KIT | KIT-Bibliothek | Impressum | Datenschutz

Heat Pipe-Based DEMO Divertor Target Concept: High Heat Flux Performance Evaluation

Wen, Wen ORCID iD icon; Ghidersa, Bradut-Eugen; Hering, Wolfgang 1; Starflinger, Jörg; Stieglitz, Robert 1
1 Institut für Neutronenphysik und Reaktortechnik (INR), Karlsruher Institut für Technologie (KIT)

Abstract:

The use of heat pipes (HP) for the DEMO in-vessel plasma-facing components (PFCs) has been considered because of their high capacity to transport the heat from a heat source to a heat sink by means of the vaporization and condensation of the working fluid inside and their ability to enlarge the heat transfer area of the cooling circuit substantially. Recent engineering studies conducted in the framework of the EUROfusion work package Divertor (Wen et al, 2021) indicate that it is possible to design a heat pipe with a capillary limit above 6 kW using a composite capillary structure (wherein axial grooves cover the adiabatic zone and the condenser, and sintered porous material covers the evaporator). This power level would correspond to an applied heat flux of 20 MW/m2, rendering such a design interesting with respect to a divertor target concept. To validate the results of the initial engineering analysis, several experiments have been conducted to evaluate the actual performance of the proposed heat pipe concept. The present contribution presents the experiment’s results regarding the examination of the operating limits of two different designs for an evaporator: one featuring a plain porous structure, and one featuring ribs and channels.


Verlagsausgabe §
DOI: 10.5445/IR/1000160331
Veröffentlicht am 10.07.2023
Originalveröffentlichung
DOI: 10.3390/jne4010021
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Neutronenphysik und Reaktortechnik (INR)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2673-4362
KITopen-ID: 1000160331
HGF-Programm 31.13.04 (POF IV, LK 01) In Vessel Components
Erschienen in Journal of Nuclear Engineering
Verlag MDPI
Band 4
Heft 1
Seiten 278–296
Bemerkung zur Veröffentlichung Special Issue Dedicated to 32nd Symposium on Fusion Technology—SOFT2022
Vorab online veröffentlicht am 09.03.2023
Schlagwörter heat pipe; high heat flux experiment; plasma facing component; wick porous
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page