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ABSTRACT: For the calculation of anharmonic contributions to 
free energy barriers, constrained thermodynamic λ-path integration 
(λ-TI) from a harmonic reference force field to density functional 
theory is presented as an alternative to the established Blue Moon 
ensemble method (ξ-TI), in which free energy gradients along the 
reaction coordinate ξ are integrated. With good agreement in all 
cases, the λ-TI method is benchmarked against the ξ-TI method 
for several reactions, including the internal CH3 group rotation in 
ethane, a nucleophilic substitution of CH3Cl, a retro-Diels−Alder 
reaction, and a proton transfer in zeolite H-SSZ-13. An advantage
of λ-TI is that one can use virtually any reference state to compute anharmonic contributions to reaction free energies or free energy
barriers. This is particularly relevant for catalysis, where it is now possible to compute anharmonic corrections to the free energy of a
transition state relative to any reference, for example, the most stable state of the active site and the reactants in the gas phase. This is
in contrast to ξ-TI, where free energy barriers can only be computed relative to an initial state with all reactants coadsorbed. Finally,
the Bennett acceptance ratio method combined with λ-TI is demonstrated to reduce the number of required integration grid points
with tolerable accuracy, favoring thus λ-TI over ξ-TI in terms of computational efficiency.

1. INTRODUCTION
The accurate quantification of anharmonicity on the molecular 
scale, defined a s d eviation f rom t he h armonic oscillator 
approximation, represents one of the grandest challenges in 
computational heterogeneous catalysis, w ith particular rele-
vance for supported metal nanoparticles, confinement effects in 
zeolites, and solid−liquid interfaces.1,2 Disappointingly, despite 
the know n significance o f a nharmonicity�oftentimes esti-
mated on the basis of density functional theory (DFT) and 
molecular dynamics (MD)�relatively few studies provide 
more than a rough estimate for entropy and free energy 
contributions. In comparison, anharmonicity is relatively well 
explored for solid materials.3−9

Yet, free energies for anharmonic systems of catalytic 
relevance can be computed by several procedures. Typically, 
these procedures determine either the free energy of a single 
thermodynamic state locally or the free energy difference 
between two thermodynamic states by following the 
connecting continuous path on the free energy surface. In 
the former case, many procedures aim to improve the accuracy 
for stationary states on the potential energy surface. For use in 
the so-called static approach, which is based on local topology 
of the potential energy surface close to the stationary point of 
interest, approximations to the partition functions of hindered 
translators and hindered internal rotors for molecules and 
adsorbates have been developed10−14 that avoid time-
consuming explicit sampling of configuration s pace. Not only 
do these assumptions and simplifications r equire prior

knowledge about the mobility of the system components,
but their reliability also strongly depends on the thermody-
namic conditions. For instance, a comparison of predictions by
the harmonic oscillator, hindered, and free translator
approximations with the complete potential energy sampling
approach has shown that none of the simple approximations is
reliable for modeling adsorbates over a wide range of
temperatures.15 Other ideas improve the harmonic oscillator
approximation by adapting the force constants using quasi-
harmonic or effective harmonic approximations.4,16−19 In a
rather involved correction to the static approach, anharmonic
vibrational partition functions have been determined by solving
one-dimensional Schrödinger equations defined for the
potential energies explicitly sampled along individual vibra-
tional eigenmodes expressed in terms of internal coordi-
nates.20−24 Thermodynamic integration (TI)25−27 along
temperature and Hamiltonian-based λ-paths28−33 has been
used to study crystalline systems8,34−36 and phase transi-
tions.18,37−41 In particular, TI from Debye models to fully
interacting crystalline systems42,43 is conceptually similar to the
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method reported in this work, where we present a more
generally applicable TI method from harmonic reference
systems to fully interacting DFT-based systems. Local methods
for individual thermodynamic states aside, the second type of
procedures computes free energy differences between two
states using TI or similar schemes based on multistage
sampling. Methods of this kind, like umbrella sampling44−46

or the Blue Moon ensemble method described by Ciccotti et
al.,47−49 can be employed routinely to calculate free energy
barriers under consideration of anharmonicity as simulated by
DFT-based MD. While these methods are designed for the
investigation of rare events, such as the event of passing
through a transition state (TS) of a chemical reaction or phase
transition, they also depend on contributions from inter-
mediate states located along the reaction coordinate ξ
connecting the reactant state and the TS. Thereby obtained
free energy differences can hardly be referenced to arbitrary
states outside the transformation path considered. For
example, the calculation of a free energy barrier for a reaction
near the end of an extended reaction cascade relative to the
state of the initial reactants would require integration along all
reactions from the beginning to that barrier, which is very
time-consuming and exhibits an unfavorable accumulation of
the statistical error, which increases with the length of the path
taken.50

To calculate the anharmonic correction to the harmonic
approximation for adsorption free energy, we have reported a
method harnessing thermodynamic λ-path integration (λ-TI)
of DFT-based MD using curvilinear coordinates. Instead of
integrating along the reaction coordinate ξ, λ-TI integrates
along a progressive parameter λ that couples a harmonic
reference force field with DFT. This independence from a
continuous path on the free energy surface makes λ-TI also
interesting when applied to reaction barriers; for example,
selected barriers in an expanded reaction network could be
corrected by anharmonic contributions relative to arbitrary
reactant states. To this end, we now demonstrate how our λ-TI
method can be applied to the constrained ensemble of a TS.
We furthermore present λ-TI as an alternative to the
established Blue Moon ensemble method,47−49 which we
dub ξ-TI to emphasize its similarity to the λ-TI method
presented in this work. For simple reactions with known ξ, the
λ-TI and ξ-TI methods are directly compared. The overall aim
of this study is to show how to extract a free energy barrier�a
fundamental property bearing information on the reaction
rate�using the λ-TI method. Finally, an unorthodox
application of the Bennett acceptance ratio (BAR) method51,52

is demonstrated to eliminate the number of required
integration grid points with tolerable accuracy.

2. METHODS
2.1. Summary of the Thermodynamic λ-Path Inte-

gration in Internal Coordinates. In this section, we briefly
recapitulate the thermodynamic λ-path integration (λ-TI)
method with a harmonic reference, formulated in terms of
internal coordinates that we introduced in our previous work.53

We motivated our choice of the harmonic reference system
through the popularity of the harmonic approximation in
heterogeneous catalysis and adsorption thermodynam-
ics.21−23,54−59

For a fully interacting system 1, we express its Helmholtz
free energy A1 as

A A Ax x1 0, 0, 1= + (1)

where A0,x is the free energy of a reference system 0 being
harmonic in Cartesian coordinates x and ΔA0,x→1 is the
remaining difference, defined as
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In eq 2, Qα = M∫ dp dq k Texp( / )B is the partition
function of system α defined by Hamiltonian , M is a
normalization constant common to both systems (but
otherwise irrelevant for the present discussion), T is the
temperature, and kB is the Boltzmann constant. As discussed in
our previous work,53 the harmonic reference system can be
chosen arbitrarily and does not necessarily coincide with the
true harmonic approximation of the state at hands. This choice
will, however, influence the sampling efficiency. We derive the
harmonic reference system from the Hessian matrix obtained
through finite differences in x at the DFT level of theory, and,
for numerical reasons, we increase all eigenvalues lower than a
certain limit, typically 1 or 2 eV·Å−2, to that limit while
preserving the original eigenvectors. In this work, the quasi-
classical free energy expression for the harmonic reference
system was used, expressed as60
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where Ael(x0) is the electronic free energy for the minimum
energy configuration of the reference system with atomic
position vector x0, Nvib represents the number of vibrational
modes i with real angular frequencies ωi, and ℏ is the Planck
constant divided by 2π. We chose the quasi-classical expression
to ensure consistency with the benchmark ξ-TI method that
utilizes DFT-based MD with classical nuclear degrees of
freedom. We note, however, that the quantum mechanical
formula61 for A0,x can be a more suitable choice in some
applications, like reactions at very low temperatures.
Introducing a second reference system that is harmonic in

rotationally and translationally invariant internal coordinates q
with free energy A0,q, we express ΔA0,x→1 according to

A A Ax x q q0, 1 0, 0, 0, 1= + (4)

The relations between the true harmonic approximation (HA)
to the free energy, the free energies of the reference systems
harmonic in x and q, and the anharmonic system are illustrated
in Scheme 1. The terms ΔA0,x→0,q = A0,q − A0,x and ΔA0,q→1 =
A1 − A0,q can be obtained from

A V Vd
0

1
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(5)

using numerical integration over the coupling parameter λ with
one MD simulation per grid point. The placeholders are α =
0,x and β = 0,q for the transformation between harmonic force
fields, or α = 0,q and β = 1 for the transformation between the
system harmonic in q and the fully interacting system. The
term ⟨···⟩λ stands for the NVT ensemble average of the
enclosed quantity, given by the Hamiltonian

(1 )= + (6)

Corresponding to just a force field-to-force field transformation
requiring no extra quantum mechanical calculations, the free



energy difference between the two harmonic reference systems,
ΔA0,x→0,q, can be computed numerically at low cost. Moreover,
this contribution is typically (but not always) small53 and can
often be neglected.
The harmonic reference system with Hessian matrix H x,

determined as described above, is used to compute ωi in eq 3
as well as the harmonic force fields
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The Hessian matrices in x and q are related via the
transformations
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valid for stationary points (x0 and, correspondingly, q0 =

q(x0)), where B and A are the Wilson B-matrix62 Bij
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and its Moore−Penrose pseudo-inverse, respectively.62,63
2.2. Harmonic Reference Systems with Holonomic

Constraints. Now we introduce a harmonic reference system
with one holonomic constraint ξ(x) = ξ′. Note that the
procedure described here can be generalized to systems with
multiple independent constraints in a straightforward manner.
First, let us express the ratio
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where the term P( )
p q q

i
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the probability density of ξ in the NVT ensemble driven by
Hamiltonian i. As before, the placeholders are α = 0,x and β
= 0,q for the transformation between harmonic force fields, or
α = 0,q and β = 1 for the transformation between the system
harmonic in q and the fully interacting system. Upon inserting
the final formula from eq 11 into eq 2, we obtain the following
useful expression:
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The term ΔAα→β(ξ′) = −kBTln
p q q
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is the free energy difference between the systems α and β with
ξ(x) fixed at the value ξ′. This term can be obtained in
constrained λ-TI MD simulations using the SHAKE
algorithm:64
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Equation 13 results from eq 5 by applying the following
relation47 between the unconstrained (⟨O⟩) and the con-
strained (⟨O⟩ξ) averages:
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with Z being the inverse mass metric tensor, defined as
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where mi is the mass of atom i and μ is the component of the
Cartesian position vector x. The terms Pi(ξ′) can easily be
obtained from the histogram approximation in a straightfor-
ward MD simulation. Equation 12 represents a very appealing
alternative to eq 2, since it allows us to “lock”, by a suitable
choice of the constraint, slow degrees of freedom, such as the
hindered translations or rotations, that cause large and slowly
fluctuating changes in V1 − V0.
Using eq 13 entails introducing constrained harmonic force

fields (eqs 7 and 8), defined by a modified Hessian matrix H x,
which is obtained for a stationary point on the subspace
spanned by all coordinates orthogonal to the constraints (as
determined in a constrained relaxation), and in which the
constrained degree of freedom is projected out via65−68

H B A H A Bx
x x

x
x x

T T
0 0 0 0
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Scheme 1. Relations between the Electronic Free Energy of
the System, Its True Harmonic Free Energy (Harmonic
Approximation), and the Free Energies of the Reference
States Harmonic in Cartesian (A0,x) and Internal (A0,q)
Coordinates, and of the Anharmonic Systema

aWith the assumption of harmonicity in Cartesian coordinates,
analytical expressions for the free energy contributions in A0,x and AHA
are available (see eq 3).
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The projection requires the use of a modified Wilson B-matrix
B (and its Moore−Penrose pseudo-inverseA), where all
vectors B j were Gram−Schmidt orthogonalized with respect
to the vector Bc, corresponding to the constrained coordinate:
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The modified Hessian matrix H x is also used to determine
A0,x(ξ′) via eq 3, which when combined with eq 13 defines the
free energy of the fully interacting constrained system:

A A A A( ) ( ) ( ) ( )x x q q1 0, 0, 0, 0, 1= + + (18)

Compared to H x, the number of non-zero eigenvalues (i.e., the
number of vibrational degrees of freedom of the system) of H x

is lowered by the number of independent constraints (see
Figure 1).

2.3. Calculation of Activation Free Energy. In
transition-state theory, which we employ in this work, the
free energy of activation AR P is determined by

69
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The values ξref,R and ξ* of the reaction coordinate ξ(x)
correspond to (an arbitrarily chosen) reactant reference state
and the TS on the free energy landscape, respectively. The
term ⟨···⟩ stands for the NVT ensemble average of the
enclosed quantity. The calculation of the last term on the right-
hand side of eq 19, for brevity hereinafter labeled A freeR ref,R

,
is straightforward.69 The probability density of the reactant
reference state, P(ξref,R) = ⟨δ(ξ(x) − ξref,R)⟩, is obtained from

an unconstrained MD simulation of the reactant, while the
generalized TS velocity | *| is computed from

Z
k T1 2

1/2
B| *| =

* (20)

where the inverse mass metric tensor Z (eq 15) comes from a
constrained MD simulation for the TS.47

The two TI methods discussed in this work differ in the way
the term A

ref,R *�interpreted as reversible work needed to
shift the value of ξ(x) from ξref,R to ξ*�is determined. In the
well-established ξ-TI method, used in this work as benchmark,

A
ref,R * is determined from the integral of free energy

gradients along the reaction path ξ connecting the initial and
final states:
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The free energy gradients needed in eq 21 are deter-
mined47,48,70 by
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using constrained MD simulations with a fixed value of ξ,
where λ is the Lagrange multiplier associated with the
constraint ξ(x) = ξ′ that is used in the SHAKE algorithm.64
Consequently, the calculation of the free energy difference via
ξ-TI requires performing multiple constrained MD simulations
not only for the initial and final states but also for several states
with intermediate values of ξ. Some of these intermediate
states are likely to include structures with large atomic forces,
often resulting in uncontrolled escapes from the desired
mechanistic routes to undesired alternative reaction channels,
ruining thus sampling. In practice, the latter can be avoided by
using suitably chosen bias potentials50,71,72 which, however,
often require multiple time-consuming trial−error iterations.
Also, the presence of bias potentials always affects the sampling
of configuration space and ultimately the free energy
calculations, which is rarely accounted for in practice.
Furthermore, ξ-TI exhibits an unfavorable propagation of the
statistical error which accumulates along the path. Therefore,
when one considers a sequence of multiple elementary
reactions, the statistical uncertainty in free energy of
intermediates increases with their distance from the initial
reactant state.72 Another downside of ξ-TI is that the
anharmonicity of the reference system cannot be calculated
independently, making a reference to states in the gas phase
(e.g., as preferable in heterogeneous catalysis) difficult to
impossible.
In this work we propose to determine the term A

ref,R *

using the constrained λ-TI method detailed in Section 2.3. In
particular, we employ

A A A( ) ( )1 1 ref,Rref,R
= ** (23)

Figure 1. Harmonic vibrational density of states (VDOS) for reactant
and transition states of the substitution reaction of CH3Cl with a Cl−
anion (see more in Section 3.2). Upon projecting out the components
corresponding to the constraint (reaction coordinate ξ) from the
Hessian matrix, the number of vibrational degrees of freedom is
reduced by one. Selecting the constrained coordinate to represent the
reaction coordinate, the imaginary frequency (shown as negative
frequency) is eliminated in the case of the TS, while the remaining
part of the VDOS remains essentially unchanged, indicating that, in
this case, ξ is a pure eigenmode of the TS parallel with the imaginary
mode.
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where the terms A1(ξref,R) and A1(ξ*) are the anharmonic free
energies of the reactant reference state and TS with ξ(x) fixed
at ξref,R and ξ*, respectively, which are determined using eq 18.
The advantage of eq 23 over eq 21 lies in fact that it avoids

explicit sampling of intermediate states between the reactant
state and TS. Since the reactant state and TS are both
stationary on the free energy surface, their free energy
gradients vanish, remedying thus the problem of uncontrolled
escapes mentioned above. Furthermore, as we show in Section
4, the number of integration points used in A1 calculations of
each state can be significantly reduced (in optimal cases only
two points are needed). In favorable cases (especially reactions
involving low entropy in the reactant state and TS) this λ-TI
strategy may thus offer an improved computational efficiency
compared to the ξ-TI method. Finally, λ-TI naturally allows for
a more detailed analysis of the anharmonic contributions to the
free energy barrier, as it can distinguish the contributions from
the reactant state and TS.
In the harmonic approximation, eq 19 reduces to

A A A( ) ( )R P HA HA free,R= * (24)

where the harmonic free energies for the TS (AHA(ξ*)) and for
the unconstrained reactant (AHA(ξfree,R)) are computed
according to eq 3 using the unmodified Hessian matrix.
Additionally, reactant and transition states of molecular

systems contribute their difference in rotational and transla-
tional parts to AR P. In this work, we apply the rigid rotor
and ideal gas models61 to relaxed reactant and transition
structures.

2.4. Simulation Details. Periodic DFT calculations were
performed using the VASP code.73−76 The Kohn−Sham
equations were solved variationally in a plane-wave basis set
using the PAW method of Blöchl, as adapted by Kresse and
Joubert with standard PAW potentials.77,78 The PBE79 density
functional with D2 dispersion correction of Grimme80 (PBE-
D2) as implemented in VASP81 was applied using a plane wave
energy cutoff of 400 eV for all computations. The Brillouin-
zone sampling was restricted to the Γ-point.82 Convergence
criteria of 10−7 eV and 0.005 eV·Å−1 were applied to SCF
cycles and geometry optimizations, respectively. The same
electronic structure-related setting was used in geometry
relaxations and MD simulations. Constrained geometry
relaxations were performed using the program GADGET67,68

and automated relaxed potential energy surface scans.83 A path

passing through a single potential energy barrier connecting
reactant state with TS was ensured using the following
optimization strategy. First, the transition structure was
identified. Subsequently, the system was relaxed along the
intrinsic reaction coordinate (IRC) according to the algorithm
of Hratchian and Schlegel.84 Finally, the minimum along the
IRC, corresponding to the reactant state, was relaxed using the
same convergence criterion as for the TS. A vibrational analysis
was performed for the reactant state and TS using the finite
differences method with a numerical step of 0.01 Å. The
eigenspectra of the dynamical matrices were carefully checked
for the correct number of real and imaginary frequencies. From
the latter calculations, full Hessian matrices were obtained and
used in the λ-TI calculations.
The ξ-TI and λ-TI methods were carried out with MD at the

PBE-D2 level of theory in the NVT ensemble as
implemented53,85 in VASP 6.3. The simulation temperature
was maintained using the Andersen thermostat with a collision
probability of 0.05.86 Similar to previous studies,53,87 hydrogen
atoms were treated as tritium (mass = 3 u) because this allows
one to use a larger time step when integrating the equations of
motion. Consistently, the mass of tritium was also used for the
computation of all harmonic frequencies. Equilibration periods
in MD were determined with the Mann−Kendall test for
trends in mean and variance.88 Thermodynamic integrations
were performed numerically using the Simpson integration
scheme adapted to irregularly spaced grid points.89−91 The
standard integration grid used in the λ-TI calculations
consisted of five points (λ ∈ {0.00, 0.25, 0.50, 0.75, 1.00}).
In explicitly mentioned specific cases, this set was extended by
additional points. The choice of the reaction coordinate for the

AR P calculations and the choice of the integration grid for
the ξ-TI method are discussed for each system separately, see
Section 3. The sets of redundant internal coordinates
(distances, angles, dihedrals) in our λ-TI simulations were
generated automatically from neighborship relations with
cutoff distances based on scaled atomic covalent radii.53 The
statistical error was determined as described in Section S1 of
the Supporting Information.

3. RESULTS AND DISCUSSION
We benchmark free energy barriers computed using our λ-TI 
method against the ξ-TI method for a selection of reactions, 
including the unimolecular rotamerization of ethane, the

Table 1. Comparison of Contributions to the Free Energy A1 of Constrained Reactant Reference (ξref,R) and Transition (ξ*)
States Obtained Using λ-TI with the Result of the Classical Harmonic Approximation AHA

a

System A0,x ΔA0,x→0,q ΔA0,q→1 A1 AHA

ethane (ξref,R) −40.6534 −0.0004 ± 0.0000 −0.0013 ± 0.0001 −40.6550 ± 0.0001 −40.6534
ethane (ξ*) −40.5399 −0.0003 ± 0.0000 −0.0010 ± 0.0001 −40.5412 ± 0.0001 −40.5399
CH3Cl + Cl− (ξref,R) −29.4664 −0.0016 ± 0.0001 −0.1611 ± 0.0047 −29.6290 ± 0.0048 −29.6119
CH3Cl + Cl− (ξ*) −29.1312 −0.0018 ± 0.0001 −0.0173 ± 0.0014 −29.1502 ± 0.0015 −29.1574
rDA (ξref,R) (I) −90.3863 −0.0008 ± 0.0000 −0.2617 ± 0.0004 −90.6488 ± 0.0004 −90.4908
rDA (ξref,R) (II) −90.6087 −0.0006 ± 0.0000 −0.0498 ± 0.0001 −90.6591 ± 0.0001 −90.6514
rDA (ξ*) −88.2174 −0.0009 ± 0.0000 −0.0868 ± 0.0019 −88.3050 ± 0.0019 −88.2623
H+ transfer (ξref,R) −288.4140 −0.0154 ± 0.0005 −0.5555 ± 0.0086 −288.9849 ± 0.0091 −288.9085
H+ transfer (ξ*) −287.7650 −0.0140 ± 0.0005 −0.5265 ± 0.0084 −288.3055 ± 0.0089 −288.2336

aA0,x, ΔA0,x→0,q, and ΔA0,q→1 stand for free energy of harmonic reference state, difference in free energy between the system harmonic in internal
and Cartesian coordinates, and the free energy difference between anharmonic system and that harmonic in internal coordinates (cf. Section 2.1).
The rotational and translational contributions are included in terms A0,x, A1 and AHA via rigid rotor and ideal gas approximations, respectively. In
the case of the retro-Diels−Alder (rDA) reaction, results obtained using the half-boat (I) and half-chair (II) reactant reference states are presented.
All values are in eV.



degenerate second-order nucleophilic substitution of CH3Cl by
a Cl− anion, the retro-Diels−Alder prototype reaction, and a
proton transfer in acidic chabazite (zeolite H-SSZ-13). Tabular
summaries of the results are provided in Tables 1−4. In
particular, all free energy contributions from λ-TI are shown in
Table 1, along with the corresponding results in the harmonic
approximation. The free energy differences A

ref,R * between
the constrained reactant state and TS computed by ξ-TI, λ-TI,
and HA are compared in Table 2. The results for the term

A freeR ref,R
that connects the constrained and free reactant

states are shown in Table 3. The final ξ-TI, λ-TI, and HA
values of AR P are compared in Table 4.

3.1. Internal Rotation of Ethane. The first reaction
selected to benchmark λ-TI against ξ-TI is the rotamerization
of ethane at 400 K. For this transformation, the reaction
coordinate can be chosen as a symmetric linear combination of

three dihedral angles ( )( )1
3 1 2 3= + + , schematically

shown in Figure 2. For the relaxed staggered reactant state and
ecliptic TS, the values of ξ are 1.048 rad and 0.000 rad,
respectively, the latter value being fixed by symmetry.
Naturally, the relaxed reactant was chosen as the reactant
reference state in our ξ-TI and λ-TI calculations.
The lengths of trajectories generated by free DFT MD, by

constrained DFT MD, and by constrained harmonic force field
MD simulations were 100 ps, 25 ps, and 50 ps, respectively. A
time step of 0.5 fs was used in the MD simulations. The ξ-TI
calculations were performed using seven grid points (black
markers in Figure 2) distributed between reactant reference
configuration and TS.

The computed values of AR P obtained in ξ-TI and λ-TI
are 138.9 ± 4.9 meV and 135.0 ± 0.1 meV, respectively.
Therefore, both methods yield nearly perfectly consistent
predictions for this quantity. A comparison with the result of
the HA (130.2 meV) reveals that anharmonicity leaves the free
energy barrier of the internal rotation of ethane almost
unchanged. Further comparison of A1 and AHA in Table 1
shows that anharmonicity is negligible for both the constrained
reactant reference state and the TS. The free reactant state is
therefore the largest, albeit still small, contributor of
anharmonicity to AR P.

3.2. Nucleophilic Substitution of CH3Cl. The second
benchmark is performed on the nucleophilic substitution of
CH3Cl with a Cl− anion at 600 K. Its reaction coordinate can
be approximated by the difference between the interatomic
distances d1 and d2 involved in the formation and cleavage of
bonds (ξ = d2 − d1), see Figure 3. The relaxed reactant state is
a van der Waals complex where Cl− weakly interacts with
neutral CH3Cl at ξ = 1.269 Å, while the product is a symmetry-
equivalent state with ξ = −1.269 Å. The TS is symmetric,
whereby both C−Cl bonds are broken and ξ is fixed at 0.000 Å
(Figure 3). The HA yields a free energy barrier of 442.3 meV.
In the MD simulations presented here, a time step of 1.0 fs

was used. The trajectory lengths were 200 ps for the free DFT
MD simulation determining P(ξ), 80 ps per constrained DFT
MD simulation performed within the ξ-TI and λ-TI methods,
and 50 ps per harmonic force field MD simulation contributing
to A0,x→0,q. Using the ξ-TI method, constrained MD runs were
performed for eight states (black markers in Figure 3)
distributed on the interval between the reactant reference
state and the TS (see Figure 3). The standard λ-TI grid
defined in Section 2.4 was extended by two extra points (λ =
0.90 and 0.95) for the DFT MD simulations of the reactant
reference state. The denser grid was needed to account for a

Table 2. Free Energy Differences A
ref,R * between the

Constrained Reactant State and TS Computed by ξ-TI and
λ-TI Compared to the Corresponding Harmonic
Approximation ΔAHA

a

Reaction T/K ξ-TI/meV λ-TI/meV HA/meV

ethane rotation 400 117.4 ± 4.9 113.8 ± 0.1 113.5
CH3Cl + Cl− 600 472.9 ± 3.7 478.8 ± 6.3 454.5
rDA (I) 400 2336.5 ± 6.9 2343.8 ± 0.5 2228.5
rDA (II) 400 2328.8 ± 7.1 2354.1 ± 0.2 2389.1
H+ transfer 600 672.3 ± 11.1 679.4 ± 18.0 674.9

aThe rotational and translational contributions to reactant reference
and transition states are included via rigid rotor and ideal gas
approximations, respectively. In the case of the retro-Diels−Alder
(rDA) reaction, results obtained using the half-boat (I) and half-chair
(II) reactant reference states are presented.

Table 3. Data for the Calculation of A freeR ref,R

a

Reaction T/K ξref,R ⟨|ξ*̇|⟩ P(ξref,R)
A /meVfreeR ref,R

ethane rotation 400 1.048 rad 6.739 × 1012 rad s−1 1.323 rad−1 21.6
CH3Cl + Cl− 600 1.269 Å 1.106 × 1013 Å s−1 0.733 Å−1 58.2
rDA (I) 400 0.049 1.745 × 1012 48.288 −55.9
rDA (II) 400 0.042 1.745 × 1012 72.429 −69.8
H+ transfer 600 −1.660 Å 1.989 × 1013 Å s−1 1.438 Å−1 −7.0

aSee Section 2.3. In the case of the retro-Diels−Alder (rDA) reaction, results obtained using the half-boat (I) and half-chair (II) reactant reference
states are presented.

Table 4. Free Energy Barriers AR P Computed by the ξ-TI
and λ-TI Methods Compared to the Corresponding HA
Resultsa

Reaction T/K ξ-TI/meV λ-TI/meV HA/meV

ethane rotation 400 138.9 ± 4.9 135.0 ± 0.1 130.2
CH3Cl + Cl− 600 531.1 ± 3.7 537.0 ± 6.3 474.2
rDA (I) 400 2280.6 ± 6.9 2287.9 ± 0.5 2193.2
rDA (II) 400 2259.0 ± 7.1 2284.3 ± 0.2 2354.7
H+ transfer 600 665.3 ± 11.1 672.4 ± 18.0 693.8

aThe rotational and translational contributions to reactant reference
and transition states are included via rigid rotor and ideal gas
approximations, respectively. In the case of the retro-Diels−Alder
(rDA) reaction, results obtained using the half-boat (I) and half-chair
(II) reactant reference states are presented.



rapid decrease of the integrand in eq 13 near the upper
integration limit.
The ξ-TI method yields A

ref,R * = 472.0 ± 3.7 meV,
while the λ-TI method determines the same quantity as 478.8
± 6.3 meV. The two methods are therefore in very good
agreement. Comparing these results with the value of 454.5
meV resulting from the constrained HA suggests that the
anharmonic contribution to A

ref,R * is only modest, which
either can be a consequence of low anharmonicities of both the
reactant reference state and the TS or may result from a
cancellation of two anharmonic contributions of similar
magnitude. The former cause is confirmed when comparing
A1 and AHA in Table 1�we find that the anharmonic
corrections are −17.1 eV and 7.2 meV for the constrained
reactant reference state and TS, respectively, thereby increasing
the free energy barrier by 24.3 meV.
Accounting for the term A freeR ref,R

= 58.2 meV yields a

AR P of 531.1 meV obtained by ξ-TI and of 537.0 meV

obtained by λ-TI. As evident from the comparison with the HA
(474.2 meV), the term A freeR ref,R

adds another ∼40 meV to
the anharmonic correction of the barrier. This result can be
understood intuitively. As shown in Figure 4, anharmonicity
shifts the maximum of P(ξ) toward larger values, which is
directly caused by the thermal destabilization of the non-
bonding C−Cl interaction. Thus, P(ξref,R) decreases from the
harmonic probability density P0,x(ξref,R) of 1.517 Å−1 to the
anharmonic one P1(ξref,R) of 0.733 Å−1, and this change is
linked with the change in free energy (see eq 19) of −kBT
ln(P1(ξref,R)/P0,x(ξref,R)) = 37.6 meV. The latter value is
virtually identical to the anharmonic contribution of

A freeR ref,R
reported above.

3.3. Retro-Diels−Alder Reaction. In this section we
discuss the calculation of the free energy barrier for the retro-
Diels−Alder (rDA) reaction of cyclohexene to ethene and
butadiene at 400 K. In the relaxed transition structure, depicted
in Figure 5, ethene is already clearly detached from butadiene,
with the shortest intermolecular C−C separations being >2.3

Figure 2. Reaction coordinate (ξ) for the rotamerization of ethane is described by the symmetric linear combination of dihedral angles τ1, τ2, and τ3
(left). The free energy barriers obtained by ξ-TI (middle) and λ-TI (right) at 400 K are compared with the harmonic approximation result ΔAHA
(blue). The error bar in λ-TI is below the resolution.

Figure 3. Reaction coordinate (ξ) for the nucleophilic substitution of CH3Cl with Cl− described by an antisymmetric linear combination of the
interatomic distances d1 and d2 (left). The free energy barriers obtained by ξ-TI (middle) and λ-TI (right) at 600 K are compared with the
harmonic approximation result ΔAHA (blue).

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00169?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00169?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00169?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00169?fig=fig3&ref=pdf


Å. The reactant structure obtained by descending from the
transition structure along the IRC path and a subsequent
relaxation corresponds to a half-boat conformer of cyclohexene
(see Figure 6). The free energy barrier computed in the HA
amounts to 2193.2 meV.
The reaction coordinate ξ for the rDA reaction was

represented by the path-based variable according to
Branduardi et al.:92
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where χ(x) is a four-dimensional vector, with the components
being the interatomic distances d1 to d4 shown in Figure 5. The
IRC was discretized using M = 7 reference structures with the
Cartesian coordinates xi and the internal coordinates

x( )i i= that form the basis to express ξ. The expression
|···| represents the Euclidean norm of the vector enclosed. The
parameter λ was set to 1.88 Å−2, which corresponds to the
average of the inverse of the mean-square displacement
between successive frames, as proposed by Branduardi et al.92

The length of the constrained DFT MD simulations was set
to 50 ps, while a trajectory of 100 ps was produced in the free
MD run to determine P(ξ). The length of the MD trajectories
in the harmonic force field MD simulations for the λ-TI
method was 50 ps. Time steps of 1 fs and 0.5 fs were used in
the DFT and the harmonic force field MD simulations,
respectively. The ξ-TI calculations were performed with the
grid of eight points shown as black markers in Figure 5. The
lowest value of this integration grid (0.049) corresponds to ξ
determined for the relaxed reactant that we chose as the
reactant reference state. Unlike in the two previous reactions
discussed above, the value of ξ in the TS is not fixed by
symmetry. To ensure that the finite-temperature TS falls into
the interval of sampled ξ, we chose the largest value of the
integration grid to be slightly larger than ξ determined for the
relaxed TS (0.287). According to our ξ-TI calculations,
however, the position of the TS (ξ = 0.283, identified as the
point with vanishing free energy gradient) barely changes at
the temperature considered here (see Figure 5). The DFT MD
simulations for the reactant reference state were carried out
with two additional grid points (λ = 0.90 and 0.95) to account
for a rapid decrease of the integrand in eq 13 near the upper
integration limit.
The ξ-TI and λ-TI results are presented in Figure 5. As

evident, the two methods yield almost identical values of
AR P (2280.6 ± 6.9 meV and 2287.9 ± 0.5 meV,

respectively), which are, however, ∼90 meV higher compared
to the HA result. Virtually the same difference between HA

Figure 4. Probability distribution of ξ for the unconstrained reactant
state chosen for the substitution reaction of CH3Cl with Cl−. The
results obtained by considering the harmonic approximation (P0,x)
and a full anharmonic interaction (P1) are compared. The dashed line
marks the position of the reactant reference state.

Figure 5. Reaction coordinate (ξ) for the retro-Diels−Alder reaction of cyclohexene to ethene and butadiene described by path-based variables
involving the interatomic distances d1 to d4 (left). Free energy barriers obtained by ξ-TI (middle) and λ-TI (right) at 400 K are compared with the
harmonic approximation result ΔAHA (blue). The half-boat conformer was considered as the reactant reference state. The error bars are below the
resolution.

Figure 6. Half-boat (left) and the more stable half-chair (right)
conformations of cyclohexene that were used as reactant reference
states for the retro-Diels−Alder reaction.

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00169?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00169?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00169?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00169?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00169?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00169?fig=fig6&ref=pdf


and the TI methods is present already in the term A
ref,R *

(see Table 2). Once again, our λ-TI is useful in interpreting the
origin of this difference. From the comparison of A1 and AHA in
Table 1, it follows that the anharmonic contribution to the free
energy of the reactant reference state is much larger in absolute
value than that for the TS (−158.0 meV vs −42.7 meV). A
visual inspection reveals that the half-boat conformer of the
reactant reference state (cyclohexene), obtained by relaxing
along the IRC, is unstable in the MD runs and converts into
the half-chair conformer (see Figure 6). Upon relaxation of the
latter, it is clear that the half-chair conformer is 161.5 meV
lower in AHA than the half-boat conformer. Choosing this more
stable alternative as the reactant reference state leads to a
repartitioning of the A freeR ref,R

and A
ref,R * contributions

to AR P (cf. Figures 5, 7 and 8), while the HA now yields a

free energy barrier of 2354.7 meV. Importantly, however, the ξ-
TI and λ-TI results for AR P are independent of the choice
of the reactant reference state, and thus the results obtained
with the alternative reactant reference state (2259.0 ± 7.1 meV
and 2284.3 ± 0.2 meV, respectively) are very similar to the
ones reported above (see Figure 7), as it should be. In contrast
to the conclusion drawn by considering the half-boat reference
in the HA, anharmonicity decreases rather than increases the

free energy barrier. Furthermore, the HA obviously does not
allow for switching between multiple (meta-)stable states,
which should also be perceived as an anharmonic effect. The
results presented here show that the presence of multiple
metastable states accessible at the simulation temperature is at
least as important as other contributions to anharmonicity.

3.4. Proton Transfer in Acidic Chabazite. The final
benchmark reaction that we discuss is a proton transfer in
zeolite H-SSZ-13 (chabazite) at 600 K. The reactant shown in
Figure 9 comes with the H atom attached to a framework O
atom, forming a bridging O−H group. In the TS, the O−H
bond is being broken, and, simultaneously, another one is
being formed. The H atom is thus located approximately
midway between two framework O atoms. Similar to the
substitution reaction discussed in Section 3.2, the difference
between two O−H distances (ξ = d2 − d1, see Figure 9) is used
as approximation to the reaction coordinate. The values of ξ in
the relaxed reactant state and TS are −1.660 Å and −0.030 Å,
respectively. The relaxed reactant was used as the reactant
reference state in the calculations discussed here. The free
energy barrier computed in the HA is 693.7 meV.
DFT-based MD production runs of 50 ps were carried out

with a time step of 1.0 fs. The term A0,x→0,q was evaluated on
production runs with the same length and time step. The
integration grid used for the ξ-TI method consisted of the five
points shown in Figure 9, including the relaxed reactant state
(ξ = −1.660 Å) and TS (ξ = −0.030 Å). We note that the free
energy gradient in the TS nearly vanishes and hence, in accord
with a previous report,93 we conclude that its position does not
significantly change due to temperature. In the DFT MD
simulations for the λ-TI method, we extended the standard
grid by an extra point at λ = 0.95 for both the reactant state
and TS.
The values of AR P computed using the ξ-TI and λ-TI

methods, shown in Figure 9, are very similar (665.3 ± 11.1
meV vs 672.2 ± 18.0 meV). Since these results are only <30
meV lower than the barrier in the HA, it appears that
anharmonic effects are unimportant for the proton transfer.
However, the comparison of A1 with AHA in Table 1 shows
significant anharmonicity for both the reactant reference state

Figure 7. Reaction coordinate (ξ) for the retro-Diels−Alder (rDA) reaction of cyclohexene to ethene and butadiene, described by a path-based
variable involving the interatomic distances d1 to d4 (left). Free energy barriers obtained by ξ-TI (middle) and λ-TI (right) at 400 K compared with
the harmonic approximation result ΔAHA (blue). The half-chair conformer was considered as the reactant reference state. The error bars are below
the resolution.

Figure 8. Probability distribution of the unconstrained reactant state
for the rDA reaction. The dashed and dotted lines mark the positions
of the half-boat (ξ = 0.0489) and half-chair (ξ = 0.0423) reactant
reference states, respectively.

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00169?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00169?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00169?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00169?fig=fig8&ref=pdf


and the TS (−76.4 meV and −71.9 meV, respectively) which,
however, cancels out due to the opposite signs of their
contributions to AR P.

4. ACCELERATING λ-TI VIA THE BAR METHOD
We have demonstrated that the λ-TI method yields predictions 
of free energy barriers equivalent to the benchmark ξ-TI 
method. The use of λ-TI is advantageous in cases where the 
application of ξ-TI requires sampling of regions with large free 
energy gradients. Nevertheless, the practical execution of the λ-
TI method as presented so far requires relatively dense 
integration grids for the reactant state and TS, thus being 
typically not more efficient to  compute than the ξ-TI method. 
Inspired by the work of König et al.,52 we now borrow ideas 
from free energy perturbation theory31 and examine the 
possibility of evaluating ΔA0→1 using the Bennett acceptance 
ratio (BAR) method.51 Unlike the explicit numerical 
integration (ENI) over a grid of λ values (w hich w e did up 
to this point, see Section 3), the BAR method ideally requires 
sampling for only two grid points (λ = 0.0 and 1.0).
In a nutshell, the BAR alternative for eq 5 is written

A k T
n

n
ClnB= +

(26)

where nα and nβ are the numbers of MD steps performed with

λ = α and β, respectively, and C is a constant determined

iteratively so as to fulfill the condition
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The standard error (σΔA) in ΔAα→β can be estimated from
31,51

Figure 9. Reaction coordinate (ξ) for a proton transfer in zeolite H-SSZ-13, described by a difference between the interatomic distances d2 and d1
(left). Free energy barriers obtained by ξ-TI (middle) and λ-TI (right) at 600 K are compared to the harmonic approximation ΔAHA (blue).

Table 5. Free Energies A1 (in eV) Obtained from λ-TI via Explicit Numerical Integration (ENI) Using Multiple Integration
Points along λ and via the Bennett Acceptance Ratio (BAR) Method Using the Initial (λ = 0) and Final (λ = 1) Grid Pointsa

System ENI BAR Iw

ethane (ξref,R) −40.6550 ± 0.0001 −40.6551 ± 0.0004 0.306
ethane (ξ*) −40.5412 ± 0.0001 −40.5414 ± 0.0004 0.312
CH3Cl + Cl− (ξref,R) −29.6290 ± 0.0048 −29.6380 ± 0.0069 0.023
CH3Cl + Cl− (ξ*) −29.1502 ± 0.0015 −29.1519 ± 0.0019 0.237
rDA (ξref,R) (I) −90.6488 ± 0.0004 −90.6392 ± 0.0377 0.020
rDA (ξref,R) (II) −90.6591 ± 0.0001 −90.6600 ± 0.0037 0.106
rDA (ξ*) −88.3050 ± 0.0019 −88.3043 ± 0.0052 0.054
H+ transfer (ξref,R) −288.9849 ± 0.0091 −288.9667 ± 0.0220 0.001

(−288.9718 ± 0.0059) (0.028)
H+ transfer (ξ*) −288.3055 ± 0.0089 −288.3572 ± 0.0255 0.003

(−288.3047 ± 0.0055) (0.028)
aThe index Iw measures the overlap between the configuration spaces sampled by MD driven by harmonic and fully interacting potentials. The
rotational and translational contributions to reference reactant and transition states are included via rigid rotor and ideal gas approximations,
respectively. For the retro-Diels−Alder (rDA) reaction, the presented results include the half-boat (I) and half-chair (II) reference reactant states.
The BAR results for the H+ transfer were also computed with the additional grid points λ = 0.75 and 0.95, for which the results are shown in
parentheses.

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00169?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00169?fig=fig9&ref=pdf
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where Nα and Nβ correspond to nα and nβ corrected for the
time correlation between MD-generated structures, which can
be achieved, for example, via the blocking method.94 Note that
if holonomic constraints are employed, all thermodynamic
averages appearing in eqs 27 and 28 have to be reweighted
according to eq 14.
Applying the BAR method, we reevaluated the anharmonic

free energies A1 using only the end points λ = 0 and 1 of the
existing data. In Table 5, the values of A1 for the stationary
states of all reactions discussed in Section 3 computed by the
BAR method are summarized and compared to those
computed by ENI (determined from the values in Table 1).
As evident, both approaches yield very similar results for all
reactions but the H+ transfer, where the deviation is
unacceptably large for the TS (>50 meV). Moreover, the
statistical uncertainties for the reactant state and TS of the
proton transfer are unusually large compared to those for the
other states shown in Table 5. The prerequisite for reliable
results from the simple two-stage BAR procedure is a good
overlap of the configuration spaces sampled by MD
corresponding to the action of the Hamiltonians 0 and 1
.31,95 The overlap can be measured, e.g., via the Iw index,

93,95

defined so that 0.0 < Iw ≤ 0.50, whereby the lower and upper
limit values indicate no overlap and a perfect overlap,
respectively. A very poor overlap for both states of the H+

transfer reaction can be deduced from the values of Iw
presented in Table 5, which are at least an order of magnitude
smaller than those determined for the states of the other
reactions. When failing to fulfill the prerequisite of a good
match between the configuration spaces sampled under the
action of the harmonic and anharmonic potentials, one can
resort to multistage sampling, whereby ΔAα→β is expressed as

A A A A
i

M
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i i M1 1
= + +
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(29)

with M being the number of points other than λ = 0 and 1, and
A

i j
is computed by a straightforward generalization of eq

26. We applied this multistage procedure to both states of the 
proton transfer using two extra points, λ1 = 0.75 and λ2 = 0.95. 
As show n in Table 5, the quality of overlap improved (Iw 
values increased from values betw een 0.001 and 0.003 to 
0.028), the discrepancy between the values obtained from BAR 
and ENI w as reduced to 13 meV and also the statistical 
uncertainty decreased almost by a factor 4.

5. CONCLUSIONS AND OUTLOOK
We presented constrained thermodynamic λ-path integration 
(λ-TI) as a tool to compute anharmonic corrections to the

harmonic approximation (HA) of free energy barriers. Using
translationally and rotationally invariant curvilinear coordi-
nates, the utility of the approach was demonstrated on four
examples with increasing complexity, ranging from a simple
unimolecular reaction to a reaction in an extended system.
Excellent agreement of our λ-TI method with respect to the
well-established ξ-TI method Carter et al.47 is reported. In
addition, the λ-TI method enables a quantification of the
individual anharmonic contributions from reactant and
transition states, thus providing further insight into the source
of anharmonicity. The rotamerization of ethane with prevailing
covalent bonds showed little anharmonicity, which was to be
expected from previous analysis of the importance of
anharmonic contributions for different interactions and
degrees of freedom (dissociation contributes more than
hindered rotation; vibrations of covalent bonds contribute
the least).53 Significant anharmonic contributions were
observed for the nucleophilic substitution reaction of CH3Cl
with Cl−, which we attributed to the weakly bound nature of
the reactant state. For the retro-Diels−Alder reaction,
anharmonic contributions were relatively large, and their
major part can be attributed to the temperature-induced
change of reactant conformations. The anharmonic correction
to the barrier of the proton transfer in zeolite H-SSZ-13 is
comparatively small, because the individually significant
anharmonic corrections to constrained reactant and transition
states largely cancel each other. The largest portion of the
small anharmonic correction to the barrier can be attributed to
the difference between constrained and free reactant states,
where the HA deviates more for the free state. Henceforth, the
λ-TI method can be seen as a valuable computational tool to
compute and analyze anharmonic contributions to free energy
barriers. Besides its use in the quantification of anharmonicity
effects for individual states, another advantage of λ-TI over ξ-
TI is that it avoids sampling over the whole reaction path
connecting reactant with TS. In fact, unwanted side reactions
can make the sampling of intermediate states with large free
energy gradients along the reaction coordinate very difficult in
the ξ-TI method. In reactions with more than one reactant (or
product), λ-TI could be applied separately to the isolated
reactants (or products), whereas ξ-TI requires sampling of all
reactants and products in the same simulation box at all times.
This is especially troublesome if one is interested in large
reaction networks, as this makes the identification of a relevant
reference system difficult. The λ-TI method elegantly circum-
vents this issue and allows us to calculate the anharmonicity of
any point (adsorption energy or TS) along the reaction
coordinate. Importantly, this also gives a direct reference to the
gas phase, which is difficult to impossible with ξ-TI. We are
therefore convinced that this method will be valuable to
investigate the effect of anharmonicity in complex reaction
networks.
Finally, we showed that the λ-TI method can be computa-

tionally much more efficient when combined with the Bennett
acceptance ratio (BAR) method, effectively reducing the
number of integration points to ideally two per stationary
state. We note that the use of the BAR method in connection
with calculation of free energy profiles of reactions was
proposed also be Li et al.,96 whereby the ab initio quality
results were obtained upon application of free energy
perturbation theory to data from umbrella sampling44

simulations performed at a semi-empirical reference method
level. Unlike the λ-TI method proposed in this work, the



approach of Li et al. requires the sampling over multiple states
along the reaction path. Further promising ways to accelerate
the simulations include on-the-fly machine learning, such as
SOAP-GAP in VASP,97,98 or the tight-binding frameworks, for
instance as provided by Bannwarth et al.99 One such example
is the work of Blöndal et al.100 on machine-learned surrogate
potential energy surfaces for the translation of adsorbates.
Besides the employed internal coordinates, other continuous,
unique, and non-degenerate coordinate descriptors�for
instance SOAP101 or components of Ewald sum (Coulomb)
matrices102�could be utilized as long as they meet the
criterion of invariance with respect to overall rotations and
translations of the system.
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Description of the Structure of Molecular and Layered Crystals: Ab
Initio DFT Calculations with van Der Waals Corrections. J. Phys.
Chem. A 2010, 114, 11814−11824.
(82) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-zone
Integrations. Phys. Rev. B 1976, 13, 5188−5192.
(83) Plessow, P. N. Efficient Transition State Optimization of
Periodic Structures through Automated Relaxed Potential Energy
Surface Scans. J. Chem. Theory Comput. 2018, 14, 981−990.
(84) Hratchian, H. P.; Schlegel, H. B. Following Reaction Pathways
Using a Damped Classical Trajectory Algorithm. J. Phys. Chem. A
2002, 106, 165−169.
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