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Abstract

Traffic accidents are unfortunately an unavoidable part of our modern transport system.
In many cases the behavior of drivers is a contributing factor. Different studies show that
distractions caused by secondary activities, like the use of mobile phones, play a large
role. In addition, the trend to occupy oneself with other activities rises with increasing
vehicle automation because drivers are less involved in the driving task. For this reason,
driver monitoring systems will be required for future automated cars.

In this thesis we therefore investigate how to detect the activities of drivers in automated
cars using a modular recognition system based on 3D data. The proposed system consists
of two stages. The first stage creates a 3D interior state model from camera data including
the 3D body pose of the driver, the location of elements of the interior as well as the
position of objects involved in certain activities. The second stage uses this representation
to detect activities. We base this design on two hypotheses: First, a rich 3D interior state
model including other elements in addition to the 3D driver body pose is important to
discern fine-grained activities. Second, the interior state model, created by the first stage,
is a sensor modality and sensor location independent representation allowing the second
stage to successfully detect activities even with large changes to the camera system. To
verify these assumptions, we contribute to the research field in three areas.

The foundation of all our efforts are annotated datasets. Based on our extensive literature
review we show that there are no suitable public automotive data sources. We therefore
collect multiple datasets for different subtasks leading to our final dataset, published under
the name Drive&Act. It includes a large-scale hierarchical activity recognition benchmark
with multiple 3D input modalities for the task, like the 3D body pose of the driver, the
location of interior elements like the steering wheel, as well as 3D trajectories of objects
like smartphones. In addition, the dataset includes a public benchmark for 3D driver body
pose estimation with challenging partial occlusion of the driver’s body.

The main feature of the 3D interior state model is the body pose of the driver. Here we
contribute methods for real-time 3D driver body pose estimation based on depth images.
The primary challenge of using depth data for this task is occlusion of body parts. A
second challenge is the lack of public automotive datasets to train these methods. In our
first approach we therefore rely on simulated depth images with automated annotation
for training. Our second approach handles this problem on the algorithm level. It uses
a novel split of 2D body pose estimation followed by separate 3D keypoint regression
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guided by the depth image. This enables us to rely on advances in 2D body pose estimation
using large-scale datasets from other domains. We can demonstrate the robustness of this
method to partial occlusion on the 3D body pose benchmark of Drive&Act.

While the primary input of many related activity recognition methods is just the 3D hu-
man body pose, we research how to expand the input to a complex 3D state model includ-
ing elements of the surrounding vehicle interior as well as positions of objects relevant
for certain activities. We follow one central paradigm and assume that the distance in 3D
space of keypoints of the driver’s body to other elements in the state model is an important
indicator of their relevance for the performed activity. Based on this hypothesis we de-
velop different methods with increasing complexity of the interior state model. Our final
method casts all parts of the interior state model into a spatio-temporal graph. To gener-
ate this graph, we rely on the distance of keypoints of the driver’s body to other parts of
the state model to determine which nodes to include in the graph and what edges to cre-
ate. We analyze this graph using a neural network based on graph convolutions. We can
show the advantage of our graph creation method in selecting relevant interior elements
and objects and the usefulness of object location data to discern activities represented by
similar body poses of the driver. Consequently, we can prove our initial hypothesis that
additional input modalities improve the detection of fine-grained activities based on 3D
data and we can quantify their impact.

We also investigate the overall performance of our modular system regarding sensor
modality and viewpoint changes. We can demonstrate the capability to switch between
creating the interior state model based on a multi-view camera system and creating it us-
ing data from a single depth sensor. We can show that our activity recognition approach
can be trained on one of these representations and evaluated on the other with just a
moderate performance drop. In addition, the overall system can generalize across differ-
ent datasets recorded in different vehicles and in vastly different conditions, switching
between data recorded in a simulator for automated driving and data recorded on a test
track driving manually. This supports our second hypothesis that the 3D interior state
model resulting from our first stage of algorithms is sensor independent to a large degree.
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Kurzdarstellung

Verkehrsunfille sind leider ein unvermeidbarer Bestandteil unseres modernen Verkehrs-
systems. In vielen Féllen tragt das Verhalten der Fahrer zum Unfall bei. Verschiedene
Studien zeigen, dass Ablenkung durch Nebentitigkeiten, wie die Nutzung von Smart-
phones, eine grofle Rolle spielt. Die Tendenz sich mit anderen Tatigkeiten zu beschafti-
gen steigt mit zunehmender Automatisierung, da die Fahrer weniger in die Fahraufgabe
eingebunden sind. Aus diesem Grund werden fiir zukiinftige automatisierte Fahrzeuge
Fahreriiberwachungssysteme benétigt.

In dieser Arbeit wird daher untersucht, wie die Aktivitat von Fahrern in automatisierten
Fahrzeugen mit Hilfe eines modularen Erkennungssystems auf der Grundlage von 3D-
Daten erkannt werden kann. Die Erfassung lauft in zwei Schritten ab. Im ersten Schritt
wird aus Kameradaten ein 3D-Zustandsmodell des Innenraums erstellt das die Korper-
pose des Fahrers, die Position von Elementen des Innenraums sowie die Position von
Objekten, die an bestimmten Aktivitaten beteiligt sind, enthalt. Im zweiten Schritt wird
diese Darstellung zur Erkennung von Aktivitdten genutzt. Dieses Vorgehen stiitzt sich
auf zwei Hypothesen: Erstens ist ein umfangreiches 3D-Zustandsmodell, das neben der
3D-Korperpose des Fahrers auch andere Elemente enthalt, wichtig, um feingranular Ak-
tivititen zu erkennen. Zweitens ist das im ersten Schritt erstellte Zustandsmodell eine
Reprisentation die sensorunabhingig ist und es der zweiten Stufe ermdglicht, selbst bei
groflen Veranderungen des Kamerasystems erfolgreich Aktivititen zu erkennen. Um die-
se Annahmen zu verifizieren, leisten wir in drei Bereichen Beitrdge zum Forschungsfeld.

Die Grundlage all unserer Verfahren sind annotierte Datensatze. Basierend auf unserer
umfangreichen Literaturrecherche zeigen wir, dass es keine geeigneten 6ffentlichen Da-
tenquellen fir dieses Konzept gibt. Wir sammeln daher mehrere Datensétze fiir verschie-
dene Teilprobleme, die zu unserem endgiiltigen Datensatz fithren, der unter dem Namen
Drive&Act verdffentlicht wurde. Er umfasst einen hierarchischen Aktivitdtserkennungs-
Benchmark mit mehreren 3D-Eingabemodalititen fiir die Aufgabe, wie die Korperpose
des Fahrers, die Position von Innenraumelementen wie dem Lenkrad, sowie Trajektorien
von Objekten wie Smartphones. Dariiber hinaus enthalt der Datensatz einen Benchmark
fur die 3D-Korperposenschiatzung des Fahrers auch bei Teilverdeckung des Korpers.

Das Hauptmerkmal des 3D-Zustandsmodells ist die Kérperpose des Fahrers. Wir tragen
Methoden zur Echtzeitschatzung der 3D-Korperpose auf der Grundlage von Tiefenbil-
dern bei. Die grofite Herausforderung bei der Verwendung von Tiefenbildern fir diese

1ii



Kurzdarstellung

Aufgabe ist der Umgang mit Verdeckungen von Korperteilen. Eine zweite Herausfor-
derung ist der Mangel an o6ffentlichen Fahrzeugdatensatzen zum Trainieren dieser Me-
thoden. Unser erster Ansatz stiitzt sich daher auf synthetisch generierte Trainingsdaten.
Unser zweiter Ansatz behandelt dieses Problem algorithmisch. Er verwendet eine neuar-
tige Aufteilung in 2D-Korperposenschitzung, gefolgt von einer separaten Regression der
3D-Position auf Basis des Tiefenbilds. Dadurch konnen wir uns auf Fortschritte bei der
2D-Korperposenschatzung stiitzen und grof3e Datensitze aus anderen Bereichen fiir das
Training verwenden. Wir konnen die Robustheit dieser Methode gegeniiber teilweiser
Verdeckung von Korperteilen anhand des Drive&Act Datensatzes zeigen.

Wihrend die primére Eingabe vieler verwandter Aktivitatserkennungsmethoden nur
die 3D-Korperpose umfasst, erforschen wir, wie die Eingabe auf ein komplexes 3D-
Zustandsmodell des Innenraums erweitert werden kann, das sowohl Elemente des
umgebenden Fahrzeuginnenraums als auch die Position von Objekten enthilt. Wir fol-
gen einem zentralen Paradigma und gehen davon aus, dass der Abstand von Korperteilen
des Fahrers zu anderen Elementen im Zustandsmodell ein wichtiger Indikator fiir deren
Relevanz ist. Unser letzter Ansatz erstellt aus dem Zustandsmodell einen Graphen der
sowohl die raumliche Position als auch die zeitliche Entwicklung der Einzelkomponenten
abbildet. Fiir die Erstellung des Graphen verwenden wir den Abstand von Korperteilen
des Fahrers zu anderen Teilen des Zustandsmodells, um zu bestimmen, welche Kompo-
nenten in den Graphen aufgenommen und welche Kanten erstellt werden. Der Graph
wird anschlieBend mit auf graph convolution basierenden neuronalen Netzen analysiert.
Wir konnen den Vorteil unseres Ansatzes zur Erstellung des Graphen bei der Auswahl
relevanter Elemente anhand des Drive&Act Datensatzes zeigen. Weiterhin kénnen wir
durch die Analyse verschiedener Eingabemodalitdten auf dem Datensatz deren Niitzlich-
keit bestimmen und folglich unsere erste initiale Hypothese zur Nitzlichkeit weiterer
Eingabemodalitdten bestatigen.

Wir untersuchen auch die Gesamtleistung unseres modularen Systems in Bezug auf
Wechsel des Sensortyps und des Kamerablickwinkels. Wir erstellen hierfiir das 3D-
Zustandmodell sowohl auf Basis eines Multi-Kamera Systems als auch auf Basis eines
einzelnen Tiefensensors. Wir konnen zeigen, dass unser Aktivititserkennungsansatz auf
einer dieser Repréasentationen trainiert und auf der anderen mit nur geringem Leistungs-
abfall evaluiert werden kann. Dariiber hinaus demonstrieren wir, dass das Gesamtsystem
auch iiber verschiedene Datensétze hinweg verwendet werden kann, die in verschiedenen
Fahrzeugen und unter sehr unterschiedlichen Bedingungen aufgezeichnet wurden. Mit
diesen Experimenten konnen wir die Robustheit unseres Ansatzes beziiglich Verande-
rungen des Sensorsystem, und somit auch unsere zweite initiale Hypothese, nachweisen.
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1 Introduction

The focus of this thesis is driver activity recognition for automated cars. We research
how this task can be solved in a modular way with a focus on 3D data and flexibility
with regards to sensor systems and sensor placement. We believe that this approach
results in a rich representation of the interior that allows to expand the system efficiently
for future applications. To achieve this, our proposed approach consists of two stages:
Generating a sensor-independent 3D feature representation of the interior, including the
driver, followed by activity recognition.

The main feature of the camera-independent representation is the 3D body pose of the
driver. Here we contribute 3D driver body pose estimation methods, based on data from
depth cameras. In addition, we enrich the representation with an interior model of the
vehicle as well as 3D positions of objects used for different activities.

Our proposed activity recognition system uses this representation as input. We investi-
gate how to integrate the interior model as well as 3D object positions in addition to the
3D body pose of the driver.

In order to develop these approaches suitable datasets are necessary which were also
collected and published as part of this thesis.

Figure 1.1 depicts an overview of our work. We motivate this approach with an over-
view of driver behavior in automated vehicles and driver monitoring applications before
depicting our contributions and the thesis outline in detail.

Benchmarking Datasets 3D Driver Body Pose Activity Recognition

3D Driver Body Pose Depth Data ; Working?
g A Eating?
Drinking? |

3D-Interior, 3D-Objects

Figure 1.1: Overview of the proposed modular driver activity recognition system.



1 Introduction

1.1 The Driver in Automated Vehicles

Studies show that the behavior of drivers as well as their responsibilities change depend-
ing on the automation capabilities of their car. At the time of writing fully autonomous
cars are not commonly available yet. Current systems are classified on a scale of six au-
tomation levels which define both the capabilities of the automation system as well as
the responsibilities of the driver (see Figure 1.2). These levels were introduced by the
organization SAE International. They are commonly called SAE Levels [SAE21].

SAE Level 0 and 1 cars offer few automation functions. The driver remains in charge and
must step in if necessary. Driver behavior and causes of crashes in these cars are well
studied through accident report analyses [Ese22], natural driving studies [Din16] as well
as driver interviews [Gor05]. While drivers drive safely most of the time, they are still a
contributing factor to most accidents [Din16]. These factors can be categorized into four
main groups: impairment (e.g., drowsiness, drugs), performance errors (e.g., overlook-
ing a traffic sign), judgment errors (e.g., speeding) and distraction. Of these categories
distractions contribute potentially to 36% of crashes in the United States [Din16] and 10-
30% in the European Union [Com15]. The main distraction with high associated risk is
currently handheld cell phone usage [Wor15, E-S19]. Other common activities include
eating, drinking, reading, writing or reaching for an object [Gor05, Din16].

Automated vehicles were introduced commercially around the year 2015 [Eri17]. Their
capabilities, even as of today, are mostly classified as SAE Level 2, relieving the driver
fully from driving the vehicle. However, drivers are still responsible and are required to
supervise the automation to take over if necessary. Because of their recent introduction,
there are few real-world studies of driver behavior in these vehicles [Nor21]. To enforce
supervision and to make it harder to bypass safety measures, drivers are required to keep
their hands on the steering wheel. However, these measures are circumvented by some
drivers [Lin18]. Because the driver is still responsible, even if not controlling the car di-
rectly, the findings for manual cars, regarding distractions and impairment, still apply.
However, their impact can change, depending on whether the automation can handle the
situation or not. In addition, both impairment and distractions are more likely because
drivers are less occupied [Ban18, Nor21]. Even if drivers try to supervise their car con-
stantly, they can get fatigued or distracted due to their low workload [Gre18]. On the
other hand, an automation system that works well can lead to over-trust, where drivers
stop supervising and start occupying themselves with other activities. This leads to an
increase in frequency of the already presented activities, like mobile phone use [Nor21],
or even new activities, like watching videos [Lin18]. Both low workloads and over-trust
in the safety of these systems already led to accidents where the automation failed and
the driver did not notice [Nat18].
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Level 0 Level 1 Level 2 Level 3 Level 4 Level 5
s . Driver & .
Responsibility Driver Antomation Automation
Fallback Driver DI'IV(:BI‘ Driver Automation
Supervises || Takes Over
. Assisted Semi- Semi- Fully autonomous based on condition
Automation .
safety automated || automated restrictions
Steering or || Steering & || Traffic Jam Highway || Automated
Example SIS Speed Speed Pilot Pilot chauffeur
s Limited conditions dependent on system || Limited areas, conditions All areas &
Conditions i I
capabilities and weather conditions

Figure 1.2: Overview of the SAE Levels for automated driving.

Automation systems classified as SAE Level 3 and 4 are still in development. They further
shift the responsibility from the driver to the automation system. The primary difference
between these levels is the automation behavior on failure, which can occur because of
technical problems or environmental influences. In these cases, SAE Level 3 systems only
guarantee safety for a short time and will return control to the driver. SAE Level 4 systems,
on the other hand, are capable of performing a minimal risk maneuver to ensure safety in
all circumstances while they are active. These transition are challenging and are discussed
separately in Section 1.2. In both modes the driver will be allowed to engage in other
activities. It is still unclear how this will be handled for SAE Level 3 vehicles because the
driver must be able to react in a timely manner. For example, sleeping impairs the driver
for too long [Hir20, Woér21]. It is expected that future vehicles will change automation
levels depending on their current surroundings [Die22b]. For example, a car could have
a highway pilot classified as SAE Level 4, where the driver is free to do other things, and
could then change to SAE Level 2 when exiting the highway. To the driver the difference is
not clear because the experience is the same at first glance - the car still drives by itself.
However, their responsibilities change. This, so-called “mode confusion” already exists
with current SAE Level 2 cars, where drivers assume the car is in automated mode but is
in fact driving uncontrolled manually [Ban18, Wil20]. Mode awareness gets increasingly
challenging with more possible automation states [Die22a].

SAE Level 5 systems are fully autonomous. They are required to work in all conditions a
human driver can drive safely. They do not need direct control or intervention from the
user and there is no dedicated driver. Passengers can do whatever they like. They do not
need a driver’s license and could even be impaired (e.g., drunk). However, there are still
challenges for the automation regarding the interior. Currently, drivers are responsible
for the state of the interior. They must check if passengers are seated properly and if items
are secured. In the future this may also be a responsibility of the automation system.
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1.2 Driver Monitoring for Takeover Scenarios

Until automated driving systems can handle all possible situations (SAE Level 5), the hu-
man driver serves as a fallback and has to take over the task of driving in a timely manner
if a system boundary is reached. Takeovers can happen in SAE Level 2 to 4. However,
in SAE Level 2 the driver is always responsible and the automation can fail silently with-
out warning the driver. For this reason, these automation systems disable themselves as
soon as the user interacts with the controls. In higher automation levels the necessity for
the driver to take over has to be detected by the automation system and can therefore be
planned in advance. The driver is notified by a takeover request (TOR) if necessary. This
section describes how drivers react in these scenarios. It also presents a concept of how
driver monitoring can be integrated into the control loop of the automation. This concept
is based on our publication in the journal AT Automatisierung [Lud18] © De Gruyter, 2018.

Determining the time span a driver needs to take over after a period of highly automated
driving is subject to current research. Next to environmental factors, such as the criti-
cality [Gol13] or the complexity [Dam12] of the traffic situation at the time of the TOR,
the state of the driver is an important parameter for the takeover process. In higher au-
tomation levels (SAE level 3-4) the driver can pay attention to something or somebody
else, which results in the problem that the capabilities of the driver after a TOR can vary
significantly. In the following some empirical findings on the influence of the driver’s
state on the takeover process are presented:

Petermann-Stock et al. [Pet13] examined the influence of different levels of the driver’s
load on the time of a first driving action after a TOR. Therefore, they analyzed 38 non-
driving related tasks which are likely executed during automated driving and designed
three comparable tasks with low (cognitive and acoustic), mid (cognitive and visual) and
high load (cognitive, visual and motoric). In an experiment with two TORs they found
a significant influence of the load level on the reaction time with mean values of 2.0, 2.9
and 3.3 s and maximum values of 2.4, 8.8 and 8.3 s for the different tasks.

Radlmayr et al. [Rad14] created an experiment to investigate the effect of non-driving
related tasks in varying traffic situations on the takeover process. The authors used
the visually demanding Surrogate Reference Task (SuRT) and the cognitively demanding
n-back Task as activities during automated driving. The SuRT group needed on average
2.16-2.71 s, the n-back group 1.93-2.92 s for their first driving action depending on the
situation, which are a significant increase of the takeover time compared to the baseline
group (1.55-2.32 s).

The participants of the study from Merat et al. [Mer12] had to supervise an automated
vehicle with and without performing a secondary task, as well as drive manually with
and without distraction. The secondary task was to guess items by asking a series of
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questions, answered with yes or no by the experimenter, creating a cognitive workload
comparable to a telephone conversation. In absence of the secondary task the drivers
reduced their speed in response to a critical incident independently of the automation
level while distracted drivers did not. The authors suspect that distracted drivers are not
as aware of their resource limitations and cannot adapt adequately.

The impaired driving performance after a takeover was also measured in other studies:
Dambdck et al. [Dam12] found a significant difference in the number of driving errors
after a takeover request with time buffers of 4 and 6 s to the incident compared to their
baseline group. Even with a takeover time of 8 s some participants executed the necessary
lane change too late, not at all or in the wrong direction.

Gold et al. [Gol13] analyzed the reactions of distracted drivers to an obstacle on the lane
with a TOR at a time-to-collision of 5 and 7 s, respectively. In comparison with the base-
line group the distracted drivers executed stronger steering and breaking maneuvers with
increased acceleration of two to three times. In addition, only 8 out of 26 lane changes
were secured via a shoulder check, showing the high risk of a collision for this takeover
scenario.

Merat et al. [Mer14] looked at the driving behavior for 60 s after the TOR and report
that after a time interval of 10 s to regain control, the participants showed an increased
number of steering corrections for the next 10-15 s, which then steadied after 35-40 s. As
the visual attention is following the same trend, the authors state that 40 s is an adequate
amount of time to resume control of driving from automation.

In summary, the presented studies show two effects: First, the cognitive state of the driver
and his activity before takeover have a major influence on the takeover time and second,
the driver is prone to driving errors after taking over from the automation. There are in-
dications that even being physically able to take over control, drivers still lack awareness
of the current situation and might not have mentally disengaged from their last activity.
Present approaches for takeover management either only do a short fadeout of the assis-
tance system after a takeover request [Pet13] or an entire shutdown after the first action
of the driver [Mer12, Gol13, Rad14], which can potentially lead to unsafe and dangerous
situations because of mistakes the driver makes after transferring control.

Based on these findings we propose a concept to guide the driver during takeover via
driver monitoring and a haptic shared control scheme [Lud18]. This is a control concept
where the input of the driver while taking over is moderated by the automation to ensure
safety. The driver can feel the system correcting as resistive force on the controls. The
correction force of the automation is gradually reduced over a period of time until the
driver is fully in control. Within this control scheme a takeover consists of three parts.
The point in time when the TOR is issued, followed by the time the driver needs to reach
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the controls and finally the time of shared control to conclude the takeover. While these
intervals can be set to fixed values, there is potential for adaptation based on the presented
studies, to increase both safety as well as comfort and acceptance of such a system.

We propose to adapt these times based on the state of the driver, determined by a driver
monitoring system. While there are many other methods to determine focus of atten-
tion [Vor18], tiredness [Zha19a] or even takeover readiness [Lot19], we propose to apply
the methods for body pose estimation as well as activity recognition presented in this the-
sis. This system provides the control algorithm with two time periods that we call physical
readiness time and mental readiness time. Physical readiness describes the time the user
needs to reach the controls and mental readiness describes the time the user needs to as-
sess the situation and to disengage from his previous task. Both these time periods are
processed by the control algorithm. They are used to optimize the time the TOR is issued
and the period between physical and mental readiness is used to gradually hand over the
control of the vehicle to the driver. We propose to determine these time frames as follows:

Estimation of physical readiness time is mainly dependent on the motoric capabili-
ties and reaction time of the human body. While there are individual differences as
well as other influencing factors, we are interested in the shortest time the driver needs
to reach the controls, so we can ignore these influences because they make the re-
action slower. This will inform the automation when to expect control input at the
earliest. We propose to estimate physical readiness based on the distance between the
hands and the controls of the car, determined by our activity detection system (see
Section 5.1). The system should estimate this distance continually to update the time
while the driver is getting ready.

Estimation of mental readiness is more difficult to assess because it is influenced
among others by outside factors, like the complexity of the surrounding traffic, as
well as by the mental state of the driver, which can only be observed indirectly. We
propose to use the driver activity recognition methods contributed in this thesis to
estimate mental readiness. In a first step we can use the findings on safe transition
times for different secondary activities from the presented studies to parameterize
the system. These parameters could then be further refined using the past transition
performance of the driver. With this information the control system can estimate
how long a transition will take overall. In addition, we can refine the estimate after
the TOR by detecting if the driver gets ready, for example by putting away objects or
reaching for the controls (see physical readiness).

The proposed concept is also supported by Lotz et al. [Lot19] who present a system for
takeover time prediction of truck drivers considering similar time intervals for the tran-
sition and using driver body pose as well as eye gaze tracking as input features.
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The development and realization of this approach took place within the publicly funded
project PAKoS (personalized adaptive cooperative systems for automated vehicles)'. The
concept was developed and published in equal parts together with Julian Ludwig. Manuel
Martin focused on the concept for driver monitoring while Julian Ludwig focused on the
control algorithm. While it was not possible to realize the whole concept within the
project, Julian Ludwig showed the effectiveness of the control scheme in driving simu-
lator studies [Lud21]. This thesis contributes the necessary driver monitoring systems
including driver body pose estimation as well as fine-grained driver activity recognition.

1.3 Applications for Driver Monitoring

As already elaborated, a key requirement for driver monitoring is to detect the driver’s
state to inform the automation about the capabilities of the driver to either monitor the
automation (SAE Level 2) or to take over (SAE Level 3-4). These requirements are also rec-
ognized by the legislature of more and more countries, like the European Union [Eur19]
or USA [DeF20], making driver monitoring system mandatory in the near future for all
vehicles with automation functions.

Apart from the safety aspects discussed in previous sections there are additional appli-
cations for driver monitoring regarding comfort functions. In the following paragraphs
we will summarize key applications for driver monitoring where the systems presented
in this thesis can contribute the most:

Distraction detection is a well outlined application based on the previous sections and
legal requirements. It will be essential for all future vehicles that are not fully au-
tonomous to prevent accidents in general as well as to inform the automation about
the driver’s ability to take over. While current preproduction systems mostly rely on
head pose estimation, eye tracking and facial features to infer an abstract distraction
or tiredness score [Man20], we think that activity detection will be valuable for sys-
tems with a higher automation level to further improve the distraction detection score
and to identify the source of distractions.

Take over management is an extension of distraction detection. Driver monitoring sys-
tems need to at least detect if the driver is able to take over. However, we think that
future systems will also use driver monitoring to estimate how long a takeover will
take or if the driver is getting ready after a takeover request. We describe this concept
in Section 1.2.

! https://www.interaktive-technologien.de/projekte/pakos, accessed: June 15, 2022
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Level appropriate behavior management addresses the driver’s different responsibil-
ities depending on the current automation mode. However, it is challenging in that
there are no major differences for the driver in different automation levels as long as
the car drives by itself without issue. This can lead to mode confusion or abuse where
the driver does not behave as they are expected to (e.g., monitoring in SAE Level 2,
being ready to take over in SAE Level 3). Activity recognition can help to solve this
challenge by warning and explaining the issue if the driver’s actions are not appro-
priate. For example, when the driver is performing an inappropriate activity while in
SAE Level 2 mode they could be informed that they are not allowed to do so currently.
In addition, if the system can identify the activity it could recommend to continue
the activity at a later time if there is a section with a higher automation level on the
planned route. This would both train the driver, explain the system’s reaction, and of-
fer a comfortable solution. We investigate this concept in our current publicly funded
project KARLI" based on the algorithms developed in this thesis.

Motion sickness prevention is another application for driver monitoring. Many pas-
sengers get sick in cars, especially if they occupy themselves with other activities
without observing the road for a prolonged time [Sch20]. While this posed less of
a problem for drivers in manually driven vehicles, it can be a challenge in higher au-
tomation modes. This can also have safety implications if the driver needs to take over
while being impaired. The application of driver monitoring using, among others, ac-
tivity detection methods contributed by our work, together with a recommendation
system to prevent motion sickness is another avenue explored in project KARLL

Personalized interior adaptation is another application for future driver monitoring
systems. Based on 3D human body pose estimation it is possible to configure the
seat, the mirrors as well as the steering wheel when entering a vehicle. This would
be especially useful in situations where the driver changes often, like in rental cars or
with car sharing services.

Novel User Interfaces are a continuously researched topic by automotive manufacturers
to improve the driving experience. There are already infotainment systems reacting to
the driver when reaching for the interface, using proximity sensors, as well as gesture
recognition systems to control, for example, the audio system of the vehicle. Both
applications are still restricted to small areas within the car and require special sensors
for each function [Raj18]. The camera system as well as algorithms proposed in this
thesis can also be used for these applications with the option to expand the acquisition
area substantially.

! https://karli-projekt.de, accessed: June 15, 2022
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Digital personal assistants are another topic where driver monitoring can help.
While speech recognition is already widely in use in vehicles, the performance of the
technology was strongly improved with the introduction of smart speakers for home
use [Purl7] and their introduction for automotive applications. Currently, these
systems only react to the user when asked using a “wake word”. In the future these
systems could use interior monitoring capabilities to make the wake word obsolete.
In addition, they could provide proactive recommendations [Wei22], for example
regarding breaks for gas or getting something to eat or drink based on activities of
the passengers inside the vehicle.

1.4 Contributions and Outline

This thesis focuses on driver activity recognition for future automated cars with a wide
variety of applications as presented in the previous sections. One of the challenges en-
countered in this thesis is the scarcity of data to reach this goal. Our first contributions
are therefore multiple datasets to evaluate parts of our system leading to currently one of
the biggest public datasets for driver activity recognition for automated cars. We propose
a modular driver monitoring system. Our approach consists of two stages where only the
first stage is dependent on the used sensors while the second stage, estimating the driver’s
activities, stays sensor independent. This approach allows us to combine datasets from
diverse sources including data from other domains for parts of the system. In addition,
it allows to reuse labeled data for activity recognition even with sensor modality and
viewpoint changes. We demonstrate these capabilities in Section 5.4.4.

To achieve this goal, we propose an abstraction layer using 3D data followed by driver
activity recognition using this abstraction. The main feature in this layer is the 3D driver
body pose. Its estimation is in itself a difficult problem where we contribute two real-
time capable approaches. In addition, we enrich the abstraction layer with a model of the
interior of the car as well as with 3D tracks of objects used for certain activities (e.g., water
bottles, food) to form a complete 3D interior state model. Based on this 3D state model
we perform driver activity recognition. Our main contribution for activity recognition
are approaches that can integrate additional features, like the interior model or objects
positions, in addition to the 3D driver body pose. This is also a novelty for 3D body pose
based activity recognition systems in general.

To our knowledge the proposed system is currently the only approach that tackles driver
activity recognition using 3D data from the ground up. An overview of the method is
depicted in Figure 1.1. The structure of the remainder of this thesis with its main con-
tributions is as follows:
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Chapter 2: Related Work

This chapter presents an overview of the related research topics regarding datasets, hu-
man body pose estimation as well as body pose based activity recognition. The methods
proposed in this thesis rely heavily on techniques from other non-automotive research
areas. For this reason for each topic we depict the state of the art in the general case as
well as in the automotive domain. The chapter finishes with a discussion of the identified
research gaps that are addressed in this thesis.

Chapter 3: Datasets

Both driver body pose estimation as well as activity recognition rely heavily on machine
learning and therefore need suitable datasets for development and testing. Especially with
regards to depth data, there were no suitable public datasets for our intended plan. We
therefore first analyze suitable sensor systems and sensor positions via literature research
as well as simulation. On this basis we collect three datasets. Their main contributions are:

« The first dataset focuses on 3D driver body pose estimation based on depth data. It
uses an automotive-certified prototype depth camera and is manually labeled. The
dataset covers the most common movements while driving manually and includes
some more challenging poses regarding smartphone usage and self-occlusion (e.g.,
crossed arms, reaching for the footwell). While the data is not publicly available it
enabled our research on this topic [Mar17a]. (Section 3.3)

« We also collect the first dataset for driver activity recognition that includes depth
data, and video data with high frame rate. It enabled our research on 3D driver
body pose-based activity recognition. It is also the first to include a model of the
interior of the car [Mar18b]. (Section 3.4)

« The final dataset expands on our previous experiences. Its focus are complex
driver activities for automated vehicles. It goes beyond the scope of the previous
datasets in all areas, using a multi-view camera system, hierarchical labeling for
fine-grained driver activities, an interior model as well as pre-computed 3D driver
body pose labels. The dataset was published at ICCV 2019 under the name
Drive&Act [Mar19]. We extended the labels of the dataset with additional
bounding box and 3D-position data of objects used while performing different
activities [Mar20a]. In addition, we use Drive&Act data to construct and publish a
challenging benchmark for 3D driver body pose estimation with varied scenes of
different activities including objects and occlusions [Mar21]. (Section 3.5)
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Chapter 4: 3D Driver Body Pose Estimation

The focus of our work on 3D driver body pose estimation is real time capable approaches
based on data from depth cameras. One of the challenges in this area is the scarcity of
training data. We contribute two methods that deal with these challenges in different
ways:

« Our first approach uses simulated depth data to train a system using decision
forests. The method achieves real time performance even on CPUs which was not
possible at that time using methods based on convolutional neural networks. To
our knowledge this is also the first published method for 3D driver body pose
estimation with a thorough evaluation of its accuracy [Mar16, Mar17a]. We
demonstrate its ability to generalize to real data by evaluating it on both
real-world datasets collected in this thesis. (Section 4.2)

« The main contribution of our second approach is the decomposition of the 3D
body pose estimation task into 2D body pose estimation on video images followed
by 3D body pose estimation via the 2D body pose and depth images. With this
approach the first part can rely on any state of the art 2D body pose detector,
making use of public large scale image datasets for training. Only the second part
relies on limited amounts of annotated depth data from the car interior. The
method uses a deep neural net to infer the 3D pose based on the input. Our
evaluation also shows the robustness of the method to occlusions which is a
challenge for depth image-based 3D driver body pose methods [Mar21].

(Section 4.3)

Chapter 5: Driver Activity Recognition

The driver activity recognition methods proposed in this thesis built upon each other
further increasing the complexity of the input as well as the flexibility with regards to
input changes. All our methods investigate the premise that the distance of the driver
to objects or interior elements is relevant for activity recognition methods. Our main
contributions are:

« We first demonstrate the advantages of 3D driver pose estimation combined with
a 3D model of the interior to detect interaction with interior elements (e.g., hands
on wheel detection, grabbing the gear lever). Compared to similar approaches our
method is simpler, requires fewer computing resources, and can easily be adapted
to other cars or additional areas of interest [Mar17a]. (Section 5.1)

+ Expanding on this technique we combine interior elements with the driver body
pose in a multi stream recurrent neural network to determine the driver activity.

11



1 Introduction

We show that the addition of the interior model helps improve the activity
detection performance especially for activities where the location is relevant for
the action [Mar18b]. (Section 5.2)

Finally we propose a method that also integrates the location of objects. We
model the input representation consisting of 3D driver body pose, interior
elements and object locations as a graph. Our main contribution is the graph
creation process that works on the principle that objects close by are more
relevant for activity recognition than objects further away. We use a graph
convolution-based method to process the input and can show the effectiveness of
our graph creation method as well as the advantages of adding information about
objects in the scene [Mar20a]. (Section 5.3)

Lastly, we test the graph convolution-based method for robustness to sensor and
viewpoint changes as well as for cross dataset performance and can show its
effectiveness compared to end-to-end video-based methods. (Section 5.4.4)

Chapter 6: Conclusion and Outlook

We summarize our results and place them in the context of the related work both for

computer vision in general as well as regarding automotive applications. In addition,

we discuss future improvements of our approach, new research within the automotive

context and also how our contributions can be applied to other domains.

12
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Our research on driver body pose estimation as well as driver activity recognition was
based on a large body of prior work. In many cases methods for driver monitoring were
themselves based on advances in the general area of research. In this chapter we therefore
present an overview of the state of the art for body pose estimation as well as activity
recognition in general, followed by an in-depth review of automotive methods.

2.1 General Human Body Pose Estimation

Human body pose estimation is a challenging computer vision problem because of the
high degrees of freedom of the human body. It involves the estimation of the location
of a set of keypoints (e.g., wrists, shoulders) of the human body. To be able to develop
these methods and to ensure their generalization capabilities to real world applications,
large datasets are necessary. In the following we distinguish between 2D and 3D human
body pose estimation and present the current state of the art both for datasets as well as
methods. We focus mostly on approaches for depth image-based 3D human body pose
estimation, because it is the main focus of our own work, while also giving an overview
of other approaches for this task.

2.1.1 Datasets

Collecting datasets for 2D as well as 3D human body pose estimation poses different chal-
lenges. Datasets are therefore usually specialized for one of these tasks. In the following
we present an overview of current state of the art general datasets as well as the chal-
lenges when collecting and annotating the data. This section serves as a comparison for
driver body pose estimation datasets (see Section 2.2.1).

2D human body pose estimation datasets require pixel-accurate annotations of key-
points of the human body. These datasets are usually annotated manually by anno-
tators marking the position and type of each keypoint for each person of each image
of the dataset. The annotation process is challenging because lighting and shadow
can cause visibility problems. In addition, depending on the body shape or clothing,
the position of keypoints cannot be determined precisely. Keypoints are also often
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occluded either by the environment or by self-occlusion. If body parts are only par-
tially occluded the position of the keypoint may still be estimated by the annotator.
Some datasets mark these landmarks as occluded. In case of severe occlusion annota-
tion is not possible. For automotive datasets for interior monitoring, occlusions are a
frequent problem because of the confined space.

There were multiple smaller datasets for methods predating the now popular deep
learning-based approaches. They all consisted of 10 000 images or less [Joh11, Sap13].
They were used to develop the first deep learning-based approaches, however, their
size was limiting for more complex methods.

Andriluka et al. [And14] identified this problem and published the MPII Human Pose
dataset consisting of about 40 000 images collected from YouTube videos. The dataset
was not only much larger than previous datasets, it also offered more variety in all
aspects (e.g., background, body orientation and human body pose).

The current state of the art for 2D human body pose estimation datasets is the Microsoft
Common Objects in Context (MS COCO) dataset [Lin14]. It is a large dataset consisting
of 330 000 images with multiple annotations, amongst others, object bounding boxes,
pixel level masks for each object as well as 2D human body poses. The images were col-
lected from different online sources with a focus on non-iconic images. Which means
images showing the main class in context with other classes, for example a person
riding a bike instead of a portrait of a person. The authors argued that this helps with
generalizing and preparing for novel environments that have yet to be encountered.

Methods trained on the data are often used as building blocks for further tasks, like
action recognition, as we will show in the next sections. We also used methods trained
on this dataset as part of our approach for 3D driver body pose estimation (see Sec-
tion 4.3). While methods trained on this dataset were often used in automotive applica-
tions, their performance on automotive data was usually not evaluated quantitatively.
We contributed such an evaluation as part of our work (see Section 4.4.1).

3D human body pose estimation datasets are difficult to generate with a large vari-

14

ety of people as well as different backgrounds because it is not possible to accurately
annotate 3D locations of keypoints on images from a single point of view. Collect-
ing image or video data with high variance from the web is therefore usually not an
option. Instead, data is often collected in dedicated experiments with specialized hard-
ware for annotation purposes. In the following paragraphs we discuss the most com-
mon methods to annotate general 3D body pose datasets. For a detailed summary of
current state of the art datasets for 3D human body pose estimation we refer to Wang
et al. [Wan21a].

Compared to the 2D human body pose estimation task 3D coordinates cannot be an-
notated in a single color or near-infrared image because the depth information is lost
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when projecting the scene onto the sensor. If there are multiple cameras in a cali-
brated multi-view system 3D data can be reconstructed via triangulation. In this case
manual annotation of 2D keypoints on all views followed by triangulation is sufficient.
However, the drawback of this approach is its expense because it is necessary to man-
ually annotate multiple images to retrieve a single 3D human body pose. The resulting
datasets are therefore generally small. However, compared to the annotation methods,
presented in the following, there are no additional sensors just for annotation. This
keeps the complexity of the recording setup low and enables recording data flexibly,
even outdoors [Bel14].

Optical Motion capture systems are designed to capture the movement of a person
with high spatial as well as temporal accuracy. They are used in the movie and game
industry to capture the performance of actors for animation purposes. These systems
are also a popular choice for collecting datasets for 3D human body pose estimation.
For this purpose, they are usually combined with additional cameras that provide the
image data while the motion capture system provides the annotation. Marker-based
systems rely on markers fixed to the recorded person at known locations. The motion
capture system then locates these markers to determine the 3D human body pose with
high accuracy. These systems often work with active near-infrared (NIR) light sources.
They are therefore limited to indoor environments because sunlight interferes with
their operating principle. In addition, the markers are visible in the collected data and
restrict the choice of clothing to limit the occlusion of markers [Sig10, Ion14]. There
are also marker-less motion capture systems which offer more flexibility with regards
to the environment and clothing [Joo16, Meh17a]. The main drawback of this anno-
tation approach is the limited recording area that does not allow for much variation
of the background. This is a result of the high complexity of the system, requiring
many motion capture cameras all around the recorded space to limit the occlusion of
markers.

Depth cameras offer another solution to retrieve 3D data with a single camera.
Datasets including depth images can either be annotated using independent motion
capture systems [Gan10, Gan12, Ofl13], as presented above, or they can be annotated
using the depth data itself with manual annotation [Sri21] as well as automated depth
image-based approaches [Haq16, Wan16a]. However, relying on just depth data from
a single point of view for annotation limits the quality of the annotation with regards
to occlusions. We analyze the challenges of using depth images for 3D human body
pose estimation in detail in Section 4.1.

There are also motion capture systems that rely on inertial measurement units (IMUs).
However, their results are usually relative to a calibrated starting position. In addi-
tion, these systems experience sensor drift which reduces their reliability over time.
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These drawbacks make it challenging to calibrate IMU-based motion capture systems
to cameras for 3D annotation [vMar18].

Because of the discussed complexities when recording such datasets, synthetic data is
an interesting alternative to generate depth [Shal6a, Mar18c] or color [Var17] images
with precise automated annotations. However, the generalization to real world data is
challenging for methods trained on synthetic data because of the remaining differences
between simulated and real images.

For our work on driver body pose estimation we relied on synthetic data (see Sec-
tion 4.2.2) as well as triangulated data (see Section 4.3.2) for training. For testing we
used both manually annotated depth images (see Section 3.3) as well as manually an-
notated and triangulated multi-view data (see Section 3.5.4).

2.1.2 2D Human Body Pose Estimation

With the advances in deep learning-based image classification [Kri12] and the introduc-
tion of large datasets [And14, Lin14] the first methods for 2D human body pose estimation
based on convolutional neural networks (CNNs) were introduced. They focused on body
pose estimation of single persons using small neural networks applied to image patches
with a sliding window approach [Tos14, Tom14, Jail5a]. This approach enabled train-
ing on small parts of images, limiting the required computational resources. Later fully
convolutional models became the norm using network structures for multi-scale feature
extraction [New16, Hel16, Weil6, Che18].

Modeling the output of neural networks for efficient human body pose inference was
an important part of this research area. There were two basic approaches: Regression
of body keypoint coordinates [Tos14] or classification of body keypoint locations via
heatmaps [Jail5a, Weil6, New16, Sun19]. The latter method became the most popular
approach because regression-based methods proved to be difficult to train and less accu-
rate [Tom14, Sun18]. However, this created additional challenges for approaches pushing
the accuracy boundaries because of the typically low resolution of heatmaps. This led to
methods combining heatmaps for coarse localization and regression to compensate for
the discretization caused by the heatmaps [Pap17, Kre19].

While earlier deep learning-based methods focused on single person pose estimation,
handling multiple people in the image is necessary for many real world applications. This
requires to determine which part of the image and therefore which body part belongs
to which person. The two main approaches to solve this problem were a top-down or
buttom-up analysis of the image:
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Top-down methods apply a person detector to crop relevant areas for single person pose
estimation. With this method any single person pose detector can be applied to mul-
tiple people. This approach works well for few people in the image because it ensures
high resolution for body pose estimation via cropping and simplifies the task to single
person pose detection. However, crowded scenes are challenging because partially
occluded people might not be detected and the cropped image can still contain parts
of multiple people making the body pose estimation task ambiguous [Fan17]. In ad-
dition, the processing time increases linearly with the number of people in the image
because the pose detector has to run for each detected bounding box. He et al. [He17]
proposed one of the first end-to-end trainable approaches for both person detection,
including instance masks, as well as human body pose estimation via heatmaps. Fang
et al. [Fan17] proposed a method to handle bounding boxes with body parts from mul-
tiple people by training a network to deform the image to focus the pose detector on
the primary target. Papandreou et al. [Pap17] increased the accuracy further by re-
gressing offsets in addition to heatmaps to compensate the discretization error of low
resolution heatmaps. Bazarevsky et al. [Baz20] focused on real time performance on
mobile phones with reduced accuracy by directly regressing the human body pose in
the bounding box.

Bottom-up methods first detect all keypoints of the people in the image followed by a
method to group keypoints to the full body pose of each person. They analyze the
whole image at once and can therefore handle crowds well because they are not con-
strained to isolated individuals within bounding boxes. Their speed is therefore also
largely independent of the number of people in the image. However, because they
handle the whole image at once, the resolution per person within the detection sys-
tem is lower, which can decrease the localization accuracy. Most of these approaches
use heatmaps to determine the position of each keypoint. However, with multiple
people in the image this leads to multiple peaks in each heatmap. This makes it nec-
essary to identify which peak belongs to which person. This is often approached by
building a graph using unary weights, which is typically the height of the peak in the
heatmap, as well as binary weights to model the probability that keypoints belong to-
gether. Solving the resulting graph matching problem leads to an efficient grouping
of keypoints to complete body poses.

While this problem could be solved using keypoint heatmaps together with geomet-
ric models [Pis16], a popular approach was to regress additional features as binary
weights within the neural network. In most cases the regressed binary features repre-
sented some form of vector field that indicated the pairwise connection between key-
points by pointing from one to the other. There were different approaches to generate
these vector fields like regressing vector offsets from each keypoint to each other key-
point of the same person [Ins16] or to neighboring keypoints in the kinematic chain
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Figure 2.1: Overview of the OpenPose method for 2D human body pose estimation [Cao18].

of the human body [Pap18, Kre19] or direction vectors pointing in the direction of
neighboring keypoints [Cao17]. Like top-down methods later approaches regressed
short range offsets in addition to heatmaps [Pap18, Kre19] as well as offsets to both
ends of keypoint pairs as binary features [Kre19]. This made the accuracy of these
methods largely independent of the resolution of both heatmaps and vector fields.

OpenPose [Cao17, Cao18] is a 2D human body pose estimator that is popular for activ-
ity recognition systems, especially in the automotive domain. It creates both heatmaps
as well vector fields, called affinity fields, that point from one keypoint to the next be-
longing to the same person. Figure 2.1 shows an overview of the approach. First local
maxima are extracted from the heatmaps then part affinity fields are sampled between
all pairs of neighboring keypoints in the kinematic body model to generate keypoint
pair weights. This data is then cast into a graph and the graph matching problem is
solved efficiently with a greedy heuristic approach resulting in the 2D body pose of
all people in the image.

We relied on OpenPose to generate 3D driver body pose annotations for the Drive&Act
dataset via triangulation (see Section 3.5.4) as well as to estimate the 2D body pose as
a starting point for our depth image-based 3D driver body pose estimation approach
(see Section 4.3).

2.1.3 3D Human Body Pose Estimation from Depth Images

While methods for 2D human body pose estimation improved by a large margin, thanks
to large benchmarking datasets, data was less available for depth image-based 3D human
pose estimation methods. Therefore, adoption of machine learning methods took longer,
especially with regards to data-dependent deep learning-based approaches. In addition,
methods were not easily comparable because they did not use common datasets or even
used private data sources. On the other hand, depth data is well suited for simulation
using computer graphics because lighting and texture are not relevant. This enabled the
creation of large well-labeled training datasets [Sholl, Buy14, Hes15, Raf15]. Analytic
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methods, often 3D model and tracking-based approaches, were popular because the seg-
mentation of people in depth images worked well for many applications and 3D data was
well suited to fit volumetric models [Gan12, Baa13, Hel13, Din15].

The research area changed rapidly with the introduction of the Kinect as affordable depth
sensor, and the related papers using Random Decision Forests for 3D human body pose
estimation. In the following we give an overview of data driven approaches using Random
Decision Forests followed by state of the art methods based on deep learning.

Random Decision Forests for body part labeling became popular with the approach by
Shotton et al. [Sho11]. In general, most of these approaches relied on a segmentation
of each person from the depth image. This was often achieved by analytic approaches
and heuristics using background segmentation. Each segmented person was then pro-
cessed separately. Shotton et al. [Sho11] classified each point of the segmentation with
a Random Decision Forest to assign body part labels. They then applied mean-shift
clustering to infer the final keypoint locations in 3D using the intrinsics of the camera
to re-project the depth image into the 3D scene. To train the Random Decision Forest
they required data of people in as many different poses as possible with accurate body
part label annotation. They therefore rendered synthetic depth images with matching
annotation using 3D models of humans with different body proportions and a large
database of motion capture data. This method was also the basis of the Microsoft Kinect
SDK, providing accurate 3D human body tracking at low cost [Wan15]. The results of
the SDK were popular for activity recognition systems and datasets [Shal6b, Liu19a].

We proposed a similar approach for our first driver body pose estimation system be-
cause of the low resource requirements of Random Decision Forests and the good qual-
ity of the resulting 3D driver body pose (see Section 4.2).

Girshick et al. [Gir11] improved this method using Random Decision Forests to regress
offset vectors to keypoint positions. Different parts of the approach were further op-
timized speeding up the approach using Random Decision Ferns [Hes15] or Random
Tree Walks [Yub15] or increasing accuracy by combining classification and regres-
sion [Sho13] as well as by regressing parameters of articulated body models [Tay12].
Others developed multi-stage methods, first regressing the global rotation of a person
then applying a Random Decision Forest specialized for the respective view [Lal14] or
using the Random Decision Forest to both create the segmentation of the person as
well as to classify this segmentation for body parts [Buy14]. Rafi et al. [Raf15] handled
occlusion explicitly by generating simulated training data including common house-
hold items as foreground objects and by introducing an extra label to mark occluded
regions of the segmentation. Jung et al. [Jun16] decomposed the task into keypoint
localization followed by keypoint identification using a learned dictionary of body
poses.
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Deep Learning-based methods first followed the same approach as Random Decision

20

Forest-based methods by densely labeling body parts of a segmented depth images.
However, methods based on advances in 2D human body pose estimation using
heatmaps as well as regression-based methods proved to be more successful.

Jiu et al. [Jiu14] replaced Random Decision Forests with shallow convolutional neural
networks for body part labeling on depth image patches. Shafaei et al. [Shal6a] used
a neural network for semantic segmentation to process the whole depth image and to
label all body parts at once. This allowed the network to consider the global context
instead of local patches.

Wang et al. [Wanl16a] adopted a similar approach to single person 2D human pose
estimation by predicting heatmaps for each body part but instead of color images
they used depth images as input. Martinez-Gonzalez et al. [Mar18c] expanded this
idea to multi-person pose estimation predicting both heatmaps as well as part affinity
fields [Cao17] to group body parts to persons. They trained on synthetic data using
real depth images as background. Moon et al. [M0018] converted the depth image to
a voxel-grid and performed 3D human body pose estimation with 3D data from the
start by using 3D convolutions and estimating 3D keypoint heatmaps.

Regression-based methods for 3D pose estimation with depth images were often com-
bined with skeleton-based priors. Haque et al. [Haq16] determined the mean body
pose on the training set of their data and used recurrent neural network to regress cor-
recting vectors to adapt the initial mean pose to the image data in multiple iterations.
Marin-Jiménez et al. [Mar18a] computed a set of reference body poses by clustering
the training set and regressed weights for each reference pose via a neural network to
infer the final body pose from the input image via linear combination.

All methods presented in this section up to this point relied solely on depth data. How-
ever, with the introduction of large-scale datasets for 2D human body pose estima-
tion based on color data, it was advantageous to combine them with the more limited
datasets including depth images. Zimmermann et al. [Zim18] achieved this by combin-
ing the 2D heatmap result of OpenPose [Ca018] with a voxel-grid representation of the
depth image followed by a 3D convolution-based network to determine 3D heatmaps.
Martinez-Gonzalez et al. [Mar20b] decoupled depth prediction and 2D human body
pose estimation. They first predicted the 2D body pose using a part affinity-based
multi-person pose detector [Cao17]. They re-projected the resulting 2D human body
keypoints to 3D using the corresponding depth image and used this initial 3D body
pose as input to regress refinement vectors with a deep feed forward network.

We used a similar decomposition method to combine large-scale 2D human pose esti-
mation datasets with our limited depth data from the car’s interior (see Section 4.3).
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2.1.4 Other 3D Human Body Pose Estimation Methods

Our main contributions to 3D driver body pose estimation were depth image-based. How-
ever, we also developed an approach based on the triangulation of 2D human body poses
from multiple-views. This method served to annotate the Drive&Act dataset (see Sec-
tion 3.5.4) and as a baseline for our depth image-based contributions to 3D driver body
pose estimation (see Section 4.3.2). In addition, our methods for 3D driver body pose
estimation were inspired by approaches for monocular 3D body pose estimation (see Sec-
tion 4.3). In the following we provide a brief overview of related methods in both areas.
For an in-depth review we refer to Wang et al. [Wan21a].

Triangulation-based 3D human body pose estimation relies on a calibrated multi-view
camera system with two or more cameras. With an increasing number of redundant
views both the accuracy and robustness to occlusions increases but the necessary com-
puting power rises as well.

A good baseline for 3D human body pose estimation via multi-view systems was
2D body pose estimation followed by separate triangulation of each keypoint [Don19].
The results could be further improved by fitting a 3D pictorial structures model to the
2D observations [Don19]. In the case of multiple people the task gets more complex be-
cause it is necessary to find the right association between detections in multiple views
for a successful 3D reconstruction. This could be done for example with a neural net-
work for person re-identification [Don19] or with geometric constraints [Kad20]. It
was also possible to extend 3D pictorial structure models for multi-person 3D body
pose estimation [Joo16]. There were also end-to-end trained methods, using neural
networks, inferring the 3D body pose of multiple people directly from the images of
a multi-view system [Tu20]. However, while this approach achieved high accuracy it
needed a large training dataset in the target domain.

Our triangulation-based approach relied on separate triangulation per keypoint to
generate 3D body pose ground truth as well as high quality 3D body pose annota-
tions of the Drive&Act dataset. While there were methods with higher accuracy, they
required training data in the target domain which was not available at scale for 3D
driver body pose estimation.

Monocular 3D human body pose estimation methods require just a color image or a
video sequence from one viewpoint as input. This is an ill-posed problem because the
depth information is lost when projecting the scene onto the image plane. The only
way to reconstruct the depth data relies on image cues. It is therefore also difficult to
determine the absolute 3D positions of body parts or the size of the person. Monocular
methods were therefore often limited to estimate the 3D human body pose in a pose lo-
cal and sometime scale invariant coordinate system. Deep learning-based methods for
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this task can be categorized into image or video-based approaches and lifting methods
using one or more 2D human body poses as input.

Image-based methods require large datasets of image data with 3D body pose anno-
tations. These datasets were usually recorded in laboratories using motion capture
systems for automated labeling (see Section 2.1.1). Methods trained on just these
datasets did not generalize well to real world applications because the people, clothing
as well as surroundings were not varied enough. A common approach was therefore
multi-task learning combining real world datasets for 2D human body pose estima-
tion with less varied 3D annotated data [Xial7]. The output of these networks could
be regression-based, determining the 3D position of each keypoint relative to the root
keypoint of the body [Li15]. However, regressing the parameters of parametric body
models produced better results because the constraints of the model simplified the
regression task [Kan18]. Instead of regressing the 3D keypoint positions it was also
possible to determine heatmaps for each coordinate axis [Meh17b].

Lifting-based methods do not require image data [Wan2la]. They can therefore be
trained on any motion capture dataset and can still generalize to real world data. How-
ever, there are ambiguities where one 2D human body pose can be lifted to different
valid 3D body poses. While image-based methods can resolve these cases using image
cues, lifting-based methods cannot. Martinez et al. [Mar17b] proposed an effective
baseline method lifting a single 2D human body pose to 3D via a small feed forward
network. Zhao et al. [Zha19c] reduced the impact of ambiguities by integrating image
features, extracted from a 2D human body pose detector, and by enforcing temporal
consistency between time steps with recurrent neural networks.

Our depth image-based 3D driver body pose method (see Section 4.3) was inspired by
the lifting approach of Martinez et al. [Mar17b]. However, instead of 2D human body
poses we already used 3D human body poses as input. Our approach therefore did not
suffer from the ambiguity problems of the lifting process and could regress absolute
positions for each keypoint. Its main purpose was to fix errors of the input introduced
by depth images in combination with body part occlusions (see Section 4.1).

2.2 Driver Body Pose Estimation

Driver body pose estimation is human body pose estimation for the interior of cars with a
focus on the driver. These methods usually focused on the upper body of the driver down
to the hips or knees because the legs are often occluded by the steering wheel or foot-well.

We conducted a literature review of the field by searching for driver body pose related
keywords as well as by aggregating all papers that cited public datasets for this task.
We filtered the resulting list for contributions that either published a dataset for driver
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Figure 2.2: Number of papers per year for 2D- and 3D driver body pose estimation. A indicates own
publications. % indicates own public datasets. # indicates the first public dataset.

body pose estimation or contributed an approach for the task. Overall, we discovered
21 relevant papers from 2009 until the end of 2021 (see Figure 2.2). To the best of our
knowledge this represents the main body of work on driver body pose estimation in the
last decade. Compared to general human body pose estimation the research area with an
automotive focus was small. Research interest increased since 2015 but the introduction
of the first public benchmarking datasets took until 2020. Compared to general datasets,
automotive datasets for this task remain small, making it challenging to train methods
just on automotive data. In the following we present our findings for datasets as well as
methods in detail.

2.2.1 Datasets

Compared to the number of datasets for general human body pose estimation there were
few datasets for driver monitoring which were in general much smaller. While public
datasets were common in the general setting, data usually remained private for auto-
motive applications [Mar17a, Mur17, Chul9, Yuel9]. This started to change in recent
years [Das15, Bor20, Dia20, Gue21, Mar21]. Table 2.1 shows an overview of, to our knowl-
edge, all public and some private datasets for driver body pose estimation in comparison to
general datasets. Compared to those datasets the use of near-infrared cameras was much
more common in the automotive context. The reason for this is the requirement for driver
monitoring systems to work at night and in daylight. This necessitates an active illumi-
nation system in the near-infrared spectrum combined with a camera that is sensitive for
these wavelengths. We discuss the requirements on the sensor system in Section 4.1.

Das et al. [Das15] published one of the first datasets for hand detection within the vehicle
showing a wider view of the interior of the cabin. However, the dataset was limited to
bounding boxes of the hands of the driver and co-driver. In the following years work on
driver body pose estimation was conducted only on private datasets including our first
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contribution in that area on 3D upper body pose estimation from depth images [Mar17a].
Our dataset consisted of 20 000 depth images recorded in a driving simulator. Test par-
ticipants were instructed to perform a sequence of common movements while driving
a vehicle. Keypoints were manually annotated (see Section 3.3). Others focused on 2D
driver body pose estimation detecting either upper body keypoints [Chu19] or just elbows
and hands [Yue19]. Both used private datasets recorded in normal traffic with manual
annotation.

Borges et al. [Bor20] published the first benchmark dataset for driver body pose esti-
mation. They investigated how to annotate 3D human body pose data accurately and
automatically within the vehicle. As depicted in Section 2.1.1 the most accurate approach
would be marker-based motion capture. However, because of the confined space of the
car interior positioning motion capture cameras is difficult and occlusions cannot be pre-
vented. Their solution was therefore to combine an optical marker-based system with
inertial measurement units (IMUs) that do not require visibility of the body parts. They
used this approach to annotate data of a depth camera. Overall, the dataset consisted of
8700 depth images collected while driving manually in traffic. Feld et al. [Fel21] described
a similar setup using just marker-based motion capture in a more spacious driving sim-
ulator but without publishing data.

Dias Da Cruz et al. [Dia20] approached the annotation challenges in a different way by
simulating data of the interior of the car. This enabled the export of high quality an-
notations not only of the body pose of the passengers but also other features that are
time-consuming to annotate (e.g., labels for instance segmentation). They also generated
data from different vehicles by changing 3D models and textures. Their published dataset
consisted of 25000 rendered depth, color and near-infrared images of 10 vehicles with,
among others, 2D keypoints of the whole body of each passenger.

Guesdon et al. [Gue21] collected a large video dataset of people driving a car in nor-
mal traffic. The data included challenging lighting conditions that occur while driving
in daylight. They selected 10 000 images from the videos based on image similarity and
illumination differences and annotated the 2D driver body pose manually for each image.
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Table 2.1: Summary of datasets for body pose estimation. 2D- and 3D general datasets are provided as
reference. The table of public automotive datasets is a complete list for the last decade. Our own
contributions are shown in bold. Environment (MD: Manual Driving; AD: Automated Driving,
SIM: Simulator, Synth: Synthetic); Image Modalities (R: RGB, I: NIR, D: Depth)
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Dataset = == w & #* o i) < &
2D general datasets
MPII Human 2014 R - 40.5K 16 x - Youtube  Manual v
Pose [And14] (11.7K)
MS Coco [Lin14] 2016 R - 165K 17 x - Internet  Manual v
(Keypoints) (41K)
3D general datasets
Shelf/Campus 2014 R 5 N/A 15 v 6 Outdoor Manual v
[Bel14]
Human3.6m 2014 R/D 4 3.6M 24 v 11 Lab Marker v
[Ion14] Mocap
CMU Panoptic 2016 R/D 520 1.5M 15 v N/A Lab Marker-less v
[Joo16] Mocap
Itop [Haq16] 2016 D 2 100K 15 v 20 Lab automated v
+ manual
cleanup
Automotive datasets
Viva Challenge 2015 R 6 11K 1 x NA MD Manual v
[Das15] (5.5K)
Cronje[Cro17] 2017 R N/A N/A 4 x NA MD manual X
Depth Pose 2017 1D 1 20K 11 vV 9 Sim. Manual x
[Mar17a] (20K)
Chun[Chu19] 2019 1 2 18K 9 X 100 MD Manual b's
(7.7K)
Yuen[Yue19] 2019 R 1 10K 4 x NA MD Manual X
(1.5K)
MoLa R8.7k 2020 I/D 1 8.7K 14 v 5 MD IMU & /
InCar[Bor20] (1.7K) marker
Mocap
SVIRO[Dia20] 2020 R/I/D 1 25K 17 x 32 Synth. exported v/
(5K)
DriPe[Gue21] 2021 R 1 10K 17 x 19 MD Manual v/
(2.6K)
Drive&Act 2021 R/I/D 6 6M 13 / 4 AD Automated Vv
[Mar21] (2D: 6K) (Manual)
(3D: 1.5K)
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Building on our experience collecting the first private dataset for 3D body pose estimation
we extended the Drive&Act dataset with a public 3D body pose estimation benchmark by
annotating a small subset of the images of the dataset [Mar21]. Compared to the other
datasets, Drive&Act was focused on automated driving with a wide variety of secondary
tasks causing occlusions and challenging poses. In contrast to Borges et al. [Bor20] the 3D
driver body poses in our dataset were not instructed but were instead a product of the per-
formed secondary activities. The Drive&Act dataset was recorded without an automated
system for 3D driver body pose annotation. However, regarding Borges et al. [Bor20] and
considering the high level of occlusion, caused by some secondary activities, automated
annotation would have been challenging. Instead, we labeled 3D keypoint positions man-
ually which was only possible with high accuracy because of the multi-view camera sys-
tem of the Drive&Act dataset. We selected 1500 highly diverse scenes and annotated the
upper body pose of the driver manually in four views of the dataset using triangulation
to recover the 3D body keypoints. Overall, the dataset therefore consisted of 1500 scenes
with 6000 manually annotated 2D driver body poses and the corresponding 1500 triangu-
lated 3D driver body poses. In addition, Drive&Act provided six million 3D driver body
poses for training, labeled with an automated process base on the triangulation of 2D
driver body pose results determined with the OpenPose detector. Section 3.5.4 depicts
the dataset and the annotation method in more detail. We evaluate the quality of the
automatically annotated training set in Section 4.4.3.

2.2.2 Methods

There were many methods relying on driver body pose estimation to estimate distrac-
tion [Shil4], driver skill level [Tom12] or secondary activities [Xin18, Beh18b, Beh20,
Beh18a] using either the Kinect SDK or other state of the art 2D body pose detectors.

However, research interest on driver body pose estimation itself only increased in re-
cent years and public datasets were available for an even shorter time. There were other
methods that detected just the hands [Mol15, Hoal7, Ran18] or the position and orienta-
tion of the head of the driver [Sch15, Sch17]. In the following we focus on methods that
determine the location of all upper body keypoints of the driver.

Because of the depicted data scarcity methods that did not need training data combined
with qualitative evaluations via example images were common initially. First, we sum-
marize these approaches followed by methods that evaluated quantitatively and relied on
state of the art machine learning methods.

To our knowledge one of the first methods for 3D driver body pose estimation on depth
images was presented by Demirdjian et al. [Dem09]. They fitted an articulated mesh
model to a low-resolution point cloud of the driver using an Articulated Iterative Closes
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Point algorithm. Tran et al. [Tra10] used skin color segmentation to determine the head
and hand positions in 3D using a stereo camera system. They approximated shoulder
and elbow positions using inverse kinematics. Liu et al. [Liul3] proposed a method for
2D driver body pose estimation using Histogram of Oriented Gradients (HoG) features
and a part template-based deformable model. Kondyli et al. [Kon15] used the Kinect Sen-
sor to capture the driver. They noted that the Kinect SDK does not work reliably in real
vehicles and therefore developed their own analytic approach. Yamada et al. [Yam16]
also used the Kinect Sensor and presented a method based on body part labeling using
Random Decision Forests to generate the 3D driver body pose. To simplify the collec-
tion of labeled training data, test participants wore a shirt with distinct colors for each
body part. They then generated body part ground truth labels using chroma keying on
the recorded color images. However, they still presented their results only qualitatively
because their annotation method only resulted in labeled regions instead of 3D keypoints
of the driver’s body.

We contributed a similar Random Decision Forest-based method [Mar16, Mar17a]. How-
ever, while we also first collected a small real-world training set with body part labels,
we later used synthetic data, like related methods from other domains. For testing, we
collected data in a driving simulator with an automotive depth camera and annotated the
data manually with 3D driver upper body keypoints. To our knowledge, this was the first
published method for driver body pose estimation evaluated quantitatively as well as the
first method using synthetic data to deal with the lack of annotated real data for driver
body pose estimation (see Section 4.2).

In the following years deep learning-based methods became common which were trained
on mostly private labeled datasets but with quantitative evaluation of their performance.
Many approaches closely followed general 2D human body pose estimation methods re-
gressing 2D keypoint positions [Oku18, Liu19b] or in most cases determining heatmaps
of 2D keypoints [Gue21]. A popular framework was the multi-person body pose detector
based on part affinity fields from the general research area [Cao17]. Methods based on this
framework varied in the complexity of their base neural network to extract images fea-
tures as well as in their input modalities, using color data [Chu19], depth images [Tor19,
Bor20], near-infrared Images [Yue19] or color and motion data [Li18]. All of these meth-
ods determined just the 2D driver body pose even if they used depth images as input.

Estimating the 3D driver body pose was researched less often. Zhao et al. [Zha18] noted
the unreliability of the Kinect SDK in the automotive context. They therefore created a
post processing system to filter the results and to add missing joints. They used reliably
detected joints to find close reference poses in a large body pose database to interpo-
late and correct the result of the Kinect SDK. Borges et al. [Bor20] used an approach for
monocular 3D driver body pose estimatoin [Mar17b] to lift the 2D driver body pose to 3D
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with a deep fully connected network. Yao et al. [Yao20] proposed a two-stream approach
using point clouds, created from depth images, in one stream and near-infrared images
in a second stream to regress the 3D body pose of the driver.

Our updated method for 3D driver body pose estimation from depth images [Mar21] fol-
lowed some of the presented trends by using a state of the art 2D body pose detector in
conjunction with both near-infrared and depth images. However, we focused on fully
decoupling 2D driver body pose estimation on near-infrared images and 3D driver body
pose estimation via depth images. This had the advantage of utilizing large datasets for
2D body pose estimation, even from other domains, and could focus on lifting the results
to 3D using less available and less varied annotated depth data from the car interior (see
Section 4.3). In addition, we investigated different sensor setups for 3D driver body pose
estimation via triangulation which was also a novel contribution (see Section 4.4.3).

2.3 General Activity Recognition

Activity recognition is a varied research field with many applications. Driver activity
recognition is only a small part of this field of research. However, methods with an au-
tomotive context often originated from general activity recognition approaches. In the
following we therefore present activity recognition datasets and methods in general as
a reference for automotive approaches. We differentiate between video-based methods
and 3D human body pose-based approaches, which were the basis of our work on driver
activity recognition.

2.3.1 Datasets

There were large improvements in general activity recognition methods over the last
decade. This can be attributed to the introduction of deep learning-based approaches
as well as the availability of large public benchmarking datasets. Many activities have
both spatial as well as temporal components. Most datasets and methods are therefore
focused on video or other time series data. Datasets usually consist of short clips labeled
with a single activity or longer video streams labeled in sections with different activities.
These datasets are in general labeled manually. While the annotation process is the same
for all datasets, there are differences regarding the collection of data depending on the
input modality of the dataset for activity recognition.

Video-based activity recognition datasets, like datasets for 2D human body pose
estimation, can be created from many sources like movies, TV shows or web
videos. The datasets therefore depict activities with a large variety. HMDB [Kue11],
UCF50 [Red13], UCF101 [Soo12] were the first large-scale video datasets for activity
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recognition with 50 and 101 classes respectively and many clips per class. The Kinet-
ics dataset [Car17] is the current state of the art benchmark for activity recognition
consisting of 400 classes at its introduction. In the following years the dataset was
extended with even more activity classes and additional annotations as input for
activity recogniton methods, like 2D body pose labels created with the OpenPose
approach.

3D body pose-based activity recognition datasets face similar challenges as datasets for
3D human body pose estimation because the 3D body pose cannot easily be inferred
from video data alone. However, the accuracy of the human body pose is less relevant
as long as it depicts the performed activities well. This is why a popular choice to
collect data was the Microsoft Kinect depth cameras in combination with the Kinect
SDK for 3D human body pose estimation. Datasets were usually recorded in user
studies with a limited number of people as well as instructed actions. Because of the
simpler camera setup, compared to complex motion capture systems, the recording
environments were more varied but still mostly limited to indoor spaces. However,
the surroundings were less of a concern because the image data was not part of the
input for these activity recognition systems.

The current benchmarks for this task are the NTU RGB+D 60 [Shal6b] and
NTU RGB+D 120 [Liul9a] datasets. They include 60 and 120 activities, respectively.
The datasets offer both a cross-view benchmark, where methods have to generalize
to novel camera angles, as well as a cross-person benchmark, where methods have
to generalize to unseen people. However, the datasets do not include additional
annotations, for example, regarding the surrounding environment or objects involved
in activities, thus methods solely focussed on the 3D human body pose as the input
modality.

In contrast, the Drive&Act dataset, contributed by us for driver activity recognition,
expanded the input domain for activity recognition to 3D object locations as well as a
3D model of the surrounding car interior.

2.3.2 Video-Based Methods

We used video-based activity recognition methods as comparison to our human body
pose-based approaches both as benchmark in general as well as to highlight the advan-
tages of human body pose-based methods with regards to changes in viewpoint and cam-
era modality. In the following we therefore only introduce the research area in general
and focus on the baseline methods used in our evaluation. For a detailed overview of the
research area, we refer to Sun et al. [Sun21].
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Deep learning-based video activity recognition methods mainly fall into three categories:
Two-stream 2D convolutional neural networks, recurrent neural networks, and 3D
CNN-based methods. 2D convolutional neural networks were often used together with a
two-stream approach classifying color video data with one network and temporal data,
in the form of optical flow, with a separate network using late fusion to combine the
scores [Sim14]. Multi-stream approaches combining spatial and temporal data were also
common for human body pose-based activity recognition. Methods based on recurrent
networks often used 2D convolutional neural networks to extract features from each
image followed by a recurrent network, based on long short term memory units (LSTMs),
for activity classification [Don15].

3D convolutional neural networks can be applied to video classification by interpreting
video sequences as spatio-temporal volumes. Tran et al. [Tra15] introduced the C3D net-
work consisting of 3 X 3 X 3 convolution layers and 3D pooling layers. The challenge
with 3D convolutional networks was their increased number of parameters, introduced
by the third dimension, which made them harder to train. Qiu et al. [Qiul7] therefore
introduced Pseudo-3D Residual Nets (P3D) which mimic 3D convolutions with spatial 2D
convolution (1 X 3 X 3) and temporal convolution (3 X 1 X 1). Carreira et al. [Car17] ap-
proached this problem differently, introducing Inflated 3D convolutional neural networks
(I3D). They used a pre-trained inception network for image classification [Iof15] and in-
flated its weights to 3D. They achieved this by repeating the weights of 2D filters on the
new third dimension and rescaling them to keep the output of the 3D filter the same as
the 2D filter. With this approach it was possible to generate deep 3D convolutional neural
networks with pretrained weights from image datasets.

We used C3D, P3D and I3D as baselines for our driver body pose based activity recognition
methods (see Section 5.4.3).

2.3.3 3D Human Body Pose-Based Methods

Compared to video-based methods 3D human body pose-based approaches are more ro-
bust to noise introduced by the background, illumination changes or other objects. They
can generalize well to other surroundings and viewpoints as demonstrated by [Liul9a]
as well as by us (see Section 5.4.4). However, relying solely on the human body pose
can also be a disadvantage if activities involve objects or interaction with the surround-
ing environment. The main evaluation datasets of the approaches presented here were
the NTU RGB+D datasets [Shal6b, Liu19a] which were focused on 3D human body pose
as the sole input modality. The research area therefore relied on human body pose data
as its main input as well. Our approaches expanded these methods with additional data
sources in an automotive context.
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The main challenge for human body pose-based activity recognition methods was the
efficient use of spatial as well as temporal relationships between body parts. This was
usually approached in two stages: Creating suitable input features as well as parsing the
spatio-temporal relationships with neural networks. Apart from the raw 3D keypoint
trajectories, commonly extracted features were keypoint velocities, by subtracting key-
points of different time steps [Jan20], as well as body part orientations, by subtracting
neighboring keypoints in the kinematic chain of the human body [Zha17b, Shi19a]. Of-
ten these features were combined in multi-stream neural networks with mid-level feature
fusion [Jan20] or score-level late fusion [Shil9a].

Cross viewpoint evaluation was an important part of the NTU RGB+D datasets. The two
most widely used methods to improve generalization to new views were either normal-
ization [Shalé6b, Shi20], by transforming the body pose data to a pose local coordinate
system, or augmentation [Wan17, Zha19b], by perturbing the training data with ran-
dom transformations. Instead of a fixed normalization scheme it was also possible to
learn a normalizing transformation based on the input data as part of the neural net-
work [Zhal7a, Zha19b].

Even though the human body pose is already a high level, low dimensional representation,
compared to video clips, there are still keypoints as well as parts of the time series that are
more important than others. Attention methods enabled neural networks to focus on the
important parts by re-weighting the features extracted by the primary neural network.
There were attention modules for temporal [Son17a, Shi20], spatial [Son17a, Shi20] and
feature channel [Shi20] importance estimation. There were also methods that refined a
global state space using attention mechanisms [Liul7a, Mag19].

Approaches to parse spatio-temporal relationships differed widely depending on the base
type of neural network. Recurrent networks were a popular choice at first because they
were well suited to model the temporal dynamics of keypoint trajectories. However, mod-
eling the spatial relationships between keypoints proved challenging. Graph convolution-
based methods on the other hand were well suited for this task and mostly superseded
methods based on recurrent networks. In parallel there were methods using advances in
convolutional neural networks for image and video classification by casting the human
body pose sequence in array like structures. In the following we present methods of all
three areas.

Convolutional neural networks for image and video data require input in the form of
arrays. They are well suited to extract features in local neighborhoods via convolu-
tional filters. However, it is not obvious how to organize the sequence of human body
poses in a grid with meaningful neighborhood because 3D human body movements
have five dimensions (Keypoint type, Time and 3D coordinates). In addition, the limbs
of the body form a tree structure which is hard to represent in a grid as well.
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One way to achieve this was to project 3D keypoint coordinates onto the three main
coordinate axes creating three scatter plots of keypoint positions. Temporal informa-
tion as well as keypoint type could then be encoded using different ranges of the color
spectrum [Houl6, Wan16b]. A more generalized approach used multiple permuta-
tion of two of the five dimensions for projection and encoded the remaining data as
colors [Liul7b]. In all cases this resulted in multiple image-like matrices that were
classified with separate convolutional networks followed by late fusion.

Stacking data without projection was the more common method leading to a com-
pact matrix representation. This could be achieved by creating a vector of all keypoint
data K from one time step and combining these vectors of different time steps T to
a matrix of size KxT. While this approach worked well to represent the temporal
neighborhood, the tree structured body model could not easily be mapped to a vec-
tor representing all spatial dependencies. This was tackled by grouping body parts
based on limbs (e.g., arms, legs, torso) [Dul5a, Kel7], training a permutation matrix
to reorder body parts in a manner suitable for activity recognition [Li17], or by tree
traversal keeping the local neighborhood consistent by replicating keypoints multiple
times [Yan19, Cael9]. Traversal schemes were also a popular choice in conjunction
with recurrent networks.

Recurrent neural networks are well suited to model time series data. Most approaches
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using recurrent networks for activity recognition based on 3D human body poses re-
lied on Long Short Term Memory Units (LSTM) because they could model long term
temporal relationships [Hoc97]. We also used LSTM units in our approach and intro-
duce them in detail in Section 5.2.1. The baseline method to use recurrent networks
for this task was stacking the human body pose data of each time step in a vector.
The primary challenge for these methods was modeling spatial relationships between
body parts. To this end there were two different approaches in research: Traversing
the spatial structure of the input data and adapting the LSTM units themselves for
activity recognition.

Du et al. [Dul5b] concatenated keypoints in five parts corresponding to limbs and
torso. They first extracted features from each part with separate LSTM units and fused
these features pairwise in a hierarchy of additional LSTM Units. Liu et al. [Liu16] intro-
duced a spatio-temporal LSTM. Their method used recurrency to travers the temporal
as well as the spatial domain at the same time. They achieved this by assigning an
LSTM Unit to each keypoint of the human body and by traversing spatially follow-
ing the kinematic chain of the human body in depth first order. Spatial traversal fol-
lowed the kinematic chain using depth first order. Wang et al. [Wan17] simplified this
method using a two-stream approach where one branch extracted temporal features
and the second branch used kinematic tree traversal to extract spatial features.



2.3 General Activity Recognition

We based our first method for driver activity recognition on this framework. Our
contribution was an extension with context features combining the body pose of the
driver with the location of elements of the car interior, like the controls. It therefore
allowed the method to reason about the context where an activity took place (see
Section 5.1).

There were different proposed optimizations to the LSTM units themselves. Veeriah
et al. [Veel5] proposed differential LSTMs taking the differential of the hidden state
into account in the gates of the LSTM to make it more sensitive to temporal dynam-
ics. Liu et al. [Liul6] introduced a trust-gate preventing cell updates if the keypoint
position predicted from the hidden state differed from the input keypoint. Shahroudy
et al. [Sha16b] introduced part aware LSTM cells by splitting the hidden state of the
LSTM cell into five parts (e.g., limbs and torso). This reduced the number of trainable
weights to update the cell state making the network more efficient.

Graph convolution-based neural networks (GCN) are well suited to represent the
structure of the human body because the kinematic model naturally resembles a tree.
Most methods were derived from the spatial graph convolution layer introduced by
Kipf et al. [Kip17]. Their approach relied on vertex feature vectors and the graph
neighborhood modeled as adjacency matrices. The graph convolution layer consisted
of an aggregation step of neighboring node features, using the adiacency matrix and
weighted averaging, followed by a trainable feature transformation. Yan et al. [Yan18]
extended this approach to spatio-temporal graph convolutions (ST-GCN) for activity
recognition on human body pose time series data by adding temporal convolutions,
connecting each joint with its previous and next temporal neighbor.

We also relied on this framework for driver activity recognition and describe it in detail
in Section 5.3.1. While the state of the art presented here mostly focused on optimizing
ST-GCN using just human body pose data as input, we investigated how to expand the
spatial graph to other data modalities like context features modelling the surrounding
interior of the car as well as 3D object positions (see Section 5.3).

While ST-GCN only took the direct neighbors into account, relying on multiple stacked
layers to propagate information through the graph, others accounted for neighbors
further away [Li19a, Liu20, Hua20] be extending the adjacency matrix to second or
third order graph neighbors. Others proposed changes to the temporal connections of
the framework, extracting features at multiple temporal resolutions [Hua20] or creat-
ing additional temporal edges to nodes that are neighbors in the spatial graph [Liu20].

The adjacency matrix was the core of the graph convolution layer. It was often man-
ually defined based on the kinematic model of the human body. In many cases this
matrix was fixed for all layers of the network. This was restricting because it did not
allow the machine learning model to optimize the graph structure. A popular choice
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was therefore to introduce additional trainable weight matrices of the same shape as
the adjacency matrix. This matrix was either elementwise multiplied [Yan18], allow-
ing the network to tune the importance of existing edges, or added [Shi19b, Hua20],
allowing the network to create new edges. Others proposed to infer this matrix from
the input data using separate neural network layers, allowing the graph to adapt to
the current input [Li19a, Shi19b, Hua20, Ye20]. Instead of adding additional matrices
it was also possible to use the manually defined graph only to initialize the adjacency
matrix and to adapt it as part of the training process [Shil9a]. Training the adjacency
matrix from scratch with randomized initialization was challenging and often unsta-
ble. The manually defined adjacency matrix stabilized the training process [Shil9a]
and was therefore often included in some form. Most of the presented approaches
were used to optimize a single global adjacency matrix for all layers but it was also
possible to apply these techniques to each layer separately [Shi20].

A drawback of the basic graph convolution layer was its missing definition of struc-
ture in the neighborhood. A 3 X 3 convolution layer for images for example has nine
filter weights, one for each of the pixels. In graph convolution layers there was only
one trainable weight for all neighbors because the order of neighbors in the graph is
undefined. Yan et al. [Yan18] therefore defined a neighborhood based on the distance
to the center of the human body. They could then split the edges of the graph into
three parts with separate trainable weights. However, this approach increased the
needed computational resources proportional to the size of the neighborhood. Cheng
et al. [Che20b] therefore proposed to apply different trainable adjacency matrices to
partitions of the node feature vector keeping the needed resources constant.

2.4 Driver Activity Recognition

We conducted a review of the state of the art for driver activity recognition, like our lit-
erature review on driver body pose estimation. We discovered relevant publications by
searching for keywords related to driver activity recognition. In addition, we reviewed all
papers that cited public datasets for the task. The resulting list was filtered for contribu-
tions that either published datasets for driver activity recognition or propose a method for
the task. Overall, we discovered 91 relevant papers from 2012 until the end of 2021 (see
Figure 2.3). To the best of our knowledge this represents the main body of work on driver
activity recognition in the last decade. We could identify some general trends. Research
interest increased strongly since 2018. However, compared to general activity recognition
large-scale public datasets only became available in the last years, in part thanks to our
contribution of the Drive&Act dataset [Mar19]. The lack of large-scale data also delayed
the adoption of deep learning-based methods. While general activity recognition methods
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Figure 2.3: Number of papers per year for driver activity recognition. A indicates own publications. *
indicates own public datasets. # indicates the first public dataset.

mostly relied on time series data, as shown in the last sections, image-based methods were
still common for driver activity recognition, which was likely also an effect of the lim-
ited data availability. Driver body pose-based activity recognition, the focus of our work,
became popular with the introduction of general human body pose-based methods that
worked well across different domains making training on automotive data less necessary.

In the following section, we present our findings in detail starting with dataset, followed
by methods detecting interaction with the interior, like hands on wheel detection, fol-
lowed by activity recognition methods in three sections based on images, videos or the
body pose of the driver.

2.4.1 Datasets

Compared to driver body pose estimation public datasets were more common for driver
activity recognition. Nevertheless, until recently these datasets were limited in size and
complexity. The established benchmark datasets were image-based and mostly depicted
clear-cut samples for each activity [Kag16, Abo18]. At the time of writing there are no
established benchmark datasets for video or driver body pose-based activity recognition
with an automotive focus. Private datasets, that were only used in a few publications,
are common and the recently released large-scale datasets are not established as common
benchmarks yet. Table 2.2 shows an overview of some private and all public datasets,
discovered in our literature search, in comparison to related datasets from other domains.

To our knowledge Zhao et al. [Zhal2a] presented the first dataset for driver activity recog-
nition that was used in multiple publications over the years. The first iteration of the
dataset consisted of images extracted from the recorded videos with four activity classes.
The dataset was later extended to six classes [Yan1l6c] as well as to video data [Yan1é6a].
However, according to Abouelnaga et al. [Abo18] the data was not publicly available.
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The first public and the most used datasets for driver activity recognition were the STATE-
FARM dataset [Kag16] and the AUC dataset [Abo18, Era19]. The data was annotated with
10 different activities. However, both datasets consisted of images extracted from the
recorded video data and showed mostly iconic scenes that represented the activity classes
well with few ambiguities. The datasets are still widely used despite their small size.

Methods that relied on time-series data could not use these datasets. There were var-
ious publications based on small datasets [Yan14, Bil19, Nav21]. The first large public
video dataset related to driver activity recognition was the Brain4Cars dataset with 2M
images [Jail5b]. However, the purpose of the dataset was driver maneuver prediction.

For driver activity recognition, to our knowledge, we contributed the first method that
was evaluated on a dataset of more than 1M images (see Section 3.4) [Mar18b]. It was
also the first to rely on depth images for 3D driver body pose data. However, we were
not able to publish the data for privacy reasons. In the following year we published the
Drive&Act dataset [Mar19] which surpassed previous datasets in every area by a large
margin, reaching the size of activity datasets from other domains. In addition, it was
the first dataset that focused on activities for automated cars (e.g., watching movies or
working on a laptop). Overall, it contained 83 activity classes as well as 3D driver body
pose annotations for driver activity recognition (see Section 3.5). We extended the dataset
in the following year with object bounding boxes and object 3D positions [Mar20a]. Reiss
et al. [Rei20b] extended the dataset for Zero-Shot driver activity recognition and Roitberg
et al. [Roi20b] extended it for open-set driver activity recognition.

With the rising interest in driver activity recognition the number of more complex and
public datasets also increased rapidly. In the same year we published the Drive&Act
dataset, Jegham et al. [Jeg19, Jeg20] published the MDAD dataset. It focused on manual
driving providing hand and face bounding boxes in addition to 16 activity classes. Or-
tega et al. [Ort20] proposed the DMD dataset. It is the largest dataset for driver activity
recognition while driving manually, to date. They provided various annotations including
labels for the visual focus of attention of the driver. However, only a part of the dataset
was made public yet [Cafi21]. They split data acquisition into multiple parts, recording in
a simulator, outside in a parked vehicle as well as while driving, depending on the risk of
the performed activities. Katrolia et al. [Kat21] proposed a dataset consisting of synthetic
rendered data as well as real data recorded in a simulator. They provided 3D bounding
boxes and instance masks for objects and the driver. Lin et al. [Lin21] recorded a dataset
using the Kinect and the Kinect SDK for 3D driver body pose estimation. They recorded
in a low fidelity driving simulator. Apart from Drive&Act this is the only other dataset
with 3D driver body pose annotations. Tan et al. [Tan21] published a large dataset for
bus driver activity recognition.
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Table 2.2: Summary of datasets for activity recognition. Video and 3D general datasets are provided as
reference. Automotive datasets are a complete list of existing public datasets as well as important
private datasets. Own contributions marked bold. Environment (MD: Manual Driving; AD:

Automated Driving); Image Modalities (R: RGB, I: NIR, D: Depth)
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Video Datasets
HMDB-51 2011 R - 0.5M 51 X X - Movies, o/
[Kue11] Youtube
Kinetics 400 2017 R - 76M 400 'S BB - Youtube VAR
[Car17]
3D Human Body Pose Datasets
NTU-RGB+D 60 2016 R/I/D 3 4M 60 iD x 40  Indoor o/
[Sha16b]
NTU-RGB+D 120 2019 R/I/D 3 8M 120 3D «x 106 Indoor o/
[Liu19a]
Automotive Datasets
SEU[Zha12a] 2012 R 1 N/A 4(6) x x 20 MD X x
Yan et al. 2014 R 1 N/A 5 b's x 20  MD X
[Yan14]
Brain4Cars 2015 R 2 2M 5 X 'S 10 MD o/
[Jai15b]
D.P.-Night 2016 R/I 1 29K 4 b 4 X 20 MD X X
[Yan16b]
D.P.-Real 2016 R 1 18K 4 X x 5 MD X X
[Yan16b]
Statefarm 2016 R 1 225K 10 b's x NA MD X
[Kag16]
AUC-D.D. 2018 R 1 14.4K 10 X X 44 MD X v
[Abo138]
Incarin Activity 2018 I/D 1 13M 7 3D «x 26 MD oox
[Mar18b] test track
Drive&Act 2019 R/I/D 6 >9.6M 83 3D BB,3D 15 AD oo/
[Mar19] Simulator
EBDD(BIil19] 2019 R 1 70K 5 X X 13 MD S/
MDAD[Jeg19] 2019 R/D 2 7h 16 X BB 50 MD / J
DMD[Ort20] 2020 R/I/D 3  41h 13 2D BB 37  MD, Sim o/
TICaM[Kat21] 2021 R/I/D 1 126K 19 2D BB, 3D 13 MD, Sim, o/
synthetic
Driver-Skeleton 2021 R/D 1 100K 10 3D «x 30 MD, Sim oo/
[Lin21]
PCL-BDB 2021 R/D/A 1 N/A  11(40) 2D «x 55 MD,Bus v
[Tan21]
UET[Nav21] 2021 R 1 237K 11 2D x 10 MD ;v
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2.4.2 Methods to Detect Interaction With the Interior

We define driver interior interaction as a sub-task of driver activity recognition with the
primary purpose of detecting if the driver is interacting with parts of the interior, like the
steering wheel, the gear stick or the infotainment interface. These activities are also part
of some general driver activity recognition datasets, but this section will only highlight
methods with a focus on this sub-task. Compared to other activities the surroundings
like the position of the steering wheel or the gear stick have a direct relationship with the
corresponding activity. This highlights the need to incorporate features of the surround-
ings for their detection which was investigate in detail by our driver activity recognition
approaches.

Some methods modeled the location of different elements explicitly. ~Ohn-Bar et
al. [Ohn13] defined bounding boxes on the image of a camera mounted at the ceiling and
trained support vector machines (SVMs) for each bounding box to detect the presence
of hands. Hoang Ngan Le et al. [Hoal6] used a deep learning-based object detector to
detect the hands and the steering wheel and used the intersection of these bounding
boxes to determine steering wheel interaction.

Our own method for the task relied on the 3D body pose of the driver [Mar17a]. We
manually defined the location of interior elements in 3D using geometric primitives, like
cubes and cylinders. To estimate interaction with these areas we determined the distance
of the hands to the surface of these volumes (see Section 5.1). Compared to previous
related methods our approach could be configured for arbitrary interior elements and
different cars without any retraining.

Perrett et al. [Per17] determined if the driver or the co-driver interacted with the center
console by extracting hand silhouettes in the area using background subtraction. They
also determined how the passengers interacted with the area by analyzing the silhouettes
for different hand poses. Borghi et al. [Bor18] proposed a system for detailed steering
wheel interaction detection. They used a stereo camera behind the steering wheel to
determine both the hand positions on the wheel and if the driver is actually grasping
the wheel.

Instead of using the location of interior elements explicitly others relied on the image
data alone using various machine learning methods. Xu et al. [Xu14] used random de-
cision forest to determine interaction with five zones. Siddharth et al. [Sid16] used an
object detector to determine the position of the hand and classified the extracted hand
patch using HOG features and SVMs to detect the grasping of the steering wheel. Gu
et al. [Gu22] similarly used an object detector but instead of classifying the extracted hand
patch separately they directly determined three different bounding box classes, grasping
the steering wheel, idling and performing other tasks.
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2.4.3 Image-Based Methods

Image-based methods for driver activity recognition rely on just a single image as in-
put. They do not account for the motion of different activities. This was still a popular
approach for driver activity recognition while the related work for general activity recog-
nition was mostly focused on video data and other time series data. The reason was likely
the availability of public datasets which were largely image-based until publication of our
Drive&Act dataset, among others. The common benchmarking datasets for these meth-
ods are SEU, STATEFARM and AUC (see Table 2.2).

Classic machine learning approaches using hand-crafted features and classifiers like
SVMs could already achieve good performance on these dataset. Popular features were:
Skin color segmentation [Zhal2a, Zhal2b, Zha13, Gup15, Yanléc, Era19, Xin19], His-
tograms of Oriented Gradients (HOG) [Zha13, Hss17, JEG18, Arel9, Qin21] and keypoint
detectors like Sift [Hss17, Ber21] or Surf [JEG18]. These features were then classified
with SVMs [Hss17], Multi-Layer Perceptrons [Zhal2b, Zhal3, Gup15], Random Decision
Forests [Zhal2a, Maj18] or even CNNs [Yan16c, Xin19, Qin21].

CNN-based approaches for image classification were also often applied for image-based
driver activity recognition using Alexnet [Hss17, Abo18], VGG [Bah18, Mas18, Kap20],
ResNet [Hss17], Inception [Kap20, Maf20, Wan21b] or Mobilenet [Kap20, Cai21]. Some
also designed their own neural networks [Alo20, Jam20] using the principles of these
approaches like skip connections [Ngu21], multiple filter resolutions [Hu19], separable
convolutions [Bah20, Ngu21] or attention mechanisms [Hu20].

There were also methods combining handcrafted features with CNNs for classification.
For example, by extracting image features with HOG as well as Alexnet and classifying the
concatenated features with fully connected layers [Are19] or by extracting HOG features
from the whole image and classifying them with CNNs [Qin21].

Another trend was pre-processing of the image before classification to suppress the back-
ground or to extract areas of interest from the image using skin color segmentation,
grab cut [Lee19] or body part labeling via CNNs [Ezz21] to create a segmentation of the
driver. Others used object detectors to extract the driver area [Wan21b, Zha21], head or
hands [Abo18] or activity area [Lul9] from the image.

While there were many approaches for image-based driver activity recognition it is hard
to evaluate the progress in this area. The reason for this lies in the datasets and the accu-
racy already achieved by the baseline methods proposed by the dataset authors which left
only a narrow margin for future improvement. Zhao et al. [Zhal2a] proposed the SEU
dataset. Their method involved skin color segmentation with a Gaussian Mixture Model
followed by Contourlet transformation and classification with Random Decision Forests.
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They already achieved 90.5% accuracy. Abouelnaga et al. [Abo18] published the AUC
dataset. Alexnet trained on the dataset already achieved an accuracy of 93.65%. Their
proposed ensemble of multiple models reached 95.95 % accuracy. Hssayeni et al. [Hss17]
tested different handcrafted features and neural networks on the STATEFARM dataset.
They could show that HOG features and SIFT features combined with SVMs do not per-
form well on the dataset. Alexnet on the other hand already achieved 72.6 % accuracy
and ResNet-152 reached 85 %. In comparison our best baseline method on Drive&Act
achieved just 63 % accuracy.

2.4.4 Video-Based Methods

Video-based driver activity recognition methods need large amounts of video data for
training. Some methods relied on the previously discussed image-based datasets by or-
ganizing them into sequences according to the videos they were extracted from [Val1s,
Mos19, Che20a, Nel21]. However, most either used private datasets or the recently pub-
lished large-scale driver activity datasets like Drive&Act.

Methods relying on hand-crafted features often combined spatial image features as de-
picted in the last section with temporal features, like motion history images [Yan14],
motion intensity images [Yan16a] or space time interest points (STIP) [Jeg19] and used
Random Decision Forests [Yan14] or SVMs [Yan16a, Jeg19] for classification.

Deep learning-based driver activity recognition methods mostly followed the approaches
for general driver activity recognition using two-stream 2D-CNNs, recurrent networks
or 3D-CNNs.

Driver activity recognition systems using recurrent networks usually combined image
features, extracted via 2D-CNNs, with LSTM units [Jeg20, Cafi21]. Some extended this
framework using foreground masks created by segmenting a corresponding depth im-
age [Jeg21] or by introducing attention mechanisms for image features as well as tem-
poral dynamics [Wha21].

Two-stream methods extracted features with 2D-CNNs in two streams using video data
and optical flow as input [Hul8, Che20a]. Yang et al. [Yan21] expanded this approach
by first using an object detector to crop the video sequence to the relevant driver area.
Instead of two separate streams Kose et al. [Kos19] stacked optical flow and image data
and inferred activities with a single model.

3D CNN-based approaches were by far the most common [Ort20, Nel21, Can21]. The 13D
architecture was often used as the basis of these methods [Val18, Mos19]. We also used
I3D as baseline model for Drive&Act [Mar19]. This network was often pre-trained on the
Kinetics dataset and only fine tuned on the limited automotive data. Some also limited
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fine tuning to the last layers of the model because of the limited size of their data [Mos19].
Liu et al. [Liu21] proposed a method to improve global feature extraction using multi-task
learning. They generated positive and negative samples from the input sequence in addi-
tion to the original data. They then trained their model to classify activities as well as to
maximize the distance of the feature space between positive and negative video samples.
Ren et al. [Ren21] focused on the activities of the Drive&Act dataset involving object by
fusing the results of an activity detector and an object detector using majority voting.

Apart from supervised driver activity recognition the larger driver activity datasets pub-
lished in recent years allowed to explore related task important for future driver monitor-
ing systems like driver anomaly detection [Kop21], uncertainty analysis and calibration
of driver activity recognition methods [Roi20a, Roi21], zero shot driver activity recogni-
tion [Rei20b], open set driver activity estimation [Roi20b] or domain adaptation [Rei20a].
The Drive&Act dataset published by us proved to be a popular starting point for these
research directions going beyond supervised closed set classification of driver activities.

2.4.5 Driver Body Pose-Based Methods

This section outlines all driver activity recognition approaches that include driver body
pose estimation as input feature. However, in many cases methods also used other data
sources as input for their activity recognition system including image data, hand pose,
head pose and objects. None of the methods apart from our own investigated the use of an
interior model, describing the position of controls and other elements, for driver activity
recognition. The most common body pose detector by a large margin was OpenPose (see
Figure 2.1), which we also used. Usually, the detector was not trained on automotive data
but instead on the MS-COCO dataset. While this worked well, based on visual inspection,
we contributed an objective evaluation of the performance of OpenPose on the Drive&Act
dataset (see Section 4.4.1).

In the following we present these methods in three sections according to our previous
structure based on the input format of the method: using just one image or time step,
using video or time series data, or using 3D driver body poses.

Image-based methods that rely on the driver body pose were often extensions of the
previously presented methods using just image classification. They were also tested
on the same datasets (STATEFARM and AUC).

Behera et al. [Beh18a] used a CNN with DenseNet architecture to classify driver activ-
ities from the image. They integrated the driver body pose via mid-level fusion of the
heatmaps of the body pose detector and the features extracted by the CNN. Behera
et al. [Beh20] extracted the 2D driver body pose as well as object positions in pixel
coordinates. They determined the angle and pixel distance of keypoint pairs as well as
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keypoint object pairs to create feature histograms. They combined these histograms
with image features, extracted via CNN, for the final activity classification. Cetinkaya
et al. [Cet21] used Random Decision Forests to classify the driver body pose as well as
a CNN to classify the image. They combined the scores with weighted score fusion to
determine the final result. Koay et al. [Koa21] determined the body pose and the hand
skeletons of the driver. They rendered these features as a stick figure onto an image.
To determine activities they used a two-stream approach extracting features from the
original image and the rendered image with mid-level feature fusion. Wu et al. [Wu21]
determined image features with a CNN, body pose features from the keypoints of the
drivers body with a multi-layer perceptron and hand features from a cropped image
around the wrist keypoints with a CNN. They combined these features with mid-level
feature fusion for the final classification.

Video-based methods extract the 2D body pose from video data. Most methods followed
the trends depicted for general human body pose-based activity recognition either
using recurrent networks based on LSTM units or using Graph Convolutions-based
on the ST-GCN framework [Yan18].

Behera et al. [Beh18b] extracted features per image with a CNN as well as keypoint pair
histogram and keypoint object histogram features. They classified each feature with a
LSTM layer and combined the output with a second LSTM layer. Jiao et al. [Jia21] first
determined keyframes of the input video sequence by clustering the body pose with
K-Means Clustering. They then classified the keyframe sequence with an LSTM-based
network.

Lietal. [Li19b] used ST-GCN on the 2D driver body pose to determine activities. They
introduced a genetically weighted voting system to combine classification scores of
different time steps based on their importance. Pan et al. [Pan21] used spatial graph
convolution for each time step to extract features and applied an LSTM to classify the
resulting feature sequence. Tan et al. [Tan21] tightly combined image and body pose
features. They used a two-stream approach where the first stream extracted features
from the image with a CNN and the second stream used ST-GCN to extract features
from the driver body pose sequence. They enriched the mid-level node features of the
ST-GCN network with mid-level features from the image stream. They then used the
final output of the the body pose stream as attention module for the classification of
the final image features. Wang et al. [Wan21c] divided the driver body pose sequence
into multiple overlapping segments. They used ST-GCN to extract features from each
segment and combined the results with an LSTM layer for final classification.

3D driver body pose based methods need either multiple cameras or depth cameras to
determine 3D keypoint positions of the driver’s body. Like our approaches most meth-
ods relied on depth cameras to determine the 3D driver body pose, however, to our
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knowledge, we are the only ones to also use a multi-view system evaluating both
cross-view and cross-modal performance of our driver activity recognition approach.

To our knowledge we published one of the first methods for driver activity recognition
based on 3D driver body pose estimation [Mar18b, Mar19]. Our method relied on
three recurrent streams parsing the temporal as well as spatial dynamics of the drivers
movements and in addition the distance of body parts to elements of the interior, like
the steering wheel. We combined these streams with weighted score-level fusion (see
Section 5.2).

Xing et al. [Xin18] used Random Decision Forests to determine the importance of each
element of the 3D driver body pose as well as head pose. They used the most impor-
tant elements for classification with a multi-layer perceptron. Weyers et al. [Wey19]
extracted regions in a near-infrared image around the hand keypoints of the skele-
ton. They generated image features from these patches with a CNN and classified the
body pose concatenated with these features using an LSTM network. This gave their
method the ability to consider objects and hand poses that were by the body pose of
the driver.

We took another approach with a similar result and introduced 3D object positions
to our driver activity recognition system [Mar20a]. This way our activity recognition
method was still fully independent from image data. We cast the 3D driver body pose,
3D interior elements as well as 3D object positions into a sparse spatio-temporal in-
teraction graph and used ST-GCN to infer activities based on this representation (see
Section 5.3).

Lin et al. [Lin21] used spatio-temporal graph convolutions in two streams using key-
point position and keypoint velocity as input features. They also introduced a temporal
attention module for driver activity recognition.

2.5 Summary

This chapter outlined the progress of general as well as automotive human body pose
estimation and activity recognition methods over the last decade. For each section we
highlighted the research gaps we could identify and our contributions regarding datasets
as well as methods.

There were large general datasets for both areas at the start of the thesis. However, for au-
tomotive applications public data was not available. We first contributed methods, tested
on private datasets larger than other automotive approaches [Mar17a, Mar18b], followed
by our publication of the Drive&Act dataset as one of the first large-scale driver activity

43



2 Related Work

benchmarks [Mar19]. In the following years we extended this dataset with object bound-
ing box and 3D annotations [Mar20a] as well as benchmarks for 2D and 3D driver body
pose estimation [Mar21]. In addition, the dataset was extended by Reiss et al. [Rei20b]
for zero shot driver activity recognition and by Roitberg et al. [Roi20b] for open set ac-
tivity recognition. While there are now other large driver activity datasets, Drive&Act
is still the only dataset focused on automated driving and, with all extensions, provides
the most varied set of benchmarks. There are still no large-scale datasets for driver body
pose estimation but there are small datasets similar in size to the benchmark we provided
for Drive&Act. However, our benchmark is extracted from the complex activity classes
of the Drive&Act dataset with varied driver body poses and challenging occlusions.

While there is a longer history for driver body pose estimation the first methods were lim-
ited by the lack of annotated data and were therefore often hand-crafted and evaluated
on example images. To our knowledge, we provided the first method for 3D driver body
pose estimation evaluated objectively on annotated data as well as trained on synthetic
data [Mar16, Mar17a]. In the following, deep learning-based methods for general 2D
human body pose estimation also became popular for driver body pose estimation. How-
ever, research on 3D driver body pose estimation remained less popular, likely because
of the lack of data and the challenging data annotation process. We tackled this problem
with our second approach by splitting the task into 2D body pose estimation on color or
near-infrared images and 3D body pose lifting via depth images. This allowed us to use
large-scale general datasets for 2D body pose estimation in addition to the limited auto-
motive data sources [Mar21]. In addition, we contributed an evaluation of multi-view 3D
driver body pose estimation methods.

General 3D human body pose-based activity recognition systems mostly focused on just
the body pose as input. In the automotive context body pose-based methods became
popular much later but also incorporated objects in some cases. However, most meth-
ods focused on 2D driver body pose data as well as object bounding boxes and in some
cases image features. Our contributions focus on 3D data without additional image fea-
tures. We extended general methods based solely on the human body pose with extra
features regarding the surrounding interior [Mar18b, Mar19] as well as 3D object posi-
tions [Mar20a]. In contrast to other automotive methods, we also showed that our ap-
proach can generalize across different views and sensor modalities.
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To achieve the goals of this thesis with regards to 3D driver pose estimation and activity
recognition, suitable datasets for the proposed methods were necessary. As outlined in
our review of related work there were no suitable datasets at the start of the thesis. This
made it necessary to collect as well as publish datasets as part of our work.

This chapter first systematically depicts the challenges and solutions for monitoring the
two front seats inside the car. This includes a review of suitable sensor systems to monitor
the passengers in 3D in all lighting conditions, followed by an evaluation of different
camera mounting points regarding field of view and susceptibility to occlusions.

On this basis we present the datasets that were collected in the context of this thesis.
Each of the presented datasets was built on the experience gathered while recording and
using the previous datasets. The first two datasets focused on specific parts of the de-
veloped algorithms starting with 3D driver body pose estimation (see Section 3.3) and
followed by driver activity recognition (see Section 3.4). This led to our final dataset be-
ing published under the name Drive&Act (see Section 3.5). It combined and extended all
challenging aspects of our previous datasets. It was used for the final evaluation of all
methods presented in the following chapters.

3.1 Camera Selection for 3D Cabin Monitoring

Selecting a camara system for driver monitoring is a complex problem because the interior
of the car poses some unique challenges. It is a confined space with limited mounting po-
sitions for cameras, making a large field of view necessary in order to capture the driver or
even both front passengers (see Section 3.2). This is challenging for some sensor technolo-
gies. In addition, the lighting conditions within the car can range from almost complete
darkness at night to bright sunlight. Developing a camera system that is well tested in
all conditions was out of the scope of this thesis. However, we kept these constraints in
mind and selected sensors that would work at night using near-infrared illumination as

well as in bright daylight.

The last requirement for the camera system was the ability to create 3D data either with
the camera itself or in following steps using triangulation-based 3D reconstruction meth-
ods. The camera systems that fit these requirements were depth cameras with a single
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sensor using structured light or time of flight (TOF) approaches as well as stereo or multi-
camera setups. In the following we first depict why interior monitoring systems use
near-infrared light and its challenges before discussing the capabilities of different sensor
technologies for depth sensing, including the sensors chosen for collecting our datasets.

Near-infrared Light (NIR) Illumination for driver monitoring

Optical interior monitoring systems need a light source to work at night. However, its
light should not disturb the passengers, for example by interfering with the night vision
of the driver. Illumination in the visible spectrum (380 to 800 nm) is therefore not an op-
tion. Although there are sensors for almost any wavelength of light, small and affordable
cameras are mostly optimized to work in the visible light spectrum. Their efficiency to
capture light usually drops sharply for other spectra (see Figure 3.1). In addition, shorter
wavelengths in the UV spectrum (<380 nm) can be harmful to the human skin and eyes.
The best illumination option is therefore near-infrared light (NIR) with a wavelength of
800 to 1000 nm. It is therefore used for surveillance cameras, eye tracking applications
and other driver monitoring systems as well as depth cameras based on structured light
or time of flight methods. The most common wavelengths used in these products is 840 to
860 nm because of the higher sensor sensitivity compared to longer wavelengths. How-
ever, this wavelength is still visible to the human eye as a red glow. For this reason, com-
mercial automotive systems rely on illumination with a wavelength of 940 nm accepting
an additional penalty to the efficiency of the sensor.

While near-infrared cameras need illumination to work at night, many depth cameras
also rely on their light source to measure distance, which can be a challenge in bright
sunlight because the emitted intensity is much less than the intensity of the sun. Band-
pass filters are one counter measure that can be applied to any camera system to block
most of the sun’s electromagnetic radiation outside the spectrum emitted by the active
illumination system. In addition, cameras with high dynamic range are preferred for au-
tomotive applications. Modulation of the intensity of the light source can also help to
suppress light from other sources. This method is often used by time of flight cameras
that also rely on modulation to measure depth.

Near-infrared illumination can be harmful to the human eye because natural reflexes do
not work for spectra that are invisible to the eye. The primary health concern with near-
infrared light is heating of the cornea and retina. To limit the exposure to safe levels
and still provide good illumination, most systems use high power pulsed light sources
to provide illumination only when images are taken. Because of their potential risk the
illumination systems need to be tested for eye safety.
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Figure 3.1: Quantum efficiency curve of the near-infrared optimized sensor (UI-3241LE-NIR-GL?) used to
record Drive&Act compared to the monochrome version for visible light.

Structured Light Depth Cameras

The basic principle of structured light systems is the reconstruction of a 3D scene or
object by projecting a known light pattern and measuring the changes resulting from
the surfaces of the scene with one or more calibrated cameras. The principle is used in
many different applications ranging from 3D scanning of objects, measuring deformation
of surfaces in industrial applications to human computer interaction.

Pseudorandom points are a common pattern for high quality real-time capable structured
light systems. They reconstruct the scene by matching blocks of random dots to a refer-
ence pattern and measuring shift as well as deformation of the pattern. We disregard this
technology for our data collection efforts because it suffers from various drawbacks. The
near-infrared sensors of these cameras are optimized to capture the projected pattern,
often leaving the surrounding area underexposed. The bright dots in the image make it
unsuitable for many image-based deep learning methods. In addition, the pattern is of-
ten no longer visible in sunlight, making depth reconstruction impossible. To arrive at
this conclusion, we tested both the Microsoft Kinect for Windows [DiF15] as well as the
Orbbec Astra® in darkness and in sunlight.

? https://en.ids-imaging.com/IDS/datasheet_pdf.php?sku=AB00432, accessed: June 14, 2022
* https://shop.orbbec3d.com/Astra, accessed: June 14, 2022
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Name Melexis MLX75023

Type Time of Flight
INlumination | NIR Laser (940 nm)
Resolution 320 px X 240 px, 30 fps
Min. Range | 0.1m

FoV H: 86.5° V: 69.3°

Size (W/H/D) | 135mm X 105 mm X 30 mm

Figure 3.2: Specifications of the Melexis ToF Evaluation Kit.

Time of Flight (TOF) Depth Cameras

Cameras relying on the time of flight principle are another option to generate depth im-
ages with a single sensor. The approach relies on measuring the time light needs from a
light source controlled by the camera to the sensor via reflection in the scene. This tech-
nique requires specialized circuitry both for the modulation of the illumination system
as well as for the TOF camera sensor [Kol10]. The method has the advantage of pro-
ducing both a depth image and a near-infrared image from a single sensor resulting in
perfect alignment of the image data. In addition, because of the employed modulation
techniques, these sensors can block other light sources, such as the sun, to a large de-
gree. The near-infrared image is therefore robust to brightness changes as well as uneven
lighting caused by shadows. However, sunlight still affects these sensors. With increas-
ing brightness from other light sources, the noise level of the depth image increases up to
a point where depth estimation fails. The primary drawbacks of these cameras are their
often limited resolution, limited field of view as well as their minimum range requirement
below which no depth data can be provided (e.g., 0.5m for the Kinect 2 for Windows).
This can restrict where the camera can be placed in the interior of the car.

Schwarz [Sch18] tested different consumer TOF cameras for their suitability for driver
head pose detection. They determined that the Kinect 2 for Windows (see Figure 3.3)
works well for automotive applications even in sunlight. We followed their findings
and used this camera to record some of our datasets. In addition, we used the Melexis
MLX75023 sensor (see Figure 3.2) which is an automotive sensor also used in production
cars®. It is robust to sunlight according to the manufacturer. Although it has a lower
resolution than the Kinect it has a larger field of view and shorter minimal distance re-
quirement which allowed us to select a better position for the sensor in the interior.

* https://www.melexis.com/en/tech-talks/enabling-potential-automotive-3d-tof-imaging, accessed: June
14, 2022
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Name Kinect 2 for Windows
Type Time of Flight
INlumination | NIR Laser (850 nm)

NIR Filter Bandpass 850 nm
Resolution 512 px X 424 px, 30 fps
Min. Range | 0.5m

FoV H: 70° V: 60°

Size (W/H/D) | 250 mm X 65 mm X 85 mm

Figure 3.3: Specifications of the Kinect 2 for Windows ToF camera.

Stereo and Multi-View Systems

Apart from special sensors for depth perception, multiple conventional cameras can also
be used together with triangulation methods to generate depth data. However, active il-
lumination is still necessary for these systems to work at night. The advantage of conven-
tional cameras is their great flexibility, low cost, and great potential for miniaturization.

Although multi-camera systems offer great flexibility, generating depth images or point
clouds is computationally expensive. Compared to the previously discussed camera sys-
tems for depth perception, stereo cameras are often less accurate for indoor use. In ad-
dition, they have difficulties reconstructing texture-less surfaces because it is difficult to
find point correspondences in these areas. Instead of computing dense depth images or
point clouds based on multi-view data we therefore applied detectors on each image and
relied on triangulation to reconstruct 3D data just based on detection results. With this
approach we were able to determine the 3D driver body pose by triangulating the results
of a 2D body pose detector (see Section 4.3.2). The great advantage of multi-view systems
is their increased robustness to occlusions via redundant views which we used to generate
ground truth data for 3D driver body pose estimation (see Section 3.5.4).

According to our requirements we designed a small monocular camera system with inter-
changeable lenses, a bandpass filter to block external light and a near-infrared LED (Light
Emitting Diode) ring light with a wavelength of 850nm. All components were integrated
using a custom 3D printed housing (see Figure 3.4). We used five of these camera systems
in a calibrated multi-view setup to record the Drive&Act dataset. Both a single camera
system as well as the multi-view setup were tested externally for eye safety according to
DIN EN 62471:2009. We chose a continuous illumination system instead of a pulsed one
to simplify the eye safety requirements with regards to circuitry for eye safety in failure
cases. This was only possible because of the chosen near-infrared light optimized sensor
(see Figure 3.1). The multi-view system included four cabin cameras with a wide field of
view and a driver head monitoring camera with a narrow field of view. We discuss the
selection of the camera positions and the field of view of the lenses in the next section.
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Name IDS UI-3241LE-NIR-GL
Type NIR Optimized Grayscale
Illumination | NIR Ring Light (850 nm)
NIR Filter Bandpass 850 nm
Resolution 1280 px X 1024 px, 60 fps
FoV Cabin H: 138° V: 104°

FoV Head H: 47° V: 38°

Size (W/H/D) | 55mm X 55 mm X 40 mm

Figure 3.4: Specifications of the near-infrared camera package developed to record the Drive&Act dataset.

3.2 Evaluation of Camera Views for Cabin Monitoring

To capture the body pose of the driver it is necessary for the camera system to at least
monitor the driver area of the vehicles interior. However, the activities we planned to
include in our datasets also involved objects that could be located on the co-driver’s side.
In addition, future passenger monitoring systems may monitor the driver and co-driver
with the same camera to reduce complexity and to save costs. Different sensor systems
can add additional constraints, for example regarding a minimal distance to the driver
or a limited field of view, as shown in the previous section. It is therefore necessary to
identify suitable camera positions that satisfy these constraints.

We used two different depth sensors to record our datasets. Both were chosen based
on the limited number of available depth cameras on the market. It was not possible to
change their field of view nor the minimum distance requirement to generate depth data.
Their final position in the vehicle was therefore largely determined by these constraints
with the Melexis sensor mounted near the interior mirror and the Kinect mounted at the
A-pillar on the co-driver side. Our experience with these sensors later helped with plan-
ning the multi-camera system used to record the Drive&Act dataset consisting of multiple
near-infrared camera systems in addition to the Kinect TOF camera. The near-infrared
camera system introduced no constraints compared to the depth cameras because of its
interchangeable lenses and the small size of the camera package. To select a suitable po-
sition and field of view of each camera we conducted a small study by simulating camera
data. The resulting images were evaluated subjectively with regards to the field of view
in general and with regards to occlusion by the interior or by the passengers themselves.
The overall goal was to position the cameras so the two front seats would be covered from
different angles by the multi-view camera system while minimizing occlusions overall.

Figure 3.5 depicts all tested camera positions including their suitability to monitor the
two front seats of the cabin. Rendered images for all views are shown in Appendix A. The
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Figure 3.5: Overview of all camera positions evaluated on synthetic data rated from good (green) to un-
suitable (red). The camera on the steering wheel column (blue) is only suitable to monitor the
drivers head.

scene was modelled and rendered using Blender 2.8 [Com18]. 3D models of the passen-
gers were generated using MakeHuman’. The reference 3D model of the car was an Audi
A3 which was also the model used in the driving simulator of the Fraunhofer IOSB where
the Drive&Act dataset was recorded (see Section 3.5.1). The evaluated scene depicted the
driver in a typical driving posture. The co-driver interacted with the infotainment system
which is a pose with larger displacement and a greater potential for occlusions. Position-
ing sensors in the interior is challenging because of the large windows. The remaining
space is shared by structural elements, controls, airbags and other sensors. Despite these
challenges, cameras need a good and unobstructed view. However, for most camera po-
sitions the legs are occluded by the steering wheel and are hidden in the foot well. They
are therefore not considered by most driver monitoring systems including ours.

Overall, mounting positions above and in front of the passengers result in the best views
with the least obstructions. The best positions are near the interior mirror as well as the
top of the A-pillars. The view from the interior mirror is best suited to monitor both front
passengers. However, the camera needs a large field of view of at least 120° horizontally.
The view from the top of an A-pillar works well to monitor the passenger on the same side
as the pillar. Unfortunately this position may result in interference when the passenger
closer to the camera occludes the other passenger with their actions. The cameras need
an equally large field of view of at least 120°. The ceiling of the car is also a position
of interest, because it provides a good view of the dashboard. It is also the only view
reaching into the foot well to capture the legs of the passengers. However, the face and,
depending on the position of the seats, parts of the upper body of the passengers are
occluded. Positions further down the A-pillars increase self-occlusion of passengers by

* http://www.makehumancommunity.org, accessed: June 14, 2022
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raised arms and interference between driver and co-driver making them less suitable to
monitor the whole cabin. Cameras at these positions are also further away from the
passengers, decreasing the necessary field of view of the camera. The position is suitable
on the co-driver side but not on the driver side because the steering wheel blocks large
parts of the image. Cameras positioned on the steering wheel column are a popular choice
for driver monitoring systems, but they cannot capture a larger area of the interior and
are therefore not suitable for our experiments. Mounting a camera on the dashboard
only offers limited visibility of the driver because of the steering wheel. In addition, the
chance of the arms occluding large parts of the rest of the body increases. This problem
gets even worse for a camera mounted lower in the infotainment area. Ribas et al. [Rib21]
performed a similar experiment and came to similar conclusions.

According to this study we selected the three best views (i.e., interior mirror, top of A-
pillars) as well as the ceiling camera to monitor the front of the cabin for the Drive&Act
dataset. The Kinect was mounted on the co-driver A-pillar to monitor just the driver.
This was the only option for this sensor because of its limited viewing angle. While we
conducted this study using a model of an Audi A3, because this car was the recording
environment for the Drive&Act dataset, the results should be applicable for other vehicles
of similar design.

The suitability of specific sensor positions can change depending on the model of the
car and the constraints of the sensor (e.g., field of view). The lower the angle of the
front window and the farther it reaches back towards the heads of the passengers the
more challenging it gets to position cameras in front of them because the required field
of view increases. In bigger cars or buses this is less challenging. However, this means
that similar studies should be conducted for each model to find the best sensor position.
This also motivates our goal for sensor modality and sensor position invariant algorithms
because it allows us to choose different positions and sensors for different cars without a
large performance penalty or costly new data collections.

3.3 Driver Depth Pose Dataset

The Driver Depth Pose dataset was the first dataset collected for this thesis. It was created
in cooperation with Robert Bosch GmbH where both data recording as well as annotation
took place. For privacy reasons we can only show a small number of pictures of the
collected data. The purpose of the dataset was to evaluate depth image-based 3D driver
body pose estimation algorithms. To our knowledge there were no public automotive
datasets for this task at that time. In the following sections we depict the data collection
and annotation process in detail.
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Figure 3.6: Movements and Actions performed in the Driver Depth Pose dataset together with their num-
ber of samples (logarithmic scale).

3.3.1 Data Collection

The goal of the dataset was to collect common body poses of drivers while driving in
manual mode. Data collection took place in the laboratory but in the interior of a real car.
The dataset was recorded with the automotive depth camera from Melexis as introduced
in Figure 3.2. The sensor was mounted below the interior mirror facing the driver. As
discussed in Section 3.2 this position minimizes self-occlusion of the driver. However,
because of the limited field of view and resolution of the camera this only allowed us to
monitor the driver’s side of the cabin, which was sufficient for the proposed experiment.
Both the depth image and the near-infrared image of the camera were recorded at 30 Hz.

Test participants received detailed instructions about what movements to perform and
returned back to a normal driving posture with both hands on the steering wheel after
each movement. Although the experiment was conducted in the cabin of a real car it was
neither moving nor part of a simulation environment. The behavior of the test participants
therefore reflected the instructed movements well, but it did not resemble the behavior
while driving a real car. Overall, test participants were instructed to perform 21 different
driving related movements and actions (see Figure 3.6).

The study was conducted with nine participants (eight male, one female). Five partic-
ipants were recorded twice but wore a jacket for the second recording to change their
body shape and increase the variance of the acquired data.
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(a) Both hands on wheel (b) Hand touching elbow

Figure 3.7: Sample images of the Driver Depth Pose dataset with annotated ground truth of eleven upper
body keypoints (left) and corresponding depth image (right, false color)

3.3.2 Annotation

Overall, the dataset consists of 50000 frames in 14 sequences with an average length
of 2.5 minutes. Figure 3.6 shows how the recorded images are distributed across each
activity. The action both hands on wheel is the most common by a large margin because
it is the pose used in between each other instructed movement.

Each sequence was annotated manually with 11 keypoints (see Figure 3.7). The process
involved two steps, first manual annotation of each 2D keypoint position in the near-
infrared image followed by automated keypoint depth estimation via the corresponding
depth image. To increase the efficiency of the manual annotation process linear inter-
polation was used to propagate annotations of past frames in the sequence to the cur-
rent frame. The annotators then only needed to adapt incorrectly interpolated keypoints
manually. In addition to the 2D keypoint positions annotators labeled if keypoints were
occluded as well as the performed movement. Body poses in transition states could not
be associated with any movement (i.e., no annotation in Figure 3.6).

Determining 3D positions using just the depth image posed some challenges which only
allowed to label keypoints that were not occluded by looking up their depth value in the
corresponding depth image. In addition, the resulting 3D keypoint positions were on the
surface of the body instead of their true position inside the body. The 3D annotation fol-
lowed the method presented in Equation 4.9. We depict the challenges regarding depth
image-based 3D keypoint annotation in detail in Section 4.1. These drawbacks were al-
leviated in our public 3D driver body pose benchmark based on the Drive&Act dataset
because it relied on a multi-view system for annotation instead of the depth camera (see
Section 3.5.4).
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(a) Camera Position [Son17b] (b) Kinect NIR (c) Kinect Depth

Figure 3.8: (a) Test vehicle interior with camera (red). (b, c) example images of the drinking activity for
both modalities.

3.4 InCarln Activity Dataset

The InCarln activity dataset was created in cooperation with partners of the BMBF funded
project InCarIn®. It was recorded in the test vehicle of the project. The dataset was focused
on activity recognition for manually driven vehicles and consisted of two parts. The first
part was a pilot study to collect data of people interacting with the interior of the car, like
the controls or infotainment area. The main dataset then focused on distracting secondary
activities while driving the test vehicle in manual mode on a test track.

In the following we describe the hardware setup and both studies in detail.

3.4.1 Recording Environment

The dataset was collected in a Volkswagen T5 Multivan, which was the test vehicle of the
project. Based on our evaluation of different sensor technologies we chose the Kinect 2
for Windows (see Figure 3.3) to record the data. Because of its limited viewing angle and
the size of the camera it was mounted along the A-pillar on the co-driver side to be able
to capture the whole driver side of the vehicle. Compared to the camera position used to
record the Driver Depth Pose dataset this resulted in a more challenging side view with
more occlusions (see Figure 3.8). This is also in line with our evaluation of different camera
positions for the Drive&Act dataset as discussed at the start of the chapter. To collect the
datasets the near-infrared video stream and the depth video stream of the Kinect were
recorded at 30 Hz.

¢ https://www.interaktive-technologien.de/projekte/incarin, accessed: June 15, 2022
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Figure 3.9: Number of samples per class of the InCarIn Interior Interaction dataset for the left and right
hand (log sale).

3.4.2 Pilot Study - InCarIn Interior Interaction Dataset

We assumed that knowing the accurate position of the hands within the vehicle’s interior,
based on 3D driver body pose estimation, would be a good cue to determine what parts of
the interior passengers interact with. To test this hypothesis, we recorded and annotated
a small dataset for vehicle interaction detection. In addition, this collection served as the
first test of the recording environment prior to the more extensive collection of secondary
activities on a test track.

Data was recorded in the stationary vehicle. We instructed five people (all male) to reach
for ten regions within the car’s interior. This was repeated multiple times with both hands
returning to a driving posture, with hands on the steering wheel, after each interaction.
The data was annotated manually afterwards making sure to only label frames as inter-
acting with an element if the element was either touched (i.e., in case of the infotainment
area) or grabbed (i.e., in case of the steering wheel or gear lever). There were two labels
per image corresponding to interaction with the left and the right hand.

Overall, the dataset consisted of 31 000 frames labeled as 11 classes (10 interaction targets
and the class no interaction). In contrast to the activity recognition datasets presented
in the following each sample of this dataset was just one frame instead of a video seg-
ment. Figure 3.9 shows the statistics of the dataset as well as the instructed interaction
areas. The two most common classes are steering wheel and no interaction. This follows
expectations because grabbing the steering wheel was the instructed position between
other interactions. The class no interaction, on the other hand, included transition phases
as well as resting positions where participants put their hands for example in their lap.
There are fewer interaction zones for the left hand because it is more confined by the
driver door and most controls can only be reached comfortably with the right hand.

We demonstrate the usefulness of the 3D driver body pose for interior interaction detec-
tion in Section 5.1 verifying the initial assumption of this section.
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Figure 3.10: InCarln activity dataset experiment protocol (a) and test track (b).
3.4.3 Data Collection

Following the successful collection of the InCarIn Interior Interaction dataset the main goal
was to collect data of distracting secondary activities while driving manually. The study
was conducted in close cooperation with the Fraunhofer IAO in Stuttgart.

The secondary activities were selected by talking to experts of project partners as well as
by a user study conducted by project partners. The resulting list of actions was checked
for feasibility and reduced to a number that could reasonably be recorded in the planned
experiment with enough variance and samples. Overall, we selected five secondary activ-
ities. Figure 3.10a shows the test protocol of the study including the selected secondary
activities. To increase the number of samples short activities like drinking and eating
were repeated multiple times. The order of all activities was randomized while making
sure to alternate between different activities. Test participants also had to turn and talk
to people on the back seat. This was less needed for the activity recognition dataset but
was used by project partners to test an eye tracking system. It nevertheless served to
break up repeats of the same activity. Secondary activities, according to the protocol,
were instructed by an examiner seated in one of the back seats. The participant had to
perform the action as soon as safely possible. Longer activities (e.g., reading) sometimes
had to be interrupted to turn corners on the track.

The selected activities were highly distracting and in part forbidden in normal traffic, the
experiment therefore took place on a closed-off airfield (see Figure 3.10b). On average
test participants drove between 30 to 50 km/h.

Overall, we collected data of 26 test subjects (10 male, 16 female).

7 Map Data © OpenStreetMap contributors (https://www.openstreetmap.org/copyright)
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Figure 3.11: The average duration of each activity (a) as well as the resulting number of samples per class
(b) of the InCarln activity dataset (logarithmic scale).

3.4.4 Activity Annotation

The data collection resulted in 26 video streams including two image modalities (Depth
and NIR). On average each sequence took 13 minutes, resulting in overall 5:45 hours of
video data. After analyzing the data, we decided to split the action drinking into two
parts opening/closing a bottle and drinking. This resulted in seven activity classes (six
secondary activities and the primary driving task). All videos were manually labeled,
marking the start and end frame of each activity. Figure 3.11a shows duration statistics
of the labeled intervals. Unsurprisingly the intervals for driving the vehicle were the
longest. Overall, 67 % of the dataset were labeled as driving. In addition, the average
duration of the secondary tasks varied greatly, with opening/closing a bottle and reading
taking 80 and 700 frames on average, respectively.

As shown in our review of related work, activity recognition datasets usually consisted
of short snippets instead of long sequences. However, the intervals of our data were
very uneven and in part much longer compared to other activity recognition datasets.
To provide a similar setup and to increase the number of samples per class we split all
intervals into sections of 300 frames or less. Figure 3.11b shows the number of samples
per label after creating these chunks. The samples were not equally distributed across
classes. Driving is the most common class by a large margin. However, all secondary
activities were still represented by at least 50 samples.

3.4.5 Interior Annotation

One of the research goals of this thesis was the investigation of additional input modalities
for 3D human body pose based activity recognition. The classes labeled in the pilot study
for interior interaction detection naturally correspond to different areas of the vehicle.
However, even secondary activities like drinking require the driver to pick up the drink
from some storage area, like the co-driver seat or cup holder. Labeling the interior was
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y

(a) NIR image (b) Point cloud with interior annotations

Figure 3.12: InCarln dataset sample for activity interacting with phone. (a) NIR image of the Kinect (b)
Point cloud with manually annotated interior elements. Controls are colored in green.

therefore a natural extension for driver body pose based activity recognition systems.
We therefore generated a static model of the interior containing relevant areas for both
interior interaction classes as well as secondary activities.

A common way to describe 3D surfaces are mesh models. However, creating such a mesh
is difficult as it either requires 3D construction or plans from the car manufacturer. We in-
stead decided to represent the interior with 3D primitives like cubes and cylinders. To po-
sition these primitives manually we utilized the point cloud generated from the recorded
depth images and placed primitives with suitable shapes at the areas of the point cloud
corresponding to certain interior elements. The steering wheel, for example, was easily
visible in the point cloud and could accurately be represented by a cylinder. This ap-
proach had the added benefit of not only describing the current surface of the interior but
also areas where things would move. For example, the sun visor, when deployed, rotates
around a hinge. This area was therefore represented as a cylinder in our model covering
the volume that would be part of the interaction with the area.

Figure 3.12 shows the point cloud used for annotation as well as the annotated 3D interior
elements. Overall, the interior consisted of eleven primitives including the ten areas that
were part of the pilot study for interior interaction detection and in addition the seat of
the driver.

59



3 Datasets for Driver Monitoring

3.4.6 Summary

The InCarln activity dataset was our first dataset for driver activity recognition based on
depth data. Compared to related automotive datasets it was, to our knowledge, the first
to include depth data as well as the first with a size of more than one million frames.
However, while we contributed methods using this data, we could not make the dataset
itself publicly available for privacy reasons. The dataset consisted of two parts:

The Interior Interaction benchmark included 31000 frames manually labeled with
eleven classes. It focused on interactions of the driver with interior elements, like the
steering wheel. These activities were therefore directly related to specific locations in
the interior. The complete data was only used for testing as our method did not rely
on machine learning. It was also the only activity benchmark collected by us that was
evaluated frame by frame and was not based on time series data.

The Activity dataset included 1.2 million frames in 26 streams recorded from 26 people
driving manually on a test track. The data was manually labeled with seven activity
classes followed by the extraction of samples with a length of 300 frames or less. To test
activity recognition methods with this dataset we created a cross-person benchmark
using data of fifteen people for training, two for validation and nine for testing.

Apart from the annotation of activities we also labeled interior elements, like the steering
wheel, using eleven geometric primitives. The interior model was our first addition to the
input modalities of 3D driver body pose based activity recognition methods. We could
show its benefit for both parts of the dataset (see Section 5.1 and Section 5.2).

3.5 Drive&Act Dataset

The Drive&Act dataset concluded the data collection efforts of this thesis. It combined the
knowledge gained by recording the previous datasets, alleviated most of their drawbacks
and extended the domain to automated driving. It was the primary dataset of this thesis
and was the benchmark for all algorithms both for driver body pose estimation as well
as activity recognition.

The greatest drawback of the Driver Depth Pose dataset was its simple study design, in-
volving just the driver, and the limited number of instructed poses. In addition, the camera
setup with just a single sensor was limiting with regards to 3D driver body pose annota-
tion. Drive&Act on the other hand included a cluttered car interior, unconstrained natural
movement and a complex multi-view and multi-modal camera setup. It enabled the gen-
eration of superior ground truth data for 3D driver body pose evaluation including body
parts occluded in some views.
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While the InCarln driver activity dataset was larger in size compared to related driver ac-
tivity datasets of that time, it was still smaller and less complex than datasets from other
domains. Its greatest drawback was its small number of secondary activities. However,
collecting more varied secondary activities with a focus on automated driving was not
possible in a manually driven car because of safety concerns. The Drive&Act dataset was
therefore recorded in a driving simulator. While this did not allow us to capture environ-
mental influences like vibrations or illumination changes, it enabled us to include many
distracting activities that will likely occur in future automated cars. Drive&Act therefore
vastly expanded both the number of performed activities as well as their complexity.

The dataset was recorded in cooperation with project partners in the BMBF funded project
PAKoS®. The resulting dataset was published at the International Conference on Com-
puter Vision [Mar19] © IEEE, 2019. The following chapter is based on this publication.
Alina Roitberg and Manuel Martin contributed equally to the dataset. It is part of both
of their theses. Manuel Martin was responsible for the implementation and experiments
regarding the body pose-based approaches (which are described in depth in Chapter 5),
while Alina Roitberg implemented the video-based models. Their results are provided
for comparison only. With regards to the creation of the Drive&Act dataset, both have
contributed significantly to all phases of data collection as part of their PhD research.
While setting a strict line is hard, Alina Roitberg focused more on the annotation of the
activities as a hierarchy, while Manuel Martin focused on the sensor and simulator setup.
The accents of this thesis were set accordingly. This chapter also discusses extensions of
Drive&Act with additional object bounding box and 3D position annotations as well as
with a benchmark for 3D driver body pose estimation. Both extensions were published
separately and were the sole contribution of Manuel Martin [Mar20a, Mar21].

3.5.1 Recording Environment

The recording environments between the presented datasets varied widely. The Driver
Depth Pose dataset was recorded in the least realistic and immersive way in a laboratory
but without simulating the driving task. The InCarln Activity dataset on the other hand
was recorded in a realistic way on a test track driving in manual mode. However, this
restricted what secondary activities could be performed because the driver still had to
drive safely.

For the recording of the Drive&Act dataset we chose a middle ground between both cases.
Data was recorded in a real car but within a static driving simulator (see Figure 3.13). The
vehicle surroundings were simulated and projected on multiple screens around a modified

® https://www.interaktive-technologien.de/projekte/pakos, accessed: June 15, 2022
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(a) Simulator environment (b) Simulation on center screen

Figure 3.13: Overview of the simulator hardware (a) and simulation with SILAB (b).

Audi A3 using the simulation software SILAB’. The simulation spanned a field of view of
200° in front of the driver and included additional screens for both exterior mirrors and
the interior mirror. The driver could interact with the simulation using the normal con-
trols of the car. Forces on the steering wheel and pedals were simulated but vibrations
and vehicle dynamics were not. Manual driving was supported by the simulation soft-
ware. The automated mode was specifically developed to collect the Drive&Act dataset,
including take-over requests by the automation. The simulation served as a background
for the collection of the dataset to keep test participants engaged and to create the experi-
ence of driving in an automated car with SAE Level 3 capabilities. The test track consisted
of a straight and endless piece of highway with moderate traffic. The design of the track
decreased the risk of simulator sickness because it did not contain any turns or curves.
In addition, because the track was endless the duration of the data collection experiment
was not limited by the simulated scenario.

Figure 3.14a shows the interior of the vehicle. It was heavily modified with mounting
points for cameras. The figure also shows the camera setup for the recording of the data-
set. While the previous datasets were recorded with a single depth camera, the setup for
Drive&Act was comprised of six cameras, one Kinect 2 for Windows (see Figure 3.3 for
specifications) and five NIR camera systems specifically developed to record the dataset
(see Figure 3.2 for specifications). The Kinect was positioned at the co-driver A-pillar,
same as for the InCarln Activity dataset. Four NIR camera systems monitored the cabin,
and one monitored the driver’s head. Overall, this placement covered most camera per-
spectives identified in our evaluation of suitable camera positions for cabin monitoring
(see Section 3.2). All cameras were calibrated, using a checkerboard pattern, and formed

° https://wivw.de/en/silab, accessed: June 15, 2022
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a multi-view system including the depth sensor and its point cloud. Figure 3.14 shows
all views recorded by the system.

The recording of both previous datasets was guided by a supervisor who instructed the
test participants. The recording of the Drive&Act dataset was instead self-guided. To
achieve this, the instructions were displayed on the central touch screen of the simulator.
The process is detailed in the next section.

All data was recorded timestamp synchronized using the Robot Operating System
(ROS) [Qui09]. This included the camera streams (at 30 Hz), simulation parameters as
well as interactions of the test participants with the instruction system on the central
screen.

(g) Kinect Color (h) Kinect NIR (i) Kinect Depth

Figure 3.14: Example images of the working on laptop activity for different views and modalities.
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3.5.2 Data Collection

The goal for collecting the Drive&Act dataset was to create a dataset for activity recogni-
tion that would surpass all available public sources for driver monitoring at that time and
would close the gap to general activity recognition datasets. In addition, it should advance
driver monitoring for automated vehicles. Like the InCarln activity dataset, activities for
the Drive&Act dataset were identified by project partners via literature research as well
as expert interviews. However, collecting data in the simulator left us more freedom to
increase the number of activities as well as their complexity. The recorded activities are
detailed in the next section.

Other driver monitoring datasets, including our previous datasets, were collected by in-
structing test participants to perform specific activities. While this is an efficient way to
collect data, it limits the realism of the recorded data with regards to the duration of each
task and their order. We therefore used a self-paced approach to record the Drive&Act
dataset by grouping activities into complex tasks. Test participants worked through each
task performing each activity to reach the goal at their own pace and in their own order.
In addition, before each recording session, fifteen objects required for the tasks were ran-
domly distributed in the car without the knowledge of the test participants. This further
randomized the execution of each activity because objects had to be found and picked up
from various locations. Overall, test participants had to complete twelve tasks instructed
on the central touch screen.

Preparations before the experiment were minimal consisting of a short questionnaire
about demographics, driving experience and experience of assistive functions, a consent
form including the publication of the data, and general information about the simula-
tor and the possibility of simulator sickness. With regards to the experiment itself, we
instructed test participants to follow the instructions presented on the center screen. In
addition, we noted that they were free to engage in additional activities not part of the cur-
rent task, like eating, drinking, or checking their phone. Some participants made heavy
use of this, increasing the duration and variance of the recording session, while others
strictly followed the instructions on the center screen. The goal of these instructions
was to provoke as much variation and natural behavior as possible while making sure to
collect data of all planned activities.

Figure 3.15 depicts the protocol of each data collection session including the twelve tasks
and the instructions provided to the test participants on the center screen. Test partic-
ipants did not know the protocol and were only presented with a single task at a time.
The experiment started with the first task to fasten the seat belt. It was followed by a
brief period of manual driving to get familiar with the simulator and its handling. Af-
terwards participants were presented with the next task to hand over the driving task to
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the automation. The order of the following tasks was randomized keeping specific activ-
ities in order, if necessary, like putting on sunglasses before the activity to take them off
again. After each task there was a short, randomized pause of at least ten seconds to give
the participants the opportunity to check their surroundings including the simulation or
to engage in other activities. One of these pauses was programmed to be longer. The
instructor used this time to call the participant on the phone located somewhere in the
vehicle. After the completion of all randomized tasks, the last task instructed the partic-
ipant to park the car and exit. With just this protocol test participants could disengage
completely from the driving task because they would not be involved for most of the time.
To prevent this, the instructor triggered four unexpected take-over requests in each ses-
sion interrupting the running task. Test participants had to take over and drive manually
for one minute before finishing their task.

Fifteen people, four female and eleven male, participated in the data collection. We se-
lected participants of different body height and weight, as well as different driving styles
and familiarity with assistance systems and automation modes. Most participants were
recorded twice, resulting in 29 recorded driving sessions with an average duration of
24 minutes. Most participants took less time during the second session, as they were
familiar with the tasks, resulting in overall different behavior and more variety in our
dataset.
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Fasten seat Please fasten the seat belt and start driving on the highway. First, you can
belt drive by yourself and get familiar with the simulator.
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Figure 3.15: Drive&Act experiment protocol showing task name (left) and subject instructions (right).
Numbered tasks were randomized but kept in rising order.
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3.5.3 Activity Annotation

The annotation process was in large parts the same as for the InCarln dataset. The
recorded video frames were manually labeled by marking the start and end of each activ-
ity in the video. The annotated segments varied widely in length. We therefore split each
segment into three second chunks that formed the samples discussed in the remainder
of this section. The annotations were hierarchical in three levels of abstraction, resulting
in 83 activity classes in total. The hierarchy targeted high-level scenarios, fine-grained
activities, which retain semantic meaning, and low-level atomic action units, which rep-
resent environment and object interactions. The fine-grained activities were based on the
results of the literature research as well as expert interviews by project partners. They
were refined after the data collection by analyzing the recorded video data, for exam-
ple by splitting activities like drinking into multiple parts. Fine-grained activities were
aggregated to form the tasks the test participants had to solve, and they were further
decomposed to form the low-level atomic action units:

Scenarios / Tasks: The twelve tasks our subjects had to complete in each session (see
Figure 3.15) shaped the first level of our hierarchy and were either scenarios typi-
cal during manual driving (e.g., eating and drinking) or highly distracting situations
which are expected to become common with increasing automation (e.g., using a lap-
top). In general, this level represented composite and long-lasting activities. Subjects
spent most of the time (23 %) in the entertainment task (i.e., watching a video), and the
shortest time driving manually after a take-over request. The take over scenario was
special because the subject was unexpectedly asked to interrupt what he was doing to
take over and switch to manual driving.

Fine-grained Activities: The second level represents fine-grained activities, breaking
down the scenarios / tasks into 34 concise categories. In contrast to the upcoming
third level of atomic action units, the second level classes preserved a clear semantic
meaning. These fine-grained activities alternated freely during a scenario i.e., the
driver was not told how to execute the task in detail. Of course, there was a strong
causal link between different degrees of abstraction, as composite behaviors often
were comprised of multiple simpler actions.

A key challenge for recognition at this level was the concise nature of the classes, as we
differentiated between closing bottle and opening bottle or between eating and prepar-
ing food. We argue that such detailed discrimination is important for applications, as
the coarse components of the scene (i.e., the vehicle cabin or the loose body position)
often remain similar and the relevant class-differences occur at a smaller scale than in
traditional action recognition benchmarks. As a consequence of such detailed anno-
tation the frequency of individual classes varied (see Figure 3.16a). On average, the
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Figure 3.16: Sample frequency of composite activities (a) and atomic action units (b) by class (logarithmic
scale). A sample corresponds to a three second snippet with assigned label. Colors denote the
activity group (e.g., food-related activities).

dataset featured 303 samples per class, with taking laptop from backpack being the
least represented (19 samples) and sitting still being the most frequent category (2797
samples).

Atomic Action Units: The annotations of atomic action units portrayed the lowest de-
gree of abstraction and were basic driver interactions with the environment. The ac-
tion units were detached from long-term semantic meaning and could be viewed as
building blocks for complex activities of the previous levels. We defined an atomic
action unit as a triplet of action, object and location. We covered 5 types of actions
(e.g., reaching for), 17 object classes (e.g., writing pad) and 14 location annotations
(e.g., co-driver footwell), with their distribution summarized in Figure 3.16b. Overall,
372 combinations of action, object and location were captured in our dataset.
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3.5.4 3D Driver Body Pose Annotation

The body pose of the driver was the most important input feature of our activity recog-
nition experiments. We provided automated annotations for the 3D upper body pose of
the driver with 13 keypoints as part of the published dataset for activity recognition. To
generate this annotation, we used OpenPose [Cao18] for 2D driver body pose estimation.
We obtained the 3D body pose of the driver via triangulation of 2D poses from three
frontal views (both cameras at the A-pillars and the camera at the central mirror). The
evaluation of our activity recognition methods on Drive&Act also relied on this anno-
tation to be comparable to others using the public data. However, in addition we also
tested the performance of our methods using the depth image-based 3D driver body pose
approaches contributed by us.

Research on 3D driver body pose estimation was an integral part of our work. We in-
troduce our methods based on depth cameras as well as the triangulation-based method
used for the public annotations in Chapter 4. However, to evaluate these methods suit-
able annotated data was necessary. While we already presented the Driver Depth Pose
dataset, it only included data from a single depth camera which made it unsuitable to
evaluate triangulation-based methods. In addition, the single sensor design of the Driver
Depth Pose dataset proved challenging for accurate ground truth labeling because the
depth camera could only observe the surface of the human body from a single viewpoint
(see Section 4.1).

To alleviate both problems we created an additional 3D driver body pose benchmark based
on the Drive&Act data. The most accurate way to annotate 3D driver body poses would
have been marker-based motion capture. However, as depicted by Borges et al. [Bor20]
the confined space in the interior would have made this difficult. When we were recording
the Drive&Act dataset, ground truth for 3D driver pose estimation was not the focus of
our efforts. Due to the multi-view setup of the dataset, we were able manually annotate
2D driver body poses in multiple views followed by triangulation of these annotations
to generate 3D ground truth. This was the same process used to generate the automated
3D driver body pose labels provided for the whole dataset but with manually labeled
2D poses as a starting point. We chose the same three NIR cameras as for the automated
annotation in addition to the NIR image of the Kinect and labeled the 2D driver body pose
using the annotation tool CVAT in all four views. Afterwards the data was triangulated
and re-projected to each view. The re-projected 2D driver body poses were then manually
checked again to fix any annotation errors. The triangulation of the corrected 2D driver
body poses then served as ground truth for our experiments.

Drive&Act consists of many frames annotating even a fraction of the data manually
would have been very time consuming. Selecting frames at random would not ensure
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the uniqueness of each body pose. We therefore used the automated annotations gener-
ated with OpenPose to guide the selection process. We sampled frames equally distributed
from all fine-grained activities. A sample was included in the body pose benchmark if the
distance of the candidate 3D driver body pose differed by at least 10 cm in one body key-
point from all previously selected samples. This process ensured that all activities were
represented in the body pose estimation benchmark and that all included 3D body poses
were unique.

We applied this approach to the data of four participants of the Drive&Act dataset to
extract a 3D driver body pose benchmark consisting of 1500 highly challenging annotated
3D scenes depicting different activities, including occlusions. This corresponded to 6000
manually labeled 2D driver body poses annotated across four views that could also be used
to evaluate 2D driver body pose detectors. The manually labeled data was strictly used for
testing because of its limited size. However, the automated annotations provided with the
dataset of the eleven remaining participants could be used for training purposes if needed.
We also tested the accuracy of these automatically created labels on the new manual
annotations (see Section 4.4.3). The 3D driver body pose benchmark was made public
as part of our publication at the International Conference on Intelligent Transportation
systems (ITSC) in 2021 [Mar21].

3.5.5 Interior Annotation

We succeessfully demonstrated the benefits of using a model of the interior for activity
recognition with the InCarln dataset. This is also why we created a similar model con-
sisting of geometric primitives to mark controls, seats, and other areas relevant for the
activities of the Drive&Act dataset. The annotation process was explained in Section 3.4.5.

While the resulting interior model included similar primitives for the controls of the car,
like the steering wheel or gear lever, other regions differed. Some areas only relevant for
the interior interaction task of the InCarln dataset were missing in Drive&Act (e.g., sun
visor) while others were represented with more detail like the seats, including the back
seats, as well as storage areas relevant for Drive&Act activities. Figure 3.17 depicts the
resulting interior model. Overall, it consisted of 28 geometric primitives.

3.5.6 Bounding Box Annotation

To continue our efforts extending the input modalities of 3D human body pose based ac-
tivity recognition methods even beyond the 3D interior model, we also annotated bound-
ing boxes and 3D tracks of the most important objects used in Drive&Act. We experi-
mented with object detectors but because of severe occlusions and hard to detect object
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(a) 2D annotations (b) 3D annotations

Figure 3.17: Manual annotations for the Drive&Act dataset including bounding boxes and 3D positions of
objects (orange), interior elements (gray) and the 2D and 3D body pose of the driver (green).

classes (e.g., newspapers are highly deformable, smartphones are often occluded) we de-
cided to manually annotate object bounding boxes. Overall, we annotated nine objects
(bottles, phone, magazine, newspaper, backpack, food, writing pad, jacket, laptop). These
annotations were made public as part of our publication at the International Conference
on Intelligent Transportation Systems (ITSC) in 2020 [Mar20a].

The annotation process involved two steps. The first step was manual annotation of
bounding box tracks for each object in four camera views, including the NIR Image of
the Kinect, and the NIR Cameras at the A-pillars and at the interior mirror. These were
the same views used to generate the 3D driver body pose benchmark. We used CVAT* to
annotate the bounding box tracks making use of interpolation between frames to create
labels for the whole dataset. The resulting bounding box tracks describe the movement
of each object in the image of each annotated camera view.

The second annotation step was to create 3D trajectories for each object to be able to in-
tegrate them both with the 3D interior model as well as the 3D body pose of the driver
for our activity recognition experiments. Figure 3.17 shows a sample of the annotated
bounding boxes and the resulting 3D object positions. We planned to compare NIR cam-
era based multi-view systems with using just the Kinect as a depth sensor for activity
recognition. Accordingly, we did not mix these sensors to annotate 3D object trajectories
and instead developed two separate automated annotation methods based on the manu-
ally labeled bounding box tracks:

1% https://github.com/opencv/cvat accessed: June 15, 2022

71


https://github.com/opencv/cvat

3 Datasets for Driver Monitoring

Figure 3.18: Overview of the method for bounding box triangulation via constructive solid geometry. Co-

ordinate systems indicate camera viewpoints, black lines indicate frustum edges, the pink
polygon indicates their intersection, and the green sphere indicates the resulting 3D location.

Multi-view systems usually rely on triangulation of corresponding points in each image

to generate 3D data. However, this was difficult in our case because objects like the
newspaper are large and their shape may vary. They were often visible from different
sides in each view without common surfaces to find accurate corresponding keypoints.
Instead of using keypoints we therefore took a volumetric approach and used the man-
ually labeled object bounding boxes of the three NIR cameras to reconstruct the 3D
position of the objects. Figure 3.18 shows an overview of the method. The bounding
box of an object in a single view corresponds to a volume in 3D space containing the
object. This volume forms a pyramid where the tip corresponds to the origin of the
camera and the four edges correspond to the bounding box corners. When construct-
ing these pyramids out of bounding boxes in multiple views they intersect in world
space indicating the volume of space that is occupied by the object. To compute this
intersection of the 3D volumes we used constructive solid geometry which is a method
used in computer graphics and computer-aided design (CAD). It allows the construc-
tion of complex 3D volumes using boolean operators [Thi87]. Applying this method
to our data resulted in a bounding volume of the object in the form of an arbitrarily
shaped polygon mesh. We averaged the vertices of this mesh to determine the final 3D
position of the object. We used pycsg'! to compute the intersection of the 3D volumes.

Depending on the size and shape of the object the resulting absolute position will
vary in accuracy. We were not able to evaluate the performance quantitatively based
on our data. Instead, we manually checked random samples of the data comparing the
resulting 3D location to the point cloud of the Kinect. The Kinect was not in any way
involved in the annotation process for the triangulation-based system, it just served
as a means for comparison because it provides absolute 3D coordinates of the surface
of the annotated objects. In general, the annotation results reflected the position of
the object well when compared to the point cloud of the Kinect.

' https://github.com/timknip/pycsg accessed: June 15, 2022

72


https://github.com/timknip/pycsg

3.5 Drive&Act Dataset

Depth-based annotation relied just on the bounding box of the object in the NIR image
of the Kinect camera and the corresponding depth image to determine the 3D position
of the object. However, the bounding box may contain parts of the background as
well as other foreground elements. Determining the depth of an object by averaging
the depth values of the whole bounding box may therefore lead to unexpected results.
Instead, we took a heuristic approach to determine a mask of the foreground object in
the bounding box. The heuristic determined the largest connected foreground area in
the bounding box that was also closest to the camera. To achieve this, we clustered the
depth values inside the bounding box using Mean Shift clustering with a bandwidth
of 20 cm. The depth values of this cluster were then converted to 3D points using the
camera intrinsics and averaged to determine the 3D position of the object.

Similar to the triangulation-based approach we reviewed the results by manually com-
paring the object’s 3D position to the point cloud of the Kinect. The accuracy of both
triangulation and depth-based methods were similar. However, the 3D trajectories of
the triangulation-based annotation were more complete because the multi-view sys-
tem had a wider field of view and provided robustness to occlusions.

3.5.7 Evaluation Metrics

Both driver body pose and activity recognition benchmarks needed standardized perfor-
mance metrics to compare results of different methods. There were some particularities
resulting from the recording in the car interior as well as the original experiment de-
sign that affected the way the results were evaluated. The metrics presented here for
Drive&Act were also used to evaluate our two previous datasets.

The Drive&Act driver body pose benchmark allowed evaluating both 2D as well as 3D
body pose methods. Most related 3D body pose estimation datasets assumed that the
ground truth as well as the estimated results are complete without missing keypoints.
In our case this was not an option because occlusion of body parts affected both the
estimated results as well as the manually labeled ground truth. Some of the common
performance metrics could deal with this better than others. We therefore used more
than one metric to combine their strengths:

Object Keypoint Similarity (OKS) was the main metric introduced by the COCO
benchmark [Lin14] for 2D human body pose evaluation. Its basis is the Euclidean
distance between estimated and ground truth keypoints measured in pixels. There are
additional weights to model both the annotation error and the acceptable quality for
each keypoint. The main metrics are the mean average precision (AP) and the average
recall (AR) over 10 OKS thresholds. The metric is robust to missing keypoints.
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Mean per joint position error (MPJPE) measures the mean Euclidean distance in me-
ters or millimeters between measured and ground truth keypoints of the 3D body pose.
For multiple frames it is defined as the mean of the result for each pose. This metric
is susceptible to missing keypoints because they can distort the results severely. We
therefore only considered keypoints that were valid for measured and ground truth
body poses to compute this metric.

Availability measures what fraction of the ground truth keypoints could be retrieved
by the method. This is complementary to MPJPE which only considers the position
error of retrieved keypoints while the availability metric does not consider the quality
of the retrieved keypoints.

Percentage of Correct Keypoints (PCK) considers estimated keypoints correctly clas-
sified if their distance to the ground truth is within a threshold. We followed Mehta
et al. [Meh17a] and determined the area under the curve (AUC) with thresholds of
1 to 150 mm (PCK;_;5). This metric combines aspects of MPJPE and availability be-
cause missing keypoints are treated the same as keypoints with an error larger than
the largest threshold. High scores can be achieved with a combination of good MPJPE
results and high availability.

Our activity recognition benchmarks differed from related activity recognition datasets
because of their imbalanced class distribution. The commonly used accuracy metric would
therefore favor methods that detect common activities correctly while the results of less
frequent activities would not have much impact. We therefore relied on performance
metrics that weigh each class the same independent of their frequency in the dataset:

Balanced Accuracy is defined as the average of the top-1 recognition rate for every
category. For balanced datasets this metric is the same as the commonly used accuracy
metric. This was the benchmark metric for the Drive&Act dataset. To determine the
overall performance, we aggregated the results of each split and calculated the metric
globally. This is statistically more stable compared to averaging the metric of each
split if there are few samples for some classes making the distribution between splits
imbalanced as well.

F1-Score is the harmonic mean between precision and recall. The metric is also robust
for imbalanced data. It was used initially for our evaluation on the InCarln dataset.
For this thesis we only reported these results as reference and evaluated all methods
using balanced accuracy.
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3.5.8 Summary

The Drive&Act dataset is a large-scale public dataset for activity recognition in automated
cars. Compared to related datasets, as of writing this thesis, it includes the most labels
related to driver activities in three hierarchy levels. It was also one of the first large
scale automotive datasets for activity recognition and is still the only dataset focused on
automated driving with activities that could not be performed safely in manually con-
trolled cars.

The dataset consists of 29 video streams recorded of 15 people including 9.6 million
frames. The recording setup consisted of six cameras in a calibrated multi-view system
resulting in eight camera streams covering three image modalities (Color, NIR, Depth).
Apart from the video data there are additional annotations that can be used as input for
driver activity recognition methods including a 3D model of the interior with 28 zones, 9
annotated objects with bounding box tracks as well as 3D trajectories and automatically
labeled 3D driver body pose data.

The activity recognition benchmark includes three annotation levels focusing on 12 long
term tasks, 34 fine-grained activities and driver-object interactions (Atomic Action Units)
with 5 activity classes, 17 objects and 14 location labels. Since we specifically aim to rate
generalization to new drivers, we evaluate exclusively on people previously unseen by
the classifier. We randomly divide our dataset into three splits based on the identity of
the person behind the steering wheel. For each split, we use the data of ten subjects for
training, of two subjects for validation, and of three drivers for testing (i.e., 20, 4 and 6
driving sessions, respectively). Since the annotated actions vary in their duration, we
divide each action segment in chunks of three seconds or less and use them as samples
in our benchmark. In addition, the camera system offers the opportunity for a cross-view
and cross-modal evaluation.

3D driver body pose estimation is a prerequisite for our intended activity recognition
methods. While Drive&Act provides 3D driver body pose labels for the purpose of activ-
ity recognition, their accuracy as well as the accuracy of the driver body pose methods
proposed in the next chapter could not be evaluated without high quality ground truth
labels for this task. According to our review of related work there were no suitable public
datasets. We therefore extended Drive&Act with a 3D driver body pose benchmark con-
sisting of 1500 manually labeled unique 3D driver body poses from different activities of
the dataset. In addition, the benchmark also provides 6000 manually annotated 2D driver
body poses from four views that were triangulated to generate the 3D ground truth.

Overall, Drive&Act is a dataset providing multiple benchmarks on a wide variety of data
with room to explore additional research directions in the future.
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4 3D Driver Body Pose Estimation

The 3D driver body pose is the primary input feature of our activity recognition methods.
The overall goal for all our approaches to determine the 3D driver body pose was real-time
capability to be able to run the methods in test vehicles with limited hardware resources.
Accordingly, our first approach did not rely on deep learning but was instead based on
random decision forests (see Section 4.2). The second approach made use of the advance-
ments in deep learning-based 2D body pose estimation as well as the increased computing
capabilities making it possible to run these methods in real-time (see Section 4.3). Both
methods dealt with the scarcity of training data in the automotive context, discussed in
our review of related work, as well as with the challenges for 3D body pose estimation
using depth images in different ways.

4.1 Challenges for 3D Body Pose Estimation Using
Depth Cameras

Depth cameras, especially the first version of the Kinect [Sho11], helped to introduce high
quality 3D body pose estimation for consumer applications. However, there were also
downsides to using depth cameras for the task compared to multi-view camera systems.

The depth image is only a 2.5-dimensional representation which means the data contained
in the depth image only describes the scene from a single point of view. Therefore, there
is no depth data for body parts that are occluded by the environment or by other parts of
the body (self-occlusion). In unconstrained environments, where people can turn around,
there are therefore angles where half of the body occludes the other half (see Figure 4.1a).
This causes challenges for depth image-based 3D human body pose estimation. In addi-
tion, keypoints of the human body are inside of the body while the depth image depicts the
surface. So, all keypoints are fundamentally occluded by the nearest surface of the body.
Therefore, there is a depth offset between the observable projection of a keypoint on the
surface and its true position. For some keypoints this offset is small and mostly fixed (e.g.,
wrists), for other keypoints it depends heavily on the body proportions of the person as
well as the viewpoint of the camera (e.g., hips, shoulders). Self-occlusion exacerbates this
problem because the depth value from the depth image associated with a keypoint might
be from a different body part instead of from the closest surface. Figure 4.1a illustrates
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Figure 4.1: (a) Two dimensional depiction of the challenges for depth image-based driver body pose esti-
mation. (b) Handling of such a case by our method.

this case. For body keypoints on the side of the camera (green) the closest surface is ob-
servable making the offsets easier to predict. The torso and head (orange) are harder to
locate, if occluded, because the observable depth value can change drastically based on
the movement of the occluding arm. However, in the case of 3D driver body pose esti-
mation there are strong priors for these keypoints because of the fixed seating position.
If one arm occludes the other (red) it is often hard to predict the true 3D position of the
occluded keypoints because there are different possible, and equally likely, positions. The
depth cameras of the InCarln activity dataset as well as Drive&Act dataset are located at
the A-pillar on the co-driver side. The resulting side view therefore increases the difficulty
of determining the location of keypoints on the left side of the driver’s body. Figure 4.1b
shows an example where our proposed PoseFix method successfully handles this case.

Finding an accurate solution with a single depth camera is not possible for severe occlu-
sions because too much information is lost. Multi-view triangulation-based methods do
suffer from these challenges to a lesser degree because they observe the scene from differ-
ent viewpoints making them more robust to occlusions and making it easier to estimate
the true position of body keypoints inside the body.

While our first method for 3D driver body pose estimation based on random decision
forests does not handle these challenges explicitly (see Section 4.2) our next method,
called DepthFix, can handle both cases in many situations (see Section 4.3). In addition
to our depth image-based contributions, we could also show the advantages of multi-
view camera-based methods (see Section 4.3.2) which were therefore used to annotate
the Drive&Act dataset with 3D driver body pose ground truth data (see Section 3.5.4).
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4.2 Random Decision Forests for 3D Driver Body Pose
Estimation

The following method for 3D driver body pose estimation was developed in the context
of the InCarln project (2014-2017). The goal was to track all people inside the test vehicle
of the project, which was also used to record the InCarln activity dataset (see Section 3.4).
This required the processing of three Kinect cameras mounted on the A-pillars to capture
the front seats as well as on the ceiling to monitor the rear seats. However, in the time
frame of the project real-time performance was still challenging for deep learning-based
methods for human body pose estimation. In addition, the computing resources inside
the test vehicle were limited. Considering the project constraints and according to our
research of the state of the art, the most promising approach was therefore 3D driver body
pose estimation using random decision forests. In addition, Shotton et al. [Sho11] showed
that simulated depth data could be sufficient to train our approach which also alleviated
the lack of suitable public training data as we show in the following section.

The resulting method was published at the International Conference on Intelligent Trans-
portation Systems (ITSC) in 2017[Mar17a] © IEEE, 2017. The following chapter is based
on this publication.

4.2.1 Method

Our method depends only on depth data to estimate the 3D body pose of the driver (see
Figure 4.2a). It uses random decision forests to estimate dense body part labels. Our sys-
tem processes the data in multiple steps that we describe in detail in the following section.
At first the depth image is pre-processed to remove noise, then the driver is separated
from the background using a 3D background model of the car’s interior. Afterwards each
point of the segmentation is classified with a random decision forest to determine body
part labels (see Figure 4.2b). Finally, these pixel-wise labels are clustered to determine
the body pose of the driver (see Figure 4.2c).

Preprocessing

Depending on the depth sensor and its integrated preprocessing, depth images can exhibit
different noise characteristics. To clean up the image, we first use thresholding on the
near-infrared image corresponding to the depth image to remove underexposed areas
which indicate depth values with increased noise. Afterwards the system applies a median
filter and an edge-aware Gaussian smoothing filter with size Sgy.,. The filtered depth
image is then transformed to a point cloud using the intrinsic parameters of the camera.
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(a) Input depth image (b) Segmentation and body part (c) 3D driver body pose
labels

Figure 4.2: The stages of the body part detector showing the input depth image (a). (b) The segmentation
with body part labels and (c) the resulting 3D driver body pose overlayed on the point cloud.

Segmentation

After preprocessing the image, the system separates the image points belonging to the
driver from the car’s interior. To achieve this, it generates a voxel-grid representation of
the empty interior to efficiently segment the driver at test time.

To create the background model multiple frames are accumulated in a voxel-grid with
resolution r,. Once per frame and voxel a counter is incremented if any point of the input
is within the voxel. The final model is then defined as follows:

. . .o Aj
interior if — > £y,

M; = Mseg (4.1)
free space otherwise

where M is the background model, A is the accumulator voxel-grid, i is the index of a

voxel, N, is the number of accumulated frames and £, is a threshold between zero and

one controlling the noise susceptibility of the backgrmgmd model. Using a high thresh-
old is preferable because it lowers the impact of sensor noise on the background model.
Setting the threshold too high will cause artifacts because depending on the material of
the interior some surfaces only produce noisy but consistent depth data that should still
be captured in the background model. Setting the threshold too low causes voxels to be

marked as background because of noise in the depth image.

At test time the algorithm determines the enclosing voxel for each point of the point
cloud. If the voxel is not marked as belonging to the background then the point belongs
to the segmentation of the driver (see Figure 4.2b).
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Body Part Labeling

We use random decision forest to determine dense body part labels for all foreground
points of the depth image similar to Shotton et al. [Sho11]. Random decision forests are
effective multi-class classifiers consisting of multiple random decision trees. Each tree
is trained and evaluated independently. Each inner node of the tree contains a learned
weak binary classifier determining how each sample is propagated to the child nodes.
Our classifier is based on depth comparisons:

%)

S;={x|xeSAd + _—
1 { | (puv d(puv)

) - d(puv + ) < tlabel} (4-2)

_9
d(puv)

S, = S/S, (4.3)

where {S} is the set of samples split by a node into samples for the left {S;} and right {S,}
child node. Each sample consists of an image position p,,;, and a ground truth body part
label when training the tree. d(p,;) is the depth at position p,,, 0; and 0, are learned
offsets in image coordinates and t,,;,; is a learned threshold. d(p,,,,) is set to a large penalty
value d 4. if the evaluated position is outside of the segmentation.

When training a random decision forest for body part labeling the samples reaching each
leaf of each tree ¢t are used to determine a probability distribution B.(I|p,,,,) for body part
labels 1. The result of the random decision forest is determined by averaging the results
of all trees T:

P|pyy) = % > B(l|puo) (4.4)
teT

Figure 4.2b shows the result of the body part labeling step.

Pose Estimation

To determine the 3D body pose of the driver the pixel-wise labeled points must be com-
bined. Averaging all points of the segmentation weighted by their probability for a body
part would result in severely degraded results because of misclassified points. Instead, we
rely on clustering of the body part labels using the most probable body part for each point
based on the maximum of each point’s probability distribution. We then apply connected
component clustering using both the label of each point and the Euclidean distance be-
tween neighboring points to create clusters. Only points with the same label that are
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close to each other are assigned to the same cluster:

Ci = {p, qll(p) = l(q) A ||p - q” < tcluster} (4~5)

where C; is the i-th cluster p and g are neighboring points in the depth image, I(p) is the
label of p and f ., is the threshold determining the maximum distance of neighboring
points belonging to the same cluster.

For each resulting cluster i we determine both the centroid J; and a cluster body part
weight W ;:

1
Ji = W, pEZCi w(p)p (4.6)
W= >, w(p) (4.7)
DPEC;

where w(p) is the probability that point p belongs to the body part p.

Each cluster centroid and corresponding cluster weight is a hypothesis of a body part’s
location. It is likely that there are multiple hypotheses for each body part. We choose the
centroid with the highest cluster weight as the position of each body part. Our method
does not produce body part labels for the neck and pelvis keypoints instead we determine
their position by averaging the shoulder and hip keypoints respectively.

4.2.2 Random Decision Forest Training

Training random decision forests for body part labeling requires a large number of depth
images with body part ground truth labels. Labeling this data manually is more time con-
suming than just labeling keypoints in the image because it requires pixel-level annotation
of regions. We therefore explored different methods to create data for training with auto-
mated annotation. We both collected real sensor data using low fidelity motion capturing
for labeling as well as synthetic data. In the following section we first describe the training
method for random decision trees followed by our methods for training data collection.

Random decision tree training method

The goal of training a random decision tree for body part labeling is choosing a weak
classifier for each node of the tree to split the training samples into two parts with the
cleanest possible distribution of labels. The weak classifier is defined in Equation 4.2. Its
parameters are the two offset vectors 0; and 0, as well as the threshold parameter £,
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Instead of a gradient descent approach to find these parameters random decision trees
rely on randomly choosing these parameters within user-defined bounds. The training
method generates a user-defined number of random weak classifiers for each node and
chooses the classifier that performs best from this set. The parameter bounds influence
how well the detector can perform, and the number of random classifiers tested for each
node influences its ability to generalize to new data. While a high number of classifiers
can improve accuracy it can also increases the risk of over-fitting on the training data.

The whole random decision tree can be trained using a greedy approach starting at the
root and proceeding to each child node repeating the following steps:

1 Generate a set of n weak classifiers randomly choosing features 01, 0, and £,
2 Compute the split of the training samples S into S; and S, for each weak classifier

3 Determine the information gain (IG) for each weak classifier:
S|

IG=H(S)- ). ﬁH(sc) (4.8)
ce{l,r}

where H(S) is the Shannon entropy of the histograms of body part labels.

4 Choose the weak classifier with the largest information gain and continue with S
and S, if the depth of the tree has not reached the maximum

We train each decision tree of the random decision forest separately. The randomness
introduced in each tree increases the chance that each tree focuses on distinctive features.

Real training data

Our first goal was to test the performance of the method on the Driver Depth Pose dataset
(see Section 3.3). We collected real world training data for this experiment. This involved
collecting data from the viewpoint of the interior mirror using the Melexis Sensor because
this was the camera viewpoint of the benchmark dataset. To avoid manual labeling, we
used a Microsoft Kinect 2 for Windows and its 3D body pose estimation method as a
low fidelity motion capture device. Both cameras were calibrated with markers such that
they have a common frame of reference. With this setup it was possible to capture the
depth image from the Melexis camera and the 3D human body pose using the Kinect as
labeling system. However, the goal was to produce body part labels using an automated
method. To achieve this, we constructed a volumetric body model based on cylinders (see
Figure 4.3a). For each point of the point cloud of the Melexis sensor we determined the
intersection with this volumetric model. Depending on which cylinder the point inter-
sected it was assigned the respective ground truth body part label. If a point was outside
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=
Model Depth Labels

(a) Cylinder model (b) Synthetic data sample

Figure 4.3: (a) The cylinder model used to annotate real data. (b) Synthetic data sample depicting the model
with labeling texture, resulting depth image (false color) and body part label annotations.

of the volumetric model the point was discarded. With this method we created both the
body part labels and the segmentation of the training images.

The training data was collected outside of the car to be able to position the Kinect sensor,
so its 3D body pose estimation method worked well. This was not possible in the car’s
interior. This approach was only viable because our method relied on a segmentation
of the driver for body part labeling. Accordingly, the surroundings did not matter for
collecting training data.

The accuracy of this annotation system was limited because of the coarseness of the
cylinder-based model. We therefore only labeled 12 large regions (shoulders, elbows,
hands, hips, knees, torso, and head). We collected 16 000 training images from 5 different
people (all male) of different body type and height. Two people were collected with and
without thick winter jackets to change their shape in order to increase the variance of
body proportions in the training set. All participants performed the different poses from
the Driver Depth Pose dataset multiple times with variations in their execution. In addi-
tion, participants performed random poses while seated to improve the coverage of the
degrees of freedom of the upper body.

Synthetic training data

While the method to collect real world data worked well for the Driver Depth Pose dataset,
it was an involved process that would have to be repeated for other sensor configurations.
However, our final goal for 3D driver body pose estimation was activity recognition using
the InCarln Activity dataset as well as 3D body pose estimation of all passengers in the
test vehicle of the InCarln project. This would have required additional data collection
for the Microsoft Kinect 2 for Windows from multiple camera viewpoints. Instead, we
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decided to use synthetic data for the task. This both enabled us to create more varied data
with less effort as well as to create ground truth body part labels with higher accuracy.

Generating synthetic data required a rendering system, different models of the human
body with varying proportions, as well as motion capture data to move the models. We
used Blender as a rendering engine to generate depth images as well as body part labels.
Varied human body models were generated with the parametric body model of Make-
Human (see Figure 4.3b). There was no public motion capture data from people inside
vehicles and only scarce data for sitting people in general. Like our method for real world
data creation, we therefore used the Kinect and its 3D body pose estimation method to
collect motion capture data. However, in this case both the camera images as well as
the recording environment were not important. We therefore only collected motion data
from one person because body type and height were determined by the rendering system
and were independent from the motion capture data. Overall, we collected 80 000 3D
body poses with this setup. This included the movements from the Driver Depth Pose
dataset, the activities from the InCarln activity dataset as well as random movements of
the upper body. However, this data was recorded with a high frame rate so the body
pose did not change much from frame to frame. We therefore selected a subset of 11 000
unique poses from this data with a distance of at least 10 cm in one keypoint to all other
selected poses. This was the same process used to select frames for the Drive&Act driver
body pose benchmark (see Section 3.5.4).

For each rendered training image, the data creation pipeline chose a random 3D body pose
from the collected motion capture data, one of 16 human models (eight male, eight female)
as well as a random transformation augmenting the rotation, position, and height of the
person. The virtual sensor was configured with the camera parameters of the Kinect 2 for
Windows and its position resembled the depth camera position of the InCarln Activity
dataset as well as Drive&Act dataset.

Overall, the final synthetic training dataset consisted of 100 000 samples including depth
images as well as body part label annotations with 13 regions.
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Table 4.1: Parametrization of the random decision forest-based 3D driver body pose estimation method for
different datasets.

Algorithm Parameter Depth pose Drive&Act and
Stage dataset InCarln
Proprocessing | Noise filter size: Sgye, 3
Segmentation | Voxel grid resolution: 7, 5cm’ 3cm®
Background threshold: ., 0.3 0.8
# frames for background: n, 100
Part labeling # Images 18000 100 000
training data # Labeled regions 12 13
Type Real Synthetic
Part labeling # Trees 5 3
training Tree depth 20
# Offset pairs: 07, 0, 1500
Offset Range: 01, 0, —100 to 100px ~ —120 to 120 px
# Thresholds: t},,¢ 50
Threshold range: 1,01 —1tolm
Penalty value: dide 100 m
Body part label | Max neighbor distance: f,ge; 0.1m
clustering

4.2.3 Implementation Details

The approach has some parameters that need to be chosen based on the target camera as
well as training dataset. For most of the development of this algorithm labeled data was
scarce or not available. Most of the parameter search was therefore done by inspecting
results of the different stages of the method on unlabeled data. In addition, for some
parameters we used statistics of the training dataset to choose suitable values.

We use two configurations of the method in this thesis. One configuration is trained on
real data and is tested on the Driver Depth Pose dataset. The second configuration is
trained on synthetic data and is tested on the more complex Drive&Act driver body pose
benchmark. In addition, this model is used to generate the 3D driver body poses used for
evaluating on the InCarln Activity dataset. Table 4.1 lists all parameters of the approach
and their values for both configurations.

Preprocessing and segmentation depend on the sensor and its noise characteristics. The
Melexis sensor of the Driver Depth Pose dataset produces depth data with a high noise
level. Accordingly, the voxel grid resolution (r,) and the threshold to classify a voxel (t,.,)
as being part of the background is lower compared to the configuration for the Kinect
Sensor which produces depth images of higher quality. In both cases we use ny, = 100
frames to create the background model of the empty car.
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The parameters for body part training depend on the viewpoint of the camera and its
resolution as well as the number of body part labels and the size of the dataset. We choose
the parameters based on the findings of Shotton et al. [Sho11] as well as statistics of our
training datasets. The number of trees does not influence the body pose estimation result
much in our experiments. We therefore use five decision trees for the Driver Depth Pose
dataset but only three trees for the other configuration to reduce the processing time for
real-time use. We set the depth of the random decision forest to 20. This has a large impact
on the performance as we will show in the next section. Deeper trees perform better
in general. However, there are limits because each node splits the number of training
samples into two parts so the deeper the decision tree the more training samples are
needed to still be able to generate meaningful statistics in leaf nodes. The main parameters
regard the creation of the random weak classifiers for the training of each random decision
tree node. This requires choosing a suitable pair of offsets (07, 0,) and a corresponding
threshold (f},,¢;) for the training objective. We choose 1500 random offset pairs and for
each pair we test 50 random thresholds. If too few weak classifiers are sampled the output
of the decision tree is noisier. Large values on the other hand mostly increase training time
without negatively affecting the results. The number of necessary samples also depends
on the range of values the offsets and thresholds are sampled from. For a larger sampling
range more samples are necessary to find suitable candidates. We choose the range for
the offsets based on the average torso length in pixels for each dataset. This allows the
decision tree to sample a large neighborhood while decreasing the chance to generate
offset pairs that are outside of the segmentation of the driver.

We trained the random decision forest with a custom distributed training system on 100
cores. It took 24 h to train the configuration based on synthetic data. We also performed
a runtime test on the hardware used in the test vehicle of the InCarln project (Intel Core
i7-4700MQ 2.4 Ghz, Nvidia Geforce GT 730M with 1 GB video memory). The real-time
system was implemented in C++. The only part that was optimized for parallel execution
on the CPU or on the graphics card using CUDA was the inference from the random
decision forest. Everything else was executed single-threaded on the CPU. We reached
23 fps using a single thread, 37 fps with multiple threads and 51 fps using the graphics
card. We could therefore achieve our design goals regarding real-time performance stated
at the start of the chapter.

4.2.4 Evaluation on the Driver Depth Pose Dataset

The primary dataset for evaluating the approach outlined in this thesis is the Driver Depth
Pose dataset (see Section 3.3). We train the method on real data collected from the same
sensor (see Section 4.2.2) using the parametrization presented in the last section. The
performance metrics that were used are presented in Section 3.5.7.
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Table 4.2: Results for 3D keypoint detection on the Depth Pose dataset using random decision forests (DF)
with T trees and depth D. Best results are marked bold. The columns on the left show statistics
per keypoint while the columns on the right show statistics per body pose.

Config. head 1Shoulder rShoulder neck IElbow rElbow 1Wrist rWrist 1Hip rHip midHip|mpjpe PCK;_5 avail.
mpjpe [mm] [mm]  [%] (%]
DFT5D5 | 26 69 55 76 46 122 142 189 78 83 112 92.3 40.5 100
DF T5D10| 29 62 57 80 35 95 53 76 69 64 101 65.3 51.3 100
DF T5 D15| 31 64 49 84 31 72 48 62 64 59 96 59.8 54.4 100
DFT5D19| 31 63 48 86 31 69 47 54 61 57 91 58.1 55.0 100
DF T5 D20| 31 63 48 86 32 68 46 53 60 56 94 57.9 55.2 100

We evaluate the performance of the resulting model for different random decision forest
depths. To achieve this, we train the forest to a maximum depth of 20 but only evaluate it
partially at test time. Table 4.2 shows the results. The random decision forest with the full
depth of 20 achieves the best result with a mean per joint position error of just 57.9 mm
and a PCK;_;5 score of 55.2%. The method is in general able to detect all annotated
keypoints (100 % availability) of the dataset. Overall, the mean per joint position error
(MPJPE) decreases by 37 % with increasing depth of the random decision forest. However,
while the initial performance gains are large the differences get smaller with increasing
depth. Keypoints that move a lot (i.e., wrist) or are often partially occluded (i.e., hips)
are harder to detect and therefore benefit the most from an increase in depth. On the
other hand, keypoints that are mostly static, like the head and shoulders, can already be
detected with high accuracy at a low depth of the decision forest. This indicates that
they are easier to detect requiring fewer weak classifiers to arrive at the correct body
part label. We would expect that the left side of the body performs worse because it is
further away and potentially occluded by the right arm. This is not the case. However, it
is not possible to show this effect with the Driver Depth Pose dataset because in case of
occlusion it was also not possible to create ground truth labels. This is also the reason the
left elbow performs so well because it could only be annotated, and therefore evaluated,
in a small region if it was not occluded at the side of the torso. We can show that the left
side of the body indeed performs worse on the Drive&Act driver body pose benchmark
because it was labeled using a multi-view camera system including labels for occluded
keypoints (see Section 4.4.2).

Figure 4.4a and Figure 4.4b visualize the effect of reducing the depth of the random de-
cision forest. To create these images, we assign a color to each label and produce the
weighted sum of the colors based on the label probability distribution for each pixel.
Muted or gray colors indicate an even probability score, while bright colors indicate a clear
decision. Reducing the depth decreases the overall confidence of the random decision for-
est, indicated by the muted colors. Some regions, like the head, that also performed well
at low random forests depth, are still clearly visible. In many cases the reduced confidence
still suffices to determine the keypoint positions via our clustering approach.
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(a) Random forest depth 5 (b) Random forest depth 20 (c) x/y-error distribution

Figure 4.4: Heatmap of the random decision forest with depth five (a) and depth 20 (b). (c) Keypoint error
distribution of the x-axis and y-axis reprojected onto the image. Bright colors represent 50 %
of the samples with the smallest Euclidean distance to the ground truth. The reference ground
truth body pose is depicted in white.

Figure 4.4c depicts the error distribution of the approach for the x-axis and y-axis. It
shows that the estimated shoulder keypoints and neck keypoint are offset further down
and to the body center compared to the ground truth. This is expected because our method
determines the centroid of the shoulder cluster as keypoint position. The further these
clusters reach down the torso the more the keypoints therefore move in this direction
as well. The neck keypoint is determined by averaging the shoulder keypoints and is
therefore affected by the same problem. In addition, the ground truth positions the neck
further back at the base of the skull which also causes a systematic deviation of the z-axis
(see Figure 4.5a).

The error distribution on the z-axis, which corresponds to the values in the depth image,
should show the challenges depicted at the start of the chapter regarding surface keypoint
positions and occlusions. Figure 4.5a depicts the results. The hips show the largest spread
of errors on this axis. This is consistent with our general results and highlights their
detection difficulty caused by occlusion by the right arm. Overall, the errors are spread
around zero. We would expect a systematic negative offset because our method does not
consider the difference from the surface of the body, depicted by the depth image, to the
true keypoint positions. However, with the recording setup of the Driver Depth Pose
dataset we were only able to label surface keypoints of visible body parts because the
offset could not be determined based on the single recorded depth sensor. An evaluation
on this data cannot show this effect, but we can show it on the Drive&Act driver body
pose benchmark (see Section 4.4.2). The evaluation on the Driver Depth Pose dataset
therefore only shows the performance of the method for visible keypoints.
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Figure 4.5: Statistics of the random decision forest-based body pose detector on the Driver Depth Pose
dataset.

Figure 4.5b show the overall result of the 3D body pose estimation for each action. The
median MPJPE of most actions is around 50 mm. Notably the actions hand touching el-
bow and hand touching shoulder perform worst. These are difficult to estimate because
depending on the test participant they were executed with the arms close to the body.
Because of the noise level of the sensor, it is then hard to separate points belonging to the
arms from points belonging to the torso. In our experience, these poses are challenging
for 3D human body pose methods in general. Overall, the actions that perform worst also
cause large occlusions of the upper body which cannot be handled well by our approach.

Figure 4.6 shows some qualitative results of the system for different actions. In most
situations the system works well. A typical failure case occurs when reaching with the
right hand near the head. In this case the wrist is sometimes wrongly detected at the knee
(see Figure 4.6g). This does not happen every time and it also seems to depend on the body
proportions of the person. However, this is the main reason for the larger errors of all
actions with similar arm movements. Reaching into the foot-well (see Figure 4.6h) causes
occlusion of most body keypoints which makes accurate detection with our approach
challenging. In addition, this pose is not represented well in the training data as indicated
by the noise in the visualization of the body part labels.
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(c) Waving

(g) Hand on face (failure) (h) Pick up object from foot-well (failure)

Figure 4.6: Sample results for different actions including failures.
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4.3 DepthFix: Driver Body Pose Estimation with
Occlusion Handling

While our decision forest-based method fulfilled the needs for real-time 3D driver body
pose estimation in the InCarln project, it had some drawbacks. It relies on a background
model to segment the driver in the vehicle, which is challenging in many scenarios, for
example when the seats are moved by the passengers. In addition, the background model
is not robust with regards to objects like jackets, laptops, food or drinks which are all part
of the Drive&Act dataset. The method also disregards the peculiarities for depth image-
based human body pose estimation regarding surface keypoints and occlusions (see Sec-
tion 4.1). Finally, the method relies just on the depth image for 3D body pose estimation
which makes it harder to detect fine details like the eyes or the nose because they stand
out mostly as texture in the near-infrared image and less as shape in the depth image.

We therefore developed a new approach that accounts for these challenges using modern
deep learning-based methods. However, the challenge of missing training data for 3D
driver body pose estimation still remained. While our last method tackles this problem
using synthetic data, our new approach separates 2D driver body pose estimation, using
just near-infrared images as input, and 3D body pose estimation using depth images and
2D body poses as input. This allows us to rely on state of the art methods for 2D body pose
estimation as well as large scale datasets for their training from other domains. Only the
second part of the method relies on labeled data from the interior of the vehicle. Here we
rely on the automated 3D driver body pose labels of the Drive&Act dataset for training.
Compared to the random decision forest-based method our new approach regresses true
keypoints location within the body instead of on the surface and it can handle occlusions
(see Figure 4.7). In addition, it does not rely on a background model which eliminates one
of the most common points of failure from our first approach.

In the following we present our proposed DepthFix method that relies on depth images
for 3D driver body pose estimation and a multi-view triangulation-based approach used
as baseline for our method as well as to annotate the Drive&Act dataset (see Section 3.5.4).
All following 3D body pose methods rely on OpenPose for 2D driver body pose estimation.
We present a brief overview of this method in the state of the art chapter (see Figure 2.1).

The following sections are based on our publication at the International Conference on
Intelligent Transportation Systems (ITSC) 2021 [Mar21] © IEEE, 2021.

92



4.3 DepthFix: Driver Body Pose Estimation with Occlusion Handling

(a) 2D pose estimation (b) Direct pose (c) DepthFix

Figure 4.7: Overview of the DepthFix approach. (a) 2D body pose estimation on the near-infrared image
(blue) followed by depth lookup (yellow). (b) The resulting direct pose result. With wrong
keypoint depth estimation caused by occlusion (red). (c) DepthFix result (green) based on cor-
recting offsets (orange) fixing the occluded keypoints (green).

4.3.1 DepthFix method

The goal of our method is to leverage the progress in deep learning-based 2D human body
pose estimation for depth image-based 3D driver body pose estimation without retraining
the 2D pose detector. One way to achieve this is to detect the 2D body pose of the driver on
the near-infrared image of a time of flight sensor and to use the matching depth image to
determine 3D coordinates for the 2D detection (see Figure 4.7a). A direct approach would
just look up the depth value of each 2D body keypoint (u,0) in the depth image d and then
use the inverse camera matrix C to compute the 3D keypoint K in camera coordinates:

u
Kdirect:C_1 v |d(u,v) (4.9)
1

However, the resulting 3D keypoints are located on the surface of the driver’s body be-
cause the depth camera observes the surface of the scene. The true position of the key-
points is within the body with an additional offset to the depth image. We test the ap-
proach proposed by Shotton et al. [Sho11]. They addressed this issue by learning offset
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Figure 4.8: Depiction of the DepthFix method. It uses the direct 3D body pose as input(red) and produces
correcting offsets via a small feed forward network resulting in an improved body pose (green).
We test two different offset methods. Offsets starting from the pose center (blue) and offsets
starting from each keypoint of the input pose (yellow).

vectors 0y for each keypoint on a holdout data set T with labeled keypoints K,:

. 1
Koffset = Kdirect + 0k ,with O = N Z th - Kdirect (410)
teT

This already improves results as our evaluation shows. However, there are additional
challenges. Fixed offsets do not account for different body shapes or sizes. Furthermore,
the depth image does not contain valid z-values for occluded keypoints. This can lead to
large errors that cannot be compensated with fixed offsets (see Figure 4.7b).

Our approach therefore calculates offsets that adapt based on the 3D body pose used as
input for the method (see Figure 4.7c). It can correct surface keypoint positions to true
keypoint positions within the body and it tries to fix any errors introduced by occlusions
by regressing correcting offsets. This is handled by a small and efficient neural network
that can be applied as a post processing step after generating the 3D body pose using
the direct method (see Equation 4.9). The idea is inspired by Moon et al. [Mo019] who
used a neural network as a post processing step to fix common errors of 2D body pose
estimators like left-right swapping of limbs. It is also inspired by Martinez et al. [Mar17b]
who demonstrated that a single 2D human body pose could be lifted to 3D with a small
and fast neural network as a post processing step to achieve monocular 3D body pose
estimation. Our neural network architecture is similar to their approach.

Figure 4.8 shows our proposed neural network. The basic module of the network is a
linear layer followed by batch normalization, rectified linear units and dropout. Two of
these modules form a block of the neural network. The first block increases the feature
dimensionality while all remaining blocks keep the dimensionality the same. Our neural
network consists of two of these building blocks combined with skip connections. The
final layer of the network is a linear layer that regresses correcting offsets.
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The network uses the 3D body pose determined by the direct method as input (see Equa-
tion 4.9). The input to the neural network is therefore affected by all the problems dis-
cussed so far. The 3D keypoints are on the surface of the human body and in case of
occlusions the z-value of the keypoint might be off by a large margin. We expect the
network to create correcting offsets without additional information like image features
or time-series data. The resulting offsets are location independent. The absolute position
of the 3D input body pose is therefore not relevant and we normalize it by subtracting
the mean of all valid body keypoints which is the center of the body ¢,. We experiment
with two different methods to generate correcting offsets:

The full regression method determines the output pose by adding the offsets to the
body center ¢, used for normalization (see Figure 4.8 blue). This forces the network to
reconstruct the full body pose centered at the origin that is then moved to the correct
location by adding the body center point c,,.

The DepthFix method applies the offsets to the corresponding input body keypoints
(see Figure 4.8 yellow). This resembles the method described in Equation 4.10 but
with dynamic offsets that depend on the input pose. Compared to regressing offsets
from the center of the body, DepthFix can make better use of the input pose. Without
occlusions the regressed offsets are small and for some body parts mostly static, so
the neural network does not need to learn to reconstruct the 3D body pose from the
ground up. In case of occlusions the offsets can nevertheless get larger, but they still
originate from their respective input keypoint.

To train the network we use the mean squared error between estimates and ground truth.
However, because both our input data as well as the labels can be incomplete, we mask
the loss of missing keypoints to not penalize the network in training.

4.3.2 Baseline: Multi-View Triangulation

The triangulation-based 3D driver body pose method proposed here has multiple purposes
in this thesis. It serves as a baseline on the Drive&Act 3D driver body pose benchmark
where we also experiment with different multi-view setups based on the cameras of the
Drive&Act dataset (see Figure 3.14a). In addition, this method was used to annotate the
benchmark itself based on manually annotated 2D driver body poses and with additional
reviewing and manual cleaning of the result. It was also the method used to generate
the 3D driver body pose annotations published with the Drive&Act dataset for activity
recognition (see Section 3.5.4). The method is not novel and relies on standard triangula-
tion techniques. However, its application in the interior of a car as well as the following
evaluation is a novel contribution to the field based on our literature review.
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Our method uses the 2D driver body pose of multiple views as input and generates 3D data
by triangulating each keypoint separately. In the following we therefore only present
the process for a single keypoint. The goal of the triangulation is to reconstruct the 3D
keypoint position X based on 2D observations x,, in at least two views v € V given
a calibrated multi-camera system with known projection matrices F,. The challenge is
that the observations are not exact and therefore the lines created by re-projecting the
measurements (x, = B,X) into the 3D scene do not intersect. In addition, the system is
over-constrained with more than two views. We follow the linear triangulation method
described by Hartley et al. [Har04] to solve this problem. They show how to construct an
over-constrained linear equation system of the form AX = 0 where each view contributes
two rows to matrix A by removing their homogeneous scale factor with a cross product
x X (PX) = O:

x(PPTX) - (p'"X) =0

yP¥TX) - (p*'X)=0
x(p*"X) —y(p'"X) =0

where p'T are the rows of P. Only the first two equations are linearly independent re-
sulting in:

3T 1T 17
x1p1 —P:

np —pi'
XpPy — Pp
L yopy! —pET |

The equation system can be solved using Singular Value Decomposition. X is the unit
singular vector corresponding to the smallest singular value. However, while this method
produces satisfactory results in most cases it does not optimize the geometric distance
between the measured points x,, and the re-projection X, of X. We therefore use the
result as a starting point for further nonlinear optimization[Gao12] of X using the sum
of re-projection errors as minimization goal:

EX) =) |xy — %3

vel’

Finally, we discard any triangulation result if its mean re-projection error is above a

threshold.

We repeat this process independently for each keypoint of the body with valid measure-
ments in two or more views.
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4.3.3 Implementation Details

Both depth and triangulation-based 3D driver body pose methods rely on Open-
Pose [Cao018] for 2D driver body pose estimation. The three parts of our approach are
parametrized as follows:

OpenPose is used with its default model providing 25 keypoints. However, we only use
13 keypoints of the upper body depicted in Figure 4.8. OpenPose is trained on color
data and requires three channels as input. We therefore generate three channel images
by replicating the grayscale data. Images of camera IR 1, IR 3 and the Kinect (all
mounted at the A-pillars) must be rotated by 90° so the driver is upright in the image.
Without this transformation OpenPose will not work. The images are unevenly lit. We
therefore test different methods to adapt the brightness. The best results are achieved
by using adaptive histogram equalization (CLAHE) of OpenCV [Bra00] with a limit of
2.

The triangulation-based approach relies on OpenPose results of different combina-
tions of at least two camera views of the Drive&Act dataset. It does not rely on any
parameters except for the filter threshold to discard keypoints with high mean re-
projection error. We choose a threshold value of 20 to limit filtering to large outliers.

DepthFix and its modifications require training. Because of our limited manually anno-
tated data we use the best results of the triangulation method as ground truth for the
Drive&Act dataset and use all sequences not part of the Drive&Act driver body pose
benchmark for training. This approach results in a cross-person evaluation of these
methods. The neural networks are implemented in PyTorch 1.4.0. We use the Adam
optimizer with default parameters and train for 80 epochs using a batch size of 128
and optimizing the mean squared error. The learning rate is multiplied by 0.1 after 30
and 60 epochs. Participants 2 and 3 are used for validation. We test on the Drive&Act
driver body pose benchmark which contains frames of participants 11 to 14.

We test the real-time capabilities of our implementation on a high-end desktop system
(CPU: AMD Ryzen Threadripper 1920X, GPU: nVidia 2080Ti) using CUDA 10.1 and
cuDNN 7.6. We benchmark OpenPose using its default settings as it is the basis of all
methods in this section. The runtime for a single frame is 28.3 ms. All other components
of the system have negligible runtime. The triangulation takes about 1 ms and even the
deep learning-based DepthFix method takes only 1.5ms. The overall frame rate of all
methods therefore depends on the speed of OpenPose and the number of necessary cam-
eras. The best depth image-based method achieves 33 fps and can utilize the full frame
rate of the Kinect. A two-camera triangulation-based system achieves 17 fps and a four-
camera system 8.7 fps. All methods are therefore usable for many use cases needing soft
real-time, like our activity recognition methods. There are other 2D body pose detectors
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running at higher frame rates but often with lower accuracy. All presented methods work
with any generic 2D pose detector and can make use of any advancements in the area.

4.4 Evaluation on the Drive&Act Driver Body Pose
Benchmark

All methods presented in this chapter were evaluated on the Drive&Act driver body pose
benchmark. We first evaluate the performance of OpenPose on the different views of
Drive&Act for 2D body pose estimation, followed by an analysis of the random decision
forest-based method and DepthFix in comparison to the triangulation-based baseline ap-
proach. The used performance metrics are presented in Section 3.5.7. The dataset is based
on a multi-view camera system. We conduct the evaluation in the camera coordinate
frame of the Kinect so the x-axis and y-axis correspond to the image axes. The z-axis cor-
responds to the depth values of the depth image and therefore highlights the challenges
for depth image-based 3D driver body pose estimation methods.

4.4.1 OpenPose Performance for 2D Driver Body Pose Estimation

Table 4.3 shows the results for 2D driver body pose estimation with OpenPose. Note, that
the method was trained on the MS-Coco dataset and not on data of the interior of the car.
Overall, the performance did not degrade compared to the results on the MS Coco dataset.
This is unexpected because of the domain shift from color images to near-infrared images
as well as the shift to a different environment. The reason could be that the driver fills most
of the image in our application making the detection less challenging. Nevertheless, there
are large differences in quality between the camera views. The results of the camera at the
A-pillar of the driver side are worst. The reason might be that this camera is the closest
and exhibits the most distorted view of the driver. In addition, the arms of the driver often
occlude the hips making their detection more challenging. The cameras on the co-driver
side work best, likely because their view is often less obstructed. However, if the co-
driver is present additional occlusion could degrade the results as previously discussed.
The results on the Kinect data are by far the best because the images are the most evenly lit
with the highest contrast compared to all other camera views of the dataset. In addition,
the Kinect has a narrower field of view, so some challenging poses are partially out of
frame and contribute less to the measured performance.
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Figure 4.9: Random decision forest-based performance on the Drive&Act driver body pose benchmark. (c)
Keypoint error distribution of the x-axis and y-axis reprojected onto the image. Bright colors
represent 50 % of the samples with the smallest Euclidean distance to the ground truth. The
reference ground truth body pose is depicted in white.

4.4.2 Random Decision Forests Trained on Synthetic Data

We cannot fully evaluate our approach based on random decision forest on the dataset
because the method does not yield results for the eye and nose keypoints. These features
are too small to be captured with our body part labeling approach. We nevertheless test its

Table 4.3: OKS scores of OpenPose for 2D driver body pose detection on different camera views.

Configuration |APsy_gs ARy APs ARsy_o5 AR5y AR;s
IR 1 (Driver A-pillar) 619 89.1 704 727 93.3 824
IR 2 (Central Mirror) 61.7 86.9 70.5 732 92.8 82.7
IR 3 (Co-driver A-pillar) 75.7 96.8 88.5 83.1 985 93.3
Kinect (Co-driver A-pillar)| 81.9 98.6 93.6 87.6 99.4 96.2
All cameras 69.1 928 79.5 79.2 96 88.7
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performance on the remaining keypoints of the dataset. Accumulated performance met-
rics (MPJPE, PCK, availability) are therefore not comparable to the results of the other
methods. The configuration tested on the benchmark is trained on the synthetic data-
set. This configuration was also used for 3D driver body pose estimation on the InCarln
activity dataset.

Table 4.4 shows the results in comparison to all other approaches presented in this chapter.
While the method achieved a mean per joint position error of just 57.9 mm on the Driver
Depth Pose dataset the error increases to 172.4 mm on the new benchmark. There are
multiple reasons for this. The new benchmark tests the distance to the true keypoint
position instead of the keypoint position on the surface of the body. Figure 4.9a highlights
this. It depicts the error on the z-axis which is based on the values in the depth image.
Our method based on random decision forests determines keypoints on the surface of the
body, compared to the ground truth the results are therefore shifted closer to the camera
causing a systematic increase of the overall error. The direct method that uses OpenPose
results and reconstructs 3D keypoints via lookup in the depth image (see Equation 4.9)
shows the same behavior with, for some keypoints, similar mean deviations.

The biggest drawback of the method is its need for a segmentation of the driver which fails
often on the dataset for various reasons. While the Kinect produces less noise compared
to the Melexis sensor used to record the Driver Depth Pose dataset, its depth values of
surfaces shift if other surfaces come close, for example if the left arm of the driver gets
close to the driver door. In addition, the large center screen acts as a mirror causing
additional shifts in the depth image. Both sensor artifacts cause errors when creating the
segmentation of the driver using the fixed background model. Finally, some frames of the
dataset depict the driver interacting with large objects, like a newspaper, which are then
part of the foreground. However, the random decision forest does not have a separate
label for this, so these areas are incorrectly labeled as a body part, degrading the result.
This is also reflected in Figure 4.9c where, for example, the left elbow is not well clustered
but spread out because the segmentation includes the driver door in many cases.

However, while the performance is much worse, compared to the results from the Driver
Depth Pose dataset, this cannot be attributed to the synthetic training data for body part
labeling. If the segmentation works, the body parts are also well labeled (see Figure 4.9b).

4.4.3 DepthFix Performance

This section discusses the performance of the DepthFix method in comparison to the
triangulation-based baseline approach. For triangulation we test different multi-view se-
tups based on the four cameras at the A-pillar on the driver side (IR 1), central mirror (IR 2)
and A-pillar on the co-driver side (IR 3 and Kinect). This includes many two-camera setups
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Table 4.4: Overall results for 3D driver body pose estimation. Decision Forest results are incomplete. Val-
ues marked italic cannot be compared directly. Bold values mark the best result for multi-view
and depth image-based results. The columns on the left show statistics per keypoint while the
columns on the right show statistics per body pose.

Configuration |lEye rEye nose 1Shoulder rShoulder neck IElbow rElbow IWrist rWrist IHip rHip midHip |mpjpe PCK;_;5 avail.
mpjpe [mm] [(mm] [%]  [%]

Multi-View

IR3 + Kinect 37 34 37 148 76 93 197 65 128 55 165 154 142 | 1033 47.7 93.4
1R23 19 17 23 54 38 68 74 24 66 31 122 80 92 54.5 59.7 85.1
1IR12 10 12 16 28 41 49 40 32 29 31 98 116 93 45.3 59.7 77.2
1IR13 14 15 19 34 28 51 37 32 29 27 86 72 70 40.4 62.5 81.3
IR123 + Kinect | 10 13 15 30 25 56 38 23 33 22 81 76 68 37.4 66.8 85.3
1R123 9 12 15 26 23 53 37 21 28 21 82 76 68 34.9 64.7 80.2
Depth Image

Decision Forest™| - - - 129 79 117 210 107 219 133 326 240 163 172.4 23.8 97.6
Direct 34 30 25 103 52 120 158 54 104 38 234 138 205 | 100.2 48.9 97.1
Fixed Offset 25 18 23 78 35 78 132 39 103 39 121 100 93 68.8 60.7 97.1
Full Regression | 19 21 23 46 33 60 63 46 71 47 91 86 76 55.1 64.1 97.1
DepthFix 17 18 22 45 32 59 60 41 66 42 90 87 75 52.8 65.2 97.1

testing the impact of different camera baselines and viewpoints. In addition, we test the
combination of all three near-infrared cameras (IR 1, 2, 3). This was the setup used to gen-
erate automated 3D driver body pose labels for the Drive&Act dataset. For DepthFix we
compare to the different simpler approaches to generate 3D driver body pose data with-
out additional machine learning using direct lookup (see Equation 4.9) or fixed offsets and
the deep learning based alternative, regressing the whole 3D body pose (full regression).

Table 4.4 shows the results. The accuracy of keypoints on the left side of the body as well
as the hips is worse compared to the right side. This is caused by the worse visibility of
these keypoints because of self-occlusion and occlusion by the interior of the car. This
effect is less pronounced if the camera on the left side of the body (IR 1) is part of the setup
because it provides unobstructed data even if the left side is occluded in most other views.

For the triangulation-based methods the location and number of cameras makes a large
difference. The combination of cameras on the co-driver side (IR 3 + Kinect) achieves the
worst accuracy, however with the highest availability. The availability can be attributed
to the good performance of OpenPose on these views. The low accuracy is caused by the
small baseline compared to all other tested setups combined with the largest distance of
these sensors to the driver. This results in large deviations of the triangulated result even
for small errors of the OpenPose data. The results also show the importance of observing
the driver from different sides to achieve high accuracy. Including just cameras at the
center mirror and co-driver A-pillar (IR 2,3) works worse than setups including the camera
at the A-pillar on the driver side (IR 1,2). The best performing two camera setup uses the
cameras on both A-pillars (IR 1, 3) combining views from both sides of the driver with the
widest possible baseline. The most accurate triangulation-based setup in terms of mean
per joint position error (MPJPE) combines all three frontal IR cameras. However, this is
a trade-off as the setup with all four cameras achieves better performance in terms of the
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percentage of correct keypoints metric (PCK) which considers both the position error as
well as the availability of keypoints.

The results of the depth image-based methods follow the reasoning presented while intro-
ducing DepthFix. The direct approach performs worst, consistently having larger errors
than the method using fixed offsets to move surface keypoints to their true position. Ap-
plying the two deep learning-based methods further improves the results. As expected,
regressing the full 3D body pose (full regression) performs worse than regressing shorter
offsets for each individual input keypoint with the DepthFix approach. However, com-
pared to the method using fixed offsets the deep learning-based methods improve results
mainly on keypoints that are often occluded, like the hips and the left side of the body.
This highlights the effectiveness of these methods to deal with occlusions. The overall
performance of DepthFix surpasses the triangulation-based approaches using just two
cameras and reaches the quality of the best triangulation setups according to the PCK
metric. However, there are trade-offs: While the best triangulation-based method pro-
duces keypoints that are more accurate (MPJPE) DepthFix achieves higher availability and
detects overall more keypoints with less accuracy (PCK).

Figure 4.10a further investigates the accuracy of the best triangulation method compared
to the direct depth method and DepthFix. The graph depicts the spread of errors along
the z-axis which corresponds to the data in the depth image. It highlights the chal-
lenges for depth image-based driver body pose estimation methods (see Section 4.1). The
triangulation-based method (IR 1, 2, 3) produces overall small errors that are centered
around zero, indicating no bias in any direction on this axis. The hips are the exception
and are on average estimated five centimeters closer to the camera. Keypoints on the
left and right side of the body perform similarly which highlights the robustness of the
multi-view system to occlusions. The depth image-based methods on the other hand ex-
hibit larger errors especially for the left side of the body which is occluded more often
from the viewpoint of the Kinect. The direct depth estimation method uses the values of
the depth image directly in combination with the OpenPose results. It therefore produces
keypoints on the surface of the body which biases the results towards the camera. In
addition, the method produces large errors for occluded keypoints as shown by the large
spread of values for keypoints on the left side of the body and the hips. The DepthFix
method uses the result of the direct method as input and produces corrected results. The
graph shows that DepthFix can correct the general bias and can estimate keypoint that are
located close to their true position instead of on the surface measured by the depth image.
In addition, the approach can strongly reduce the spread of errors for the left side of the
body indicating that the method is able to fix large outliers caused by occlusions. The
mean error of the DepthFix method is comparable to the triangulation-based approach,
including the offset of the hip keypoints. This indicates that the DepthFix methods has
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Figure 4.10: DepthFix performance on the Drive&Act driver body pose benchmark.

learned these biases from the triangulation method because we used its result as ground
truth to train the model. The bias therefore originates from OpenPose. We visualize this
effect in Figure 4.11. It shows the distribution of errors on the x-axis and y-axis projected
on the image of the Kinect. Compared to the ground truth, OpenPose, as well as all our
methods that rely on it, estimate the hip keypoints biased towards the knees of the driver.
This position is also closer to the camera which is why the error on the z-axis discussed be-
fore showed the same effect. Overall, the distribution of errors is visually similar for both
triangulation and DepthFix approaches. This is expected as both rely mainly on OpenPose
to determine the x and y-coordinates in this camera view. However, the spread of errors
of DepthFix is worse for the left side of the body because of the higher level of occlusions
from the point of view of the Kinect. This does not affect the triangulation-based baseline
because of the camera at the A-pillar on the driver side.
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(a) NIR123 triangulation (b) DepthFix

Figure 4.11: x/y-error distribution of the most accurate triangulation setup compared to DepthFix.

Figure 4.10b shows the accuracy of DepthFix for different activities of the dataset. Over-
all, most activities have a mean per joint position error (MPJPE) of around 5 cm which
corresponds to the overall result on the dataset. The activities exiting car and entering car
show the largest errors. However, in these cases the driver is still (partially) outside of
the car and severely occluded by themselves or the interior. Other activities with lower
accuracy involve either large body movements (e.g., fastening seat belt), occluding objects
(e.g., putting laptop into backpack) or both (e.g., taking of jacket).

Figure 4.12 shows example results of the DepthFix approach. The left image shows the
view of the Kinect that was used to generate the result. The right image shows a projec-
tion of the 3D result onto the view of the camera at the A-pillar of the driver (IR 1). The
x-axis of this view closely resembles the z-axis of the Kinect camera coordinate system. It
highlights the correcting offsets estimated by DepthFix (orange). The left image demon-
strates the ability of OpenPose to correctly estimate even occluded keypoints like the left
arm, left shoulder or hips. It also shows that DepthFix learned to only correct the values
of the x-axis and y-axis by a small amount and to rely mostly on the good accuracy of
the OpenPose-based input data. The right images show the ability of DepthFix to correct
the z-axis that is based on the data from the depth image. The method can move visible
keypoints from the surface of the body to their true position (short offsets) and it can
correct the position of occluded keypoints (long offsets).
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(c) Reading Newspaper

Figure 4.12: Results of DepthFix (red) for different actions. Left column shows the view of the Kinect sensor
used for detection. Right column shows the re-projection of the result onto the camera image
of IR 3 highlighting the correcting offsets of DepthFix (orange) starting from the direct pose
input (green).
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4.5 Summary

This chapter focused on 3D driver body pose estimation from depth images with real-time
capable approaches. Using depth images creates unique challenges that we explored in
our work: The depth image depicts only the surface of the driver from the point of view
of the camera while keypoints are located inside of the body and it does not contain valid
data for occluded keypoints. Furthermore, in the automotive context there were no large
datasets to train methods based on machine learning.

Our first approach focused on real-time capability and the lack of training data. At that
time real-time performance of deep learning-based methods was still hard to achieve.
Therefore, the method relied on a segmentation of the driver and dense body part label-
ing via random decision forests. To train the method we relied on synthetic data using
rendered depth images. We could demonstrate good performance of this approach on the
Driver Depth Pose dataset, which was our first benchmark dataset for the task, achiev-
ing a mean per joint position error of 57.9 mm. However, on the Drive&Act 3D driver
body pose benchmark, which we constructed to highlight the challenges for depth image-
based approaches, our method only achieved an error of 172.4 mm. This is the result of
the algorithm frequently failing to achieve the necessary segmentation of the driver due
to complex body poses and the use of objects creating occlusions.

Our second approach focused on handling these cases with a regression-based method us-
ing deep learning. Unfortunately this also increased the demand for large-scale datasets.
To address this issue we relied on a novel split of 2D body pose estimation followed by
separate 3D keypoint regression guided by the depth image. This enabled us to rely on
advances in 2D body pose estimation using large scale datasets from other domains. We
used the 2D body pose result combined with the depth image to compute an initial 3D
body pose of the driver. However, this pose is affected by different measuring artifacts
of depth images. We used this result as input to a neural network to regress correcting
offsets (hence the name “DepthFix”). It can be used in combination with any depth cam-
era and any 2D body pose detector to create accurate 3D body pose results. In addition to
our depth-based contributions we also created a baseline using multi-view triangulation.

Our evaluation on the Drive&Act driver body pose benchmark showed that the method
based on triangulation could achieve a mean per joint position error of 34.9 mm while
DepthFix achieved 52.9 mm but with higher availability of the keypoints. Compared to
our previous approach, our second method could achieve better results with less limi-
tations on a more complex dataset. We could also demonstrate its robustness to partial
occlusion which was one of our design goals. All three methods presented in this chapter
were used to create 3D driver body poses for our activity recognition datasets to evaluate
the methods presented in the next chapter.
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Driver activity recognition is the final goal of this thesis. Our methods rely on the datasets
presented in Chapter 3 as well as the 3D driver body pose estimation methods presented in
the last chapter. Compared to related approaches for 3D human body pose-based activity
recognition our methods expand the input to a complex interior state model of the car
including interior elements, like the steering wheel, and 3D object locations in addition
to the 3D body pose of the driver (see Figure 5.1).

We investigate one central paradigm with all our methods: We assume that objects as
well as interior elements are more relevant if their distance to any part of the driver
is low. For example, this is the case when driving a car manually holding the steering
wheel (i.e., interacting with the interior), or while drinking out of a bottle (i.e., interacting
with an object). We focus on modeling this relationship and testing its influence on the
performance of 3D human body pose-based activity recognition methods.

Our approaches build on top of each other. We first combine the 3D body pose of the
driver with the location of interior elements to detect interactions with the interior (e.g.,
hands on wheel detection). We then use the same concept for activity recognition with
recurrent networks. Finally, we cast the full 3D interior state model, including interior
elements, objects as well as the body pose of the driver, into a spatio-temporal graph for
graph convolution-based activity recognition.

(a) Activity recognition input (b) Reference Camera Image

Figure 5.1: (a) Interior state used as input for our activity recognition systems with the 3D body pose of
the driver (green), object positions (orange) and interior elements (gray). (b) Reference camera
image not part of the input.
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5.1 Interior Interaction Detection

The purpose of our method for detecting interaction with the interior was to test the gen-
eral concept of this chapter regarding the usefulness of modeling the distance of drivers
to their surroundings (i.e., the interior elements in this experiment). The method relies on
the data from our pilot study on interior interaction detection in the InCarln project (see
Section 3.4.2). This section is based on our publication at the International Conference on
Intelligent Transportation Systems (ITSC) in 2017 [Mar17a] © IEEE, 2017.

5.1.1 Method

The interior state our method relies on includes the 3D driver body pose as well as the
interior elements the driver interacts with in the InCarln interaction dataset. These in-
terior elements are modeled as geometric primitives. The dataset includes activities like
grasping the steering wheel or reaching to the glove box.

Before using machine learning methods to detect complex activities in the following chap-
ters, this section highlights the power of our input representation using an analytical ap-
proach. It detects the interaction with interior elements by thresholding the distance of
keypoints of the driver’s body to interior elements of interest.

To achieve this, we define a distance-based feature matrix D that represents the Euclidean
distance from the position p of all body keypoint k € K of the driver to the surface s of
all interior elements i € I of interest:

Dy = [d(p, s;)] (5.1)

The distance function d() determines the signed Euclidean distance from the position of
a keypoint to the closest surface of interior elements. Depending on the type of primitive
representing the interior element (e.g., cube vs. cylinder), the distance function changes
accordingly. The result is negative if a keypoint lies inside of the volume.

Figure 5.2a depicts a sample of the distance feature for the left hand of the driver.

To determine if keypoint k interacts with an element we threshold feature D with a user
defined threshold ¢;,,serqction:

M(k) = 1 ( k,i lnteractzon)
no interaction, other

where M (k) is the result of this thresholding operation for keypoint k.
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(a) Distance Feature (b) Hand-tip estimation

Figure 5.2: (a) Depiction of the distance feature for the left hand-tip. The left hand grabs the handle (dis-
tance: —0.1). (b) Estimation of hand-tip keypoints (orange) as points furthest away from the
lower arm within the cluster of the wrist.

The result is the element the keypoint interacts with if there is exactly one interior element
with a distance smaller than f;,erqcrion to this keypoint. If the distance to all interior
elements is greater than the threshold there is no interaction. A distance smaller than
the threshold for more than one element indicates overlapping regions making the result
ambiguous. This is also classified as no interaction. With this approach we can determine
the element the driver interacts with for each keypoint individually. We can, for example,
differentiate between an interaction with the left or right hand or both hands.

Our approach relies solely on the distance between the driver and interior elements. The
hand pose is not part of the input. Therefore, the method cannot discern between be-
ing close to the area or interacting with the area (e.g., hand close to steering wheel vs.
grasping it). Detecting the hand pose or even discrete states of the hand (e.g., grasping,
pointing) is outside of the scope of this thesis. In addition, our 3D driver body pose meth-
ods only determine the position of the wrist while interactions with the surroundings
usually involves the hands or fingers. Therefore, we make use of the segmentation and
body part labels of our approach based on random decision forests to infer two additional
keypoints on the hands closer to the location where the interaction takes place. We call
these keypoints hand-tips. To infer their position, we combine the driver body pose result
with an additional analysis of the clusters used to infer the wrist positions. We determine
the direction from elbow to wrist keypoint and then compute the point of the wrist cluster
that is furthest away from the wrist keypoint in this direction (see Figure 5.2b orange).
This results in two additional keypoints that are located on the hand or fingers closer to
where the driver interacts with interior elements or objects. However, these keypoints
do not describe any specific point on the hand because their position changes depending
on the hand pose and accuracy of the segmentation.
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Figure 5.3: Performance of the interior interaction method for the left and right hand.

5.1.2 Evaluation on the InCarIn Interior Interaction Dataset

To evaluate our interior interaction method, we use the InCarln Interior Interaction data-
set (see Section 3.4.2) and its model of interior elements. We determine the body pose
using our decision forest-based method (see Section 4.2) trained on synthetic data and
extended with our approach for hand-tip estimation. We are only interested in the inter-
action of the hand-tips with the interior elements drivers interacted with in the dataset.
Accordingly, we determine the distance feature only for hand-tip keypoints as well as
the interior elements listed in Figure 5.3. We set the threshold for interaction detection
tinteraction 10 5 cm which was the average keypoint position error of the body pose esti-
mator on the Driver Depth Pose dataset.

Figure 5.3 shows the results for both hands. Overall, the method achieves a balanced
accuracy score of 81.5 %. The performance of the system for the left hand is 1.3 p.p. (per-
centage points) higher while the score for the right hand is 0.7 p.p. lower. However, there
are fewer regions the driver can reach with the left hand instead of the right hand because
most controls are on the right side of the driver. All frames where the hand-tip could not
be detected or where the distance to all elements is higher than the chosen threshold are
labeled as no interaction. In addition, we assume that interaction is mutually exclusive
so frames where multiple interior elements are identified for interaction are also labeled
as no interaction. This is therefore the class that is most often confused with other areas
of the interior. However, the amount of confusion with the class no interaction depends
directly on the chosen threshold. For a threshold of zero or even a negative threshold
(hand-tip must be inside of the interior element) most frames of the dataset would be
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classified as no interaction. For small thresholds, the method is therefore unlikely to con-
fuse interactions with elements that are far from each other if the body pose is detected
correctly. This holds true for most areas as shown in the confusion matrices. Areas that
are close to each other can be confused more easily depending on the accuracy of the
body pose detector and the chosen threshold. This is for example the case for the areas
gear lever and infotainment of the right hand because the gear lever in the VW-T5 test
vehicle is part of the dashboard and integrated in the infotainment area.

[Ohn13] implemented a similar application using a color camera but classifying only a
small set of regions like the steering wheel, gear lever and infotainment area. They used
a camera at the ceiling with an optimal view of the dashboard, compared to the side-view
of our setup. Their method relies on the definition of regions of interest in the image
and training of support vector machines (SVM) for each region to detect the presence
of one or both hands. While it is hard to compare the methods without an evaluation
on the same data, our approach reaches similar performance on more regions that we
can freely define without a training process. Furthermore, the pose estimation algorithm
that our system is based on is not limited to this application. In addition, our method for
interior interaction detection adds very little processing time (<1 ms) to the base system
compared to an approach based on machine learning.

The results show that our method works well in general and that the distance from the
driver to the surroundings is, at least in the tested scenario, very distinctive. In addi-
tion, the approach is easily extendable to additional body parts and areas of interest by
changing the configuration and extending the list of interior elements. Distance closely
correlates with the intent to interact with interior elements. For example, reaching for
the infotainment area or the co-driver seat indicates intent to interact with objects in that
area. However, there are other regions where monitoring the distance might not indicate
an immediate activity. Some people, for example, rest their hand on or near the gear
lever without the intention to use it. Similarly, the hands can be close to the steering
wheel while resting on the legs of the driver. Therefore, an optical hands-on wheel de-
tection system that should replace current sensor based methods would need to detect if
the driver is grasping the steering wheel. However, this would increase the complexity
and necessary computing power by a large margin.
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5.2 Three-Stream Recurrent Driver Activity
Recognition

Our method for detecting interaction between the driver and interior elements demon-
strated that our concept of relying on the distance from 3D driver body keypoints to
surround elements works at least for activities with a simple correlation between these
elements. We therefore apply the same concept for detecting more complex secondary
activities like eating, drinking, or talking on the phone. To this end we take the distance
feature, that was at the core of our last approach (see Equation 5.1), and investigate its use-
fulness as input for a deep learning-based driver activity recognition method. While our
first method relied on data from a single frame, we also consider the temporal sequence
of many complex activities by using recurrent neural networks for our approach.

In the following we first give a brief overview of recurrent neural networks in general
before describing our approach for driver activity recognition including 3D interior ele-
ments as input feature. The following sections are based on our publication at the Inter-
national Vehicles Symposium (IV) in 2018 [Mar18b] © IEEE, 2018.

5.2.1 Recurrent Networks

Time is an important factor in detecting and disambiguating activities. The Drive&Act
dataset, for example, includes fine-grained labels like opening and closing a bottle. Con-
sidering only a single point in time these activities can look the same, while they are
certainly different when observing the activity for the whole duration. Recurrent neural
networks are designed to analyze such time series data.

A basic recurrent neural network layer can be defined in the following way:
h; = f(Ux; +Vh;_1 +b) (5.3)

Where x; is the input vector at time ¢, U and V are weight matrices, b is a bias vector,
f is a nonlinear function and h; is the output of the recurrent network layer at time ¢.
The output of the network in the current time step therefore depends both on the current
input and on the output of the network in the last time step.

These networks are often used with a fixed time horizon n of at most a few hundred
steps. In the first time step of an evaluation t = 0 the previous output h_; is unknown
and is often initialized with zero. When training such a network the gradient needs to be
backpropagated through all n time steps. This is the main drawback of this formulation
because it requires the gradient to be retained through all steps while flowing through
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iy = o(W yixy + by + W opihy_y + bpy)
Ji=0W rx; +big + Wpshi_y + bpy)
g = tanh(W joX; + bjg + W pghi_1 + bpg)
0y = 0(W ioX; + bio + W pohy—1 + bpo)
=[O 1+ii0g

h; = o; © tanh(c;)

Figure 5.4: LSTM cell definition for time step £. i, f, 0 are the input, forget and output gates of the cell.
g is the cell update function. c is the state of the cell and h is the hidden output state. X is the
input feature vector. W and b are the trainable weights and biases. o is the sigmoid function
and © indicates element-wise multiplication. Dashed lines indicate recurrent connections.

all parts of each layer. This can limit the length of the input sequence and can lead to
gradients that either vanish or blow-up making training unstable.

For this reason, most activity recognition methods that rely on recurrent neural networks
use layers with long short term memory cells (LSTM) because they alleviate these chal-
lenges [Hoc97]. They achieve this by introducing a memory cell with state vector ¢ and
by moderating the flow of information from and to this memory cell using gates. Each
gate and the memory cell itself are modeled as feed forward layers. Figure 5.4 shows the
definition of an LSTM cell according to Hochreiter et al. [Hoc97] and according to the
implementation in pytorch’, used throughout this thesis. This design allows the gradient
to be retained in long sequences because the recurrency of the state vector ¢;_; acts as
a shortcut with only a few primitive operations that do not degrade the gradient com-
pared to the simple formulation. All three gates (i, f, 0) as well as the cell state update
function (g) depend on the current feature vector x; as well as the previous hidden state
h;_;. Each gate determines weights that are used for different functions within the LSTM
cell. The input gate i determines the importance of the input feature x; to moderate the
update of the cell state. The forget gate f determines the importance of the last cell state
c;_1 and allows the cell to forget data that is no longer relevant. Finally, the output gate
o0 determines the importance of the current cell state ¢; and regulates the weight of the
cell output h; at time ¢.

Like other neural network layers, recurrent units can be stacked into multi-layer net-
works. The hidden state vector h; then acts as the input for each time step of the fol-
lowing layer.

! https://pytorch.org/docs/1.4.0/nn.html?highlight=Istm#torch.nn.LSTM, accessed: July 19, 2022
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Figure 5.5: Overview of our Three-Stream approach for driver activity recognition.

5.2.2 Three-Stream Recurrent Neural Network

Our 3D interior state model, including the 3D body pose of the driver and interior el-
ements, is a low dimensional representation of the spatial state of the car’s interior.
Changes of this interior state model over time describe the temporal evolution of activi-
ties performed by the driver. While recurrent neural networks are well suited to model
the temporal evolution, exploiting the spatial relationship between keypoints of the hu-
man body as well as other elements of our state model is difficult as we showed in our
discussion of related work.

Wang et al. [Wan17] tackled this challenge using recurrent networks in two streams. One
stream focused on the temporal evolution of the input while the second stream focused on
the spatial relationship between keypoints of the human body. We extend this framework
with an additional third stream that integrates 3D interior elements (see Figure 5.5). We
call this stream the context stream. It describes the movements of the driver in context
to interior elements. This information should be helpful for activity recognition because
interaction with the surrounding environment is part of many activities. Our previous ex-
periment for interior interaction detection supports this thesis. For example, if the driver
has both hands on the steering wheel, they cannot at the same time use a smartphone
or drink out of a bottle.

The three streams, temporal, spatial, and context, are trained separately and merged in a
late fusion approach. Each stream is a separate network with the same architecture con-
sisting of two LSTM layers followed by a layer for classification with softmax activation.
In the following we present the input of each stream in detail as well as the method to
combine results of different streams.
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The temporal stream models the temporal dynamics within the sequences of driver
body poses. It encodes the 3D keypoints k € K of the driver by concatenating them
to form a stacked input vector of size 3K for each time step.

The spatial stream models the spatial dynamics within the human body. The idea be-
hind this approach is that the human body consists of rigid limbs and joints that move
in a fixed relationship. Depending on the performed action this results in different
complex patterns. The spatial stream extracts these patterns by traversing the human
body along the limbs instead of traversing the temporal domain (see Figure 5.6). Simi-
lar to Liu et al. [Liu16] we implement this using depth-first search on the kinematic tree
of the human body starting at the neck. This results in a sequence of body keypoints
where inner keypoints (e.g., elbows, shoulders) are visited multiple times. In this way
the tree structure of the human body can be unrolled into a continuous chain without
breaking the relationship between neighboring keypoints. The number of keypoints
and the details of the traversal depend on the dataset. The number of steps of this
stream does not depend on the temporal dimension but instead on the length of the
traversal path on the body pose of the driver. The input of each step is the position of a
single keypoint of the body. To still represent the temporal dimension, we concatenate
the position of the current keypoint of T time steps forming an input vector of size
3T. The temporal window of the spatial stream is equal or smaller than the temporal
sequence of each sample, processed by the other streams.

The context stream models the dynamics between the keypoints of the human body
and interior elements. This is the main contribution of our approach. It relies on the
distance feature introduced for interior interaction detection in the last section (see
Equation 5.1). The context stream allows the approach to interpret the movements of
the driver within the context of the surrounding interior elements. For each time step
the method determines the distance feature of K keypoints and I interior elements
resulting an an input vector of size K * I. This feature can get large for all keypoints
and interior elements compared to the input of the other streams. In addition, the
distance of torso keypoints to interior elements is redundant and static most of the
time because of the fixed seating position. For this reason, only a subset of the driver
body keypoints are used to determine the distance feature.

Combined models use late fusion to aggregate the results of two or more streams via
weighted averaging. We determine these weights by maximizing the performance
of the combined model on the validation set. The combination of the temporal and
the spatial stream represents the method of Wang et al. [Wan17]. We call this model
Two-Stream in the following. The combination of the temporal and the context stream
as well as the combination of all three streams is our contribution. We call the network
combining all streams Three-Stream in the following.
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(a) InCarln Activity (b) Drive&Act

Figure 5.6: Depiction of the body keypoints used by the method for both datasets. The temporal stream
uses the keypoint positions stacked per time step. The spatial stream traverses the body pose
(blue arrows) starting at the neck (blue). The interior stream uses distances from the red key-
points to interior elements (not shown).

5.2.3 Implementation Details

The approach is implemented in PyTorch 1.5.0 with CUDA 10.1 and cuDNN 7.6.5 using
Ray 1.1.0 [Lia18] as distributed training framework. Each stream is trained separately
using the Adam optimizer [Kin14] with default parameters and categorical cross entropy
loss. Models are trained for 100 epochs using a batch size of 128 samples and 50 % Dropout
after the first LSTM layer. Different streams are combined using weighted averaging. We
determine the weights on the validation set using grid search.

The hyper-parameters of the approach are summarized in Table 5.1. They were deter-
mined using random search of the parameter space with Asynchronous Hyper Band
Scheduling [Li20]. The training parameters were optimized on the InCarln activity data-
set and were reused for the Drive&Act dataset. The parameters of each stream were
optimized separately for both datasets. For both datasets the number of samples varies
greatly between classes, we therefore use random sampling to generate each training
batch over-sampling classes with few samples to create an equal distribution between
classes for training.

We normalize the skeleton data used as input for the temporal and spatial stream by sub-
tracting the average of all valid keypoints. The common approach would be to subtract
a dedicated keypoint, like the neck. However, if this keypoint is not available, normal-
ization would not be possible. Our approach is therefore more robust. To determine the
distances to interior elements, we use the body pose without normalization. The dis-
tance feature is not normalized further but because of the confined space its value range
is close to zero.
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Table 5.1: Hyper-parameters of the Three-Stream activity recogniton method for both activity datasets.

Parameters InCarln Activity Drive&Act
Dataset # Body Keypoints 10 13

Sample time steps 300 90
Temporal Stream | LSTM Size 256 512
Spatial Stream LSTM Size 256 512

Time Window 51 90
Context Stream LSTM Size 256 512

# Interior Elements 8 14

# Body Keypoints 3 (hand-tips, head) 3 (wrists, nose)

The body pose annotations differ between the two datasets which has consequences for
the traversal scheme of the spatial stream (see Figure 5.6). The annotations for the InCarIn
activity dataset were created using our approach based on random decision forests trained
on synthetic data. As the evaluation of this method showed, the hips are less accurate
compared to other keypoints. We therefore leave them out for activity recognition on
this dataset to reduce the noise of the input data. For Drive&Act the main body pose
annotations were created using triangulation of the three frontal NIR cameras (on both
A-pillars and the central mirror). As these results are much more accurate compared to
results of our method based on random decision forests, we use them all as input.

To determine the distance feature of the context stream we select only a small subset of
body keypoints and interior elements of the interior state model. The three keypoints
selected for both datasets serve the same purpose. They include the hands, because they
are the most important for most activities, and the position of the head as an indicator of
whole-body movement. For example, if the driver leans forward or to the side this joint
moves the most in relationship to interior elements. The number of interior elements
is different for each dataset. We choose all elements provided with the InCarln activity
dataset. It was created for the purpose of detecting interactions with the interior. As such
all regions are relevant for activity detection as well. For Drive&Act we choose a subset
of interior elements consisting of storage areas, seats, and controls. There are additional
areas, like the foot well, that we assume are less relevant and left out.

We test the runtime performance of the configuration used for Drive&Act on notebook
hardware (Intel i7-9750H CPU @ 2.60GHz; GeForce GTX 1650 Max-Q) and achieve 44 fps
for the temporal stream, 109 fps for the spatial stream and 42 fps for the context stream.
Running all streams in sequence on the same graphics card results in 18 fps. Because most
activities take some time the runtime is good enough for most real world applications.
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5.2.4 Evaluation on the InCarIn Activity Dataset

We first evaluate our approach on the InCarln activity dataset. It was the benchmarking
dataset for publishing the method [Mar18b]. In addition, we also used this approach
as baseline for publishing the Drive&Act dataset [Mar19]. We discuss these results in
Section 5.4.2.

Figure 5.7a shows a comparison of the performance of each stream and stream combi-
nation. We determine both F1-Scores and balanced accuracy to be consistent with our
first publication, which used F1-Scores, as well as with the Drive&Act benchmark, which
uses the balanced accuracy metric. We present the InCarln activity dataset in detail in
Section 3.4. The different metrics are discussed in Section 3.5.7.

Comparing single stream performance the spatial stream, traversing the body pose, per-
forms worst while the temporal stream, processing stacked keypoints of the driver’s body
for each time step, works best, with an F1-Score difference of 30.2 p.p. (percentage points).
The context stream also performs worse than the temporal stream, however, the differ-
ence is only 3 p.p. (F1-Score). This indicates that keypoint positions evaluated over time
are still the best descriptor for activity recognition, out of the three tested inputs. The dis-
tance feature introduced in this chapter mixes information about the driver’s movement
with the location of interior elements. While this reduces the performance compared to
the temporal stream, it is a much better representation for activity recognition when com-
pared to the traversal of the body pose by the spatial stream. Comparing the performance
of each stream separately is only a first indicator of the combined stream performance be-
cause it does not show if streams provide complementary results.

Comparing the results of stream late fusion with the temporal stream, the performance
increases overall. The combination of the temporal and spatial stream improves the re-
sults by 2.6 p.p. (F1-Score) while the combination of the temporal stream with the context
stream improves results by 3.4 p.p.. Combining all three streams improves the F1-Score
by 4.4 p.p.. The results indicate that the context stream provides overall more additional
information compared to the spatial stream. Therefore, our addition of 3D interior ele-
ments proves to be useful for activity recognition.

The balanced accuracy metric (bal. acc.) shows the same trend with regards to the per-
formance of single streams. For the tested stream combinations the spatial stream only
improves performance when combined with the temporal stream alone. The combina-
tion including just the context stream overall perform best. Combining all three streams
performs worse than combining just the context and temporal streams. Balanced accu-
racy focuses on the per class recall while the F1-Score is the harmonic mean of precision
and recall. The difference between the metrics therefore indicates that the combination
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Figure 5.7: Results of our Three-Stream model on the InCarln activity dataset. Best results marked bold.

of the temporal and context stream can detect more positive samples per class (balanced
accuracy) but with a higher rate of false positives compared to the Three-Stream model.

Figure 5.7b shows the confusion matrix of the Three-Stream model. It shows that sec-
ondary activities are most likely confused with the much more probable driving task.
The confusion between different secondary activities is low overall. The activity reading
is the most likely to be confused with the driving activity. We can explain this with the
behavior of our test participants. Most of them performed the reading task by opening
the book, placing it on the steering wheel and holding both with both hands. In this sce-
nario the body pose of the driver is the same for the reading and driving task, making
activity detection based on the inputs of our model ambiguous. As we will show with our
next approach and our evaluation on the Drive&Act dataset, knowledge of objects in the
scene is important to disambiguate these cases.

5.3 Dynamic Interaction Graphs

Our Three-Stream approach for driver activity recognition with recurrent neural net-
works introduced the location of interior elements to body pose-based activity recogni-
tion. We were able show the advantages of the additional input in our evaluation on the
InCarln activity dataset. However, we also identified two shortcomings of this approach.
First, the method did not perform well at capturing the spatial relationships between the
keypoints of the human body as shown by the performance of the spatial stream. Sec-
ond, with just the body pose and interior elements as input some activities seem similar
making the recognition task ambiguous.
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We address these drawbacks with our next method. It is based on graph convolutions,
which are well suited for analyzing the spatial structure of the human body as it naturally
forms a graph based on the human skeleton. In addition, we focus on the integration of
object locations as an additional input modality to disambiguate the fine-grained activ-
ities that are part of the Drive&Act dataset. While graph convolutions are popular for
body pose-based activity recognition, as we showed in our review of related methods, the
addition of interior elements and object positions is a novel contribution. However, it
increases the complexity of the input in the spatial domain which raises the question of
how to extend the structure of the graph to include these elements in a meaningful way:.
The graph creation process is our main contribution. It follows the same principle as our
previous methods and is guided by the distance of objects and interior elements to the
body pose of the driver. We call the resulting graph Dynamic Interaction Graph.

In the following we first introduce graph convolution and its extensions for activity recog-
nition in general. We then introduce our method to create Dynamic Interaction Graphs in-
cluding objects and interior elements in addition to the body pose of the driver. Finally, we
describe the neural network architecture to infer activities based on this graph structure.

The following sections are based on our publication at the International Conference on
Intelligent Transportation Systems (ITSC) in 2020 [Mar17a] © IEEE, 2020.

5.3.1 Spatio-Temporal Graph Convolution

Graph convolution gained rapid popularity for human body pose-based activity recogni-
tion in recent years because it is well suited to represent the spatial relationships within
the kinematic model of the human body. A popular starting point is the graph convolution
definition introduced by Kipf et al. [Kip17] for semi-supervised classification of nodes in
undirected graphs. There are different extensions for activity recognition extending this
definition to spatio-temporal graph convolutions. We follow the approach introduced by
Yan et al. [Yan18]. The following section summarizes these concepts.

Before extending the graph to the temporal domain we first introduce graph convolution
on a single time step. An undirected graph consists of a pair G = (V,E) with N nodes
v; € V and (v;,v;) A (vj,0;) € E edges. Such a graph can also be represented by a
symmetric adjacency matrix A = [q;;] € RN*N 1n addition, each node is described by
a feature vector f, € RX. These can be combined to form a feature matrix H € RN*K,
The goal of the graph convolution as defined by Kipf et al. is to compute a new feature
matrix H'*1 per layer I based on the features of neighboring nodes in the graph defined

by A and H, and a learnable weight matrix wl e REOxK D,

1 1
H* = g(D"2AD 2HOW®) (5.4)
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A = A + Iy is the adjacency matrix with added self-connections. D;; = Zj A, j 1s the
degree matrix of A and is used to normalize the adjacency matrix regarding the number
of connections to neighboring nodes. o() denotes an activation function.

This definition has the drawback that there is no order to the neighborhood defined by the
adjacency matrix. The same weights are therefore used on all neighbors and the node itself
resulting in a simple averaging of these nodes. In contrast to this definition convolution
on images, where the neighborhood is well defined, uses different filter weights for each
neighbor (e.g., nine weights for a 3 X 3 convolution).

Yan et al. [Yan18] therefore extended the graph convolution operation for activity recog-
nition introducing a neighborhood based on the kinematic model of the human body.
They define this neighborhood based on the distance of body keypoints to the center of
the body. They determine the distance d to this global reference point for each node
i,j € N and use it to decompose the normalized adjacency matrix into three subsets:
Edges to nodes that are nearer to the reference point, edges to nodes that are the same
distance - usually only the node itself, and edges to nodes that are further away:

0, di = dj
s(i,j) = {1, d; < d; (5.5)
2, di > d]

5(i,j) denotes the partitioning function. It can be applied to the normalized adjacency
matrix to get partitioned adjacency matrices flp:

1

1
A [ (P)] (P) ajj, P = S(i,j), aj,j eD 2AD 2
0, else

(5.6)

This leads to the final definition of the spatial graph convolution operation for body pose-
based activity recognition:

4D _ g Z ((M(’)Q AP)H(I)WI()I)) (5.7)
pe€l0..2]

Like Yan et al. [Yan18] we add an additional learnable edge weighting matrix M. © de-
notes element wise multiplication. M is initialized to one. It enables the network to
increase or decrease the relevance of certain edges. Using multiplication limits the net-
work to regularizing edges that are already defined by the adjacency matrices. As we
showed in our discussion of related work there are different ways of modifying the initial
adjacency matrix to allow the graph convolution layer to adapt the graph in the training
process. For example, using addition instead of element wise multiplication enables the
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network to create additional edges. However, this leads to fully connected graphs with
varying edge weights that are hard to interpret. The advantage of our graph creation
process, as explained in the following, is its sparseness which allows us to analyze and
understand the graph visually.

We expand the introduced spatial graph convolution to the temporal domain T by adding
an additional dimension to the feature matrix H, € RT*N*K_ Equation 5.7 stays un-
changed and is applied to each time step t € T. To connect time steps with each other

we add edges connecting the same node over all time steps. This can be represented by

[RF><1><K§I+1

. . . ) .
a standard convolution with kernel size W, € along the temporal axis of the

result of the spatial graph convolution:
gD = gl o, (5.8)

H, is the result of the spatio-temporal graph convolution. F is the kernel size in the
temporal dimension. * denotes the convolution operation.

This spatio-temporal convolution layer has two hyper-parameters, the size of the output
node feature of the spatial graph convolution K§l+1) and the size of the kernel of the

temporal convolution F.

5.3.2 Dynamic Interaction Graphs for Activity Recognition

Related methods for 3D body pose-based activity recognition usually only use the 3D hu-
man body pose as input feature. However, this means that graph convolution-based meth-
ods for this task use a graph with a fixed number of nodes corresponding to the number of
keypoints of the human body. In our case there are both fixed interior elements that are
always there and do not change over time and in addition there are objects that can move
and may or may not be there. In addition, both interior elements and objects might not
be relevant for the current activity even if they are visible. To keep the complexity of the
graph low, making it interpretable even by a human observer, we try to keep the graph
sparse. We follow the same principle as in the rest of this chapter and construct the graph
based on the distance of the driver’s body pose to other elements. However, we no longer
rely on the distance feature used for the last two methods (see Equation 5.1) but use this
concept to determine the edges of the Dynamic Interaction Graph. With the introduction
of object positions in addition to interior elements the relevance of this concept increases
further because activities that involve objects usually lead to the relevant objects being
close to the driver. Our approach for graph construction is an analytic method and is
not based on a learning process. However, the edges and nodes depend on the current
input sample consisting of T time steps where each time step includes the body pose of
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Figure 5.8: Reprojection of the 3D Dynamic Interaction Graph on a reference image for the activity fetching
an object with body pose edges (blue), interior edges (orange) and object edges (green). The
color of each point indicates its category.

the driver, the location of interior elements and of objects. Each graph convolution layer
can modify the importance of the created edges in the training process (see Equation 5.7).

In the following we describe the creation process of the interaction graph in detail. It
consists of three parts: The feature vector f, of each node, the selection process of nodes
V that are part of the graph and the creation of edges E between nodes. Figure 5.8 shows
a sample of the resulting graph.

The node features f,, consist of the 3D position in world coordinates of the respective
node V in the graph: f, = [x,y,z] € R3. Interior elements have a fixed location
so their position is duplicated to all time steps of the graph. Compared to previous
methods in this chapter we use the center of the interior element instead of points on
the surface. Objects and keypoints of the driver’s body may not be available for all
time steps of the sample window. Missing observations are therefore filled with zeros.

The 3D position is the main part of the node feature. However, neither this feature
nor the structure of the graph indicates the type of the node. The neural network
therefore cannot easily discern between graph nodes representing body keypoints,
objects or interior elements. We therefore extend the node feature with an additional
category descriptor which is a one-hot encoded vector indicating the type of the node
(e.g., elbow, shoulder, object). The granularity of the category vector is part of the
implementation details.
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All nodes V' belong to the set V' C {V ., Vinteriors Vobjects} consisting of the three input
modalities. However, only nodes connected with edges V' = {v;|(v;, v) € E} are part
of the graph even if they are available. Interior elements, for example, are always there
but are not part of the graph if they are not connected. The number of nodes in the
final graph therefore depends on the edge creation process.

The edges E of the graph guide the whole graph creation process. To identify suitable
edges, we consider all available input elements in the time window of the sample as
graph nodes.

There are two types of edges E = {E| o5, Einteraction}- Like many approaches that use
just the human body pose for activity recognition, we define fixed edges E,. that
resemble the kinematic model of the body (see Figure 5.8 blue). Connecting interior
and object nodes to this fixed graph is our primary focus. As explained above our
goal is to add edges Ejyeraction @and therefore nodes that are relevant for the current
activity. We formulate this by using the Euclidean distance between the keypoints of
the body and other elements. However, if the driver is moving the distances change for
each time step ¢ of the sampling interval T. We therefore use the minimum Euclidean
distance between node features f;, over the sampling interval to construct the graph.
For example, for the action picking up an object the distance of the wrist, while moving
towards the object, will be large but it will be low at the end of the action. Our graph
creation process can represent these cases well (see Figure 5.8 green/orange). Formally
Eipteraction 18 defined as follows:

Einteraction = {(Ub Uj)lvi € Vpose A Uj € {Vinterior’ Vobjects}/\

. t t
min||fi — fjll- <&}

(5.9)

0 is the threshold that regulates how many edges are created and therefore also which
nodes are added to the final graph. If 6 is negative no interaction edges will be created.
The graph would just contain E,,. edges and V., nodes. On the other hand, with
O greater than the largest distance between nodes V. and other elements the graph
would be fully connected between all keypoints of the driver’s body and all other
elements. We evaluate the impact of this threshold in Section 5.4.1.

The edge creation approach is similar to our thresholding-based method for interior
interaction detection (see Equation 5.2). However, instead of using thresholding to
arrive at the final decision, the edge creation process only determines the layout of the
graph leaving the final decision to the graph convolution network. It can therefore
also act as a pre-filtering step to remove unnecessary nodes from the graph, by not
creating any edges for that node.
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Figure 5.9: Overview of the dense spatio-temporal graph convolution network. © denotes concatenation.
K denotes the output node feature length. T denotes the temporal sample length.

Our graph construction method works well with the graph convolution approach that
was previously introduced. The resulting graph can still be decomposed into the neigh-
borhood described in Section 5.3.1 by computing the distance between the center of the
driver’s body and object and interior nodes. This way the additional nodes become ex-
tensions of the fixed graph defined by E,.. In most cases the additional edges will be
part of the “further away” partition of the neighborhood (partition 2 in Equation 5.5).

5.3.3 Interaction Graph Network

Figure 5.9 shows an overview of our graph convolution-based neural network. We first
apply batch normalization (BN) to the input to normalize its variance. We only apply this
normalization step to the main node feature, which is the 3D position of each element,
while the one-hot encoded category vector is concatenated after the normalization step.
The rest of the network follows the idea of DenseNet [Hual7] by concatenating the out-
put of all previous layers in a block as input of the current layer. Overall, the network
consists of three blocks. The last spatio-temporal graph convolution of each block re-
ceives a mix of lower and higher-level features from all previous layers in the block and
produces an output feature of twice the size. In addition, the temporal convolution of this
layer uses a stride of two to shrink the temporal feature size by half. After three blocks
this results in a feature descriptor of three times the starting feature size but with one
fourth of the temporal resolution. Following the graph convolution blocks the node fea-
ture vectors of size 3K of all nodes and all time steps are aggregated using global average
pooling followed by the final classification with a fully connected layer and softmax ac-
tivation. Each spatio-temporal building block consists of a spatio-temporal convolution
followed by batch normalization, dropout and rectified linear units as activation func-
tion. The network has two hyper-parameters, the initial feature vector length K, which
also determines the size of all other layers, and the kernel size of the temporal convo-
lution F of each spatio-temporal convolution layer. The temporal window size T of the
network depends on the temporal dimension of the input sample and is not part of the
parameters of the network.
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5.3.4 Implementation Details

The method is implemented with the same tools and frameworks as the Three-Stream
approach. This includes the hyper-parameter search method (see Section 5.2.3). The pa-
rameter search was conducted on the validation set of Drive&Act using the model with
all features and input modalities enabled. Based on this search we train the model using
stochastic gradient descent (SGD) with learning rate 0.8, Nesterov momentum of 0.9 and
L2 regularization of 0.0001. We use a batch size of 64 samples and train for 50 epochs,
dividing the learning rate by 10 after 20 and 40 epochs. We optimize the categorical cross
entropy loss in the training process.

The main parameters of our approach were also optimized by the parameter search. Based
on the results we set the edge creation threshold 6 to 0.3 m. It determines the number
of interaction edges created between the 3D keypoints of the driver’s body, 3D interior
elements, and 3D object positions. We investigate the impact of this threshold in Sec-
tion 5.4.1. The size K of our neural network is set to 96 and the temporal kernal size F
to 13 for all our experiments.

The configuration of the category vector, which is part of the node feature, was not part
of the parameter search. Assigning a different category to each element would lead to a
large vector with 36 entries (13 body keypoints, 14 interior elements, 9 objects) compared
to the main node feature consisting of 3D points. Instead, we group body keypoints into
four categories (head, torso, arm, hand), we leave each object in a separate category and
finally assign all interior elements to a single category. This leads to a smaller one-hot
encoded category vector of size 14, appended to each node feature after normalization. We
assign all interior elements to a single category because they do not move. The network
should be able to identify these elements based on their position. This does not work
well for most keypoints of the driver’s body nor 3D object positions because they move
in complex patterns. A detailed category vector for these nodes should therefore help to
discern them from each other.

We test the runtime performance of the system using the same hardware as the Three-
Stream approach (Intel i7-9750H CPU @ 2.60GHz; GeForce GTX 1650 Max-Q) and achieve
49 fps. Compared to the runtime of our Three-Stream approach Dynamic Interaction
Graphs achieve almost three times the speed while offering much higher accuracy as
we will show in the following sections.
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5.4 Evaluation on the Drive&Act Dataset

In the following we present the primary evaluation of this chapter on the Drive&Act
dataset (see Section 3.5). The benchmark focusses on fine-grained classification of driver
behavior. Given an action segment of three seconds or less (in case of shorter events),
our goal is to assign the correct activity label. We follow standard practice and adopt
the average per-class accuracy (in the following called balanced accuracy) by using the
mean of the top-1 recognition rate for every category (see Section 3.5.7). Note, that the
baseline of picking an activity at random is annotation level-specific and varies between
0.31% and 16.67 %.

We evaluate our models separately for every hierarchy level: 12 scenarios/tasks (first
level), 34 fine-grained activities (second level) and atomic action units with 372 possible
combinations of the {Action, Object, Location] triplets (third level). Because the amount
of triplet combinations is very high, we also report the performance for correctly clas-
sified action, object and location separately (6, 17 and 14 classes, respectively). Unless
stated otherwise we use the public triangulation-based body pose annotations using the
three cameras in front of the driver mounted on both A-pillars and the central mirror (see
Section 3.5.4). We train our own methods using data augmentation by adding noise to
all input keypoint positions with standard deviation of 0.05 m, random rotations around
all axes with +10° as well as random scaling of all input keypoints by a factor of 0.4 to
1.2. We determine the layout of our Dynamic Interaction Graph before augmentation. It
therefore only affects the node features of this approach.

In the following we discuss the results of our Three-Stream method and Dynamic Inter-
action Graph approach. We compare our results to related methods and we perform a
cross-view and cross-modal evaluation using either triangulated 3D data or 3D data cre-
ated with depth images relying on our DepthFix approach.

5.4.1 Impact of the Threshold for Creating Interaction Graphs

Our method for creating Dynamic Interaction Graphs is guided by the distance of the
keypoints of the driver’s body to other parts of our interior state model. To create edges,
we use thresholding on the distance to these parts (see Equation 5.9 8). The threshold
therefore has a large impact on the number of edges as well as the nodes included in
the graph for the following driver activity recognition with the neural network based on
graph convolutions. A threshold of zero means that no objects or interior elements will
be included in the graph as the chance is very low that any of the driver’s limbs would
be placed exactly on one of those coordinates. The graph will therefore only consist of
the body pose of the driver. A low threshold will connect elements in the surroundings
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Figure 5.10: (a) Balanced Accuracy on the validation set for different interaction thresholds using all input
modalities on the recognition task of fine-grained activities. (b) Sample graph generated with
a large threshold of 6 = 2.0 m.

if they are close to the driver and a large threshold will result in a fully connected graph
between the 3D driver body pose and all other parts of the state model. We investigate
the effect of this design with an ablation study on the validation set of the fine-grained
activity annotations of Drive&Act. Figure 5.10a shows the result of this experiment using
the complete interior state model as input with different interaction thresholds (blue). We
compare these results to the method using just the body pose as input (orange). Note that
the relevant range between 0 and 1.0 meters is sampled more densely. With a threshold
of 0 the model using the complete interior state model achieves a similar result to the
model using just the body pose as input. This shows that our approach works as designed
because as discussed in this case no extra edges will be created so the graph will not
contain objects or interior elements. A high threshold of 2 m on the other hand results in
a graph that is fully connected between body pose nodes, interior and object nodes (see
Figure 5.10b). This degrades the performance and highlights the importance of creating
a meaningful graph layout. The method achieves the best results at a low threshold of
0.2m to 0.3m with an improvement of 9 percentage points compared to the baseline.
This indicates that our design to create edges based on the minimum distance of all time
steps is effective. This leads to graphs with few edges that may also still be interpretable
by a human observer to identify problems with specific samples (see Figure 5.11). The
results show a gradual decrease in performance after the first peak. This indicates that
these thresholds are still suitable for a subset of the elements in the graph. An individual
threshold for each element of the graph might therefore improve results further. However,
testing all possible variations is not feasible and optimizing the thresholds as part of the
training step of the model is not easily possible because thresholding is not differentiable.
All following experiments are performed with a threshold 6 of 0.3 m.
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(a) Drinking (b) Closing laptop

Figure 5.11: Reprojection of Dynamic Interaction Graphs for two different activities generated with a
threshold of 0.3 m with body pose edges (blue), interior edges (orange) and object edges
(green), colored circles indicate categorized locations. Small dots indicate available nodes
not part of the graph.

5.4.2 Performance of Our Own Methods on Drive&Act

Our primary contribution to 3D driver body pose based activity recognition is the intro-
duction of additional input modalities in the form of 3D interior elements and 3D object
trajectories. The three annotation levels of Drive&Act pose different challenges for our
methods that allow us to highlight the impact of this contribution. Table 5.2 shows the
results of both our approaches for all annotation levels of the dataset and for different
combinations of input modalities:

Fine-grained activities: This annotation level is the main benchmark of the Drive&Act
dataset. It is challenging for methods based on just the 3D body pose of the driver be-
cause of its detailed annotations (e.g., discerning between opening and closing a bottle)
resulting in small scale movements of body parts.

The performance characteristics of our Three-Stream approach on the data are over-
all like the results on the InCarln activity dataset both for single streams as well as
stream combinations (see Section 5.2.4). The temporal stream based on the 3D driver
body pose achieves the best single stream performance while its combination with
the context stream and the combination of all three streams results in the best overall
performance of the method (46.6 % balanced accuracy).

Our method based on Dynamic Interaction Graphs can outperform the Three-Stream
approach using just the 3D driver body pose as input (51.6 % balanced accuracy). This
shows the advantage of graph convolution-based methods for activity recognition.
However, unlike in our previous approach, adding just 3D interior elements decreases
performance. We assume the reason is the way the information is added. While the
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depth distance feature (see Section 5.1) used as input of our Three-Stream approach
models the distance of keypoints to the surface of interior elements, our method based
on Dynamic Interaction Graphs only uses the center of each interior element as input.
It therefore has no notion of the size of each element and in addition it must learn
higher level features based on the training data instead of relying on the hand-crafted
representation. On the other hand, adding just 3D object locations to the input im-
proves results by a large margin as it allows to disambiguate activities with similar
body pose but involving different objects. We investigate this in more detail in Fig-
ure 5.12. Adding both interior elements and objects improves results further. We
assume in this case the information about the interior helps because it allows the net-
work to correlate object positions with storage spaces like the co-driver seat or center
console. Finally, adding the category description to each node feature yields the overall
best result (60.4 % balanced accuracy) indicating that this descriptor helps the neural
network to disambiguate different node types as we intended.

Scenarios/Task-Level: This level represents the tasks the test participants had to solve.
Due to the high abstraction level, we presume that the recognition would strongly
benefit from a time window longer than the current three second segments. Activities
like eating and drinking are part of multiple tasks. Therefore, the shorter the classified
segments the more likely it is that samples from different tasks depict the same activity.
However, there can still be situational differences in the surroundings of the driver. For
example, even when the driver is drinking while working on the laptop (task working),
the laptop remains present. On the other hand, it is unlikely to be there while the
driver is watching a video on the central screen (task watching video). Because of these
challenges the overall performance is lower compared to the evaluation on fine-grained
activities and the differences between the results are smaller and less defined. Our
method based on Dynamic Interaction Graphs can only outperform the Three-Stream
approach with the addition of object locations and interior elements as input modality.
However, this boosts the performance by a large margin achieving the overall best
result (42.3 % balanced accuracy).

Atomic Action Units: This annotation describes primitive activities that are basic build-
ing blocks of the other annotation levels. The separation of labels into triplets of {Ac-
tion, Object, Location} allows us to investigate the impact of our input modalities in
more detail because interior elements and object locations correlate directly with the
respective annotation. While we expect the performance to increase in general with
added inputs, the performance for object and location estimation should rise the most
when adding the respective input modality.

The Three-Stream approach only uses the 3D body pose and interior elements as in-
put. The context stream can outperform the temporal stream for action and location

130



5.4 Evaluation on the Drive&Act Dataset

Table 5.2: Results of our own methods on all three levels of the Drive&Act dataset. Both methods were
tested on the public annotations using triangulation. Dynamic Interaction Graphs were addi-
tionally tested on the depth based annotations using DepthFix. Best results per section marked
bold. Overall best result are underlined. Dynamic Interaction Graph Input: int: interior ele-
ments; obj: objects; cat: category descriptor. (Balanced accuracy in %)

Method Fine-Grained || Task level Atomic action units
Action Object Loc. | All
Random Baseline 2.9 8.3 16.7 5.9 7.1 | 0.3
Three-Stream LSTM (Origin: Interior Mirror; Data: Triangulated)
Spatial 35.2 24.0 41.5 32.7 369 | 4.6
Context 40.2 29.8 49.0 40.7 533 | 6.9
Temporal 44.4 32.4 47.7 417 526 | 7.1
Temporal + Spatial 45.4 34.8 48.8 428 547 | 7.1
Temporal + Context 46.4 33.5 51.2 449 557 | 8.0
Three-Stream 46.6 35.5 50.7 453 565 | 8.1
Dynamic Interaction Graph (Origin: Interior Mirror; Data: Triangulated)
Pose 51.6 32.7 51.6 45.6 524 | 8.9
Pose + int 49.5 31.7 48.2 44.5 550 | 7.4
Pose + obj 58.1 33.3 50.7 56.2 44.7 | 10.8
Pose + obj + int 59.2 40.7 58.1 56.0 50.1 | 13.4
Pose + obj + int + cat 60.4 42.3 58.1 57.6 56.2 | 15.2
Dynamic Interaction Graph (Origin: Kinect; Data: DepthFix)
Pose + obj +int+cat | 60.1 | 352 || 525 564 532 15.0

estimation while the temporal stream still achieves the best overall result. In addi-
tion, combining the temporal and context stream leads to the best performance for
action estimation while the combination of all three streams results in the best result
for all other annotations of this level. The Three-Stream approach can achieve the best
overall result for estimating the location where an action takes place and can even
outperform our newer method using Dynamic Interaction Graphs. This highlights the
usefulness of our distance-based feature providing additional context for 3D body pose
based activity recognition methods. Comparing all parts of the triplet the method un-
derperforms for detecting the object involved in an activity. This is expected as the
input to the method does not provide any suitable information for this detection. It
can only infer the object based on correlating the provided body pose with the interior
elements.

Our method based on Dynamic Interaction Graphs expands the input with additional
3D object trajectories. Similar to the other annotation levels the addition of interior
elements to the input decreases the performance except for estimating the location.
This indicates that the method is at least able to use this information if there is a clear
correlation between the input and the annotation. Adding only 3D object positions
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to the input boosts the performance in general, except for detecting the location. This
configuration achieves the largest performance gain for estimating the object involved
in activities. This highlights the importance of this input for the task. Combining all
inputs and adding the category descriptor to each node results in the overall best per-
formance. In contrast to the Three-Stream approach our new method achieves equal
performance on all parts of the annotation triplet indicating that our full interior state
model, including 3D object positions, represents all annotated aspects of the atomic
action units.

Interaction Graphs based on depth data: While our main evaluation uses the public
triangulated 3D body pose data of the driver as well as the triangulated 3D object tracks
we also evaluate our method using just data from the Kinect including the results of
DepthFix for 3D driver body pose estimation and the 3D object tracks generated using
just the depth image (see Section 3.5.6). The field of view of the Kinect is substantially
smaller compared to the multi-view system. In addition, occlusions affect the Kinect
data to a larger degree. Therefore, the results using the Kinect are slightly worse for
all annotations compared to the results on the triangulated data. In most cases the
difference is small except for the task level and the action annotation of the atomic
action unit level. We suspect that this is a result of the smaller field of view as both
these annotations rely on the larger context to disambiguate different activities. This
experiment also shows that our DepthFix method can generate 3D body pose data
from a single depth image that is comparable for activity recognition to data created
with a much more complex multi-view camera setup. We investigate the cross-view
performance of our Dynamic Interaction Graph approach using these camera setups
in Section 5.4.4.

Overall, the results of both methods highlight the importance of a detailed 3D interior
state model including 3D interior elements and 3D object trajectories to enable detection
of fine-grained driver activities. Our Three-Stream method can make better use of the
data about 3D interior elements compared to our method based on Dynamic Interaction
Graphs. This highlights the quality of the distance feature descriptor introduced at the
start of the chapter (see Equation 5.1). The performance of our method based on Dynamic
Interaction Graphs demonstrates the importance of 3D object positions for fine-grained
activity recognition. In addition, combining all input modalities with the category vector
successfully enables the method to disambiguate different node types in the graph which
allows the method to also benefit from interior elements to some degree. We could also
demonstrate consistent results for both camera setups using either triangulated 3D data
or 3D data inferred using depth images.

We further analyze the performance of Dynamic Interaction Graphs on the fine-grained
activity annotation by comparing the performance of using the method with just the
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Figure 5.12: Excerpt of the confusion matrices for fine-grained activity recognition using just the body
pose (a) or all input modalities (b). See Appendix B for the complete matrices. For better

readability values of zero are not plotted.

3D body pose of the driver to using the method with the complete interior state model.
Figure 5.12 shows an excerpt of the confusion matrices of both configurations (i.e., the
rows do not sum up to 100 %). To improve the readability, we only include the activities

with the greatest performance gain and the activities they are most frequently confused
with. The complete confusion matrices are shown in Appendix B. When comparing both
results, the confusion between classes strongly decreases when using all of the inputs in-
stead of just the body pose of the driver. Using just the body pose, activities are confused
with each other if the body pose is similar (e.g., reading magazine vs. reading newspaper)
or if the body pose is not distinctive (e.g., preparing food or interacting with phone). Many
indistinct activities are performed in front of the torso of the driver with slightly raised
hands. All these activities are confused with each other using just the body pose as in-
put. Using the method with all inputs enabled clears up these confusions in many cases.
For example, reading a magazine and reading a newspaper can then be disambiguated
successfully. Interacting with phone is also a well detected class when including object
information. It is important to note that the objects provided as input do not map one to

one to a single activity in many cases. For example, there are five activities involving the
laptop (only three are shown in the excerpt). With added object information the confusion
between classes is more clustered for activities involving the same object. However, in
some cases our interior state model is still not sufficiently detailed to resolve fine details

(e.g., opening vs. closing bottle).
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Table 5.3: Comparison of related methods with our results on Drive&Act. Balanced accuracy (%).

Methods Fine- Task Atomic action units
Grained || Level || Action Object Loc. | All
Video
C3D [Tra15] 43.4 - - - - -
P3D Net [Qiul7] 453 - - - - -
I3D Net [Car17] 63.6 31.8 56.1 56.2 51.1 | 121
CTA-Net [Wha21] 65.3 52.3 56.4 59.2 63.0 | 494
Driver Body Pose
Two-Stream [Wan17]* 45.4 34.8 48.8 42.8 547 | 7.1
ST-GCN [Yan18]? 45.3 - - - - -
Three-Stream [Mar18b] 46.6 35.5 50.7 453 56,5 | 8.1
Interaction Graph [Mar20a] 60.1 42.3 58.1 57.6  56.2 | 15.2
Video + Driver Body Pose
BPAI-Net [Tan21] 67.8 - - - - -

5.4.3 Comparison to Related Methods

In this section we compare our methods based on the 3D body pose of the driver and other
3D data modalities to the video-based baseline methods that were part of our initial publi-
cation of the Drive&Act dataset. In addition, we compare methods that were published til
the end of 2021 using Drive&Act in their evaluation for activity recognition (see Table 5.3).

Fine-grained activities: This annotation level is used by most related methods. We also
provided the the largest number of baseline methods for this annotation level includ-
ing three video-based approaches (C3D, P3D Net, I3D Net). For all other annotation
levels, we only provided video-based results of I3D because it was the best perform-
ing method for detecting fine-grained activities. Compared to I3D we can reduce the
performance difference from 17 p.p. (percentage points) when using the Three-Stream
approach to just 3.5 p.p. using Dynamic Interaction Graphs. Both our approaches out-
perform their respective origin methods developed for general 3D body pose-based
activity recognition. The Two-Stream approach is our reimplementation of Wang
et al. [Wan17] combining the temporal and spatial stream of our approach. It was
the basis of our Three-Stream method which added the context stream. The ST-GCN
approach [Yan18] was the basis of many related methods including our method using
Dynamic Interaction Graphs. We only reused their formulation of the spatio-temporal
graph convolution layer. The graph itself and the complete network structure of our
method are different, improving the performance by a large margin. Following our

! our implementation: temporal + spatial stream

? reported by [Tan21]
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last publication on the topic, CTA-Net further improved the results of video-based
methods relying on a special convolutional network, called a glimpse sensor, to ex-
tract data from each image followed by a recurrent neural network module based on
LSTM units to aggregate data temporally. BPAI-Net can achieve the overall best per-
formance on this annotation level by combining a video-based neural network using
3D convolutions with ST-GCN for body pose-based activity recognition.

Scenarios/Task-Level: Both our methods perform better on this annotation level com-
pared to I3D Net, our original video-based baseline approach. However, CTA-Net
improves the video-based performance by a large margin, surpassing our methods.

Atomic Action Units: Both our methods were able to outperform I3D for estimating the
location of the annotated triplets thanks to our explicit modeling of the position of in-
terior elements. While the performance of our Three-Stream method suffered overall
from the missing input data about objects, our method based on Dynamic Interaction
Graphs alleviates this problem and outperforms I3D for this annotation level in gen-
eral. However, CTA-Net further improves the performance of video-based methods,
surpassing our results. We suspect that their large performance gain for estimating
the whole triplet is based on training to recognize the whole triplet at once while our
methods as well as the I3D baseline used separate models for each part of the triplet.
Their method focused on estimating whole triplets correctly while our approaches only
optimized the detection of one part of the triplet at a time.

5.4.4 Cross-View and Cross-Modal Evaluation

The goal of this thesis is the development of a modular driver activity recognition system
based on 3D data from the ground up. We argued that this would greatly increase the
flexibility of the system regarding sensor type and sensor position changes. However,
so far, we have only shown the performance of our methods trained and tested on the
same camera modalities as well as viewpoints. In the following we therefore explore the
flexibility of our modular system with regards to sensor modality and viewpoint changes.
To achieve this, we perform a test on Drive&Act in a cross-view setting using either the
triangulation-based data without the Kinect or the depth image-based data using only
the Kinect sensor as input. The triangulation-based system has a wide field of view cov-
ering both front seats and in addition its coordinate origin is the camera at the central
mirror. The Kinect is mounted at the A-pillar on the co-driver side which also deter-
mines the camera coordinate system of the depth image-based 3D data. Compared to the
triangulation-based system the field of view is much smaller covering mainly the driver.
In addition the data is more affected by occlusions because of the single sensor setup at
a position resulting in a challenging side view of the driver.
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Table 5.4: Cross-view evaluation comparing different 3D augmentation methods of our Dynamic Interac-
tion Graph approach with the performance of I3D on the validation set of fine-grained activities
of Drive&Act. Balanced accuracy (%).

Train Test
Video I3D || Bodypose default || Bodypose +90° || Bodypose seat
CM KRR || CM KIR CM KIR CM KIR
Central Mirror (CM) || 69.6 6.8 65.9 11.1 53.6 44.4 63.9 55.2
Kinect IR (KIR) 6.7 729 || 115 70.1 43.9 61.6 52.4 69.5

Table 5.4 shows the results compared to the performance of the video-based end-to-end
model I3D. It was trained either on video data of the near-infrared camera at the central
mirror or near-infrared data of the Kinect at the co-driver A-pillar. These views corre-
spond to the coordinate systems of our 3D input data. While I3D achieves great perfor-
mance on the training view, performance decreases by 90 % on average when testing on
the view not used for training. Our method based on Dynamic Interaction Graphs shows
similar behavior in its default configuration. However, while the performance on the
training view is 5 % lower on average compared to I3D it only drops by 83 % when evalu-
ated across views. In the following we use the performance of our default configuration
tested on the training view as baseline for comparison. As our method relies on 3D data
we can use 3D transformations to increase its robustness to viewpoint changes.

An approach often used by related methods is augmentation with random rotations. We
test this approach by perturbing the training data by +90° on all axes (bodypose +90° in
Table 5.4). With regards to the camera on the central mirror this augmentation covers
all camera positions and orientations in front of the driver. This approach reduces the
performance by 15 % on average when testing on the same view, but only by 35 % when
evaluating across views (compared to 83 % when not perturbing the training data).

Within the interior of the car the sensor position is usually well defined both for the train-
ing set as well as for potential new camera positions. In our next approach, we therefore
define a sensor independent driver seat coordinate system with its origin at the center
of the seating surface and its orientation aligned with the main axes of the car (bodypose
seat in Table 5.4). We transform the depth and triangulation-based data to the seat coor-
dinate system for training and testing (see Figure 5.13b). As both data sources are from
the same dataset and recorded in the same vehicle, this results in matching coordinate
systems for both setups. However, they still differ in their field of view and quality of
the data. With this approach we can achieve similar performance as our baseline system
when testing on the same view and we can reduce the performance drop to 20 % when
testing across views. Transforming into a common coordinate system therefore outper-
forms augmentation with random rotations. In addition, both augmentation approaches
can outperform I3D by a large margin in a cross-view setting by making effective use of
well-defined coordinate systems.
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Train Test
Cross Dataset
CM KIR

D&A (CM) 80.6  46.8

InCarln (KIR) || 44.3 75.0

(a) Cross dataset (b) Drive&Act (CM) (c) InCarIn Activity (KIR)

Figure 5.13: (a) Performance of our Dynamic Interaction Graph method in a cross dataset evaluation us-
ing modified Drive&Act and InCarln Activity datasets. Balanced accuracy (%). (b/c) Images
representing the camera coordinate systems used for each dataset in the cross-dataset exper-
iment including an annotations with the common seat coordinate system.

With our datasets we can increase the difficulty further and can perform a cross-dataset
evaluation using the Drive&Act and the InCarln activity dataset after some changes to
make them more alike. The InCarln activity dataset stays mostly the same, but we resam-
ple the data using three second segments instead of ten second segments. In addition, we
determine the 3D body pose of the driver using the DepthFix method to have a compara-
ble set of keypoints for each dataset. As a side note DepthFix is not specifically trained
for this and we use the same model trained and tested on Drive&Act data. The InCarln
activities are a small subset of the fine-grained activity annotations of Drive&Act. We
therefore create a slimmed down version of Drive&Act with six classes corresponding
to the InCarln activity annotations. To achieve this, we aggregate reading magazin and
reading newspaper into one class reading, we combine opening and closing a bottle into
one class, we rename the sitting still class to driving and we use the interacting with phone
and talking on phone classes unchanged. Data of Drive&Act with other labels is not used
in this experiment. With these changes we have corresponding labels for both datasets
and can perform a cross-dataset evaluation. However, there are still major differences
in the execution of each activity as Drive&Act was recorded in a simulator using a sce-
nario for automated driving while the InCarIn dataset was recorded on a test track driving
manually. The dimensions of both vehicles are also vastly different (Audi A3 vs. VW T5
Minibus). We still keep the cross-view setup using the triangulation-based system with
its origin at the central mirror for Drive&Act and the Kinect mounted at the A-pillar for
the InCarln dataset. We combine both augmentation approaches and use the seat coor-
dinate system in addition to applying random rotations with +40° around all three axes.
Combining both augmentation methods is helpful because the vehicles are different so
the seat coordinate systems do not align perfectly (see Figure 5.13b and Figure 5.13¢c). A
moderate amount of random rotations helps to compensate for this. Table 5.13a shows
the results using just the 3D body pose data as input. We can achieve high scores for
both datasets. However, in the cross-dataset evaluation performance drops by 41 % on
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Figure 5.14: Cross-Dataset performance of our Dynamic Interaction Graph approach.

average. Figure 5.14 shows the confusion matrices resulting from this experiment. The
performance of distinctive activities (e.g., talking on phone) stays high across datasets
while activities performed differently do not work well (e.g., eating). Given the major
differences between the vehicles and the recorded activities we still think this is a good
result that demonstrates the generalization capabilities of our method.

Until now we just discussed our experiments with regards to view-point changes. How-
ever, these experiments are also cross-modal evaluations, which means the input modal-
ity of the system changes. For end-to-end video-based methods this usually means, for
example, training on color data and testing on near-infrared data. Reif3 et al. [Rei20a]
perform such an experiment using the data from the Kinect of the Drive&Act dataset. All
sensors of the Kinect are in close proximity to each other, so this is mostly a cross-modal
and not a cross-view experiment. They train on color data and test on near-infrared im-
ages (see Table 5.5). Using the baseline I3D training approach the performance drops by
77 % in the cross-modal setting. Therefore, they introduced a video translation method
that converts color data to near-infrared-like data for training. This doubles their cross-
modal performance but still results in a 57 % decrease compared to the baseline. With
regards to our algorithms, the input to our activity recognition methods is based on the
3D driver body pose in all cases. However, the whole idea of our approach is modularity
of the overall system. For the system as a whole, our cross-view experiments are also
cross-modal experiments as we switch from a multi-view system to a depth camera to
generate 3D data. As already shown, this only degrades the results by 20 % even with an
additional viewpoint change when evaluating on the same dataset (bodypose seat in Ta-
ble 5.4). This is a far better result compared to the cross-modal performance of I3D even
with video translation. The performance of our method only drops by 41 % when switch-
ing to a different dataset while changing the viewpoint and modality (see Table 5.13a).
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Table 5.5: Performance of I3D in a cross modal setup training on the Kinect color data and testing on the
Kinect NIR data of Drive&Act [Rei20a]. T'() indicates video image domain translation before
training. Balanced accuracy (%).

Cross-Modal Video I3D

Train Test Bal. Acc.
Kinect Color Kinect Color 67.8
Kinect Color Kinect IR 15.6
T(Kinect Color) || Kinect IR 29.3

However, this result is not directly comparable to the cross-modal performance of I3D
as it uses a modified dataset with fewer classes. In addition, all our methods for creating
the 3D body pose of the driver rely on OpenPose applied to near-infrared images. How-
ever, it was trained on color data and we demonstrated its cross-modal performance using
the Drive&Act body pose benchmark in Section 4.4.1. Therefore our use of OpenPose is
cross-modal in itself. We would therefore claim that our approach would achieve similar
performance when applied to a multi-view camera system using color cameras or a depth
camera providing a color image in addition to the depth image. However, we can not test
these claims on the available data.

To summarize the findings of this section, we were able to demonstrate the cross-view
and cross-modal capabilities of our modular overall system by changing between near-
infrared-based triangulation and depth image-based data using the Drive&Act dataset.
For both scenarios we compared it with I3D, an end-to-end video-based method for activ-
ity recognition. While the performance of I3D dropped severely in a cross-view evalua-
tion, our approach retained most of its performance by using coordinate transformations
for augmentation with random rotations or normalization of the data across views with
a common coordinate system. For cross-modal evaluation we compared our modular
system with the baseline I3D approach as well as with a method using video domain
translation for training I3D. While this increased the cross-modal capabilities of I3D sub-
stantially, we achieved even better results with the same setup used in the cross-view
experiments. In addition, we also demonstrated the ability of our method to generalize
across datasets recorded in different vehicles in addition to changing the view point and
the input video data modality.
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5.5 Summary

In this chapter we presented our contributions for 3D driver body pose-based activity
recognition using our collected datasets and body pose estimation methods. Our primary
focus was the introduction of additional input modalities. To this end we extended the
3D body pose-based input of related methods to a 3D interior state model including addi-
tional interior elements, like controls and seats, and locations of objects used for various
activities, like smartphones or bottles. We investigated several ways to integrate these
modalities into our activity recognition systems. We followed one central paradigm and
assumed that the distance in 3D space of keypoints of the driver’s body to other elements
of the state model is an important indicator of their relevance for activity recognition.
With this framework we introduced three methods.

At first, we tested this paradigm using an analytical method to detect interactions between
the driver and the surrounding interior, like hands on wheel detection. The method re-
lied solely on the distance between the body pose and interior elements in 3D space using
thresholding to determine if the driver interacts with an element. We demonstrated re-
liable performance for this task using this method.

In the following we used the same distance estimation to integrate interior elements for
driver activity recognition using recurrent neural networks in three streams with late
fusion. We demonstrated performance gains using this approach on both our datasets.
However, on Drive&Act we determined that the performance for some activities suffered
because of missing data about objects the driver interacts with.

Our final method using Dynamic Interaction Graphs therefore expanded the interior state
model with additional 3D object trajectories. We used all three input modalities to gener-
ate a spatio-temporal graph using a neural network based on graph convolutions to infer
activities. Our primary contribution with this method was the approach to creating the
graph. Following our initial principle it was guided by the distance between the driver and
surrounding elements to determine the nodes and edges of the graph. We demonstrated
the usefulness of this graph creation method on Drive&Act. In addition, we showed that
the use of 3D object positions as input helped to disambiguate many activities of the
Drive&Act dataset with similar or minor body movements. Both measures improved the
performance of this approach by a large margin compared to our previous method.

Finally, we showed the advantage of our overall modular architecture in a cross-view and
cross-modal test demonstrating high performance even when switching between data
from a multi-view system and data from just one depth camera. We also demonstrated
the performance of our method across datasets recorded in a simulator or in a different
vehicle on a test track.
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In this thesis we researched how to detect the activities of drivers in automated cars us-
ing a modular activity recognition system based on 3D data. This system consists of two
stages. The first stage creates a 3D interior state model from camera data including the
3D body pose of the driver, the location of elements of the interior as well as the posi-
tion of objects involved in certain activities. The second stage uses this representation to
detect activities. We based this design on two hypotheses: First, a rich 3D interior state
model including other elements in addition to the 3D driver body pose is important to
discern fine-grained activities. Second, the interior state model, created by the first stage,
is a sensor modality and sensor location independent representation allowing the second
stage to successfully detect activities even with major changes to the input of the overall
system. To verify these assumptions, we contributed to the research field in three areas:

The foundation of all our efforts were annotated datasets. Based on our extensive litera-
ture review we could show that there were no suitable public data sources. We therefore
collected multiple datasets for different sub-tasks leading to our final dataset, published
under the name Drive&Act. It included a large-scale hierarchical activity recognition
benchmark with multiple 3D input modalities for the task, like the 3D body pose of the
driver, the location of interior elements, like the steering wheel, as well as 3D trajectories
of objects, like smartphones. In addition, the dataset included a public benchmark for
3D driver body pose estimation with challenging scenes of different activities involving
occluding objects.

The main feature of the 3D interior state model was the body pose of the driver. Here we
contributed methods for real-time 3D driver body pose estimation based on depth images.
The primary challenge using depth images for this task was occlusion of body parts. A
second challenge was the lack of public automotive datasets to train these methods. Our
first approach used random decision forests for body part labeling based on a segmenta-
tion of the driver in the depth image. We dealt with the data scarcity by using simulated
depth images for training. While we achieved satisfactory results with this approach in
general, the necessary segmentation as well as the lack of occlusion handling limited its
usefulness as input for our activity recognition methods. Our second approach focused on
handling these cases with a regression-based method using deep learning. Unfortunately,
this also increased the demand for large-scale datasets. To address this issue, we relied
on a novel split of 2D body pose estimation followed by separate 3D keypoint regression
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guided by the depth image. This enabled us to rely on advances in 2D body pose estima-
tion using large-scale datasets from other domains. We demonstrated the robustness of
this method to partial occlusion on the body pose benchmark of Drive&Act.

While the primary input of many related activity recognition methods was just the 3D
human body pose, we researched how to expand the input to a complex 3D state model
including elements of the surrounding vehicle interior as well as positions of objects rel-
evant for certain activities. We followed one central paradigm and assumed that the dis-
tance in 3D space of keypoints of the driver’s body to other elements in the state model
is an important indicator of their relevance for the performed activity. Based on this hy-
pothesis we developed different methods with increasing complexity of the interior state
model. Our first approach for detecting interactions between the driver and interior ele-
ments (e.g., hands on wheel detection) relies on thresholding of the distance between the
hands of the driver and the respective interior elements. With this approach we demon-
strated the usefulness of the general concept. We then expanded the idea combining the
distance of keypoints of the driver’s body to interior elements with recurrent neural net-
works to detect activities. While we successfully demonstrated the usefulness of interior
elements for this task, we also showed that our method was unable to discern between
activities with similar body poses but involving different objects. We therefore expanded
the input with additional 3D object trajectories casting all parts of the interior state model
into a spatio-temporal graph. To generate this graph, we relied on the distance of key-
points of the driver’s body to other parts of the state model to determine which nodes
to include in the graph and what edges to create. We analyzed this graph using a neural
network based on graph convolutions. We showed the advantage of our graph creation
method in selecting relevant interior elements and objects and the usefulness of object
location data to discern activities represented by similar body poses of the driver. Con-
sequently, we proved our initial hypothesis that additional input modalities improve the
detection of fine-grained activities based on 3D data and we quantified their impact.

We also investigated the overall performance of our modular system regarding sensor
modality and viewpoint changes. We demonstrated the capability to switch between cre-
ating the interior state model based on a multi-view camera system to creating it using
data from a single depth sensor. We showed that our activity recognition approach can be
trained on one of these representations and evaluated on the other with just a moderate
performance drop. In addition, the system was able to generalize across different datasets
recorded in different vehicles and in vastly different conditions switching between data
recorded in a simulator for automated driving and data recorded on a test track driving
manually. This proved our second hypothesis that the 3D interior state model resulting
from our first stage of algorithms is sensor independent to a large degree.
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6.1 Future Work and Open Research Questions

While we achieved great progress for driver activity recognition in automated cars, there
are still open research questions that could lead to further improvements.

Regarding datasets we made significant progress in increasing the size of public datasets
both for driver body pose estimation and driver activity recognition. However, our final
dataset was recorded in a driving simulator. While we tested our approach on the InCarln
dataset recorded on a test track, this dataset was smaller than Drive&Act. To determine
the real-world performance of our approach the next step would be to collect data in real
traffic, preferably without a strict data collection protocol in order to record more natural
driver behavior.

Our 3D body pose estimation methods relied on depth data or multi-view systems. While
we showed that this works well, these sensor setups are less flexible and more expensive
than monocular camera systems. However, there is great progress estimating depth data,
3D body pose or 3D object bounding boxes from monocular data alone. It would be in-
teresting to see if these methods are good enough to generate our 3D interior state model
while keeping the flexibility of the activity recognition methods leveraging this represen-
tation. While we showed that a rich interior state model improves activity recognition
results, adding more detectors increases the necessary computing power. An interesting
research direction would be multi-task learning to produce the interior state model using
just one neural network with multiple heads trained on various datasets.

The input of our activity recognition system currently does not include the most common
features for driver monitoring based on facial analysis like head pose estimation or eye
tracking and related features like the visual focus of attention. It would be interesting to
test if these inputs could further improve the results. In addition, our activity recogni-
tion systems focus on classifying short sections of data while in a real-world application
the data stream is continuous. We can apply our methods to continuous data streams
by generating segments, but our method never learned to deal with transitions between
activities and it has no notion of the start and the end of an activity. Methods for activity
detection handle these challenges and can naturally process longer sequences including
transitions. Our methods also perform closed set recognition. They do not have a notion
of unknown activities which is necessary in most real-world applications as not all activ-
ities performed by the driver are part of the datasets. Our methods are robust to this to
some degree as the sitting still label of Drive&Act acts in part as a catch all class for any-
thing that is not a labeled activity, but it would be better to adapt the recognition method
for open set classification from the ground up. This could also be extended to anomaly
detection, i.e. identifying situations that are outside of the expected behavior of the driver.
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6.2 Applications to Other Fields

The methods presented in this thesis produce a rich representation of the surroundings
including the location of regions of interest of the surrounding environment, the location
of objects and the 3D body pose of the driver. From these we infer activities. There are
other domains where such a system can be useful or where the representation of the
surroundings can be a good starting point for other tasks instead of activity recognition.

Smart homes and IoT (Internet of Things) devices are a promising future application for
our methods. Currently these systems are controlled by a combination of voice com-
mands, using smart speakers, and various other sensors like motion detectors. While
using camera systems increases privacy concerns, our methods could run locally and
only transmit anonymized 3D data to the cloud if necessary. This would enable smart
speakers to react to the user in a much more direct way based on the precise location of
people in the room and what they are doing. We assume such systems will be necessary
with an increasing number of controllable devices because controlling them manually
gets increasingly unfeasible and automated control based on primitive sensors might be
too unreliable. While such a system can increase the general level of comfort for anyone
it could also help with elder care, for example, by detecting falls or reminding people
that they forgot to take their prescribed medication. There are also research projects that
investigate the use of robots for elder care, which would likely require similar detection
capabilities.

Our approaches could also be useful to track tasks in manufacturing and to support as-
sembly workers. In this case our system could, for example, detect if the worker picks
objects from the right box. It could also detect common manufacturing steps like assem-
bling an object, picking it up or placing it somewhere. All this information can be used
to detect errors but also to prevent them, either by guiding the worker or by preventing
the continuation to the next assembly step if an error was detected. If both humans and
robots are involved in a manufacturing task this gets even more important for human
robot interaction because it enables the robot to react to gestures of the worker or to
detect if a manufacturing step requires its support.
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A Simulated camera views

(f) Ceiling

(g) Interior mirror (h) Dashboard center (i) Infotainment (low)

Figure A.1: Simulated camera views for sensor position evaluation.
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B Interaction Graphs: Confusion Matrices
for Drive&Act Using Different Input
Modalities.
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Figure B.1: Confusion matrix of the Dynamic Interaction Graph method on the fine-grained activity an-
notations of Drive&Act using only the 3D driver body pose as input.
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Figure B.2: Confusion matrix of the Dynamic Interaction Graph method on the fine-grained activity anno-
tations of Drive&Act using all three input modalities (3D driver body pose, interior elements,
objects).
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