for this diagram that appear in Ã are

W1 = m2
t , W2 = m2

W , W3 = s, W4 = t, W5 = s+ t, W6 = m2
t −m2

W , (3.139)
W7 = −s+m2

t , W8 = −s+m2
W , W9 = −t+m2

t , W10 = −t+m2
W , (3.140)

W11 = −s+m2
t −m2

W , W12 = −s− t+m2
t , W13 = −s− t+m2

W , (3.141)

W14 = −tm2
t + (s+ t)m2

W , W15 = −sm2
W +m2

t

(
−t+m2

W

)
, (3.142)

W16 = −tm2
W +m2

t

(
−s+m2

W

)
, W17 = st− (s+ t)m2

W +m2
tm

2
W , (3.143)

W18 = 4s
(
s−m2

t

)
m2
W + t

(
4sm2

W +
(
m2
t −m2

W

)
2
)
, (3.144)

W19 = r + f19
r − f19

, W20 =
(
s+m2

W

)
r + f20(

s+m2
W

)
r − f20

, W21 =
(
s+ t−m2

W

)
r + f21(

s+ t−m2
W

)
r − f21

, (3.145)

where

f19 = tm2
t − (2s+ t)m2

W , (3.146)
f20 = stm2

t + 2s2m2
W + 3stm2

W − 2sm2
tm

2
W − tm2

tm
2
W + tm4

W , (3.147)
f21 = stm2

t + t2m2
t + 2s2m2

W + stm2
W − t2m2

W − 2sm2
tm

2
W − tm2

tm
2
W + tm4

W , (3.148)

Considering there is a square root r in the differential equations, before solving them,
we need to rationalize it. This can be achieved by the following change of variables

x = x1, y = (x1 + y1)2

x1 − y2
1 − y1z1

, z = z1 + 1 (3.149)

where the variables x, y, and z are those defined in (3.41). After this, the differential
equations become rational. To solve the canonical differential equations, we used the
following spurious singularities to fix the boundary constants,

• I15,18,28,29,49 are finite at s→ 0.

• I10,11,25,27,36 are finite at s→ −t.

• I6,40,43 are finite at s→ m2
t −m2

W .

• I13,25,28,29,32,33 are finite at s→ m2
t − t.

• I1,2,5,6,15,19,20,21,23,26,28,29,34,40,42,43,44 are finite at s→ m2
t .
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• I18 is finite at s→ (m2
t−t)m2

W

m2
t

.

• I1,3,5,7,8,10,11,12,25,26,27,53 are finite at t→ 0.

• I22,30,31 each vanishes when s = −t, s = m2
t , t = 0, respectively.

Besides, we need the following compact results of some relatively simple UT integrals as
input

I41 = Γ(1 + ε)2

ε4(m2
W )2ε

(
− s

m2
W

)−ε
εΓ(1− ε)3

Γ(1− 2ε)Γ(2− ε)
m2
t

m2
W

2F1

(
1, 1 + ε, 2− ε, m

2
t

m2
W

)
,

I47 = Γ(1 + ε)2

ε4(m2
W )2ε

(
− s

m2
W

)−2ε Γ(1− ε)3Γ(1 + 2ε)
Γ(1− 3ε)Γ(1 + ε)2 ,

I55 = Γ(1 + ε)2

ε4(m2
W )2ε

(
− s

m2
W

)−ε −Γ(1− ε)2

Γ(1− 2ε) ,

(3.150)

where the expansion of the hypergeometric function is performed by using the HypExp
package [103, 104]. With the conditions above, we are now able to solve the canonical
differential equations. It is worthwhile to notice that not all the integrals have the depen-
dence on square root r in their differential equation. We solve the whole system with a
bottom-up approach. Namely, we start from the lower sectors where no rationalization is
needed at all. Then the higher sectors which depend on r are included. Therefore the final
results are a hybrid of GPLs with two distinct sets of variables.

After solving the differential equations, we get the analytic expressions of the UT
basis. They are put in “rxb1/analytic_UT.txt”. Also, the content of this file is a list,
whose members are analytic expressions of UT integrals multiplied by a regulator, as
{Ī1, · · · , Ī55}, defined in (3.42). The results in the files were kept up to O(1). We digested
them here and kept them up to O( 1

ε2 ), as follows

Ī1 =− 3
4ε4 +

− iπ
2 +3G(−1,y1)+···− 3

2G
(
y2

1,x1
)

ε3
+O

( 1
ε2

)
, (3.151)

Ī2 =− 3
4ε4 +

3iπ
2 +3G(−1,y1)+···+ 3

2G
(
x1(1+x1+2y1)

y1
,z1
)

ε3
+O

( 1
ε2

)
, (3.152)

Ī3 =O
( 1
ε2

)
, Ī4 =O

( 1
ε2

)
, (3.153)

Ī5 = 1
4ε4 +

iπ
2 + 1

2G(−1,y)−···− 1
2G(y+z,x)

ε3
+O

( 1
ε2

)
, Ī6 =O

( 1
ε2

)
, (3.154)

Ī7 =
2G(−1,y1)−···−G

(
x1(1+x1+2y1)

y1
,z1
)

ε3
+O

( 1
ε2

)
, Ī8 =O

( 1
ε2

)
, (3.155)

Ī9 =O
( 1
ε2

)
, Ī10 =O

(1
ε

)
, (3.156)

Ī11 =−iπ+G(0,z)−G(1,z)+G(−z,y)+G(y+z,x)
ε3

+O
( 1
ε2

)
, Ī12 =O

( 1
ε2

)
, (3.157)

Ī13 =G(−1,y)−G(1,z)
2ε3 +O

( 1
ε2

)
, (3.158)
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Ī14 = 1
2ε4 + iπ−2G(−1,y)−G(0,z)+G(1,z)−G(−z,y)−G(y+z,x)

ε3
+O

( 1
ε2

)
, (3.159)

Ī15 =O
(1
ε

)
, Ī16 =O

(1
ε

)
, (3.160)

Ī17 = 1
2ε4 + iπ−G(0,z)−2G(1,x)+G(1,z)−G(−z,y)−G(y+z,x)

ε3
+O

( 1
ε2

)
, (3.161)

Ī18 =O
(1
ε

)
, Ī19 =−G(0,x)+G(0,z)

2ε3 +O
( 1
ε2

)
, (3.162)

Ī20 =G(1,x)−G(1,z)
2ε3 +O

( 1
ε2

)
, Ī21 =O(1), Ī22 =O

(1
ε

)
, Ī23 =O(1), (3.163)

Ī24 = 1
2ε4 + iπ−2G(−1,y)−G(0,x)+G(1,z)

ε3
+O

( 1
ε2

)
, Ī25 =O

(1
ε

)
, (3.164)

Ī26 =O
( 1
ε2

)
, (3.165)

Ī27 = 3
2ε4 +

3iπ− 3
2G(0,x)− 3

2G(0,z)−3G(−z,y)−3G(y+z,x)
ε3

+O
( 1
ε2

)
, (3.166)

Ī28 =G(−1,y)+G(1,x)−G(1,z)
ε3

+O
( 1
ε2

)
, Ī29 =O

( 1
ε2

)
, Ī30 =O

(1
ε

)
, (3.167)

Ī31 =O
( 1
ε2

)
, Ī32 = 1

2ε4 +
iπ
2 −G(−1,y)− 1

2G(0,x)+ 1
2G(1,z)

ε3
+O

( 1
ε2

)
, (3.168)

Ī33 =G(−1,y)
ε3

+O
( 1
ε2

)
, Ī34 =−G(1,x)+G(1,z)

2ε3 +O
( 1
ε2

)
, (3.169)

Ī35 =−iπ+G(0,z)−G(1,z)+G(−z,y)+G(y+z,x)
ε3

+O
( 1
ε2

)
, Ī36 =O

( 1
ε2

)
, (3.170)

Ī37 =−G(1,z)
ε3

+O
( 1
ε2

)
, Ī38 =−G(−1,y)+G(1,z)

2ε3 +O
( 1
ε2

)
, (3.171)

Ī39 = iπ−G(0,x)+G(1,z)
ε3

+O
( 1
ε2

)
, Ī40 =O

( 1
ε2

)
, Ī41 =−G(1,z)

ε3
+O

( 1
ε2

)
, (3.172)

Ī42 =−G(0,x)+G(0,z)
2ε3 +O

( 1
ε2

)
, Ī43 =O

( 1
ε2

)
, Ī44 =O

(1
ε

)
, (3.173)

Ī45 = 1
ε4

+ 2iπ−2G(0,z)−2G(−z,y)−2G(y+z,x)
ε3

+O
( 1
ε2

)
, (3.174)

Ī46 = 1
ε4

+ 2iπ−2G(0,z)
ε3

+O
( 1
ε2

)
, Ī47 = 1

ε4
+ 2iπ−2G(0,x)

ε3
+O

( 1
ε2

)
, (3.175)

Ī48 =− 1
ε4

+ 2G(1,x)
ε3

+O
( 1
ε2

)
, Ī49 =−G(1,x)

ε3
+O

( 1
ε2

)
, (3.176)

Ī50 = 1
ε4
− 2G(1,z)

ε3
+O

( 1
ε2

)
, Ī51 =−G(1,z)

ε3
+O

( 1
ε2

)
, (3.177)

Ī52 =− 1
ε4

+ 2G(−1,y)
ε3

+O
( 1
ε2

)
, Ī53 =−G(−1,y)

ε3
+O

( 1
ε2

)
, (3.178)

Ī54 = 1
ε4

+O
( 1
ε2

)
, Ī55 =− 1

ε4
+−iπ+G(0,x)

ε3
+O

( 1
ε2

)
(3.179)

We performed numerical check on point (3.43) and got the result of (Īi)GPL
and (Īi)AMF of this family. Their results are put in supplementary material files
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integral ε order part coefficient
(Ī7)GPL ε−1 real 219.075133281247447672103350945
(Ī7)AMF ε−1 real 219.075133281247447672103350945
(Ī7)GPL ε−1 imaginary 128.292541065870999789073454960
(Ī7)AMF ε−1 imaginary 128.292541065870999789073454960
(Ī7)GPL ε0 real -473.853668694661084686278060658
(Ī7)AMF ε0 real -473.853668694661084686278060658
(Ī7)GPL ε0 imaginary 471.438825850996829424630945814
(Ī7)AMF ε0 imaginary 471.438825850996829424630945814

Table 5. Selected numeric results in the non-planar right-crossed box family.

“rxb1/numericUT_GPL.m” and “rxb1/numericUT_AMF.m”, respectively. The results
passed the numeric check with

|(Īi)GPL − (Īi)AMF| < 10−30 (3.180)

at each order from ε−4 to ε0. Some selected numerical results are shown in table 5.

3.4 Discussions about the diagrams with multiple internal masses

In this subsection, we give a general discussion on the rest diagrams with more internal
masses, which are not fully evaluated in this work. The diagrams in the second and the
third columns in figure 3 have more than one internal massive propagator. In these families,
different complicated square roots would appear in the attempt of finding a canonical
differential equation and they are not always simultaneously rationalizable. Thus, we find
that it is not always possible to find a complete set of UT basis for each family to obtain
a canonical differential equation. Even one can still construct UT integrals for the lower
sector in these families, considering some of them may involve many square roots which can
not be rationalized simultaneously, it is difficult to get a solution in terms of GPL. The main
problem with these families is the appearance of elliptic sectors. Computing the maximal
cut of an integral will hint at whether it is possible to express the integral in terms of GPL
or if more complicated functions, such as elliptic integrals, will come into play [92, 93]. In
fact, the maximal cut provides the homogeneous solution of the corresponding differential
equation [94]. That may indicate the cut and uncut integrals, what we really need, live
in the space of the same class of functions. As an example, we show here the maximal
cut of two integrals in the family defined by the up-right corner diagram in figure 3. It is
convenient to calculate the maximal cut of an integral in the Baikov representation. Using
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the loop-by-loop approach [105], we have

6×cut−−−−→
∫

dz√
α(z)β(z)

,

7×cut−−−−→
∫

dz

(m2
t − s)z

√
β(z)

,

(3.181)

where
α(z) = z

(
z − 4m2

t

)
,

β(z) = s2z2 + 2s
[
(s−m2

t )t+ (s+ 2t−m2
t )m2

W

]
z +

(
m2
t − s

)
2
(
m2
W − t

)
2.

(3.182)

One can immediately obtain an elliptic curve defined by the following polynomial equation,

y2 = α(z)β(z), (3.183)

with the four roots of the quartic polynomial on the right-hand side being

z1 = 0, z2 = 4m2
t , z3,4 = (s−m2

t )t+ (s+ 2t−m2
t )m2

W ± 2
√
λ

s
, (3.184)

and
λ = tm2

W

(
s+ t−m2

t

) (
s+m2

W −m2
t

)
. (3.185)

It turns out that the first integration evaluates to the elliptic integral and the second to
the logarithm. Indeed, we have ε factorized out in the homogeneous part of the differential
equation that the top sector satisfies. Its elliptic dependence comes from the sub-sector in
which the first integral lives. Then one can expect that in this family, we are not able to
construct a UT basis like what we do in families without elliptic sectors.

Another interesting observation from the first maximal cut in (3.181) is that the elliptic
curve (3.183) will degenerate if m2

W → 0,

y2|m2
W→0 = z

(
z − 4m2

t

) [
(m2

t − s)t+ sz
]2
, (3.186)

and the maximal cut becomes a logarithmic function. Taking such a limit, in principle,
should be done with care. However, this implies that it might be possible to perform an
expansion of m2

W over m2
t on the differential equations and then transform them into the

canonical form (see refs. [106–111] about the mass-expansion idea). Such an approximation
is, to some extent, justified since m2

W /m
2
t ∼ 1/4. Another benefit is that the expansion will

rationalize some square roots in the canonical differential equations of some sub-sectors.
According to our preliminary calculation, it works, at least in the leading order, even for
the families from the third column in figure 3, which, in our opinion, includes the most
complicated diagrams, considering the most number of internal massive propagators. This
idea makes it very hopeful to bypass the elliptic issues and to know more about the other
diagrams under the expansion.
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4 Summary

In this paper, we studied the two-loop Feynman integrals for the non-factorizable t-channle
single top quark production, using the methods of UT basis and canonical differential
equations. The non-factorizable Feynman diagrams in this process can be reduced towards
9 different integral families, as shown in figure 3. These diagrams are categorized by
their topologies and their numbers of massive internal propagators. According to the
computation method we are using, the possibility of constructing a complete UT basis relies
on whether this family is free of elliptic sectors or not. In the 9 diagrams concerned by this
paper, we found 3 families with 1 internal massive propagator are indeed free of elliptic
sectors. For these families, we provided full analytic expressions of the UT basis in terms of
GPL functions. Using these, one can acquire the analytic expressions of the Laporta basis
by acting a transformation matrix (see supplementary material files) on the UT results.
For families that consist of elliptic sectors, it is difficult to build a complete UT basis and
full canonical differential equations. However, it is still worth a try to apply methods of UT
and canonical differential equations of sub-sectors or expansion on the variables, say m2

W

m2
t
, if

they are free of square roots which are not simultaneously rationalizable. Thus, though we
cannot express the whole family in form of GPL functions, it is hopefully we can express
part of integrals in terms of GPL functions. This helps us to rebuild the information that
we are interested in the whole family.
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A Supplementary material

Our paper is attached with some files in the supplementary material. They are some impor-
tant results of our computation. The files are in Mathematica-readable format, and can be
read by the Mathematica command “Get”. In this section, we show the content of the files.

In subfolders “attachment_files/db1” and “attachment_files/lxb1”, we put in the re-
sults of the planar double box diagram and the left-crossed double box diagram, respec-
tively. The contents of each file are shown in table 6, in both subfolders.
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file name content
analytic_UT.txt The analytic expressions of the UT integrals Īi

Atilde.txt The Ã matrix
DEMI.txt The master integrals & their differential equation matrices
DEUT.txt The UT basis & their differential equation matrices
letterDef.txt Expressions of the symbol letters appearing in Ã

MI.txt The definition of Laporta master integrals
MI2UT.txt The transform matrix from Laporta master integrals to UT

numericUT_AMF.m (Īi)AMF on numerical point (3.43)
numericUT_GPL.m (Īi)GPL on numerical point (3.43)

UT2MI.txt The transform matrix from UT to Laporta master integrals

Table 6. The supplementary material files in folder db1 and lxb1.

file name content
analytic_UT.txt The analytic expressions of the UT integrals Īi

Atilde.txt The Ã matrix
letterDef.txt Expressions of the symbol letters appearing in Ã

MI.txt The definition of Laporta master integrals
MI2UT.txt The transform matrix from Laporta master integrals to UT

numericUT_AMF.m (Īi)AMF on numerical point (3.43)
numericUT_GPL.m (Īi)GPL on numerical point (3.43)

UT.txt The UT basis
UT2MI.txt The transform matrix from UT to Laporta master integrals

Table 7. The supplementary material files in folder rxb1.

In the subfolder “attachment_files/rxb1”, we put in the results of the right-crossed
double box diagram. The contents of each file are shown in table 7. We did not contain
the results of differential equations because they are oversized. You can derive them from
the existing files.

Notice that, in the above files, there are lists (vectors) or matrices with respect to the
corresponding UT basis or Laporta master integral basis. The corresponding ordering is
the same as the definition of the bases. For example, the file “analytic_UT.txt” contains
the list of results like {Ī1, Ī2, · · · }, in the same order as that the UT integrals are defined.
The “UT2MI.txt” contains the transformation matrix T (after IBP reduction) such that

Ii = TijJj , (A.1)

where Jj labels the Laporta master basis, with the same order defined in file “MI.txt” (or
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notations in the result files notations in this paper
mtt m2

t

mWW m2
W

ep ε

W[1],W[2],· · · W1,W2, · · ·
x1,y1,z1 x1, y1, z1

Table 8. Notation differences between supplementary material files and expressions in this paper.

“DEMI.txt”), and Ii denotes the UT basis, also the same-ordered as other files. Besides, the
notations in the result files are slightly different from those in this paper. The differences
are listed in table 8.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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