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ABSTRACT

The𝑤-event framework is the current standard for ensuring differ-
ential privacy on continuously monitored data streams. Following
the proposition of𝑤-event differential privacy, various mechanisms
to implement the framework are proposed. Their comparability in
empirical studies is vital for both practitioners to choose a suitable
mechanism, and researchers to identify current limitations and
propose novel mechanisms. By conducting a literature survey, we
observe that the results of existing studies are hardly comparable
and partially intrinsically inconsistent.

To this end, we formalize an empirical study of𝑤-event mecha-
nisms by re-occurring elements found in our survey. We introduce
requirements on these elements that ensure the comparability of ex-
perimental results. Moreover, we propose a benchmark that meets
all requirements and establishes a new way to evaluate existing and
newly proposed mechanisms. Conducting a large-scale empirical
study, we gain valuable new insights into the strengths and weak-
nesses of existing mechanisms. An unexpected ś yet explainable ś
result is a baseline supremacy, i.e., using one of the two baseline
mechanisms is expected to deliver good or even the best utility.
Finally, we provide guidelines for practitioners to select suitable
mechanisms and improvement options for researchers.
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1 INTRODUCTION

Monitoring data streams continuously facilitates new analysis tasks,
e.g., controlling real-time intelligent traffic [20] or electricity dis-
tribution systems [3]. However, the privacy requirements of the
data owners have to be fulfilled to deploy the tasks. To ensure
strong privacy for streams, the 𝑤-event differential privacy (DP)
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framework [25] is the state-of-the-art. It gives a provable indistin-
guishable guarantee of continuously calculated query results. The
guarantee holds for any rolling window of at most𝑤 timestamps.

In the literature, various mechanisms are proposed that sanitize
streams to achieve 𝑤-event DP [9, 10, 27, 29, 36, 38]. All of these
mechanisms sanitize the stream by injecting noise into the query
results. Consequently, the design goal of such mechanisms is to
minimize the introduced error and hence provide high data utility.
Existing mechanisms aim to achieve high data utility by exploiting
stream properties, e.g., sparsity [38]. Unfortunately, there are little
insights on which mechanisms provide high data utility for which
stream properties, mainly due to incomparable empirical studies.
This imposes a challenge for data administrators that need to choose
a mechanism with suitable utility as well as researchers that aim to
identify the utility limitations of existing solutions since theoretical
studies analyze worst-case scenarios.

Currently, there is no generally accepted and unified procedure to
perform empirical studies on𝑤-event DP mechanisms for streams.
Quite the contrary, our literature survey reveals that existing stud-
ies significantly deviate in relevant aspects, e.g., input streams and
competitors. This hampers the comparison of existing results. Un-
fortunately, guidelines for empirical studies on static data [21] (e.g.,
finite time series [19] or relational databases [7]) cannot be ap-
plied since𝑤-event mechanisms work significantly different. For
example, rolling window techniques keep track of the available
privacy budget for each window of size𝑤 . Summarizing, incompa-
rable empirical studies limit the practical application of 𝑤-event
mechanisms and delays research on novel mechanisms.

Limitations of Existing Studies. The comparability of empirical
studies on𝑤-event DP is limited by inconsistent experimental ele-
ments, e.g., the selection of data streams, mechanisms, and error
metrics indicating a mechanism’s utility.

Specifically, most studies focus on a small set of real-world
streams [9, 10, 27, 29, 36, 38]. We observe two limitations: First,
many streams are not publicly available. Second, relevant prepro-
cessing steps are unknown or differ highly [8, 31]. Studies using
artificial data to investigate the influence of data properties exist
only for static data [21] and finite time series [19]. Analyzing avail-
able streams indicates that they are often sparse, i.e., mainly contain
zero values. Thus, releasing the same value all the time yields good
utility, as performed by one of the baseline mechanisms [25].

Quantifying the benefits that data administrators can achieve
from the latest𝑤-event mechanism is impossible since many stud-
ies do not compare to both baseline mechanisms. Hence, it is hard
to decide whether a baseline suffices the use case or a sophisticated
mechanism is needed. Moreover, state-of-the-art mechanisms are
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Table 1: Location monitoring stream 𝑆 . Database 𝐷𝑡 contains

the location of all individuals at timestamp 𝑡 . Query 𝑄 (𝐷𝑡 )

contains the number of individuals per location.

Ind. 𝐷1 𝐷2 𝐷3 ...
Axel park beach park ...
Joan park park beach ...
Rene beach beach park ...

Query 𝑐𝑛𝑡 (park) = 2 𝑐𝑛𝑡 (park) = 1 𝑐𝑛𝑡 (park) = 2 ...
𝑄 (𝐷𝑡 ) 𝑐𝑛𝑡 (beach) = 1 𝑐𝑛𝑡 (beach) = 2 𝑐𝑛𝑡 (beach) = 1 ...

highly complex and subtle differences in the implementation or pa-
rameters can have a significant effect on a mechanism’s utility. This
is a serious limitation, since implementations of mechanisms are
rarely publicly available. Consequently, verifying the experimental
results of re-implemented mechanisms is virtually impossible.

Contributions. Motivated by the illustrated limitations of previ-
ous experimental studies, we present the following contributions:

Benchmark requirements. Based on a comprehensive literature
survey, we identify that all existing empirical studies on𝑤-event
mechanisms can be described by four elements: mechanisms, streams,
privacy requirements, and utility metrics. For each element, we out-
line the limitations of prior studies and propose requirements to
ensure comparable results. Moreover, our survey reveals that ex-
isting 𝑤-event mechanisms follow the same abstract framework
simplifying the comparison at a qualitative level.

Benchmark instantiation. We show how to meet the identified
requirements and introduce the first benchmark for w-event DP.
We include an artificial data generator that allows to analyze the
influence of stream properties on a mechanism’s utility.

Empirical study and new insights. We conduct the largest em-
pirical evaluation of 𝑤-event DP mechanisms so far. It is based
on our benchmark, comprising of 259,000 single experiments. The
results yield three main insights: Analyzing the influence of stream
properties on a mechanism’s utility, the amplitude is decisive rather
than the period length. Further, an unexpected baseline supremacy
is observed, i.e., one of the two baseline mechanisms provide the
highest utility for every combination of stream and privacy require-
ments. Finally, data-adaptive sampling techniques do not yield a
utility improvement if the amplitudes of the stream are large.

Discussion of takeaways. Considering the experimental results,
we provide guidelines that help practitioners to select a suitable
mechanism and reveal research directions for future work.

2 PRELIMINARIES

We start by providing background on𝑤-event differential privacy,
the𝑤-event mechanism framework, and common utility metrics.

2.1 𝑤-Event Differential Privacy

The 𝑤-event differential privacy (DP) framework is the current
standard for ensuring differential privacy of continuously computed
aggregate queries on streams. Rather than protecting the stream
entirely, which requires an infinite amount of noise, one protects
every running window of at most𝑤 timestamps [25].

Let 𝑆 = (𝐷1, 𝐷2, ..) be a stream collecting database 𝐷𝑡 at times-
tamp 𝑡 as shown in Table 1. Each row in 𝐷𝑡 corresponds to an
individual data owner and each column to an activity, e.g., location
visit. A query of interest 𝑄 is the number of data owners per loca-
tion at each timestamp. This query is a multi-dimensional count
query (i.e., histogram) with one count per location and timestamp.
All DP frameworks are built upon a notion of neighborhood, i.e.,
query results over a stream that are hardly distinguishable by an
attacker. Two databases 𝐷𝑡 , 𝐷

′
𝑡 are neighbors if one can be obtained

from the other by adding or removing one row, i.e., data owner [12].
Further, let 𝑆𝑝 = (𝐷1, . . . , 𝐷𝑝 ) be a stream prefix of length 𝑝 . In-
tuitively, two stream prefixes are𝑤-neighbors if (1) the databases
collected at each timestamp are the same or neighbors, and (2) all
neighboring databases fit into a window of size𝑤 (cf. Definition 1).

Definition 1 (𝑤-Neighboring Stream Prefixes [25]). Let𝑤 be

a positive integer, 𝑝 the length of the stream prefixes, and 𝑡, 𝑡1, 𝑡2 ≤ 𝑝

three timestamps. Two stream prefixes 𝑆𝑝 , 𝑆
′
𝑝 are 𝑤-neighboring if

(1) 𝐷𝑡 , 𝐷
′
𝑡 are neighboring for each 𝐷𝑡 , 𝐷

′
𝑡 with 𝐷𝑡 ≠ 𝐷 ′𝑡 and

(2) 𝑡2−𝑡1 < 𝑤 for each𝐷𝑡1 , 𝐷𝑡2 , 𝐷
′
𝑡1
, 𝐷 ′𝑡2 with 𝑡1 < 𝑡2,𝐷𝑡1 ≠ 𝐷 ′𝑡1

and 𝐷𝑡2 ≠ 𝐷 ′𝑡2 holds.

The desired privacy level 𝜖 usually lies between 0.1 and 1. A
smaller value means better privacy. From Definition 2,𝑤-event DP
is given if the query results of all 𝑤-neighboring stream prefixes
are hard to distinguish, i.e., up to a factor of 𝑒𝜖 . Consequently, in
the𝑤-event DP framework, the data owners specify their privacy
requirements in terms of a (𝜖 ,𝑤 )-tuple via a decision by consensus.

Definition 2 (𝑤-Event 𝜖-Differential Privacy [25]). LetM

be a non-deterministic mechanism that takes a stream prefix 𝑆𝑝 of

arbitrary size as input and outputs a transcript 𝑅 of 𝑆𝑝 , i.e., a sanitized

query result. Further, let Range(M) be the set of all possible outputs

ofM. We say thatM satisfies 𝑤-event 𝜖-differential privacy if for

all 𝑅 ∈ Range(M), all𝑤-neighboring stream prefixes 𝑆𝑝 , 𝑆
′
𝑝 , and all

𝑝 , holds that Pr [M(𝑆𝑝 ) = 𝑅] ≤ 𝑒𝜖 · Pr [M(𝑆 ′𝑝 ) = 𝑅] .

A DP mechanism for numeric queries usually adds noise based
on the zero-mean Laplace distribution Lap(𝜆) to each of the 𝑑𝑖𝑚
outputs of a query 𝑄 : 𝐷𝑡 → R

dim, e.g., histogram bins. The

scale 𝜆 =
Δ𝑄
𝜖 depends on the privacy budget 𝜖 and the global

sensitivity Δ𝑄 = max𝐷𝑡 ,𝐷′𝑡 | |𝑄 (𝐷𝑡 ) − 𝑄 (𝐷 ′𝑡 ) | |1 at any possible
timestamp 𝑡 . The global sensitivity quantifies the maximum differ-
ence query results of neighboring databases may have. For instance,
Δ𝑄 = 1 holds for a histogram query. Specifically,𝑤-event DP can be
implemented by using independent DP sub-mechanismsM𝑡 , e.g.,
Laplace mechanisms, to release the query results at a timestamp.
The only premise is that the budget spend by these mechanisms
does not exceed 𝜖 for every rolling window of size𝑤 (cf. Theorem 1).

Theorem 1 (Composition [25]). LetM be a mechanism process-

ing a stream prefix 𝑆𝑝 = (𝐷1, . . . , 𝐷𝑝 ) and outputting a transcript of

released values 𝑅 = (𝑟1, . . . , 𝑟𝑝 ). Assume that we can decomposeM

into 𝑝 sub-mechanismsM1, . . . ,M𝑝 , s.t.M𝑡 (𝐷𝑡 ) = 𝑟𝑡 , eachM𝑡 has

independent randomness and achieves 𝜖𝑡 -differential privacy. Then,

M satisfies𝑤-event 𝜖-differential privacy if

∀𝑡 ∈ [𝑤, 𝑝] :

𝑡∑︁

𝑘=𝑡−𝑤+1

𝜖𝑘 ≤ 𝜖.
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2.2 The𝑤-event Mechanism Framework

We now introduce an abstract framework for sub-mechanismsM𝑡

(cf. Algorithm 1) that is suitable for all mechanisms of our litera-
ture survey. This common framework facilitates the comparison of
mechanisms and experimental results.

Algorithm 1𝑤-event Mechanism Framework

Input (𝜖, 𝑤) : privacy requirements, 𝐷𝑡 : database at timestamp 𝑡 ,𝑄 : query,
𝑙 : last sampling time
Output 𝑟𝑡 : sanitized query result at time 𝑡

1: functionM𝑡 ((𝜖, 𝑤), 𝐷𝑡 ,𝑄, 𝑙 )
2: if isSamplingPoint(𝜖, 𝑤, 𝐷𝑡 , 𝑙 ) then
3: 𝜖𝑡 ← budgetAllocation(𝜖, 𝑤, 𝐷𝑡 , 𝑙)

4: 𝑝𝑡 ← pertubation(𝜖𝑡 ,𝑄, 𝐷𝑡 )

5: 𝑟𝑡 ← filtering(𝑝𝑡 ) ⊲ sanitized query result
6: 𝑙 ← 𝑡

7: else 𝑟𝑡 ← 𝑟𝑙 ⊲ approximation

8: return 𝑟𝑡

A sub-mechanismM𝑡 has five inputs1: privacy requirements
(𝜖 , 𝑤 ), database 𝐷𝑡 , query 𝑄 , and the last timestamp 𝑙 where a
sub-mechanism released a sanitized query result. Note that not at
all timestamps the query result is sanitized, but previously sani-
tized query results can be released again. The output of the sub-
mechanism is the released query result 𝑟𝑡 . Intrinsically, the sub-
mechanism implements four functions that are described below.
Table 2 provides example implementations of these functions.

isSamplingPoint-Function. A mechanism has to decide whether
a timestamp is sampled, i.e., the current query result is sanitized
by spending a portion of the privacy budget 𝜖 for perturbation.
Then,M𝑡 releases this sanitized query result. The alternative to
sampling is called approximation, i.e., the mechanism approximates
the current query result with the one(s) sanitized last at timestamp
𝑙 . The rationale for approximation is to save budget in case the
query results change only marginally over time.

budgetAllocation-Function. This function is called in case the
mechanism decides to sample. It determines and allocates the share
of privacy budget used for perturbation.

Perturbation-Function. Mechanisms calculate the true query
result 𝑄 (𝐷𝑡 ) before perturbing using the allocated budget. Note
that all identified mechanisms perturb using Laplace noise.

Filtering-Function. The post-processing immunity of differen-
tial privacy [15] allows to modify the perturbed query results 𝑝𝑡
in an arbitrary way without spending budget or loosing the pri-
vacy guarantee, as long as no private information computed on
𝐷𝑡 is used. Consequently, sub-mechanisms take advantage of this
property within the filtering function to increase the utility. A
straight-forward filtering function truncates the perturbed query
result such that it fits in the domain Range(𝑄) of the query 𝑄 . For
instance, Range(𝑄) contains all non-negative integers for count
queries. During truncating, the mechanism takes the perturbed
query result 𝑝𝑡 and releases𝑚𝑎𝑥 (0, round(𝑝𝑡 )), where round is a
function that rounds a floating point number to the next integer.

1Note that individual mechanisms may use additional input parameters.

Table 2: Computation of the functions in the𝑤-event mecha-

nism framework for the baselines Uniform and Sample [25].

Function Uniform Sample
isSamplingPoint true if w%t=0 then true else false
budgetAllocation 𝜖𝑡 ←

𝜖
𝑤 𝜖𝑡 ← 𝜖

perturbation 𝑝𝑡 ← 𝑄 (𝐷𝑡 ) + Lap(
Δ𝑄
𝜖𝑡
)

filtering 𝑝𝑡

2.3 Utility Metrics

To measure the utility of the released stream, researchers have two
options: First, quantifying the difference of 𝑟𝑡 to the true query
result 𝑄 (𝐷𝑡 ) at each timestamp 𝑡 mainly using the mean absolute

error (MAE) or the mean relative error (MRE) [6, 18, 25, 27, 37, 40]:

MAE(𝑄 (𝑆𝑝 ), 𝑅) =
1

𝑝

𝑝∑︁

𝑡=1

|𝑄 (𝐷𝑡 ) − 𝑟𝑡 |

MRE(𝑄 (𝑆𝑝 ), 𝑅) =
1

𝑝

𝑝∑︁

𝑡=1

|𝑄 (𝐷𝑡 ) − 𝑟𝑡 |

max {𝑄 (𝐷𝑡 ), 𝛾}

𝛾 > 0 is a sanity bound to mitigate the effect of small query results.
The second option is to quantify the accuracy of the streams in
context of an analysis task, like forecasting, event monitoring, or
anomaly detection. To this end, one relies on a task-specific metric,
like the AUC-ROC score [34]. It quantifies the area under the ROC-
curve illustrating the relation between the true-positive (TPR) and
false-positive (FPR) rate. A score of 1 indicates prefect anomaly
detection, 0 inverses the labels, and 0.5 has no detection quality.

3 BENCHMARK REQUIREMENTS

In this section, we state and justify requirements on common ele-
ments of empirical studies on𝑤-event mechanisms to ensure the
comparability of results. We identify these elements by conducting
a comprehensive literature survey with the following methodology:
We include all publications that perform an experimental evaluation
on streams, i.e., not only finite time series which excludes [2, 11],
and are published at notable peer-reviewed venues, e.g., VLDB,
SIGMOD, and CCS. In total, we include 16 publications listed in
Table 3. As a result of our survey, we formalize the requirements of
an empirical study on𝑤-event mechanisms as a 4-tuple (M, S, P,E):

• M is a set of mechanisms compared.
• S is a set of streams, i.e., datasets.
• P is a set of privacy requirements, i.e., (𝑤 ,𝜖)-tuples.
• E is a set of (error) metrics to quantify mechanism utility.

We next describe the elements in detail and introduce require-
ments that ensure the comparability of empirical studies. Based on
the requirements, we reveal the limitations of existing studies.

3.1 Mechanism SetM

Below, we state five requirements (M-R1) to (M-R5) that the mech-
anism setM needs to fulfill in order to provide comparability. We
further discuss to which extent previous works address these re-
quirements (summarized in Table 3).
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Table 3: Requirements analysis of related work w.r.t.M, P, and E (✓yes, ✗no, ✓partially, - not considered). 𝑢 denotes unknown, 𝑑

dimension, 𝑛 the block size in (𝑤 ,𝑛)-DP [28]. Note that (M-R4) and (M-R5) are not applicable.

Reference Model Granu- (M-R1) (M-R2) (M-R3) (P - R1) (P - R2) (E - R)
larity Proof Baselines Sources (𝜖, 𝑤) (𝑤, 𝜖) Utility metrics

BA, BD, FAST𝑤 [25] cent. 𝑤-event ✓ both ✓a - ([40,200], 1) MAE, MRE 𝛾 = 𝑢

Retroact. Group. [7] cent. event ✓ Uniform ✗ ([0.02,0.1], 1) n.a. MAE, MRE 𝛾 = 𝑢

DSAT𝑤 [27] cent. 𝑤-event ✓ none ✗ ([0.5,1], 800) ([200,1000], 𝑢) total sum of squared error
SecWeb [36] cent. 𝑤-event ✓ Uniform ✗ ([0.01,1], 120) ([40,240], 1) MAE, MRE 𝛾 = 1

G-event [10] cent. 𝑤-event ✗ Sample ✗ ([0.5,1.5], 𝑢) ([40,200], 𝑢) MAE, MRE 𝛾𝑑 = 0.1% ·
∑𝑝

𝑡=1𝑄 (𝐷𝑡 ) [𝑑 ]

RGP [29] cent. 𝑤-event ✓ Uniform ✗ ({0.5,1.0}, 1) ({10,50}, 𝑢) MRE 𝛾 = 𝑢

RescueDP [37, 38] cent. 𝑤-event ✓ none ✗ ([0.1,1], 200) ([40,240], 1) MAE, MRE 𝛾𝑑 = 0.1% ·
∑𝑝

𝑡=1𝑄 (𝐷𝑡 ) [𝑑 ]

Re-DPoctor [44] cent. 𝑤-day ✗ none ✗ ([0.5,1.5], 14) ([7,35], 1) MAE, MRE 𝛾 = 0.05% ·
∑𝑝

𝑡=1𝑄 (𝐷𝑡 )

PeGaSuS [9] cent. event ✓ Uniform ✗ ({0.01, 0.1}, 1) n.a. MAE, TPR, ROC of event monitoring
Local DP [16] local 𝑤-event ✓ none ✗ ({1.1,1.9}, 4) ([10,100], 1) MAE, RMSE
STBD [28] cent. (𝑤, 𝑛) ✓ Uniform ✗ ([0.2,1.0], 120) ([40,200], 1) MAE
DPS [17] local 𝑤-event ✗ Uniform ✗ - ([0.01, 1], 𝑢) unspecified ’average error’
AdaPub [40] cent. 𝑤-event ✓ none ✗ ([0.1,0.9], 100) ([40,200], 1) MRE 𝛾𝑑 = 1% ·

∑𝑝
𝑡=1𝑄 (𝐷𝑡 ) [𝑑 ]

DADP [41] distr. 𝑤-event ✓ none ✗ ([0.1,1], 40) (1.0, [20,200]) MAE, MRE 𝛾 = 0.1% ·
∑𝑝

𝑡=1𝑄 (𝐷𝑡 )

ToPS [39] cent. event ✓ none ✗ ([0.01,0.5], 1) n.a. mean squared error
LPD-IDS [33] local 𝑤-event ✓ both ✗ ({0.5, 2.5}, 20) ({10, 50}, 1) MRE 𝛾𝑑 = 𝑢, ROC of event monitoring

aFAST used for FAST𝑤 : http://www.mathcs.emory.edu/~lxiong/aims/FAST/

(M-R1) Proofing the Desired Privacy Definition. A fair comparison
of mechanisms requires identical privacy definitions. Considering
DP, the privacy definition consists of the model and the granularity.
There exist three models: In the centralized model [12], a trusted
data administrator collects all rows of the stream 𝑆 to calculate and
sanitize 𝑄 (𝑆). In the local model [23], each individual stream (i.e.,
row in 𝑆) is sanitized such that it fulfills local DP. Consequently,
an untrusted data administrator calculates 𝑄 (𝑆). In the distributed
model [1], each individual stream is sanitizedwith Gamma noise and
encrypted. The untrusted data administrator decrypts the summed-
up stream that satisfies DP. Mechanisms for different models are
not comparable, because complying with the local or distributed
model provides a lower utility than the centralized model. The most
commonly used mechanism granularities (cf. Table 3) are event-
level [14] and𝑤-event [25]. Note that 𝑤-event generalizes event-
level. Mechanisms with different granularities are comparable if the
mechanism can be parameterized to provide the desired granularity.
For instance, an event-level DP mechanism satisfies𝑤-event DP if
we provide a budget of 𝜖𝑡 =

𝜖
𝑤 per timestamp 𝑡 [25].

In order to include a mechanism in a benchmark, the authors
of the mechanism need to (1) proof that the claimed definition
is satisfied and, if applicable, (2) state how the mechanism can be
parameterized such that it achieves the desired granularity. Though
this appears to be self-evident, our survey reveals that there are
mechanism propositions without a privacy proof (cf. Table 3).

(M-R2) Including both Baseline Mechanisms. Two baseline mech-
anisms, i.e., Uniform and Sample, are proposed in the original 𝑤-
event DP publication [25]. Their design is based on the fact that any
mechanism introduces two types of errors into the stream, namely
the perturbation and the approximation error. One of them is dom-
inant for each baseline. The perturbation error is defined as the
difference between the true query result 𝑄 (𝐷𝑡 ) and the perturbed
one 𝑝𝑡 . The approximation error occurs when a mechanism does

not sample and is defined by the difference between the true query
result 𝑄 (𝐷𝑡 ) and the last released sanitized result 𝑟𝑙 . If the query
result fluctuation is small, the approximation error is also small.

Mechanism Uniform samples every timestamp by allocating
𝜖𝑡 =

𝜖
𝑤 budget for perturbation; hence, only a perturbation error is

introduced. By contrast, mechanism Sample only samples a new
query result every 𝑤 th timestamp and approximates the query
results at the remaining timestamps. Thus, it uses the total budget,
i.e., 𝜖𝑡 = 𝜖 , for perturbation and its error is dominated by the
approximation error. As a result, we suggest to include both baseline
mechanisms, as they allow to study the dominant error type and
help quantifying the improvement of a newly proposed mechanism.
However, our literature study reveals that 7 out of a total of 16
publications do not include any of these baselines. Moreover, 7
publications only compare to one of the baseline mechanisms.

(M-R3) Availability of Mechanism Implementations. Most mech-
anisms proposed in literature are intrinsically complex, e.g., the
sampling decisions of multiple mechanisms rely on a proportional-
integral-derivative (PID) controller [4, 19, 27, 38] or Kalman fil-
ter [19, 38, 42]. We observe that minor differences in the implemen-
tation or parameters can have a significant effect on a mechanism’s
utility, e.g., rounding the query result in the Filtering function.
Hence, we advocate to make implementations publicly available
to provide additional insights and facilitate the comparison. Our
survey reveals that only one out of 16 publications provide access
to their implementation.

(M-R4) Private Parameter Determination. Parameters of a mech-
anism that are used on the true stream need to be computed in a
private way [21], e.g., the number of rows which is private informa-
tion. None of our surveyed publications addresses this requirement
explicitly, even though not all mechanisms sanitize these parame-
ters. However, verifying this requirement without having access
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to the concrete mechanism implementation (M-R3) is impossible.
Using our benchmark (cf. Section 4), we identify that three out of 10
𝑤-event mechanisms do not fulfill this requirement. To solve this
issue, we suggest to follow the proposal of [21] to use mechanism

repair functions.

(M-R5) Homogeneity of Background Knowledge. Most mecha-
nisms use components, like PID controllers [4], that have parame-
ters as well. Background knowledge of the domain is required to set
them optimally. However, it is important to use them consistently in
the benchmark to provide a fair comparison of all mechanisms [21].

3.2 Data Stream Set S

Ideally, an empirical comparison consists of two parts: First, a se-
quence of micro benchmarks on artificial data is conducted to study
the effect of stream properties on a mechanism’s utility. Second, a
canon of real-world streams is used to reflect use cases.

(S − 𝑅1) Artificial Streams Reflecting Stream Properties. Our sur-
vey reveals that artificial streams are rarely used, e.g., in [33]. Even
though related work [18, 25, 40] indicates that a mechanism’s per-
formance depends on fluctuations and the sparsity of the stream,
further investigations are missing. Therefore, the identification of
stream properties that are relevant for either the mechanism’s util-
ity or the reflection of real-world data remains an open challenge.
To this end, we propose and discuss relevant stream properties
when instancing our benchmark (cf. Section 4).

(S − 𝑅2) Available Real-World Streams & Reproducible Preprocess-

ing. Our literature survey reveals that most approaches focus on
real-world streams from specific use cases. Even though multiple
publications use the same streams, the respective study results
are not necessarily comparable. The reason is that the streams are
preprocessed differently as can be seen in the following example
on the WorldCup dataset: Its raw data contains the logs of 89,997
websites. [25] refers to all 89,997 websites while [38] samples 2,000
of them, leading to inconsistent utilities values. In many other cases,
the reason remains unknown. Since we are aware that due to li-
cense issues most publications must not publish their preprocessed
streams, it is particularly important that all preprocessing steps are
well documented and publicly available [8, 31].

3.3 Privacy Requirements Set P

In the𝑤-event DP framework, data owners express their privacy
requirements by a tuple (𝜖,𝑤) where 𝜖 is the available privacy
budget and 𝑤 is the window length. In all publications listed in
Table 3, two types of experiments are conducted:

(P - R1) Vary-𝜖 . Effects of 𝜖 for a fixed value of𝑤 . Selecting an
appropriate 𝜖 value is an ongoing research line [13, 24, 26, 30]. In
most studies, 𝜖 is varied between 0.1 and 10.

(P - R2) Vary-𝑤 . Effects of𝑤 for a fixed value of 𝜖 , mostly 𝜖 = 1.
Note that there is no consensus regarding the window size𝑤 for
both types of experiments. The𝑤-values even differ for the same
stream. The overall tendency is a lower bound of 𝑤 > 10 and an
upper bound in the low hundreds.

Table 4: Benchmark instantiation of the 4-tuple (M, S, P,E).

Elem. Instantiation

M (1) Baselines: Sample [25], Uniform [25];
(2) Competitors: FAST𝑤 [25], DSAT𝑤 [27], BD [25], BA [25],
RescueDP [37, 38], AdaPub [40], PeGaSuS [9]

S (1) 20 artificial seasonal streams with dim = 1
(2) 8 real-world streams from Table 5:
WorldCup, Taxi Porto, Flu Outpatient, Taxi Beijing, State Flu, Flu
Death, Retail, and Unemployment

P (1) Vary-𝜖 : 𝜖 ∈ [0.1, 1.0], 𝑤 = 120

(2) Vary-𝑤: 𝑤 ∈ [40, 200], 𝜖 = 1.0

E (1) Average MAE over 100 runs
(2) Average MRE with 𝛾𝑑 = 0.1% ·

∑𝑝
𝑡=1𝑄 (𝐷𝑡 ) [𝑑 ] over 100 runs

(3) Analysis task anomaly detection: average AUC-ROC score

3.4 Error Metrics Set E

Researchers typically compute an error metric between the true and
the sanitized stream to determine the utility of a mechanism. As
shown in Table 3, most studies use the mean absolute error (MAE)
or the mean relative error (MRE) as defined in Section 2.3. However,
there are subtle differences in the error calculation. In particular, in
the selection of the sanity bound of MRE. For instance, [38] uses
a data-dependent sanity bound 𝛾 , whereas [10] fixes 𝛾 = 1.0. In
three publications, the sanity bound is not stated, even though the
used streams contain query results of 0, requiring 𝛾 > 0. Only two
works [9, 33] quantify the utility for a specific analysis task (here:
event monitoring) by using a task-specific metric.

4 BENCHMARK DEFINITION

We now introduce a benchmark for𝑤-event DP mechanisms, aim-
ing at the comparability of experimental results. Based on Table 3,
we focus on the frequently used centralized model. The benchmark
is defined based on the elements identified in Section 3 and meets
all comparability requirements. Table 4 gives a brief overview of
the element selection which results in 259,000 single experiments,
i.e., mechanism runs. We discuss how to meet the requirements of
each element and argue how to ensure the validity and comprehen-
siveness of the results.

4.1 Mechanism SetM

We discuss the selection of mechanisms in our benchmark. We give
a detailed discussion on meeting all requirements from Section 3 to
ensure the comprehensiveness and validity of the results.

(M-R1)-(M-R2) Considered Mechanisms. We include the baseline
mechanisms Sample and Uniform, as well as all mechanisms found
in our literature study that are either proven to support 𝑤-event
DP directly or can be parameterized such that they achieve𝑤-event
DP. According to Table 3, this applies to FAST𝑤 [25], DSAT𝑤 [27],
RGP [29], SecWeb [36], RescueDP [37, 38] and AdaPub [40]. Since
SecWeb is a prequel of RescueDP, we do not include SecWeb in our
benchmark. We also exclude RGP, since it is only applicable to hier-
archic location count streams. We further include all mechanisms
used as competitors for an includedmechanism. This includes PeGa-
SuS [9] being a competitor of AdaPub. We do not include Uniform
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with backwards smoothing (competitor of PeGasuS) since prelimi-
nary experiments revealed that it does not yield a substantial utility
improvement compared to Uniform.

(M-R4) Private Parameter Determination. A pivotal requirement
is that all mechanism determine data-dependent parameters in a
private way. As discussed in Section 3, we use mechanism repair
functions whenever we find parameters that are not determined in
a private way. Specifically, we use the following repair functions.

DSAT𝑤 Repair Function. DSAT𝑤 uses the number of rows in the
stream. Since streams that feature a different number of rows might
be neighboring, this is private information. We repair DSAT𝑤 as
follows: Calculate the total counts at the first timestamp and perturb
it by spending 10% of the privacy budget allocated for 𝑡 = 1. To
keep the privacy guarantee, we reduce the perturbation budget at
timestamp 𝑡 = 1 accordingly. If the sanitized total count equals zero,
the repair function uses the value 5,000 also used in the original
publication [27].

BD/BA - Column Partitioning Repair Function. Mechanisms BA
and BD may use an optimization requiring to group the dimen-
sions based on their correlation. Since non-coincidental correlation
among dimensions is private information, it needs to be determined
in a private way. This also holds despite the observation in the
original publication [25] that both mechanisms are very sensitive
towards this parameter. The original results indicate the number
of groups should be rather small. For instance, on the WorldCup
stream, they achieve the best results with 150 groups for 89,997
dimensions [25]. Consequently, we repair BD by using 0.2% of the
dimensions as number of groups. We do not group in BA, because
initial tests suggest no significant improvement.

(M-R5) Homogeneity of Background Knowledge. All mechanisms
(except Uniform, Sample, BD, and BA) use components that rely
on configuration parameters, e.g., a PID controller. A mechanism
specific parameter is set as given in the publication. If mechanisms
share parameters, we set these parameters consistently in all mech-
anisms, i.e., a desired sampling rate of 15% in FAST𝑤 and DSAT𝑤 ,
and the parameters of the PID controller. While the publications
proposing RescueDP [37, 38] and FAST [19] suggest the same PID
parameters, the values used in DSAT𝑤 [27] differ due to a different
operational purpose of the PID controller. As a result, we use the
parameters as suggested in the respective publication.

(M-R3) Mechanism Implementation. A correct implementation
of the mechanisms is a key factor to ensure result validity. We
follow four key principles: (a) Favor original implementations: Un-
fortunately, this only holds for one mechanism, namely FAST𝑤 (cf.
Table 3). (b) Re-use of well-known mechanism parts: Multiple mech-
anisms use the same components (e.g., the sampler), which is itself
available open source. For instance, FAST𝑤 uses a Kalman filter and
PID controller. In such cases, we use this component consistently
in all mechanisms. (c) Consistency checks: All mechanisms are im-
plemented redundantly and independently by up to three people,
eventually leading to consistent results. (d) Contact original authors:
Some of our results highly deviate from the results in the original
publication. Consequently, we contacted the original authors of
𝑤-event DP [25] and thankfully received re-implementations of the

Table 5: Requirement (S − 𝑅2): Availability of real-world

streams used in prior work: ✓yes, ✗no/removed, ✓partially.

Stream Avail. Referenced in Limitations

APASCologne ✓ [17] -
DNS ✗ [39] -
Fare ✓ [39] raw data only
Flu Death ✓ [40] different season
Flu Outpatient ✓ [18] different ages & years
Foursquare ✓ [33] -
GeoLife ✗ [28] -
Heart rates ✗ [44] -
Kosarak ✓ [39] raw data only
Montreal traffic ✗ [7] -
Nice ride ✓ [41] -
POS ✗ [39] -
Retail ✓ [40] -
Rome traffic 1 ✗ [25] -
Rome traffic 2 ✗ [29] -
San Joaquin ✓ [27, 37, 38] data generator only
State Flu ✓ [40] -
TDrive ✓ [27, 33] -
Taobao ✓ [33] requires account
Taxi Porto ✓ [27, 28, 37, 38, 41] raw data only
Traffic Seattle ✗ [18] -
Unemployment ✓ [18] -
US census ✓ [27] raw data only
WiFi traces 1 ✗ [9] -
WiFi traces 2 ✗ [16] -
WorldCup ✓ [7, 10, 25, 36ś38] raw data only

baselines and major parts of BD and BA. This ensures the correct-
ness of all baselines and major parts of BD and BA, and allowed us
to reuse identical mechanism parts.

4.2 Data Streams Set S

Concerning data streams, we meet the requirements from Section 3
as follows: First, we conduct a series of micro benchmarks with
artificial streams (i.e., S-R1). Second, we conduct experiments on a
comprehensive set of data streams used in literature (i.e., S-R2).

(S-R1) Artificial Streams Reflecting Stream Properties. The inten-
tion behind using artificial streams is to study the influence of
relevant stream properties on a mechanism’s utility in a structured
way. Generating meaningful artificial streams is challenging. For
streams in general, there are various properties known to have an
influence on data processing, e.g., dimensionality, seasonality, level,
and trend [22]. However, neither the properties nor their influence
on the utility of amechanism on real-world streams used in previous
studies have been investigated so far. Next, we (a) analyze which of
these properties do occur in the real-world streams listed in Table 5,
and (b) describe the design of our artificial stream generator that
allows to investigate each of the properties in isolation.

Dimensionality. The streams in Table 5 provide a dimensionality
between 1 and 80,000. In our micro benchmark, however, we con-
sider univariate query results per timestamp, i.e., 𝑑𝑖𝑚 = 1. We aim
to understand a mechanism’s ability to retain utility of the stream
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(b) Flu Death stream.

Figure 1: Artificial stream with domain [0, 600] and expected

season length 𝑠 = 40 vs. a real-world 1D stream.

using clever budget allocation, sampling, filtering, and leveraging
the inertia of the stream. We intentionally exclude the additional
utility improvement of some mechanisms, gained by taking advan-
tage of correlated dimensions, in our micro benchmarks by setting
𝑑𝑖𝑚 = 1. The reason is that introducing known correlations in
multi-dimensional streams is highly challenging.

Level. Most seasonal streams feature inter-seasonal downtimes,
i.e., 𝑄 (𝐷𝑡 ) is close to zero (cf. Figure 1b). The minimum query re-
sult is usually also the most frequent one. To decouple the level
from the seasonality, we quantify the level by the minimum query
result 𝑞min. The minimum query result of the stream influences
a mechanism’s utility in case the filtering technique truncating

(cf. Section 2.2) is applied. For queries like Count and Histogram,
truncating filtering rounds any negative perturbed query results to
zero. Hence, whenever 𝑝𝑡 is negative after adding the Laplace noise
(e.g., −10), the mechanism releases the true query result instead.
This occurs e.g., for any 𝑄 (𝐷𝑡 ) = 𝑞min = 0 in half of the cases.
By contrast, the mechanism introduces a relative error of 100% if
𝑄 (𝐷𝑡 ) = 10. Hence, truncating reduces the noise by taking advan-
tage of the query domain, especially at low levels of the stream.
Consequently, we do not truncate the sanitized query result in our
micro benchmarks. That way, the utility for streams of different
levels is equal if the other properties are equal and we do not need
to investigate the utility for varying stream levels.

Seasonality. We observed that most real-world streams have a
seasonality, with an exponential growth and shrinking phase. The
maximum query result 𝑞max highly varies from stream to stream.
The perturbation and approximation error, however, are clearly
influenced by the length of the seasons 𝑠 and the amplitude 𝑎 =

𝑞max − 𝑞min. Thus, we test the mechanism utility with respect to
both. Note that since 𝑞min = 0 the following holds: 𝑎 = 𝑞max. In
our micro benchmarks, we generate streams for every combination
of 𝑠 ∈ {40; 60; 80; 10; 120} and 𝑎 = 𝑞max ∈ {10; 100; 1,000; 10, 000}

reflecting values observed in real-world streams.

Trend. We do not observe a trend in the streams listed in Table 5.
Therefore, we do not consider this property.

Data Generator. Figure 1a shows a stream produced by our gen-
eration algorithm (cf. Algorithm 2). Generally, the artificial streams
shall be similar to one-dimensional streams used in other stud-
ies. For the depicted data, we use 𝑝 = 400 timestamps, amplitude

Algorithm 2 Data Generator

Input 𝑝 : stream length, 𝑠 : average season length, 𝑎: maximal amplitude
Output𝑄 (𝐷1), ..,𝑄 (𝐷𝑝 ) : Query result stream of 𝑝 timestamps

1: function generateStream(𝑝, 𝑠, 𝑎)
2: 𝑡 ← 1, 𝑒 ← 1.5

3: while 𝑡 < 𝑝 do ⊲ Each loop generates one season
4: sl← G(𝑠, 2) ⊲ Dice season length
5: val← G(8, 2) ⊲ Dice season minimum, close to 0
6: 𝑄 (𝐷𝑡 ) ← val; 𝑡 + +
7: for 𝑖 = 1 to sl/2 do
8: 𝑣𝑎𝑙 ← 𝑒 · 𝑄 (𝐷𝑡−1) ⊲ Exponential growth
9: 𝑄 (𝐷𝑡 ) ← val; 𝑡 + +

10: . . . ⊲ Symmetric shrinking phase

11: max← max{𝑄 (𝐷1), ..,𝑄 (𝐷𝑝−1) }

12: for 𝑖 = 1 to 𝑝 do

13: 𝑄 (𝐷𝑖 ) ← 𝑄 (𝐷𝑖 )/max · 𝑎 ⊲ Ensure desired amplitude

14: return𝑄 (𝐷1), ...,𝑄 (𝐷𝑝 ) ⊲ Ensure correct length

𝑎 = 𝑞max = 600, and an average season length 𝑠 = 40. Not all periods
have exactly the same length, we therefore dice the length of each
season with Gaussian distribution G(𝑠 = 40, 2). For the growing
phase, we use an exponential growth function𝑄 (𝐷𝑡 ) = 𝑒 ·𝑄 (𝐷𝑡−1)

with 𝑒 = 1.5. The shrinking phase is symmetric to the growing
phase. We also mimic inter-seasonal downtime by dicing the sea-
son minimum with G(𝑠 = 8, 2), i.e, some query result close to zero.
Since the maximum query result of the stream generated this way
depends on the actual length of the season and the diced minimal
query result, we need to normalize the maximum query result with
the desired amplitude 𝑎. Finally, the stream might be too long be-
cause the algorithm generates the stream season-wise. Thus, we
return the stream prefix until timestamp 𝑝 .

(S-R2) Publicly Available Real-World Streams with Reproducible

Preprocessing. For comprehensiveness, we use all real-world streams
that are freely available and at least used once to evaluate a𝑤-event
DP mechanism (cf. Table 5). All of them use a query𝑄 with Δ𝑄 = 1.

As far as useful and possible, we preprocess them according to
one of the respective publications. To facilitate comparability and
reproducibility, all preprocessing steps are publicly available2.

4.3 Privacy Requirements Set P

Inspired by most of the experimental studies found in the related
work, we also conduct the vary-𝜖 and vary-𝑤 experiments, fulfilling
(P-R1) and (P-R2). For the vary-𝜖 experiment, we select a reasonably
large value for parameter 𝑤 = 120 and vary 𝜖 ∈ [0.1, 1]. For the
vary-𝑤 experiments, we use 𝜖 = 1 like most studies. We vary
𝑤 ∈ [40, 200] with a𝑤 increment of 40, s.t. there is an overlap with
various other studies. When measuring utility of anomaly detection,
we show the results for𝑤 ∈ [1, 32]. The rational is that the results
remain constant for larger values.

4.4 Error Metrics E

Since the mechanisms rely on randomness, the utility can dif-
fer highly for the same combination of privacy requirements and
stream. Following various studies from the related work, we run

2https://dbresearch.uni-salzburg.at/projects/dpbench/index.html
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each experiment 100 times and use the average of the utility metrics.
We use both types of metrics introduced in Section 2.3. First, we
use MAE and MRE with 𝛾𝑑 = 0.1% ·

∑𝑝
𝑡=1𝑄 (𝐷𝑡 ) [𝑑] for dimension

𝑑 . Besides the average error, we quantify the variance of the error
as suggested by [21] for static (i.e., standard) DP. To this end, we
measure the 0.95 quantile of MAE and MRE reflecting a ’risk averse’
data owner. Second, we select anomaly detection as analysis task
where we use the AUC-ROC score [34] as task-specific metric.

5 EXPERIMENTAL RESULTS

We perform an experimental study by executing our benchmark as
instantiated in Table 4. The goal of this study is to gain new insights
into the strengths and weaknesses of existing mechanisms. Further,
we analyze the influence of stream properties on a mechanism’s
utility using our artificially generated streams and verify whether
the results also hold for real-world streams.

5.1 Artificial Streams

We aim at understanding the effects of the identified stream prop-
erties seasonal period length 𝑠 and amplitude 𝑎 on a mechanism’s
utility using artificial streams. Specifically, we are interested in the
perspective of a data administrator aiming at selecting a mecha-
nism for a given stream and privacy requirement. Consequently,
we formulate the following two research questions:

(RQ1) Are stream properties decisive for mechanism selection?
(RQ2) If so, can we recommend a mechanism and/or function

design for a given seasonal period length 𝑠 , amplitude 𝑎,
and privacy requirements (𝜖,𝑤 )?

For brevity, we subsequently focus on the average MAE, short
MAE, to answer these questions since the result patterns for the 0.95
quantile of MAE and MRE are similar3. To make the mechanism’s
MAEs comparable over all streams and privacy requirements, we
consider the MAE deterioration 𝛿MAE (𝑐) for a specific combination
of mechanisms, stream properties, and privacy requirements 𝑐 =

(𝑚 ∈ M, (𝑠 , 𝑎), (𝜖 , 𝑤 ) ∈ P). The MAE deterioration compares the
MAE of mechanism𝑚 to the mechanism𝑚′ with minimum MAE:

𝛿MAE (𝑚, (𝑠, 𝑎), (𝜖,𝑤)) =
MAE(𝑚, 𝑠, 𝑎, 𝜖,𝑤)

min{MAE(𝑚′, 𝑠, 𝑎, 𝜖,𝑤) |𝑚′ ∈ 𝑀}

We present the MAE deterioration on artificial streams in Fig-
ure 2. The color gradient marks small values in green, i.e., good
utility, and large values in red, i.e., bad utility. Subsequently, we
discuss the results with respect to the research questions.

5.1.1 (RQ1) Are stream properties decisive for mechanism selection?

For answering this question, we investigate the influence of the
stream properties (𝑎, 𝑠) and privacy requirements (𝜖 , 𝑤 ) on MAE.
The raw MAE results of the vary-𝜖 and vary-𝑤 experiments (not
illustrated) indicate that the utility behaves as expected for most
mechanisms. Specifically, they show a proportional MAE increase
or decrease towards a change of the privacy requirements. For
instance, we observe that the MAE declines by roughly a factor
of 2 when doubling the available budget 𝜖 for constant 𝑎, 𝑠 , and
𝑤 . The only notable exception is RescueDP which hardly benefits
from higher budgets when the amplitude 𝑎 > 1, 000. This is due to

3This also holds for other metrics, e.g., the L2 error.

the fact that RescueDP is specifically designed for releasing multi-
dimensional data with small amplitudes.

Next, we observe that the period length 𝑠 is not decisive since
the MAE deterioration is equivalent for each 𝑠 when 𝑎, 𝜖 , and 𝑤
are fixed. By contrast, the amplitude 𝑎 is highly decisive for a fixed
period length 𝑠 = 80 (cf. Figure 2). For instance, Sample provides
the lowest MAE for 𝑎 = 10 and 𝜖 = 0.1 while AdaPub is the winner
for 𝑎 = 10, 000 and 𝜖 = 1. Summarizing, mechanisms provide a high
utility either for small or for large amplitudes independent of other
parameters such as 𝑠 , 𝜖 , or𝑤 .

5.1.2 (RQ2) Can we recommend a mechanism for specific stream

properties (𝑠, 𝑎) and privacy requirements (𝜖,𝑤 )? Considering Fig-
ure 2, either Sample or Uniform is among the mechanisms with the
smallest MAE for almost every combination of parameters. This
is surprising since baseline mechanisms frequently outperform so-
phisticated mechanisms. We investigate this result by analyzing
the parameter settings in which either Uniform or Sample pro-
vides the smallest MAE and outline issues regarding hypersensitive
data-adaptive sampling of sophisticated mechanisms.

Uniform Supremacy. Our results suggest that mechanism Uni-
form is among the best for large amplitudes 𝑎 ≥ 1, 000 and non-
restrictive privacy requirements, i.e., large 𝜖 , small 𝑤 . In general,
the relevance of restrictiveness decreases for increasing 𝑎. The ex-
pected MAE = 𝑤

𝜖 of Uniform is data-independent. Thus, we gain
little insights on MAE of Uniform, in case Uniform is among the
best mechanisms in terms of 𝛿MAE. Instead, we identify that the
invested budget (e.g., for data-adaptive sampling) of sophisticated
mechanisms does not pay off since MAEmight exceed 𝑤

𝜖 . Moreover,
AdaPub and PeGaSuS are expected to consistently have a lower
error than Uniform when Uniform is among the best. The reason
for this assumption is that they differ from Uniform only in an ad-
ditional Filtering-function, i.e., smoothing the perturbation noise.
However, our results do not confirm this expectation since their
filtering requires a fraction of the privacy budget 𝜖 . This investment
only pays off in downtimes between the seasons where the query
results are fairly stable. Within growing or shrinking phases of
a season, the groups usually contain a single timestamp and the
mechanism has less budget for perturbation.

Sample Supremacy. Comparing Uniform with Sample reveals
that Sample’s MAE is smaller than Uniforms’ if 𝑞max is small and
the privacy requirements are restrictive. While Uniform’s MAE
is data-independent, Sample is guaranteed to be 𝑤-independent.
Hence, it only depends on theminimum andmaximumquery results
[𝑞min, 𝑞max] and 𝜖 . In our case, the minimum value is 𝑞min = 0.
Thus, the maximum approximation error converges towards 𝑞max.
This worst case occurs if𝑄 (𝐷𝑡 ) = 0 for all sampled timestamps and
𝑄 (𝐷𝑡 ) = 𝑎 = 𝑞max otherwise. Moreover, the perturbation error is
1
𝜖 . Thus, the MAE bound is 𝑞max +

1
𝜖 and hence independent of𝑤 .

For instance, Sample’s bound is 11 with 𝑎 = 10,𝑤 = 100, and 𝜖 = 1 ,
whereas Uniform’s bound is 100, i.e., 10 times larger. However, we
rarely observe Sample’s bound and the observed MAE is several
factors smaller. The rational is that Sample has a tendency to release
the most frequent query results very accurately.
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Uniform Sample AdaPub

a/ε 10 100 1,000 10,000 a/ε 10 100 1,000 10,000 a/ε 10 100 1,000 10,000

0.1 120.6 62.0 16.4 2.0 0.1 1.0 1.0 2.1 2.6 0.1 150.5 77.5 20.4 2.5

0.3 102.7 25.8 6.0 1.1 0.3 1.0 1.1 2.3 4.1 0.3 127.8 32.3 7.4 1.3

0.5 88.6 26.4 3.8 1.0 0.5 1.0 1.8 2.4 6.4 0.5 110.0 33.2 4.7 1.2

0.7 73.4 21.8 2.9 1.0 0.7 1.0 2.0 2.6 9.0 0.7 91.8 27.1 3.6 1.2

0.9 64.7 19.1 2.2 1.0 0.9 1.0 2.3 2.6 11.5 0.9 81.1 24.0 2.8 1.2

1 61.3 17.4 2.1 1.0 1 1.0 2.3 2.6 12.8 1 76.4 21.7 2.6 1.2
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(a) Vary-𝜖 experiments with 𝑤 = 120.
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(b) Vary-𝑤 experiments with 𝜖 = 1.0.

Figure 2: Heat map of the 𝛿MAE results from the vary-𝜖 and vary-𝑤 experiments for a period length of 𝑠 = 80.

Hypersensitive Data-Adaptive Sampling. The small MAEs of Sam-
ple for small amplitudes and restrictive privacy requirements sug-
gest that the perturbation error needs to be minimized via sampling.
The mechanisms BD, BA, DSAT𝑤 , FAST𝑤 , and RescueDP feature
data-adaptive sampling. The idea is to invest a fraction of the bud-
get 𝜖 to monitor the stream. In case the mechanism monitors a
large enough change, a new query result is released. However, our
results suggest that data-adaptive sampling does not consistently
outperform sampling with data-independent rates (as conducted by
Sample). Instead, they are only better than Sample when Uniform is
better as well since data-adaptive sampling features a hypersensitiv-
ity for small changes in the query result. We observe the following
tendencies: In case the growing phase of a new season starts, the
initial small changes of the query result are well reflected. In ad-
dition, there is a sampling timestamp close to the peak of the first
season. Thereby, a large fraction of the budget is already spent in
the growing phase. Thus, data-adaptive sampling is more reluctant
in spending budget in the shrinking phase, i.e., large query results
are produced in the shrinking phase incurring a high MAE. That
becomes worse when multiple seasons fit into one window of size
𝑤 . This holds for all common window sizes and streams.

5.2 One-dimensional Real-World Streams

We evaluate the results on one-dimensional real-world streams with
two objectives: First, verifying whether the results of real-world and
artificial streams are consistent, particularly the baseline supremacy.
Second, understanding the abstract error measures (e.g., MAE) in
context of the data streams. In a nutshell, our key findings are that
the results on real-world and artificial streams are consistent and
common error metrics are not well-suited for streams.

5.2.1 Confirmation of Micro Benchmark Results. Figure 3 depicts
MAE for all mechanisms and one-dimensional real-world streams.

Summarizing, the results of the real-world streams confirm the
observations in the micro benchmarks. Specifically, we analyze two
medium-amplitude streams with 𝑎 < 1, 000 (i.e., Flu Death and Un-
employment) and one large-amplitude stream (i.e., Flu Outpatient)
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(b) Results of vary-𝜖 experiments (𝑤 = 120).
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Figure 3: Average error of vary-𝑤 and vary-𝜖 experiments for

one-dimensional real-world streams. ◦marks the baselines.

with a common season maximum of about 2 · 104 (cf. Figure 4). As
expected, Uniform has the best MAE for the large-amplitude stream.
Notably, MAE is significantly smaller than the expected MAE = 𝑤

𝜖 ,
e.g., MAE is almost half as large as expected on the Unemployment
stream due to the large amount of timestamps where𝑄 (𝐷𝑡 ) is close
to 0. The reason is the truncation of the perturbed query result:
In many timestamps where Uniform adds negative noise, a count
of 0 is released. Interestingly, we observe a slight utility improve-
ment by PeGaSuS towards Uniform for the Unemployment stream.
Sample usually provides the best MAE on the medium-amplitude
streams. Only for non-restrictive privacy requirements, i.e., 𝜖 = 1

and 𝑤 = 40, Uniform and most other mechanism have slightly
better MAE. As in the micro benchmarks, data-adaptive sampling
is not superior to equidistant data-independent sampling. As in
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Figure 4: True query result and exemplary releases of the

baselines Uniform and Sample for 𝜖 = 1.0 and𝑤 = 120.

the micro benchmarks, we observe an anomalous behavior of Res-
cueDP: Increasing the available budget does not improve the utility
for large-amplitude streams; instead, it has the opposite effect.

5.2.2 Semantics of Abstract Utility Metric Values. Most studies
use MAE and MRE metrics to determine a mechanism’s utility
(cf. Table 3). Considering our results on MAE and MRE, we ob-
serve intrinsic anomalies, e.g., Sample’s utility appears to be almost
independent of the privacy requirements. Thus, we examine the
semantics of the abstract error values by considering common appli-
cations performed on streams, e.g., forecasting or change detection
algorithms. For such applications, the preservation of the stream
properties from Section 4.2 is highly relevant. However, there is
little knowledge about their relation to MAE and MRE. Thus, we
examine the sanitized query results of Sample and Uniform w.r.t.
seasonality and level. At least one mechanism is ensured to provide
a good MAE for every stream due to the baseline supremacy. Our
explanations hold in general and are based on exemplary sanitized
releases, like the real-world streams shown in Figure 4.

Maintaining Seasonal Growing & Shrinking of the Stream. Sam-
ple erases seasonality independent of the observed MAE, even for
streams where Sample performs best (cf. Figure 4). In case the
mechanism only samples once per season, an entire season is ap-
proximated with a single value for every timestamp. Thus, small
MAE values of Sample suggest that the stream contains a large
amount of similar query results which the mechanism likely hits
upon data-independent sampling. Simply releasing the sanitized
query result at the first timestamp for every subsequent timestamp
yields a similar utility for all streams.

Uniform maintains the seasonality well when amplitudes are
large compared to the introduced noise. As the expected noise is 𝑤

𝜖 ,
the amplitude decides whether Uniform delivers acceptable utility.
However, this is not reflected byMAE (norMRE). For instance, MAE
in Figure 4b is smaller than in Figure 4a, despite the seasonality can
be observed in Figure 4a but not in 4b. Hence, MAE has no meaning
for maintaining seasonality. However, there is a relation between
MAE and the level maintained by Uniform, as we discuss next.

Maintaining Level & Amplitude of the Stream. Recap that the
true level of the stream is defined by 𝑞min and the true amplitude
𝑎 = 𝑞max − 𝑞min. The level and amplitude of the sanitized stream
released by Uniform depend on the true level and amplitude. In

case 𝑞min >
𝑤
𝜖 , i.e., the level is higher than the expected noise, the

sanitized stream released by Uniform features the domain [𝑞min −
𝑤
𝜖 , 𝑞max+

𝑤
𝜖 ]. This can be observed in Figure 4c where the measured

MAE of 115.6 fairly equals the expected MAE of 𝑤=120
𝜖=1 = 120. By

contrast, 𝑞min is close to 0 in Figure 4b, i.e., the minimum possible
value of a count query. Thus, truncating count queries lead to an
expected level change of [max(𝑞min −

𝑤
𝜖 , 0), 𝑞max +

𝑤
𝜖 ].

Since Sample has a low perturbation error, the domain is not en-
larged, i.e., only values within the original minimum and maximum
values are released. However, the sanitized streams usually miss
the seasonal peaks of the true streams. Large MAE values, specifi-
cally above Uniform’s MAE, indicate that the stream contains large
amplitudes which is poorly reflected in Sample’s released stream.
Small MAE values, in turn, indicate that there are no large seasonal
changes and Sample approximates small counts very accurately.

5.3 Multi-dimensional Real-World Streams

We now present the results (cf. Figure 5) of the multi-dimensional
streams fromTable 6.We aim to confirm the results obtained on one-
dimensional streams. Moreover, we analyze adaptive dimension-
grouping to improve the utility for multi-dimensional streams.

Adaptive dimension-grouping finds a group 𝑔 of dimensions that
have a similar query result, i.e., that are correlated. This can be
exploited in two ways: First, the sampling decision is performed per
group in BD. Then, groups with frequently changing query results
are sampled more frequently than groups with stable query results.
Second, the grouping is exploited in the perturbation function for
AdaPub and RescueDP. The mechanisms perturb the sum of the
query results over all dimensions in group 𝑔 and then assign each
dimension the average of the perturbed sum. This reduces the
expected perturbation error from 1

𝜖𝑡
to 1

𝜖𝑡 · |𝑔 |
[37]. Hence, with

increasing dimensionality the perturbation error is highly reduced.
Recap that we observe a baseline supremacy for one-dimensional

streams. The amplitude and privacy requirements are decisive fac-
tors between Uniform and Sample as well as hypersensitive data-
adaptive sampling. Generally, Figure 5 and Table 6 confirm both
observations for multi-dimensional streams. As expected, Uniform
is among the best mechanisms for StateFlu, TDrive, and Retail with
amplitudes > 10, 000. Only for small 𝜖-values on stream StateFlu, a
couple of other mechanism outperform Uniform. Sample is among
the best mechanisms on the WorldCup and TaxiPorto stream. How-
ever, AdaPub also provides low errors and outperforms Sample for
certain 𝜖-values. This is interesting since AdaPub has low errors
for one-dimensional streams iff Uniform is among the best mech-
anisms. This suggests that WorldCup and TaxiPorto significantly
differ from the other streams. Table 6 reveals that both streams are
sparse. The table contains the query result distribution of the true
query results over all dimensions of the preprocessed streams. We
observe that 𝑞min of TaxiPorto and WoldCup equals zero and the
90% quantile of 𝑄 (𝐷𝑡 ) is very small compared to the other streams.

We further observe nearly constant errors for AdaPub in seven
experiments and for RescueDP in one experiment. The rationale
is that the number of groups converges to one over time, i.e., the
mechanism releases the same query result for all dimensions. The
perturbation error is low if all dimensions are in one group, i.e., the
mean error is only slightly influenced by𝑤 and 𝜖 .
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Figure 5: Average error for vary-𝑤 and vary-𝜖 experiments on multi-dimensional streams. Baselines marked with ◦.

Table 6: Properties of multi-dimensional streams.

Stream 𝑆 dim Length 𝑝 Query result distribution
𝑞min 𝑞max 90% quantile

StateFlu 51 492 0 11,452 924
TDrive 100 672 0 39,871 1,772
Retail 1,298 374 0 372,306 15,089
TaxiPorto 1,298 672 0 317 2
WorldCup 1,298 1,320 0 16,928 0

The mean error of BD for these two streams is remarkable: In
the micro benchmark and on one-dimensional streams, BD is never
among the best mechanisms. However, BD is among the best mech-
anisms for WorldCup and TaxiPorto. Unfortunately, our results do
not show whether this phenomenon is related to grouping.

5.4 Analysis-Task-Specific Utility

Finally, we examine mechanism utility in an analysis task, namely
anomaly detection, based on the framework in [43]. Specifically, we
evaluate three anomaly detection techniques proven to be robust
and effective [34] (LOF [5], KNN [32], and DWT-MLEAD [35]) on
one real-world and two artificial one-dimensional streams.

We select the streams as follows: The real-world streams used in
Section 5.2 and 5.3 do not feature anomaly labels. Hence, we select
a stream with similar shape as the one-dimensional streams used in
Section 5.2 from the streams of a recently proposed anomaly detec-
tion benchmark [43], namely Dodgers. It counts the number of cars
next to a baseball stadium in 5 min. intervals. To be in line with the
streams used in Section 5.2, we temporally aggregated the stream
to 15 min. intervals. For the artificial streams, we extended our data
generator by a post-processing step to place anomalies. Based on
the stream properties amplitude and seasonality, we consider two
streams featuring two different anomalies as follows: First, the Pat-
tern Anomalies stream contains changes of the seasonal structure
by extending the downtime between two consecutive seasons, i.e. a
pattern shift. To this end, the generator randomly selects one season,
finds the minimum𝑄 (𝐷𝑡 ) between this and the next season (named
𝑄 (𝐷𝑡∗)), and inserts 𝑞 additional timestamps with𝑄 (𝐷𝑡∗) +G(0, 1)
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Figure 6: Average AUC-ROC of vary-𝑤 and vary-𝜖 experi-

ments. ◦marks the baselines. AUC-ROC on the true streams:

Dodgers 0.58, Pattern 0.73, and Extrema 1.0.

before timestamp 𝑡∗. Second, the Extrema Anomalies stream con-
tains changes of the amplitude by injecting extreme values. To this
end, the generator selects 𝑣 timestamps uniformly and modifies the
respective 𝑄 (𝐷𝑡 ) to an unreasonably high value of 1.5 · 𝑞𝑚𝑎𝑥 . The
data generator input values for 𝑎, 𝑝, 𝑠, are the same as in Figure 1.
Moreover, we use 𝑞 =

𝑠
4
and 𝑣 = 11. As in [34], we quantify the

utility with the AUC-ROC score. For brevity, we depict the utility
only for the anomaly detection technique performing best on the
true stream.

Figure 6 shows the average AUC-ROC score over 100 runs for all
mechanisms and streams. Overall, we observe the expected result
pattern (i.e., AUC-ROC score rapidly decreasing towards 0.5) for
increasing𝑤 , and a slightly increasing trend when increasing 𝜖 . We
identify three core observations: First, the window size𝑤 appears
to be the decisive parameter for the utility. Second, even for small
window sizes starting at 𝑤 = 8, the AUC-ROC score has almost
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converged towards 0.5. Hence, all detection approaches have no
detection quality beyond this value. Consequently, we selected
𝑤 = 2 for the vary-𝜖 experiment. This is the largest value where
one clearly observes the positive effect of 𝜖 . Third, the utility differ-
ences between the mechanisms are rather small. Nevertheless, the
baseline supremacy is still observable as either mechanism Sample
or Uniform are among the best approaches.

To sum up, we observe that for relatively small window sizes𝑤 ≥
8, even the best anomaly detection techniques have no prediction
quality. Therefore, we strongly recommend the inclusion of analysis
tasks to quantify the significance of abstract utility improvements
of novel mechanisms.

6 TAKEAWAYS

The primary outcome of our experimental study are takeaways that
are relevant for practitioners as well as researchers.

6.1 Takeaways for Practitioners

We provide recommendations that aim at controlling the expected
utility of𝑤-event DP mechanisms for data owners and administra-
tors with expertise in data analysis rather than differential privacy.

Meaningful Privacy Requirements. Data owners are responsible
for selecting the privacy requirements. For privacy budget 𝜖 , we
recommend to select a value in [0.1, 1.0]. The default value of 1.0
should also be used in vary-𝑤 experiments, such that the expected
noise per timestamp of baseline Uniform is 𝑤 . For 𝑤 , we cannot
give data independent recommendations, but observe unnaturally
large values. If the length of the longest event-sequence one in-
tends to hide is not known, the length of a season 𝑠 may serve
as an upper bound for 𝑤 . Our results furthermore suggest that
analysis-task-specific metrics may indicate the analysis utility is
poor for relatively small values of𝑤 . For instance, even the most
robust and effective anomaly detection techniques from [34] can-
not distinguish anomalies from normal timestamps for𝑤 ≥ 8. This
holds independent of the mechanism. To this end, a mechanism
should not solely be selected by abstract error metrics, like MAE.

Consider the Selection of Baselines. Our study indicates to use
Uniform if an expected error of 𝑤

𝜖 is sufficient and query results
are required for each timestamp, e.g., for instant change detection.
Otherwise, time can be traded to minimize the perturbation er-
ror using a Uniform-Sample hybrid mechanism. This mechanism
samples 𝑘 times per window; thus, releasing more accurate query
results at sampling timestamps than Uniform, i.e., the perturbation
error at sampling timestamps is reduced from 𝑤

𝜖 to 𝑤
𝜖 ·𝑘

. In combi-
nation with selecting a meaningful value for 𝑤 , this mechanism
may provide sufficient utility for many applications.

6.2 Takeaways for Researchers

Our takeaway for researcher primarily targets the function design
of the𝑤-event DP mechanism framework (cf. Algorithm 1).

isSamplingPoint-Function. In case the mechanism does not sam-
ple, the current query result is approximated with the last sanitized
query result. This works well between seasons when the counts
remain stable. However, it yields high errors in a growing or shrink-
ing phase. Consequently, we suggest to investigate mechanisms

that consider the seasonal nature of streams upon approximation.
For example, mechanisms could invest time and budget to learn
a model of the stream (e.g., using machine learning in a DP way)
when starting to release a new stream. The model can be used for
sampling decisions as well as predictions on whether the stream
is currently in a growing or shrinking phase. If the change in the
stream is not large enough to provoke sampling, the mechanism
can correctly approximate based on the latest trend. Note that this
is orthogonal to filtering based on time-grouping since the filter is
only applied at sampled timestamps.

BudgetAllocation-Function. We observe that mechanisms allo-
cate budget optimistically, trying to accurately reflect small changes
in the stream, e.g., mechanism BD allocates half of its remaining
budget per sampled timestamp. However, our results indicate that
this yields low utility when the stream contains large amplitudes.
Homogeneously distributing the budget over sampling timestamps
usually provides the best utility. Thus, mechanisms may limit the
number of sampling timestamps in the current window.

Perturbation-Function. Our recommendation concerns mecha-
nisms using dimension-grouping. We frequently observe that the
dimensions gather into few or even a single group and hence uncor-
related dimensions are grouped together. We recommend to com-
pute the grouping not only on sanitized query results and consider
techniques to ungroup no longer correlated dimensions. Further, we
question whether researchers should focus on dimension-grouping
in future work since it violates privacy in case that the correlation
of the dimension query results are not spurious. Otherwise, corre-
lated dimensions result from an event that the data owner intends
to hide. This may affect multiple rows in a database𝐷𝑡 and not only
a single one as presumed in the original definition of DP [12]. The
extension of DP with group-differential privacy [15] states that the
increase of Δ𝑄 entirely nullifies the benefit of dimension-grouping.

Filtering-Function. Our results suggests that grouping over
timestamps with a grouping function that requires budget does
not yield a utility improvement. Consequently, we suggest to con-
duct research on filtering functions that do not require budget.

7 CONCLUSIONS

We addressed the challenge of comparable empirical studies on
𝑤-event differential privacy mechanisms for streams. Based on a
comprehensive literature study, we identified common elements
of existing studies and formulated requirements for each element
to ensure comparability. We introduced a comparable benchmark
that meets all requirements and conducted the largest empirical
study on𝑤-event differential privacy mechanisms so far. Our study
revealed valuable insights on existing mechanisms, e.g., a baseline
supremacy. Finally, we gave advise on mechanism selection and
presented promising research directions in that field.

In future work, we aim to extend our micro benchmark to reveal
novel insights on a mechanism’s ability to improve data utility
by exploiting spurious correlations in multi-dimensional streams.
Further, we plan to investigate queries with sensitivity Δ𝑄 > 1,
e.g., sum queries. We expect a heterogeneous influence on different
functions of the mechanism framework.
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