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Abstract
This paper introduces a new class of right-angled Coxeter groups with totally disconnected
Morse boundaries.We construct this class recursively by examining how theMorse boundary
of a right-angled Coxeter group changes if we glue a graph to its defining graph. More
generally, we present a method to construct amalgamated free products of CAT(0) groups
with totally disconnected Morse boundaries that act geometrically on CAT(0) spaces that
have a treelike block decomposition. We deduce a new proof for the result of Charney-
Cordes-Sisto (Complete topological descriptions of certainMorse boundaries, GroupsGeom.
Dyn. 17(1),157–184 (2023)) that every right-angled Artin group has totally disconnected
Morse boundary, and discuss concrete examples of surface amalgams studied by Ben-Zvi
(Boundaries of groups with isolated flats are path connected. arXiv:1909.12360, 2019).

Keywords RACGs · Morse boundary · CAT(0)space with block decomposition ·
Amalgamation · Contracting boundary
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1 Introduction

This paper presents new examples of right-angled Coxeter groups hat have totally discon-
nected Morse boundaries (such as the examples in Fig. 1). These examples arise from a more
general construction of CAT(0) spaces with treelike block decomposition that have totally
disconnected Morse boundaries.

1.1 Motivation

TheMorse boundary ∂∗� of a proper geodesic metric space � is a quasi-isometry invariant
defined by Cordes [11]. It generalizes the contracting boundary introduced by Charney–
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Fig. 1 Graphs that were studied in [27, Ex. 7.7] and [15, Fig. 5.1]. We show that they correspond to RACGs
with totally disconnected Morse boundaries

Sultan [10] in the CAT(0) case. If � is a proper, geodesic hyperbolic space, its Morse
boundary ∂∗� coincides with the Gromov boundary. In general, ∂∗� is a topological space
consisting of equivalence classes of Morse geodesic rays, i.e. geodesic rays that behave
similar to geodesic rays in hyperbolic spaces.

The Morse boundary ∂∗G of a finitely generated group G is the Morse boundary of a
proper geodesic metric space on which G acts geometrically, ie. properly and cocompactly
by isometries. If every geodesic ray bounds a half-flat, e.g. as in higher-rank lattices, then
∂∗G is empty. However, there is a large class of non-hyperbolic finitely generated groups
with non-empty Morse boundaries.

Interesting examples arise among right-angled Coxeter groups (RACGs) and right-angled
Artin groups (RAAGs). Each such group is defined by a finite, simplicial graph, its defining
graph and acts geometrically on an associated CAT(0) cube complex. Charney–Cordes–Sisto
[9] showed:

Theorem 1.1 (Charney–Cordes–Sisto) The Morse boundary of every RAAG is totally dis-
connected. It is empty, a Cantor space, an ω-Cantor space or consists of two points.

If a RACG has totally disconnected Morse boundary, its Morse boundary is also homeo-
morphic to one of the spaces listed in the theorem above by Theorem 1.4 in [9] (see Sect. 6.1).
But in contrast toRAAGs, it is often difficult to determinewhether aRACGhas totally discon-
nectedMorse boundary or not asmany different topological spaces arise asMorse boundaries
of RACGs.

1.2 RACGs with totally disconnectedMorse boundaries

The right-angled Coxeter group (RACG) associated to a finite, simplicial graph � = (V , E)

is the group

W� = 〈V | v2 = 1 ∀v ∈ V , uv = vu ∀ {u, v} ∈ E〉.
The group W� acts geometrically on an associated CAT(0) cube complex ��, its Davis

complex. Hence, the Morse boundary of W�, denoted by ∂∗W�, is the Morse boundary
∂∗�� of��. For instance, if� is a 4-cycle, then�� is isometric toR

2 and has emptyMorse
boundary. If � is a 5-cycle, then �� is quasi-isometric to the hyperbolic plane and ∂∗��

is a circle. If we glue a 4-cycle to a cycle of length at least 5 so that the 4-cycle contains a
non-adjacent vertex-pair of the other cycle as in Fig. 2,

then the corresponding Davis complex has totally disconnected Morse boundary (see
Lemma 6.9). On the other hand, if a graph � contains an induced cycle C of length at least
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Fig. 2 Two cycles with glued
4-cycles (filled gray)

Fig. 3 Left: the defining graph of
a RACG studied of
Charney–Sultan [10, Sec. 4.2].
Right: decomposition of the
graph

5 without such a glued 4-cycle, then ∂∗�� contains a circle [33, Cor 7.12], [17, Prop. 4.9].
See also [1] and [27, Thm 7.5]. Tran conjectured [33][Conj. 1.14] that the non-existence of
such a cycle C implies that the associated Davis complex has totally disconnected Morse
boundary. This was disproved in [18]. The problem, which right-angled Coxeter groups have
totally disconnected Morse boundaries turns out to be difficult and is still open.

In this paper, we present a new class of right-angled Coxeter groups with totally discon-
nected Morse boundaries by examining the following question:

Question 1.2 Suppose that � is a finite, simplicial graph that can be decomposed into two
distinct proper induced subgraphs �1 and �2 with the intersection graph � = �1 ∩�2. Are
there conditions in terms of �1, �2 and � implying that ∂∗�� is totally disconnected?

Question 1.2 is inspired by an example of Charney–Sultan [10, Sec. 4.2]: Let �̄ be the
graph in Fig. 3. Charney–Sultan show that ��̄ has totally disconnected Morse boundary. For
the proof, they decompose �̄ into two induced subgraphs �̄1 and �̄2 pictured in Fig. 3.

Since �̄1 and �̄2 are induced subgraphs of �̄, their corresponding Davis complexes ��̄1
and ��̄2

are isometrically embedded in ��̄. Contrary to the case of visual boundaries, this
does not imply that the Morse boundaries ∂∗��̄1

and ∂∗��̄2
are topologically embedded in

∂∗��̄.

Definition 1.3 Let � be a proper geodesic metric space and B ⊆ �. We denote by (∂∗B, �)

the relative Morse boundary of B in �, i.e. the subset of ∂∗� that consists of all equivalence
classes of geodesic rays in B that are Morse in the ambient space �.

For instance, if � = R
2 and B is the x-axis, then ∂∗B = {−∞,+∞} but (∂∗B, �) = ∅.

If we endow (∂∗B, �) with the subspace topology of ∂∗B and ∂∗�, we obtain two topolog-
ical spaces that might be distinct (see Example 4.19). If B is closed and convex, the second
topology is finer than the first one (see Lemma 4.14). Charney–Sultan use this observa-
tion implicitly. They show in [10, Sec. 4.2, p. 114–115] that the relative Morse boundaries
(∂∗��̄1

, ��̄) and (∂∗��̄2
, ��̄) endowed with the subspace topology of ∂∗��̄1

and ∂∗��̄2
are totally disconnected and conclude that ∂∗�� is totally disconnected. An essential ingre-
dient of their proof is that ∂∗��2 = ∅.

We generalize this approach using the key observation that the intersection graph �̄1∩�̄2

lies in a subgraph of �̄ that corresponds to a RACG with empty Morse boundary (namely
�̄2). RACGs with empty Morse boundary can be characterized in terms of the following
definitions.

Definition 1.4 A graph is a clique if every pair of vertices is linked by an edge. A graph
� is a join of two vertex disjoint graphs �1 and �2 if � is obtained from �1 and �2 by
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linking each vertex of �1 with each vertex of �2. If neither �1 nor �2 is a clique, then � is
a non-trivial join.

For instance, the graph �̄2 is a non-trivial join of two graphs each consisting of three vertices.
Corollary B in [6] implies

Lemma 1.5 [Caprace–Sageev] A RACGhas emptyMorse boundary if and only if its defining
graph is a clique or a non-trivial join.

We are now able to formulate the main result of this paper.

Theorem 1.6 Suppose that � is a finite, simplicial graph that can be decomposed into two
distinct proper induced subgraphs �1 and �2 with the intersection graph � = �1 ∩ �2.
Suppose that � is a clique or contained in a non-trivial join of two induced subgraphs of �.
Then every connected component of ∂∗�� is either

(1) a single point; or
(2) homeomorphic to a connected component of (∂∗��i , ��) endowed with the subspace

topology of ∂∗�� where i ∈ {1, 2}.
Our study of relative Morse boundaries in Corollary 4.15 in Sect. 4.3 implies

Corollary 1.7 Suppose that the assumptions of Theorem 1.6 are satisfied.
If (∂∗��1 , ��) and (∂∗��2 , ��) equipped with the subspace topology of ∂∗��1 and

∂∗��2 are totally disconnected then ∂∗�� is totally disconnected.

In Definition 6.7, we will define a large class C of graphs, that can be built iteratively from
pieces to which Corollary 1.7 can be applied.

Corollary 1.8 If � ∈ C, then ∂∗W� is totally disconnected.

The class C is much larger than the class CFS0 defined in Definition 6.11 below for which
Corollary 1.8 was established by Nguyen–Tran [25].

For instance, the graphs in Fig. 1 are contained in C \CFS0. The left graph was studied by
Russell–Spriano–Tran [27, Ex. 7.7]. They asked whether the associated RACG has totally
disconnected Morse boundary or not. The other graphs in Fig. 1 correspond to RACGs with
polynomial divergence of arbitrarily high degree [15, Sec. 5] (see Lemma 6.14). In contrast,
all graphs in CFS0 have quadratic divergence.

1.3 CAT(0) spaces with a treelike block decomposition that have totally
disconnectedMorse boundaries

Our results concerning RACGs follow from a more general theorem concerning groups
acting geometrically onCAT(0) spaces with treelike block decompositions. Such spaces were
studied in [3, 4, 13, 23] since they arise naturally as spaces on which interesting examples
of amalgamated free products of CAT(0) groups act geometrically. We will give a precise
definition in Definition 2.1 below. For this introduction, it suffices to know that a block
decomposition B of a CAT(0) space � is a collection of convex, closed subsets of �, called
blocks, whose union covers �. The non-trivial intersection of a pair of blocks is called a
wall. The block decomposition is treelike if the blocks intersect each other so that we obtain
a simplicial tree if we add a vertex for every block and an edge for every pair of blocks that
intersect non-trivially.
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Theorem 1.9 Let � be a proper CAT(0) space with treelike block decomposition B. If no
wall in � contains a geodesic ray that is Morse in �, then every connected component of
∂∗� is either

(1) a single point; or
(2) homeomorphic to a connected component of (∂∗B, �), where B is a block in B and

(∂∗B, �) is endowed with the subspace topology of ∂∗�.

By means of Corollary 4.15 in Sect. 4.3 we conclude

Corollary 1.10 Let � be a proper CAT(0) space with a treelike block decomposition. If no
wall contains a geodesic ray that is Morse in � and (∂∗B, �) equipped with the subspace
topology of ∂∗B is totally disconnected for every block B, then ∂∗� is totally disconnected.

Theorem 1.6 is a special case of Theorem 1.9. Indeed, in Proposition 6.6 we will show
that a Davis complex of a RACG as in Theorem 1.6 admits a treelike block decomposition
whose blocks are isometric to ��1 or ��2 and whose walls are isometric to ��. Because of
Lemma 1.5, this decomposition satisfies the conditions of Theorem 1.9.

1.4 Beyond RACGs

Theorem 1.9 has many applications beyond RACGs. In Theorem 7.6, we apply Theorem 1.9
and rediscover that RAAGs have totally disconnected Morse boundaries (compare Theorem
1.1). Moreover, Theorem 1.9 can be applied to surface amalgams and to spaces arising from
the equivariant gluing theorem of Bridson–Haefliger [5, Thm II.11.18]. We will finish this
paper with a few concrete examples that were studied by Ben-Zvi [3].

1.5 Organization of the paper

Section 2 concerns treelike block decompositions of CAT(0) spaces. In Sect. 3, we will
prove a cutset property for visual boundaries of CAT(0) spaces with a fixed treelike block
decomposition. In Sect. 4, we will transfer this property to theMorse boundary and study two
further key properties of Morse boundaries. In Sect. 5, we will use these three key properties
to prove Theorem 1.9. In Sect. 6, we will apply our insights to RACGs. Finally, we close this
paper with applications beyond RACGs in Sect. 7.

2 CAT(0) spaces with treelike block decompositions

In Sect. 2.1, we will fix notation. Section2.2 concerns basic properties of CAT(0) spaces
with treelike block decompositions. Section2.3 is about itineraries of geodesic rays in such
spaces.

2.1 Notation concerning simplicial graphs

For the background of graphs, see [34]. For us, a simplicial graph � = (V (�), E(�))

consists of a set V (�) and set E(�) of 2-element subsets of V (�). The elements of V
are called vertices and the elements of E are called edges. If �1 and �2 are two graphs,
then �1 ∪ �2 is the graph whose vertex set is V (�1) ∪ V (�2) and whose edge set is the set
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E(�1)∪E(�2). Analogously,�1∩�2 denotes the graphwhose vertex set is V (�1)∩V (�2)

and whose edge set is the set E(�1)∩ E(�2). A subgraph �′ of a graph � is a graph whose
vertex set is contained in V (�) and whose edge set is contained in E(�). The subgraph �′
is a proper subgraph if it does not coincide with �. A graph �′ is an induced subgraph of a
graph � if every edge e ∈ E(�) whose endvertices are contained in V (�′) is contained in
E(�′). We say in this case that �′ is spanned by the vertex set V ′.

Two vertices are adjacent if they are contained in an edge. The degree of a vertex v is the
number of vertices that are adjacent to v. Let v1, . . . , vn ∈ V (�) and e1, . . . , en−1 ∈ E(�).
The list (v1, e1, v2, e2, ..., en−1, vn) is a finite path of length n − 1, if vi ∈ ei for all i ∈
{1, . . . , n−1} and vn ∈ en−1. In this case, v1 and vn are linked by a finite path. If v1 = vn , P
is a closed path. Let (vi )i∈N and (ei )i∈N be two sequences of vertices and edges in V (�) and
E(�) respectively. The infinite list (v1, e1, v2, e2, . . . en−1vn . . . ) is an infinite path if vi ∈ ei
for all i ∈ N. Let (vi )i∈Z and (ei )i∈Z be two sequences of vertices and edges in V (�) and
E(�) respectively. The bi-infinite list (. . . , v−1, e−1, v0, e0, v1, e1, v2, e2, . . . en−1vn . . . ) is
a bi-infinite path if vi ∈ ei for all i ∈ Z. If we speak of a path, we mean a finite, infinite or
bi-infinite path.

A path P is geodesic, if each vertex occurs at most once in P . A path P is a subpath of
a path P ′ if P ′ has two vertices v1 and v2 so that P is obtained from P ′ by removing all
vertices and edges that occur before the vertex v1 or after the vertex v2 in P ′. The underlying
graph of a path P , denoted by P̄ , is the graph whose vertex set consists of all vertices in P
and whose edge set consists of all edges in P . If P is a geodesic path, each vertex in P̄ has
degree at most two.

A graph is connected if every two vertices are linked by a finite path. A cycle is a graph
with an equal number of vertices and edges whose vertices can be placed around a cycle
so that two vertices are adjacent if and only if they appear consecutively along the cycle.
A graph is a (simplicial) tree if it is connected and does not contain a cycle. An important
property of trees is that every geodesic path linking two vertices is unique.

2.2 Definitions and basic properties

In this subsection, we study CAT(0) spaces that have a treelike block decomposition. The
following considerations are variants of definitions and lemmas in [3, 4, 13, 23]. For the
background about CAT(0) spaces, see [5, Ch. II].

Definition 2.1 Let � be a CAT(0) space. A collection B of closed convex subsets of � is a
block decomposition of � if it satisfies the covering condition

� =
⋃

B∈B
B.

In this case, the elements of B are called blocks. A block decomposition is non-trivial if there
are at least two blocks. If B is a non-trivial block decomposition, the elements of the set

W:={B1 ∩ B2 | B1, B2 ∈ B such that B1 
= B2} \ {∅}.
are called walls.

Let d : � × � → R≥0 be the metric of �. We define the distance of two walls W1,
W2 ∈ W by

d(W1,W2):= inf
x1∈W1,x2∈W2

d(x1, x2).
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Definition 2.2 The adjacency graph of a block decomposition B is the simplicial graph
whose vertex set is B and whose set of edges consists of all pairs of blocks with non-empty
intersection.

Recall that a simplicial tree is a connected simplicial graph that does not contain a cycle.

Definition 2.3 A block decomposition is called treelike if

(1) the adjacency graph is a simplicial tree; and if
(2) there exists dW > 0 so that for all W1,W2 ∈ W , W1 
= W2, we have d(W1,W2) ≥ dW

(separating property).

Let � be a complete CAT(0) space with treelike block decomposition B and T the corre-
sponding adjacency graph. The following two properties are important for us.

Lemma 2.4 If � is proper, then no ball of finite radius in � is intersected by infinitely many
walls.

Proof Let B be a ball of finite radius. As � is proper, B is compact and we are able to cover
B by finitely many balls of radius dW

4 . By the separating property 2.3 (2), each ball of radius
dW
4 is intersected by at most one wall. Hence, the number of walls intersecting B is less or

equal to the number of the balls that are used for covering B. ��
Lemma 2.5 Let T be a (possibly infinite) subtree of T with vertex set V . Then the set⋃

B∈V (T ) B is closed and convex.

We need the following lemmas for proving Lemma 2.5.

Lemma 2.6 The intersection of more than two blocks is empty. In particular, every pair of
distinct walls are disjoint and every point in � is either contaied in exactly one wall or in
exactly one block but not both.

Proof If B1, . . . , Bk ∈ B with B1 ∩ B2 ∩· · ·∩ Bk 
= ∅, then T contains a clique on k vertices
as subgraph. Since T is a tree, k ≤ 2.

We show that distinct walls are disjoint: Indeed, let W1 = B1 ∩ B2 and W2 = B3 ∩ B4 be
two distinct walls where B1, B2, B3, B4 ∈ B. AsW1 andW2 are distinct, there exists i ∈ {1, 2}
such that Bi /∈ {B3, B4}. By definition of walls, B1 
= B2 and B3 
= B4. As the intersection
of more than two blocks is empty and Bi ∩ Bj 
= ∅ where j ∈ {1, 2}, j 
= i , the block Bi
does neither intersect B3 nor B4. Thus, W1 = B1 ∩ B2 does not intersect W2 = B3 ∩ B4.

It remains to show that every x ∈ � is either contained in exactly one wall or in exactly
one block but not both: Let x ∈ �. Suppose that x is not contained in exactly one block.
Then x is contained in at least two blocks. The intersection of more than two blocks is empty.
Thus, x is contained in exactly two blocks. This means, that x is contained in a wall. As
distinct walls are disjoint, there exists exactly one wall containing x . ��
Lemma 2.7 Each wall is closed and convex and the map

f : E(T ) → W

{B1, B2} �→ B1 ∩ B2

is a bijection.
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Proof The intersection of two closed convex sets is closed and convex. Every wall is the
intersection of two blocks and by definition, each block is closed and convex. Thus, each
wall is closed and convex.

Next, we show that f is surjective. Let W be a wall. Then there are two blocks B1,
B2, B1 
= B2 such that W = B1 ∩ B2 and T contains the edge {B1, B2}. By definition,
f ({B1, B2}) = B1 ∩ B2 = W . Thus, f is surjective.
It remains to prove that f is injective. Let e1 = {B1, B2} and e2 = {B3, B4} be two edges

in T such that f (e1) = f (e2). Then B1 ∩ B2 
= ∅ and B3 ∩ B4 
= ∅ and B1 ∩ B2 = B3 ∩ B4.
By Lemma 2.6, each point in � lies in at most two blocks. Hence, {B1, B2} ={B3, B4}, i.e.
e1 = e2. ��

For avoiding the use of the term “boundary” in two different meanings, we define the
topological frontier of a set S to be the closure of S minus the interior of S. If x is a point
in � and ε > 0, we denote by Uε(x) the open ε-neighborhood about x . If B is a block
in a block decomposition of a CAT(0) space with wall-set W , then WB denotes the set
{W ∈ W | W ⊆ B} and B̆:=B\WB .

Lemma 2.8 For every B ∈ B, the set B̆ = B\WB is open in �.

Proof Let B be a block and x ∈ B̆ = B \ WB . Let δ:= inf t∈R≥0{d(x, y) | y ∈ WB}. It
suffices to show that δ > 0, because thenU δ

2
(x) ⊆ B̆. Assume for a contradiction that δ = 0.

Then for each ε > 0 there exists a wallWε ∈ W such thatW ∩Uε(x) 
= ∅. By the separating
property 2.3 (2), Wε = Wε′ for all ε, ε′ ∈ (0, dW ). Thus, there exists a wall W such that
Uε(x) ∩ W 
= ∅ for all ε > 0. Hence, x is a limit point of W . By Lemma 2.7, W is closed.
So, W contains all its limits points. In particular, x ∈ W . But then, x /∈ B̆—a contradiction
to the choice of x . ��
Lemma 2.9 Let c : [a, b] → � be a curve connecting two distinct blocks B1 and B2. Let

t0:= inf{t ∈ [a, b] | γ (t) /∈ B1} and t1:= inf{t ∈ [a, b] | γ (t) ∈ B2}.
Then γ (t0) ∈ WB1 and γ (t1) ∈ WB2 . If t0 /∈ B1 ∩ B2 or t2 /∈ B1 ∩ B2, then there exists
t ′ ∈ (t0, t1) such that γ (t ′) is not contained in a wall.

Proof Suppose that we have already proven that γ (t0) ∈ WB1 and γ (t1) ∈ WB2 . By Lemma
2.6, WB1 ∩ WB2 = {B1 ∩ B2} where B1 ∩ B2 might be the empty set. If t0 /∈ B1 ∩ B2 or
t2 /∈ B1 ∩ B2, then γ (t0) and γ (t1) are contained in two distinct walls. Then γ ([t0, t1]) is a
curve connecting two distinct walls. By the separating property 2.3 (2), the distance of two
distinct walls is at least dW . Thus, γ ((t0, t1)) contains a point x that is not contained in a
wall.

It remains to prove that γ (t0) lies inWB1 and that γ (t1) lies inWB2 . We focus on proving
that γ (t0) lies inWB1 . Therefore, we observe that the topological frontier of B1 is contained
in WB1 . Indeed, Let x be a point in the topological frontier of B1. As B1 is closed, x ∈ B1.
As the set B̆1 is open by Lemma 2.8, B̆1 is contained in the interior of B1. Thus, x /∈ B̆1.
Hence, x ∈ B1\B̆1, i.e. x ∈ WB1 and the topological frontier of B1 is contained in WB1 .

Since the topological frontier of B1 is contained in WB1 , it suffices to prove that γ (t0) is
contained in the topological frontier of B1. First, we show that γ (t0) is a limit point of B1.
Indeed otherwise, there would exist ε > 0 such that Uε(γ (t0)) ∩ B1 = ∅. As γ starts in
B1 ⊆ �\Uε(γ (t0)), γ connects a point outside of Uε(γ (t0)) with γ (t0). Thus, there would
exist ε′ > 0 such that γ ((t0 − ε′, t0]) ⊆ Uε(γ (t0)). Then γ ((t0 − ε′, t0]) ∩ B1 = ∅—a
contradiction to the choice of t0.
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It remains to prove that γ (t0) is not an interior point of B1. By the choice of t0, for each
ε ∈ (0, b− t0) there exists t ∈ [t0, t0 + ε) so that γ (t) /∈ B1. Hence, for each ε ∈ (0, b− t0),
Uε(γ (t0)) � B1 and γ (t0) is not an interior point of B1. This completes the proof that
γ (t0) ∈ WB1 . A similar argumentation shows that γ (t1) lies in WB2 . ��
Lemma 2.10 If B1, B2 ∈ B such that B1∩B2 
= ∅, then the opendW−neighborhoodUdW (x)
of B1 ∩ B2 is contained in B1 ∩ B2 ∪ B̆1 ∪ B̆2.

Proof Let B1, B2 ∈ B such that B1 ∩ B2 
= ∅. Let x ∈ B1 ∩ B2. We have to show that
UdW (x) ⊆ B1 ∩ B2 ∪ B̆1 ∪ B̆2. Suppose that this would not be the case. Then there exists a
block B3 ∈ B \ {B1, B2} such that B3 ∩U 
= ∅. Let y ∈ B3 ∩U 
= ∅ and γ be the geodesic
segment connecting x and y. By Lemma 2.9, γ has to pass a wallW ′ that is contained in B3.
As B3 /∈ {B1, B2}, the wall W ′ does not coincide with B1 ∩ B2. By the separating property
2.3 (2), inf y∈W ′ d(x, y) ≥ dW . But this is impossible because y ∈ UdW (x). ��
Lemma 2.11 If P is a path in T linking two blocks B and B ′ and W is a wall corresponding
to an edge of P, then each curve in � linking a point in B with a point in B ′ passes through
W.

Proof We will prove the statement in two steps.

Claim 1 If B1 and B2 are two distinct blocks with non-empty intersection W , then �\W
decomposes so that each pair of points x1 ∈ B1\W , x2 ∈ B2\W lie in different
connected components of � \ W .

Proof: Let B1 and B2 be two blocks with non-empty intersection W . Let x1 ∈ B1\W and
x2 ∈ B2\W . Let e be the edge in T corresponding to W . If we delete the edge e,
then T decomposes into two trees T1 and T2. Let T1 be the tree containing B1 and T2
be the tree containing B2. Let O1:=⋃

B∈V(T1) B\W and O2:=⋃
B∈V(T1) B\W . By

Lemma 2.6, each point in � is contained in exactly one block or exactly one wall.
Hence, O1 ∩ O2 = ∅ and � \W = O1

.∪ O2 such that x1 ∈ O1 and x2 ∈ O2. If O1

and O2 are open, this implies that x1 and x2 lie in distinct connected components
of � \ W . Thus, it remains to show that O1 and O2 are open.
By symmetry reasons it suffices to prove that O1 is open. Let x ∈ O1. If there exists
B ∈ V (T1) such that x ∈ B̆, then there exists ε > 0 such that Uε(x) ∈ B̆ as B̆ is
open by Lemma 2.8 and x is an interior point of O1.
It remains to consider the case that there is no block B in V (T1) such that x ∈ B.
In that case, there exists a unique wall Ŵ 
= W corresponding to an edge in T1
that contains x by Lemma 2.6. Let C1, C2 ∈ V (T1) such that Ŵ = C1 ∩ C2. By
Lemma 2.10, UdW (x) ⊆ C̆1 ∪ C̆2 ∪ (C1 ∩ C2). As C1,C2 ∈ V (T1), the union
C̆1 ∪ C̆2 ∪ (C1 ∩ C2) is contained in O1. Hence, x is an interior point of O1. This
completes the proof of claim 1.

Now, we prove the lemma. Let P be a path in T linking two blocks and c : [a, b] → �

a curve linking two points in these two blocks. We have to show that c passes through every
wall that corresponds to an edge of P . Assume for a contradiction that there exists a wall
W corresponding to an edge in P such that c([a, b]) ∩ W = ∅. Let B, B ′ ∈ B such that
W = B ∩ B ′. It suffices to find two curves c1 and c2 that don’t intersect W so that c1 links a
point in B \ W with c(a) and c2 links c(b) with a point in B ′ \ W . Then the concatenation
of c1, c and c2 is a curve in � \ W that connects a point in B\W with a pint in B ′ \ W . That
contradicts Claim 1.
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It remains to find the curves c1 and c2. Let B1 = B and

P1 = (B1,W1, B2,W2, . . . , Bk)

be the unique geodesic path in T connecting B with the first block of P . If P1 consists of a
single vertex, then Bk = B and c(a) ∈ B. Because we assume that c does not intersect W ,
c(a) ∈ B\W . Then the trivial constant curve with value c(a) is the curve c1 we are looking
for.

It remains to study the case where P1 has length at least one. We assume Without loss of
generality that P1 does not contain the vertex B ′ (otherwise, we switch the roles of B and
B ′). Let x ∈ W1. As distinct walls are disjoint by Lemma 2.6, x ∈ B\W . Let w1:=x . Let
w j be an arbitrarily chosen point in Wj for j ∈ {2, . . . , k − 1}. Let wk :=c(a). Let ĉ j be the
geodesic segment connecting w j with w j+1 for j ∈ {0, . . . , k − 1}. Finally, let c1 be the
concatenation of ĉ0, ĉ2, . . . , ĉk−1.

We have to prove that c1 does not intersectW . Assume for a contradiction that there exists
j ∈ {0, . . . , k − 1} such that W ∩ ĉ j 
= ∅. By the choice of {w j } j∈{1,...,k}, every pair of
two consecutive points w j and w j+1 are contained in Bj+1 for all j ∈ {0, . . . , k − 1}. As
each block is convex, ĉ j ⊆ Bj+1 for all j ∈ {0, . . . , k − 1}. Thus, if W ∩ ĉ j 
= ∅, then
W ∩ Bj+1 
= ∅. Recall that W = B ′ ∩ B1. This implies that B ′ ∩ B1 ∩ Bj+1 
= ∅. As B ′
is not contained in P1, and as P1 is a geodesic path, the three blocks B ′, B1 and Bj+1 are
distinct. That contradicts Lemma 2.6. Thus, c1 does not intersect W . The curve c2 can be
defined analogously. ��
Proof of Lemma 2.5 Atfirst,we show thatM :=⋃

B∈V (T ) B is convex.Let x, y ∈ ⋃
B∈V (T ) B.

As � is CAT(0), there exists a unique geodesic segment γ : [a, b] → � connecting x and
y. We have to show that γ ([a, b]) ⊆ M . Let B and B ′ be two blocks in V (T ) containing x
and y respectively.
As T is connected, there exists a geodesic path P connecting B and B ′. As T is a tree, this
path is unique. As T is a subtree of T , P is a path in T . We show the statement by induction
on the length of P .

If P consists of a single vertex, x and y lie in a common block B = B ′ ⊆ V (T ). As each
block is convex, γ ⊆ B ⊆ M . Now suppose that the claim is true if P has length k − 1,
k ≥ 1.
Let P be a path of length k. Let W be a wall corresponding to an edge in P . By Lemma
2.11, there exists t ∈ [a, b] such that γ (t) ∈ W . Let B1, B2 ∈ B such that W = B1 ∩ B2.
Let B ′′ ∈ {B1, B2} such that the geodesic path P ′ connecting B with B ′′ does not contain
both B1 and B2. As geodesic paths in trees are unique, P ′ is a subpath of P that is shorter
than P . By induction hypothesis, γ ([a, t]) ⊆ M . Analogously, γ ([t, b]) ⊆ M . Thus, γ ⊆⋃

B∈V (P) B ⊆ M .
It remains to show thatM is closed, i.e. we have to show that�\M is open. Let x ∈ �\M .

We have to prove that x is an interior point of � \ M .
First suppose that x is not contained in a wall. Then there exists a unique block B containing
x by Lemma 2.6. As x ∈ �\M , B is not contained in V (T ). As x is not contained in a wall,
x ∈ B̆. By Lemma 2.8, B̆ is open. Thus, there exists an open neighborhoodU about x that is
contained in B̆. By definition, B̆ consists of points that are not contained in any other block
than B. Thus, U ⊆ B̆ ⊆ � \ M and x is an interior point of � \ M .

Suppose that x is contained in a wall W . It remains to show that x is an interior point. Let
B1, B2 ∈ B such that W = B1 ∩ B2. Since x ∈ � \ M and M = ⋃

B∈V (T ) B, the blocks B1

and B2 are not contained in V (T ). By Lemma 2.6, each point in � is contained in at most
two blocks. Thus, no point in W is contained in a block B ∈ B\{B1, B2} and W ⊆ �\M .
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By Lemma 2.6, (B̆1 ∪ B̆2) ∩ B = ∅ for all B ∈ V (T ). Hence, B̆1 ∪ B̆2 ∪ W ⊆ �\M . By
Lemma 2.10, UdW (x) ⊆ B̆1 ∪ B̆2 ∪ W . Thus, x is an interior point of � \ M . ��
Remark 2.12 It is possible to prove the lemmas in this section for geodesic metric spaces �

without assuming that � is CAT(0). Furthermore, one can omit the assumption that blocks
are convex except for the convexity-statement in Lemma 2.7 and Lemma 2.5.

Remark 2.13 (Criterion for treelike block decompositions) If a CAT(0) space satisfies the
following three conditions introduced by Mooney [23], then � is a CAT(0) space with a
treelike block decomposition as in Definition 2.1.

(1) � = ⋃
B∈B B (covering condition);

(2) every block has a parity (+) or (−) such that two blocks intersect only if they have
opposite parity (parity condition);

(3) there is an ε > 0 such that two blocks intersect if and only if their ε-neighborhoods
intersect (ε-condition).

Mooney [23] argues that the adjacency graph of B is a tree T . It remains to show that there
exists dW > 0 such that every pair of distinct walls have distance at least dW . Let dW :=2ε
and W1, W2 ∈ W , W1 
= W2. Let x ∈ W1, y ∈ W2. We show that d(x, y) ≥ dW = 2ε.
Indeed otherwise, d(x, y) < 2ε. Since x and y are contained in walls, there are two blocks
B1
x and B2

x containing x such that W1 = B1
x ∩ B2

x and two blocks B1
y and B2

y containing y

such that W2 = B1
y ∩ B2

y . By assumption, d(x, y) < 2ε. Hence, for each Bx ∈ {B1
x , B

2
x }

and for each By ∈ {B1
y , B

2
y }, the intersection Uε(Bx ) ∩ Uε(By) is not empty. Thus, the

ε-condition above implies that W ′
1:=B1

x ∩ B1
y 
= ∅ and that W ′

2:=B2
x ∩ B2

y 
= ∅. Hence,
C :=(B1

x ,W1, B2
x ,W

′
1, B

1
y ,W2, B2

y ,W
′
2, B

2
x , B

2
x ) is a closed path in T . As W1 
= W2, the

set {Bi | i ∈ {1, 2, 3, 4}} contains at least three elements. Thus, the underlying graph of C
contains a cycle of length at least 3. This is impossible as T is a tree.

2.3 Itineraries

Let � be a CAT(0) space with treelike block decomposition B. Let T be the adjacency graph
of B. From now on, we identify the set of walls W with the edges of T . this is possible
because of Lemma 2.7.

Lemma 2.14 Let γ : [a, b] → � be a geodesic segment that does not start in a wall. Let
I (γ ) = (B1,W1, B2, . . . ,Wk−1, Bk) be the shortest geodesic path in T linking the unique
block containing γ (a) with one of the (at most two) blocks containing γ (b). Then the times
t1:=a, ti := inf{t ∈ [a, b] | γ (t) /∈ Bi−1}, i ∈ {2, . . . , k} and tk+1:=b satisfy the following
four properties:

(1) γ (t1) ∈ B̆1 and γ (ti ) ∈ Wi−1 = Bi−1 ∩ Bi for all i ∈ {2, . . . , k};
(2) ti+1 − ti ≥ dW for all i ∈ {2, . . . , k − 1};
(3) γ ([ti−1, ti ]) ⊆ Bi−1 for all i ∈ {2, . . . , k + 1};
(4) γ ([ti−1, ti ]) ∩ B̆i−1 
= ∅ for all i ∈ {2, . . . , k + 1}.
Proof We proof the statement by constructing the path I (γ ) as follows.

• Step 1: As γ does not start in a wall, there exists a unique block B1 such that
γ (a) ∈ B̆1 by Lemma 2.6. Let P1 be the path consisting of the vertex B1.

• i + 1-th step: Let P = (B1,W1, B2, . . . ,Wi−1, Bi ) be the path that we obtain
after i steps.
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Case 1: If γ ends in Bi , γ |[ti ,b] is contained in Bi as each block is convex. In this case, let
I (γ ):=Pi .

Case 2: Suppose that γ does not end in Bi . Let ti+1:= inf{t ∈ [a, b] | γ (t) /∈ Bi }. By
Lemma 2.9, γ (ti+1) is contained in a wall Wi+1 that intersects Bi non-trivially. We
observe that Wi+1 
= Wi for all i ≥ 2. Indeed, if Wi and Wi+1 would coincide, then
γ ([ti , ti+1]) ⊆ Wi as Wi is convex. Then γ [ti , ti+1] ⊆ Bi−1—a contradiction to the
choice of ti . Thus, Wi+1 
= Wi .

Let Bi+1 be the block so that Wi+1 = Bi ∩ Bi+1. By Lemma 2.6, the block Bi+1 is
uniquely determined.
Let Pi+1 = (B1,W1, . . . Bi ,Wi+1, Bi+1).

After the i th step, γ (t j ) and γ (t j+1) lie in different walls for all j ∈ {2, . . . , i − 1}. Thus,
the separating property 2.3 (2) implies that t j+1 − t j ≥ dW for all j ∈ {2, . . . , i − 1} and
the algorithm terminates after at most b−a

dW + 2 steps.
Let P be the path we obtain after the algorithm terminates. First, we will show that

P = I (γ ), i.e. that P is the shortest geodesic path linking the unique block containing γ (a)

with a block containing γ (b). At first, we show by induction that P is a geodesic path: The
path P1 is a geodesic path as it consists of a single vertex. We might assume that Pi is a
geodesic path and have to show that Pi+1 is a geodesic path. If we are in case 1, I (γ ) = Pi
and we are done. Otherwise, Pi+1 = (B1, . . . , Bi+1). By induction hypothesis, the path
Pi = (B1, . . . , Bi ) is a geodesic path. Hence, it suffices to show that Bi+1 
= Bj for all
j ∈ {1, . . . , i}. This is the case as otherwise, there exists j ∈ {1, . . . , i} such that ti+1 > t j
and γ (ti+1) ∈ Bj . As Bj is convex, that contradicts the choice of t j . We conclude that P is
a geodesic path.

By construction, the path P stars in the unique block containing γ (a). As P is a geodesic
path and since the algorithm above terminates in case (1), P is the shortest geodesic path
linking the unique block containing γ (a) with a block containing γ (b). Thus P = I (γ ).

It remains to show that I (γ ) satisfies the four conditions in the claim. The construction of
P = I (γ ) directly implies (1) and (2). As each block is convex, (3) is satisfied. By Lemma
2.9, γ ([ti−1, ti ]) ∩ B̆i−1 
= ∅ for all i ∈ {2, . . . , k + 1}. This implies (4). ��
Definition 2.15 (Itineraries of geodesic segments) If γ : [a, b] → � is a geodesic segment
as in Lemma 2.14, the geodesic path I (γ ) in T is called itinerary of γ .

The following example shows that a geodesic segment γ might intersect a block B that
does not occur in I (γ ). In such a case, γ ∩ B is contained a wall W that does not appear in
I (γ ). In the tree T , W is an edge that links B to a block that occurs in I (γ ).

Example 2.16 (See Fig. 4) Let B̄:={(x, 0) ⊆ R
2 | x ∈ R}. For each i ∈ Z let Bi :={(i, x) ⊆

R
2 | x ∈ R}. Let�:=B̄∪⋃

i∈Z Bi . Then B̄∪⋃
i∈Z Bi is a treelike block decomposition of�.

The set ofwalls is given byW:={Wi | i ∈ Z}whereWi = {(i, 0)}. Let x1:=(0, 1), x2:=(4, 0)
and γ be the unique geodesic segment connecting x1 and x2. Then I (γ ) = (B0,W0, B̄) even
though γ passes through the walls W1,W2 and W3 and ends in the wall W4.

Remark 2.17 Let γ : [a, b] → � be a geodesic segment as in Lemma 2.14.

(1) Each itinerary I (γ ) has an underlying graph Ī (γ ) that consists of the vertices and (unori-
ented) edges in I (γ ).

(2) If γ and γ ′ are two geodesic segments starting at the same point and γ ′ ⊆ γ , then I (γ ′)
is a subpath of I (γ ).
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Fig. 4 A CAT(0) space with a block decomposition. Each line is a block. The intersection points of every two
lines is a wall

A geodesic ray γ : [0,∞) → � is an isometric embedding of [0,∞) into �.

Definition 2.18 (Itineraries of geodesic rays) Let γ : [0,∞) → � be a geodesic ray that
does not start in a wall.

(1) If there exists B0 ∈ B, t0 ∈ R such that γ (t) ∈ B0 for all t ≥ t0, then I (γ ):=I (γ |[0,t0]).
(2) Otherwise, there exist a sequence of times t0 = 0 < t1 < t2 < . . . so that for every

i ∈ N, I (γ |[0,ti ]) = (B1,W1, B2, . . . Bi ) with γ (ti ) ∈ B̆i by Lemma 2.14 and we define
I (γ ) to be the infinite path I (γ ):=(B1,W1, B2, . . . ).

We say that two geodesic rays γ1 : [0,∞) → �, γ2 : [0,∞) → � are asymptotic if
there exists D > 0 such that d(γ1(t), γ2(t)) < D for all t ≥ 0.

Lemma 2.19 Let γ be a geodesic ray in � that does not start in a wall. If γ is asymptotic to
a geodesic ray in a wall, then I (γ ) is finite.

Proof Let γ be a geodesic ray that is contained in a wallW . Let γ ′ be a geodesic ray that does
not start in a wall so that I (γ ′) is infinite. We have to show that γ and γ ′ are not asymptotic,
i.e. we have to prove that for each D ∈ R≥0 there exists t ′ such that d(γ (t), γ (t ′)) > D.
Let D ∈ R≥0. As γ ⊆ W , there exists t0 ∈ R and a block B ∈ B such that γ (t) ∈ B for all
t ≥ t0. Since I (γ ′) is an infinite path, there exists a block B ′ in I (γ ′) such that the unique
geodesic path in T linking B and B ′ has more than D

dW edges. By Lemma 2.14, there exists
a time t ′ such that γ (t ′) ∈ B ′. Let γ̃ be the geodesic segment connecting γ (t ′) with a point
b ∈ B. By Lemma 2.11 and the separating property 2.1 (2), the length of γ̃ is at least D.
Since b was chosen arbitrarily and γ ends in B, this implies that d(γ (t), γ (t ′)) > D. ��

3 The visual boundary of every wall behaves like a cutset

In Sect. 3.1, we will recall the definition of visual boundaries of CAT(0) spaces. In Sect. 3.2,
wewill study a cutset property of walls in CAT(0) spaceswith a treelike block decomposition.

3.1 The visual boundary of a CAT(0) space

Let � be a complete CAT(0) space and p a chosen basepoint in �. Let

∂�p:={α : [0,∞) → � | α is a geodesic ray with α(0) = p}.
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If α is a geodesic ray starting at p and ε > 0 r ≥ 0, then the following sets define an open
neighborhood basis for the cone topology τcone on ∂�p .

Up(α, r , ε):={γ ∈ ∂�p | γ (0) = p, d(α(t), γ (t)) < ε ∀ t ≤ r}. (1)

Recall that two geodesic rays γ1 : [0,∞) → �, γ2 : [0,∞) → � are asymptotic if there
exists D > 0 such that d(γ1(t), γ2(t)) < D for all t ≥ 0. Being asymptotic is an equivalence
relation and we denote the equivalence class of a geodesic ray γ by γ (∞). We call such an
equivalence class a boundary point and denote the set of all boundary points by

∂�:={α(∞) | α : [0,∞) → � is a geodesic ray }.
Every equivalence class in ∂� is represented by a unique geodesic ray starting at p ( [5,

Prop. 8.2, II]). Hence, the map

f : ∂�p → ∂�

α → α(∞)

is a bijection. The visual boundary of � is the topological space that we obtain by pushing
the topology of ∂�p to ∂�, i.e. A ⊆ ∂� is open if and only if f −1(A) is open in ∂�p .
For more details see [5, Def.8.6 in part II]. If � is Gromov-hyperbolic, then the visual
boundary of � coincides with the Gromov boundary of �. While the Gromov boundary
is a quasi-isometry invariant, Croke–Kleiner [13] proved that the visual boundary is not a
quasi-isometry invariant.

If B is a complete, convex subspace of �, the canonical embedding ι : B ↪→ � induces
a topological embedding ι∗ : ∂Z → ∂�. For simplicity, we write ∂B ⊂ ∂�.

Lemma 3.1 (Example 8.11 (4) in Chapter II of [5]) Let � be a complete CAT(0) space and
Z a complete, convex subspace of �. Then ∂Z is closed in ∂�.

Finally, we will use the following consequence of the Theorem of Arzelà-Ascoli. It is Corol-
lary 1.4 in [11] and conform with [24].

Lemma 3.2 (Arzelà-Ascoli) Let � be a proper metric space and p ∈ �. Then any sequence
of geodesics γn : [0, Ln] → � with γn(0) = p and Ln → ∞ has a subsequence that
converges uniformly on compact sets to a geodesic ray γ : [0,∞) → �.

3.2 The cutset property

The goal of this section is to prove the following proposition illustrated in Fig. 5. I would like
to thank Emily Stark for the inspiration to study this property.

Proposition 3.3 (cutset property) Let � be a complete CAT(0) space with treelike block
decomposition B with adjacency graph T and p a chosen basepoint in � that does not lie
in a wall. Let κ be a connected component of ∂� that contains two distinct boundary points
γ1(∞) and γ2(∞). Let γ1 and γ2 be the corresponding representatives starting at p. For
every wall W that occurs in I (γ1) or I (γ2) but not in both I (γ1) and I (γ2), there is a geodesic
ray γ ⊆ W such that γ (∞) ∈ κ .

For the proof, we use the following lemma for general complete CAT(0) spaces, which is
similar to Lemma 3.1 in [4] which deals with path components of visual boundaries.
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Fig. 5 Illustration of the cutset property (Proposition 3.3): The orange marked edge e in T to the left corre-
sponds to a wallW in � which is marked orange to the right. The wallW appears in I (γ2) but not in I (γ1). If
we delete the edge e from T , I (γ1) and I (γ2) end in different components of the resulting graph. If we delete
W form �, the ends of the rays γ1 and γ2 are contained in different components of � \ W , and γ1(∞) and
γ2(∞) lie in different components of ∂�\∂W

Lemma 3.4 (Ben-Zvi–Kropholler) Let � be a complete CAT(0) space and �1, �2 closed,
convex subsets such that the intersection W = �1 ∩�2 is convex and � = �1 ∪�2. If there
exist two geodesic rays γ1 ⊆ �1 and γ2 ⊆ �2 such that γ1(∞), γ2(∞) are contained in a
connected component κ of ∂�, then there is a geodesic ray γ in W such that γ (∞) ∈ κ .

Proof Assume for a contradiction that there exists a connected component κ in ∂� containing
γ1(∞) and γ2(∞) but no element of ∂W . Then κ is a connected component of the topological
subspace Y:=∂�\∂W . We use the following observations.

(1) By Lemma 3.1, ∂�1, ∂�2 and ∂W are closed in ∂�;
(2) ∂�1\∂W = ∂�\∂�2 and ∂�2\∂W = ∂�\∂�1: By symmetrical reasons it suffices to

prove that ∂�1 \ ∂W = ∂� \ ∂�2. Let p be a basepoint in W . By definition,

∂�1
p \ ∂Wp = {γ | γ is a geodesic ray in �1 so that γ (0) = p and γ � W } and

∂�p \ ∂�2
p = {γ | γ is a geodesic ray in � so that γ (0) = p and γ � �2}.

The space ∂�1
p \ ∂Wp is a topological subspace of ∂�1

p and ∂�p\∂�2
p is a topological

subspace of ∂�p . We have to show that ∂�1
p\∂Wp and ∂�p\∂�2

p are homeomorphic.
As �1 is a closed, convex subspace of �, the inclusion ι : �1

p ↪→ �p induces a
topological embedding ι∗ : ∂�1

p ↪→ ∂�p by Lemma 3.1. It remains to show that
ι∗(∂�1

p\∂Wp) = ∂�p\∂�2
p . Let γ ∈ ∂�1

p\∂Wp . The geodesic ray γ starts in W
and is not contained in W . Since W is convex, there exists a time t0 ∈ R such that
γ (t) ∈ �1\W for all t ≥ t0. By assumption, �1\W = �\�2. Thus, ι(γ ) is a geodesic
ray in � that starts in W so that γ (t) ∈ �\�2 for all t ≥ t0. Hence, ι(γ ) ∈ ∂�p\∂�2

p .
We conclude that ι∗(∂�1

p\∂Wp) ⊆ ∂�p\∂�2
p . An analog argumentation implies that

∂�p\∂�2
p ⊆ ι∗(∂�1

p\∂Wp): Let γ ∈ ∂�p \ ∂�2
p . The geodesic ray γ starts inW and is

not contained inW . SinceW is convex, there exists a time t0 ∈ R such that γ (t) ∈ �\�2

for all t ≥ t0. By assumption, � \ �2 = �1 \ W . Thus, ι−1(γ ) is a geodesic ray in �1

that starts in W so that γ (t) ∈ �1\W for all t ≥ t0. Hence, ι−1(γ ) ∈ ∂�1
p\∂W .
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(3) ∂�1\∂W and ∂�2\∂W are open in ∂�: Indeed, let i, j ∈ {1, 2}, i 
= j . As ∂�1, ∂�2

are closed in ∂�, ∂�\∂�1 and ∂�\∂�2 are open in ∂�. By (2) ∂�i\∂W = ∂�\∂� j

for i, j ∈ {1, 2}, i 
= j . Hence, ∂�1\∂W and ∂�2\∂W are open in ∂�.

Let i ∈ {1, 2}. By (1), ∂�i∩Y is closed inY . Since ∂�1∩Y = ∂�1∩(∂�\∂W ) = ∂�1\∂W ,
∂�1∩Y is open inY by (3).Analogously, ∂�2∩Y is open inY . Thus, ∂�1∩Y and ∂�2∩Y are
open and closed. This implies that γ1(∞) and γ2(∞) lie in different connected components
since γ1(∞) ∈ ∂�1 ∩ Y and γ2(∞) ∈ ∂�2 ∩ Y—a contradiction to the connectedness of
κ . ��
Proof of Proposition 3.3 Let γ1, γ2 and κ as in the claim. Suppose thatW is a wall that appears
in I (γ1) or I (γ2) but not in both. Let T1 and T2 be the two subtrees of the adjacency graph
T of B we obtain by removing W from T . Let �i :=⋃

B∈V (Ti ) B. Then � = �1 ∪ �2 and
�1 ∩ �2 = W . By Lemma 2.5, the spaces �1 and �2 are closed and convex. The wall W is
closed and convex by Lemma 2.7. We will show that one of the two geodesic rays γ1 and γ2
ends in �1 and that the other one ends in �2. Then the claim follows by applying Lemma
3.4 with � = �1 ∪ �2.

We assume without loss of generality that W appears in I (γ2) but not in I (γ1). Let
B1 ∈ V (T1) and B2 ∈ V (T2) be the blocks so that W = B1 ∩ B2 and so that B2 occurs
after B1 in I (γ2). By Lemma 2.14, there are two times t1, t2, t1 < t2 so that γ2(t1) ∈ B̆1 and
γ2(t2) ∈ B̆2. By definition of �1 and �2, γ2(t1) ∈ �1\�2 and γ2(t2) ∈ �2\�1. Assume
for a contradiction that there exists t3 > t2 such that γ2(t3) ∈ �1\�2. Then γ2(t1) ∈ �1,
γ2(t3) ∈ �1 and γ2(t2) /∈ �1 and γ2([t1, t3]) is a geodesic segment connecting two points
in �1 that contains the point γ2(t2) outside of �1—a contradiction to the convexity of �1.
Thus, γ2(t) ∈ �2 for all t ≥ t2, i.e. γ2(t) ends in �2.

It remains to show that γ1 ends in �1. Since geodesic paths in trees are unique, each path
linking a block in T1 with a block in T2 passes through the wall W . SinceW does not appear
in I (γ1), the geodesic path I (γ1) is either contained in T1 or in T2. As γ1 and γ2 start at the
same point, I (γ1) and I (γ2) start with the same block B0. Recall thatW = B1 ∩ B2 and that
B2 appears after B1 in I (γ2). As I (γ2) is a geodesic path,W does not occur twice in I (γ2) and
the subpath (B0, . . . , B1) ⊆ I (γ2) does not contain W . Thus, as B1 ∈ T1 and B0 ∈ V (T1),
the itinerary I (γ1) is a path in T1. By Lemma 2.14, γ1([0,∞)) ⊆ �1. In particular, γ1 ends
in �1. ��

4 Key properties of theMorse boundary

InSect. 4.1,wewill recall the definition ofMorse boundaries andwill transfer the observations
of Sect. 3 to Morse boundaries. In Sect. 4.2, we will prove that geodesic rays of infinite
itinerary are lonely. This is the only point, where we use the Morse-property in this paper. In
Sect. 4.3, we will study relative Morse boundaries.

4.1 From the visual boundary to theMorse boundary

In this section, we shortly recap the definition of the contracting boundary and the Morse
boundary and obtain as a consequence that the cutset property in Proposition 3.3 holds not
only for the visual boundary but also for the Morse boundary.
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Let � be a complete CAT(0) space and C be a convex subset that is complete in the
induced metric. Then there is a well-defined nearest point projection map πC : � → C . This
projection map is continuous and does not increase distances (See [5, Prop. 2.4 in II ]).

Definition 4.1 (contracting geodesics) Given a fixed constant D, a geodesic ray or geodesic
segment γ in a complete CAT(0) space (�, d) is said to be D-contracting if for all x , y ∈ �,

d(x, y) < d(x, πγ (x)) ⇒ d(πγ (x), πγ (y)) < D.

We say that γ is contracting if it is D-contracting for some D.

Charney–Sultan [10] introduced a quasi-iosmetry invariant of complete CAT(0) spaces,
called contracting boundary. Let � be complete CAT(0) space. The underlying set of the
contracting boundary of � is the set

∂c�:={α(∞) | α is a contracting geodesic ray}.
By definition, ∂c� ⊆ ∂� (as sets). Let (∂c�, τcone) be the set ∂c� equippedwith the subspace
topology of ∂�. Cashen [7] proved that (∂c�, τcone) isn’t a quasi-isometry invariant. For
obtaining a quasi-isometry invariant-topology, we choose a basepoint p in � and define

∂c�p:={α : [0,∞) → � | α is a contracting geodesic ray and α(0) = p}.
As before in Sect. 3.1,

f : ∂c�p → ∂c�, α �→ α(∞)

is a bijection. Let

∂N
c �p:={α : [0,∞) → � | α is a N -contracting geodesic ray and α(0) = p}.

Now, let

(∂c�p, τdirlim):= lim−→
N

(∂N
c �p, τcone),

i.e. a set O is open in τdirlim if for each N ∈ N, O is open in O ∩ ∂N
c �p .

The contracting boundary ∂c� of � is the topological space that we obtain by pushing
the topology τdirlim of ∂c�p to ∂c�, i.e. A ⊆ ∂c� is open if and only if f −1(A) is open in
∂c�p . If � is Gromov-hyperbolic, then ∂c� coincides with the Gromov boundary of �.

Remark 4.2 (∂c�p, τdirlim) is finer than (∂c�, τcone). Indeed, if O ∈ τcone, then O is open in
O ∩ ∂N

c �p for all N ∈ N. Thus, O ∈ τdirlim.

Cordes [11] generalized the contracting boundary to a quasi-isometry invariant of proper
geodesic metric spaces, called the Morse boundary. This generalization is based on the
following characterizations of contracting geodesic rays in complete CAT(0) spaces.

Definition 4.3 A function N : [1,∞) × [0,∞) → [0,∞) is called aMorse gauge.

Definition 4.4 Let γ : [0,∞) → � be a geodesic ray in a proper geodesic metric space �.
Given a Morse-gauge N , γ is N-Morse if, for every K ≥ 1, L ≥ 0, every (K , L)-quasi-
geodesic σ with endpoints on γ is contained in the N -neighborhood of γ .

Definition 4.5 Let � be a complete CAT(0) space. A geodesic ray γ is slim if there exists
δ > 0 such that for all x ∈ �, y ∈ γ , the distance between πγ (x) and the geodesic segment
[x, y] connecting x and y is less than δ.
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Sultan [32] and Charney-Sultan [10] showed:

Lemma 4.6 (Charney–Sultan) Let γ be a geodesic ray in a complete CAT(0) space. The
following are equivalent:

(1) γ is slim
(2) γ is Morse
(3) γ is contracting.

TheMorse boundary ∂∗� of a proper geodesic metric space� is a topological space with
underlying set

∂∗�:={α(∞) | α is a Morse geodesic ray}.
We now discuss the topology on ∂∗�.

Suppose that p is a basepoint in the proper geodesic metric space � and N is a Morse
gauge. Let

∂N∗ �p:={α(∞) | ∃β ∈ α(∞) that is an N -Morse geodesic ray with β(0) = p}
endowed with the compact-open topology. By Lemma 3.1 in [11], this topology can be
described by means of:

Lemma 4.7 Let � be a proper geodesic metric space and p ∈ �. For N = N (K , L) a
Morse gauge, let δN :=max{4N (1, 2N (5, 0)) + 2N (5, 0), 8N (3, 0)}. Let α : [0,∞) → �

be a N-Morse geodesic ray with α(0) = p and for each positive integer n let Vn(α) be the
set of geodesic rays γ such that γ (0) = p and d(α(t), γ (t)) < δN for all t < n. Then

{Vn(α) | n ∈ N} (2)

is a fundamental system of (not necessarily open) neighborhoods of α(∞) in ∂N∗ �p.

Remark 4.8 By Proposition 3.12 in [11], ∂N∗ �p is compact for each Morse gauge N .

Let M be the set of all Morse gauges. If N and N ′ are two Morse gauges, we say that
N ≤ N ′ if and only if N (λ, ε) ≤ N ′(λ, ε). This defines a partial ordering on M. Corollary
3.2 in [11] and the proof of Proposition 4.2 in [11] implies

Lemma 4.9 Let N and N ′ two Morse gauges such that N ≤ N ′ and � a proper geodesic
metric space with basepoint p. Then the associated inclusion map ιN ,N ′ : ∂N∗ �p ↪→ ∂N ′

∗ �p

is a topological embedding.

Now, let

∂∗�:= lim−→
N∈M

∂N∗ �p.

with the induced direct limit topology, i.e. a setU is open in ∂∗� if and only ifU ∩ ∂∗�N
p is

open in ∂∗�N
p for all N ∈ M. Cordes proves that this is well-defined, i.e. he shows indepen-

dence of the basepoint. Moreover, he shows that in the CAT(0)-case, ∂∗� is homeomorphic
to ∂c�. In particular, the topology of the Morse boundary is finer than the subspace topology
of the visual boundary by Remark 4.2, i.e. if a set is open in the subspace topology of the
visual boundary, then it is also open in the Morse boundary. Thus, Proposition 3.3 implies
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Corollary 4.10 (cutset property) Let � be a complete CAT(0) space with treelike block
decomposition B with adjacency graph T and p a chosen basepoint in � that does not lie in
a wall. Let κ be a connected component of ∂∗� that contains two distinct boundary points
γ1(∞) and γ2(∞). Let γ1 and γ2 be the corresponding representatives starting at p.

For every wall W that occurs in I (γ1) or I (γ2) but not in both I (γ1) and I (γ2), there is
a geodesic ray γ ⊆ W such that γ (∞) ∈ κ .

Remark 4.11 Cashen-Mackay [8] introduced another topology on the Morse boundary that
is finer than the subspace topology of the visual boundary but coarser than the direct limet
topology used here. A comparison of these three typologies can be found in Incerti-Medici’s
paper [21].

4.2 Loneliness of Morse geodesic rays with infinite itinerary

Let � be a proper CAT(0) space with treelike block decomposition B with adjacency graph
T and p a chosen basepoint in � that does not lie in a wall. The goal of this subsection is
to prove that Morse geodesic rays starting at p of infinite itinerary are lonely. I would like to
thank Tobias Hartnick for his help to simplify the proof for this property.

Proposition 4.12 (Loneliness property) Let α and β be two distinct geodesic rays in �

starting at p that have infinite itinerary. If α or β is Morse, then I (α) 
= I (β).

This property is quite remarkable as it is the only point in this paper where we use the
Morse-property. The Loneliness property does not hold for non-Morse geodesic rays in
general. The following example shows that visual boundaries might contain infinitely many
geodesic rays that are pairwise non-asymptotic and have all the same infinite itinerary.

Example 4.13 Let � = R
2 and B:={[i, i + 1] × R | i ∈ Z} as pictured in Figure 6. For

i ∈ Z, let Bi :=[i, i + 1] × R. The adjacency graph of B is a bi-infinite path of the form
(. . . , B−1, B0, B1, . . . ). Let p:=( 12 , 0). A geodesic ray γ starting at p can be of three different

Fig. 6 A block decomposition of the Euclidean plane in which the itinerary of each geodesic ray starting in
the interior of a block is either trivial (i.e. a path consisting of one vertex) or an infinite path. The dashed lines
denote three geodesic rays with different itineraries

123



71 Page 20 of 40 Geometriae Dedicata (2023) 217 :71

kinds: If γ is parallel to the Y -axes, γ is contained in the block B0, i.e. its itinerary is the
path that consists of the block B0. If γ intersects the Y -axis R × 0, the itinerary of γ is the
infinite path (B0, B−1, . . . ). In the remaining case, γ is not parallel to the Y -axis and does
not intersect the Y -axis. In this situation, the itinerary of γ is the infinite path (B0, B1, . . . ).

More examples of this type are contained in the Croke–Kleiner spaces where this phe-
nomenon produces intervals in the Tits boundary as proven by Croke–Kleiner [12].
The following proof is inspired by the example of Charney–Sultan discussed in Sect. 1.2 and
uses methods of the proof of Proposition 3.7 in [10].

Proof of Proposition 4.12 The proof is illustrated in Fig. 7. Assume for a contradiction that α
and β are two geodesic rays starting in � such that

• α(0) = β(0) = p; and
• α 
= β; and
• I :=I (α) = I (β); and
• I is an infinite path; and
• β is Morse.

Let

• (Wi )i∈N be the sequence of consecutive walls that are contained in I ;
• (ai )i∈N a sequence of points such that ai ∈ Wi ∩ α.
• (bi )i∈N a sequence of points such that bi ∈ Wi ∩ β.
• (γi )i∈N the sequence of geodesic segments γi connecting ai with bi .
• (a∗

i )i∈N be the sequence of projection points a∗
i :=πβ(ai ).

Fig. 7 Illustration of the proof of the Loneliness property
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By proposition 3.7 (2) in [10], there exists R > 0 such that {a∗
i | i ∈ N} ⊆ BR(p), where

BR(p) denotes the closed R-ball about p. For i ∈ N, let �i :=�(ai , bi , a∗
i ) be the geodesic

triangle in� with corners ai , bi and a∗
i . As β is Morse, β is slim by Lemma 4.6. Hence, there

exists δ > 0 such that Uδ(a∗
i ) ∩ γi 
= ∅. As a∗

i ∈ BR(p) it follows that γi ∩ BR+δ(p) 
= ∅.
Recall that for each i ∈ N, ai and bi are contained in a wall. As each wall is convex,

γi ⊆ Wi . Thus, Wi ∩ BR+δ(p) 
= ∅ for all i ∈ N. We conclude that infinitely many walls
intersects the ball BR+δ(x0). But this is impossible because of Lemma 2.4. ��

4.3 Relative Morse boundaries of convex subspaces

Let � be a proper geodesic metric space and B a convex, complete subspace whose Morse
boundary is σ -compact, i.e. a union of countably many compact subspaces. Recall that
(∂∗B, �) denotes the relative Morse boundary of B in �, i.e. the subset of ∂∗� that consists
of all equivalence classes of geodesic rays in B that are Morse in the ambient space�. In this
section, we study the relation of the two topological spaces that are obtained by endowing
(∂∗B, �) with the subspace topology of ∂∗B and ∂∗�. Our goal is to proof Lemma 4.14 and
Corollary 4.15.

I would like to thank Nir Lazarovich for his help to improve this section. Moreover, I
would like to thank Elia Fioravanti for sending me an example showing that the inverse of
the embedding in the following lemma need not be continuous (see Example 4.19).

Lemma 4.14 Let � be a proper geodesic metric space with σ -compact Morse boundary. Let
B be a complete, convex subspace of � that contains all geodesic rays in � that start in B
and are asymptotic to a geodesic ray in B.

If we endow (∂∗B, �) with the subspace topology of ∂∗�, then the map

ι∗ : (∂∗B, �) ↪→ ∂∗B
γ (∞) → γ (∞)

is continuous.

Corollary 4.15 Let B be a closed convex subspace of a proper CAT(0) space �. If (∂∗B, �)

endowed with the subspace topology of ∂∗B is totally disconnected, then (∂∗B, �) endowed
with the subspace topology of ∂∗� is totally disconnected.

Proof of Corollary 4.15 If the assumptions of Lemma 4.14 are satisfied, then the continuity of
ι∗ implies Corollary 4.15. Hence it remains to verify the assumptions of Lemma 4.14: The
Main theorem in [10] implies that ∂∗� is σ -compact. Moreover, B contains all geodesic rays
in � that start in B and are asymptotic to a geodesic ray in B because � is CAT(0) and B is
closed and convex. ��

For proving Lemma 4.14, we need the following facts about direct limits. The following
lemma is Lemma 3.10 in [10]. For completeness, we cite their proof as well.

Lemma 4.16 (Charney–Sultan) Let X = lim−→Xi , Y = lim−→Yi where Xi , Yi denote topological

spaces. Suppose f : X → Y is a function so that f (Xi ) ⊆ Yg(i) where g : N → N is a
non-decreasing function. If fi : Xi → Yg(i), x �→ f (x) is continuous for all i , then f is
continuous.

Proof Let U ⊆ Y be open. Then Ug(i) = U ∩ Yg(i) is open in Yg(i) for all i . Since fi is
continuous, if follows that f −1(U ) ∩ Xi = f −1(Ug(i)) ∩ Xi = f −1

i (Ug(i)) is open in Xi .
By definition of the direct limit topology, f −1(U ) is open in X . ��
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In the following lemma, we study the direct limit of countably many topological spaces.

Lemma 4.17 Let X = lim−→
i∈N

Xi be a direct limit of topological spaces Xi with associated

topological embeddings ιi, j : Xi → X j where i, j ∈ N, i ≤ j . Let B ⊆ X be a closed
subspace of X. We equip B∩ Xi with the supspace topology of Xi for all i . Then lim−→

i∈N
(Xi ∩ B)

is homeomorphic to B equipped with the subspace topology of X.

Proof Let O be an open set in B equipped with the subspace topology of X . By Lemma 4.16,
O is open in the direct limit lim−→

i∈N
(Xi ∩ B).

Now let O ⊆ B be an open set in lim−→
i∈N

(Xi ∩ B). We have to find a set Õ that is open in

X and satisfies Õ ∩ B = O ∩ B. Since each ιi, j : Xi → X j is a topological embedding for
each i, j ∈ N, we may assume that Xi ⊆ X j for all i ≤ j . For every i ∈ N, we will define a
set Õi ⊆ Xi so that

Õi is open in Xi , (1)

Õi ⊆ Õ j for all i ≤ j, (2)
⋃

i∈N
Õi ∩ B = O ∩ B. (3)

Then the set Õ:=⋃
i∈N Oi is the set, we are looking for. Indeed, Õ ∩ B = O ∩ B by

the listed properties. Moreover, Õ is open in X : Let k ∈ N. We have to show that Õ ∩ Xk

is open in Xk for all k ∈ N. By the listed properties, Õi ⊆ Õk for all i ≤ k. Hence,
Õ ∩ Xk = ⋃

i≥k Oi ∩ Xk . By assumption, ιk,i : Xk ↪→ Xi is continuous for all i ≥ k.

Hence, ιk,i (Oi )
−1 = Oi ∩ Xk is open in Xk for all i ≥ k. Hence Õ ∩ Xk = ⋃

i≥k Oi ∩ Xk

is open in Xk as union of open sets in Xk .
It remains to define the sets Õi , i ∈ N. Let i ∈ N. In step 1, we will prepare the definition of
Õi . In step 2, we will define Õi . In step 3, we will show that Õi satisfies (1), (2) and (3).

Step 1: Recall that i ∈ N is arbitrarily chosen. Since O ⊆ B is an open set in lim−→
i∈N

(Xi ∩B),

there exists an open set Oi in Xi such that Oi ∩ B = O ∩ Xi . Let Oi
i :=Oi . For each

j ∈ N, j ≥ i , we will define a set O j
i ⊆ X j inductively such that

(a) O j
i ∩ Xi = Oi ,

(b) O j
i is an open set in X j ,

(c) Ok
i ⊆ O j

i for all k ≤ j .

Induction base: Let Oi
i :=Oi .

Induction step: Suppose that O j
i is a set in X j with the properties listed above.

Since ι j, j+1 : X j ↪→ X j+1 is a topological embedding, O j
i is an open set in

X j equipped with the subspace topology of X j+1. Thus, there exists a set O j+1
i that

is open in X j+1 so that O j+1
i ∩ X j = O j

i . In particular, O j
i ⊆ O j+1

i . Moreover,

O j+1
i ∩ Xi = O j+1

i ∩ X j ∩ Xi = O j
i ∩ Xi = Oi where the last equality follows by

induction hypothesis.
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Step 2: For each i ∈ I , we define

Õi :=
⋃

j≤i

Oi
j \ A, where A:=B \ O .

Step 3: Let i ∈ N. It remains to show that Õi satisfies (1), (2) and (3).

– (1): We have to show that Õi is open in Xi . By definition,

Õi =
⋃

j≤i

Oi
j \ A =

⋃

j≤i

Oi
j ∩ (Xi \ A).

It remains to show that Oi
j and Xi\A are open in Xi for all j ≤ i . By definition, Oi

j
is open in Xi for all j ≤ i . Since B is closed in X , A = B ∩ (X\O) is closed in X .
This implies that Xi ∩ A is closed in Xi by definition of the direct limit topology.
Hence, Xi\A is open in Xi .

– (2): Let i ≤ k. Then Õi = ⋃
j≤i O

i
j\A ⊆ ⋃

j≤k O
k
j \A = Õk since Oi

j ⊆ Ok
j for

all j ≤ i ≤ k.
– (3): We have to show that

⋃
i∈N Õi ∩ B = O ∩ B. Since B = O � A is the disjoint

union of O and A and B ⊆ O , we have that

Õ ∩ B =
⋃

i∈N
Õi ∩ B =

⋃

i∈N

⋃

j≤i

(Oi
j \ A) ∩ B =

⋃

i∈N

⋃

j≤i

Oi
j ∩ O.

Thus, Õ ∩ B ⊆ O . On the other hand, O ⊆ Õ ∩ B because
⋃

i∈N
⋃

j≤i O
i
j B ∩ O

contains Oi
i = Oi for all i ∈ N and O = ⋃

i∈N Oi .

��
For applying Lemma 4.17 to the relativeMorse boundary of B in�, we need the following

variant of Example 8.11 (4) in Chapter II of [5] (see Lemma 3.1) for Morse boundaries.

Lemma 4.18 If B is a complete, convex subspace of a proper geodesic metric space �, then
(∂∗B, �) is closed in ∂∗�.

Proof of Lemma 4.18 Let p a basepoint in B and M be the set of all Morse gauges. We
have to show that (∂∗B, �) ∩ ∂N∗ �p is closed ∂N∗ �p for all N ∈ M. Let (βn(∞))n∈N
be a sequence of equivalence classes of geodesic rays in (∂∗B, �) ∩ ∂N∗ �p and (βn)n∈N
be corresponding representatives that start at p and lie in B. By the Theorem of Arzelà-
Ascoli 3.2, the sequence (βn)n∈N has a convergent subsequence (βnm )m∈N. As B is complete,
β:= limm→∞ βnm is a geodesic ray in B. Moreover, β is N -Morse. Indeed, Let q be a point
on a quasi-geodesic with endpoints on β and t ∈ R≥0 such that d(β, q) = d(β(t), q). The
continuity of the distance function d and the N -Morseness of βnm , m ∈ N implies that
d(q, β(t)) = d(q, limm→∞ βnm (t)) = limm→∞ d(q, βnm ) ≤ N . ��
Proof of Lemma 4.14 Let p be a basepoint in B ⊆ � and M be the set of all Morse gauges.
We equip (∂∗B, �) with the subspace topology of ∂∗� = lim−→

N∈M
∂N∗ �p . We have to show that

the map

ι∗ : (∂∗B, �) ↪→ ∂∗B = lim−→
N∈M

∂N∗ Bp

γ (∞) �→ γ (∞)
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is continuous. We prove the statement in two steps. For any Morse gauge N ∈ M, let

∂N∗ �p ∩ ∂∗B:={α(∞) ∈ ∂N∗ �p | ∃β ⊆ B such that β(0) = p and β ∈ α(∞)}.
We endow ∂N∗ �p ∩ ∂∗B with the supspace topology of ∂N∗ �p

and study the direct limit

lim−→
M

(∂N∗ �p ∩ ∂∗B)

with the induced direct limit topology.
We will show in two steps that the following inclusions are continuous:

ῑ : (∂∗B, �) ↪→ lim−→
M

(∂N∗ �p ∩ ∂∗B), γ (∞) �→ γ (∞) (1)

ι′ : lim−→
M

(∂N∗ �p ∩ ∂∗B) ↪→ ∂∗B, γ (∞) �→ γ (∞) (2)

Since ι∗ = ι′ ◦ ῑ, this will imply that ι∗ is continuous as composition of continuous maps.

Step 1: For proving that the inclusion ῑ is continuous, it is sufficient to show that ∂∗� and
its subspace (∂∗B, �) satisfy the assumptions of Lemma 4.17.

(a) Since ∂∗�p is σ -compact, there exists an ascending sequence of natural numbers

N1 ≤ N2 . . . such that ∂∗� = lim−→
i∈N

∂
Ni∗ �p by Lemma 2.6 in [9]. Hence, ∂∗� is a

direct limit of countably many topological spaces.
(b) By Lemma 4.18, (∂∗B, �) is closed in ∂∗�.
(c) By Lemma 4.9, the inclusion maps ιN ,N ′ : ∂N∗ �p ↪→ ∂N ′

∗ �p are topological embed-
dings for all Morse gauges N , N ′ such that N ≤ N ′.

Step 2: For proving that the inclusion ι′ is continuous, it is sufficient to show that all assump-
tions of Lemma 4.16 are satisfied.

Let N be a Morse gauge. Since B is a convex subspace of� and because B contains
all geodesic rays in � that start in B and are asymptotic to a geodesic ray in B,

ι′(∂N∗ �p ∩ ∂∗B) ⊆ ∂N∗ Bp.

Furthermore,

ι′N : ∂N∗ �p ∩ ∂∗B ↪→ ∂N∗ Bp, γ (∞) �→ γ (∞)

is continuous. Indeed, Let γ (∞) ∈ ∂N∗ �p ∩ ∂∗B and Vn(ι′N (γ )) a neighborhood
of ι′N (γ (∞)) in ∂N∗ Bp as in Lemma 4.7. Note that ∂N∗ �p contains a neighborhood
about γ (∞) of the form Vn(γ ) as well. Since B is a convex subset of� and because
B contains all geodesic rays in � that start in B and are asymptotic to a geodesic
ray in B we have ι′N (Vn(γ ) ∩ ∂∗B) ⊆ Vn(ι′N (γ )). Hence, ι′N is continuous. Thus,
all assumptions of Lemma 4.16 are satisfied.

��

We finish this section with the following example of Elia Fioravanti showing that the
inverse of ι∗ in Lemma 4.14 need not be continuous.
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Fig. 8 The space � in Example 4.19

Example 4.19 (See Fig. 8) Let B be the subspace of R
2 that consists of [0,∞) along the

x-axis and all vertical geodesic rays of the form {(n, y) ∈ R
2 | y ∈ R≥0} where n ∈ N. We

choose p:=(0, 0) as basepoint. Let γ : R → B, γ (t):=(t, 0) and γn : R → B, γn(t):=γ (t)
for all t ≤ n and γn(t):=(n, t − n) for all t ≥ n. Then γ and γn , n ∈ N, are Morse geodesic
rays and limn→∞ γn(∞) = γ (∞) in ∂∗B. Now, we attach to each geodesic ray γn a filled
square along the geodesic segment connecting (n, 1) and (n, n + 1) as in the figure. Let �

be the space we obtain this way. The geodesic rays γn , n ∈ N, and γ are still Morse geodesic
rays in�. But now, theMorse gauge of γn grows in n. Hence, the sequence (γn(∞))n∈N does
not converge to γ (∞) if we endow ∂∗B = (∂∗B, �) with the subspace topology of ∂∗�.
Indeed, for each N , the set of N -Morse geodesic rays in� is finite. Hence, {γn(∞)}∩∂N∗ �p

is finite for each Morse gauge and thus, {γn(∞)} is a closed subspace of ∂∗�. In particular,
no limit point of {γn(∞)} lies outside of this set.

5 Proof of Theorem 1.9

Let� be a proper CAT(0) space with treelike block decompositionB. Let T be the adjacency
graph of B and p ∈ � be a basepoint that is not contained in a wall. Now, we apply the
cutset property (Corollary 4.10) and the loneliness property (Proposition 4.12) to study the
connected components of ∂∗�. This will lead to a proof of Theorem 1.9.

Definition 5.1 (Itineraries of boundary points) Let γ (∞) ∈ ∂� be a boundary point of �.
The itinerary I (γ (∞)) of γ (∞) is the itinerary of the representative of γ (∞) that starts at
p.

Definition 5.2 We say that a connected component κ of ∂∗� is of

(1) type A if T contains a finite path I such that all elements in κ have itinerary I ;
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(2) type B if T contains an infinite path I such that all elements in κ have itinerary I ;
(3) type C if κ contains two elements of distinct itinerary.

By definition, every connected component is of exactly one of the types defined above.

Lemma 5.3 Let κ be a connected component of ∂∗�. The following statements are equivalent:

(1) The connected component κ is of type B.
(2) If γ (∞) ∈ κ , then I (γ ) is infinite.
(3) If γ is a geodesic ray starting at p that represents an element in κ , then γ does not end

in a block.

Proof We show (1) ⇒ (2) ⇒ (3) ⇒ (1).
(1) ⇒ (2) If κ is of type B, then T contains an infinite path I such that all elements in κ

have itinerary I . In particular, each element in κ has infinite itinerary.
(2) ⇒ (3) Suppose that each element in κ has infinite itinerary. Let γ be a geodesic ray

starting at p that represents an element in κ . Then γ does not end in a block as otherwise,
I (γ ) = I (γ (∞)) would be a finite path.

(3) ⇒ (1): Suppose that every geodesic ray starting at p that represents an element in
κ does not end in a block. Then each element in κ has infinite itinerary by the definition of
itineraries of geodesic rays. It remains to show that κ does not contain two elements with
distinct itineraries. Assume for a contradiction that there are two distinct geodesic rays α and
β starting at p such that α(∞), β(∞) ∈ κ and I (α) 
= I (β). Then there is a wall W that
appears in one of both itineraries I (α) and I (β) but not in both. By Corollary 4.10, there is
a geodesic ray γ ⊆ W such that γ (∞) ∈ κ . Let γp be the unique geodesic ray starting at p
that is asymptotic to γ . By Lemma 2.19, I (γ (∞)) is a finite path. Thus, κ contains at least
one element with finite itinerary. By definition of itineraries, such a geodesic ray ends in a
block– a contradiction. ��

We are now able to prove the following theorem which directly implies Theorem 1.9.
Since Corollary 1.10 is a direct consequence of Theorem 1.9 and Corollary 4.15 in Sect. 4.3,
the following proof will also complete the proof of Corollary 1.10.

Theorem 5.4 Let κ be a connected component of ∂∗�.

(1) If κ is of type A, then there exists a block B so that the representative of every point in κ

starting at p ends in a block B. Moreover, κ is homeomorphic to a connected component
of (∂∗B, �) endowed with the subspace topology of ∂∗�.

(2) If κ is of type B, then |κ| = 1.
(3) If κ is of type C, then it contains an equivalence class of a geodesic ray in a wall.

Figure9 summarizes the classification of connected components in Theorem 5.4.

Proof of Theorem 5.4 Let κ be a connected component of ∂∗�.

(1) Suppose that κ is of type A. Then there exists a finite path I in T such that all elements
in κ have itinerary I ; Then there exists a block B such that each geodesic ray starting at
p and representing an element in κ ends in B. In particular, every equivalence class in κ

has a representative that is contained in B, i.e. κ ⊆ (∂∗B, �). Thus, κ is homeomorphic
to a connected component of (∂∗B, �) equipped with the subspace topology of ∂∗�.

(2) Suppose that κ is of type B. Then there exists an infinite path I in T such that I (γ ) = I
for each geodesic ray γ starting at p such that γ (∞) ∈ κ . By the loneliness property
(Proposition 4.12), all geodesic rays with itinerary I are asymptotic. Hence, κ contains
only one element.
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Fig. 9 Possible types of a connected component κ of ∂∗�. The arrows denote implications valid under the
conditions of the labels at the arrows

(3) Suppose that κ is of type C. Then κ contains two points with different itineraries I1 and
I2. According to the cutset property (Corollary 4.10), κ contains the equivalence class
of a geodesic ray that is contained in a wall.

��
Remark 5.5 The content of this section is with respect to the direct-limit topology of the
Morse boundary. This does not imply the validity of the statements above for the visual
boundary. However, the methods of the proofs can be transferred to path components of
the visual boundary. In particular, the arguments used above can be repeated to confirm the
following statements. These statements are not used in this paper. However, they are useful
for studying path components and highlight the root of the ideas presented here that lies in the
paper of Croke–Kleiner [13] in which path components play an important role (see Example
7.1).

Corollary 5.6 If κ is a path component of ∂� of type B and contains a boundary point that
is Morse, then |κ| = 1.

Adjusting the arguments in the proof of Proposition 3.3, one can exchange the connected
component κ in the statment with a path c in the visual boundary. This yields a variant of
Proposition 3.3 for paths in the visual boundary. This way, one can generalize Lemma 7 in
Sect. 1.7 of [13] to:

Corollary 5.7 If a curve c : [a, b] → ∂� starts at a point c(0) of infinite itinerary I , then
I (c(t)) = I for all t ∈ [a, b] or there is a time t such that c(t) has finite itinerary.

6 Applications to RACGs

In Sect. 6.1, we will determine which totally disconnected topological spaces occur as Morse
boundaries of RACGs by applying Theorem1.4 in [9]. In Sect. 6.2, wewill complete the proof
of Theorem 1.6 by showing that each Davis complex of infinite diameter has a non-trivial
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treelike block decomposition. In Sect. 6.3, we will introduce a new graph class C consisting
of graphs that correspond to RACGs with totally disconnected Morse boundaries. We will
investigate this graph class by studying some examples of the literature.

6.1 Totally disconnected spaces arising as Morse boundaries of RACGs

In this subsection, we study which totally disconnected topological spaces arise as Morse
boundaries of RACGs.

First, we handle trivial and degenerated cases in the following remark. A suspension of a
graph � is a join of a graph consisting of two vertices and �.

Remark 6.1 (trivial and degenerated cases) If � is a clique or a non-trivial join, then W� is
empty by Lemma 1.5. Otherwise, W� contains a rank-one isometry by Corollary B in [6].
If � consists of two non-adjacent vertices, then W� is isomorphic to the infinite Dihedral
group. If � is a suspension of a clique, then W� is the direct product of the infinite Dihedral
group with a finite right-angled Coxeter group. In both cases, W� is virtually cyclic and the
Morse boundary of W� consists of two points.

For the remaining interesting cases, we will use Theorem 1.4 in [9] and I would like to
thank Matthew Cordes for his comment how to apply this theorem to RACGs. An ω-Cantor
space is the direct limit of a sequence of Cantor spaces C1 ⊂ C2 ⊂ C3 . . . such that Ci

has empty interior in Ci+1 for all i ∈ N. By [9, Thm 3.3], any two ω-Cantor spaces are
homeomorphic. We will apply the following Theorem [9, Thm 1.4].

Theorem 6.2 (Charney–Cordes–Sisto) Let G be a finitely generated group. Suppose that
∂∗G is totally disconnected, σ -compact, and contains a Cantor subspace. Then ∂∗G is either
a Cantor space or an ω-Cantor space. It is a Cantor space if and only if G is hyperbolic, in
which case G is virtually free.

Corollary 6.3 Let W� be a RACG with defining graph � whose Morse boundary is totally
disconnected. Suppose that � is not as in Remark 6.1. If � does not contain any induced
4-cycle then ∂∗W� is a Cantor space. In the remaining case, ∂∗W� is an ω-Cantor space.

Proof Suppose� is not as in Remark 6.1. An induction on the number of vertices shows that
� contains either the graph consisting of three pairwise non-adjacent vertices as induced sub-
graph or the graph consisting of an edge and a further single vertex. These graphs correspond
to special subgroups ofW� that are quasi-isometric to a tree whose vertices have a degree of
at least three. Thus, W� is not quasi-isometric to Z. In particular, W� is not virtually cyclic.

It remains the case whereW� is not virtually cyclic and contains a rank-one isometry. We
will show that the assumptions of Theorem 6.2 are satisfied. If� does not contain an induced
4-cycle, W� is hyperbolic (See [16, Thm 12.2.1, Cor 12.6.3], [19]). Then Theorem 6.2 will
imply that ∂∗W� is a Cantor space. Otherwise, if � contains an induced 4-cycle, Theorem
6.2 will imply that ∂∗W� is an ω-Cantor space.

For proving the assumptions of Theorem 6.2, we have to show that ∂∗W� is σ -compact
and contains a Cantor space as subspace. The σ -compactness follows from Proposition 3.6
in [10]. The existence of the Cantor subspace can be proven similarly as in Lemma 4.5 in
[9]: Osin [26] concluded from [31] that if a group acts properly on a proper CAT(0) space
and contains a rank-one isometry, then the group is either virtually cyclic or acylindrically
hyperbolic. As W� is not virtually cyclic, W� is acylindrically hyperbolic. Thus, Theorem
6.8 and Theorem 6.14 of [14] imply the existence of a hyperbolically embedded free group.
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By [30], this free subgroup is quasi-convex and thus stable. The Morse boundary of this
stable subgroup is an embedded Cantor space in the Morse boundary of the ambient group.

��

6.2 Block decompositions of Davis complexes

In this subsection, we prove that each Davis complex of infinite diameter has a non-trivial
treelike block decomposition. This will complete the proof of Theorem 1.6.

Recall that the RACG associated to a finite, simplicial graph � = (V , E) is the group

W� = 〈V | v2 = 1 ∀v ∈ V , uv = vu ∀ {u, v} ∈ E〉.
Let Cay(W�, V ) be the Cayley graph ofW� with respect to the generating set V . TheDavis
complex �� ofW� is the unique CAT(0) cube complex with Cay(W�, V (�)) as 1-skeleton
so that

• each 1-skeleton of a cube in �� is an induced subgraph of Cay(W�, V (�)) and
• each set of vertices in Cay(W�, V (�)) that spans an Euclidean cube is the 1-skeleton

of an Euclidean cube in ��.

See [16, p.9–14] for more details and [20, 28, 29] for general information of CAT(0) cube
complexes.

Definition 6.4 Let � be a finite simplicial graph. A subgroup of a RACG W� is special if it
has an induced subgraph of � as defining graph.

Remark 6.5 (1) The trivial graph (∅,∅) is an induced subgraph of �. The Davis complex of
(∅,∅) consists of a vertex corresponding to the identity of the trivial group.

(2) If�′ is an induced subgraph of a graph�, thenCay(W�′ , V (�′)) is an induced subgraph
of Cay(W�, V (�)). This extends to a unique isometric embedding ��′ ↪→ �� which
we call the canonical embedding of��′ into��. In the following, we identify��′ with
its image.

(3) Since g ∈ W� acts by cubical automorphisms on ��, g · ��′ is also an embedded copy
of ��′ in ��.

(4) Let �̄, �′ be two induced subgraphs of � and g, h ∈ W�. Then gW�̄ ⊆ hW�′
(resp. gW�̄ = hW�′) if and only if g−1h ∈ W�′ and �̄ ⊆ �′ (resp. �̄ = �′). See
[16, Thm 4.1.6].

Proposition 6.6 Let � be a finite, simplicial graph that can be decomposed into two distinct
proper induced subgraphs �1 and �2 with the intersection graph � = �1 ∩ �2. Let ��1 ,
��2 , �� be the canonically embedded Davis complexes of �1, �2 and � in ��. The
collection

B:={g��1 | g ∈ W�} ∪ {g��2 | g ∈ W�}
is a treelike block decomposition of ��. The collection of walls W is given by

W = {g�� | g ∈ W�}.
Proof By Remark 2.13, it suffices to show that

(1) � = ⋃
B∈B B (covering condition);

(2) every block has a parity (+) or (−) such that two blocks intersect only if they have
opposite parity (parity condition);

123



71 Page 30 of 40 Geometriae Dedicata (2023) 217 :71

(3) there is an ε > 0 such that two blocks intersect if and only if their ε-neighborhoods
intersect (ε-condition).

(1) Covering condition: By Proposition 8.8.1 of Davis in [16], W� = W�1 ∗W� W�2 .
Hence, the cosets {gW�1 | g ∈ W�} and {gW�2 | g ∈ W�} cover W�. As the one-skeleton
of �� is the Cayley graph of W�, B covers ��.

(2) Parity condition: We give parity (-) to each block of the form g��1 and parity (+)

to each block of the form g��2 . Let i ∈ {1, 2} and B1:=g1��i and B2:=g2��i two distinct
blocks of the same parity. By definition of the Davis complex, the 0-skeletons of B1 and B2

are the coset g1W�i and g2W�i . As B1 and B2 are two distinct blocks, g1W�i 
= g2W�i .
Hence, g1W�i ∩g2W� j = ∅. Thus, the 0-skeletons of B1 and B2 don’t intersect. This implies
that B1 ∩ B2 = ∅. Indeed, by Remark 6.5, the blocks B1 and B2 are isometric to the Davis
complex of W�i . Hence, if a set of vertices in Cay(W�i , V (�i )) spans an Euclidean cube,
then it spans a cube in Bj , j ∈ {1, 2} and on the other hand, each 1-skeleton of a cube in Bj

is an induced subgraph of Cay(W�i , V (�i )). Thus, B1 and B2 intersect if and only if their
0-skeletons intersect.

(3) ε-condition: The proof concerns hyperplanes of CAT(0) cube complexes, see [20, 28,
29] for the definition and basic properties. Let ε ∈ (0, 1

2 ). Assume that the ε-neighborhoods
of two blocks B1, B2 ∈ B intersect. We have to show that B1 ∩ B2 
= ∅.

We observe that there is no hyperplane H that separates B1 and B2. In other words: If
we delete a hyperplane H outside of B1 ∪ B2, then B1 and B2 lie in a common connected
component of the resulting space. Indeed otherwise, each geodesic segment connecting B1

and B2 has to pass through H . As hyperplanes are equivalence classes consisting ofmidcubes,
d(x, y) ≥ 1

2 for all x ∈ B1 ∪ B2, y ∈ H . As ε < 1
2 , this implies that the ε-neighborhoods

of B1 and B2 don’t intersect—a contradiction. We conclude that there is no hyperplane H
outside of B1 ∪ B2 that separates B1 and B2. Thus, the distance of the 1-skeletons of B1 and
B2 is zero by Theorem 4.13 in [28]. In particular, B1 and B2 intersect.

It remains to show that each wall is of the form g��, g ∈ W�. Indeed, let B1:=g1��1

and B2:=g2��2 be two distinct blocks of distinct parity that have non-empty intersection.
We see as in (2) that the (0)-skeletons of B1 and B2 are the left-cosets g1W�1 and g2W�1 .
Since we can write W� as an amalgamated free product W�1 ∗W� W�2 , the intersection
g1W�1 ∩g2W�1 is a left coset ofW�, and the cube complexC spanned by the vertices in this
left coset is contained in B1 ∩ B2. Now, B1 ∩ B2 does not contain any other point in B1 ∪ B2

because each cube in Bj , j ∈ {1, 2} is spanned by vertices that are contained in g jW j . Thus,
every point x ∈ B1 ∪ B2\B1 ∩ B2 lies in a cube that is contained in at most one of the two
blocks B1 and B2. ��

As a result, Theorem 1.6 is a direct consequence of Theorem 1.9, Proposition 6.6 and Lemma
1.5.

6.3 Examples

Theorem 1.6 can be used to construct new examples of RACGs with totally disconnected
Morse boundaries. In this subsection, we first introduce a class C of graphs corresponding to
RACGs with totally disconnected Morse boundaries. The construction of this graph class is
based on the example of Charney–Sultan [10, Sec.4.2] pictured in Fig. 3. Accordingly, the
corresponding graph is contained in C. Finally, we study further important examples that
lie in C. I would like to thank Ivan Levcovitz, Jacob Russell and Hung Cong Tran for their
comments on these examples.
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Definition 6.7 (The class C of clique-square-decomposable graphs) Let C be the smallest
class of finite graphs such that

(1) each finite graph without edges is contained in C;
(2) each finite tree is contained in C;
(3) each clique is contained in C;
(4) each non-trivial join of two graphs is contained in C;
(5) the union of two graphs �1, �2 ∈ C is contained in C if �1 ∩�2 is an induced subgraph

of �1 ∪ �2 so that one of the following three conditions is satisfied:

• �1 ∩ �2 is empty.
• �1 ∩ �2 is a clique.
• �1 ∩ �2 is contained in a non-trivial join of two induced subgraphs of �1 ∪ �2.

Let � be a graph in C. If � satisfies (1) or (2) then W� is quasi-isometric to Z/2Z, Z or
to a free group of rank at least two and ∂∗W� is totally disconnected. If � satisfies (3), W�

is a finite group and ∂∗W� = ∅. If � satisfies (4), W� is the direct product of two infinite
RACGs. In this case, each geodesic ray in �� is contained in an Euclidean flat and thus,
∂∗W� = ∅. If� satisfies (5), we can decompose� into two graphs�1,�2 ∈ C satisfying the
properties listed in the definition above. If�1 and�2 satisfy (1), (2), (3) or (4) then Corollary
1.7 implies that ∂∗W� is totally disconnected. Otherwise, we repeat the same argumentation
for �1 and �2. As � is a finite graph, this algorithm ends after finitely many step. Thus, by
applying Corollary 1.7 several times we obtain

Corollary (1.8) If � ∈ C, then ∂∗W� is totally disconnected.

First, we verify that every graph constructed analogously to the example of Charney–
Sultan [10, Sec.4.2] pictured in Fig. 3 is contained in C.

Definition 6.8 Afinite, connected graph� is called aCharney-Sultan-graph if� is the union
of two distinct proper induced subgraphs C and J so that C is a cycle of length at least 5 and
J is a non-trivial join of two induced subgraphs of �.

Lemma 6.9 Every Charney-Sultan-graph is contained in C.

Proof Suppose that � is a Charney-Sultan graph. Then � is the union of a cycle C and a
non-trivial join J . If J contains all the vertices of C , � coincides with J and is contained in
C.

If J does not contain all vertices of C , C contains a path P of length at least two that
connects two vertices in J so that no inner vertex of P is contained in J . Let �′ be the
graph that we obtain by removing the inner vertices of P from �. Then � = �′ ∪ P and
�′∩P consists of the two non-adjacent end vertices of P . These end vertices form an induced
subgraph of � that is contained in the join J . If �′ ∈ C then � ∈ C as union of a graph in C
and a non-trivial join. Thus, it remains to show that �′ ∈ C.

Let C ′ be the subgraph of C that we obtain by removing the inner vertices of P . Then
�′ = C ′ ∪ J . If C ′ ∩ J = J , �′ is contained in C as non-trivial join. Otherwise, C ′ ∩ J is a
proper subgraph of the join J . As C and J are induced subgraphs of �, C ′ ∩ J is an induced
subgraph of �′. Thus, �′ is contained in C as the union of a path and a non-trivial join. ��

Next, we examine the graph class C by studying so-called CFS graphs. The four-cycle
graph �4 of a graph � is a graph whose vertices are the induced cycles of length four. Two
vertices of �4 are connected by an edge if the corresponding 4-cycles have a pair of vertices
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in common that are not adjacent in �. The support of a subgraph K of �4 is the set of
vertices of � that are contained in a 4-cycle corresponding to a vertex of K . The following
is a generalization in [2] of the original definition of Dani–Thomas [15].

Definition 6.10 (CFS) A graph � is CFS if it is a join of two graphs � and K where �

is a non-trivial subgraph of � and K is a clique (it is allowed that this clique is trivial, i.e.,
(∅,∅)) so that �4 has a connected component whose support coincides with the vertex set
V (�) of �.

Intuitively, a CFS graph � contains a lot of induced 4-cycles. One could expect that W�

has totally disconnected Morse boundary. However, an example of Behrstock [1] shows that
this is wrong in general. On the other hand, Nguyen–Tran [25] used an approach similar to
this paper for proving that theMorse boundary ofW� is totally disconnected if� is contained
in the following graph class CFS0 ⊆ CFS.

Definition 6.11 Let CFS0 be the class of all graphs that are CFS, connected, triangle-free,
planar, having at least 5 vertices and no separating vertices or edges.

On page 3 in [33], Nguyen–Tran conclude the following result from their considerations:

Theorem 6.12 (Nguyen–Tran) If � ∈ CFS0, then ∂∗W� is totally disconnected.

It turns out that our theorem includes their result in view of the following proposition:

Proposition 6.13 CFS0 ⊆ C.

Proof In Proposition 3.11 of [25], Nguyen–Tran prove that each � ∈ CFS0 decomposes as
a tree of graphs G so that each vertex of G corresponds to a non-trivial join of two graphs
consisting of two and three vertices respectively and so that each edge of G corresponds to
an induced 4-cycle in �. Thus, � can be obtained by starting with a non-trivial join and
adding finitely many non-trivial joins to it. Unlike Nguyen–Tran, we allow to add not only
non-trivial joins and cliques but also other more sophisticated graphs. Hence, CFS0 ⊆ C. ��

The class C is substantially larger than the class CFS0. The following lemma shows
that C contains graphs corresponding to RACGs with polynomial divergence of arbitrary
high degree. In contrast, each graph in CFS0 ⊆ CFS corresponds to a RACG of quadratic
divergence. Indeed, Dani–Thomas [15] proved that a triangle-free graph � is CFS if and
only if W� has quadratic divergence, and Levcovitz [22, Thm 7.4] proved this statement for
general graphs.

Lemma 6.14 For every d ∈ N, the graph class C contains a graph associated to a RACG
whose divergence is of polynomial degree d.

Proof Dani-Thomas proved [15] that the graphs �i in Fig. 10 correspond to RACGs with
polynomial divergence of degree i , i ∈ N. Each graph �i can be decomposed into a non-
trivial join and a tree as shown in Fig. 11. Each graph in the upper row of Fig. 11 is a non-trivial
join and each graph in the lower row in Fig. 11 is a tree. Thus, �i ∈ C for all i ∈ N. ��
Remark 6.15 The graphs�i , i ≥ 3, in Fig. 10 correspond toRACGswith totally disconnected
Morse boundaries that are not quasi-isometric to anyRAAG. Indeed, every right-angledArtin
group has either linear or quadratic divergence, as remarked by Behrstock [1]. Hence, if a
graph is not CFS then the corresponding RACG is not quasi-isometric to a RAAG.

123



Geometriae Dedicata (2023) 217 :71 Page 33 of 40 71

Fig. 10 Dani-Thomas [15, Thm 1.2, Sec. 5] proved that the pictured graphs �i , i ∈ N correspond to RACGs
with polynomial divergence of degree i

Fig. 11 Decomposition of the graphs in Fig. 10 showing that each graph �i is contained in C

Fig. 12 The defining graph of a
RACG studied by Ben-Zvi in [3,
Ex. 2.3]. This graph is contained
in C \ CFS0

Another interesting example is the graph pictured in Fig. 12 that was studied by Ben-Zvi.

Lemma 6.16 The graph � pictured in Fig.12 is contained in C\CFS0.

Proof Let �1 and �2 be the two subgraphs of � pictured in Fig. 13.
Then the intersection� of�1 and�2 is a 4-cycle,marked bold in the figure. The subgraphs

�1 and �2 are Charney–Sultan graph. The intersection graph � is an induced 4-cycle of �.
In particular, it is contained in a non-trivial join. Hence, � is contained in C.

It remains to show that � /∈ CFS0. The graph � contains one 4-cycle only and �4 does
not have a connected component whose support coincides with the vertex set V (�) of �.
Hence, � /∈ CFS and as CFS0 ⊆ CFS, � /∈ CFS0. ��

Remark 6.17 Ben-Zvi argues that W� is a CAT(0) group with isolated flats and proves that
the visual boundary of the corresponding Davis complex is path connected. Among other
things, the graph � was studied by Ben-Zvi for the following reason:

Let �1 and �2 be the two graphs pictured in Fig. 14 and � = �1 ∩ �2. The graph �

consists of two vertices. See Fig. 14. Ben-Zvi observes that the virtual Z
2 corresponding

Fig. 13 A decomposition of the graph pictured in Fig. 12. The intersection graph is a 4-cycle obtained by
gluing together the pair of bold 4-cycles shown
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Fig. 14 A decomposition of the
graph in Fig. 12. The intersection
graph consists of two vertices
obtained by gluing together the
pair of bold vertices shown

Fig. 15 Decomposition of the graph � in the left upper corner that was studied in [27, Example 7.7] (see
Fig. 1). The Decomposition shows that � is contained in C as � can be obtained as follows: start with the
4-cycle at the bottom right and successively glue the green graphs along the subgraphs marked in red

to the four-cycle in the middle is hidden if we write W� as W� = W�1 ∗W� W�2 . In the
block decomposition corresponding to this splitting, two geodesic rays might go through
the same sequence of hyperbolic planes corresponding to W�1 and W�2 but their rays are
not asymptotic. In other words, there might be pairs of distinct points in the visual boundary
having the same infinite itinerary.We have proven in Proposition 4.12 that such an unpleasant
situation does not occur among Morse geodesic rays of infinite itinerary.

For completing this section, we show that the graph � in the left upper corner in Fig. 15
(mentioned in the introduction, there Fig. 1) is contained in C. For the proof, we consider the
successive decomposition pictured in Fig. 15.

The graph � is seen in the left upper corner. We decompose � from left to right and
from above to bottom. In each second step, we decompose the graph into a green and a black
graph. The intersection of these two graphs always consists of single vertices marked by the
thick red points. These red vertices are contained either in a non-trivial join or in a clique.
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Fig. 16 The RAAG studied by Croke an Kleiner [13]

In every second step, we delete the green subgraph and continue to decompose the resulting
graph in the next step. Finally, we end up with a 4-cycle. Thus, the graph � can be obtained
as follow: Start with the 4-cycle at the bottom right and successively glue the green graphs
along the subgraphs marked in red, reading the picture from bottom to the top and from right
to left. Note that a 4-cycle is contained in C. Moreover, we glue along subgraphs that are
contained in a clique or a non-trivial join. Thus, we conclude that � ∈ C.

Remark 6.18 The graph � in the left upper corner in Fig. 15 is not planar. Thus, it is not
contained in CFS0.

Remark 6.19 Behrstock [1] investigates a graph�′ similar to� and shows that ∂∗��′ contains
a circle. This circle corresponds to an induced 5-cycle C in �′. No pair of non-adjacent
vertices of this cycleC is contained in an induced 4-cycle. In particular, no induced subgraph
of C is contained in a non-trivial join (since in a non-trivial join, any pair of non-adjacent
vertices is contained in an induced 4-cycle). Hence, no matter how often and in which way
we decompose the graph �′ along graphs that are contained in non-trivial joins or cliques,
the remaining graph will always contain C . Interestingly, it is possible to decompose �′
similarly to � so that only the 5-cycle C remains.

7 Beyond RACGs

In this section, we study applications of Theorem 1.9 that are not RACGs.

7.1 Right-angled Artin groups (RAAG)

In this subsection, we present a new proof for the result of Charney–Cordes–Sisto [9] that
every right-angled Artin group has totally disconnected Morse boundary (compare Theorem
1.1).
The right-angled Artin group (RAAG) associated to a finite, simplicial graph � = (V , E) is
the group

A� = 〈V | uv = vu ∀ {u, v} ∈ E〉.
The group A� acts geometrically on an associated CAT(0) cube complex �A

�, its Salvetti
complex. Hence, the Morse boundary of A� is the Morse boundary of �A

�.

Example 7.1 (Croke–Kleiner-space [13])
Croke–Kleiner study a right-angled Artin group (RAAG) A� whose defining graph is

pictured in Fig. 16. This group admits a splitting of the form

A� = (F2 × Z) ∗Z2 (F2 × Z).

This splitting corresponds to a treelike block decomposition of the Salvetti complex �A
�

on which A� acts geometrically. The walls in this block decomposition are Euclidean flats.
Thus, we can apply Theorem 1.9. TheMorse boundary of F2×Z is empty as F2×Z is a direct
product of two infinite CAT(0) groups. We apply Theorem 1.9 and conclude that ∂∗A� is
totally disconnected. Though the factors in the splitting of A� have empty Morse boundary,

123



71 Page 36 of 40 Geometriae Dedicata (2023) 217 :71

the Morse boundary ∂∗A� is not empty. It consists of Morse geodesic rays that don’t end in
a block. Accordingly, each connected component of ∂∗A� is of type B, i.e. each connected
component consists of an equivalence class of a geodesic ray with infinite itinerary.

ByRemark 5.5,we can use our reasoning not only to investigateMorse boundaries, but also
to investigate visual boundaries. In particular, we can rediscover known facts about the path
components of the visual boundary ∂�A

� of the Salvetti complex �A
� in the example above:

Croke–Kleiner studied the path components of the visual boundary of�A
�. They showed that

the union of block boundaries build one path component [13, Lem. 6].Moreover, each infinite
itinerary contributes a one-point path component or a path component homeomorphic to a
closed interval to the visual boundary of�A

�. In theTitsmetric, these interval path components
are in fact intervals (see [12, Lem 7.2, Cor.5.29]).
We conclude that the union of block boundaries is a path component of type C. The remaining
path components are of type B. If a path component of type B contains an equivalence class
of aMorse geodesic ray, then it consists of a point by Corollary 5.6. Accordingly, no geodesic
ray ending in an interval path component of the visual boundary �A

� is Morse.

More generally, we can transfer the line of argumentation in Sect. 6 to RAAGs by studying
Salvetti-complexes of RAAGs instead of Davis complexes of RACGs.We conclude similarly
to the case of RACGs: If� is a join of two graphs, then A� is a direct product of two RAAGs.
As eachRAAG is an infinite group, each suchRAAG is a direct product of two infiniteCAT(0)
groups. In such a case, each geodesic ray in �A

� is bounded by a Euclidean half-plane, and
A� has empty Morse boundary. Corollary B in [6] implies the following lemma:

Lemma 7.2 (Sageev–Caprace) The Morse boundary of a RAAG A� is empty if and only if
� is the join of two non-empty graphs.

Now, let � be a finite, simplicial graph that can be decomposed into two distinct proper
induced subgraphs �1 and �2 with the intersection graph � = �1 ∩ �2. Repeating the
arguments in the proof of Proposition 6.6 in the setting of RAAGs yields

Proposition 7.3 The collection B:={g�A
�1

| g ∈ A�} ∪ {g�A
�2

| g ∈ A�} is a treelike block
decomposition of �A

�. The collection of walls W is given by W = {g�A
� | g ∈ A�}.

Theorem 1.9 combined with Proposition 7.3 and Lemma 7.2 directly implies

Proposition 7.4 Suppose that � is contained in a join of two induced subgraphs of �.
Then every connected component of ∂∗�A

� is either

(1) a single point; or
(2) homeomorphic to a connected component of (∂∗�A

�i
, �A

�) equipped with the subspace

topology of ∂∗�A
� where i ∈ {1, 2}.

By means of Corollary 4.15 we obtain

Corollary 7.5 Suppose that the assumptions of Proposition 7.4 are satisfied.
If (∂∗��1 , �

A
�) and (∂∗��2 , �

A
�) equipped with the subspace topology of ∂∗�A

�1
and

∂∗�A
�2

are totally disconnected then ∂∗�A
� is totally disconnected.

We are now able to present a new proof for the result of Charney–Cordes–Sisto [9] that
every right-angled Artin group has totally disconnected Morse boundary (compare Theorem
1.1).
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Theorem 7.6 (Charney–Cordes–Sisto) Every right-angled Artin group has totally discon-
nected Morse boundary.

Proof As disconnected graphs correspond to free poducts of right-angled Artin groups, it
suffices to show that every connected graph corresponds to a RAAGwith totally disconnected
Morse boundary.
Let � be a connected graph. We prove that ∂∗�A

� is totally disconnected by decomposing �

wisely and applying Corollary 7.5 iteratively.
If � is a clique, then ∂∗�A

� = ∅ by Lemma 7.2. Otherwise, � contains a pair of vertices v

and w that are not connected by an edge. Let �(v) be the subgraph of � that is induced by v

and all the neighbors of v. Let N (v) be the subgraph of � that is induced by all the vertices
adjacent to v. Let �v be the graph induced by V (�) − {v}. By the choice of v, �v contains
the vertex w, i.e. �v is non-trivial. As � is connected,N (v) contains at least one vertex and
so,N (v) and �(v) are non-trivial. Moreover, �v and �(v) are both proper induced subgraphs
of � so that �v ∩ �(v) = N (v) and �v ∪ �(v) = �. Finally, �(v) is the join of the graph
consisting of v and N . Thus, ∂∗�A

�(v) = ∅ by Lemma 7.2.

If ∂∗�A
�v

is totally disconnected, thenCorollary 7.5 implies that ∂∗�A
�v

is totally disconnected.

In order to prove that ∂∗�A
�v

is totally disconnected, we repeat the argumentation above with
�v except for �. Afterwards, we continue in this manner. Since we remove at every step one
further vertex from �, the remaining graph will be a clique after at most |V (�)| steps. Thus,
applying Corollary 7.5 at most |V (�)| times yields that ∂∗A� is totally disconnected. ��

7.2 Surface amalgams

In this section we study examples of surface amalgams that were examined by Ben-Zvi in
[3].

Example 7.7 (Example 2.1 in [3]) Let G1 be the fundamental group of the surface amalgam
pictured in Fig. 17. Its universal cover �1 admits a treelike block decomposition in blocks
that are Euclidean and hyperbolic planes corresponding to the two-torus T2 on the left and
the torus T1 on the right. As in the example of Charney–Sultan pictured in Fig. 3, one can
argue that the relative Morse boundary (∂∗T̃2, �1) of the universal cover of the two-torus T̃2
on the left endowed with the subspace topology ∂∗T̃2 is totally disconnected. The relative
Morse boundary (∂∗T̃1, �1) of the universal cover of the torus T̃1 on the right is empty. By
Corollary 1.10, the Morse boundary of G1 is totally disconnected.

Remark 7.8 Ben-Zvi shows that the group G1 is a CAT(0) group with isolated flats and that
∂�1 is path-connected. The isolated flat property implies that two rays passing through the
same infinite collection of hyperbolic or Euclidean planes are asymptotic. So, in this example,
Proposition 4.12 is also true for non-Morse geodesic rays of infinite itinerary. Note that such
non-Morse geodesic rays exist. Indeed, there are geodesic rays γ passing through an infinite

Fig. 17 Example 2.1 in [3]: A
torus and a genus 2 surface
identified along the curves x and
y
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Fig. 18 Example 2.2 in [3]: The
maximal peripheral splitting of
G2

Fig. 19 Example 2.2 in [3]: Two tori with boundary components that we identify via [a, b]2 = [c, d]2

collection of hyperbolic and Euclidean planes (En)n∈N that spend more and more time in the
Euclidean planes meaning that length(γ ([0,∞)) ∩ En) increases with n → ∞. Such rays
are not Morse.

Example 7.9 (Example 2.2 in [3]) LetG2 be the fundamental group of two tori with boundary
components identified as shown in Fig. 19. By applying Theorem 1.9 twice, we prove that
∂∗G2 is totally disconnected: The identification of [a, b]2 and [c, b]2 creates a Klein bottle
group K generated by [a, b] and [c, d] and G2 admits the splitting as in Fig. 18. Like Ben-
Zvi [3], we use the equivariant gluing theorem of Bridson–Haefliger [5, Thm. II.11.18] for
constructing a CAT(0) space �2 on which G2 acts geometrically: First, we take Euclidean
planes for the Klein bottle group and trunked hyperbolic planes for the free groups generated
by a and b and glue them together as in the equivariant gluing theorem of Bridson–Haefliger.
Thisway,weobtain a space�′

2 onwhich the groupG
′ = 〈a, b〉×〈[a,b]〉×K acts geometrically.

This space is a CAT(0) space with a treelike block decomposition. Its blocks consist of
Euclidean planes corresponding to the Klein bottle group and trunked hyperbolic planes
corresponding to the free groups. As theKlein bottle group is virtuallyZ

2, itsMorse boundary
is empty and no wall of �′

2 contains a Morse geodesic ray. Since the Morse boundary of F2
is a Cantor set and the Morse boundary of K is empty, Corollary 1.10 implies that the Morse
boundary of �′

2 is totally disconnected.
Now, we construct the space �2 on which the group G2 acts geometrically. For that

purpose, we glue copies of �′
2 along bi-infinite geodesic rays corresponding to Z = 〈[c, d]〉

to copies of trunked hyperbolic planes corresponding to the free group F2 = 〈c, d〉 as in the
equivariant gluing theorem of Bridson–Haefliger. This way, we obtain a CAT(0) space with a
treelike block decomposition where each wall is a bi-infinite geodesic ray that is contained in
a subspace corresponding to the Kleinian group K . Hence, no wall contains aMorse geodesic
ray and the Morse boundary of G2 is totally disconnected by Corollary 1.10.

Remark 7.10 Ben-Zvi shows that G2 is a CAT(0) group with isolated flats and that the visual
boundary of �2 is path-connected.

Example 7.11 (Examples arising from the equivariant gluing theorem of Bridson–Haefliger)
The spaces arising from the equivariant gluing theorem [5, Theorem II.11.18] of Bridson–
Haefliger are CAT(0) spaces with a treelike block decompositions on which amalgamated
free products of CAT(0) groups act geometrically as observed by Ben-Zvi in Example 6.8
in [3]. Thus, many other examples can be constructed to which Theorem 1.9 and Corollary
1.10 can be applied.

123



Geometriae Dedicata (2023) 217 :71 Page 39 of 40 71

Acknowledgements This paper is part of my dissertation at the Karlsruhe Institute of Technology and I thank
my supervisor Petra Schwer for accompanying the process of my dissertation. I am grateful for the support of
my second supervisor Tobias Hartnick, especially for his help with this paper. I would like to thank Matthew
Cordes, Nir Lazarovich, Ivan Levcovitz, Michah Sageev and Emily Stark for everything I learned from them
and their helpful advice on this paper and beyond during and after my stay at the Technion in Haifa in 2018. I
thank Pallavi Dani, Thomas Ng and my PhD collegues Marius Graeber, Leonid Grau, Julia Heller and Kevin
Klinge for helpful discussions. Also, I thank Ruth Charney, Jacob Russell and Hung Cong Tran for their
comments and Elia Fioravanti for finding an error in the earlier drafts of this paper. Moreover, I thank the
referee for his helpful comments. Finally, I acknowledge funding of the Deutsche Forschungsgemeinschaft
(DFG 281869850, RTG 2229), the Karlsruhe House of Young Scientists (KHYS), and the Israel Science
Foundation (grant no. 1562/19).

Funding Financial support was received from the Deutsche Forschungsgemeinschaft (DFG 281869850, RTG
2229). Moreover, the Karlsruhe House of Young Scientists (KHYS) funded the research stay in 2018 leading
to key-ideas of this paper. Finally, the research leading to these results received funding from the Israel Science
Foundation (Grant No. 1562/19) in 2020–2022.

Data availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

Employment and competing interests (1) WS2016 - SS2020: Karlsruhe Institute of Technology, Department
of Mathematics, Karlsruhe, Germany; a big part of the paper arose here as a member of the research training
group 2229Asymptotic Invariants and Limits of Groups and Spaces; (2) SS 2028: research stay at the Technion
- Israel Institute of Technology, Department of Mathematics, Israel; a big part of the paper arose here; (3)
2020-2022: Technion - Israel Institute of Technology, Department of Mathematics, Israel; I finished the paper
here; (4) Since summer 2022: McGill University, Department of Mathematics and Statistic, Canada;

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Behrstock, J.: A counterexample to questions about boundaries, stability, and commensurability. In:
Beyond Hyperbolicity Bd.454, S. 151–159. Cambridge Univ. Press, Cambridge (2019)

2. Behrstock, J., Falgas-Ravry, V., Hagen, M.F., Susse, T.: Global structural properties of random graphs.
Int. Math. Res. Not. IMRN 5, 1411–1441 (2018). https://doi.org/10.1093/imrn/rnw287

3. Ben-Zvi, M.: Boundaries of groups with isolated flats are path connected. arXiv:1909.12360 (2019)
4. Ben-Zvi,M., Kropholler, R.: Right-angledArtin group boundaries. Proc. Am.Math. Soc. 149(2), 555–567

(2021). https://doi.org/10.1090/proc/15261
5. Bridson, M. R., Haefliger, A.: Grundlehren derMathematischenWissenschaften [Fundamental Principles

of Mathematical Sciences]. Bd.319: Metric Spaces of Non-positive Curvature, xxii+643 S. Springer,
Berlin. https://doi.org/10.1007/978-3-662-12494-9

6. Caprace, P.-E., Sageev,M.: Rank rigidity for CAT(0) cube complexes. Geom. Funct. Anal. 21(4), 851–891
(2011). https://doi.org/10.1007/s00039-011-0126-7

7. Cashen, C.H.: Quasi-isometries need not induce homeomorphisms of contracting boundaries with the
Gromov product topology. Anal. Geom. Metr. Spaces 4(1), 278–281 (2016). https://doi.org/10.1515/
agms-2016-0011

8. Cashen, C.H., Mackay, J.M.: A metrizable topology on the contracting boundary of a group. Trans. Am.
Math. Soc. 372(3), 1555–1600 (2019). https://doi.org/10.1090/tran/7544

9. Charney,R., Cordes,M., Sisto,A.:Complete topological descriptions of certainMorse boundaries.Groups
Geom. Dyn. 17(1), 157–184 (2023). https://doi.org/10.4171/ggd/669

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/imrn/rnw287
http://arxiv.org/abs/1909.12360
https://doi.org/10.1090/proc/15261
https://doi.org/10.1007/978-3-662-12494-9
https://doi.org/10.1007/s00039-011-0126-7
https://doi.org/10.1515/agms-2016-0011
https://doi.org/10.1515/agms-2016-0011
https://doi.org/10.1090/tran/7544
https://doi.org/10.4171/ggd/669


71 Page 40 of 40 Geometriae Dedicata (2023) 217 :71

10. Charney, R., Sultan, H.: Contracting boundaries of CAT(0) spaces. J. Topol. 8(1), 93–117 (2015). https://
doi.org/10.1112/jtopol/jtu017

11. Cordes, M.: Morse boundaries of proper geodesic metric spaces. Groups Geom. Dyn. 11(4), 1281–1306
(2017). https://doi.org/10.4171/GGD/429

12. Croke, C.B., Kleiner, B.: The geodesic flow of a nonpositively curved graph manifold. Geom. Funct.
Anal. 12(3), 479–545 (2002). https://doi.org/10.1007/s00039-002-8255-7

13. Croke, C.B., Kleiner, B.: Spaces with nonpositive curvature and their ideal boundaries. J. Topol. 39(3),
549–556 (2000). https://doi.org/10.1016/S0040-9383(99)00016-6

14. Dahmani, F., Guirardel, V., Osin, D.: Hyperbolically embedded subgroups and rotating families in groups
acting on hyperbolic spaces. Mem. Am. Math. Soc. 245(1156), 152 (2017). https://doi.org/10.1090/
memo/1156

15. Dani, P., Thomas, A.: Divergence in right-angled Coxeter groups. Trans. Am. Math. Soc. 367(5), 3549–
3577 (2015). https://doi.org/10.1090/S0002-9947-2014-06218-1

16. Davis, M.W.: London Mathematical Society Monographs Series. Bd.32: The Geometry and Topology of
Coxeter Groups, , xvi+584 S. Princeton University Press, Princeton, NJ (2008)

17. Genevois, A.: Hyperbolicities inCAT(0) cube complexes. Enseign.Math. 65(1–2), 33–100 (2020). https://
doi.org/10.4171/lem/65-1/2-2

18. Graeber, M., Karrer, A., Lazarovich, N., Stark, E.: Surprising circles in Morse boundaries of right-angled
Coxeter groups. Topol. Appl. 294, 107645 (2021)

19. Gromov, M.: Hyperbolic groups. In: Essays in Group Theory Bd.8, S. 75–263. Springer, New York,
(1987)

20. Haglund, F., Wise, D.T.: Special Cube Complexes. Geom. Funct. Anal. 17(5), 1551–1620 (2008). https://
doi.org/10.1007/s00039-007-0629-4

21. Incerti-Medici, M.: Comparing topologies on the Morse boundary and quasi-isometry invariance. Geom.
Dedicata 212, 153–176 (2021). https://doi.org/10.1007/s10711-020-00553-3

22. Levcovitz, I.: Divergence of CAT(0) cube complexes and Coxeter groups. Algebr. Geom. Topol. 18(3),
1633–1673 (2018). https://doi.org/10.2140/agt.2018.18.1633

23. Mooney, C.: Generalizing the Croke-Kleiner Construction. Topol. Appl. 157, 1168–1181 (2010). https://
doi.org/10.1016/j.topol.2010.02.007

24. Munkres, J.R.: Topology, xvi+537 S. Prentice Hall Inc, Upper Saddle River, NJ (2000)
25. Nguyen, H.T., Tran, H.C.: On the coarse geometry of certain right-angled Coxeter groups. Algebr. Geom.

Topol. 19(6), 3075–3118 (2019). https://doi.org/10.2140/agt.2019.19.3075
26. Osin, D.: Acylindrically hyperbolic groups. Trans. Am. Math. Soc. 368(2), 851–888 (2016). https://doi.

org/10.1090/tran/6343
27. Russell, J., Spriano, D., Tran, H.C.: Convexity in hierarchically hyperbolic spaces. accepted to Algebraic

Geom. Topol., e-print available at: arXiv: 1809.09303 (2018)
28. Sageev,M.: Ends of group pairs and non-positively curved cube complexes. Proc. Lond.Math. Soc. 71(3),

585–617 (1995). https://doi.org/10.1112/plms/s3-71.3.585
29. Sageev, M.: CAT(0) cube complexes and groups. In: Geometric group theory Bd.21, , S. 7–54. Amer.

Math. Soc., Providence, RI (2014)
30. Sisto, A.: Quasi-convexity of hyperbolically embedded subgroups. Math. Z. 283(3–4), 649–658 (2016).

https://doi.org/10.1007/s00209-016-1615-z
31. Sisto, A.: Contracting elements and random walks. J. Reine Angew. Math. 742, 79–114 (2018). https://

doi.org/10.1515/crelle-2015-0093
32. Sultan, H.: Hyperbolic quasi-geodesics in CAT(0) spaces. Geom. Dedicata 169, 209–224 (2014). https://

doi.org/10.1007/s10711-013-9851-4
33. Tran, H.C.: On strongly quasiconvex subgroups. Geom. Topol. 23(3), 1173–1235 (2019). https://doi.org/

10.2140/gt.2019.23.1173
34. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River, NJ (2001)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1112/jtopol/jtu017
https://doi.org/10.1112/jtopol/jtu017
https://doi.org/10.4171/GGD/429
https://doi.org/10.1007/s00039-002-8255-7
https://doi.org/10.1016/S0040-9383(99)00016-6
https://doi.org/10.1090/memo/1156
https://doi.org/10.1090/memo/1156
https://doi.org/10.1090/S0002-9947-2014-06218-1
https://doi.org/10.4171/lem/65-1/2-2
https://doi.org/10.4171/lem/65-1/2-2
https://doi.org/10.1007/s00039-007-0629-4
https://doi.org/10.1007/s00039-007-0629-4
https://doi.org/10.1007/s10711-020-00553-3
https://doi.org/10.2140/agt.2018.18.1633
https://doi.org/10.1016/j.topol.2010.02.007
https://doi.org/10.1016/j.topol.2010.02.007
https://doi.org/10.2140/agt.2019.19.3075
https://doi.org/10.1090/tran/6343
https://doi.org/10.1090/tran/6343
http://arxiv.org/abs/1809.09303
https://doi.org/10.1112/plms/s3-71.3.585
https://doi.org/10.1007/s00209-016-1615-z
https://doi.org/10.1515/crelle-2015-0093
https://doi.org/10.1515/crelle-2015-0093
https://doi.org/10.1007/s10711-013-9851-4
https://doi.org/10.1007/s10711-013-9851-4
https://doi.org/10.2140/gt.2019.23.1173
https://doi.org/10.2140/gt.2019.23.1173

	Right-angled Coxeter groups with totally disconnected Morse boundaries
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 RACGs with totally disconnected Morse boundaries
	1.3 CAT(0) spaces with a treelike block decomposition that have totally disconnected Morse boundaries
	1.4 Beyond RACGs
	1.5 Organization of the paper

	2 CAT(0) spaces with treelike block decompositions
	2.1 Notation concerning simplicial graphs
	2.2 Definitions and basic properties
	2.3 Itineraries

	3 The visual boundary of every wall behaves like a cutset
	3.1 The visual boundary of a CAT(0) space
	3.2 The cutset property

	4 Key properties of the Morse boundary
	4.1 From the visual boundary to the Morse boundary
	4.2 Loneliness of Morse geodesic rays with infinite itinerary
	4.3 Relative Morse boundaries of convex subspaces

	5 Proof of Theorem 1.9
	6 Applications to RACGs
	6.1 Totally disconnected spaces arising as Morse boundaries of RACGs
	6.2 Block decompositions of Davis complexes
	6.3 Examples

	7 Beyond RACGs
	7.1 Right-angled Artin groups (RAAG)
	7.2 Surface amalgams

	Acknowledgements
	References




