

Helmholtz platform for the design of robust energy systems and their supply chains

Dickler, Sebastian; Ardone, Armin; Poganietz, Witold-Roger; Ross, Andrew; Weinand, Jann; Zapp, Petra; Shamon, Hawal; Rösch, Christine; Haase, Martina; Kraft, Emil; Kebrich, Sebastian; Kullmann, Felix; Kleinebrahm, Max; Hoffmann, Julian, Vögele, Stefan; Goerge, Marius

June 12, 2023 | Helmholtz Energy Conference 2023 | Koblenz, Germany

Contact: s.dickler@fz-juelich.de

Presentation Outline

- 1 RESUR project: Overview
- 2 Initial working terms: Energy system, disruptive event
- 3 Identification of disruptive events
- 4 Model-based analysis of disruptive events
- 5 RESUR project: Outlook

Disruptive Events in the RESUR Project: Identification and Modeling RESUR Project: Overview (1/2)

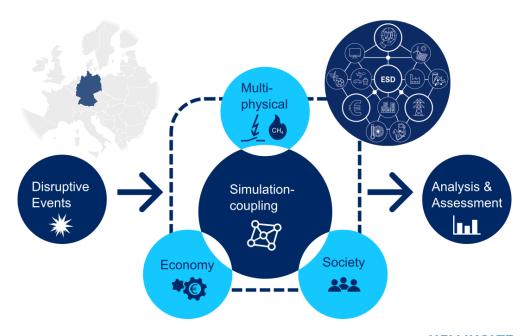
RESUR: Helmholtz platform for the design of robust energy systems and their supply chains

Goal

- Proactive and reactive support of decision makers and stake holders
- Developments of the energy market
- View on the future European energy system
- Social acceptance and participation
- Acceleration of the energy transition

Duration: Sep '22 – Dec '25

Related Helmholtz Energy Program


Energy System Design (ESD)

Participating Helmholtz Energy Partners

Disruptive Events in the RESUR Project: Identification and Modeling **RESUR Project: Overview (2/2)**

RESUR: Helmholtz platform for the design of robust energy systems and their supply chains

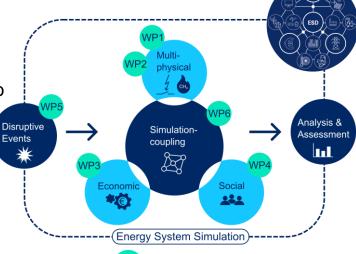
Features

Inclusion of major energy sectors (electricity, gas & heat)

Coupling of simulation tools (validated, modular and flexible)

Geostrategic, socio-ecological, economic

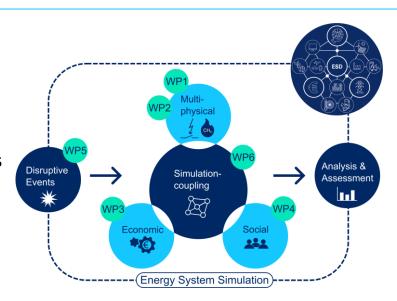
Agglomeration and detailing (from transportation grid down to neighbourhoud level)


- Multiscale temporal resolution
- Bottom-up and top-down models
- Transportation-Grids: European electricity (incl. DE 110kV grid) and gas grid
- Multiphysical co-simulation for heat, electricity and gas on neighborhood level

Energy and commodity markets, energy market design and economic evaluation of measures

Socio-technical analysis and evaluation of possibile actions of social groups

Disruptive events and robustness of the energy system


Platform for model and simulator coupling

HELMHOLTZ

RESUR Project: Examples of Disruptive Events

Examples of disruptive events

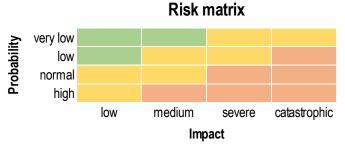
- Russia-Ukraine war
- Extreme heat waves / droughts
- Hurricane on North Sea destroys entire wind farms
- Collapse of the European electricity grid
- Shortage of energy system relevant rare earths
- •
- → Proactive and reactive support: What are potential disruptive events and how can we assess their impacts on the energy security?
- → Robustness of the energy system: How can we use model-based analysis to design our energy system (and its transition) so that it is robust against disruptive events?

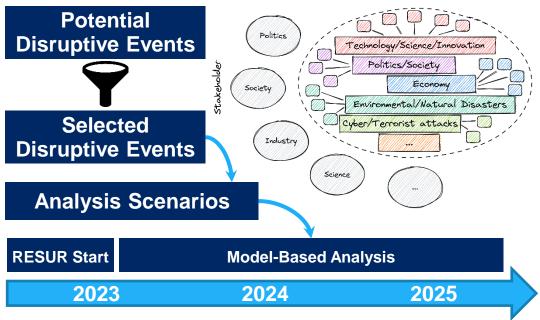
Definition of Terms: Working Status

Energy System

- "The energy system comprises <u>all components related to the production, conversion, delivery, and use of energy</u>".[1]:1261
 - Spatial: German energy system in a European context
 - Temporal: Short-term (1-2 years) and medium-term scenarios (e.g., until 2030)

Disruptive Event in the energy system / in the supply of energy and raw materials


- "A disruptive event is a <u>dynamic occurrence</u> that <u>impedes the normal functioning</u> of a system"^[2]
- "An [...] disruptive event is the <u>cause of a loss</u> <u>of performance</u>"; "the system is <u>not able to fully</u> absorb its impact"[3]



Identification of Potential Disruptive Events

Goals of WP5 "Disruptive Events and Robustness of the Energy System"

- Identify/model potential <u>disruptive</u> <u>events and scenarios</u> from different stakeholder perspectives
- Model-based Analysis of the robustness of the integrated (sector-coupled, German) energy system under disruptive scenarios

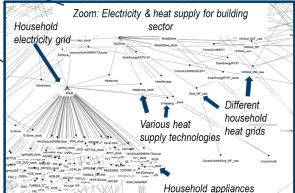
Model-Based Analysis: ETHOS Model Suite

ETHOS

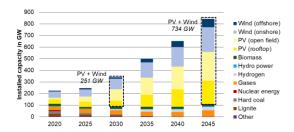
Energy Transformation PatHway Optimization Suite

ETHOS.NESTOR


National Energy System with SecTOR Coupling



Superstructure 1300 technologies with above 3600 connections Bounds Start

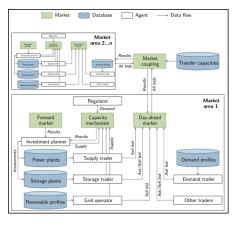

Input information on each technology:

- Investment cost
- Operational costs
- Efficiency
- Interest rate
- Lifetime
- Currently installed
- Potential
- etc.

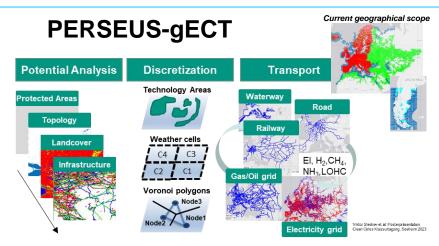
Scenario

Output information on each technology:

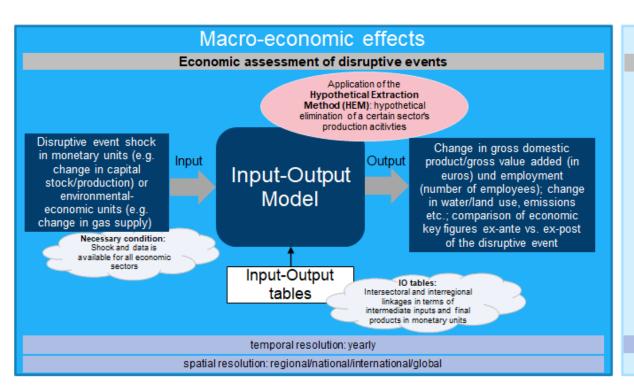
- For every year
 - Installed capacity
 - Investment
- For every hour in every year
 - Stage of charge
 - Energy flows of components
 - Operation


HELMHOLTZ

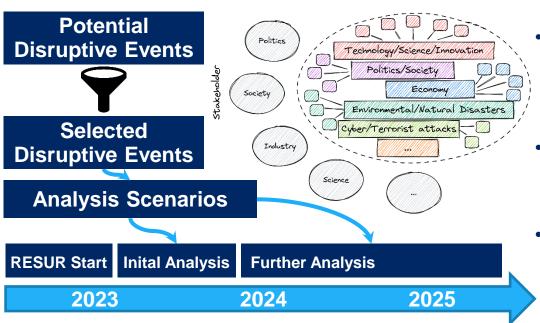
Model-Based Analysis: PowerACE & PERSEUS-gECT



PowerACE


- Agent-based electricity market simulation model
- Day-ahead market simulation (daily)
- Investment decisions (yearly)
- Time horizon: 2015-2050 at hourly resolution (8760 h/a)

- Context: European energy system expansion in a world-wide context
- Multi-commodity flow modelling
- Integrated energy system expansion of generation, conversion, and transmission
- Time horizon: 2020-2050 at hourly resolution
 (~energy carrier) in 5-year steps
 HELMHOLTZ


Further Assessments: Macro-Economic Effects & Resource Criticality

Resource criticality Impact of disruptive events Production rates Distribution of producing countries Supplying countries for EU Change in sectors and gross value added Trade index New criticality rating

RESUR Project: Outlook

- Description and modeling of major selected disruptive events and scenarios (e. g., extreme heat waves / droughts)
- Demonstration of the robustness of the energy system under selected disruptive scenarios
- Model coupling of certain
 Helmholtz models: Implementation
 of model interfaces / Simulative
 coupling of first disruptive events

HELMHOLTZ

Thank you for your attention!