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Zusammenfassung

Motiviert durch die Entwicklung energiee�zienterer Maschinen und Transportmittel hat
der Leichtbau in den letzten Jahren enorm an Wichtigkeit gewonnen. Eine wichtige Klasse
der Leichtbaumaterialien sind die faserverstärkten Kunststo�e. In der vorliegenden Ar-
beit liegt der Fokus auf der Entwicklung und Bereitstellung von Materialmodellen zur
Vorhersage des Ermüdungsverhaltens kurzglasfaserverstärkter Thermoplaste. Diese Ma-
terialien unterscheiden sich dabei durch ihre Aufschmelzbarkeit und ihrer damit einherge-
henden besseren Recyclebarkeit von thermosetbasierten Materialien. Auÿerdem erlauben
die Kurzglasfasern im Gegensatz zu Langfasern eine einfache und zeite�ziente Herstel-
lung komplexer Komponenten.
Ermüdung ist ein wichtiger Versagensmechanismus in solchen Komponenten, insbesondere
für Bauteile z.B. in Fahrzeugen, die vibrationsartigen Belastungen ausgesetzt sind. Durch
die inherente Anisotropie des Materials sind die experimentelle Charakterisierung und
Vorhersage dieses Versagensmechanismus jedoch äuÿerst zeitintensiv und stellen somit
eine wesentliche Herausforderung im Entwicklungsprozess und für die breitere Anwen-
dung solcher Bauteile dar. Daher ist die Entwicklung komplementärer simulativer Meth-
oden von groÿem Interesse. Im Rahmen dieser Arbeit werden Methoden zur Vorhersage
der Ermüdungsschädigung kurzglasfaserverstärkter Werksto�e im Rahmen einer Multi-
skalenmethode entwickelt. Die in der Arbeit betrachteten Multiskalenmodelle bieten die
Möglichkeit, allein anhand der experimentellen Charakterisierungen der Materialparame-
ter der Konstituenten, d.h. Faser und Matrix, komplexe anisotrope E�ekte des Verbund-
materials vorherzusagen. Der experimentelle Aufwand kann dadurch enorm reduziert
werden. Dazu werden zunächst Materialmodelle für die Konstituenten des Komposits en-
twickelt. Mithilfe FFT-basierter rechnergestützter Homogenisierung wird daraus das Ma-
terialverhalten des Komposits für verschiedene Mikrostrukturen und Lastfälle vorherge-
sagt. Die vorberechneten Lastfälle auf Mikrostrukturebene werden mit datengetriebenen
Methoden auf die Makroskala übertragen. Das ermöglicht eine e�ziente Berechnung
von Bauteilen in wenigen Stunden, wohingegen eine entsprechende Berechnung mit ge-
ometrischer Au�ösung aller einzelnen Fasern der Mikrostruktur auf heutigen Computern
viele Jahre dauern würden.
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Für die Matrix werden unterschiedliche Schädigungsmodelle untersucht. Ihre Vor- und
Nachteile werden analysiert. Die Mikrostruktursimulationen geben einen Einblick in den
Ein�uss verschiedener statistischer Parameter wie Faserlängen und Faservolumengehalt
auf das Kompositverhalten. Ein neues Modellordnungsreduktionsverfahren wird entwick-
elt und zur Simulation des Ermüdungsschädigungsverhaltens auf Bauteilebene angewandt.
Weiter werden Modellerweiterungen zur Berücksichtigung des R-Wert-Verhältnisses und
viskoelastischer E�ekte in der Evolution der Ermüdungsschädigung entwickelt und mit
experimentellen Ergebnissen validiert.
Das entstandene Simulationsframework erlaubt nach Vorrechnungen auf einer geringen
Menge von Mikrostrukturen und Lastfällen eine e�ziente Makrosimulation eines Bauteils
vorzunehmen. Dabei können E�ekte wie Viskoelastizität und R-Wert-Abhängigkeit je
nach gewünschter Modellierungstiefe berücksichtigt oder vernachlässigt werden, um im-
mer das e�zientste Modell, das alle relevanten E�ekte abbildet, nutzen zu können.
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Summary

Motivated by, amongst others, the development of more energy-e�cient machines and
means of transport, lightweight construction has gained enormous importance in recent
years. One important class of lightweight materials comprises �ber-reinforced plastics.
The present work focuses on the development of material models for the fatigue behavior
of short glass-�ber reinforced thermoplastics. These materials di�er from thermoset-based
materials in their meltability and, thus, their better recyclability. Additionally, in con-
trast to long �bers, short glass-�bers allow for a simple and time-e�cient production of
complex components.
Fatigue is an important failure mechanism in these materials for components subjected
to vibration-like loads, e.g., in the transport domain. However, the characterization and
prediction of this failure mechanism are experimentally extremely time-consuming. Thus,
fatigue assessment represents a signi�cant challenge in the development process and for
the broader application of short-�ber reinforced components. Therefore, the development
of complementary simulative methods is of great interest.
In the present work, methods to predict fatigue damage of short-�ber reinforced materials
are developed within the framework of a multiscale method. Multiscale models o�er the
possibility to predict complex, anisotropic e�ects of the composite material based solely
on the experimental characterizations of the material parameters of the constituents, i.e.,
�ber and matrix. The experimental e�ort can thus be reduced signi�cantly. For this pur-
pose, �rst, material models for the constituents are developed on the microscale. Then,
using FFT-based computational homogenization, the material behavior of the composite
is predicted for di�erent microstructures and load cases. The precomputed load cases
at the microstructure level are transferred to the macroscale using data-driven methods.
This enables e�cient computations of engineering components, which would not be pre-
dictable by methods resolving the �ber structure on state of the art computers in years
of computational time.
Various damage models for the matrix are investigated and advantages as well as disad-
vantages are analyzed. The microstructure simulations provide insight into the in�uence
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of various statistical parameters such as �ber length and �ber volume content on the com-
posite behavior. A new model order reduction procedure is developed and successfully
applied to the simulation of fatigue damage. Further, model extensions are developed to
account for the stress ratio and viscoelastic e�ects in the evolution of fatigue damage.
Both extensions are validated with experimental results. The resulting simulation frame-
work allows the engineer to perform an e�cient macrosimulation of the component after
precomputations on a set of microstructures. E�ects such as viscoelasticity and stress
ratio dependence can be taken into account or excluded depending on the desired mod-
eling depth in order to always use the simplest possible model that captures all relevant
e�ects.
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1. Introduction

1.1. Motivation

The increasing demand for energy e�cient mechanical systems, especially in the trans-
port industry, fostered the development of lightweight construction and materials. Fiber-
reinforced materials o�er a high sti�ness to weight ratio [1] and thus have the potential
add to a development towards more energy e�cient transportation. In contrast to their
continuous �ber reinforced counterparts, the production of complex components using
short-�ber reinforced thermoplastics (SFRT) is rather simple and cost-e�ective. Continu-
ous �ber reinforced parts are typically produced by �rstly manufacturing a �ber preform,
e.g., by waving or braiding, and secondly a forming process. This takes a signi�cant
amount of time. SFRTs are typically manufactured via injection molding. While the
casting mold may be complex and di�cult to produce, once the mold is manufactured the
injection molding process allows for time-e�cient production of large quantities of com-
ponents. While this is a advantage in the manufacturing stage of the product life cycle,
the complexity of manufacturing prototypes is a challenge in the development stage. In
SFRTs, typical �ber length to diameter ratios are in the order of ten and �bers are stirred
into the molten matrix prior to the injection process. The thermoplastic matrix typically
used is meltable and thus easier to recycle than composite materials based on thermosets.
These advantages make them interesting for various applications in the transportation
sector, for consumer goods and for electrical components. Some of the most commonly
used materials are carbon and glass for the �ber and polypropylene (PP), polyamide (PA)
and polybutylene terephthalate (PBT) for the matrix. Due to their favorable properties,
the market size of short-�ber reinforced polymers is expected to grow signi�cantly [2].
The orientation of the �bers in the component and thus the macroscopic anisotropic ma-
terial behavior depend on the injection molding process. Consequently, a large number of
experiments is necessary to understand a multitude of �ber orientations and their mate-
rial behavior to fully characterize a component's behavior. This leads to a rather complex
characterization process.
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Fatigue is one of the most prevalent failure mechanisms of components subjected to pro-
longed vibrations, e.g, in the transportation sector. The material response under cyclic
loading conditions can be quite di�erent from the response under static loading conditions.
In contrast to metals, fatigue degradation in SFRTs leads to a signi�cant decrease of the
sti�ness properties of the material [3�6], leading to stress redistribution inside the com-
ponent. The critical spot inside the component is thus dependent on the loading history.
Fatigue degradation in SFRTs is a complex process, comprising mean stress e�ects, ther-
mal e�ects and viscoelastic e�ects. Experimental investigation of the long time behavior
of these materials is a time and cost intensive task, especially in combination with the
�ber orientation dependence that needs to be understood. With increasing demands for
rapid development of new designs, long lasting experimental characterization processes
are a challenge to a broader application of the materials. Optimization of the life time of
components as well as the reduction of material usage are key aspects in the development
towards a more sustainable economy. Therefore, the demand for complementary compu-
tational prediction methods for fatigue degradation in SFRTs is high.
The aim of this work is to signi�cantly speed up the development process of SFRT-
components as well as providing a tool for optimization of material usage and life time
duration by developing computational prediction methods. The overall goal is a more
sustainable product life cycle. State-of-the-art development processes for SFRTs need
material and time intensive experimental programs: dependent on local �ber orientation,
the sti�ness degradation of the material needs to be fully characterized for a multitude of
load cases, e.g., considering stress amplitude, stress ratio and frequency. Based on tests
on standard specimens, the sti�ness degradation in actual components is still unclear.
Production of prototypes is time and cost intensive and a change in the design of the
component or the manufacturing process leads to a need for a renewed characterization.
To overcome the necessity of studying the macroscopic material behavior for every possi-
ble microstructure separately, a multiscale approach is developed in this work. Here, after
a characterization of the material behavior of the constituents, i.e., �ber and matrix, the
behavior of the composite can be derived via homogenization methods. Existing analyt-
ical homogenization [7�9] approaches are limited to particular inclusion geometries and
interactions between them are only captured to a certain degree. Thus, we make use of
computational homogenization techniques in the work at hand. FFT-solvers based on a
Lippman-Schwinger formulation of the elasticity problem enable an e�cient computation
of complex micro-structures [10, 11], both in terms of computational time and memory
usage. The development of suitable model order reduction techniques (MOR) enables the
application of an e�ective, microstructure-informed material law on the macroscale.
Having the developed computational methods at hand, the goal of this work is a signi�-
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cantly simpli�ed development process for SFRT components: Based on the material laws
of the constituents which are dependent on only few parameters and thus comparatively
to characterize, the sti�ness degradation of an arbitrary component can be predicted.
Advanced computational methods (micromechanics, data-driven exact model order re-
duction) help to overcome the computational complexity of the problem and enable the
prediction of engineering components in a very time e�cient manner. The computational
e�ort in the online-phase, i.e., the macroscale computation after performing precompu-
tations on a set of microstructures, is comparable to that of phenomenological fatigue
damage models for the composite material while, on the same time, keeping the advan-
tage in accuracy of microscale models. Monitoring of the local sti�ness degradation inside
the component is enabled and ensures its reliability.

1.2. Objectives

The main goal of the work at hand is the accurate prediction of the fatigue degrada-
tion of short-�ber reinforced thermoplastics under high-cycle loading and a reduction
of the number of necessary experiments to fully characterize the material behavior. To
keep the experimental e�ort at a minimum, we decided to develop a multiscale model.
Here, only the material parameters for the material laws of the constituents have to
identi�ed experimentally. Then, we subdivide the goal of the thesis into several objec-
tives:

1. development of a material model for �ber a matrix that incorporates the most
relevant e�ects of fatigue degradation,

2. transfer of the microscale equations into an e�ective macroscopic material model,

3. validation of the developed material model with experimental data.

This work partially builds upon the Ph.D. thesis of Jonathan Köbler [12]. The result of
his work was a multiscale simulation framework for SFRTs. From his thesis, in particular,
several open questions remained to be adressed:

1. What does the correct fatigue damage model look like?

2. How can the damage model be integrated within the database-approach proposed?

3. How does the volume element size on the microscale in�uence macroscopic failure
(size e�ect)?
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4. How can wave form e�ects be simulated e�ciently (stress ratio dependence)?

5. How do viscoelastic e�ects in�uence the material behavior (frequency dependence,
creep)?

With the development of the fatigue damage models within this thesis, the above questions
are adressed. The outline in section 1.3 gives an overview of the following chapters. A
summarizing discussion of the above questions and outlook is given in the conclusion
section 7.

1.3. Outline

This work presents research done in the course of the author's time as a doctoral candi-
date. It has been published in scienti�c journals. This thesis aims to set the results in
context.
First, the fundamentals of this work are discussed in chapter 2. A main challenge in
the prediction of these materials is their complex �ber structure, as shown in Fig. 1.1(a).
Thus, we choose to develop a prediction method within a computational multiscale frame-
work. This enables the derivation of the macroscopic material behavior for every �ber
orientation of the SFRT based on a database concept and precomputations on the mi-
croscale.
In particular, we are interested in modeling the sti�ness degradation of the material prior
to failure. As shown in Fig. 1.1(b), the sti�ness degradation in SFRTs under fatigue load-
ing at constant stress amplitudes can be subdivided into three stages. With increasing
cycle number N , the measured dynamic modulus E of the specimen decreases. Here, E
denotes the elastic modulus of the specimen in the respective direction. The �rst stage is
characterized by a rapid decrease of the sti�ness properties, followed by a second stage of
moderate degeneration which covers most of the life time of the component. In the third
stage, the sti�ness degradation rapidly increases and ultimately leads to �nal failure of
the specimen.
In chapter 3, we chose a localizing fatigue damage model for the thermoplastic matrix to
model this sti�ness degradation. The �ber inclusions are modeled as linear elastic. Based
on the chosen material models, the in�uence of the microstructure on the composite mate-
rial behavior is thoroughly studied. The e�ect of a varying �ber aspect ratio, �ber volume
content and �ber orientation is demonstrated. A model order reduction approach using
the non-uniform transformation �eld analysis (NTFA) enables an e�cient computation
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(a) Fiber orientation in a SFRT-component (b) Sti�ness degradation

Figure 1.1.: Fatigue degradation in SFRT-component

of the sti�ness degradation within an engineering component.
The damage model chosen in chapter 3 permits for localization of the damage �eld.
This comes with several disadvantages. Firstly, localization of damage leads to a loss of
representativity of the precomputed structures. Secondly, the damage �eld needs to be
regularized by gradient terms due to the non-convex nature of the equations to obtain a
mesh-independent numerical solution. These gradient terms add to the compexity and
consequently the run time of the micro- and macroscale model. Thirdly, a large number
of snapshots is necessary to capture the localized cracks. We are interested in the fatigue
damage degradation prior to failure. Thus, there is no need for a model that captures
the localization of cracks at the microstructure level. To overcome the mentioned dis-
advantages, we propose to use a non-localizing damage model for the matrix material
in chapter 4. It proves to be su�cient to capture experimental measurements of the
sti�ness degradation of short-�ber reinforced polybutylene terephthalate (PBT). A new
model order reduction approach based on a reformulation of the model in terms of stress
and damage �elds is proposed. The reduced order model is demonstrated to be 17 times
faster than the model presented in chapter 3 and more memory e�cient.
The material models in chapter 3 and 4 are directly formulated in (logarithmic) cycle
scale, and consequently enable an e�cient computation of the material's degeneration
up to a large number of cycles. However, the model does not account for a change in
the loading path within a cycle, e.g., a di�erent stress ratio R = σmin/σmax. Thus, in
chapter 5, the material equations are formulated in time space. For this model, a change
in the loading path within one cycle directly a�ects the damage evolution. For sinusoidal
loading at di�erent stress ratios, a damage evolution equation in (logarithmic) cycle space
is obtained via an approximation of the time evolution equations. In combination with
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the model order reduction approach discussed in section 4, a space-time upscaling scheme
is obtained for the fatigue damage evolution of SFRTs under sinusoidal fatigue loading at
di�erent stress ratios. The predicted sti�ness degradation is compared to experimental
data of reinforced polyamide at di�erent stress amplitudes and stress ratios for specimens
with di�erent notch geometries and �ber orientations.
In the above described chapters, the thermoplastic matrix is modeled by an elastic dam-
age material. In chapter 5, the capability of this model to capture the relative sti�ness
decrease under fatigue loading is demonstrated. However, thermoplastic materials are
well-known to be rate-dependent. Thus, the absolute value of the measured dynamic
sti�ness is frequency-dependent. In chapter 6, the in�uence of a linear viscoelastic matrix
material on the predicted dynamic sti�ness is thoroughly studied. At high cycle num-
bers, viscoelastic materials under fatigue loading with constant stress or strain amplitudes
reach a steady state. This fact is exploited to approximate the dynamic sti�ness of SFRTs
at high cycle numbers by an elastic computation. Based on the obtained sti�ness, a vis-
coelastic fatigue damage model is proposed. The model is suitable for the MOR described
in chapter 4.
The developments presented in each chapter can be seen as a �exible framework for fa-
tigue damage modeling in SFRTs. Based on the application, features like mean stress
dependence, see chapter 5, or frequency dependence, see chapter 6, may be added or left
out to �nd the most simple and at the same time accurate model for the purpose at
need.

1.4. Notation

In the work at hand we use non-bold letters for scalars, bold letters for vectors and
second-order tensors and double-stroke symbols for fourth-order tensors, e.g., the fouth-
oder sti�ness tensor C.
We use tensor notation and denote contraction and double contraction by · and :, respec-
tively. A list of frequently used operators can be found in table 1.1 below.
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div Divergence
det Determinant
⟨.⟩Y mean value over volume Y
∇ Gradient
∇s Symmetrized gradient

Table 1.1.: Operators
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2. Fundamental concepts

2.1. Continuum mechanics

The section aims to discuss the fundamental concepts of continuum mechanics relevant for
further discussion in a nutshell and is by no means complete or original, as is none of chap-
ter 2. For further reading, we refer to, e.g., the textbooks [13�15].

2.1.1. Kinematics

To describe the motion of a material body B, it is convenient to chose a reference con�g-
uration of the body B0. As shown in Fig. 2.1, this initial con�guration of the body can
be described by reference or material coordinates. A description of the body in terms of
the reference coordinates X is called Lagrangian description.
Under motion, the path of a typical particleX is given parametrically by

x = χ(X, t). (2.1.1)

A description of a �eld quantity in terms of the coordinates of the current con�guration x is
called Eulerian description. The displacement vector u is de�ned by

u = x−X, (2.1.2)

which indicates the di�erence between current and reference placement. Based on the
coordinates in reference and current con�guration, the deformation gradient F and the
displacement gradient H are de�ned as

F =
∂χ(X, t)

∂X
=
∂x

∂X
(2.1.3)

and, closely related,

H =
∂u

∂X
= F− I, (2.1.4)
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Figure 2.1.: Motion of the material body B

where I denotes the second-order identity tensor.
Based on the deformation gradient, an in�nitesimal material line element dX, area element
dA = dA ·N and volume element dV = dAT · dL in the reference con�guration can be
expressed in the current con�guration

dx = F · dX, (2.1.5)

da = detFF−T · dA, (2.1.6)

dv = detF dV, (2.1.7)

using Nanson's relation. A commonly used strain measure is the Green-Lagrange strain
tensor EG

EG =
1

2

(
FTF− I

)
=

1

2

(
H+HT +HTH

)
, (2.1.8)

which describes the change of length and angles in an in�nitesimal neighborhood of a
material point X.
If the deformations are small, i.e.,

∥H∥ ≪ 1, (2.1.9)

where ∥.∥ denotes the Frobenius norm, linearizing the Green-Lagrange tensor EG around
the reference state yields

EG ≈
1

2

(
H+HT

)
(2.1.10)
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and it is no longer necessary to distinguish between current and reference con�gura-
tion

x ≈ X. (2.1.11)

The linearized (in�nitesimal) strain tensor ε is thus de�ned as

ε =
1

2

(
H+HT

)
. (2.1.12)

In the thesis at hand, we restrict all further discussion to small deformations, where linear
deformation theory can be applied.

2.1.2. Balance equations

In this section, the balance equations of continuum mechanics are discussed. The descrip-
tion is based on the textbook of Liu [16, Chapter 2]. To discuss the conservation equa-
tions of continuum mechanics in a generalized form, �rst, the general balance equation of
a quantity ψ in any bounded regular subregion Vt ∈ B of a body B

d
dt

∫

Vt

ψ dv =

∫

∂Vt

Φψ · n da+
∫

Vt

sψ dv (2.1.13)

is postulated, where Φψ denotes the �ux of ψ and sψ the source term of ψ.
In a regular point x, using the Gaussian divergence theorem, its local form

∂ψ

∂t
+ div (ψ ẋ) = sψ + div Φψ (2.1.14)

is obtained.

Conservation of mass

To discuss the balance equation of mass, the quantity of interest is the mass density ρ,
i.e., ψ ≡ ρ.
In classical (non-relativistic) mechanics, mass source term sρ = 0 is postulated to be zero.
Additionally, in most solid materials, there is no mass �ux Φρ = 0. Thus, the balance
equation reads

d
dt

∫

Vt

ρ dv = 0 or
∂ρ

∂t
+ div (ρ ẋ) = 0 (2.1.15)

in its integral and local form, respectively.
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Balance of linear momentum

To discuss the balance equation of linear momentum, the quantity of interest is the linear
momentum density ρ ẋ, i.e., ψ ≡ ρ ẋ.
According to Euler's laws of motion, the source term depends on the external body force
density b acting on the point x, e.g., a gravitational force, sψ = ρb. The �ux of linear
momentum is given by the Cauchy stress tensor σ which relates the stress vector t on an
inner surface to its normal vector n

t = σT · n (Cauchy's stress theorem). (2.1.16)

As discussed in the next section, the stress tensor σ is symmetric. Thus, the balance of

linear momentum reads

d
dt

∫

Vt

ρ ẋ dv =

∫

Vt

ρb dv +
∫

∂Vt

σ · n da or ρ ẍ = ρb+ div σ (2.1.17)

in its integral and local form, respectively.

Balance of angular momentum

To discuss the balance equation of angular momentum, the quantity of interest is the
angular momentum density ρ (x− x0) × ẋ w.r.t. some reference point x0, i.e., ψ ≡
ρ (x− x0)× ẋ. Here, × denotes the vector product.
According to Euler's laws of motion, the source term depends on the external body force
density b, i.e., sψ = ρ (x− x0)× b. The �ux of angular momentum depends on Cauchy
stress tensor σ, i.e., Φψ = (x− x0)× σ.
Thus, the balance of angular momentum reads

d
dt

∫

Vt

ρ (x− x0)× ẋ dv =

∫

Vt

ρ (x− x0)× b dv +
∫

∂Vt

(x− x0)× (σ · n) da (2.1.18)

in its integral form. If the balance of linear momentum holds, then the local form of
the balance of angular momentum reduces to a symmetry condition for Cauchy's stress
tensor

σT = σ. (2.1.19)
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Conservation of energy

To discuss the balance equation of energy, the quantity of interest is the total energy, i.e.,
the sum of the internal energy ρ e and the kinetic energy ρ ẋ·ẋ/2. We set ψ ≡ ρ e+ρ ẋ·ẋ/2.
The �ux of the total energy consists of a mechanical part σ : ∇ẋ and the heat �ux q,
i.e., Φψ = σ : ∇ẋ− q. The source term sψ in the balance of energy is given by the power
of the external body forces ρẋ · b and the heat source term r. Thus, the conservation of
energy reads

d
dt

∫

Vt

(
ρe+

ρ

2
ẋ · ẋ

)
dv =

∫

∂Vt

(ẋ · σ · n− q · n) da+
∫

Vt

(ρẋ · b+ ρr) dv (2.1.20)

in its integral or, by inserting the balance of linear moment, in its local form

ρė+ div q = σ : ∇ẋ+ ρr. (2.1.21)

2.1.3. Material equations

With the kinematic equations (section 2.1.1) and the balance equations (section 2.1.2)
at hand, the system is not yet solvable. The missing piece is the material equations or
constitutive laws, which are, in contrast to the balance equations and the kinematics,
material dependent.
The design and validation of material models is a challenging task. There are few restric-
tions on the design of constitutive laws, comprising thermodynamic consistency. One class
of material models introduced by Nguyen and coworkers [17,18] are the Generalized Stan-
dard Materials (GSM) described by the Helmholtz free energy potential

w : sym(3)×RM → R, (ε,q) 7→ w(ε,q) (2.1.22)

and a convex dissipation potential

ϕ : RM → R, q̇ 7→ ϕ(q̇). (2.1.23)

Here, q denotes the vector of internal state variables. Then, the stress σ and the gener-
alized driving forces fq of the internal variables q are given by

σ =
∂w

∂ε
, (2.1.24)

fq = −∂w
∂q

. (2.1.25)
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For the potentials holds

w(0,0) = 0, ϕ(0) = 0 and
∂ϕ

∂q̇
(0) = 0. (2.1.26)

The evolution of the internal variables is governed by the complementary law

fq =
∂ϕ

∂q̇
. (2.1.27)

This yields the Biot equation

∂w

∂q
+
∂ϕ

∂q̇
= 0 (2.1.28)

for the evolution of the internal variables. In the isothermal case, the second law of
thermodynamics is given by the Clausius-Duhem inequality

D = σ : ε̇− ẇ ≥ 0, (2.1.29)

whereD denotes the dissipation. For a GSM, the inequality reduces to

∂ϕ

∂q̇
· q̇ ≥ 0, (2.1.30)

which holds by construction of the dissipation potential (convex and demands 2.1.26).

2.2. Homogenization

We are interested in the material modeling of a composite material, i.e., a material com-
prising multiple constituents. Typically, the microstructure of the composite material
and the constitutive equations of both constituents are assumed to be known. In mul-
tiscale models the aim is to �nd appropriate constitutive equations for the composite
material.

2.2.1. Introduction to homogenization

The goal of homogenization techniques is to replace a heterogeneous (possibly complex)
material by a homogeneous one, which has the same material response. The founda-
tions of analytic homogenization methods in solid mechanics were laid by Voigt [19] and
Reuss [20], who proposed bounds for the composite sti�ness using the harmonic and the
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arithmetic average of its constituents. Hashin and Shtrikman [21] improved these bounds
for isotropically distributed inclusions, where both matrix and inclusion are assumed to
have isotropic material properties.
To obtain macroscopic e�ective properties of the microstructure, suitable averaging tech-
niques are applied to a representative sample of the microstructure, i.e., a representative

volume element (RVE). There exist di�erent de�nitions on what it means for a volume el-
ement to be considered representative [22,23]. One possible de�nition is that the sti�ness
tensor of an elastic composite needs to be close to independent of the imposed bound-
ary condition (uniform stress or uniform strain) [24]. Another possible de�nition is that
the e�ective properties of it must be close to that of an in�nitely large volume with
macroscopic homogeneous properties. In any case, the characteristic length ℓchar, e.g., the
diameter of an inclusion, must be much smaller than the characteristic length ℓRVE of the
representative volume element

ℓchar ≪ ℓRVE (2.2.1)

to capture the behavior of the in�nite microstructure. On the contrary, for the scale sep-
aration to be valid, the characteristic length of the microstructure ℓRVE needs to be much
smaller than the characteristic length of the macroscopic component L

ℓRVE ≪ L. (2.2.2)

The di�erent length scales are illustrated in Fig. 2.2.
Consider a representative volume element Y on which a stress �eld σ(x) and a strain
�eld ε(x) are given. Then, the macroscopic stress ⟨σ⟩Y and strain ⟨ε⟩Y are de�ned
as

⟨σ⟩Y =
1

|Y |

∫

Y

σ(x) dY, (2.2.3)

⟨ε⟩Y =
1

|Y |

∫

Y

ε(x) dY, (2.2.4)

where

|Y | =
∫

Y

dY (2.2.5)

denotes the volume of the body Y . The Hill-Mandel condition [25]

⟨σ(x) : ε̇(x)⟩Y = ⟨σ(x)⟩Y : ⟨ε̇(x)⟩Y (2.2.6)

links the macroscopic and the microscopic scale, i.e., if the averaged stress and strain rate
are considered as macroscopic variables, then the virtual power on the macroscale equals
the power on the microscale. For linear displacement boundary conditions, uniform stress
boundary conditions as well as periodic boundary conditions, the Hill-Mandel condition
is satis�ed.
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Figure 2.2.: Length scales in homogenization

2.2.2. Problem Setting

We are interested in the e�ective constitutive equation of a composite component. We
assume the microstructure to be known and the material laws of the constituents to be
given. Furthermore, the constitutive equations of the material are assumed to fall into the
class of Generalized Standard Materials (GSM) as described in section 2.1.3. Then, Su-
quet [24,26] shows that the composite material can be expressed in terms of a GSM as well.
Thus, there exists a macroscopic potential of the free energy W

(⟨ε⟩Y ,Q) 7→ W (⟨ε⟩Y ,Q) (2.2.7)

and a macroscopic dissipation potential Φ

Q̇ 7→ Φ(Q̇) (2.2.8)

based on which the macroscopic stress-strain relation

⟨σ⟩Y =
∂W

∂ ⟨ε⟩Y
(2.2.9)

and the Biot equation de�ning the evolution of the state variables

∂W

∂Q
+
∂Φ

∂Q̇
= 0
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are given. However, the number N of state variables in the macroscopic material model
can become in�nite. Furthermore, the macroscopic material model strongly depends on
the microstructure of the composite. In general, there is no explicit representation of
the macroscopic constitutive equations. Instead, approximate models or computational
methods have been developed to derive e�ective material equations. The following sec-
tions 2.2.3 and 2.2.4 are devoted to a short overview.

2.2.3. From analytical to computational approaches

Since Eshelby [27] found a solution to the elliptic inclusion problem, analytical methods to
estimate the e�ective sti�ness of a complex microstructure have been continuously devel-
oped and are commonly-known as mean-�eld approaches, see e.g. the review of Zaoui [28]
for an overview. The popular approaches include the self-consistent scheme [29�31], the
Mori-Tanaka scheme [32, 33] or the di�erential scheme [34, 35]. For an overview, the in-
terest reader may be referred to Gross and Seelig [36, chapter 8].
Mean-�eld approaches are restricted to simple inclusions [37] of uniform distribution and
fail to accurately capture interactions between inclusions. Thus, with increasing availabil-
ity of computational power, computational homogenization methods have been developed.
These methods have been used in both hierarchical and concurrent approaches [38]. In
the concurrent approach, the material is divided into di�erent subdomains with possi-
bly di�erent length and time scales. In the hierarchical approach on the other hand,
di�erent scales are resolved in the same region. Another possible classi�cation of homog-
enization methods is their coupling. In decoupled methods, the information is passed
from the microscale to the macroscale and has been applied to, e.g., viscoelastic materi-
als [39, 40]. For material laws with high nonlinearities, a coupled approach is advisable.
The FE2-approach is an example of a fully-coupled micro-macro simulation. Originally
developed by Feyel [41�43], it has been successfully applied to many materials, e.g., elasto-
viscoplasticity [44] and damage [45,46]. Disadvantages of FE-based methods are their high
demand for computational resources and storage [47]. To improve on these, Moulinec and
Suquet [10, 48] proposed a FFT-based computational method to e�ciently compute the
response of a complex microstructure. This method has since then seen rapid devel-
opment, see, e.g., Schneider [11] for a recent overview. Fully-coupled simulations, i.e.,
FFT-FE-approaches [49, 50] have been applied. In the thesis at hand, an FFT-based
scheme is used to solve the boundary value problem at the microscale. Thus, the method
is discussed in more detail in the upcoming section 2.2.4. Instead of a direct coupling,
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in this work, the scale-transition is achieved via a model order strategy, fundamentals of
which are discussed in section 2.4.

2.2.4. FFT-based computational homogenization

We consider a heterogeneous material made of constituents that are modeled by gener-
alized standard materials. First, we derive the microscopic boundary value problem by
asymptotic homogenization. We introduce a scalar parameter κ > 0, which represents the
quotient between macroscopic and microscopic length scale. Then, considering a body
Y ⊆ R3, the �eld equations derived in section 2.1, are given with

div σκ(x) = −b(x), in Y, (2.2.10)

σκ(x) =
∂w

∂ε

(x
κ
, εκ,qκ

)
, in Y, (2.2.11)

εκ(x) = ∇suκ(x), in Y, (2.2.12)

for every �eld σκ, εκ and uκ.
Subsequently, the asymptotic ansatz

uκ(x) = u0
(
x,

x

κ

)
+ κu1

(
x,

x

κ

)
+ κ2u2

(
x,

x

κ

)
+O

(
κ3
)
, (2.2.13)

εκ(x) = ε0
(
x,

x

κ

)
+ κε1

(
x,

x

κ

)
+O

(
κ2
)
, (2.2.14)

σκ(x) = σ0
(
x,

x

κ

)
+ κσ1

(
x,

x

κ

)
+O

(
κ2
)
, (2.2.15)

qκ(x) = q0
(
x,

x

κ

)
+ κq1

(
x,

x

κ

)
+O

(
κ2
)

(2.2.16)

is made. We de�ne the microscopic variable y = x/κ to proceed. Inserting the asymp-
totic ansatz into the equations (2.2.10)-(2.2.12) and as κ → 0, we obtain the rela-
tion

∇s
yu

0(x,y) = 0 (2.2.17)

from which follows that u0 is independent of the microscopic variable y via the Korn-
Poincaré inequality [51] and the equations

ε0(x,y) = ∇s
xu

0(x) +∇s
yu

1(x,y), microscopic compatibility condition (2.2.18)

σ0(x,y) =
∂w

∂ε0
(
ε0,q0

)
(x,y), microscopic constitutive equation (2.2.19)

divyσ
0(x,y) = 0, microscopic balance of linear momentum (2.2.20)

divx

〈
σ0(x,y)

〉
Y
= −b, macroscopic balance of linear momentum. (2.2.21)
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Inserting equation (2.2.18) and (2.2.19) into equation (2.2.20) and using the short-hand
notation E = ∇s

xu
0(x) for the macroscopic strain, we obtain

divy

(
∂w

∂ε0
(
E+∇s

yu
1,q0

))
= 0 (2.2.22)

for the microscopic balance of linear momentum. In the context of FFT-based mi-
cromechanics, it is convenient to reformulate the microscopic balance of linear momen-
tum (2.2.22) in the Fourier space. For the displacement �uctuation u1, we make the
ansatz

u1 =
∑

η∈Zd

û(η) exp

(
2πi

L
y · η

)
, (2.2.23)

where Zd denotes the space of d-dimensional integers, i is the complex unit and û are the
complex valued Fourier coe�cients. We introduce the auxiliary problem

divy (C0 : ∇su) = f (2.2.24)

with the isotropic reference sti�ness C0 with the Lamé constants λ0 and µ0. The Green's
operator G0 de�ned as

Ĝ0(η) =




− 1
µ0∥η∥2 I+

µ0+λ0
(2µ0+λ0)µ0 ∥η∥2 η ⊗ η, if η ̸= 0,

0, otherwise.
(2.2.25)

Then, we obtain the solution

û (η) = Ĝ0 (η) · f̂ (η) or u(x) = (G0 ∗ f) (x) =
∫

Y

G0(x− y) · f(y)dy. (2.2.26)

With the auxiliary solution at hand, we turn our attention back to the microscopic bound-
ary value problem (2.2.22) and subtract the term div (C0 : (E+∇su1)) on both sides of
the equation

div
(
∂w

∂ε0
(
E+∇s

yu
1,q0

)
− C0 :

(
E+∇su1

))
= −div

(
C0 :

(
E+∇su1

))
, (2.2.27)

where we dropped the dependence of the variables on the microscopic variable y for
simplicity of notation. Since C0 : E is constant, the term div (C0 : E) vanishes, and we
obtain

−div
(
∂w

∂ε0
(
E+∇s

yu
1,q0

)
− C0 :

(
E+∇su1

))
= div

(
C0 :

(
∇su1

))
. (2.2.28)
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We de�ne the polarization stress τ by

τ
(
u1,q0

)
=
∂w

∂ε0
(
E+∇s

yu
1,q0

)
− C0 :

(
E+∇su1

)
(2.2.29)

and �nally derive

−div τ = div
(
C0 :

(
∇su1

))
, (2.2.30)

which is of the same form as the auxiliary problem (2.2.24) for which we know the solution.
We obtain the equation

u1 = −G0 div
[
τ
(
u1,q0

)]
(2.2.31)

or

ε0 = E−∇sG0 div
[
τ
(
u1,q0

)]
. (2.2.32)

The latter is the well-known Lippmann-Schwinger equation in elasticity. The operator
Γ0 = ∇sG0div is called Eshelby-Green operator. We derived the Lippmann-Schwinger
equation from the microscopic boundary value problem (2.2.18)-(2.2.20). Both formula-
tions are equivalent.
Moulinec and Suquet [10] proposed an algorithm to solve the Lippmann-Schwinger equa-
tion by using the Fast Fourier Transform (FFT). For �xed q0, the equation (2.2.32) is a
�xed point equation. With the de�nition of an operator B via

B : ε0 = Γ0 ∗
(
∂w

∂ε0
(
ε0,q0

)
− C0 : ε

0

)
(2.2.33)

the Lippmann-Schwinger equation (2.2.32) can be rearranged to

ε0 = (I+ B)−1 : E. (2.2.34)

For the linear case, a representation of the above equation as Neumann series

(I+ B)−1 : E = E+
∞∑

i=1

(−B)j : E (2.2.35)

gives rise to the iterative scheme known as the continuous algorithm [10]. To be able to
compute a microstructure on a computer, we discretize the continuous problem to ob-
tain an approximate problem with �nite degrees of freedom. Suppose we have a cubic
body YN subdivided into N × N × N cubic elements called voxels. Then, instead of
evaluating the microscopic �elds on all y ∈ Y as in the continuous algorithm, the micro-
scopic �elds are only evaluated at n = 1 . . . N3 points and the Fourier transform FT is
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Algorithm 1 Discrete algorithm [10]

// Initialization
εN = E

while no convergence do

τN = σN(εN)− C0 : εN

τ̂N = DFT (τN)
check convergence
ε̂N(η) = −Γ̂0

N : τ̂N(η)

ε̂N(0) = E

εN = DFT −1(ε̂N)

end while

replaced by the discrete Fourier transform DFT . Moulinec and Suquet [10,48] proposed
to evaluate the strain �uctuations at the voxel centers and use the approximated strain
�eld εN

εN(y) =
∑

η∈Z3
N

ε̂N (η) exp

(
2πi

N
η · y

)
(2.2.36)

with

Z3
N =

{
η ∈ Z3

∣∣∣∣− (N/2) + 1 ≤ ηj ≤ (N/2) for all j = 1, . . . , 3

}
. (2.2.37)

The obtained algorithm is summarized in algorithm 1. The Eshelby-Green operator Γ0

has an explicit representation in Fourier space and is thus applied in the Fourier space.
The development of the Fast Fourier Transform (FFT) algorithm and its e�cient and
parallelized execution using the Fastest Fourier Tranform in the West (FFTW) [52] im-
plementation signi�cantly contributes to the performance of the scheme.
This original discretization with trigonometric functions has some disadvantages such as
ringing artifacts in the solution �elds. It has triggered further development of di�er-
ent discretization schemes for FFT-based solvers, such as the Willot discretization [53]
and the staggered grid scheme [54]. At the same time, solution methods have also
been developed further. We refer to the review article of Schneider [11] for a recent
overview.
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2.3. Galerkin method

To solve boundary value problems of classical continuum mechanics discussed in chap-
ter 2.1 or other partial di�erential equations numerically, the next step is a discretization
of the equations.
In solid mechanics, a popular discretization method is the Galerkin discretization. It is
used both in �nite element methods (FEM) and model order reduction techniques and
approximates the variational equation (weak form) of the boundary value problem in a
�nite dimensional space.

2.3.1. Galerkin discretization

For the sake of simplicity, we restrict the discussion to the isothermal case with linear-
elastic materials in this section. For non-linear problems, typically the linearized system is
solved. First, we present the Galerkin discretization starting from the classical formulation
of the equations. Subsequently, its application in the �nite element method (section 2.4)
and model order reduction techniques (section 2.3.2) is discussed.
For a conservative mechanical systems, its potential energy Π is given by the sum of its
inner potential

Πi(u) =

∫

B
w(ε(u)) dV (2.3.1)

and the potential of external forces

Πa(u) = −
∫

B
u · b dV −

∫

∂Bn

t0 · u dA. (2.3.2)

via

Π(u) = Πi(u) + Πa(u). (2.3.3)

Using the principle of minimum total potential energy, the �rst variation δΠ must be zero,
i.e.,

δΠ = 0. (2.3.4)

For linear-elastic materials, the free energy potential w(ε) is given by

w(ε) =
1

2
ε : C : ε (2.3.5)
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Then, the �rst variation of the potential energy Π in the direction of a test function w

is

δΠ =

∫

B
[(C : ∇su) : ∇sw − b ·w] dV −

∫

∂Bn

t0 ·w dA. (2.3.6)

The displacement u is equal to prescribed values u0 on the Dirichlet boundary Bu and
lives in the space of solution functions

V∗ =
{
u ∈ H1 : u

∣∣
Bu

= u0

}
, (2.3.7)

with the Sobolev space H1. A function u is an element of the Sobolev space H1 if the
components of u, denoted by uα, and their partial derivatives ∂uα/∂xα are elements of
the Lebesgue space L2 on which the scaler product

(f, g)L2 :=

∫

B
f g dV (2.3.8)

is de�ned. We introduce the short-hand notations

a(u,w) =

∫

B
(C : ∇su) : ∇sw dV, (2.3.9)

f(w) =

∫

B
w · b dV +

∫

∂Bn

t0 ·w dA. (2.3.10)

Then, the variational equation can be expressed in a compact manner via the bilinear
form a and the linear form f :

u ∈ V∗ : a(u,w) = f(w) for all w ∈ V . (2.3.11)

In Galerkin methods, the discretized problem is obtained by projection of the continuous
formulation onto a �nite dimensional subspace V∗

h ⊂ V∗ and Vh ⊂ V . The discretized
form reads

uh ∈ V∗
h : a(uh,wh) = f(wh) for all wh ∈ Vh. (2.3.12)

2.3.2. Finite element method

As shown in Fig. 2.3, in �nite element methods the material body B is approximated by
a decomposition

B ≈ Bh =
ne⋃

e=1

Be (2.3.13)
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B Bh

Be

Figure 2.3.: Discretization with triangular �nite elements

into a �nite number of elements Be. The displacement is determined by a �nite number
of nodes xi on the element with the nodal displacements ui. Using shape functions Ni(x),
the ansatz

uh =
N∑

i=1

Ni(x)ui for all x ∈ Be (2.3.14)

is made for the discretized displacement uh. For the test functions wh the same shape
functions are chosen. From the obtained discretized system, a linear system of equations
can be assembled and the solved computationally. The �nite element method is widely
used in continuum mechanics simulation. We refer to Zienkiewicz et al. [55] and Fish and
Belytschko [56] for an overview.

2.4. Model order reduction

Model order reduction approaches may be subdivided into system theoretical approaches
and numerical analysis of partial di�erential equations [57, Chapter 1]. We are focus on
a discussion of the latter in this section.
In most practical applications, a direct coupling of micro- and macroscale, e.g., via the
FE2-method or an FFT-FE-scheme, is limited to rather small macroscale components or
two-dimensional simulations. To predict the macroscopic behavior of complex components
with limited computational resources and in a limited amount of time, reduced models
have been developed.
In reduced basis methods, an M -dimensional projection space VH is identi�ed. The
reduced order model seeks a solution

a(uH ,wH) = f(wH) for all wH ∈ VH .
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where the full-�eld solution uh is approximated by

uh ≈
M∑

i=0

uiHV
i
H (2.4.1)

and V i
H are the modes spanning VH . Here, the dimension of the full order model (FOM) N

needs to be much larger than the dimension of the ROM M to gain computational
e�ciency. For the identi�cation of the projection space, multiple methods have been
applied in literature. One of the most common is the proper orthogonal decompo-
sition (POD) [58, 59]. Here, the point of departure is some N -dimensional solution
�elds uh obtained by the FOM, e.g. a �nite element computation (section 2.3.2) or a
FFT-computation (section 2.2), often called snapshots. Subsequently, the the principal
components of the �elds and their associated eigenvalues are computed. A set of principal
components with the largest corresponding eigenvalues is then chosen as reduced basis. It
is easy to implement and approximation is optimal in the L2-norm. Reduced basis meth-
ods (RB) [60], in contrast, need fewer FOM-realizations and uses of a greedy sampling
approach. In contrast to POD and RB, Proper Generalized Decomposition (PGD) [61,62]
methods not only decompose the solution in time and spatial domain, but decompose the
solution into a functional representation of each spatial variable and parameter. This
makes the method very general and can be viewed as an extension of the classical POD.
In the context of micromechanics and for nonlinear materials with constitutive equations
that admit a split into elastic and inelastic components, Dvorak and coworkers [63,64] de-
veloped the Transformation Field Analysis (TFA). Here, the basis functions are piece-wise
constant. This approach later sparked the development of the Nonuniform Transforma-
tion Field Analysis (NTFA) [65] using POD to identify mode �elds [66]. On the question
of suitable evolution equations for the macroscopic state variables within this framework,
Fritzen [67] proposed a derivation of the evolution laws based on an incremental varia-
tional formulation, which is applicable to arbitrary generalized standard materials (GSM).
Another approach, �rst proposed by Liu and coworkers [68] is the self consistent clustering
analysis directly derived from a Lippmann-Schwinger formulation for microstructures with
piece-wise constant �elds. It has been shown to be closely related to th TFA [69]. Recent
developments include an adaptive clustering [70] and extension to the macroscale [71].
A problem remaining in projection-based reduced order models is the e�cient evaluation of
models with non-a�ne parameter dependence. Then, an integration of a mode-dependent
function over the microsopic domain is necessary at the online-stage. Thus, the compu-
tational e�ort of the reduced order model still depends on the size of the microscopic
volume element. Common methods to overcome this issue are the empirical interpolation
method, where the forcing term is projected on to a collateral basis [72,73], and quadra-
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ture approaches [74, 75] to get a fast approximation of the integral in the online phase.
For comparison of the latter two methods, see, e.g., von Tuijl et al. [76]. Other approaches
rely on Taylor approximations [77�80].
Instead of using linear projection techniques like the POD, nonlinear low-dimensional rep-
resentations of the space may be used, e.g., exploiting neural network architectures [81,
82] (NN). Other NN-based methods directly construct a purely data-driven macroscopic
model [83,84] or approximate the forcing term of the equations via NNs [85].
A di�erent route to e�cient macroscale models is based on the approximation of the
microstructure (instead of the material law). Recent developments in this direction com-
prise the method of statistical similar volume elements [86, 87] and deep material net-
works [88�90].

2.5. Short-�ber reinforced thermoplastics

After having discussed the fundamentals of mechanics and discretization schemes as well
as computational homogenization in the previous sections, we now turn our attention to
a discussion of the material class of SFRT.
Due to their comparatively large sti�ness to weight ratio, the usage of �ber reinforced
polymers in light-weight engineering applications increased signi�cantly in recent years.
Available �ber reinforced polymers can be classi�ed by their �ber length or their matrix
material. In the work at hand, we are interested in short-�ber reinforced polymers. Typ-
ical �ber aspect ratios, i.e., the �ber length to �ber diameter ratios are in the order of
ten. In contrast to other polymeric materials such as thermosets, thermoplastic materials
can be melted and welded, which improves their recycability in comparison to thermoset
materials.
The material behavior of thermoplastic materials is rather complex. Its properties depend
on a multitude of conditions, such as their crystallinity, in some cases humidity [91, 92]
and temperature [93�95]. Additionally, they exhibit rate dependency. The root cause of
their rate dependent material behavior can be found on the molecular scale of the mate-
rial: time-dependent chain oscillations and grain boundary relaxation [96]. These chain
oscillations can be thermally activated. Thus, an increase in temperature leads to a shift
of the mechanical properties of the material. Williams, Landel and Ferry [97] proposed
a widely used model to represent this temperature-rate superposition. The (rate depen-
dent) properties of thermoplastics are not only dependent on temperature, but may also
be changed by �llers [98, 99] or the blending of di�erent thermoplastics [100].
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Figure 2.4.: Evolving microstructure in injection molded short-�ber reinforced component

The complex material behavior of neat thermoplastics is transferred to the e�ective be-
havior of (short-)�ber reinforced composites, e.g., the rate dependency observed in neat
materials translates to a rate dependency of the composite materials [101�103]. As shown
in Fig. 2.4, short-�ber reinforced thermoplastic components are typically produced by in-
jection molding. Even for simple component geometries, e.g. the plate shown in Fig. 2.4,
the process leads to a locally varying �ber structure within the engineering component.
The �ber orientation evolving depends on the plate thickness. For a 2mm thick plate,
Andrä et al. [104] analyzed the �ber orientation over the plate thickness. In the shell
layer of the plate most �bers point in �ow direction, while in the inner layers a more
planar isotropic structure evolves. In more sophisticated engineering components, the
microstructure is rather complex and process dependent. Thus, a di�erent (anisotropic)
macroscopic material behavior at possibly every point of the component has to be un-
derstood, when predicting the mechanical behavior of the component. Additional to the
�ber orientation, the macroscopic material behavior depends on its �ber volume content
and the geometry of the inclusions [105,106].

2.6. Fatigue

Mechanical fatigue is the process of slow degeneration and �nal failure of a material
under cyclic loading with rather low amplitudes. In the following section, �rstly, the
material scienti�c origin of fatigue degradation in SFRT is brie�y reviewed (section 2.6.1).
Secondly, material modeling of fatigue is discussed in section 2.6.2.
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2.6.1. Material science of fatigue

The fatigue degradation of metallic material has been an area of extensive research during
the last century. Fatigue in metallic materials is caused by dislocation motion [107]. In
contrast to that, polymer materials are rather new. Here, molecular rearrangements
and the formation of microvoids are the root cause of fatigue degradation. Thus, the
cristallinity of the material a�ects its fatigue strength [108]. In semi-crystalline materials,
the elementary process from which a damage process starts, is nucleation [109]. In the �rst
stage of fatigue of neat thermoplastics, the number of cavities increases whereas their size
remains constant [110]. In this regime of uncorrelated nucleation, the dynamic modulus of
the material decreases linear over the logarithmic cycle space [111]. Later, dependent on
the disorder and the stress level in the material, either an accumulation of the defects or
growth of a single cavity lead up to third and �nal stage of fatigue: microcrack propagation
and failure of the material [111]. The dynamics of this process have been modeled by Fusco
et al. [112]. Careful analysis suggests, that in creep and fatigue fracture intraspherulitic
fracture develops ahead of the microcrack, which propagates in charcteristic increments
that correspond to the size of spherulits in size [113,114]. However, the precise mechanism
is still under research as detection of microvoids and thus understanding the physically
processes involved is still rather challenging [114,115].
In SFRT, local fatigue mechanisms leading to this macroscopically observable degradation
are �ber failure, �ber debonding and damage within the matrix material [116]. The
contribution of the fatigue damage evolving within the matrix is rather signi�cant for
the degradation process [110,117�119]. As in the neat material, the root cause of fatigue
damage is microvoid formation [110] that triggers all other damage mechanisms. The
introduction of �bers into the matrix leads to a complex stress distribution and the local
fatigue processes strongly depend on �ber orientation [120, 121], �ber volume fraction,
�ber aspect ratio [122] and �ber-matrix adhesion [117]. For an overview of the most
relevant e�ects, see Mortazavian et al. [123].

2.6.2. Fatigue modelling

Fatigue was �rst studied by Wöhler [124] for metallic materials. He observed an logarith-
mic dependence of the bearable stress amplitude on the cycle number. A Wöhler curve
gives the expected failure cylce for a speci�c component. Later, based on Gri�th's theory
of brittle fracture [125], Paris [126] �rst described the evolution of a crack under fatigue
loading, linking fracture mechanics and fatigue prediction.
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To understand mechanisms at molecular level, molecular dynamics simulations can be
applied to amorphous polymers [127, 128]. At a coarser level, polymer-based materials
subjected to fatigue loading typically show three stages of fatigue [3�6]: an initial rapid
decrease of the sti�ness properties, a secondary stable and moderate sti�ness degradation
and a �nal failure corresponding to a rapid decay of the material sti�ness, see Fig. 1.1(b).
On this coarser level, the material can be modeled as a continuum. Based on continuum
damage mechanics [129] or the closely related phase-�eld fracture approach [130�133], con-
stitutive models indirectly account for the physical processes like crazing on the microscale.
The damage models of Lemaitre [134, 135] and Gurson [136] regard fatigue damage as a
reduction of the e�ective cross section, i.e., a reduction of the sti�ness of the material.
This reduction is parameterized by a damage variable, which evolves under certain loading
conditions. The phase-�eld fracture approach [132,133] is motivated by the regularization
of a sharp crack to a di�use approximation. Originally developed for fracture under static
loading conditions, it has also been applied to fatigue fracture [137�139].
To predict fatigue failure of �ber-reinforced materials, one of the �rst developed ap-
proaches was the Through Processes Modeling (TPM). It is based on an elastic compu-
tation on the component, the identi�cation of critical spots based on the stress �eld in
the elastic computation and a prediction of the fatigue failure based on a suitable fatigue
criterion [140�144]. The approach enables a simple and e�cient estimation of the fatigue
failure. However, due to the sti�ness degradation of SFRT prior to failure, a redistribution
of stresses may occur on component level. TPM methods are not able to account for this
e�ect.
To predict the gradual degradation of the material, fatigue damage models have been
developed. They can be subdivided into phenomenological, analytical and computa-
tional methods. Phenomenological models are formulated directly on the macroscopic
scale [5,145�148]. Their demand for experimental investigations is comparatively high, as
a multitude of load cases needs to be investigated prior to the formulation of a meaningful
material model for the composite. However, once identi�ed, they are computationally ef-
�cient and rather simple to implement. On the other hand, multiscale methods formulate
material models for each constituent and derive the composite behavior from homoge-
nization techniques. The necessary experimental e�ort is thus signi�cantly decreased.
Mean �eld methods for fatigue damage [7�9] are based on analytic homogenization and
are thus limited to rather simple inclusion shapes. Their main advantage is their compu-
tational e�ciency. Another multiscale approach is computational homogenization. It is
advantageous in its accuracy of the prediction and more �exible in comparison to mean-
�eld approaches. FFT-based computational methods are discussed in section 2.2 in more
detail.
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3. A computational multi-scale

model for the sti�ness

degradation of short-�ber

reinforced plastics subjected to

fatigue loading1

3.1. Introduction

In this chapter, we introduce a multi-scale model for fatigue-induced sti�ness degradation
of short-�ber reinforced composites which, on the one hand, accounts for the microscopic
geometry of �ber-reinforced composites, and, on the other hand, is capable of performing
industrial-scale component simulations.
A continuum damage model for the matrix material serves as our point of departure. The
model which is discussed within the setting of the two-potential framework of dissipative
materials introduced by Halphen&Nguyen [17]. We chose to work directly in cycle space,
such that we may ignore viscous e�ects, on the one hand, and pro�t from a discretization
in "time" that permits skipping several orders of cycles at once. The model is presented
in section 3.2, and is based on a quadratic degradation function.
We assume that fatigue e�ects are rooted on the micro-scale, and that the inclusions

1 Reproduced from: J. Köbler, N. Magino, H. Andrä, F. Welschinger, R. Müller, M. Schneider, "A

computational multi-scale model for the sti�ness degradation of short-�ber reinforced plastics sub-

jected to fatigue loading," Computer Methods in Applied Mechanics and Engineering, vol. 373, pp.

113522, 2021.
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serve as "defects" where cracks originate from. The scale-transition procedure within the
two-potential framework is discussed in section 3.2. By this homogenization process, the
anisotropic degradation of the e�ective sti�ness is naturally accounted for.
Subsequently, see section 3.3, we thoroughly investigate the multi-scale model on volume-
element level, both in terms of the numerical parameters, cf. section 3.3.2 and by varying
both the loading and the composition of the �ber-�lled volume elements, see section 3.3.3.
We discuss the model-order reduction strategy in section 3.4, including the necessary �ber-
orientation interpolation procedure, and present numerical investigations on the necessary
modes and on the accuracy of the model. The matrix fatigue-damage model was chosen
essentially because it permits straightforward model-order reduction while, at the same
time, maintaining several properties of a fatigue-damage model that we consider attrac-
tive. For instance, it naturally accounts for irreversibility of damage, and forces the
damage variables to attain values in the interval [0, 1] automatically.
Finally, in section 3.5.4, we demonstrate that the fully identi�ed multi-scale model permits
conducting industrial-scale �nite element simulations on component level by analyzing an
automotive application, i.e., a plastic housing component of an electric window-lift drive.
The presented model contrasts strongly to the approach to fatigue damage in the phase-
�eld context proposed by Carrara et al. [137] and Alessi et al. [138], as the mentioned
references are primarily concerned with metallic materials and model the growth of fa-
tigue cracks (on component scale). This is achieved by adding an evolution equation for
the crack resistance.
The model presented in this work targets the sti�ness degradation observed in polymeric
materials under fatigue loading � an e�ect that is negligible for most metallic components
� and is explicitly settled in a multi-scale context. Also, we do not model crack growth
on the macroscopic scale.
Of course, that does not mean that both models could not be combined. However, the
intrinsic anisotropy of short-�ber reinforced materials necessitates also modeling the crack
resistance in an anisotropic way [149,150].

3.2. A gradient-enhanced fatigue-damage model for

the matrix

We use the two-potential framework [17] for describing our fatigue-damage model. How-
ever, we shall work in the cycle domain instead of the time domain. Notice that, for fatigue
experiments, a large number of cycles N , typically on the order of a few thousands or
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millions at least, has to be considered. Within each cycle, a periodic or quasi-periodic
loading is applied. As each individual cycle again needs to be discretized by a number of
time steps, resolving fatigue-type experiments in the time domain may be computation-
ally demanding or even infeasible.
As a workaround, time-homogenization approaches may be used [151, 152] for realizing
an upscaling in time. For the article at hand, we chose to start with a model de�ned in
the cycle domain right away, i.e., the temporal evolution of the �elds and quantities of
interested is described in terms of a continuous parameter N≥ 0 with dimension 1 instead
of the more familiar time variable.
Clearly, the two-potential framework [17] carries over viz-a-viz to this setting, with ter-
minological modi�cations. For instance, ε and σ refer to (tensorial) strain and stress
amplitudes, respectively. Also, the dimensions of the dissipation potential ϕ change - in
the cycle domain, the total dissipation of the cycle is measured, and not per unit of time.
Despite these changes, we shall retain the terminology dissipation potential. We indicate
the derivative of any quantity q w.r.t. the cycle N by q′ ≡ dq/dN for notational conve-
nience.
For the homogeneous model, we work with a single scalar damage variable d. As free
energy density, we use

w(ε, d) = 1
2
[η + (1− d)2] ε : C : ε (3.2.1)

involving a given sti�ness tensor C and a positive constant η. The latter constant is
typically small, and introduced for avoiding ill-posedness of the resulting �eld equations.
Indeed, the constant η determines the residual sti�ness ηC in a fully damaged state, i.e.,
for D = 1. The corresponding stress computes as

σ ≡ ∂w

∂ε
(ε, d) = [η + (1− d)2]C : ε, (3.2.2)

i.e. the variable d ∈ (0, 1] decreases the sti�ness in a homothetic fashion.
The two-potential framework is complemented by the quadratic dissipation potential

ϕ(d′) =
1

2αd

(d′)2, (3.2.3)

involving a phenomenological parameter αd of dimension 1/stress, i.e., 1/MPa. The re-
sulting Biot's equation

0 =
∂w

∂d
(ε, d) +

∂ϕ

∂d′
(d′) ≡ −(1− d) ε : C : ε+

1

αd

d′

may be re-arranged into the ordinary di�erential equation

d′ = αd (1− d) ε : C : ε, (3.2.4)
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i.e., the evolution of D is governed by (a scaled version of) the stored elastic energy
1
2
ε : C : ε corresponding to the undamaged medium. We see that the parameter αd

controls the speed of evolution of the ordinary di�erential equation (3.2.4).
For a free energy of the form (4.2.1) we see that, as long as d ≤ 1, d is non-decreasing.
Thus, the irreversibility of damage is a direct consequence of the evolution (3.2.4). Also,
for d = 1, the right hand side of (3.2.4) vanishes. Thus, provided d(0) = 0 is used as
the initial condition, d will remain in the interval [0, 1] for all time, in accordance with
physical reasoning.
As αd enters linearly in the right-hand side of the evolution equation (3.2.4), the latter
equation may be re-arranged in the form

dd
d(λN)

=
αd

λ
(1− d) ε : C : ε for any λ > 0.

Thus, scaling αd essentially changes the time scale on which e�ects take place. Put dif-
ferently, on a normalized cycle scale, the behavior of the model (3.2.4) is independent of αd.
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Figure 3.1.: One-dimensional solution for di�erent αd subjected to constant strain (left)
and stress (right) amplitudes

To gain intuition concerning this model, we shall investigate uni-axial extension in one
spatial dimension. For prescribed uni-axial strain (amplitude) ε0 and initial condition
d(0) = 0, the solution computes as

d(N) = 1− exp
(
−αdEε

2
0N
)
, (3.2.5)
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where E denotes Young's modulus. For ε0 = 2 % and E = 2500MPa, the solution is
shown in �gure 3.1(a). For constant strain (amplitude), the damage variable converges
asymptotically to the fully broken state.
For constant stress amplitude σ0, the solutionD at cycleN satis�es the equation

(1− d)4 + 4η (1− d)2 + 4η2 ln(1−D) = 1 + 4η − αd
4σ2

0

E
N. (3.2.6)

Solutions for σ0 = 50 MPa, η = 0.1 and E = 2500MPa and di�erent values for αd are
shown in �gure 3.1(b). The damage variables increases with increasing slope until it
reaches a plateau close to 1. Due to the residual sti�ness η, a smooth transition from the
highly damaged to the fully broken state is ensured.
We complete the discussion of the material model with several remarks.

1. As the damage leads to a reduction in sti�ness, higher strains occur in the stress-
controlled simulation (see �gure 3.1(b)) than in the strain-controlled variant (see
�gure 3.1(a)). These higher strains lead to a faster growth of the damage d in the
stress-controlled simulation.

2. The presented fatigue-damage model is deliberately simple. We only model a homo-
thetic decrease of the sti�ness, do not account for irreversibility and choose both a
quadratic damage-degradation function and a quadratic dissipation potential. The
reasons behind these choices are two-fold. Firstly, we would like to have a model
that is as simple as possible and to have a minimum number of parameters. Indeed,
our principal goal is to study the in�uence of the microstructure on the fatigue be-
havior. Thus, we regard homogenization as an operation acting on material models,
see Gajek et al. [90] for details on this point of view.
Secondly, we wish to ensure applicability of the ensuing model on component scale.
We realize this by an order-reduction framework, see section 3.4. Thus, we chose a
model which permits straightforward model-order reduction. Notice that this choice
is purely by comfort, and is not based on any physical reasons. Still, we target ob-
taining insights on the way microstructural characteristics manifest in the e�ective
sti�ness degradation of composites subjected to fatigue loading, see section 3.3.

3. Localization e�ects prevent using the presented model in simulations directly. How-
ever, adding a non-local term cures these problems, see section 3.2.

The two-potential framework o�ers a convenient framework for �rst-order homogenization
in mechanics. Suquet [24] showed that the class of generalized standard materials is
closed upon periodic homogenization, provided an in�nite number of internal variables is
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permitted. In this spirit, we shall use the fatigue-damage model of the previous section for
obtaining an e�ective model on component scale. Suppose a periodic cuboid cell Q ⊆ Rd

is given, together with a decomposition into two regions determined by a characteristic
function χ : Q → {0, 1}. We assume that the "matrix", χ−1(1), is governed by the
fatigue-damage model of section (3.2), with parameters CM, η and αd , whereas the
complement, χ−1(0), behaves elastically with elasticity tensor CF. Furthermore, to avoid
damage localization [153], we introduce a non-local term in the free energy whose e�ect
is determined by two parameters γ and ℓ, the former an intensity factor with dimensions
of stress, and the latter a length scale responsible for the regularization width.
The e�ective free energy is given by

W : Sym(d)× U ×D → R

(ε, u, d) 7→ 1

2|Q|

∫

Q

χ(η + (1− d)2)ε : CM : ε+ (1− χ)ε : CF : ε

+γ ℓ2 χ∥∇d∥2 dx,
(3.2.7)

whereas the dissipation potential reads

Φ : U × D → R, (u, d′) 7→ 1

2|Q|

∫

Q

χ
(d′)2

αd

dx. (3.2.8)

For �xed d ∈ D, the e�ective sti�ness tensor Ce� is given by linearly homogenizing the
heterogeneous sti�ness tensor

χ(η + (1− d)2)CM + (1− χ)CF

on Q, i.e., for �xed E ∈ Sym(()d), we have

Ce�(d) : E =
1

Q

∫

Q

[
χ(η + (1− d)2)CM + (1− χ)CF

]
: (E +∇svE) dx, (3.2.9)

where the periodic displacement �uctuation �eld vE : Q→ R solves the balance of linear
momentum on the micro-scale

div
{[
χ(η + (1− d)2)CM + (1− χ)CF

]
: (E +∇svE)

}
= 0. (3.2.10)

Clearly, for E = ε, equation (3.2.9) just computes the e�ective stress. However, as the
microscopic free energy entering (3.2.7) is quadratic in the strain, we may even de�ne the
complete e�ective sti�ness.
We conclude with a few comments.

1. The model (3.2.7) and (3.2.8) may be considered as a gradient-extended continuum,
see Svendsen [154]. We shall not dwell upon the continuum-mechanical interpre-
tations. The gradient term was merely introduced for numerical reasons. Indeed,
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without the gradient-extension, the material behavior led to strong localizations
which prevented further analysis of the model.

2. Alternatively, the model (3.2.7) and (3.2.8) may be considered as a special phase-
�eld damage model [131, 155]. Although the incremental potential (3.2.15) will
be remarkably similar to phase-�eld models for fracture [132, 156], there are some
di�erences. On the one hand, no additional damage term enters the free energy. On
the other hand, the dissipation potential (3.2.8) is quadratic and �nite-valued.
In contrast to Carrara et al. [137], who model emerging fatigue cracks in metallic
and brittle materials, we model a sti�ness degradation. In particular, Carrara et
al. [137] do not account for a degradation of sti�ness, but rather a degradation of
the crack resistance. Also, Carrara et al. [137] work in the time domain, whereas
we chose to work in cycle space right from the beginning.

3. The Biot's equation for u of the model reduces to the quasi-static balance of linear
momentum (3.2.10) on the micro-scale for E = ε, i.e.,

div
∂w

∂ε
(x, ε+∇su, z) = 0. (3.2.11)

On the other hand, Biot's equation for d leads to

d′ = αd

[
(1− d)ε : CM : ε− γℓ2∆d

]
(3.2.12)

in the matrix material χ−1(1), where ∆ = div ∇ denotes the Laplace operator, and
with Neumann boundary conditions

∂d

∂n
(x) = 0 on ∂χ−1(0) ∩ ∂χ−1(1), (3.2.13)

i.e., the interface. Hence, we recover the evolution equation (3.2.4), augmented
by a non-local term. The equation (3.2.12) only evolves d in the matrix. The
latter approach requires a special numerical treatment, as FFT-based methods, as
in Ernesti et al. [157] are not directly applicable.

4. Due to the gradient enhancement, we can no longer conclude a growth of d point-
wise. However, upon backward Euler-discretization, we may conclude dn(x) ∈
[minx∈Q dn−1(x), 1] for almost every x ∈ Q, with arguments similar to section 3.4
in Ernesti et al. [157]. In particular, using the initial condition d0 ≡ 0, we obtain
d(x) ∈ [0, 1] for almost every x ∈ Q.

5. Wul�ngho� et al. [158] introduced a criterion for tensorial damage models based on
continuum micromechanics. Suppose an irreversible damage process is taking place
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described by some scalar parameter s, with corresponding sti�ness C(s). Then, the
identity C(s1) ≥ C(s2) should hold provided s1 ≤ s2, where the latter inequality
should be understood in terms of quadratic forms, i.e., ξ : C(s1) : ξ ≥ ξ : C(s2) : ξ

for all ξ ∈ Sym(()d).
The reasoning behind the criterion is as follows. Suppose C(s) arises as the e�ective
sti�ness of a microscopic sti�ness distribution C onQ, depending also on s. Then, for
s2 ≥ s1 the inequalities C(s1,x) ≥ C(s2,x) valid for x ∈ Q imply Ce�(s1) ≥ Ce�(s2),
see Appendix B in Ponte Castañeda&Suquet [159].
For the local model, cf. equation (3.2.4), we established a point-wise decrease of the
elastic sti�ness. Thus, for ℓ ≡ 0, by the arguments of Ponte-Castañeda&Suquet,
the e�ective sti�ness decreases as well. By a continuity argument, for small values
of γℓ2, the elastic sti�ness will decrease, as well. For the numerical experiments
considered, see section 3.3, we did not observe an increase of the elastic sti�ness.
We could have added a point-wise growth of d to the model, i.e., encoded by the
dissipation potential. However, the latter condition is di�cult to realize in a model-
order reduced setting.

Upon an implicit Euler discretization in cycles, the balance of linear momentum (3.2.10)
and the cycle-discrete variant of the evolution equation (3.2.12),

d− dn
∆Nn

= αd

[
χ(1− d)ε : CM : ε− γℓ2∆d

]
, (3.2.14)

may be written as critical points of an incremental energy, i.e.,

In : Sym(()d)× U ×D → R, (ε,u, d) 7→ W (ε,u, d) + ∆NnΦ

(
d− dn
∆Nn

)
, (3.2.15)

where, for brevity of notation, considered Φ as a function of d only. We refer to section
3.3.1 for implementation details. As a �nal remark for this section, notice that the in-
cremental energy (3.2.15) is convex in the variables u and d separately, but not in the
combined variable (u, d).

3.3. Model predictions for short-�ber reinforced

microstructures

This section is devoted to discussing the predictions of the multiscale fatigue-damage
model introduced in section 4.2. After exposing our setup in section 3.3.1, we thoroughly
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(a) Fiber-orientation triangle, see Köbler et

al. [160]

(b) Cell with "typical" �ber ori-

entation

Figure 3.2.: Fiber-orientation triangle and "typical" �ber orientation with A =

diag(0.81, 0.15, 0.04)

discuss the selection of necessary numerical and model parameters to ensure representa-
tive simulation results in section 3.3.2. Once this is accomplished, we study the model
predictions in section 3.3.3.

3.3.1. Implementation, hardware and setup

The multi-scale model (3.2.7) and (3.2.8) was discretized in space on a regular voxel grid
by �nite-di�erence discretizations both for the displacement (via the staggered-grid ap-
proach [54]) and the fatigue-damage variable (via the standard 7-point star used for the
Laplacian [161]). As discretizations in time we used an implicit Euler method, both with
�xed time-step sizes and by an adaptive approach, and a Crank-Nicolson scheme, see sec-
tion 3.3.2 for a thorough discussion. For these discretizations, the equation (3.2.10) may be
solved by alternating minimization [155,162], i.e., we alternatively solve equation (3.2.10)
for �xed damage variable d and solve equation (3.2.14) for �xed displacement �eld u. Due
to the speci�c form of the energy (3.2.15), both subproblems (for d and u) separately con-
stitute quadratic optimization problems, and may be solved by dedicated techniques. For
solving the balance of linear momentum (3.2.10), we use the conjugate gradient method
in the context of FFT-based computational micromechanics, see Zeman et al. [163] and
Brisard&Dormieux [164, 165], and use mixed boundary conditions [166]. The equation
(3.2.14) for the damage variable with zero-out�ux boundary condition (3.2.13) was solved
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(a) Isotropic orientation,

λ1 = λ2 =
1
3

(b) Planar isotropic orienta-

tion,

λ1 = λ2 =
1
2

(c) Uni-directional orienta-

tion,

λ1 = 1, λ2 = 0

Figure 3.3.: Considered extreme �ber orientations

by a textbook Gauss-Seidel method [167]. For further details on the computational reso-
lution for a closely related problem, we refer to Ernesti et al. [157]. As the programming
language of choice we used Julia [168].
The computations were performed on a Linux cluster where the typical nodes have either
64GB RAM or 192GB RAM.
Our investigations in section 3.3 are divided into two parts. In the �rst part, we study the
sensitivity of the presented computational results w.r.t. the numerical and geometrical
parameters involved, for instance the mesh resolution and the size of the investigated unit
cells. This step enables us to clearly separate errors that result from the computational
results from intrinsic modeling errors. In the second part, we thoroughly investigate the
model predictions by varying both the physical parameters entering the model and the
morphological parameters that determine the �ber-�lled microstructure we are interested
in, cf. section 3.3.3.

material E ν further parameters
E-glass 72 GPa 0.22 �
Polymer 3.35 GPa 0.38 αd = 1.5 · 10−7 1/MPa, γ = 1.0 MPa, ℓ = 7.8125 µm

Table 3.1.: Model parameters used for this article, see section 3.3.2 for the choice of ℓ

We de�ne a speci�c set of material parameters and, also, numerical and morphological
parameters that serve as our point of departure for the subsequent variations. The used
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material parameters are collected in table 3.1. Also, we choose a reference set of mor-
phological parameters for the investigated �ber-�lled unit cells. We will consider short
(glass) �bers with a �ber length of 200µm and a diameter of 10µm that are in typical
commercial use. These �bers have an aspect ratio (�ber diameter/�ber length) of 20. The
considered unit cells have a �ber-volume fraction of 19.5% which corresponds to a mass
fraction of 35% for glass-�ber reinforced polyamide PA66.
We will use the second-order �ber-orientation tensor [169], a symmetric and positive semi-
de�nite 3× 3-matrix that we will typically denote as A, as our primary descriptor of the
�ber-orientation state. Although it is known that A does not fully characterize the �ber-
orientation distribution, see Müller&Böhlke [170], it is "the" common output of most
injection-molding software packages, see Kennedy&Zheng [171]. As A is symmetric and
positive semi-de�nite, we may use an eigenvalue decomposition

A = U diag(λ1, λ2, λ3)UT

in terms of ordered eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0 and an orthogonal matrix U for reducing
the space of considered �ber orientations further. Indeed, the mechanical response of a
�ber composite should transform covariantly w.r.t. Euclidean motions, see Köbler et
al. [160] for a detailed discussion. Accounting for the trace constraint λ1 + λ2 + λ3= 1

permits us to eliminate the smallest eigenvalue λ3, and we are left with investigating only
a two-dimensional phase space of �ber orientations that takes the form of a triangle in
λ1-λ2-space, see �gure 3.2(a). For this �ber-orientation triangle, we use a speci�c coloring
scheme [160], such that the extreme orientations are cyan (isotropic, λ1 = λ2 =

1
3
), yellow

(planar isotropic, λ1 = λ2 = 1
2
) and magenta (uni-directional, λ1 = 1, λ2 = 0), see also2

�gure 3.3. The �ber-�lled unit cells that are shown in this article were generated by
the Sequential Addition and Migration method [173] that takes the �ber length, the �ber
diameter, the minimum �ber distance, the desired volume fraction ϕ and the second-order
�ber-orientation tensor A as input. For the minimum �ber distance, we use 4.6875µm,
which is about half a �ber diameter. (This somewhat odd number arises as follows. We
typically use cells with 2 × L = 400µm edge length, discretized by 2563 voxels. Then,
we enforce that a �ber diameter is discretized by about six voxels [174] and at least
three voxels must lie between the �bers.) Apart from the extreme orientation states, we
also consider a "typical" diagonal orientation with eigenvalues λ1 = 0.81, λ2 = 0.15 and
λ3 = 0.04, see �gure 3.2(b), that was the most frequently encountered �ber-orientation
state in the �ber-�lled component considered in Köbler et al. [160].
Last but not least, we consider a loading in x-direction with an amplitude of 40 MPa
unless stated otherwise.
2The microstructure images in this work were rendered with GeoDict [172].
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3.3.2. Veri�cation

For the veri�cation, we investigate the necessary size of the considered volume elements
for ensuring representative results and the in�uence of the chosen resolution in space and
time, the e�ect of the residual sti�ness η and the dependence of the length-scale parameter
ℓ, always for the extreme �ber orientations that appear as vertices of the �ber-orientation
triangle 3.2(a). Typically, one of these extreme �ber orientations serves as the worst-case
scenario for the investigations compared to all the intermediate �ber-orientation states in
the �ber-orientation triangle, cf. �gure 3.2(a).

On the necessary size of volume elements

We start our series of investigations with taking a look at the dependence of the computed
sti�ness degradation on the size of the volume element. We consider cubic cells with an
edge length proportional to the �ber length L, starting with 1× L up to 5× L. In turn,
these unit cells correspond to a discretization with 1283 up to 6403 voxels. We consider
the three extreme �ber-orientation states cf. Fig. (3.3), for a single generated unit cell,
and subject the microstructures to uni-axial stress (amplitude) loading. For reasons of
symmetry, we consider only loading in x-direction for the isotropic structures, and comply
with loading in the x- and the y-direction, respectively, for the planar isotropic and the
uni-directional structures. The latter correspond to an in-plane/out-of-plane loading and
loading in �ber direction/transverse to the �ber direction for the two latter orientation
states.
To reduce the full complexity of the sti�ness degradation, our primary quantity of interest
is the direction-dependent Young's modulus, which is de�ned, for any sti�ness tensor C
and any unit vector p ∈ R3 implicitly via

1

E(C, p)
= p⊗ p : C−1 : p⊗ p, (3.3.1)

see Böhlke&Brüggemann [175]. If it is clear from the context, we will drop the explicit
dependence on C, and write Ee�

x = E(Ce�, e1) (and similarly for Ee�
y and Ee�

z ).
In �gure 3.4, the evolution of the e�ective Young's moduli Eeff in x-, y- and z-direction
is shown vs. the number of cycles N , for all �ve considered scenarios. Notice that the
considered cycle interval depends on the di�erent loading cases and investigated �ber ori-
entations, consistent to the physical intuition that these scenarios also lead to a di�erent
fatigue life, in general. The simulation results computed on the cell with edge length 5×L
are shown in black, and serve as the reference for simulations on the smaller elements.
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(a) Isotropic orientation, loading in x-direction
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(c) Planar isotropic orientation, loading in z-
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(d) Uni-directional orientation, loading in x-

direction
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(e) Uni-directional orientation, loading in z-

direction

Figure 3.4.: Directional Young's modulus (3.3.1) vs. number of cycles for di�erent orien-
tations and loading directions. We investigate the in�uence of the volume-
element size, measured in units of �ber length L
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(a) 1× L (b) 2× L (c) 3× L (d) 4× L (e) 5× L

Figure 3.5.: Generated volume elements with with di�erent edge lengths and uni-
directional orientation

For the isotropic case, shown in �gure 3.4(a), the Young's moduli curves start at the
same value of about 6.3GPa. Then, Ee�

x decreases faster than the Young's moduli in the
perpendicular directions. In general, the relative errors in the Young's moduli for the
smaller elements compared to the 5×L-element are on a low level compared to the other
investigated cases. Even for the 1 × L-cell, where the decrease of the Young's moduli is
overestimated, the relative error is below 5% up to 0.9 × 106 cycles. For the 2 × L-cell,
the relative error lies below the error of the 3 × L-cell (which is a stochastic e�ect that
we will look into more detail shortly), and exceeds 5% only after 1.3× 106 cycles.
For the planar-isotropic orientation loaded in x-direction, shown in �gure 3.4(b), we ob-
serve that, initially, the two in-plane Young's moduli are identical and lie above the
out-of-plane Young's modulus. For increasing cycles, all Young's moduli are decreasing.
Among the in-plane Young's moduli, the Young's modulus in loading direction decreases
signi�cantly faster then the transverse in-plane Young's modulus. This decrease is so
strong that at the end of the considered cycle window, the Young's modulus in loading
direction lies only slightly above the (decreased) out-of-plane Young's modulus. For the
1× L-cell, the relative errors stay below 5% for less than 1.15× 106 cycles, whereas the
2×L-cell remains below that level up to 1.3× 106 cycles. Thus, the approximation prop-
erties are qualitatively similar to the isotropic orientation.
For the planar isotropic structure and out-of plane loading, the decrease of Young's mod-
ulus in all three directions is qualitatively similar. Consistent to intuition, the in-plane
Young's moduli decrease in an identical way. For the 1×L-structure, the relative error in
the Young's moduli remains below 5% up to 8.5×105 cycles, whereas the 2×L-structure
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(b) Planar isotropic orientation
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(c) Uni-directional orientation

Figure 3.6.: Mean value (mean) and standard deviation (stdev) of the directional Young's
moduli upon loading in x-direction, based on �ve di�erent volume-element
SAM-realizations per orientations with a cell-edge length of 2× L

retains this level of accuracy up to 1.05× 106 cycles.
When loading the uni-directional structure in �ber direction, cf. �gure 3.4(d), the Young's
modulus in �ber direction decreases signi�cantly. Also the transverse Young's moduli
decrease, but less signi�cantly. Comparing the di�erent cell sizes, we observe strong dif-
ferences in the predicted Young's moduli. For the 1 × L-cell, the �bers are as long as
the cell edges. As the �bers are uni-directional, they actually represent a continuous

con�guration. For the latter scenario, it would have been possible to rely upon a two-
dimensional cell, in fact, as the structure does not depend on the x-coordinate. Comparing
the results for the continuously reinforced cell and the discontinuously reinforced cells,
we become aware of the di�erences in terms of sti�ness degradation between these two
�ber-reinforced composites, cf. �gure 3.5. Indeed, the transverse Young's modulus does
not decrease signi�cantly for the continuous reinforcement, whereas the Young's modulus
in �ber direction is captured accurately.
Concerning the accuracy, the minimum relative error for the 1×L-cell exceeds 10%, even
for the �rst cycle. The 3×L-cell is accurate up 6% for the entire considered cycle interval.
This is a result of our assumption that the �bers behave elastically, and a loading in �ber
direction is primarily governed by this elastic behavior.
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In �gure 3.4(e), transverse loading is considered for the uni-directional structure. For the
1 × L-cell, i.e., for the continuously reinforced cell, the predictions are not even close to
the discontinuously reinforced cells. Both the Young's modulus in �ber direction and the
two transverse Young's moduli decrease signi�cantly during loading. The di�erence in
the two transverse Young's moduli appears to be small, mostly as a result of the scale in
the �gure. Concerning the accuracy, 5% relative error is not exceeded up to 0.9 × 106

cycles for the 2× L-cell.
Due to the localization permitted by the non-local fatigue-damage model presented in
section 3.2, and also as a result of the inherent non-convexity, we cannot expect to �nd a
representative volume element [176, 177]. Instead, we need to be content with a speci�c
window of parameters that we "trust" the model to be representative. For the situation
at hand, this parameter window concerns the number of cycles that we "trust" the model
prior to complete localization.
To gain more insight into the factors involved, we investigate, for a �xed cell size, the
remaining stochastic in�uence. For the preceding analysis, we considered a single real-
ization of the microstructure in question, but with di�erent sizes. For the simulations
conducted and the data that was analyzed, we consider an edge length of 2×L su�cient
for our purposes. Still, we would like to quantify the remaining stochastic �uctuations
inherent to the results. For that purpose, we consider �ve di�erent randomly generated
microstructures for the three extreme orientations, each with an edge-cell length of 2×L,
and investigate the predicted Young's moduli - or, rather, the expectation and the stan-
dard deviation, cf. �gure 3.6. We only show the loading in x-direction, as the other cases
lead to similar results.
We see that the variance is almost non-existent for the isotropic cell, whereas the stan-
dard deviation is increasing for increasing loading, and highest for the Young's modulus in
loading direction. Apparently, the standard deviation only becomes comparatively large
when localization occurs.

Resolution study

In this section, we vary the mesh size to see the in�uence of the resolution. Of course, the
mesh size of this section was chosen iteratively accounting for the results of the previous
section. Otherwise, the reported results would not be meaningful.
We modify our basic resolution of h = 2 × L/256 = 1.5625µm by factors of 2 and
0.5, respectively. We wish to show that the resolution we chose is �ne enough, but not
unnecessarily so in order to keep the simulation time as short as possible.
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(a) Isotropic orientation, loading in x-direction
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(b) Planar isotropic orientation, loading in x-
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(c) Uni-directional orientation, loading in x-

direction

Figure 3.7.: Directional Young's modulus (3.3.1) vs. number of cycles for di�erent orien-
tations. We investigate the in�uence of the resolution for the volume-element
size determined in section 3.3.2
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Figure 3.8.: In�uence of relative residual sti�ness η for loading in x-direction of the refer-
ence structure, see �gure 3.2(b)

Simulations were conducted for the three extreme micro-structures, a unit-cell length of
2×L = 400µm and the three discussed mesh spacings, resolving the same microstructure
by di�erent voxel counts, cf. �gure 3.3.
The isotropic structure in �gure 3.7(a) is largely insensitive to a change in mesh width.
Only for N exceeding 1.2× 106 cycles, a slight overestimation of Ee�

x is seen for 1×h and
2 × h. For the planar isotropic orientation, cf. �gure 3.7(b), and for the uni-directional
structure in �gure 3.7(c), strong deviations may be observed when going below 60% of
the initial Young's moduli.
We observe that, for higher resolution, the �nal decrease of the Young's modulus is faster,
probably due to the localization present on the micro-scale that requires a more accurate
resolution to be captured accurately. However, the deviation between 1 × h and 0.5 × h
is still reasonable for all cycles. Therefore, the resolution of 6.4 voxels per �ber diameter
is considered su�cient, and chosen for the succeeding analyses.

In�uence of the relative residual sti�ness

According to the free energy density (4.2.1), the relative residual sti�ness η determines
the remaining sti�ness of the material when d = 1. In this section, we investigate the
dependence of both the predicted sti�ness degradation and the required number of elastic
iterations on the quantity η. The latter are chosen because they represent the major com-
putational e�ort involved in solving the system of coupled partial di�erential equations
(3.2.10) and (3.2.10).
For that purpose, we consider the reference structure in �gure 3.2(b) with parameters
as before, and vary η. The relative residual sti�ness used before was set to η = 10−3,
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Figure 3.9.: In�uence of varying the length-scale parameter ℓ on the directional Young's
modulus of the reference structure �gure 3.2(b) subjected to loading in x-
direction, both on the macroscopic response and locally, at the �ber tips

i.e., upon complete damage, only 0.1% of the original sti�ness remains. We also consider
η = 10−2 and η = 10−4, corresponding to 1% and 0.01% remaining sti�ness, respectively.
Taking a look at the predicted Ee�

x -curves, cf. �gure 3.8(a), we see that for η = 10−2, the
predicted Young's modulus is consistently overestimated. Both η = 10−3 and η = 10−4

lead to a similar sti�ness degradation, and the associated degradation curves di�er only
for more than 2.2× 106 cycles.
Lower values of η increase the computational burden, as the elastic contrast is increased,
and the elastic contrast is mainly responsible for the convergence behavior of the conjugate-
gradient solver [178]. A closer look at �gure 3.8(b) con�rms these theoretical predictions.
Upon activated fatigue-damage, at about 1.4×106 cycles, the elastic iterations for η = 10−4

are about an order of magnitude higher than for η = 10−3.
As a practical compromise between accuracy and computational speed, we choose a rela-
tive residual sti�ness of 10−3 for the ensuing investigations.

Dependence on the length-scale parameter

In this section the e�ects of varying the length-scale parameter ℓ are studied. For that pur-
pose, we change the length-scale parameter ℓ, that we typically set to ℓ = 5h ≡ 7.8125µm
by factors of 0.5 and 2, respectively. As in the previous section, we investigate loading in
x-direction for the reference structure �gure 3.2(b).
The evolution of the e�ective Young's modulus in �ber direction for the three investigated
length-scale parameters is shown in �gure 3.9(a). We see that ℓ has a strong in�uence,
and that a smaller length-scale parameter leads to an earlier decrease of the sti�ness,
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whereas the larger length-scale parameter slows down the sti�ness decrease signi�cantly.
To understand the strong in�uence of ℓ, we investigate the local fatigue-damage �elds.
As our reference, we consider the simulation with ℓ = 5h and take a look at the fatigue-
damage �eld at cycle N = 2.4 × 106, more precisely a zoomed cutout, which is shown
in the center of �gure 3.9(b). To ensure comparability, taking into account that, for this
cycle and for ℓ = 5h, the e�ective in-�ber Young's modulus Eeff

x is about 7GPa, we in-
vestigate those cycles where Eeff

x is about 7GPa for the two other ℓ-values as well. The
corresponding images are shown on the left and on the right in �gure 3.9(b), respectively.
We see that the smallest ℓ-value considered leads to very thin "cracks", mostly located at
the �ber tips, which are highly localized. For the highest ℓ-value considered, the fatigue-
damage �eld is much more di�use, although the general locations, where damage occurs,
are identical. These di�use patterns also emphasize the damage character of the model,
as, for most of the volume, the fatigue-damage �eld attains values not even close to unity.
The sti�ness degradation associated to the fatigue-damage re�ects potential cracks on a
sub-micron scale within our model.
The ℓ-value ℓ = 5h lies in between the two extreme cases, showing both cracks (but not
as localized as for ℓ = 2.5h) and a di�use fatigue-damage pattern in the matrix.
These observations shed further light on our observations made in �gure 3.9(a), as a
stronger localization behavior also induces an earlier failure.
Last but not least, let us take a look in �gure 3.10 at the evolution of both the fatigue-
damage �eld and the stress �eld upon cyclic loading for the reference structure, cf. �g-
ure 3.2(b). For the �rst image, at cycle 1.8× 106, the fatigue-damage �eld is still mostly
zero. Only at the �ber tips of those �bers pointing in loading direction high fatigue-
damage values emerge. These �ber-tip localizations of the fatigue-damage �eld are also
re�ected in the stress �elds, as the �bers in loading direction do not carry the highest
stresses, as would be expected, for instance, in a purely linear elastic analysis.
In the second image, at cycle N = 2.4 × 106, the fatigue-damage �eld has evolved to a
more heterogeneous state, and the defects at the �ber tips have coalesced and combined
to individual cracks. Also, we see an example where the fatigue-damage �eld has enclosed
half of a speci�c �ber, re�ecting a �ber pull-out scenario. These changes also re�ect in the
stress �elds. Indeed, the peak level of stress within the �bers is greatly reduced compared
to the previously considered cycle.
In the �nal image, at cycle N = 2.58×106, we observe a crack that runs through approxi-
mately half of the structure, and relying upon homogenization schemes for such a situation
is highly questionable. In particular, we see the limits of the continuum-mechanical multi-
scale modeling. At this point, insights from fracture mechanics are required. The stress
�eld corresponding to this last cycle clearly re�ects the change in loading conditions, as
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D

σ in MPa

Figure 3.10.: Fatigue-damage �eld D (top) and von Mises equivalent stress σvM (bottom)
for ℓ = 5h and at cycles N = 1.8 × 106 (left), N = 2.4 × 106 (middle) and
N = 2.58× 106 (right)
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the lower part of the structure does not possess any remaining load-bearing capacity. As
a consequence the stress levels on the upper part of the microstructure are increased.
For the experimental determination of the internal length-scale and other fatigue-damage
model parameters, indirect identi�cation methods have to be used [179]. Methods simi-
lar to those used to determine length scale parameters in gradient damage or phase-�eld
fracture models can be applied. To determine the length-scale parameter for a gradi-
ent damage model experimentally, Geers et al. [180] proposed to carry out Compact-
Tension tests (CT-tests) on a short glass-�ber reinforced polypropylene. As for phase-
�eld fracture models, the length-scale parameter may also be related to experimental
results via the maximum stress reached for problems with analytical solutions [181,
182].

Discretization in cycle space and cycle-step size

Both for the accuracy of the predicted results and for keeping the overall run-time of the
simulations reasonable, a proper discretization in cycle space is essential in terms of the
integration scheme and in terms of the used cycle step-size. In addition to the classical
implicit Euler scheme, we also investigate the Crank-Nicolson scheme [183], as its e�ort
is comparable to the implicit Euler scheme, but promises higher-order accuracy.
For the reference structure, see �gure 3.2(b), loaded in x-direction by a constant stress
amplitude of 40MPa up to 2.6 · 106 cycles, the decrease in Young's modulus is shown in
�gure 3.11(a). Whereas both considered integration schemes and all step-sizes lead to
comparable results, for larger cycles, strong di�erences emerge. As a general trend, for
larger step-sizes, the alternating-minimization scheme did not converge anymore within
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the prescribed 200 iterations.
Qualitative results may be read o� �gure 3.11(b), where the maximum relative error of
the computed e�ective Young's modulus in x-direction is shown, where the error is com-
puted relative to the Crank-Nicolson prediction with ∆N = 7.5 · 103, and the maximum
is computed over all cycles.
We see that the error increases, for both schemes, with increasing step size, i.e., a smaller
step size consistently leads to a smaller error. In general, the Crank-Nicolson scheme is
an order of magnitude more accurate than the implicit Euler scheme, consistently for any
step size. For the implicit Euler scheme, if the step size is below 6×104, the error remains
below 1%. This is also true for the Crank-Nicolson scheme, but, unfortunately, for the
step size 1.2 × 105, the error exceeds 1%. Thus, although the Crank-Nicolson scheme
improves the accuracy, it does not help us in reducing the necessary step size to ensure
engineering accuracy.
To still gain an improvement in computation time, we rely upon an automatic cycle-size
control for the implicit Euler scheme. This might be helpful because a scheme with con-
stant increments may be too �ne initially, but too coarse later on (when the change in sti�-
ness is strong). The basic idea of our simple automatic stepping is to limit the local change
in fatigue-damage to a speci�c value κ. Suppose that the last converged fatigue-damage
value Dn(x) is known at x ∈ Q. Then, we would like to have

d(x) ≤ dn(x) + κ, i.e., d(x)− dn(x) ≤ κ.

By equation (3.2.14) we know that

d(x)− dn(x)
∆Nn

= αd

[
(1− d(x))ε(x) : CM : ε(x)− γℓ2∆d(x)

]

holds for the matrix material. Replacing the right-hand side by the values of the last

converged cycle, we obtain the requirement

αd

[
(1− dn(x))εn(x) : CM : εn(x)− γℓ2∆dn(x)

] !

≤ κ

∆Nn

.

With this explicit and cheap estimate, we are led to de�ne

∆Nn = min
x

κ/αd

(1− dn(x))εn(x) : CM : εn(x)− γℓ2∆dn(x) , (3.3.2)

where the minimum is evaluated only over the matrix material. In �gure 3.12(a) we
compare the �nest step-size considered previously to the automatic approach (3.3.2) for
damage limitation numbers κ = 0.15, κ = 0.3 and κ = 0.45, respectively, in terms of
the predicted e�ective Young's modulus in x-direction for the reference structure, cf.
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Figure 3.12.: Investigating the e�ect of κ on the automatic step-size control for the implicit
Euler discretization

�gure 3.2(b). Recall that, for instance, κ = 0.15 estimates that the increase in fatigue-
damage does not exceed 0.15 from one cycle to the next (for all voxels). �gure 3.12(a)
demonstrates that all three considered κ-values lead to accurate predictions and do not
su�er from a lack of convergence of the alternating-minimization scheme, as we observed
for large cycle increments, cf. �gure 3.11(a).
The qualitative gain in computational performance is assessed in �gure 3.12(b) by track-
ing the accumulated iterations of the elasticity solver up to a speci�c cycle. We see
that, initially, the automatic cycle-stepping leads to a tremendous decrease in computa-
tional expense, as the constant cycle-steps are chosen much too �ne. Later on during
the loading, this advantage becomes smaller, essentially because the automatic step-size
control forces the step-size to account for the strong changes in the local fatigue-damage
�eld. Increasing the permitted damage increase κ decreases the required iteration count,
and κ = 0.15 appears to be too cautious. For the succeeding analysis, we rely upon
κ = 0.3, and we see from �gure 3.12(b) that we reduce the iteration count roughly by
half an order of magnitude, which translates into a factor of about 3 in the overall run-
time.

3.3.3. Material-scienti�c studies

After studying the in�uence of the numerical parameters entering the proposed multi-scale
fatigue-damage model (3.3.2), we devote our attention to the predictions when varying
the loading, both in terms of the overall level and when changing the direction of loading,
and the characteristics of the �ber-reinforced composites, like volume fraction, �ber length
and �ber orientation. As a consequence of the high dimension of the parameter space,
we focus on varying each parameter separately relative to a reference con�guration, see
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Figure 3.13.: E�ects of varying the applied stress amplitude σa for the microstructure
shown in �gure 3.2(b)

section 3.3.1. In particular, the "typical" �ber-orientation state shown in �gure 3.2(b)
and an applied stress amplitude of 40MPa in x-direction serve as the point of depar-
ture.

Consequences of varying loading amplitude

Figure 3.13 illustrates the impact of varying the applied stress amplitude σa on the com-
posite response for the reference microstructure, see �gure 3.2(b). For the investigated
loading amplitudes σa ∈ {20MPa, 30MPa, 40MPa, 50MPa}, the evolution of the direc-
tional Young's moduli, cf. equation (3.3.1), in the three coordinate directions is shown in
�gure 3.13(a). We see that an increase in loading level also leads to a stronger decrease
of all three considered directional Young's moduli. We also notice that the decrease in
x-direction is stronger than for the perpendicular directions.
Figure 3.13(b) illustrates the dependence of the initial slope (or, rather, furnished with
a minus sign) of Ee�

x on the loading amplitude σa. We observe a slightly nonlinear be-
havior which is a consequence of the superlinear dependence of the fatigue-damage vari-
able on the stress amplitude σa in the evolution equation (3.2.6). In contrast, the cycle
when Ee�

x drops below 4GPa depends on σa in a strongly nonlinear fashion. The lat-
ter observation might be a consequence of the strong interaction of the strain and the
fatigue-damage �elds within the complex microstructure when subjected to fatigue load-
ing.
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Figure 3.14.: In�uence of the loading angle in the x-y-plane on the e�ective Young's mod-
ulus in loading direction, cf. equation (3.3.3)

Outcomes of varying loading direction

Fixing the applied stress amplitude to 40MPa, we vary the direction of loading via

σ = σa p⊗ p with p = (cos θ, sin θ, 0) and θ ∈
[
0,
π

2

]
, (3.3.3)

i.e., we consider loading in x-direction for θ = 0◦ and loading in y-direction for θ = 90◦, for
the microstructure shown in �gure 3.2(b). The computed Young's moduli in the respec-
tive directions p are shown in �gure 3.14, where we consider 15◦-increments. The absolute
values for the directional Young's moduli are shown in �gure 3.14(a). Even initially, there
are strong di�erences in the directional Young's moduli, varying between slightly less than
6GPa in y-direction up to slightly above 10GPa in x-direction. To gain deeper insight,
we investigate the relative sti�ness loss in �gure 3.14(b), i.e., we normalize the directional
Young's modulus at a speci�c cycle by the initial directional Young's modulus. We see
that, with increasing loading angle θ, also the speed of decrease of the relative Young's
modulus is increasing.
Notice that for θ exceeding 60◦, the predicted curves are very close, in both absolute
and relative terms, which is typical for a strongly oriented �ber-reinforced microstruc-
ture.

In�uence of the �ber-volume fraction

After discussing the impact of the direction and level of the applied stress amplitude,
we turn our attention to the in�uence of the composition of the �ber-reinforced unit
cells that we are concerned with, in the �rst place. It is well-known, see for instance

54



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

4

6

8

10

12

number of cycles N in 106

E
ef
f
in

G
Pa

(a) Absolute decrease

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0.4

0.6

0.8

1

number of cycles N in 106

E
ef
f /
E

lin

(b) Relative decrease

φ Eeff
x Eeff

y Eeff
z

10%

14.75%

19.5%

21.625%

23.75%

Figure 3.15.: In�uence of the �ber-volume fraction ϕ on the axial Young's moduli for the
�ber orientation shown in �gure 3.2(b) upon loading in x-direction
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Figure 3.16.: In�uence of the �ber-volume fraction ϕ on the axial Young's moduli for the
�ber orientation shown in �gure 3.2(b) upon loading in y-direction

Milton's monograph [184], that the volume fractions of a composite have a signi�cant
e�ect on its e�ective material response. For instance, in the case of elastic phases, series
expansions of the e�ective sti�ness tensor, cf. section 14.1 in Milton [184], reveal that
the volume fraction completely determines the linear term in the expansion. The latter
observation manifests the �ber-volume fraction as the "most important" characteristic of
a �ber-reinforced composite.
For that purpose we study the in�uence of the �ber-volume fraction on the sti�ness
degradation upon cyclic loading for the reference �ber-orientation tensor. We varied the
�ber-volume fraction around a reference value of ϕ = 19.5%, going down to ϕ = 10% and
up to 23.5%. The latter value is already quite high for most short-�ber reinforced plas-
tics relevant for industrial applications. Furthermore, we added the intermediate value
between ϕ = 19.5% and the extreme �ber-volume values considered. The results for
loading in x-direction are shown in �gure 3.15. Taking a look at the absolute values, cf.
�gure 3.15(a), we see that the rate of decrease of the directional Young's moduli is compa-
rable for the di�erent volume fractions considered. In relative terms, see �gure 3.15(b), the
latter observation translates into a faster relative decrease for the cells with lower �ber
content. However, for each �xed volume fraction, the relative decrease of the Young's
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�ber orientation shown in �gure 3.2(b) upon loading in x-direction

moduli in the di�erent coordinate directions is rather similar.
For comparison we also investigated a loading in y-direction, see �gure 3.16. Again, we
observe a similar slope of decrease for the absolute values, cf. �gure 3.16(a). For the
relative values, cf. �gure 3.16(b), the spread of the di�erent degradation curves is smaller
than for the loading in x-direction, cf. �gure 3.15(b). This observation, consistent to
the experimental results of Pietrogrande [185] may result from the lower heterogeneity
in the stress �eld upon transverse loading, or from a stronger in�uence of the matrix
behavior.

Dependence on the �ber aspect-ratio

Next, we �x the �ber-volume fraction to 19.5%, but vary the original �ber aspect-ratio
(the quotient of �ber length and �ber diameter) of 20 from 10 to 30 by increments of 5
to see the in�uence of the sti�ness-degradation behavior of our typical structure. Please
keep in mind that we �x the unit-cell size to 2×L, where L denotes the �ber length, but
keep the resolution �xed. Therefore, the necessary simulations were conducted on cells of
di�erent voxel counts, from 1283 for ra = 10 up to 3843 voxels for ra = 30.
The resulting directional Young's moduli are recorded in �gure 3.17.
The strong dependence of the Young's modulus in principal �ber direction Ee�

x on the �ber
aspect-ratio is re�ected by the di�erences visible at N = 0, whereas the transverse Young's
moduli are almost una�ected by changes in the �ber aspect-ratio, cf. �gure 3.17(a). For
increasing cycles, the decrease of Ee�

x depends signi�cantly on the aspect ratio, also in ab-
solute terms. Recall that we found that the absolute decrease did not depend much on the
volume fraction. More signi�cantly, we also observe strong di�erences in the transverse
Young's moduli, which is particular surprising when taking into account their close prox-
imity at N = 0. These observations are also visible in the normalized Young's moduli, cf.
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Figure 3.18.: Evolution of the Young's modulus body, cf. equation (3.3.4), in terms of
planar cuts, for a microstructure with isotropic �ber-orientation tensor

�gure 3.17(b). However, we see that, for �xed aspect ratio, the decrease of the normalized
Young's modulus is similar for the di�erent axial directions.

Fiber-orientation dependence

In this section, we gain insights into the e�ect of changing the �ber orientation of the
composites under consideration, and also the evolving anisotropy induced by the propaga-
tion of fatigue damage. For that purpose, we investigate a microstructure with isotropic
second-order �ber-orientation tensor, A = 1

3
Id. Due to symmetry considerations, the

used microstructure-generation method [173] ensures that the e�ective elasticity tensor
of such a structure is also isotropic. Thus, we may take a deeper look at an emergent
anisotropy of the e�ective sti�ness tensor predicted by our multi-scale model described by
equations (3.2.7) and (3.2.8). For that purpose, we take a look at the Young's modulus
body, de�ned for a �xed sti�ness tensor C as the surface

{
E(C,p)p

∣∣ p ∈ R3, ∥p∥ = 1
}
⊆ R3, (3.3.4)

and subject a microstructure with isotropic �ber-orientation tensor to uni-axial stress-
amplitude loading in x-direction. The resulting cuts through the coordinate planes of the
Young's modulus body for di�erent cycles are shown in �gure 3.18. In all three coordinate
planes, the initial directional Young's moduli coincide, i.e., the sti�ness in all directions is
identical. Subsequently, the Young's moduli decrease di�erently for di�erent directions,
inducing an anisotropy in the x-y- and the z-x-plane, cf. �gure 3.18(a) and �gure 3.18(b),
respectively. The Young's moduli in the y-z-plane also decrease, cf. �gure 3.18(c), but in
an isotropic fashion. This may be expected when loading an initially isotropic structure
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Figure 3.19.: Evolution of the directional Young's modulus for structures with �ber-
orientation tensors given by equation (3.3.5), subjected to loading in x-
direction

in a speci�c direction. Still, it is interesting to see that these expectations are ful�lled also
in practical simulations. We also conducted similar simulations for planar isotropic and
uni-directional �ber-orientation tensors. However, as the results did not add anything
signi�cantly new, and for reasons of brevity, we decided to skip these cases.
Rather, we turn our attention to a continuous deformation of the �ber-orientation state.
For that purpose, we continuously deform one vertex of the �ber-orientation triangle, cf.
�gure 3.2(a), into another via prescribing

A(s) =
s

3
Id+(1− s) e1 ⊗ e1, (3.3.5)

i.e., we linearly deform the isotropic state for s = 0 to the uni-directional �ber orientation
at s = 1. For three equidistantly spaced s-values between 0 and 1, the emerging axial
Young's moduli for loading in x-direction are shown in �gure 3.19. At the �rst cycle, the
three axial Young's moduli for the isotropic structure (s = 0) are identical, whereas a
strong contrast between the in-�ber Young's modulus and the transverse Young's moduli
are visible for the uni-axial �ber-orientation state (s = 1). Changing the parameter s
leads to a continuous deformation between these two states, also in terms of the pre-
dicted Young's-moduli evolutions. Notice that the interpolation (3.3.5) produces only
transversely isotropic �ber-orientation states (w.r.t. the e1-axis), and the loading in x-
direction preserves this symmetry. That is why, for any �xed value of the interpolation
parameter s, we actually only see two curves, corresponding to Ee�

x and Ee�
y = Ee�

z . We
observe a continuous dependence of the predicted Ee�-curves on the interpolation param-
eter s. Similar computations may be carried out based on interpolating the isotropic and
the transversely isotropic state and deforming the uni-directional �ber-orientation state
to the transversely isotropic state. Again, for reasons of brevity, we did not include them.
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The state space of second-order �ber-orientation tensors is two-dimensional, and we would
like to cover essentially all �ber-orientation states present in the �ber-orientation trian-
gle in our multi-scale model. Indeed, for injection-molded components, the predicted
�ber-orientation states vary continuously, or, at least, from element to element in the
(�nite volume) discretization. Unfortunately, we can only compute a �nite number of
microstructures. Due to the observed continuity of the e�ective predictions when vary-
ing the �ber orientation we opt for an interpolation approach, pioneered by Köbler et
al. [160], for constructing an e�ective model that is capable of covering essentially all
possible �ber-orientation tensors of second order. As a preliminary step, we shall dis-
cuss a model-order reduction technique necessary for transferring our multi-scale model
to component scale.

3.4. A model-order reduction strategy for fatigue

damage

To enable computations on component scale, in this section, a model-order reduction
framework for the fatigue-damage model of section 3.2 is introduced, loosely based on the
non-uniform transformation �eld analysis [65,67,80,186,187]. The discussion is split into
two parts. First, the model-order reduction for a single �ber-reinforced volume element
is treated, see section 3.4.1. Subsequently, the extension to varying �ber orientation is dis-
cussed, based on �ber-orientation interpolation [160], see section 3.4.2.

3.4.1. Galerkin-type model-order reduction for the polynomial

free energy

The starting point for our discussion is the model described by equations (3.2.10) and
(3.2.12) of section 3.2, which we assume to be discretized in cycle space by a backward
Euler method (see equation (3.2.15)). Recall that the equations of interest may be ob-
tained as critical points of the incremental energy (3.2.15)

In : Sym(()d)× U ×D → R, (ε, u,D) 7→ W (ε,u, d) + ∆NnΦ

(
d− dn
∆Nn

)
.
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This functional may also be written in full detail,

In(ε,u, d) =
1

2|Q|

∫

Q

χ(η + (1− d)2)ε : CM : ε+ (1− χ)ε : CF : ε+
(d− dn)2
αd∆Nn

+ γ ℓ2 χ∥∇d∥2 dx, (3.4.1)

where the local strain �eld is the sum of the applied macroscopic strain and the strain
�uctuation ε = ε+∇su. We include the macroscopic strain ε as an input variable to In,
although it is more natural to regarded it as a parameter. We do this for a reason, to be
discussed below.
Notice that, in contrast to the general two-potential framework, the dissipation potential
(3.2.8) is �nite-valued. Thus, the incremental energy (3.4.1) is �nite-valued, as well. Fur-
thermore, we draw the reader's attention to the fact that the incremental potential is a
polynomial in the variables u and d, see Mujica [188], chapter I, for the background on
polynomials in the general Banach-space setting. More precisely, the highest powers of u
and d that appear are quadratic, and the highest power of the combined variable (u, d)

is four.
We employ a straightforward Galerkin-type model-order reduction procedure for the in-
cremental potential (3.4.1), i.e., suppose linearly independent elements u1, . . . , uM of U
and D1, . . . , DP of D are given. For �xed cycle step, de�ne the model-order reduced
incremental potential

Ĩn : Sym(()d)×RM ×RP → R, (ε, ξ, δ) 7→ In
(
ε,

M∑

i=1

ξiui,
P∑

β=1

δβdβ

)
, (3.4.2)

where dn =
∑P

β=1 δ
n
βdβ entering the incremental energy (3.2.15) is the reduced fatigue-

damage state of the last cycle step.
Several remarks are in order.

1. Showing the existence of minimizers for the reduced incremental potential (3.4.1)
and prescribed strain ε is straightforward. Indeed, the problem is �nite-dimensional,
and the functional is continuous w.r.t. ξ as well as δ and satis�es a growth condition.

2. Our approach is slightly di�erent from more classical NTFA-approaches for elasto-
viscoplasticity, where the displacement �uctuation variable is not chosen in a reduced
space. This is a result of the Hookean part of the elasto-viscoplastic free energy,
which typically reads

1

2
(ε− εvp) : C : (ε− εvp)

in terms of a viscoplastic strain εvp, and ensures that the associated balance of linear
momentum leads to a linear equation for the displacement �uctuation for prescribed
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viscoplastic strain. We are not aware of any comparable simpli�cation strategy for
our potential (3.4.1).

3. For �xed ε, critical points (ξ, δ) of the reduced incremental potential (3.4.2) satisfy
a reduced version of the balance of linear momentum (3.2.10)
∫

Q

[
χ(η + (1− d)2)CM : ε+ (1− χ)CF : ε

]
: ∇sui dx = 0 for all i = 1, . . .M,

(3.4.3)
and, of the cycle-discrete evolution equation for the fatigue damage (3.2.12)
∫

Q

dβ

[
χ(1− d)ε : CM : ε+

d− dn
αd∆Nn

]
− χγℓ2∇d · ∇dβ dx = 0 for all β = 1, . . . P,

(3.4.4)
where

ε = ε+
M∑

i=1

ξi∇sui, d =
P∑

β=1

δβdβ and dn =
P∑

β=1

δnβdβ.

The current e�ective stress may be computed as for any two-potential material,

σ̃e� =
∂Ĩ
∂ε

(ε, ξ, δ).

In formulas, we recover the usual strain-equivalence relation

σ̃e� =
1

|Q|

∫

Q

[η + (1− d)2]C : ε dx.

More generally, for any �xed state of reduced fatigue damage, δ ∈ RP , we may
compute the associated e�ective sti�ness matrix by equation (3.2.9), where the
associated periodic displacement �uctuation �eld vE) : Q → R solves a reduced
version of linear momentum-balance on the micro-scale (3.2.10), compare equation
(3.4.3). In terms of e�ort, in three spatial dimensions, 6 linear problems with M

variables need to be solved.

4. For any cycle increment, for solving the equations (3.4.3) and (3.4.4) we rely upon
Newton's method with backtracking. As the reduced incremental potential (3.4.1)
is a polynomial, equations (3.4.3) and (3.4.4) may also be regarded as polynomial
equations in the variable (ξ, δ). In particular, all coe�cients of this polynomial can
be precomputed once and for all. Due to the speci�c form of the incremental po-
tential, the cost of storing the coe�cients (and assembling the residuals and system
matrices for Newton's method) scales as M2 × P 2. Thus, if M and P are on the
order of 10, the e�ort is on the order of 102 × 102 = 10000. If M and P are on the
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order of 100, the e�ort is on the order of 104× 104 = 108, which may already be too
much for practical use, compare Michel&Suquet [189]. We refer to section 3.5.2 for
further details.
As a side remark, we tried to work with incremental energies which are linear in d
to reduce computational e�ort. Then, however, no intrinsic bounds on the fatigue-
damage variable D may be established for the continuous model, and the resulting
model led to non-sense prediction without an explicit constraint on D (which inter-
feres with simple model-order reduction). Also, the non-local term is crucial, as the
strong localization otherwise necessitates a large number of modes in the reduced
model in order to capture the e�ective response of the un-reduced model reasonably
well.

5. The approximation quality of the reduced-order model (3.4.2) strongly depends on
how the "modes" {ui} and {dβ} are chosen. We use snapshot-POD, as exposed in
Carlberg&Farhat [190], for instance, see section 3.5.2 for further details.

3.4.2. Fiber-orientation interpolation of e�ective models

Injection-molded short-�ber reinforced thermoplastic parts are characterized by a spa-
tially varying �ber orientation. If described in terms of the second-order Advani-Tucker
�ber-orientation tensor [169], the �ber-orientation interpolation-technique introduced by
Köbler et al. [160] may be used to cover all possible �ber orientations (which may be
described by second-order �ber-orientation tensors) without computing them all.
The basic idea is to realize that the phase space of all possible second-order �ber-orientation
tensors, up to rotations, corresponds to a triangle, cf. �gure 3.2(a). Thus, a �nite-element
discretization by linear triangular elements of this triangle may be used, furnishing every
node of the triangulation with a material model. Any desired �ber-orientation state is
located in some element. Its stress response to a speci�c loading history is determined
by computing the stress response to this loading for the nodes of the triangular element
in question, and interpolating the resulting stress values accordingly. Finally, the stress
tensor is rotated into the proper frame, recovering the information lost during projection
onto the �ber-orientation triangle. This approach circumvents the di�culty that, in gen-
eral, internal variables on di�erent microstructural elements may not be interpolated in
a sensible fashion. Interpolating the stress tensors, however, is possible (even at �nite
strains for the �rst Piola-Kirchho� stress tensor).
The approach just described was shown to preserve the two-potential structure [160].
Concerning the computational e�ort, for every Gauss point on component level, three
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material models need to be evaluated - one per node of the orientation-triangle mesh.
Also, the internal variables corresponding to these three nodal models need to be stored.
If the computational e�orts and the number of internal variables are on a similar level
for all nodal models, on average, both the storage requirements and the computational
e�ort are tripled compared to using only a single material model of the same type on
component scale.
For the reduced-order model at hand, see section 3.4.1, the �ber-orientation interpolation-
procedure may be applied as a special case. We refer to section 3.5 for a computational
investigation.

3.5. Numerical demonstrations for the reduced-order

model

3.5.1. Setup and used hardware

For selecting the bases {ui} and {dβ}, sometimes also called modes, we performed com-
putations for pre-selected load cases with the discretizations in space and time as well as
the solution techniques discussed in section 3.3.1. Details on the mode-selection process
and an assessment of the accuracy of the ensuing �ber-orientation interpolation process
are described in section 3.5.2 and section 3.5.3 below, respectively.
The presented order-reduced model, cf. section 3.4.1, was integrated into a user-de�ned
material routine (UMAT) in the commercial software ABAQUS [192]. The precomputed
data is stored in a common data �le, which is accessed by the individual elements sep-
arately during their UMAT calls when assembling the algorithmic tangent necessary for
applying Newton's method.
We investigate a short-�ber reinforced component in section 3.5.4, and conduct a mold-
�lling simulation with the software FLUID [191,193,194], which solves the Folgar-Tucker
equation [195] and relies upon the smooth-orthotropic closure approximation [196], assum-
ing the �ber-volume fraction to be �xed at ϕ = 18.5%. We used the parameters listed in
table 3.2. They correspond to the Carreau-Arrhenius law [171]

µ(T, γ̇) = µ0
e−A2(T−Tref )

(1 + (A0γ̇)2)
1−A1

2

. (3.5.1)

In particular, due to the �nite-volume discretization, we obtain a second-order �ber-
orientation tensor per element of the �nite-volume mesh. Subsequently, this data is
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Parameter Value
Density 1100 kg/m3

Injection temperature 275◦C
Wall temperature 50◦C
Speci�c heat linear interpolation

719 J/K (T = 31◦C) - 1635 J/K (T = 243◦C)
Thermal conductivity linear interpolation

0.224 W/(m·K) (T = 50◦C) - 0.266 (T = 250◦C)
Initial �ber orientation A = diag(0.8, 0.1, 0.1)
Fiber-aspect ratio ra = 25

Folgar-Tucker di�usivity Ci = 0.0035

Glass-transition temperature Tref = 240◦C
A0 0.00051s
A1 0.395

A2 0.0077 1/K
µ0 73Pa·s

Table 3.2.: Material parameters [191] used for the injection-molding simulation, cf. equa-
tion (3.5.1)
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Figure 3.20.: Sorted normalized eigenvalues of the correlation matrices for the strain and
fatigue-damage �eld and the three extreme orientations

mapped to the �nite-element mesh which might be di�erent from the original �nite-
volume mesh.
We conduct a component-scale �nite-element simulation with the material and model
parameters listed in section 3.3.1, using 2.892.934 linear tetrahedron elements. The com-
putations were performed on a Linux cluster and ran on 256 CPUs distributed on 16

cluster nodes for approximately 1923 hours.

3.5.2. Selecting the reduced bases

For the mode-selection process, we use the proper orthogonal decomposition (POD), see
Carlberg&Farhat [190], accounting for the non-equidistant cycle increments by a proper
re-weighting of the components of the POD correlation matrices. We rely upon the L2

inner product for the fatigue-damage variable and the L2-norm for the strains, which
corresponds to an inner product of Korn type for the displacement �elds.
As precomputations, we compute three uni-axial loading scenarios corresponding to the
three coordinate axes with a stress amplitude of 40MPa and three shear load cases in the
coordinate planes with a stress amplitude of 20MPa, see �gure 3.21 for an illustration. All
load cases were computed up to a sti�ness reduction of 50% using the automatic step-size
control introduced in section 3.3.2. We selected 10 snapshots per load case, and used those
to build up the POD correlation matrices for the fatigue damage and the displacement
�eld, respectively.
For the three extreme orientations and both the strain and the fatigue-damage �elds, we
computed the eigenvalues of the POD correlation matrices, sorted them in descending
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Figure 3.21.: Average relative error (3.5.2) depending on the number of modes used for
two of the three extreme orientations and for the six load cases considered

order and normalized them by the largest eigenvalue, cf. �gure 3.20. We see that only a
few modes, on the order of 10, are necessary for describing the damage �eld, whereas a
much larger number of modes is necessary for the strain modes. Choosing our threshold
to be 0.1% of the largest eigenvalue, on the order of 50 strain modes are necessary for
describing the strain �elds for all six load cases to the mentioned accuracy. Notice the uni-
directional structure may be described by fewer modes than the planar isotropic structure,
which in turn requires fewer modes than the isotropic structure.
Of course, we are not only interested in approximating the �elds but also in the predicted
e�ective properties of the reduced model. For that purpose, we integrated the reduced-
order models, as described in section 3.4.1, corresponding to the extreme �ber orientations
and subjected to the six mentioned load cases for an increasing number of modes (up to
40), cf. �gure 3.21. We always use the same number of strain and fatigue-damage modes,
and measure the error

erom =
1

K

K∑

i=1

∥ε(Ni)− εrom(Ni)∥
∥ε(Ni)∥

(3.5.2)

by averaging over all of the K cycle steps, where the cycles Ni are determined, for each
loading case and every considered orientation, by the adaptive technique described in sec-
tion 3.3.2 for the full-�eld simulation. In equation (3.5.2), ε(Ni) stands for the e�ective
strain amplitude at cycle Ni, and εrom(Ni) refers to the e�ective strain amplitude of the
reduced model with a speci�c number of modes.
The results are collected in �gure 3.21 for the isotropic and the uni-directional �ber orien-
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tation. We also conducted the simulations for the transversely isotropic orientation, but
the results lie in between the two shown cases.
For the isotropic orientation and a low number of modes (below six), cf. �gure 3.21(a),
in particular the shear cases are not captured. This is a result of not including the cor-
responding mode. For higher number of included modes, the error erom decreases in a
linear fashion (in the log-plot) until about 25 modes, where the shear-load cases stagnate
at about 2% error. It is interesting to see that, although we saw in section 3.3.2 that
the predicted Young's moduli in the direction of loading decreases independently of the
loading direction for the isotropic structure, the error reported in �gure 3.21(a), does de-
pend on the axial direction. This phenomenon cannot be avoided, as we do not account
for such a type of symmetry. Rather, we have to live with the fact that the errors for
the di�erent axial load cases converge in a similar way on average, i.e., upon increasing
the number of modes the speci�c axis which is the most accurate is also changing in a
roughly alternating fashion.
The errors corresponding to the uni-directional �ber-orientation state are reported in �g-
ure 3.21(b). We see that the loading in �ber direction is captured most accurately among
the considered cases. This is probably rooted in the fact that loading in �ber direction
leads to the most pronounced e�ects, and the POD procedure favors such dominant e�ects.
Interestingly, the shear cases lead to similar error levels as for the isotropic orientation,
cf. �gure 3.21(a). In contrast to the isotropic case, for the uni-directional microstructure,
axial loading in transverse direction is captured with least accuracy, and almost 40 modes
are required to maintain an overall accuracy of 2%. As previously mentioned, this is a
consequence of the POD-selection procedure and that the change in the Young's moduli
in transverse direction is quite small compared to the tremendous changes experienced by
the in-�ber Young's modulus.
We conducted an analysis similar to �gure 3.21 for all 15 edges of a triangulation of

the �ber-orientation triangle, already considered by Köbler et al. [160], and were led to a
relative error not exceeding 2% for all 15 orientations and all six load cases used as pre-
computations when using all 40 strain and fatigue-damage modes.

3.5.3. Fiber-orientation interpolation

We identi�ed reduced-order models for all vertices of the �ber-orientation triangulation
shown in �gure 3.22, using 40 strain and fatigue-damage modes each, and relied upon a
piece-wise linear �ber-orientation interpolation scheme, as presented in Köbler et al. [160].
To assess the introduced errors, we compute the error (3.5.2) at the centroids of the �ber-
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Figure 3.22.: Relative errors (3.5.2) computed at the centroids of the triangular elements
of the �ber-orientation triangle, evaluated for the six load cases shown from
left to right in �gure 3.21
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Figure 3.23.: Average run-time for computing the e�ective response of the reference struc-
ture in �gure 3.2(b), loaded in x-direction by a constant stress amplitude
of 40MPa up to 2.6 · 106 cycles, using the reduced-order model and �ber-
orientation interpolation (solid line). For comparison, the dashed line shows
a slope of (#modes)3.

orientation mesh for the three axial and the three shear cases, cf. �gure 3.22.
We see that the errors for the individual triangles lie mostly below 2.5% and do not exceed
5%. The largest errors are reached for uni-axial extension in x-direction (load case 1)
close to the planar isotropic �ber orientation and for shearing in the y-z-plane in between
the uni-directional and the planar isotropic �ber-orientation state.
With this �nal veri�cation step at hand, we are �nally in a position to conduct component-
scale simulations.
To assess the computational complexity of the model-order reduction procedure, we com-
puted the e�ective response of the reference structure in �gure 3.2(b), loaded in x-direction
by a constant stress amplitude of 40MPa up to 2.6 ·106 using the reduced-order model for
di�erent number of modes. The results are shown in �gure 3.23. The overall computation
time for this load case using 40 modes was approximately 70 s. The run-time of our imple-
mentation scales like (#modes)3, as shown in �gure 3.23. Indeed, the computational com-
plexity of direct solvers scales cubically in the degrees of freedom.

3.5.4. Application on component scale

To demonstrate the applicability of the presented multi-scale model on component scale,
we conducted a �nite-element computation of an industrial scale structure. More pre-
cisely, we consider an automotive application, i.e., a housing component of an electric
window lifter, cf. �gure 3.25(a). Such �ber-reinforced components occur frequently in
automotive applications, and are typically manufactured by an injection-molding process.
In service, such kind of components are typically subjected to cyclic vibrational loads.
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Figure 3.24.: Housing component of an electric window-lift drive

For gate positions on the left, cf. �gure 3.24(a), the distribution of the �ber orienta-
tion was computed by the software FLUID [191, 193, 194] and the parameters listed in
table 3.2. The resulting distribution of second-order �ber-orientation tensors is shown in
�gure 3.24(b), where we use the coloring scheme introduced in �gure 3.2(a). Large parts
of the structure are either magenta, corresponding to a uni-directional orientation induced
by mostly convective �ow, and red, which is close to planar isotropic as a consequence of
comparatively small thickness of the component in these areas.
The occurring �ber orientations were binned according to a �ne triangulation of the
�ber-orientation triangle, cf. �gure 3.24(c). We see that the isotropic case and the uni-
directional �ber orientation do not occur. Also, most areas within the �ber-orientation
triangle are only infrequently occurring, cf. �gure 3.24(c), and the �ber orientations are
concentrated in a green-to-red strip connecting an almost uni-directional and an almost
planar isotropic �ber-orientation state. The most frequent �ber-orientation state has
eigenvalues λ1 = 0.8, λ2 = 0.12 and λ3 = 0.08. Such a �ber-orientation distribution
within a component is typical, see, for instance, Köbler et al. [160]. The component is
subjected to a loading whose schematic is shown in �gure 3.25(a). In more detail, the
component is clamped on the insides of the drilling holes, and a constant stress amplitude
σa =0.5MPa is applied to the area on the left-hand side of �gure 3.25(a) that is marked
in orange (and by blue arrows).
The material parameters are chosen as speci�ed in section 3.3.1. For the model-order
reduction 40 modes are chosen both for the strain and the fatigue-damage �eld.
To assess the changes in the local stress �eld and to investigate the subsequent rami�ca-
tions for ensuing fatigue-crack growth, the principal stress �eld is shown in �gure 3.28 in
the virgin state and after 2.6× 106 cycles. The principal stress, the maximum eigenvalue
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(a) Loading conditions (b) Λ(N)-�eld (3.5.4) at N =2.6× 106
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Figure 3.25.: Schematic of the applied loading conditions and relative degradation of the
acoustic tensor Λ(N) (3.5.4) at N =2.6× 106 cycles

of the stress tensor, serves as the most basic failure hypothesis for brittle and quasi-brittle
materials, see section 2.2.1 in Gross&Seelig [36]. In Fig. 3.28, a considerable redistribu-
tion of the principal stresses upon fatigue loading is apparent. Indeed, the peak at the
lower right of the structure is signi�cantly reduced. In turn, those regions experiencing a
signi�cantly lower stress level remain almost una�ected by the fatigue-damage evolution.
To gain deeper insight, we investigate two speci�c �nite elements within a ciritical region
of the component, highlighted in red in Fig. 3.25(a), more closely. Element A is chosen
because its elastic energy is maximum at the �rst cycle, whereas Element B maximizes
the elastic energy density at cycle 2.6 × 106. The respective elements are marked in
Fig. 3.28. In Fig. 3.29(a), the evolution of the principal stress and the von Mises equiva-
lent stress are shown. For the chosen elements, we observe a monotonic decrease of both
considered stress measures. The maximal principal stress of element A drops below the
maximal principal stress of element B at about 1.75 × 106 cycles, while the von Mises
stress of element A is higher as the von Mises stress of element B at all cycles. These
observations already indicate a complex redistribution of the experienced loading within
the �ber-reinforced structure upon fatigue loading.
For the two respective �nite elements, the evolving Young's modulus bodies, cf. equation
(3.3.4), in the z-x-plane are shown in �gure 3.29(b). Initially, the Young's modulus bodies
of the two elements are very similar. Indeed, the predominant �ber orientation may be
read from �gure 3.24(c). However, the local loading conditions di�er, which is re�ected
in the maximum principal stress. Their absolute values and directions projected to the
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Figure 3.26.: Local �elds in the corresponding micro-simulation for element A at time
instances 1-5 (left to right): damage (top) and von Mises stress (bottom)

z-x-plane are plotted along the Young's modulus bodies in �gure 3.29(b). Due to these
di�erent conditions, a change in the local sti�ness tensor is induced. The emerging di�er-
ences are signi�cant at the �nal cycle considered, as is readily apparent from inspecting
�gure 3.29(b).
To gain deeper insight into the di�erent behavior of the elements A and B, respectively, we
investigate the evolution of the corresponding micromechanical �elds during the loading
procedure. For this purpose, we extracted the loading history from the macroscopic simu-
lation and conducted strain-amplitude driven microscopic simulations on microstructures
with proper �ber orientations. The resulting local damage and stress �elds are shown in
�gure 3.26 and �gure 3.27 at speci�c time instances, speci�cally marked in �gure 3.26. We
observe an evolving damage �eld, starting at the �ber tips and eventually coalescing into
a crack that leads to a complete failure of the entire volume element. Comparing the two
elements, the damage level in element B signi�cantly exceeds element A. Correspondingly,
the stresses are redistributed as, due to damage in the surrounding matrix, the �bers lose
their load-bearing capacity.
To complement the previous investigations, we turn our attention to the evolution of
the acoustic tensor. Whenever the strain �eld is discontinuous in a direction g across a
discontinuity with normal vector n, necessarily g is an element of the null space of the
acoustic tensor A(n,C), i.e.,

A(n,C) · g = 0 (3.5.3)
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Figure 3.27.: Local �elds in the corresponding micro-simulation for element B at time
instants 1-5 (left to right): damage (top) and von Mises stress (bottom)
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Figure 3.28.: FE mesh and closely examined elements A and B (left) and principal stress
σmax in a bottom view for the undamaged state (middle) and after 2.6×106

cycles (right)
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Figure 3.29.: Investigations for the �nite elements A (highest elastic energy at cycle 0)
and B (highest elastic energy at cycle 2.6× 106)

holds for the acoustic tensor, implicitly de�ned as the symmetric order-two tensor satis-
fying

u · A(n,C) · v = u⊗s n : C : u⊗s n for all u,v ∈ R3,

where ⊗s denotes the symmetrized tensor product and C stands for the current sti�-
ness tensor. In particular, the condition (3.5.3) is necessary for a damage model to
exhibit localization in terms of crack initiation or grack growth. We refer to section 9.5
in Gross&Seelig [36] for background and discussion.
For a sti�ness tensor evolving in cycle space, the quantity

Λ(N) = max
∥n∥=1

[
1− detA(n,C(N))

detA(n,C(0))

]
(3.5.4)

measures the change in the determinant of the acoustic tensor in a quantitative manner.
Indeed, Λ(0) = 0 and Λ(N) = 1 implies that the localization condition (3.5.3) holds for
some normal n and a non-zero direction g.
The Λ(N)-�eld for the investigated component and at the �nal cycle N = 2.6 × 106 is
shown in �gure 3.25(b) on a logarithmic scale. There are large parts of the structure where
no localization is imminent. However, in particular at the ribs of the component, fatigue
cracks are expected to nucleate, con�rming engineering intuition.

3.6. Conclusion

This chapter was concerned with simulating the sti�ness-degradation behavior of short-
�ber reinforced plastics subjected to high-cycle fatigue loading. The multiple scales in-
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volved, both in space and time, make the problem challenging, together with the inherent
anisotropy of �ber-reinforced materials and the variations in the composition of the phases
(both in terms of volume fraction and �ber orientation) inherent to injection-molded short-
�ber reinforced components.
We put special emphasis on the multi-scale structure of the problem in space, because
the �bers induce heterogeneous stress �elds on the microscopic scale, essentially playing
the role of "notches". Our intention was to show the e�ect of the reinforcements on
the sti�ness degradation. To do so, we relied upon a series of simpli�cations. To start,
we decided to ignore the growth of fatigue cracks on the macroscopic scale and focused
on macroscopic sti�ness degradation induced by fatigue-crack growth on the microscopic
scale. Also, we skipped the time domain entirely, and started our modeling directly in
cycle space. It would be interesting to see how cycle-jump techniques [197,198] or homog-
enization approaches in time [199, 200] may either be combined to the presented model,
or serve as a veri�cation of the approach.
The model we chose was kept deliberately simple to ensure that the resulting multi-scale
problem admits a model order reduction. We guarantee this property by using only
polynomials in the incremental potential. In this way, a straightforward Galerkin-type
model-order reduction is ensured. This choice, in turn, has consequences for the physical
assumptions that are taken into account. For instance, we disregard tension-compression
asymmetry [132, 201]. Also, we cannot ensure point-wise irreversibility of damage in the
reduced model.
The assumption of being order-reducible needs to be critically reviewed, because such
an assumption is not supported by physical reasoning. Rather, it is merely convenient
from a computational point of view. Despite the strong simpli�cations, we were able to
complete a full multi-scale simulation chain, starting from the matrix modeling up to the
component-scale simulations.
Augmented by a non-local term in the damage evolution, we studied both the sensitivity
on numerical parameters and the model predictions on �ber-reinforced volume elements.
We were able to vary essentially all parameters entering the multi-scale model, both phys-
ical parameters and morphological parameters of the composite, and could also change
the loading. In doing so, we were able to give detailed predictions of the degradation of
the entire sti�ness tensor, i.e., for each component individually, and the in�uence of the
various parameters. These investigations give rise to a wealth of data (much more than
we could show), and are expected to complement experimental results, thereby reducing
the emerging costs.
As a downside, our presented model does not admit representative volume elements, as
a consequence of the localization permitted by the model [177]. When modeling failure
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processes, localization cannot be avoided. However, as we wanted to model the sti�-
ness degradation, in the �rst place, it would be interesting to �nd a sti�ness-degradation
model that admits representative volume elements. As a byproduct, we could eliminate
the strong dependence of our model on the length-scale parameter, which is often di�cult
to estimate in practice [202].
We presented a model-order reduction strategy, that was furthermore integrated into the
�ber-orientation interpolation technique of Köbler et al. [160]. It is only in this work that
we realize the full potential of the �ber-orientation interpolation technique, as the latter
applies to arbitrary material behavior and appears to be a promising tool for multi-scale
modeling of short-�ber reinforced materials.
It might be wise to exploit alternatives, such the recently proposed self-consistent clus-
tering analysis [68, 69] or approaches based on arti�cial intelligence [90, 203]. Last but
not least let us mention that this work is devoted to sti�ness degradation upon fatigue
loading, but does not explicitly model fatigue-crack growth. The model we presented
may be supplemented by a conventional fracture criterion [135] to additionally provide a
lifetime estimate for a speci�c component.
As a next step, it would be interesting to extend the presented model to a (at least
quasi-static) fatigue-crack growth model.
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4. A multiscale high-cycle

fatigue-damage model for the

sti�ness degradation of

�ber-reinforced materials based

on a mixed variational framework1

4.1. Introduction

This chapter builds upon the approach introduced by Jain et al. [9] and re�ned in chapter 3
in terms of a suitable multiscale fatigue-damage model of short-�ber polymer composites.
Following their strategy, we are interested in modeling the progressive sti�ness degradation
in the stable phase prior to failure, serving as the basis of a subsequent failure assessment
via an appropriate criterion. To be more precise, we introduce a scalar fatigue-damage
model for the polymer matrix, and the sti�ness degradation of the composite arises from
a suitable MOR strategy in a computational homogenization framework.
In chapter 3, we used a fatigue-damage model that is quite similar to classical phase-�eld
fracture models [133, 204, 205] and exploited the fact that the corresponding incremental
potential is a fourth-order polynomial in the involved �elds, which permits to express
the incremental potential in a MOR framework exactly in terms of suitable precomputed
quantities. In particular, no special quadrature [189] is necessary in the NTFA procedure.
Taking a closer look at the typical sti�ness degradation of polymer composites upon fa-
tigue loading [3, 5], see Fig. 4.1, we notice that the �rst and the second phase of the

1 N. Magino, J. Köbler, H. Andrä, F. Welschinger, R. Müller, M. Schneider, "A multiscale high-cycle

fatigue-damage model for the sti�ness degradation of �ber-reinforced materials based on a mixed

variational framework," Computer Methods in Applied Mechanics and Engineering, vol. 388, pp.

114198, 2022.
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Figure 4.1.: Comparison of the e�ective fatigue damage reported in the literature [5]
(left) and predicted by the proposed model (right), distinguishing constant
strain amplitude (top) and constant stress amplitude (bottom) for reversible
loading (i.e., R = 0)
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fatigue-damage evolution on the macroscale are characterized by a steady and stable
damage evolution. Only for prescribed stress amplitude and in the third, �nal phase,
localization occurs. As the models of Jain et al. [9] and chapter 3 only require modeling
the �rst and the second phase of the fatigue-damage evolution to assess the lifetime of
the component, we sought an alternative damage model which permits a more e�cient
numerical treatment. Indeed, to model this stable phase, it appears su�cient to employ
fatigue-damage model which avoids the negative side e�ects of softening damage models,
like the inherently high number of modes necessary to capture the evolution in the strain
softening regime appropriately, see Fig 3.21, and the loss of representativity upon soften-
ing [177].
For this purpose, we build upon the convex, rate-independent damage model [135, 206]
of Görthofer et al. [207]. Inspired by the work of Govindjee [208], Görthofer et al. [207]
proposed a framework for damage models that directly operates on the compliance matrix
as an internal variable and satis�es Wul�ngho�'s damage criterion [209]. The resulting
strain energy is jointly convex in the strain and internal variables and thus precludes strain
softening [210], leading to mesh-independent results without the necessity of introducing
a gradient term of the damage variable [132,134,137,211�214]. In contrast to elastoplastic
models, which may be used for modeling a shift in the "secant sti�ness", our approach
permits to predict the degradation of the full sti�ness tensor, accounting for anisotropy
e�ects.
To reproduce the characteristic behavior of the fatigue-damage evolution in the �rst two
stages, see Fig. 4.1, we formulate the model in the logarithmic cycle space. In addition
to closely matching what is observed in experiments, see Fig. 4.1, this formulation leads
to a high computational e�ciency, as a large number of cycles can be simulated quickly.
Endowing the thermoplastic matrix with this model leads to a naturally emerging multi-
scale model, see section 4.2.2, which we demonstrate to be appropriate to capture the loss
of sti�ness upon fatigue loading for a glass-�ber reinforced polybutylene terephthalate
(PBT), see section 4.2.3, at least if the sti�ness reduction introduced in the initial phase,
which can be determined experimentally with little e�ort, is considered.
Unfortunately, in its original form, the introduced fatigue-damage model is not directly
suitable for e�cient model-order reduction. In contrast to the model of chapter 3, the
class of models introduced by Görthofer et al. [207] leads to an incremental potential
whose integrand is no longer a polynomial in the �elds. In particular, the precomputing
strategy of chapter 3 does not apply. Of course, approximation procedures [79,80], Gauss
quadrature [189] or polynomialization [215] could be applied. To avoid the resulting de-
crease in accuracy or increase in computational e�ort, we follow a di�erent route. More
precisely, we exploit a reformulation of the fatigue-damage evolution in terms of the stress
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amplitude. Mathematically speaking, we apply a partial Legendre transform in the strain
amplitude. By this nonlinear transformation, the underlying saddle-point problem has an
incremental potential which is a third-order polynomial in the involved stress-amplitude
and fatigue-damage �eld. In particular, the precomputation strategy of chapter 3 applies.
However, this reformulation comes at a cost. The original, primal minimization principle
is replaced by a mixed variational principle, and its structure needs to be studied anew, in
particular concerning model-order reduction. Fortunately, see section 4.3 for details, the
corresponding mixed variational principle turns out to be well-posed, even upon model-
order reduction, as long as suitable (physically sound) conditions hold. We thoroughly
investigate the sensitivity of the multiscale model and its reduced-order model w.r.t. the
involved parameters in section 4.4, and demonstrate the capabilities of the ensuing model
on component scale, see section 4.5.

4.2. A fatigue-damage model for the sti�ness

degradation

In section 4.2.1, we introduce a (homogeneous) material model for the polymer matrix
which models the sti�ness degradation upon fatigue loading. The material model may
appear simple, but was selected with its favorable properties concerning model-order
reduction in mind.
In chapter 3, we work directly in cycle space for reasons of e�ciency. In a similar direction,
we consider a time-like variable directly in logarithmic cycle space. We investigate the
material behavior in a one-dimensional stress- and strain-driven load case and compare
the material behavior to fatigue degradation of short-�ber reinforced polymers reported
in the literature [4, 5, 142]. Subsequently, in section (4.2.2), the described model enters
as a constituent in a composite, mathematically encoded by an appropriate �rst-order
homogenization framework. Upon discretization in cycle space and for prescribed stress
(amplitude), we also discuss the naturally associated variational principle. We close this
section by showing that the introduced model captures the phase of second, stable sti�ness
degradation of �ber-reinforced composite microstructures quite accurately, at least if the
initial sti�ness degradation is considered.
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Figure 4.2.: E�ect of changing the parameter α on the model for constant stress amplitude
σmax = 25 MPa

4.2.1. Matrix modeling

We introduce a fatigue-damage material model at small strains using the framework of
generalized standard materials (GSMs) of dissipative solids [17, 216]. We formulate our
model in logarithmic cycle space, described by a continuous variable N ≥ 0, instead of
the more standard time framework. To be precise, we use the rescaling N = log10 (N)

throughout this work, where N refers to the current cycle, and introduce a time like
derivative q′ ≡ dq/dN . This choice permits taking large steps △N in logarithmic cycle
space, necessary for treating high-cycle fatigue problems, instead of small time steps △t.
The GSM framework is carried over to the cycle setting, by simply relabeling the time t
by the cycle N (some care has to be taken with the dimensions, as the time-like scale N
is dimensionless).
The proposed model involves a scalar damage variable D ≥ 0 as the only internal variable.
We consider the free energy

w (ε, d) =
1

2 (1 +D)
ε : C : ε, (4.2.1)

where ε refers to the elastic (small) strain tensor and C denotes the (undamaged) fourth-
order sti�ness tensor. The model is completed by the dissipation potential

ϕ (D′) =
1

2α
(D′)

2
, (4.2.2)
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where α > 0 determines the speed of evolution andD′ denotes the derivative of the fatigue-
damage variable D w.r.t. the continuous logarithmic cycle variable N . The associated
Cauchy stress-tensor σ is de�ned by

σ ≡ ∂w

∂ε
(ε, D) =

1

(1 +D)
C : ε, (4.2.3)

i.e., the sti�ness tensor is reduced by a factor 1/ (1 +D) for growing fatigue-damage
variable d. Biot's equation associated to the described model reads

0
!
=
∂w

∂D
(ε, D) +

∂ϕ

∂D′ (D
′) = − 1

2 (1 +D)2
ε : C : ε+

D′

α
, (4.2.4)

i.e., in explicit form
D′ =

α

2 (1 +D)2
ε : C : ε. (4.2.5)

As the right-hand side is always non-negative, the damage variable is non-decreasing for
increasing cycles N .
An implicit Euler discretization of equation (4.2.5) in logarithmic cycle space leads to the
equation

Dn+1 −Dn

△N =
α

2 (1 +Dn+1)2
ε : C : ε, (4.2.6)

where Dn refers to the damage value at the previous and Dn+1 to the damage value at
the current state.
To gain some understanding of the predictions made by the model, we shall discuss
uniaxial extension for the one-dimensional case in more detail. In this context, we denote
the Young's modulus by E.
For a constant peak stress σmax, the di�erential equation (4.2.5) with initial condition
D (0) = 0 may be integrated exactly,

D
(
N
)
=
α

2

σ2
max

E
N. (4.2.7)

Thus, the damage variable D grows linearly in the variable N . In Fig. 4.2(a), the solution
is plotted for a stress amplitude of σmax = 25 MPa and the Young's modulus E = 3

GPa. The fatigue-damage variable depends linearly on the parameter parameter α, re-
sulting in a faster evolution of the damage variable D with increasing α. The damage
variable has no upper bound and evolves towards +∞ under fatigue loading. This cor-
responds to an asymptotic degradation of the e�ective sti�ness Eeff = 1

1+D
E towards

zero,

Eeff =
1

1 + 1
2
ασ2

maxN/E
E, (4.2.8)
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Figure 4.3.: E�ect of the parameter α on the model for constant strain amplitude εmax =

8.33× 10−3

as shown in Fig. 4.2(b). At the undamaged state D = 0, the current e�ective Young's
modulus Eeff equals the elastic modulus E. Under fatigue loading, the e�ective Young's
modulus decreases. The slope of the E-N -curve decreases with increasing N . Thus, for
high number of cycles, the degradation of the e�ective Young's modulus is slowed down.
Indeed, since the damage variable D never reaches +∞, the state E = 0 of the material
is not reached.
For a constant peak strain εmax and the initial condition D (0) = 0, the damage evolution
integrates to the expression

D
(
N
)
=

(
1 +

3α

2
Eε2maxN

) 1
3

− 1. (4.2.9)

The solution is plotted for a strain amplitude of εmax = 8.33 × 10−3 and a Young's
modulus of E = 3 GPa in Fig. 4.3(a). The corresponding evolution of the e�ective
Young's modulus

Eeff =
1

(
1 + 3

2
αEε2maxN

) 1
3

E (4.2.10)

is shown in Fig. 4.3(b). The exponent in the evolution of the damage variable of 1/3
is smaller than under constant stress, where the exponent is one. Still, as for stress
loading, the fatigue damage evolution grows to +∞ as N → +∞. Under constant strain
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amplitude, the evolution of the e�ective Young's modulus asymptotically goes to zero, as
well. However, due to the cubic root-type evolution of the damage variable under constant
strain amplitude compared to the linear evolution under constant stress amplitude, the
degradation of the material progresses at a slower rate.
Both under constant stress and constant strain amplitude, the model does not feature
a fatigue limit. Instead, the model predicts a stable sti�ness degradation to zero, due
to fatigue damage. To predict the complete failure upon fatigue loading, an additional
failure criterion needs to be supplemented.
In Fig. 4.1, the introduced fatigue-damage model is compared to typical experimental
results from the literature. The sti�ness evolution of the proposed model is given for
α = 1.5 1/MPa and a Young's modulus of E = 3 GPa. The loadings are chosen with
a stress amplitude of σa = 25 MPa and a strain amplitude of εmax = 8.33 × 10−3. In
strain-controlled fatigue experiments of short-�ber reinforced polymers, two distinct stages
emerge in cycle space. Starting from an initial damage value evoked by the preloading step
(and whose magnitude depends on the applied displacement [5]), the sti�ness decreases
rapidly in the �rst stage of fatigue loading. The proposed fatigue-damage model may
reproduce the initial loss in sti�ness by considering a positive initial value D0 > 0. If
D0 = 0 is used, the sti�ness degradation experienced in the �rst cycle will not be accounted
for. The model at hand qualitatively reproduces the rapid degradation of the material in
stage-1 fatigue. Subsequently, in experimental stage-2 fatigue, the material degradation
enters a stable phase of sti�ness degradation. The e�ective Young's modulus of the
material decreases gradually. The model at hand may reproduce this fatigue-loading
regime quite accurately.
Under constant stress-amplitude loading, the sti�ness degradation is also characterized
by these two phases, but enters a third stage, which was not observed for displacement-
driven experiments. In this third stage, a critical damage state forms which leads to
a complete fracture of the test specimen. This stage-3 fatigue is not accounted for by
the proposed fatigue model on the microscale. Rather, the onset of macroscopic failure
can be determined via a suitable failure criterion, like a prescribed amount of sti�ness
lost [9, 217,218].

4.2.2. Model on the microscale

Consider a cubic cell Y ⊆ Rm, and suppose that a microscopic sti�ness distribution
Y ∋ x 7→ C (x), associating a (non-degenerate) linear elastic sti�ness tensor to each
microscopic point, and a (bounded) �eld α : Y → [0,∞), are given. For a prescribed path
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of macroscopic stress amplitudes

ε : [0, Nmax]→ Sym(m), (4.2.11)

mapping into the space Sym(m) of symmetric m × m tensors, we seek a displacement
�uctuation �eld u, a strain �eld ε, a stress �eld σ and a damage �eld D, all de�ned on
the microscopic scale, satisfying kinematic compatibility

ε
(
N,x

)
=
〈
ε
(
N, ·

)〉
Y
+∇su

(
N,x

)
, (4.2.12)

where ⟨.⟩Y stands for averaging over the cell Y , the constitutive equation

σ
(
N,x

)
=

1(
1 +D

(
N,x

)) C (x) : ε
(
N,x

)
, (4.2.13)

the (quasi-static) balance of linear momentum

div σ
(
N,x

)
= 0 (4.2.14)

and Biot's equation

D′ (N,x
)
=

α (x)

2
(
1 +D

(
N,x

))2 ε
(
N,x

)
: C (x) : ε

(
N,x

)
, (4.2.15)

together with the prescribed stress amplitude σ
(
N
)

〈
σ
(
N, ·

)〉
Y
= σ

(
N
)

(4.2.16)

and the initial condition
D (0,x) = 0 (4.2.17)

for all x ∈ Y . Upon an implicit discretization in time and eliminating all �elds except for
εn, un andDn, where the macroscopic strain εn at cycleN

n
is de�ned as

εn =
〈
ε
(
N
n
, ·
)〉

Y
, (4.2.18)

the latter set of equations, at the current cycle step, corresponds to a critical point of the
variational principle

F n+1 (ε,u, D) −→ min (4.2.19)

for the Ortiz-Stainier functional [219,220]

F n+1 (ε,u, D) =

〈
1

2 (1 +D)
(ε+∇su) : C : (ε+∇su) +

1

2α△N (D −Dn)2
〉

Y

−ε : σn+1.

(4.2.20)
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Material E in GPa ν Additional parameters
E-glass �bers 72 0.22 �
PBT matrix 2.69 0.4 α = 15 1/GPa

Table 4.1.: Model parameters adjusted to experimental data

For the latter de�nition, we use the convention that F n+1 (ε,u, D) = +∞ if α (x) = 0

and D (x) ̸= Dn (x) for x ∈ Y . Also, the short-hand notation σn = σ
(
N
n)

is used.
For the article at hand, we are primarily interested in the evolution of the e�ective sti�-
ness upon fatigue loading. The latter arises from the local sti�ness tensor �eld C/ (1 +D)

by linear elastic homogenization [221].
If C is uniformly positive and bounded and α is bounded as well, it is not di�cult to see
that the problem (4.2.20) admits a unique minimizer in a suitable Sobolev space [222].
Indeed, eliminating the damage variable D via Biot's equation (4.2.6) leads to a strictly
convex optimization problem in the strain �eld, whose condensed energy grows with an
exponent between 4/3 and 2 in the strain, depending on whether α vanishes or not. Once
the strain �eld is obtained, the (square-integrable) damage �eld may be recovered via
Biot's equation.
Thus, the presented model is well-de�ned for Sobolev spaces with exponents larger than
one. In particular, by construction, no damage localization is permitted by the mathe-
matical model. Indeed, such localization behavior is typically observed for energies with
linear growth in the strain. The superlinear growth of the condensed energy precludes
localization. Thus, focusing on the stable fatigue damage regime, see stage-1 and stage-2
fatigue in Fig. 4.1, the presented damage model comes with a bene�cial numerical treat-
ment, as it leads to mesh-independent results also without gradient enrichment. Physi-
cally speaking, the model at hand monitors the phase of sti�ness decrease which does not
(yet) have fracture mechanical rami�cations. This contrasts with the model discussed in
chapter 3.

4.2.3. Parameter identi�cation

After discussing the ability of the model to reproduce the typical fatigue-damage behav-
ior of short-�ber reinforced polymers in the one-dimensional case, see section 4.2.1, this
section is devoted to identifying the single free parameter α, which governs the speed of
fatigue-damage growth for the model at hand. We compare experimental results to simu-
lations on representative volume elements (RVE) to determine this parameter. Moreover,
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Figure 4.4.: Setup and geometries for experiments

the capability of the model to reproduce the sti�ness decrease is further discussed.
We performed experiments on specimens made of polybutylene terephthalate (PBT) re-
inforced by E-glass �bers. The isotropic elastic moduli for these materials are given in
Tab. 4.1. The elastic properties of the E-glass �bers are standard, whereas the elas-
tic properties of the polymer matrix were identi�ed via quasi-static testing of the pure
matrix material using so-called Becker samples, see [223], on a Zwick universal testing
machine. We restrict ourselves to stress ratios

R =
σmin

σmax

(4.2.21)

of R = 0 throughout this work.
The specimens used for the fatigue tests were cut from an injection-molded plate as shown
in Fig. 4.4(a). Each specimen has a thickness of 2mm and the geometric properties of
the specimens are shown in Fig. 4.4(b).
The fatigue tests were performed on a Schenk hydropulser as shown in in Fig. 4.4(c).
With respect to a time-e�cient testing, the frequencies of the experiments were chosen in
the range from 2Hz to 12Hz depending on the loading amplitudes. Of course, induced
self-heating of the samples limits the maximum frequency that can be applied. The chosen
frequency ensures that the temperature increase during testing, measured at the sample
surface, does not exceed 2K. For the positioning of the temperature sensor on the sam-
ple, see Fig. 4.4(c). The local deformation in the middle of the sample is recorded using
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extensometers with a gauge length l0 = 10mm, see Fig. 4.4(c).
In accordance with the literature [5, 118, 142], the experiments show an initial rapid de-
crease of the sti�ness for low cycles and a secondary steady regime in the linear cycle
space, see Fig. 4.5(a). The strain results are normalized by a reference strain ε0, more
precisely ε0 = εxx(N = 0) at a stress amplitude of 60 MPa. This decrease corresponds to
a linear evolution when displayed in logarithmic cycle space, see Fig. 4.5(b).
For parameter identi�cation using numerical computations on representative volume el-
ements, it is necessary to characterize the �ber orientation state of the experimental
specimens. Thus, the microstuctural properties of the specimens were examined via high-
resolution X-ray microcomputed tomography (µCT) analysis. For details of the charac-
terization process, we refer to Hessman et al. [224]. The �ber volume content was found
to be 17.8%. The identi�ed aspect ratio depends on the segmentation algorithm and the
chosen batch. The algorithm proposed by Hessman et al. [224] predicts an aspect ratio
of 26.1, whereas the aspect ratio obtained from the commercial Simpleware ScanIP soft-
ware is 23.9. As such small changes in the �bers' aspect ratio have little in�uence on the
e�ective material behavior, we use the aspect ratio of 25 for the numerical simulations
throughout this work.
The �ber orientations in these specimens show a layered structure over the thickness.
To keep the procedure simple, we consider a homogeneous, averaged �ber orientation
and compute the second-order Advani-Tucker tensor from the scan over the complete
specimen thickness. The second-order Advani-Tucker �ber-orientation tensor A [169]
is computed from the �ber directions pi ∈ S := {p ∈ R3, ∥p∥ = 1} via the for-
mula

A =
1

Nfiber

Nfiber∑

i=1

pi ⊗ pi. (4.2.22)

The obtained eigenvalues in the specimens are λ1 = 0.770, λ2 = 0.213 and λ3 = 0.017.
We use these parameters to generate the microstructure in Fig. 4.4(d) by the sequential
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addition and migration algorithm [173].
Subsequently, the microstructure shown is subjected to uni-axial extension in the principal
�ber direction at the same stress amplitudes that were used in the experiment. We
identi�ed the parameter α = 0.015 1/MPa. In Fig. 4.5, we compare the measurements to
numerical experiments for using a log-cycle scale N .
For the stress amplitudes at hand, the strain evolution curves are captured quite well by
the model. Both the slopes of the strain evolution as well as the initial strain amplitude,
corresponding to the strain amplitude at the �rst cycle, are captured. However, for
computations at higher or lower stress amplitudes than shown here, the initial strain
amplitudes at the �rst cycle deviate from the experimental results. This kind of initial
sti�ness decrease in the �rst few cycles prior to stage-1 fatigue shown in Fig. 4.1(b) is
not accounted for by the proposed model. For the work at hand, we focus on the region
between initial damage (or plastic deformation) and fracture, namely stage-1 and stage-
2 fatigue. The prediction of the initial strain amplitude decrease is left for subsequent
work.
The damage evolution in the fatigue damage region between initial loading and �nal
fracture has been observed to be of logarithmic character. The formulation of the model
at hand in log-cycle space N is thus reasonable.

4.3. A model-order reduction strategy based on a

mixed formulation

4.3.1. A reformulation in terms of the stress

In the previous section we formulated our model based on the Ortiz-Stainier potential
(4.2.20)

F (ε,u, D) =

〈
1

2 (1 +D)
(ε+∇su) : C : (ε+∇su) +

1

2α△N (D −Dn)2
〉

Y

− ε : σ,

(4.3.1)
where we drop the superscript n+1 for this section. This formulation is not ideally suited
for model-order reduction. For a basis of preselected modes, we would like to express the
functional to be minimized in terms of quantities that can be precomputed, avoiding any
access to full �elds. However, such a precomputation is not possible, as the damage vari-
able D enters the denominator in the Ortiz-Stainier potential. Instead of relying upon an
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approximation, for instance by a Taylor polynomial [79,80,189], we follow a di�erent route.
Let us invert the stress-strain relationship (4.2.3) of the matrix model,

ε = (1 +D) S : σ (4.3.2)

in terms of the compliance tensor S = (C)−1. Similarly, we may recast Biot's equation
(4.2.5) in the form

D′ =
α

2
σ : S : σ, or,

D −Dn

△N =
α

2
σ : S : σ (4.3.3)

upon an implicit Euler discretization in logarithmic cycle space. With precomputations
useful for model-order reduction in mind, this reformulation is very convenient. Indeed,
the equations (4.3.2) and (4.3.3) involve only terms that are jointly quadratic in the
internal variables (σ, D). A lower degree of homogeneity in the joint internal variables
is favorable for precomputations, as this degree a�ects the number of the precomputed
system matrices in the reduced order model, see section 4.3.2.
As for the primal model, see section equations (4.2.1) and (4.2.2), we may establish a
(mixed) variational principle

S (σ, D) −→ min
D

max
div σ=0
⟨σ⟩Y =σ

(4.3.4)

in terms of the saddle-point function

S (σ, D) =

〈
−(1 +D)

2
σ : S : σ +

1

2α△N (D −Dn)2
〉

Y

. (4.3.5)

The equivalence of the strain- and the stress based formulations, (4.2.19) and (4.3.4),
respectively, in terms of the relation (4.3.2) is shown in Appendix A.1. However, some
care has to be taken with this formulation. Please notice that the function S is always
convex in D, but concavity in σ is only ensured for D ≥ −1. Thus, instead of the formal
mixed variational principle (4.3.4), it is recommended to �x some D− ∈ (−1, 0] and to
consider the constrained mixed variational principle

S (σ, D) −→ min
D≥D−

max
div σ=0
⟨σ⟩Y =σ

(4.3.6)

instead. Please notice that the considered mixed variational principle di�ers from the
mixed variational principle of Fritzen-Leuschner [67]. Indeed, we perform a partial Leg-
endre transform in the strain, whereas Fritzen-Leuschner rely upon a partial Legendre
transform in the internal variable.
Suppose that MD damage modes

δa : Y → R, a = 1, . . . ,MD, (4.3.7)
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and Mσ stress modes
si : Y → Sym(m), i = 1, . . . ,Mσ, (4.3.8)

satisfying
⟨si⟩Y = 0 and div si = 0, i = 1, . . . ,Mσ, (4.3.9)

are given. Then, for M = (Mσ,MD), and coe�cients

D⃗ = (D1, . . . , DMD
) ∈ RMD and σ⃗ = (σ1, . . . , σMσ) ∈ RMσ , (4.3.10)

we consider the reduced-order model determined by the mixed variational principle (4.3.6)

SM

(
σ⃗, D⃗

)
−→ min

D⃗,D≥D−
max
σ⃗

(4.3.11)

involving the function

SM

(
σ⃗, D⃗

)
≡ S (σ, D) with σ = σ +

Mσ∑

i=1

σisi and D =

MD∑

a=1

Daδa, (4.3.12)

and where the previous cycle step is represented in the form

Dn =

MD∑

a=1

Dn
aδa for a suitable D⃗n ∈ RMD . (4.3.13)

Notice that, in the reduced-order setting, it is not readily apparent that the problem
(4.3.11) is solvable, and that there is a unique solution. For this purpose, let us introduce
the non-linear operator

AM : RMσ ×RMD → RMσ ×RMD , (4.3.14)

implicitly de�ned via
〈
AM

(
σ⃗β, D⃗β

)
,
(
σ⃗γ, D⃗γ

)〉
M

=
〈(

1 +Dβ
) (

σ + σβ
)
: S : σγ +

1

α△N
(
Dβ −Dn

)
Dγ − 1

2
Dγ
(
σ + σβ

)
: S :

(
σ + σβ

)〉

Y

,

for any
(
σ⃗β, D⃗β

)
,
(
σ⃗γ, D⃗γ

)
∈ RMσ×RMD , where we use the abbreviations

σκ =
Mσ∑

i=1

σκi si as well as Dκ =

MD∑

a=1

Dκ
aδa for κ ∈ {β, γ} (4.3.15)

and the inner product

〈(
σ⃗β, D⃗β

)
,
(
σ⃗γ, D⃗γ

)〉
M

=

〈
Mσ∑

i,j=1

σβi σ
γ
j si : sj +

MD∑

a,b=1

Dβ
aD

γ
b δaδb

〉

Y

(4.3.16)
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on the space RMσ×RMD . The operator (4.3.14) is closely related to the mixed variational
principle (4.3.11) and (4.3.12). Indeed,AM may be written in the form

AM
(
σ⃗, D⃗

)
=

(
−∂SM

∂σ⃗
,
∂SM

∂D⃗

)
. (4.3.17)

Thus, any saddle point
(
σ⃗, D⃗

)
of the mixed variational principle (4.3.11) which satis�es

D > D− is a root of the operator AM . Conversely, any root
(
σ⃗, D⃗

)
of the operator AM

is a saddle point of the variational principle (4.3.11). Of course, the same holds with
the gradient of the function SM in place of the operator AM . However, the simple sign
reserval (4.3.17) in the �rst component provides the operator AM with better properties.
Indeed, with the abbreviations (4.3.15), the identity

〈
AM

(
σ⃗β, D⃗β

)
−AM

(
σ⃗γ, D⃗γ

)
,
(
σ⃗β, D⃗β

)
−
(
σ⃗γ, D⃗γ

)〉
M

=
〈
2 +Dβ +Dγ

2

(
σβ − σγ

)
: S :

(
σβ − σγ

)
+

1

α△N
(
Dβ −Dγ

)2
〉

Y

(4.3.18)

holds for any
(
σ⃗β, D⃗β

)
,
(
σ⃗γ, D⃗γ

)
∈ RMσ ×RMD . Suppose that the sti�ness distribution

C is uniformly bounded from above and from below

c− ε : ε ≤ ε : C (x) : ε ≤ c+ ε : ε, x ∈ Y, ε ∈ Sym(m), (4.3.19)

with positive constants c±, and let α+ be an upper bound for α. Then, under the condition
Dκ ≥ D− for κ ∈ {β, γ}, the identity (4.3.18) implies the estimate

〈
AM

(
σ⃗β, D⃗β

)
−AM

(
σ⃗γ, D⃗γ

)
,
(
σ⃗β, D⃗β

)
−
(
σ⃗γ, D⃗γ

)〉
M
≥

c− (1 +D−)
〈(
σβ − σγ

)
:
(
σβ − σγ

)〉
Y
+

1

△Nα+

〈(
Dβ −Dγ

)2〉
Y
. (4.3.20)

In particular, as D− > −1, the operator AM is strongly monotone, and the monotonicity
constant does not depend on the chosen bases. We refer to Appendix A.2 for a derivation
of the identity (4.3.18). By similar arguments, the identity
〈
AM

(
σ⃗, D⃗

)
,
(
σ⃗, D⃗

)〉
M

=

〈
2 +D

2
(σ + σ) : S : σ +

1

α△N (D −Dn)D

〉

Y

, (4.3.21)

using the abbreviations (4.3.15), may be deduced. Hence, the operatorAM is also coercive.
Moreover, due to its representation by a polynomial, the operator AM is continuous.
Thus, as long as the constraint D ≥ D− > −1 is satis�ed, classical monotone operator
theory [225] implies that there is a unique root of the operator AM .
For our computational experiments, it was not necessary to enforce the constraintD ≥ D−

explicitly, see section 4.4.3. Thus, the latter constraint may be regarded as a theoretical
prerequisite that may not always be required in practice.
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Figure 4.6.: Concept of precomputations and online phase

4.3.2. Implementation and solution of the discretized system

The proposed fatigue model permits a straightforward model-order reduction. Thus,
precomputations on the microscale can be completed once and for all in an o�ine phase.
The derivation of macroscopic equations and system matrices from the POD modes are
discussed in this section.
The polynomial character of the saddle point functional (4.3.12) permits this saddle point
functional, considered as a function of the mode coe�cients, to be precomputed exactly
(up to numerical precision). In particular, no access to the full �elds is required during the
online evaluation of the proposed multiscale fatigue-damage model. Let us �rst discuss
why a polynomial potential enables a precomputation strategy. Suppose a function f of
a vectorial variable z⃗ is given. We assume the variable z⃗ to be �nite-dimensional with
dimensionMz, and denote the components of z⃗ by zi, reserving Latin indices i, j, k for this
purpose. Suppose furthermore that a number of modes z⃗a (a = 1, . . . ,Mm) were selected,
and we seek an approximation

z⃗ =
Mm∑

a=1

ξaz⃗
a (4.3.22)

in terms of suitable mode coe�cients ξa (a = 1, . . . ,Mm). In particular, we are interested
in the function

f̃(ξ1, . . . , ξMm) = f

(
Mm∑

a=1

ξaz⃗
a

)
, (4.3.23)

which only depends on the mode coe�cients. For MOR to be e�ective, the number of
mode coe�cients Mm in the representation (4.3.23) should be much smaller than the
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number of vector components Mz. For general functions f , little is gained by considering
the function f̃ (4.3.23), as its de�nition follows the indirect way via the variable z⃗. For
polynomial functions f , in contrast, a di�erent strategy can be followed. For concreteness,
let us assume the function f to be a polynomial of degree 3, i.e., it may be expressed in
the form

f(z⃗) = C +
Mz∑

i=1

fi zi +
Mz∑

i,j=1

fij zizj +
Mz∑

i,j,k=1

fijk zizjzk (4.3.24)

in terms of suitable coe�cients C, fi, fij and fijk. Then, inserting the mode representation
(4.3.23), we obtain the expression

f̃(ξ1, . . . , ξMm) = C +
Mm∑

a=1

f̃a ξa +
Mm∑

a,b=1

f̃ab ξaξb +
Mm∑

a,b,c=1

f̃abc ξaξbξc, (4.3.25)

which turns out to be a third-order polynomial in the mode coe�cients and involves the
precomputable coe�cients

f̃a =
Mz∑

i=1

fi z
a
i ,

f̃ab =
Mz∑

i,j=1

fij z
a
i z

b
j ,

f̃abc =
Mz∑

i,j,k=1

fijk z
a
i z

b
jz
c
k

(4.3.26)

for a, b, c = 1, . . . ,Mm.
Let us return to the fatigue-damage model at hand. For �xed modes (4.3.8) and (4.3.7), we
set z⃗ = (σ⃗, D⃗), i.e., Mz =Mσ +MD, and consider the objective function f =SM (4.3.12),
which is a third-order polynomial in the unknowns. Similar to the representation (4.3.25)
involving the quantities (4.3.26), we obtain an expression of the objective function SM in
the form

SM

(
σ⃗, D⃗

)
=− 1

2
σ : ⟨S⟩Y : σ − σ : Πiσi −

1

2
Sijσiσj

− 1

2
σ : Da : σDa − σ : ΛiaσiDa −

1

2
TijaσiσjDa

+
1

2α△N DabDaDb −
1

α△NDabDaD
n
b +

1

2α△N DabD
n
aD

n
b .

(4.3.27)

From equation (4.3.27) onwards, we use Einstein's summation convention, i.e., we sum
over pairs of appearing indices. For clarity, we reserve the indices a and b for damage
modes, i.e., they sum from one to MD, and use i as well as j for the stress modes,
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summing from one toMσ. In the expression (4.3.27), the following quantities are precom-
puted:

Πi = ⟨S : si⟩Y ,
Sij = ⟨si : S : sj⟩Y ,
Da = ⟨δaS⟩Y ,
Λia = ⟨δaS : si⟩Y ,
Tija = ⟨δasi : S : sj⟩Y ,
Dab = ⟨δaδb⟩Y ,

(4.3.28)

where the appearing indices have the same range as above. Notice also that all appear-
ing quantities (4.3.28) are symmetric in the index pairs (a, b) and (i, j), respectively.
To increase notational clarity, we use a Greek letter for Sym(m)-valued objects, Ro-
man letters for scalar-valued objects and double stroke letters for fourth order tensor ob-
jects. The memory consumption for precomputing the quantities (4.3.28) is O (MDM

2
σ).

As already mentioned in section 4.3.1, the evolution equations of the proposed damage
model (4.3.2), (4.3.3) are jointly quadratic in the internal variables. For a Galerkin-
discretization using constant POD-modes the highest complexity in the precomputed
matrices is thus in the order of three. Here, for MD = O (Mσ), the array Tija has the
highest complexity with MD ×Mσ (Mσ + 1) /2 independent components.
Saddle points of the function SM (4.3.27) satisfy the balance of linear momentum

Sijσj + σ : ΛiaDa + TijaσjDa = −σ : Πi (i = 1, . . . ,Mσ) (4.3.29)

and Biot's equation

1

α△N DabDb −
1

α△NDabD
n
b =

1

2
σ : Da : σ + σ : Λiaσi +

1

2
Tijaσiσj (a = 1, . . . ,MD) .

(4.3.30)
Please notice that, if the macroscopic strain ε is speci�ed instead of the macroscopic stress
σ, the equation

⟨S⟩Y : σ +Πiσi +Da : σDa + Λiaσida = ε (4.3.31)

needs to be added to the system in order to determine σ.
For the convenience of the reader, an overview of o�ine and online computation is given
in Fig. 4.6: Based on the �ber orientation interpolation concept [160], a �nite number of
�ber orientations is chosen. For each of these orientations, a short-�ber microstructure
is generated [173]. For speci�ed material parameters of matrix and �ber, the fatigue-
damage evolution is computed using an FFT-based solver and a number of load cases,
see section 4.4.1 for details. Using the resulting solution �elds, stress and damage modes
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Figure 4.7.: Reference microstructures with di�erent �ber orientations

are extracted via proper orthogonal decomposition (POD). More precisely, the damage
and stress full-�eld solutions for all precomputed load cases and either all or a subset of
cycle steps (see Section 4.4.3 for a study) are stored on disk. For a microstructure with
N3 voxels, this amounts to storing N3 or 6×N3 double-precision �oating-point numbers
per (damage or stress) snapshot, corresponding to either one or six scalars per voxel.
Then, the POD correlation matrices are set up based on the L2 inner product both for
the fatigue-damage variable and the stress �eld, and the damage and stress modes are
extracted by the usual eigenvalue thresholding [190, 226], see Section 4.4.3 for a study.
Eventually, the relevant system matrices (as discussed in this section) are precomputed,
and the model is ready for application on the component scale.
For solving the equations (4.3.29), (4.3.30) and (4.3.31), we use Newton's method with
backtracking. For strongly monotone operators, the latter scheme converges quadratically.
As the termination condition for the scheme, we use

∥∇S∥
!

≤ 10−8 ∥ε∥, (4.3.32)

where we chose the Frobenius norm for the strain-amplitude tensor.

4.4. Computational investigations

4.4.1. Setup

The multiscale fatigue model described in section 4.2.2 is discretized in time via an implicit
Euler scheme and on a staggered grid in space [54]. For resolving the balance of linear
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Parameter Value Unit
Fiber length 250 µm
Fiber diameter 10 µm
Aspect ratio 25 -
Fiber-volume content 17.8 %
Minimum �ber distance 5 µm
Average voxels per diameter 6.4 -
Cell length / �ber length 2.4 -

Table 4.2.: Properties of the generated microstructures and the spatial discretization

momentum, we rely upon a nonlinear conjugate gradient method [178] to reduce the
strain-based residual suggested in Kabel et al. [227] below a tolerance of 10−5.
The material model was implemented as a user subroutine in the FFT-based software
FeelMath [228] and in Julia [168], which also served as the environment for the model-
order reduction. For the computations, a Linux cluster equipped with Intel Xeon Gold
1648 processors was used.

4.4.2. Microscale studies

To study the material behavior on the microscale, we introduce three reference structures
with di�erent �ber orientations: an isotropic structure, a planar-isotropic structure and
a unidirectional structure. The structures were generated by the sequential addition and
migration algorithm [173] using the parameters listed in Tab. 4.2. The resulting reference
structures are shown in Fig. 4.7, visualized with GeoDict2. The SAM algorithm permits
achieving high accuracy for the second-order �ber-orientation tensors. For example, for
the isotropic and the planar isotropic microstructures shown in Fig. 4.7, the realized
second-order �ber-orientation tensors read

A
(2)
iso =




0.333334 −9.65272× 10−8 4.43788× 10−7

−9.65272× 10−8 0.333333 2.71964× 10−8

4.43788× 10−7 2.71964e× 10−8 0.333333


 (4.4.1)

2Math2Market GmbH, http://www.geodict.de
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and

A
(2)
piso =




0.499739 −0.000526419 −4.66944× 10−6

−0.000526419 0.499739 7.31379× 10−6

−4.66944× 10−6 7.31379× 10−6 0.000521332


 , (4.4.2)

respectively.

On the necessary spatial resolution

For a start, we investigate the resolution that is necessary to obtain mesh-insensitive
results. As our reference, we use 6.4 voxels per �ber diameter to resolve a �ber and
call the respective voxel size h, see Tab. 4.2. Subsequently, we increase and decrease
the resolution by a factor of two and compare the e�ective properties obtained from
simulations on these structures to simulations on the reference structure. In Fig. 4.8, the
evolution of the e�ective Young's moduli [175] for the selected �ber orientations under
uni-axial extension in x- and z-direction are shown. Due to the direction independence
of the isotropic microstructure, only extension in x-direction is considered. For all three
�ber orientations, the e�ective Young's moduli are plotted in x- and z-direction.
We introduce the error measure

eYoung = 2 max
i

∥E1(N i)− E2(N i)∥
∥E1(N i) + E2(N i)∥

(4.4.3)

to quantify the deviation between two Young's modulus evolutions E1 and E2. For
the isotropic structure, the deviation between the 2 × h-discretization and the 0.5 × h-
discretization is 1.01% in x-direction and 1.21% in z-direction in terms of the sti�ness-
based error measure (4.4.3). Comparing the h-discretization and the 0.5×h-discretization,
the errors are below 0.5%, i.e., 0.25% in x-direction and 0.32% in z-direction.
For the planar-isotropic orientation, the observations are similar. For the unidirectional
structure, the deviations at the 2 × h discretization are even less pronounced. Indeed,
the unidirectional microstructure under loading in x-direction shows an error of 0.20%
in x-direction and 0.01% in z-direction, when comparing the 2 × h discretization to the
0.5× h discretization in terms of the sti�ness-based error measure (4.4.3). Under loading
in z-direction, the deviation is 0.20% in x-direction and 0.06% in z-direction.
Since the error measure (4.4.3) stays below 1% for all discussed load cases and direc-
tions, compared the h- to the 2 × h-discretization, we consider the deviation of the h
discretization from the 2× h discretization acceptable, and �x the mesh spacing to h for
all subsequent studies.
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Figure 4.8.: In�uence of the mesh size on the computational results
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On the necessary resolution in log-cycle space

As a second veri�cation step on the microscale, we investigate the necessary step size △N
in logarithmic cycle space. For an implicit Euler discretization with uniform step sizes
△N ∈ {0.05, 0.1, 0.2}, results are shown in Fig. 4.9. Please notice that the logarithmic
cycle variable N is dimensionless.
The results show that the model turns out to be rather robust w.r.t. the chosen cycle
step size. Even a step size of 0.2 produces only small errors. We �x a constant step size
of 0.1 for the succeeding investigations.

On the necessary size of the unit cell

After studying the necessary resolution per �ber and the necessary step size, we turn
our attention to the necessary size of the considered unit cell to produce representative
results. Please keep in mind that the convexity of the model permits classical homoge-
nization theory [221] to be applicable, see section 4.2.2. In particular, the emergence of
an e�ective material response on representative volume elements [176,177] is ensured, in
contrast to the closely related model of chapter 3.
As our reference, we use volume elements with of 3843 voxels, see Tab. 4.2. To study ne-
cessity and su�ciency of this �xed size, we increase and decrease the unit cell to comprise
2563 and 5123-voxels, respectively. The arising edge length of the unit cells are 3.2 �ber
lengths and 1.6 �ber lengths.
The evolving e�ective Young's moduli are shown in Fig. 4.10, where we restrict to those
cases with highest errors. We observe non-negligible deviations of the e�ective properties
obtained from the 1.6 �ber length structures to those of the 3.2 �ber length structures for
all considered loading scenarios. Comparing the Young's modulus evolution of the 2563-
voxel volume element to the 5123-voxel volume element, the sti�ness-based error measure
(4.4.3) is of the order of several percent for the considered load cases, with the highest
error observed in the evolution of the Young's modulus body of the planar-isotropic struc-
ture. For the planar-isotropic structure under loading in x-direction, the deviation reaches
3.0% in x-direction; for loading in z-direction, the deviation is 2.6% in x-direction. In
particular, the volume element with 2563 voxels fails to be representative.
Comparing the predictions for the 3843-structure, encompassing 2.4 �bers per edge, to
the predictions of the larger volume size with 5123 voxels and an edge length of 3.2 �ber
lengths, these deviations decrease. For the isotropic and unidirectional structures, the er-
rors of the Young's modulus evolution under loading in x- and z-direction are smaller than
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Figure 4.9.: Necessary resolution in logarithmic cycle space
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Figure 4.10.: Dependence of the computational results on the size of the unit cell

1.0%. The most critical case is the planar-isotropic structure under loading in x-direction.
In this case, the deviation of the predicted Young's modulus evolution in x-direction is
1%. This deviation is well within limits of engineering accuracy and we consider the
3843 structure to be representative for the model at hand. For the remainder of the
manuscript, we �x the size of the volume elements to be of an edge length of 2.4 �ber
lengths.

Fields on the microscale

To gain some understanding of the local �elds on the microscale, we discuss the evolution
of the damage and the strain �eld for the isotropic case under loading in x-direction. We
load the structure shown in Fig. 4.7(b) at a constant stress amplitude of σmax = 100 MPa.
The resulting damage and maximum principal strain �elds in the x-y-plane are shown in
Fig. 4.11. Taking a look at the damage evolution, we observer that, in the early stages,
damage is initiated at the �ber tips. Subsequently, the damage spreads through the
structure. At the last cycle shown in Fig. 4.11(c), damage evolved also close to �bers
which are oriented perpendicular to the loading direction. The maximum reduction of
the sti�ness locally reached for the isotropic structure under a load amplitude of 100 MPa
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load case σmax
xx σmax

yy σmax
zz σmax

yz σmax
xz σmax

xy

# 1 100 MPa 0 0 0 0 0
# 2 0 100 MPa 0 0 0 0
# 3 0 0 100 MPa 0 0 0
# 4 0 0 0 100 MPa 0 0
# 5 0 0 0 0 100 MPa 0
# 6 0 0 0 0 0 100 MPa

Table 4.3.: Tensor components of the stress amplitude (in MPa) for precomputed load
cases used for database generation

in x-direction is 33%. This corresponds to a damage value of D = 0.5. The loss of the
homogenized Young's modulus of the complete RVE in load direction at this time step is
10% and thus well in the order of typical sti�ness loss in short �ber reinforced polymers
prior to failure [9]. Higher loading amplitudes lead to more pronounced damage.
The strain evolution, starting from cycle N = 10 (N = 1) up to cycle N = 107 (N = 7),
is shown in the bottom row in terms of the maximum principal strain. The evolution of
the strain closely corresponds to the damage �eld evolution. In particular, it does not
show localization. As for the damage �eld, the strain increases mainly at the tips of �bers
oriented in loading direction. However, there are no microcrack-like patterns evolving
throughout the matrix. Rather, the damage e�ects only lead to increasingly large strains
at these critical spots.

4.4.3. Reduced-order model

We investigate the capability of the reduced model to approximate the full-�eld solu-
tion in this section. For the sake of brevity, we use the isotropic, the planar isotropic
and the unidirectional structure, shown in Fig. 4.7, for these studies. For each of the
structures, we precomputed the load cases listed in Tab. 5.4. For assessing the accu-
racy of the reduced-order models, a strain-based error measure is introduced. For our
stress driven simulations, the predicted e�ective (peak) strains of the full-�eld simula-
tion εmax and the reduced-order model εrommax are compared in terms of the error mea-
sure

erom =maxi

(∥∥εmax(N i)− εrommax(N i)
∥∥

∥∥εmax(N i)
∥∥

)
. (4.4.4)
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Figure 4.12.: Minimum value of the reconstructed damage �eld for the unidirectional
structure under shear in the yz-plane for di�erent numbers of incorporated
modes Mσ

Mode selection

For selecting the modes of the reduced-order model, we investigated di�erent strategies.
In the end, the simplest strategy turned out to be the most powerful, and we shall report
on it in the following.
Please recall that the continuous model discussed in section 4.2.1 is uniquely solvable
(upon implicit discretization in cycle space) and is characterized by a damage variable
which can only grow point-wise. In the mixed formulation and upon a Galerkin discretiza-
tion, see section 4.3.1, these properties needed to be re-evaluated. It turned out that the
mixed formulation is theoretically well-posed provided a lower bound D− (strictly greater
than D = −1) is imposed on the damage �eld. Indeed, under this assumption, the op-
erator whose roots correspond to solutions of the discretized equations turns out to be
strongly monotone, and classical monotone-operator theory implies the claim.
For the study at hand, we use classical proper orthogonal decomposition (POD) for ex-
tracting damage and stress modes from the precomputed load cases. We chose the number
of stress and damage modes to be identical, and refer to this number brie�y as the number
of modes.
Please note that working with the lower bound D− is only su�cient for obtaining a well-
posed model, and may be unnecessary in practice. Indeed, imposing such a constraint
a priori may induce signi�cant computational overhead. Also, for our computational ex-
periments, the reduced-order model could be solved rapidly and robustly even without
additionally imposed constraints. The reasons behind this surprising behavior is studied
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Figure 4.13.: Accuracy study for the database generated from ten snapshots per loading
path

more closely in the following. For this purpose, we reconstruct the damage �elds predicted
by the reduced-order model by summing the mode coe�cients multiplied by their pre-
computed and stored damage modes at each step and extract the minimum damage-value
from the corresponding full damage �eld.
The evolution of the minimum damage-value was computed for all load cases listed in
Tab. 5.4. The most critical case in terms of the damage minimum for seven incorporated
modes is the unidirectional structure under load case 4. The minimum damage-value
evolution for this case is shown in Fig. 4.12 for di�erent numbers of incorporated modes.
For seven and eight modes, the minimum damage-value of the reconstructed damage �eld
is D = −2.92 × 10−3. Albeit negative, this value is far from D = −1. By increasing the
number of modes incorporated into the reduced-order model, the minimum damage-value
increases. This does not come unexpected. Indeed, the reduced-order model approximates
the full-�eld prediction with higher accuracy. The full-�eld prediction, on the other hand,
satis�es the constraint D ≥ 0 by construction, see section 4.2.1.
For 15 modes, the minimum damage-value is larger than D = −3.5 × 10−4 for all load
cases listed in Tab. 5.4 and all considered microstructures. Using 15 modes thus appears
su�cient to inherit the well-posedness and stability properties from the continuous model.
We continue with discussing the accuracy of the mode-selection procedure. In Fig. 4.13,
the strain error (4.4.4) is shown vs. the number of incorporated modes for the isotropic,
the planar isotropic and the unidirectional structure, respectively.
In general, the results of the reduced-order model agree well with the full-�eld predictions.
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Figure 4.14.: In�uence of the Number of Snapshots Per Loading path (NSPL) for the
planar-isotropic structure (see Fig. 4.7(b))

Incorporating six modes into the reduced-order model already leads to a strain error below
1% for all load cases computed on the respective structures. Load cases with expected
similar e�ective response, e.g., extension in x-direction, y-direction or z-direction for the
isotropic structure (load cases 1, 2 and 3, respectively), show similar approximation be-
havior. This is remarkable, as we did not account for this symmetry explicitly in the
mode-selection procedure.
We will use 15 POD-modes in the reduced-order model subsequently.

Number of snapshots per path

To identify stress and damage modes, we use proper orthogonal decomposition. Some
care has to be taken concerning the number of snapshots used for each considered load-
ing path. We discuss the necessary choice for the number of snapshots per loading path
(NSPL) in this section.
We use equidistant sampling steps in the logarithmic cycle variable N . For the sake of
brevity, we only discuss the planar-isotropic case here. The other �ber orientations lead to
similar qualitative and quantitative results. The e�ect of including a di�erent number of
snapshots is shown in Fig. 4.14. We observe that the capability of the reduced-order model
to approximate the e�ective strain amplitude predicted by the full-�eld model does not
strongly depend on the chosen number of snapshots. Indeed, the strain-amplitude error
(4.4.4) is in the same order of magnitude at all number of modes in Fig. 4.14 regardless of
the number of snapshots (NSPL). Even a model order reduction based on as few as three
snapshots per load path appears to be reasonable. This appears to be a consequence of
the non-localizing nature of the fatigue-damage model.
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Figure 4.15.: Deviation of the direction-dependent Young's modulus from the full-�eld
prediction in the x-y-plane for the planar-isotropic structure for di�erent
databases

However, if the number of snapshots is chosen too small, the number of extractable
modes is limited. On the other hand, the achieved approximation quality is certainly
limited by choosing too few modes. Therefore, we �x NSPL= 10. An extension to more
snapshots does not seem necessary and is thus omitted for the sake of faster precompu-
tations.

Necessary loading paths for database generation

In this section, we investigate the capabilities of the reduced-order model to predict the
e�ective sti�ness degradation for loading scenarios that were not accounted for in the
database generation. More precisely, we discuss two variants: a change of the loading
direction and a change of the loading amplitude. For the sake of brevity, we restrict to
the planar-isotropic structure.
We start with the e�ect of changing the loading direction. We consider load cases of pure
extension at the constant stress amplitude of σmax

xx = 100 MPa and stress ratio R = 0.
The material parameters are chosen according to Tab. 4.1. First, we study loading in
x-direction. Additionally we consider an extension at a 45◦ angle around the z-axis. Due
to the symmetry of the planar-isotropic microstructure, both loading scenarios should
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give rise to identical responses (up to a rotation).
We consider a database built upon the load cases listed in Tab. 5.4, referred to as stan-
dard database in the following. Note that the �rst load case is part of the database. The
enriched database comprises, in addition to the load cases of the standard database, the
45◦-rotated full-�eld prediction.
The results of the reduced-order models for these two load cases, both, for the stan-
dard database and the enriched database, are plotted in Fig. 4.15. The Young's modulus
computed from the full-�eld prediction is referred to as Efull and the Young's modulus
computed from the reduced-order model as Erom. The error measure (Efull − Erom)/Efull

is plotted over a range of 180◦ in the x-y-plane, where 0◦ corresponds to the x-axis and
90◦ to the y-axis.
We observe that the �rst load case, extension in x-direction, leads to a negligible relative
error of about 0.1%, both, for the standard and the enriched database. On the contrary,
when considering the 45◦-rotated load case, the standard database is not able to reproduce
the load case with the same accuracy. At an angle of 135◦, the Young's modulus at N
predicted with the standard database deviates from the full-�eld prediction by a relative
error of 1.4%. Yet, the induced error remains on an acceptable level.
When including the 45◦-oriented extension load-case into the precomputations, the accu-
racy of the reduced-order model is increased. Both load cases, tension in x-direction and
tension in 45◦ are predicted with similar accuracy in the order of 0.1%.
As a take-away message from these studies, we state that some caution has to be taken
regarding a discretization of the space of possible loadings to select the modes from. Yet,
the standard sampling with six load cases appears reasonable in terms of accuracy. To
increase the accuracy, the sampling strategy could be extended in an adaptive way. For
the work at hand, we �x the standard six load cases.
As a second step in studying the necessary precomputations, we investigate the e�ect of
varying the loading amplitude. We restrict the computational examples to the planar-
isotropic structure. Recall that precomputations with a peak stress σmax

xx = 100 MPa are
used to generate the database, see Tab. 5.4. For this study, we multiply these load ampli-
tudes by factors of 5 and 0.2, respectively. Simulations at a peak stress of σmax

xx = 500MPa
well exceed typical stress values in fatigue experiments and are only chosen here to test
the capability of the numerical model to adapt to stress amplitudes higher than the train-
ing level. For the load cases with modi�ed amplitudes, we compute the strain-amplitude
error (4.4.4) by comparison of the full-�eld to the reduced-order model predictions. The
results are shown in Tab. 4.4.
We observe that the load case with σmax

xx = 20 MPa, which is smaller than the train-
ing load case σmax

xx = 100 MPa included into the database, is predicted accurately with
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Figure 4.16.: Sti�ness and strain results for planar-isotropic structure under 500 MPa
loading: comparison of full-�eld predictions and reduced-order model

Strain errors for loading in
σmax
xx σmax

zz σmax
yz σmax

xy

20 MPa 1.1× 10−5 6.0× 10−6 1.3× 10−6 9.8× 10−7

100 MPa 1.3× 10−5 1.3× 10−5 2.6× 10−6 4.1× 10−6

500 MPa 9.2× 10−2 3.9× 10−2 2.9× 10−3 9.2× 10−2

Table 4.4.: Strain-amplitude errors (4.4.4) for changing loading amplitude
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Strain errors for loading in
σmax
xx σmax

zz σmax
yz σmax

xy

20 MPa 2.9× 10−5 3.5× 10−5 4.1× 10−5 4.2× 10−5

100 MPa 1.4× 10−3 6.3× 10−4 7.1× 10−4 2.0× 10−3

500 MPa 1.1× 10−1 6.2× 10−2 8.6× 10−3 2.4× 10−1

Table 4.5.: Strain-amplitude errors (4.4.4) for changing loading amplitude, trained at
20MPa

strain-amplitude errors below 10−4. For a higher amplitude at σmax = 500 MPa, the
accuracy decreases signi�cantly. We observe a maximum error of 9.23 % in load cases 1
and 6. In Fig. 4.16(a), the strain amplitudes computed by the full-�eld model and the
reduced-order model for this load case are shown in more detail. Up to strains of 0.13 in
loading direction, the deviation of the full-�eld strain curve to the reduced-order model
predictions is small. Indeed, at N = 1.8, where the full-�eld model predicts εa,xx = 0.128,
the reduced-order model predicts εa,xx = 0.130, which is a relative deviation of 1.6%. For
further increasing strain amplitudes, the deviation between the e�ective strain-amplitude
curve of the full-�eld model and of the reduced-order model increases, as well. In addition
to the strain amplitude, we investigate the evolution of the Young's modulus body. For
load case 1, the Young's modulus body in the x-z-plane is plotted in Fig. 4.16(b). We
observe that, even though the magnitude is not accurately met, the reduced-order model
still predicts the shape of the Young's modulus body in accordance with the full-�eld
solution, also at high cycle numbers.
Unexpectedly, despite being trained at 100 MPa, the database is most accurate for a
stress amplitude of 20 MPa. To understand this e�ect more thoroughly, we trained a
database with lower load amplitudes of 20 MPa and compare its accuracy to the standard
database, trained at 100 MPa. We compare the errors produced by the 20 MPa database,
see Tab. 4.5, to those of the standard database in Tab. 4.4. The most critical load case
at an amplitude of 20 MPa can be reproduced with an accuracy of 2.9 × 10−5, which
has the same order of magnitude as the error produced by the 100-MPa database for the
same load case of 1.1× 10−5. In contrast, the 100 MPa load cases treated by the 20-MPa
database cannot be reproduced with the same accuracy as for the 100-MPa database.
Indeed, the maximum error increases from 1.3 × 10−5 to 2.0 × 10−3, which corresponds
to a loss in accuracy by a factor of 154. The trend for even higher load amplitudes of
500 MPa is similar. This investigation reveals that the fatigue-damage evolution at lower
stress amplitude is easier to approximate - as a result of the underlying physics - than
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Figure 4.17.: Accuracy study on the �ber-orientation triangle: strain error (4.4.4) at pre-
computed and interpolated structures

at higher stress amplitudes. This is the reason for the higher accuracy of the 100 MPa
database for a stress amplitude of 20 MPa.
We conclude that the model may be safely used for computations where the strain evo-
lution reaches strain levels of the training level or below, but some caution is advised
when exceeding the pre-training levels. This e�ect is a consequence of the non-linearity
of the model. It was with this insight at hand that we selected a training amplitude of
100 MPa, as the reasonable stress amplitudes of interest are covered in this way. Despite
some deviations in the predicted e�ective strain amplitudes, the e�ective sti�ness of the
reduced-order model is predicted rather accurately.

Covering di�erent �ber orientation states

With component-scale applications in mind, a variety of �ber-orientation states needs
to be considered. Guided by the state of the art in injection-molding simulations [229],
we consider a varying second-order �ber-orientation tensor [169] as the input for the
generated microstructures. To create a database encompassing all possible second-order
�ber-orientation tensors, we utilize the �ber-orientation interpolation procedure proposed
by Köbler et al. [160]. Up to an orthogonal transformation, second-order �ber-orientation
tensors may be parameterized by a two-dimensional triangle, corresponding to the two
largest eigenvalues of the second-order �ber-orientation tensor. Based on a triangulation
of this �ber-orientation triangle, a reduced-order model is identi�ed for every node of this
triangulation. Subsequently, the e�ective models are interpolated to the entire triangle.
We refer to Köbler et al. [160] for details.
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We discretize the �ber-orientation triangle by 15 nodes as shown in Fig. 4.17, resulting
in 16 sub-triangles. For each of the 15 nodes, we generate microstructures and precom-
pute all six load cases listed in Tab. 5.4 for these structures. These precomputations
are then used to build a database via proper orthogonal decomposition, as described in
section 4.4.3. In a �rst veri�cation step, we compare the evolution of the strain amplitude
predicted by the full-�eld computations on these 15 structures with the predictions of the
reduced-order model by means of the error measure (4.4.4). In Fig. 4.17(a), this error
measure is plotted at each of the nodes for the reference load cases (lc) , see Tab. 5.4. The
accuracy on the precomputed structures is good for all microstructures and all considered
load cases. The maximum observed strain-amplitude error is 1.8× 10−4 for the structure
with eigenvalues λ1 = 0.417, λ2 = 0.417 and λ3 = 0.167 under extension in x-direction
(load case 1). We observe the errors in the extension load cases to be higher than the
errors in the shear cases. The accuracy using 15 modes is su�cient for the precomputed
structures. Note that the choice of 15 modes arises from the study on the non-negativity
of the damage �eld, see section 4.4.3. In terms of the accuracy choosing even fewer modes
would be reasonable.
As a second veri�cation step, we investigate the predictions of the model on �ber orienta-
tion states that have not been precomputed directly, but are interpolated from nearby pre-
computed states. For these structures within the faces of the discretized �ber-orientation
triangle, as suggested by Köbler et al. [160], we compute the material response of the
surrounding structures at the nodes of the discretized �ber-orientation triangle via the
reduced-order model, and successively interpolate the e�ective stresses. This procedure
increases the e�ort by a factor of three, both, in terms of CPU time and memory usage,
as, for each Gauss point, three material laws have to be evaluated.
To assess the predictive capabilities of the interpolation procedure, we generated mi-
crostructures at the centroids of the 16 sub-triangles. The computed (full-�eld) e�ec-
tive strain-amplitude tensors serve as our reference. We compare these e�ective strain
amplitudes to the e�ective strain amplitudes predicted by the reduced-order model via
interpolation in terms of the error measure (4.4.4). In Fig. 4.17(b), we observe that the
strain errors do not exceed 5 % in the maximum strain-amplitude error. Since nodal
errors are found to be very small, the latter error is mainly caused by the interpolation
procedure. For the remainder of this work, we will use the presented �ber-orientation
triangulation.
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Figure 4.18.: Relative degradation of the acoustic tensor (5.5.7) after 106 cycles

4.5. Component-scale simulations

We demonstrate the numerical capabilities of the presented model on component scale
in terms of e�ciency in both computational and memory usage by comparison to the
approach of chapter 3. This models di�ers from the one presented in this work mainly in
two aspects.

1. Non-local/local: The approach of chapter 3 introduces a damage-gradient term to
avoid mesh-dependent results. The model proposed in this work is well-de�ned
without an additional damage-gradient term.

2. Polynomial order: The highest polynomial order in the variables (σ, D) in equations
(4.3.2) and (4.3.3) is two, whereas the approach of chapter 3 leads to polynomials
of the order of three in (ε, D). Thus, less data needs to be processed at the Gauss
point level for the former model.

In contrast to the approach presented in the work at hand, the model of chapter 3 permits
localization, which makes the choice of the snapshots for proper orthogonal decomposi-
tion more di�cult. Indeed, choosing an equidistant sampling method, in chapter 3, we
incorporate 40 strain and 40 damage modes to reach acceptable accuracy. As discussed
in section 4.4.3, we make use of only 15 stress and 15 damage modes to ensure that the
damage �eld is accurately captured.
We chose to demonstrate the e�ciency of the model at hand on the same component
and load case as described in chapter 3: a short-�ber reinforced motor-housing subjected
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CPU time max. memory usage av. memory usage
quadratic damage (chapter 3) 12200 h 65.5 GB 47.4 GB
compliance based damage 712 h 39.0 GB 22.9 GB

Table 4.6.: Computational e�ort for the considered fatigue-damage models

to fatigue loading. For details on the �ber-orientation distribution inside the compo-
nent, as well as on the load case, we refer to chapter 3. We use the simulation software
ABAQUS [192] for computations on the macroscale. Both computations were performed
on the same Linux cluster with 256 CPUs distributed on 16 nodes up to the cycle 106.
Similar to the approach in chapter 3, we chose the determinant of the acoustic tensor Aaco

as a quantitative measure for the material degradation and de�ne

Λ(N) = max
∥n∥=1

[
1− detAaco(n,C(N))

detAaco(n,C(0))

]
, (4.5.1)

where n denotes a unit-normal vector, to assess the current damage state in the macro-
scopic model. The damage state of the motor housing component after 106 cycles is shown
in Fig. 4.5 for, both, the quadratic type damage model of chapter 3 (Fig. 4.18(a)) and the
compliance-based damage model proposed in the work at hand (Fig. 4.18(b)). The regions
of critical damage evolution, i.e., regions with a high relative decrease in the maximum of
the acoustic tensor determinant, are found to be similar for both models.
The CPU time and the memory usage are shown in Tab. 4.6. Both, in terms of CPU
time and memory usage, the e�ciency of the model at hand is improved compared to the
previous work. The CPU time of the compliance based damage model at hand leads to
a speed up by a factor of 17 compared to the quadratic damage model of chapter 3. The
memory usage is on average improved by 52% and the peak memory usage by 40%.
This gain has three main causes. For a start, a lower number of incorporated modes is
used, which decreases the size of the system matrices. Secondly, the polynomial in the
damage evolution and stress-strain relationship in terms of the internal variables is of
lower order. Thirdly, in contrast to the approach in chapter 3, we use a local model and
do not have to incorporate gradient terms. The last two factors decrease the number of
system matrices which need to be precomputed and stored.
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4.6. Conclusions

We considered the problem of fatigue-damage evolution in short-�ber reinforced polymer
composites. In order to account for the in�uence of the �ber reinforcements, both, in
terms of the �ber geometry and the �ber orientation, we proposed a multiscale model for
the fatigue-damage evolution in the stable second phase. The principal object of interest
for us is the anisotropic sti�ness degradation of such composites when subjected to (high-
cycle) fatigue loading. Indeed, the failure behavior of thermoplastic components under
fatigue loading appears to be di�cult to predict if the sti�ness decrease under fatigue
loading previous to failure is not accounted for.
Motivated by the stability of the second phase in the fatigue-damage evolution, we ex-
plored the recently introduced class of damage models based on the compliance ten-
sor [207]. Indeed, the inherent convexity of the model class appears su�cient for repre-
senting the fatigue-damage phenomena of interest, and o�er to alleviate the computational
burden associated to damage models with gradient extension [211].
We showed that, despite its simplicity, the model matches our experimental results rather
well, provided the initial damage occurring in the �rst few cycles is taken into considera-
tion. The precise value of the initial damage requires further studies.
With upscaling in mind, we studied a mixed formulation of the incremental potential
of the multiscale fatigue-damage model. In this formulation, the potential is a third-
order polynomial in the mode coe�cients, and thus lends itself naturally to an e�cient
model-order reduction. Surprisingly, we could show that this mixed formulation inherits
well-posedness from the purely primal formulation by rewriting the mixed formulation in
terms of a speci�c operator, which is strongly monotone under a natural condition on the
damage �eld.
The multiscale fatigue-damage model was tested thoroughly, both as a full-�eld and as
a reduced-order model. Due to the (strongly) convex nature of the model, emergence of
e�ective properties via suitable representative volume elements [176] is guaranteed. Also,
due to the precluded localization, the multiscale model is characterized by high compu-
tational e�ciency, which could be demonstrated on component scale.
This chapter was mainly concerned with setting up the multiscale technology necessary
to handle industrial-scale applications. As a next step, it appears imperative to account
for the initial damage caused in the �rst few cycles by an appropriate modi�cation of
the model and to investigate the extension to R-values di�erent from zero as well as the
dependence on the loading frequency. Supplemented by an appropriate failure criterion
on the macroscopic scale, the presented multiscale fatigue-damage model will be ready
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for applications.
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5. A space-time upscaling technique

for modeling high-cycle

fatigue-damage of short-�ber

reinforced composites1

5.1. Introduction

In this chapter, we propose a fatigue-damage model for the matrix material in short-�ber
reinforced polymers formulated in the time scale. This model may be regarded as an ex-
tension of the rate-independent convex damage model proposed by Görthofer et al. [207]
to fatigue damage. Similar to approaches of chapter 3 and Jain et al. [217], we are in-
terested in the stable sti�ness degradation of the material observed prior to failure. In
contrast to these models, we chose a formulation of the damage material law in time space
rather than cycle space. Building upon the work of Paas et al. [230] and Peerlings [211],
the proposed material evolution only increases damage under loading (in contrast to un-
loading). One of the main advantages of a damage model formulated in time-space is
the consistent incorporation of changes in the loading path into the material-evolution
equations. Indeed, changes in mean stress values or the wave form directly in�uence the
material behavior. Their main disadvantage however is the possibly very large computa-
tional costs for computations in the high-cycle regime.
To combine the advantages of both approaches, we propose a cycle-jump technique build-
ing upon parametric loading curves. In fatigue experiments, the wave form of the loading
path is known a priori. A parametrization of the wave form enables us to reformulate
the time-scale model in cycle space and, subsequently, a logarithmic cycle space. As the

1 Reproduced from: N. Magino, J. Köbler, H. Andrä, F. Welschinger, R. Müller, M. Schneider, "A space-

time upscaling technique for modeling high-cycle fatigue-damage of short-�ber reinforced composites,"

Composites Science and Technology, vol. 222, pp. 109340, 2022.
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mechanical experiments in the work at hand have a sinusoidal wave form, we discuss this
case in detail.
We obtain related fatigue-damage models formulated in three time-like scales: time space,
cycle space and logarithmic cycle space. We thoroughly discuss approximations and re-
sulting regimes of applicability in section 5.3. In the high-cycle regime, the logarithmic
cycles scale is applicable and allows for very large steps in cycle steps, reducing the com-
putational e�ort signi�cantly.
The obtained logarithmic cycle scale may be viewed as an extension of the compliance-
based fatigue damage model [231] using an e�ective stress depending on the parametrized
wave form. It thus extends the former model to computations at di�erent mean stress
values. Incidentally, this point of view enables us to make use of the model-order reduc-
tion technique based on a reformulation of the equations in terms of the stress proposed
in a recent work of the authors [231]. We study the accuracy of model-order reduction
technique for a commercial polyamide material.
Last but not least, we demonstrate the capability of the model to predict the sti�ness
degradation of a short-�ber reinforced polymer at di�erent stress amplitudes, stress ratios,
orientation states and geometries. Using only one material parameter, the fatigue damage
evolution speed α, we can show that the material behavior of the composite under these
various loading scenarios is predicted with reasonable accuracy su�cient for industrial
applications.

5.2. The fatigue-damage model in time

We introduce a damage material based on a free energy density

w (ε, D) =
1

2

1

1 +D
ε : C0 : ε (5.2.1)

with a scalar damage variable D ≥ 0, an undamaged sti�ness tensor C0 and the strain
tensor ε. Using a damage variable and a suitable free energy potential is a rather typical
strategy in continuum damage mechanics [232]. However, the form of the damage model
is non-standard. It may be considered as an adaption of the damage model introduced
by Görthofer et al. [207] to fatigue loading. The corresponding stress is derived from the
energy density by

σ ≡ ∂w

∂ε
(ε,D) =

1

1 +D
C0 : ε. (5.2.2)

119



The associated damage-driving force computes as

YD ≡ −
∂w

∂D
(ε, D) =

1

2

1

(1 +D)2
ε : C0 : ε. (5.2.3)

Note that for a linearization of 1/(1 +D) around the undamaged state, the stress strain
relationship matches the Lemaitre model [233]. We may express the driving force YD as
a function of the stress σ and the internal variable D

YD (σ, D) =
1

2
σ : S0 : σ (5.2.4)

with the compliance tensor S0 = C−1
0 of the undamaged state. Paas et al. [230] and Peer-

lings [211] introduced phenomenological models to capture the e�ects of fatigue damage.
They proposed a damage evolution law where damage only increases under positive load-
ing, i.e., whenever a carefully chosen equivalent strain measure εeq was increasing, i.e.,
the condition ε̇eq > 0 holds. Suiker et al. [234] used a similar approach in the context of
cyclic plasticity.
We follow this line of reasoning and consider the damage-driving force YD as an equivalent
strain measure. More precisely, we de�ne

Ḋ(ε, D, q) =




αq(q)YD(ε, D), if ẎD(ε, D) ≥ 0,

0, otherwise.
(5.2.5)

Here, αq denotes a (time-dependent) material parameter which governs the speed of dam-
age evolution. Similar to Largeton et al. [235], who considered the e�ect of aging onto
viscoelastic properties, we introduce a variable q to model the cycle dependence of the
material parameter via the empirical relationship

αq(q) =
4αt

q
(5.2.6)

with a parameter αt > 0. The variable q is assumed to grow at a constant rate

q̇ = Kt (5.2.7)

with some scalar parameter Kt. The evolution equation (5.2.7) for q can be integrated
explicitly. For a �xed duration of a load cycle T > 0, we express the (global) time
t as the superposition of a cycle-count variable N ≥ 0 and a sub-cycle variable τ ∈
[0, 1)

t = T (N + τ). (5.2.8)
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Figure 5.2.: Time evolution under fatigue

For the initial condition q(t = 0) = q0, we obtain the expression

q = q0 +Kt t ≡ q0 +K (N + τ) (5.2.9)

in terms of the parameter K = KtT for constant duration of a single load cycle T . The
model at hand permits damage to grow only during loading. The latter is characterized by
the condition ẎD > 0. To demonstrate the behavior of the material model, we consider an
exemplary isotropic matrix material with Young's modulus E = 3.35 GPa, Poisson's ratio
ν = 0.4 and material-model parameters αt = 0.1 1/MPa, K = 5.0 as well as q0 = 5.0.
The material is subjected to a sinusoidal loading for uniaxial stress-driven tension in
x-direction. The load curves are shown in Fig. 5.1(a) for two di�erent stress ratios R,
de�ned by R = σmin/σmax, namely R = 0 and R = −1. The peak stress in both cases is
σmax = 60 MPa. The corresponding damage evolutions are shown in Fig. 5.1(b). Damage
only increases for a positive loading rate ẎD ≥ 0. Comparing the di�erent load cases
after 3 load cycles in Fig. 5.1(b), we observe that for same maximum stress σmax, the
damage evolution for a stress ratio of R = −1 is faster than for R = 0. We complete the
discussion with several remarks:
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For a start, the proposed model is thermodynamically consistent. Indeed, the dissipation
for isothermal, small-strain systems [236, Chapter 5.3] computes as

D ≡ σ : ε̇− ẇ = σ : ε̇− ∂w(ε, D)

∂D
Ḋ − ∂w(ε, D)

∂ε
: ε̇

=




αq(q)YD(ε, D)2, if ẎD(ε, D) ≥ 0,

0, otherwise.
(5.2.10)

This is always positive for

αq(q) =
4αt

q0 +K(N + τ)
≥ 0. (5.2.11)

Thus, the dissipation D is non-negative, i.e., thermodynamic consistency holds. Secondly,
the free energy of the material model is jointly convex in the variables ε and D. Thus, the
model does not permit localization and allows to compute mesh-insensitive results without
regularization methods pertinent in continuum damage models [237�239]. For a more in-
depth discussion, we refer to Görthöfer et al. [207]. In the context of e�cient simulation of
cyclic loading, this comes with another advantage. In localizing fatigue models, cycle-jump
techniques critically depend on an accurate adaptive step-size selection-strategy [198].
Non-localizing models are more robust and thus expected to be less sensitive w.r.t. the
chosen cycle-jump size. Clearly, as damage localization is excluded, the applicability
of the model is inherently limited to stable, non-localized damage corresponding to the
range of stable sti�ness degradation prior to failure under fatigue loading. A model
permitting damage localization has been studied in chapter 3. Some advantages and
disadvantages compared to non-local fatigue models have been discussed in chapter 4. In
the context of non-localizing fatigue damage the damage model needs to be complemented
by an appropriate criterion to predict failure. Moreover, the proposed model does not
distinguish between tension and compression, but rather between loading and unloading.
For similar models with tension-compression distinction, we refer to Ladevèze and co-
workers [240,241].

5.3. The fatigue-damage model in cycle space

For high cycle fatigue experiments, the number of fatigue cycles is typically in the range of
103 − 106 cycles. Thus, the computational cost of a numerical model resolving each indi-
vidual cycle can be huge. In this section we �rst study the necessary time step resolution
of the model introduced in section 5.2. We then reformulate the model in cycle space and
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logarithmic cycle space relying on approximations valid for the high cycle-regime for one
Gaussian integration point. We demonstrate the capabilities of the model formulated in
cycle space and logarithmic cycle space to use signi�cantly larger steps. Subsequently, a
combined time-scale and logarithmic cycle-scale approach is discussed that combines the
accuracy of the time-scale model in the �rst few cycles with the computational e�ciency
of the logarithmic cycle space formulation at cycles exceeding 103. Last but not least, we
discuss the assumptions necessary to extend the reformulation obtained from one Gauss-
Point to a full �eld computation and compare the damage evolution for time-scale and
reformulated models on a generic �ber structure.
First, we study the necessary number of time (scale) increments for the model formulated
in time scale (described by equations (5.2.5) and (5.2.7))

Ḋ(ε, D, q) =




αq(q)YD(ε, D), if ẎD(ε, D) ≥ 0,

0, otherwise,
(5.3.1)

q̇ = K, (5.3.2)

with the initial conditions D(t = 0) = 0 and q(t = 0) = q0.
We use the same material parameters for the matrix material as for Fig. 5.1. We consider
a sinusoidal uniaxial tension loading with a peak stress of σmax = 60 MPa and a stress ra-
tio of R = 0. We discretize the evolution equation (5.3.1) with a backward Euler scheme,
and select a reference time step for the time-scale model of △t = T/80.
In Fig. 5.2(a), the evolution of the damage variable D under the described loading condi-
tions for a pure matrix material is shown for di�erent step sizes. We consider the relative
error measure

eXstep(N) = 2
∥DX(N)−D△/2(N)∥
∥DX(N) +D△/2(N)∥ (5.3.3)

to compare computations using di�erent step sizes X to computations with the �nest
computed step △/2. For q0 = 5.0, the relative error for the time-scale model at N = 103

is e△step = 0.87% for the reference time step and e2△step = 1.26% for a time step twice the
reference time step. The choice of a reference time step △t = T/80 thus ensures the
relative error to be below 1%. Thus, computing N = 105 cycles, a common cycle count
for high-cycle fatigue, requires 8× 106 time steps. This becomes prohibitive for complex
microstructures or even heterogeneous materials.
We thus proceed by seeking a reformulation of the material equations in cycle and sub-
sequently in logarithmic cycle space that allows for e�cient computation at large cy-
cle numbers. In experiments, the load path within one cycle is known a priori. We
consider the most commonly used wave form in fatigue loading, the sinusoidal wave
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[118, 242�245]. Knowing the wave form enables us to derive a model in cycle space
from the time model discussed section 5.2 via integration. We assume a sinusoidal wave
form

σ =

(
sin

(
2π

T
t

)
+ c

)
σa =

(
sin (2πτ) + c

)
σa (5.3.4)

for a prescribed stress amplitude σa. As depicted in Fig. 5.2(b) for a load amplitude of
σa = 10 MPa, the parameter c shifts the mean stress of the load path. The maximum
stress during the cycle is de�ned at σmax = σa(c+ 1).
Plugging equation (5.3.4) into the damage evolution equation (5.2.5) yields

D(N + 1)−D(N) =

∫ 1

0

Ḋ(T (N + τ)) dτ

=





∫ 1

0
4αt

q0+K(N+τ)
YD dτ, if −

(
sin (2πτ) + c

)
cos (2πτ) ≥ 0,

0, otherwise.

In the high cycle fatigue regime, the inequality τ ≪ N + q0/K holds. We thus use the
approximation

q0 +K(N + τ) ≈ q0 +KN. (5.3.5)

With these two approximations, we integrate the damage evolution under loading

D(N + 1)−D(N) (5.3.6)

≈ 2αt

(q0 +KN)
σa : S0 : σa

([∫ 1
2
+

arcsin(c)
2π

1
4

+

∫ 1− arcsin(c)
2π

3
4

]
(sin (2πτ) + c)2 dτ

)

=
αt

q0 +KN
σa : S0 : σa

(
1

2
+ c2

)
. (5.3.7)

Treating the cycle variable N as a continuous variable, we are led to the approxima-
tion

∂D

∂N
(N) ≈ αt

q0 +KN
σa : S0 : σa

(
1

2
+ c2

)
.

Then, at constant stress amplitude σa and for an initial condition D(N = 0) = 0,
we may further integrate over the cycles to arrive at an explicit expression in cycle
space

D(N) ≈ αt

K
σa : S0 : σa

(
1

2
+ c2

)
log (KN + q0) . (5.3.8)
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At high cycle counts N > 103 and for typical values of q0 ∈ (0, 10] and K ∈ [1, 10] , the as-
sumption q0+KN ≈ KN is valid. We thus may further approximate

D(N) ≈ αt

K
σa : S0 : σa

(
1

2
+ c2

)
(log (N) + log (K)) . (5.3.9)

For notational simplicity, we introduce the parameter α = αt/ (2K log10(e)) and rewrite
the damage evolution

D(N) ≈ 2ασa : S0 : σa

(
1

2
+ c2

)
(log10(N) + log10(K)) . (5.3.10)

We arrive at the �nal expression

D′ = 2ασa : S0 : σa

(
1

2
+ c2

)
, (5.3.11)

where we replaced the approximation by an equality sign and denote by prime the deriva-
tive w.r.t. the logarithmic cycle count N = log10N , D′ ≡ ∂D/∂N. Please note that cyclic
loading for load waves di�erent from the sinusoidal wave can be treated similarly. The
sinusoidal wave form is just the most commonly used in fatigue experiments on short-�ber
reinforced polymers.
We derived approximate models in di�erent time-like scales. To sum up, we obtained

1. an evolution equation in cycle space

∂D

∂N
=

αt

q0 +KN
σa : S0 : σa

(
1

2
+ c2

)
, (5.3.12)

2. an evolution equation in logarithmic cycle space

∂D

∂N
≡ 2ασa : S0 : σa

(
1

2
+ c2

)
. (5.3.13)

We study the necessary resolution in cycle space for the models at hand. We discretize the
above equations using a backward Euler scheme and use reference step sizes of △N = 1/8

for the cycle model and increase the step size for the logarithmic model according to the
relation △N = 2N dependent on the current cycle N . In Fig. 5.3, the evolution of the
damage variable D is shown for pure tension loading with a stress ratio R = 0 and a stress
amplitude of σa = 30 MPa. In Fig. 5.3(a), we observe that the in�uence of the parameter
q0 is restricted to the �rst few cycles of the damage evolution. Indeed, after ten or more
cycles (log10 > 1), the slope of the damage evolution is almost independent of q0. In
Fig. 5.3(b), the damage evolution computed in logarithmic cycle space is shown. By the

125



−0.5 0 0.5 1 1.5 2 2.5 3
0

1

2

3

log10(N)

D
in

%

24N 4N 4N/2 analyt.

q0 2.5 5.0 10.0

(a) Cycle space model

0 0.5 1 1.5 2 2.5 3
0

1

2

3

log10(N)

D
in

%

4N 4N/2 analyt.

(b) Logarithmic cycle space model

Figure 5.3.: Resolution study in terms of necessary (logarithmic) cycles

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

log10(N)

D
in

%

N0 HLC

3

6

10

time scale

(a) HLC-approach using di�erent numbers of

cycles N0 for initial time-scale based com-

putation for q0 = 10.0

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

log10(N)

D
in

%

q0 4N 4t
7.5

(b) Damage for the time-scale model with q0 =

7.5 and the logarithmic cycle-scale model

with D(N = 0) = 0

Figure 5.4.: Comparison of the damage evolution predicted by the time-scale, the HLC
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assumption q0+KN ≈ KN , used in the derivation of the logarithmic model, the in�uence
of a varying initial value of q0 is neglected in the model formulated in logarithmic cycle
space. Thus, the material evolution in the logarithmic cycle-scale model is independent
of q0.

We use the error measure (5.3.3) to quantify the deviations of the numerical computations
depending on the resolution. At the cycle count N = 103, the relative error for the cycle
space model with q0 = 5.0 is e∆step = 0.44% and e2∆step = 1.30% for the reference and a
time step twice the reference step, respectively. Thus, using the reference cycle step with
△N = T/8, the relative error is below 1%. When using the logarithmic cycle model,
the reference time step △N = 0.3 log10N is not constant in cycle space. Thus the gain
in computational e�ciency depends on the computed number of cycles. For high-cycle
fatigue with a typical cycle number of N = 105, or N = 5, respectively, the necessary
number of cycle steps is Nnecess

△N = 8× 105. The number of necessary steps in logarithmic
cycle space is 17. This is a speed-up by a factor of 4.7 × 105 or 4.7 × 104 in comparison
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with the cycle-scale model and the time-scale model, respectively.
Even though the reformulation of the material model in logarithmic cycle scale comes
with a signi�cant computational speed up, the approximations made in the derivation of
the evolution equations do not account for the material evolution in the �rst few cycles of
the material under fatigue loading. As a remedy, consider an approach which combines
the accuracy of the time-scale model with the computational e�ciency of the model in
logarithmic cycle space. In this combined approach, to which we will refer as Hybrid
Log-Cycle model (HLC) in the following, the �rst few cycles N0 are computed explicitly
in time scale. The damage �eld at the last cycle computed in time scale is then used as
the initial condition for the logarithmic cycle-scale model. Hence, the rapidly changing
damage evolution behavior in the initial phase can be accounted for, while the computa-
tional e�ciency remains reasonable at large cycles.
In Fig. 5.4(a), the HLC-approach is investigated for di�erent cycle numbers computed in
time scale N0. Here, the parameter q0 = 10 is chosen. For reference, the corresponding
damage evolution computed in time scale is plotted in black. We observe that, for in-
creasing number of computed cycles in time space N0, the deviation between the HLC
and the time-scale evolution becomes smaller. Indeed, while, for

Property value unit

Second order �ber-
orientation tensor




0.77 0 0

0 0.21 0

0 0 0.02


 -

Fiber length 300 µm
Fiber diameter 13 µm
Voxel length 2.5 µm
Fiber-volume content 17.8 %
Size 1283 -

Table 5.1.: Geometric properties of the generic �ber structure
Figure 5.5.: Generic struc-

ture

N0 = 3 and N0 = 6, the deviations between the two approaches are still noticeably large,
the deviation between HLC and time-scale model for N0 = 10 is barely visible. For
N0 = 10, the deviations between the curves are reasonably small, i.e., the relative devia-
tion at N = 103 is 0.46%.
Arguing in the opposite direction is also possible, i.e., we asked ourselves the question
whether there are suitable material parameters, such that the model parametrized in time
and the log-cycle model with D(N = 0) = 0 are reasonably close. This can indeed be
done, but involves some tinkering. For q0 = 6.5, a suitable agreement can be reached, see
Fig. 5.4(b). More precisely, we observe that the damage evolution of the two models is
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Figure 5.6.: Comparison of the damage evolution using time-scale, HLC and logarithmic
cycle-scale approach for the generic structure

similar for cycles larger than 100. Indeed, the relative deviation of the damage value for
both models at N = 2.5 is 1.17%.
Last but not least, we study the model embedded in a multiscale framework, i.e., the ef-
fective strains emerging from a composite material with linear elastic �bers and a matrix
material governed by the novel fatigue-damage model. Considering a microstructure, we
assume that the stress �eld does not largely deteriorate during one loading cycle, i.e., that
the change in the damage �eld during one cycle is small. If the structure is subjected to
proportional loading within one cycle, i.e. σa(x, t) = σ̂a(N, x)σ̄a(τ), the derivation of the
Gauss-point equations can be extended to full �eld equations.
To study the emerging �elds numerically, we make use of a "generic" �ber structure.
The geometric properties of the microstructure are listed in Tab. 5.1. The structure is
subjected to load-driven uniaxial sinusoidal tension with an amplitude of 60 MPa and a
stress ratio of R = 0.
Similar to the pure matrix material, we compare the HLC and the time-scale computa-
tions for the generic structure in Fig. 5.6(a). Here, we chose N0 = 10 for the HLC model.
In Fig. 5.6(a), the maximum of the current damage �eld in the structure is plotted. The
resulting deviation at N = 2.5 is 0.28%, 0.96% and 2.62% for chosen q0 = 2.5, q0 = 15.0

and q0 = 10.0, respectively.
In Fig. 5.6(b), we compare the evolution of the current maximum of the damage �eld in
the generic structure for the time-scale model with q0 = 6.5 to the logarithmic cycle-scale
model with the initial condition D(N = 0) = 0. Analogously to the computations on
the pure matrix material, the deviation of the evolution damage is small, i.e., 1.55% at
N = 2.5.
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To sum up, the formulation in logarithmic cycle space o�ers an extremely e�cient way
to compute the sti�ness loss of a material subjected to stress ratios between −1 and 0.
The N0-dependent sti�ness loss in the �rst few cycles can be accounted for by a combined
time-cycle scale approach. For the remainder of the manuscript we chose to use q0 = 6.5

instead, which corresponds to an initial condition D(N = 0) = 0 as con�rmed in the
above numerical experiments. The load amplitude σa and maximum stress σmax enter
the evolution equation via an e�ective stress

σeff = σa

√
1 + 2c2, (5.3.14)

where c is implicitly de�ned via σmax = (1 + c)σa.
We conclude this section with a few remarks. For a start, the fatigue-damage model
formulated in logarithmic cycle space resembles the model proposed in chapter 4, using
the e�ective stress (5.3.14) instead of the maximum stress σmax. In this work [231], the
authors did not concern themselves with time-upscaling techniques but directly formulated
the material model in the logarithmic time domain, motivated by experimental results
shown in section 5.5.
With the time-scale formulation and the upscaling approach at hand, we are able to extend
the model to di�erent R-values in a straight-forward and consistent manner. Moreover, the
model formulated in logarithmic cycle space, as discussed more thoroughly in chapter 4,
can be viewed as generalized standard material (GSM) [17,246]. This perspective enables
to recast the model in terms of an optimization problem.

5.4. E�cient computation of �ber-reinforced

components

We are interested in the e�ective behavior of short-�ber reinforced composites. Consider
a cubic cell Y ⊆ R3, on which a heterogeneous �eld of compliance tensors Y ∋ x 7→ S0(x)

and a characteristic function ξ : Y −→ {0, 1} are given. The latter describes the material
distribution at every point x ∈ Y , i.e., ξ−1(1) is the domain of the matrix material and
ξ−1(0) the domain of the �ber material.
We seek a displacement �uctuation �eld u(x), a strain �eld ε(x), a stress �eld σ(x) and
a damage �eld D(x) solving the balance of linear momentum

div σ(N) = 0, (5.4.1)
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where we suppress the dependence on x, the kinematic compatibility condition

ε(N) =
〈
ε(N)

〉
Y
+∇su(N), (5.4.2)

the constitutive equation formulated in a stress-explicit manner

ε(N) = ξ(1 +D(N)) S0 : σ(N) + (1− ξ) S0 : σ(N) (5.4.3)

and the evolution of the internal variable D(N)

D′ =
α

2
σ(N) : S0 : σ(N), (5.4.4)

prescribing an e�ective stress σeff(N)

⟨σ⟩Y (N) = σeff(N) =

√
1

2
+ c2 σa(N), (5.4.5)

where ⟨.⟩Y stands for averaging over the cell Y . Σa refers to the stress amplitude ten-
sor. Discretizing the time-like variable N recovers the (mixed) variational principle of
chapter 4

S(σ, D) −→ min
D≥D−

max
div σ=0
⟨σ⟩Y =σ

, (5.4.6)

where we replaced the prescribed stress amplitude σ in the previous formulation by the
e�ective stress σeff in terms of the saddle-point function

S (σ, D) =

〈
−ξ (1 +D)

2
σ : S0 : σ + ξ

1

2α△N (D −Dn)2 + (1− ξ)1
2
σ : S0 : σ

〉

Y

(5.4.7)

with Dn = D(N
n
) at the previous time increment.

To compute the e�ective behavior of the material on component scale, we follow the
model-order reduction strategy proposed in chapter 4. Indeed, to use the framework for
arbitrary R-values, we only need to adjust the macroscopic e�ective stress σeff according
to equation (5.3.11). In other words, a material database trained with a certain load
amplitude and R-value can be used to compute the material behavior for di�erent am-
plitudes and stress ratios by applying a modi�ed e�ective stress to the material on the
macroscale. As discussed in section 5.3, in some cases, like an arbitrary choice of N0,
the user might be interested in a combined time-cycle-scale approach. As stated in sec-
tion 5.3, for the manuscript at hand, we will stick to the logarithmic cycle-scale model
with q0 = 7.5.
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5.5. Comparison to experimental data

We demonstrate the capability of the model to reproduce the sti�ness degradation in
short-�ber reinforced components by comparing the model predictions to experimental
data of reinforced PA polyamide 6.6.
First, we discuss the material characterization process and the experimental setup. Sub-
sequently, we discuss the numerical material-characterization procedure. Finally, we com-
pare numerical predictions and experimental results for the proposed model at di�erent
load scenarios, stress ratios and �ber orientations.

5.5.1. Experimental setup and parameter identi�cation

Fatigue experiments for specimens
with di�erent �ber orientations, ge-
ometries, load amplitudes and stress
ratios were performed.
The material is a commercial
polyamide 6.6 reinforced by 35 wt%
short E-glass �bers. The material
properties of the constituents are
listed in Tab. 5.2.

Property Matrix Fiber
Young's modulus 3.35 GPa 72.0 GPa
Poisson's ratio 0.38 0.22

Damage parameter α 0.1 1/MPa �

Table 5.2.: Mechanical properties of the con-
stituents

The specimens were milled from an injection-molded plate with dimensions 80 × 80 ×
2mm3. For more details about the injection-molding process, we refer to Hessman et al. [247,
Fig. 1]. Depending on the orientation of the specimen length w.r.t. the injection direc-
tion of the thermoplastic material, we refer to the specimens as 0◦-oriented and 90◦-
oriented [247]. Due to the injection-molding process, the specimens show a characteristic
�ber structure forming layers of di�erent local �ber orientations. To obtain the �ber-
orientation distribution over the depth of the specimen, a control volume was cut from
the center of the plate. Subsequently, the volume was characterized via X-ray microcom-
puted tomography (µCT) and the �ber-segmentation algorithm introduced by Hessman
et al. [224].
We performed fatigue experiments on three di�erent specimen geometries, shown in
Fig. 5.7. The di�erent geometries di�er by the radius of the notch. The �rst specimen is
devoid of notches. We refer to it as specimen A in the further discussion. Specimen B is a
mildly notched specimen with a notch radius of 2 mm. The third geometry with a notch
radius of 0.05 mm is the most sharply notched considered for the presented experiments.
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(a) Unnotched: specimen A (b) Mild notch: specimen B (c) Sharp notch: specimen C

Figure 5.7.: Test geometries subjected to cyclic loading

We refer to it as specimen C.
The specimens were subjected to sinusoidal stress-driven loadings at di�erent amplitudes
σa for the stress ratios R = 0 and R = −1. For stress ratios of R = −1, a buckling column
was employed to avoid buckling of the specimens during fatigue testing. The strains were
measured at the surface of the fatigue specimens, with an extensiometer of a reference
length l0 = 20 mm for all experiments with stress ratios values of R = 0 and an exten-
siometer of a reference length l0 = 5 mm for all experiments with stress-ratio values of
R = −1. The frequencies in the experiments ranged between 0.5−5 Hz and were selected
to ensure that the temperature changes at the specimen surfaces remain below 2 K.
We are interested in the loss of the dynamic sti�ness of the material under fatigue
loading. Thus, we recorded the maximum strain εmax and the minimum strain εmin

for every (reported) cycle. The dynamic sti�ness of the specimen is then calculated
by

Edyn =
σmax − σmin

εmax − εmin

. (5.5.1)

The evolution of the dynamic Young's modulus for specimens oriented in 0◦- as well as
90◦-direction and for stress ratios of R = 0 is shown in Fig. 5.8. The experiments were
conducted at di�erent stress amplitudes σa. We observe that the dynamic sti�ness of the
specimen decreases over the load history. The higher the load amplitude applied to the
specimen, the faster is the degradation process. They show a stable regime of sti�ness
degradation up to 103-106 cycles depending on the loading amplitude. Subsequent to this
stable regime, the specimens enter a regime of unstable failure. This regime is character-
ized by massive �uctuations in the measured specimen as the strain extensiometer may
be distorted and a steep decent in the sti�ness. To gain a more thorough understanding
of the available data, a linear function of the form

Edyn(N) = E0
dyn − k N (5.5.2)

is used to model the data, where E0
dyn represents the initial dynamic Young's modulus

of the specimen at N = 0 and the parameter k characterizes the speed of the sti�ness
degradation. For each individual sti�ness evolution curve, the parameters of the model
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Figure 5.8.: Evolution of the dynamic Young's modulus Edyn for specimen A and R = 0,
�tted to the model function Edyn(N) = E0

dyn − k N

function (5.5.2) were identi�ed via linear regression. The resulting �ts are displayed in
Fig. 5.8. We observe a profound scattering of the initial Young's modulus E0

dyn. For
measurements on 90◦-oriented specimens, this e�ect is even more pronounced than for
the measurements of the 0◦-oriented specimens, and is of the order of 5%.
The parameters k and E0

dyn are plotted in Fig. 5.9. The initial sti�ness E
0
dyn for 0

◦-oriented
specimens scatters between 9.95 MPa and 9.46 MPa, which is a relative deviation of 5.2%.
For the 90◦-oriented specimens, the values of E0

dyn lie between 6.74 MPa and 6.34 MPa,
which is a relative deviation of 6.3%. The initial sti�ness E0 seems to decrease with the
applied loading amplitude. There are several reasons for this rather surprising behavior.
First, thermoplastics are well-known to be viscoelastic in nature. The experiments at
di�erent stress amplitudes are also performed at di�erent frequencies. This is due to
an optimization between time expense of the experiment and a restriction of the self-
heating of the material. Thus higher amplitudes are driven with lower frequencies and
their measured dynamic modulus appears to be higher. Another possible explanation is
�ber breakage during the �rst loading cycle. However, the sti�ness decrease, represented
by the parameter k, seems to be fairly reproducible. Indeed, plotting k over the stress
maximum σmax for the 0◦-specimens and 90◦-oriented specimens in Fig. 5.9(b), k roughly
follows a quadratic trend.
We conclude that there is a signi�cant statistical scattering in the dynamic sti�ness.
This might be due to the underlying random microstructure obtained from the injection
modeling. In particular the initial dynamic sti�ness of the specimens shows signi�cant
variation. However, when focusing on the relative sti�ness degradation, the decrease under
fatigue-loading seems to be quite reproducible. In the work at hand, we do not concern
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Figure 5.9.: Parameters obtained by �tting to the model function (5.5.2)

ourselves with the modeling of statistical �uctuations of the initial specimen sti�ness.
Rather, we focus on the fatigue-damage e�ects on the material. We thus normalize all
experimental data with the use of the model function (5.5.2) and use the obtained data
as our point of departure for fatigue-damage modeling.
To identify the material parameter α of the fatigue-damage model, the relative dynamic
Young's modulus decrease of specimen A under loading with a stress ratio of R = 0 is
used.
As shown in chapter 3 for a similar material model, the parameter α governing the damage
evolution speed can be regarded as rescaling of the time scale

dD
d
(
ρN
) = 2

α

ρ
σa : S0 : σa

(
1

2
+ c2

)
. (5.5.3)

For the identi�cation of the material parameter α it is thus possible to compute a load
case and adjust the damage evolution speed afterwards by rescaling the (pseudo) time N .
The results for an identi�ed material parameter of α = 0.1 1/MPa are shown in Fig. 5.10.
Note that only a single parameter for the matrix material is identi�ed. Then, the material
behavior of the composite material is fully identi�ed.
The computed results for the composite material with di�erent orientation states 0◦ and
90◦ show a good agreement with the experimental results. At di�erent load amplitudes
and material orientations, the degradation of the material in the steady fatigue-damage
regime prior to failure can be reproduced.
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Figure 5.10.: Parameter identi�cation for fatigue-damage model predictions using exper-
imental data for R = 0 and specimen A with parameter α = 0.1 1/MPa

5.5.2. Numerical characterization of the material

To characterize the behavior of the short-�ber
reinforced material we rely on computational
homogenization. As discussed in section 5.4,
we treat the matrix as a material undergoing
damage. The short E-glass �bers are treated
as an isotropic, purely elastic material.
With the �ber-orientation interpolation
method [160] in mind, we solve the microscale
problem discussed in section 5.4 using an
FFT-based solution algorithm implemented
in the software FeelMath [228] on a number
of microstructures. The �ber structures are
generated using the sequential addition and
migration algorithm (SAM) [173] using the
properties and spatial discretization listed in
Tab. 5.3. We use the staggered

Property Value Unit
Fiber length [248] 300 µm
Fiber diameter [248] 13 µm
Fiber aspect-ratio 23 -
Fiber-volume content 19.5 %
Minimum �ber distance 5 µm
Voxels per diameter 6.4 -
Cell length / Fiber length 2.6

Table 5.3.: Properties of the generated
microstructures

grid discretization [54] in space and a nonlinear conjugate gradient method to reduce the
strain residual suggested by Kabel et al. [249] below a tolerance of 10−5. The framework of
�ber-orientation interpolation [160] allows the engineer to fully characterize the material
behavior of short-�ber reinforced composites with arbitrary �ber orientations using only
a �nite number of precomputations on the microstructures. The basic steps are the
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following.
1. Discretization of the space of possible �ber orientations {Oi}.
2. Generation of fully-resolved �ber structures {Yi} for ever �ber-orientation {Oi}.
3. Discretization of the space of possible load paths {σeff,j}.
4. Precomputation of the material degradation on the �ber structures {Yi} under the

load paths {σeff,j}.
5. POD-analysis of the strain �eld paths for every structure Yi and identi�cation of

system matrices for the reduced model for the �ber orientation Oi.
The material behavior of an arbitrary microstructure characterized by its second-order
�ber-orientation tensor [169] is then interpolated from three �ber orientations included
in the set of precomputed structures which are closest to the unknown �ber-orientation
state. For details we refer to Köbler et al. [160].
For this work, characterizing the PA6.6 material used in the experiments, we used the
following parameters:

1. Equidistant triangulation of the �ber-orientation triangle with 15 �ber-orientation
nodes as shown in Fig. 5.12(a).

2. Generation of the microstructures using the parameters given in Tab. 5.3.
3. Choice of six load cases: three pure extension (in x-, y- and z-direction, respectively)

and three shear load cases (in the xy-, xz- and yz-planes, respectively) with a
constant e�ective stress amplitude σeff(N) = 100 MPa for N ∈ [0, 6].

4. Precomputation of the material degradation on the microstructures for the respec-
tive six load paths.

5. POD-analysis with ten snapshots per load path.
To quantify the accuracy of the used model-order reduction and interpolation strategy,
we de�ne a strain error measure

erom = max
Ni∈[0,Nsteps]

∥εeff(N i)− εromeff (N i)∥
∥εeff(N i)∥

, (5.5.4)

where the number Nsteps of considered load steps to compute the error is implicitly de�ned
by

∥εeff(Nsteps)∥ = 1.5 ∥εeff(0)∥. (5.5.5)

Here, εeff denotes the e�ective strain of the full-�eld solution and εromeff refers to the e�ective
strain of the reduced order model. The choice of this strain measure is motivated by the
observation that the full �eld and the reduced order solution increasingly di�er with
increased cycle number, or damage respectively. In Fig. 5.11 the strain evolution of the
full �eld solution for a �ber orientation tensor with eigenvalues λ1 = 0.903, λ2 = 0.069 to
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its model order reduced (interpolated) evolution is shown. This case will be identi�ed as
the most critical one in terms of approximation in Fig. 5.12(b). The cycle at which the
strain error is computed strongly in�uences the error magnitude. As fatigue experiments
show that a sti�ness decrease prior to fracture is in the order of a few ten percent, we
consider the choice of (5.5.5), which roughly corresponds to a sti�ness decrease of 33.3
%, to be su�cient.
We consider the load cases listed and labeled in Tab. 5.4. In the following, we use the
error measure to quantify the errors introduced by the model-order reduction and by the
�ber-orientation interpolation for these load cases.

0 1 2 3 4 5 6
5 · 10−2

0.1

0.15

log10(N)

ε y
z

full field
reduced

Figure 5.11.: Evolution of εyz in �ber
structure with λ1 = 0.903,
λ2 = 0.069 with N <

Nstep (solid) andN > Nstep

(dashed)

load case σeff
xx σeff

yy σeff
zz σeff

xy σeff
xz σmax

yz

# 1 σu 0 0 0 0 0
# 2 0 σu 0 0 0 0
# 3 0 0 σu 0 0 0
# 4 0 0 0 σu 0 0
# 5 0 0 0 0 σu 0
# 6 0 0 0 0 0 σu

Table 5.4.: Tensor components of the e�ective
stress for precomputed load cases
used in the database generation
with training amplitude σu = 100

MPa

First, we study the error introduced by the model-order reduction approach. In Fig. 5.12(a),
the strain error measure is shown for every microstructure included in the training set (15
points of the �ber orientation triangle) and every training load case (lc) 1-6. For each of
them, the strain error measure (5.5.4) is plotted for the reduced order model incorporating
15 strain and 15 damage modes. The error is well below 0.1% for all structures and load
cases studied.
Secondly, we compare the predictions of the reduced order model interpolated to the
centroids of the �ber orientation triangle to the full-�eld solution on microstructures
directly generated and computed for the orientations at the elements' centroids. The
arising error is a sum of errors due to the randomness of the statistical volume element,
the model-order reduction and the interpolation approach. The error remains below 3%

for all studied structures and load cases and is thus considered to be acceptable for the
remainder of the manuscript.
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Figure 5.12.: Accuracy of model-order reduction and �ber interpolation for the considered
load cases (lc)

(a) Specimen A (b) Specimen B (c) Specimen C

Figure 5.13.: Reference discretization h

5.5.3. Comparison of numerical predictions to experimental data

To compute the fatigue damage in the specimens A-C (see Fig. 5.7), we use a �nite element
discretization with isoparametric, trilinear eight-node brick elements in space and an im-
plicit Euler scheme for time integration. The layered �ber-orientation distribution in the
specimens obtained from a µCT-scan analysis is used to determine the �ber-orientation
distribution over the thickness of the specimens. We use a resolution of nine elements in
thickness direction and assign an individual �ber-orientation according to the measure-
ments to each of these layers.
The computations on the macroscale were performed with the commercial �nite element
software Abaqus [250]. To ensure accurate computations, we study the dependence of two
computed properties on the mesh spacing. The specimen sti�ness Espec(N) is computed as
a function of the logarithmic cycle scale N . Here, the contact points of the strain gauge u0
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(a) Specimen A (b) Specimen B (c) Specimen C

Figure 5.14.: Re�ned discretization h/2

and u1 with a reference length of l0 in the experiments were chosen as measurement points
for the displacement which determines the specimen sti�ness

Espec = l0
F

Aundef (u0 − u1)
, (5.5.6)

where F is the extensional force and Aundef is the cross-sectional area of the undeformed
specimen. Secondly, we de�ne a fatigue-damage indicator Λ, which is a local quantity, de-
pending implicitly on the geometry of the notch under consideration. This quantity is com-
puted from the determinant of the acoustic tensor Aaco [169] via

Λ(N) = max
∥n∥=1

[
1− detAaco(n,C(N))

detAaco(n,C(0))

]
. (5.5.7)

We evaluate the fatigue-damage indicator Λ(N) at the point of maximum damage and
plot and study the evolution of this local property.
The reference meshes and the re�ned meshes of the three geometries are shown in Fig. 5.13
and Fig. 5.14, respectively. Notice, that the resulting element sizes in both meshes at the
notch are smaller than the RVE. We chose the element size to accurately resolve the
stress gradient. Thus, scale separation is presumingly violated and the averaged sti�ness
of the computed composite material may not be applicable. In fact, the exact position
and orientation of a single �ber close to notch may in�uence the damage evolution of
the specimen greatly. The model at hand can not account for these e�ects. However, we
chose the element size to resolve the stress gradient at the notch.
Both, the specimen sti�ness Espec and the fatigue-damage indicator Λ in the notch root,
are compared for both meshes in Fig 5.15. In the considered load cases, the location of
maximal damaged point is not moving. Thus, the location at which the fatigue damage
indicator Λ is plotted remains constant throughout the cycle evolution in Fig. 5.15(b).
Note that under di�erent loading conditions the point of maximum damage must not
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Figure 5.15.: Resolution study for di�erent specimens

necessarily remain at the same location due to stress redistribution. The specimens A, B,
and C were subjected to an e�ective stress σeff = F/Aundef = 82.3 MPa, σeff = 65.0 MPa
and σeff = 52.0 MPa, respectively. For all three specimens and both the integral quantity
Espec and the local �eld quantity Λ,

the deviations due to the di�erent meshes are
rather small. More speci�cally, using the relative
error measures

eErel(N) = 2
∥Eh

spec − Eh/2
spec∥

∥Eh
spec + E

h/2
spec∥

, (5.5.8)

eΛrel(N) = 2
∥Λh − Λh/2∥
∥Λh + Λh/2∥ , (5.5.9)

Specimen error in sti�ness error in Λ

A 0.19 % 0.73 %
B 0.09 % 0.39 %
C 0.27 % 0.17 %

Table 5.5.: Relative errors of the resolu-
tion study at N = 5

the deviations at N = 5 for the specimen sti�ness Espec and the fatigue-damage indicator
Λ in the notch root are given in Tab. 5.5. All of the relative errors are well below 1%.
Thus, the coarser mesh of the two is �xed for the remainder of the script.
To gain a deeper understanding of the emerging damage �elds, the fatigue indicator Λ is
plotted in Fig. 5.16. We consider the 0◦-oriented specimens subjected to e�ective stresses
σeff = 82.3 MPa, σeff = 65.0 MPa and σeff = 52.0 MPa for specimen A, B and C, re-
spectively, at N = 5. With increasing sharpness of the notch, the damage values at the
notch increase as well. In contrast, the center of the specimen shows little damage. This
observation does not come unexpected, as the stress peak in the notch drives the damage
�eld via the evolution equation Ḋ = ασ : S0 : σ.
Due to the layered �ber-structure in the specimens, the fatigue-damage evolves non-
uniformly over the specimen depth. In Fig. 5.17 the fatigue-damage is plotted for the
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Figure 5.16.: Fatigue-damage indicator Λ at the surface of specimens at N = 5

0◦- and 90◦-oriented specimen A. The loading cases are 47.5 MPa, R = 0 and 37.5 MPa,
R = 0 at N = 107, respectively. We observe, that the maximum fatigue-damage in
the 0◦-oriented specimens can be found in the surface layer, while the maximum fatigue-
damage in the 90◦-specimen is predicted in the center layer. This is due to the underlying
microstructure: the maximum fatigue damage is predicted in the �ber layer, in which
the most �bers are oriented in the loading direction. In the 0◦-oriented specimen, the
�bers in the approximately uniform outer �ber layers point in loading direction. In the
90◦-oriented specimen these �bers point in the direction perpendicular to the loading di-
rection. Thus for 90◦-oriented specimens the appoximately isotropic center layer is the
layer with the most �bers pointing in loading direction.

Figure 5.17.: Fatigue-damage over spec-
imen depth: for 0◦- and
90◦-oriented specimen A in
planes parallel to loading
direction: through notch
surface (right) and speci-
men center (left)
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After these prestudies, we turn our atten-
tion to comparing the model predictions to
experimental data. We �rst discuss the re-
sults for stress ratios of R = −1 for the un-
notched specimen A. Experimental data
and numerical predictions for specimens
with �ber orientations of 0◦ and 90◦ are
plotted in Fig. 5.18. For the 0◦-oriented
specimens shown in Fig. 5.18(a), we ob-
serve a long and stable degradation phase
of the material, which is roughly linear in
logarithmic cycle space. For increasing lo-

ading amplitudes, i.e, for amplitudes σmax larger than 72 MPa, we additionally observe
a secondary fatigue-damage process with a more rapid decrease in the dynamic sti�ness.
This regime might be due to localizing fatigue cracks in the matrix, which we do not
account for in the damage model at hand. The slope of the curve prior to this localizing
regime is reproduced by the fatigue-damage model quite accurately. Recall that we did
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Figure 5.18.: Comparison of computational and experimental results for R = −1 and
specimen A

not use the experimental data at R = −1 to identify material parameters, but rather
solely rely on experimental data for R = 0 for parameter identi�cation.
For the 90◦-oriented specimen, see Fig. 5.18(b), the non-linearity of the degradation curve
increases. Yet, the fatigue-damage model is able to reproduce the stress-amplitude de-
pendency in the sti�ness degradation N = 0.5 prior to failure.
We proceed with the discussion of experimental and numerical predictions for specimen B,
shown in Fig. 5.19. The sti�ness degradation of the material under loadings with a stress
ratio of R = 0 are less nonlinear in the experiments than the sti�ness degradation of
specimens under loadings with a stress ratio of R = −1, where some curves tend towards
a quadratic degradation when approaching a regime close to failure. This observation is
in accordance with the data from specimen A. The experiments for R = 0 and R = −1
were conducted on di�erent machines. R = 0 experiments ran on an Hähnchen system,
whereas R = −1 ran on a Schenk system. This circumstance might also be one reason
for the di�erences in the measurements. However, when focusing on the fatigue-damage
regime with a linear slope, the simple damage model captures the dependence on the
orientation quite accurately. The largest deviations of the numerical predictions from the
experimental data is found for experiments with R = −1 using 90◦-oriented specimens
at low stress amplitudes, shown in Fig. 5.19(d). In this setting, the experimental curves
show a strongly non-linear behavior, which the numerical model does not reproduce. Yet,
assuming that reproducing the linear trend in the data is of primary interest, the slope
of the fatigue-damage model seems to be reasonable.
Finally, we compare experimental and computational predictions for the sharply notched
specimen C in Fig. 5.20. The sti�ness degradation for this specimen is in the range of
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Figure 5.19.: Comparison of computational and experimental results for specimen B

143



5%, which is half of the sti�ness degradation observed in specimen B and about a quarter
of the degradation observed in specimen A. This comes as no surprise, as the stress in
the sharply notched specimen C is highly localized around the notch root. The majority
of the part remains largely una�ected by fatigue damage. The overall sti�ness degra-
dation is thus smaller, yet noticeable. The linear fatigue-damage regime depending on
R-value, orientation and stress amplitude is reproduced by the computational model with
acceptable accuracy. The largest deviation observed when comparing experimental and
numerical predictions for specimens C is found in the 0◦-oriented, R = −1-stress valued
experiment with a maximum stress σmax of 54.4 MPa. The sti�ness loss in the experiment
at N = 2.5 is 5.17%, while a sti�ness loss of 3.78% is predicted, which is a relative error
of 19.5%. All other load cases studied, prior to localization and failure, remain well below
this deviation.
We conclude that the presented fatigue model is able to predict the sti�ness loss in
unnotched, mildly and sharply notched specimens subjected to stress amplitudes lead-
ing to fracture within the high cycle regime (103-106 cycles). The respective bearable
load capacity depends on stress amplitude, stress ratio and orientation. Since the stress
amplitude enters the damage evolution quadratically and is thus rather sensitive to
its value, an extrapolation to other stress amplitudes should be handled with caution.

5.6. Conclusions

We proposed a special fatigue-damage model for the matrix material in short-�ber rein-
forced polymers formulated in time scale. This formulation enabled us to study the e�ect
of fatigue damage during the �rst few cycles in detail. The proposed fatigue damage
model is rather sensitive to the choice of parameters in the �rst few cycles, corresponding
to the observation in experimental data that the dynamic modulus in the �rst few cycles
scatters for di�erent measurements. However, both material model and experimental data
proved to be rather stable regarding the sti�ness decrease in the high cycle regime.
To enable e�cient computations in the high cycle regime, we proposed a cycle-jump tech-
nique building upon parametric loading curves. The parametrization of the loading curve
enabled us to reformulate the model in terms of a cycle-scale and a logarithmic cycle-
scale variable, respectively. Thus, the in�uence of load amplitude and mean stress can be
consistently accounted for, while the computational e�ciency is drastically increased com-
pared to a pure time-scale based approach. The time-scale and cycle-scale models were
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Figure 5.20.: Comparison of computational and experimental results for specimen C

145



studied and compared thoroughly. A combined time and cycle-scale approach (HLC) is
suggested to combine the accuracy of the time-scale model in the �rst few cycles with the
computational e�ciency of the cycle-scale model in the high cycle regime.
Subsequently, the method was applied to model the fatigue damage behavior of a short-
�ber reinforced polyamide. The material evolution was studied for di�erent stress am-
plitudes, stress ratios, orientations and geometries. Using the data from 0◦-oriented and
90◦-oriented specimens for stress ratios of R = 0 to calibrate the material parameter α,
the material behavior at di�erent orientations, stress ratios and geometries can be pre-
dicted with reasonable accuracy.
In subsequent work, the investigation of a failure criterion remains an open question.
Additionally, the scattering of the initial dynamic sti�ness should be investigated more
thoroughly. With a suitable failure criterion at hand, combined with the statistical in-
�uence of the initial sti�ness, the prediction of Wöhler curves for short-�ber reinforced
components is possible.
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6. Accounting for viscoelastic e�ects

in a multiscale fatigue model for

the degradation of the dynamic

sti�ness of short-�ber reinforced

thermoplastics1

6.1. Introduction

In contrast to metals, polymer-based materials exhibit sti�ness degradation under fatigue
loading. This observation is the starting point of many damage materials in the fatigue
literature [218,251,252]. They aim to model the material's degradation under cyclic load-
ing based on measurements of the dynamic sti�ness. At the same time, it is well-accepted
in material science that polymers are viscoelastic in nature [253]. Thus, the observed
dynamic sti�ness of polymer-based materials depends on the loading frequency [103,254].
In this chapter, we extend existing computational multiscale approaches for elastic fatigue-
damage to viscoelasticity. We choose a linear viscoelastic material model and study its
in�uence on the dynamic sti�ness under cyclic loading conditions. Subsequently, we in-
corporate the most relevant e�ect, i.e., the frequency dependence at high cycles, into a
fatigue-damage material model.
In section 6.2, we start by a systematical investigation of the in�uence of viscoelasticity
on the dynamic modulus and its evolution in experiments. Under cyclic loading, we ob-
serve that the material reaches an asymptotic periodic orbit within a fairly low number

1 Reproduced from: N. Magino, J. Köbler, H. Andrä, F. Welschinger, R. Müller, M. Schneider, "Ac-

counting for viscoelastic e�ects in a multiscale fatigue model for the degradation of the dynamic

sti�ness of short-�ber reinforced thermoplastics," Computational Mechanics, vol. 71, pp. 493�515,

2023.
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of cycles. Subsequently, we introduce a linear viscoelastic material model to describe the
observed e�ects. For a linear viscoelastic material, the shape of the hysteresis curve at
high cycles depends on the applied frequency, but does not evolve further. In contrast,
fatigue-damage evolves at all stages of high-cycle fatigue. We thus propose to treat the
two e�ects separately and utilize a two-step analysis of the current dynamic sti�ness that
is both accurate and e�cient. In a �rst step, we discuss how to compute the dynamic
sti�ness for the periodic orbit, i.e., the asymptotic dynamic sti�ness of the undamaged
material (section 6.3). In a second step, we integrate the obtained �xed-point sti�ness
into a cycle-based fatigue-damage model (section 6.4).
In section 6.3, we discuss an elastic model with complex-valued sti�ness [255, 256] to
compute the periodic orbit for cyclic loading of viscoelastic materials. We show that
for components consisting of linear elastic materials and just one viscoelastic constituent
with a small phase shift, a real-valued scheme is su�cient to approximate the materials
dynamic sti�ness. Thus, for short-�ber reinforced thermoplastics with elastic �bers, a
real-valued scheme is applicable.
In section 6.4, based on the derived real-valued elastic scheme, we propose an approach to
integrate the frequency-dependence of the dynamic sti�ness into existing fatigue-damage
models. The method modi�es the undamaged sti�ness according to the current applied
frequency. Apart from a simple precomputation of the e�ective matrix properties de-
pendent on the current frequency, there is no need for any increase in the computa-
tional e�ort when going from an elastic-damage to a viscoelastic-damage model. We
demonstrate the capability of the model to reproduce experimental results in a validation
step.

6.2. On the dynamic modulus

6.2.1. In fatigue experiments

Polymer materials degrade under cyclic loading. To characterize the evolving fatigue dam-
age in experiments, multiple quantities may be monitored. Apart from self-heating [257,
258], the most common approach is an analysis of the strain-stress hysteresis at the cur-
rent cycle. As scalar measures of the hysteresis curves, sti�ness measures are widely used
in literature. They may be chosen in di�erent ways, e.g., the slope of the curve close to
the point of reversal. One of the most common choices is the dynamic modulus, de�ned
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Figure 6.1.: Evolution of the hysteresis of short-�ber reinforced PBT under fatigue loading

by

Edyn =
σmax − σmin
εmax − εmin

, (6.2.1)

where σmax and σmin are the maximum and minimum stress level reached within the current
hysteresis cycle, respectively. With εmax and εmin, we refer to the maximum and minimum
strain level within the same cycle. To understand the evolution of this quantity in polymer-
based materials, we �rst investigate the evolution of the stress-strain hysteresis, which
serves as the basis for the evaluation of the dynamic sti�ness in experiments. Therefore,
we subject a short-�ber reinforced PBT specimen to cyclic loading at constant stress
amplitude and a stress ratio of R = 0, where

R =
σmax
σmin

. (6.2.2)

The hysteresis curves and their evolution in the experiment are shown in Fig. 6.1. For the
evolution of the hysteresis under fatigue loading, we observe two main e�ects: a shift of
the hysteresis to larger strain values (creep) and a rotation of the hysteresis in the stress
plane (damage).
The shift e�ect is especially pronounced in the �rst few cycles: in Fig. 6.1(a), we observe a
visible shift of the hysteresis between cycle number 17 and 18. For higher cycle numbers,
e.g., cycle number 27 and 28, the shift is barely noticeable. Additionally, we observe that
the shift from 17 to 27 is of similar magnitude as the shift from 27 to 67 cycles. Thus,
the shift e�ect decreases with increasing number of cycles.
The second observation is a rotation of the hysteresis. In Fig. 6.1(b), the hysteresis curves
at cycle 140 and 9677 are compared. The dashed lines in gray and black indicate the slope
of the two hysteresis curves. To simplify a comparison on a visual basis, we shifted both
curves to zero. We observe that the slope of the hysteresis loops decreased under fatigue
loading, i.e., the hysteresis loop was rotated clock-wise.
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Figure 6.2.: Frequency dependence of short-�ber reinforced PBT

Another e�ect which we observe in fatigue experiments on short-�ber reinforced PBT
is its frequency dependence. To realize the fatigue experiments in the shortest possible
time, experiments at di�erent loading amplitudes are often performed at di�erent fre-
quencies [121, 259] to avoid self-heating of the material at high loading amplitudes. The
choice of a di�erent frequency also in�uences the measured dynamic modulus. Goméz et
al. [254] published experiments on short-�ber reinforced PBT, in which they character-
ized the dynamic sti�ness at di�erent frequencies. The dynamic modulus of PBT with 20

weight-% of reinforcements at 50.2◦ C is shown in Fig. 6.2(a). A clear increase of the ma-
terial's dynamic modulus with increasing frequency is observed. Similarly, for short-�ber
reinforced PBT at room temperature, we observe a dependence of the dynamic modulus
on the loading frequency in fatigue experiments, see Fig. 6.2(b). The specimens used
for fatigue testing were cut from injection molded plates parallel (0◦) and perpendicu-
lar (90◦) to the �ow direction of the mold. For each of the load cases listed in Tab. 6.1,
three specimens were tested. The semi-transparent bands around the data plotted in
Fig. 6.2(b) mark the standard deviation of the experimental results. We observe, both for
the 0◦-oriented and the 90◦-oriented specimens, that the load cases at higher frequencies
exhibit a higher dynamic modulus. This is in accordance with the results from Gomez et
al. [254].

150



Orientation stress maximum frequency

0◦ 60.0 MPa 10 Hz
65.0 MPa 5 Hz
70.0 MPa 3 Hz

90◦ 38.4 MPa 12 Hz
42.8 MPa 7 Hz
49.0 MPa 3 Hz

Table 6.1.: Realized load cases

E0

η1E1

ηNEN

Figure 6.3.: Rheological model with N par-
allel Maxwell elements

The evaluated dynamic modulus is a�ected by all of the observed e�ects, i.e., shift of
the strain hysteresis to higher strain values, rotation and frequency dependence. The
e�ects originate from two material properties: viscoelasticity and damage. Viscoelastic
behavior of the material is observed in the shift (creep) of the stress-strain hysteresis to
higher strain values as well as the frequency dependence of dynamics modulus. Damage
behavior is re�ected in the clock-wise rotation of the stress-strain hysteresis with increasing
load cycle. We investigate the consequences of a continuum mechanical model for linear
viscoelasticity on the evaluated dynamic modulus in section 6.2.2.

6.2.2. In viscoelastic materials

To investigate the e�ect of a linear viscoelastic material model on the measured dynamic
modulus, we assume that the material follows the behavior of a generalized Maxwell
model [260,261]. Its rheological model is schematically shown in Fig. 6.3.
The set of internal variables in this model consists of N viscoelastic strains εv,j. In
the context of generalized standard materials [17, 246], the generalized Maxwell model is
de�ned via the free energy density

w
(
ε, εv,1, . . . , εv,N

)
=

1

2
ε : C0 : ε+

N∑

j=1

1

2

(
ε− εv,j

)
: Cj :

(
ε− εv,j

)
, (6.2.3)

where Cj denotes the sti�ness of the j-th Maxwell element, and the dissipation poten-
tial

ϕ (ε̇v) =
1

2

N∑

j=1

ε̇v,j : Dj : ε̇
v,j. (6.2.4)
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Here, Dj refers to the viscosity tensor of the j-th Maxwell element. We assume that both
the sti�nesses and the viscosities are isotropic and their Poisson's ratios coincide in every
element. Then, for a given function

K(x) =
x

(1 + x) (1− 2x)
I⊗ I+ x

(1 + x)
Is (6.2.5)

and a Young's modulus Ej, viscosity ηj and Poisson's ratio νj in every Maxwell element,
we de�ne the viscosity tensor

Dj = ηj K(νj) (6.2.6)

and the sti�ness tensor

Cj = Ej K(νj) (6.2.7)

where I is the second-order identity tensor and Is denotes the symmetric part of the
fourth-order identity tensor. Additionally, we assume that

νj = ν for all j ∈ {0, . . . , N}. (6.2.8)

For concise notation, we de�ne the time constant τj and its inverse βj given by

τj =
ηj
Ej

and βj =
Ej
ηj

(6.2.9)

for every Maxwell element.
To understand the evolution of the dynamic modulus for a generalized Maxwell model,
we �rst investigate the one-dimensional case. We choose to use an example with N = 1

and the material constants E0 = 1 GPa, E1 = 10 GPa and η1 = 1 GPa·s. We subject
the material to loading at a constant stress amplitude of σa = 30 MPa, a stress ratio of
R = 0 and a frequency of f = 1 Hz. The results are shown in Fig. 6.4. In the evolution
of the stress-strain curve in Fig. 6.4(a), a shift of the hysteresis curve to higher strains
is visible. As observed in the experiments discussed in section 6.2.1, the largest shift
manifests in the �rst cycle and the magnitude of the shift decreases steadily with the
number of cycles. When evaluating the dynamic modulus at every cycle, see Fig. 6.4(b),
we observe a strong increase within the �rst few cycles. For cycles larger than ten,
the material response reaches a steady state, i.e., the dynamic modulus approaches an
asymptotic value. This observation is independent of the applied load amplitude and
stress ratio. Indeed, in Fig. 6.5(a), we show the material subjected to cyclic extension at
di�erent stress amplitudes. We observe that the stress-strain curve approaches a periodic
orbit, i.e., the di�erence between the hysteresis curves of two subsequent cycles become

152



0 0.5 1 1.5 2 2.5 3 3.5
0

20

40

60

ε in %

σ
in

M
P
a

σmax σ-ε Edyn

60 MPa

(a) Stress-strain evolution and dynamic modulus

Edyn at the sixth cycle

0 2 4 6 8 10 12 14 16 18 20 22 24

3

4

5

6

cycle number N

E
dy

n
in

G
P
a

(b) Dynamic modulus evolution
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Figure 6.5.: Stress-strain curve at di�erent load amplitudes ans stress ratios compared to
the dynamic modulus Edyn at the sixth cycle

smaller with every cycle. In the sixth cycle, we compare the dynamic modulus marked by
the dashed line in the plots at every stress amplitude. We observe that the slope of the
dashed line, i.e., the dynamic modulus, is independent of the applied stress amplitude.
Moreover, we plot stress-strain curves at di�erent stress ratios R in Fig. 6.5(b). Similar
to the hysteresis evolution under di�erent load amplitudes, the hysteresis loops converge
to periodic orbits, and the evaluated dynamic modulus in the sixth cycle is independent
of the applied stress ratio.
In contrast to stress amplitude and stress ratio, the steady state reached for a viscoelastic
material is not independent of the applied frequency. In Fig. 6.6, the material is subjected
to cyclic loading at di�erent frequencies. In Fig. 6.6(a), the stress-strain curves of the
material for the �rst four cycles are plotted. The hysteresis evolves around a center
point in the stress-strain diagram which is independent of the frequency. However, the
shape of the hysteresis and, in particular, its symmetry axis, depends strongly on the
frequency. The dynamic moduli are plotted in Fig. 6.6(b). They re�ect the rotation of
the symmetry axis of the hysteresis curve at di�erent frequencies. The modulus values
rapidly converge to an asymptotic value. The reached asymptotic value depends on the
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Figure 6.6.: Linear viscoelastic material at di�erent frequencies

frequency.

6.3. Modeling the long-term cyclic response of SFRPs

6.3.1. Material model

The constitutive behavior of heterogeneous materials is strongly in�uenced by the prop-
erties of the underlying microstructure. For short-�ber reinforced materials, these mi-
crostructures are characterized by the �ber orientation [262, 263], the �ber volume con-
tent [254] and the aspect ratio [264, 265] of the �ber inclusions. Thus, accurate material
models need to account for the characteristics of the underlying microstructure. Due to
the inherent anisotropy, characterizing ad-hoc phenomenological material models requires
an expensive experimental program, in particular for long-term loading. In contrast,
computational multiscale methods o�er a possibility to derive the macroscopic material
model from the material behavior of the constituents by computational means. Indeed,
characterizing the individual phases typically comes with a reduced experimental e�ort.
We thus chose to model the material behavior of the constituents, i.e., matrix and �ber,
and to derive the macroscopic material behavior by micromechanics.
We consider a cubic cell Y ⊆ R3, together with spatially varying positive de�nite sti�ness
tensors Cm(x) for m ∈ {0, . . . , N}, and the coe�cients βj(x) with j ∈ {1, . . . , N} are
given at every microscopic point x ∈ Y . We seek the strain �elds ε and εv,j, the stress
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�eld σ and the displacement �uctuation �eld u satisfying

div σ = 0 in Y, (6.3.1)

σ = C0 : ε+
N∑

j=1

Cj :
(
ε− εv,j

)
in Y, (6.3.2)

ε̇v,j = βj
(
ε− εv,j

)
in Y, (6.3.3)

ε = ⟨ε⟩Y +∇su in Y, (6.3.4)

together with the initial and boundary conditions

u periodic on ∂Y, (6.3.5)

σ · n anti-periodic on ∂Y, (6.3.6)

εv,j (t = 0) = 0 on ∂Y, (6.3.7)

σ(t) = ⟨σ(t)⟩Y , (6.3.8)

for a prescribed macroscopic stress loading σ(t). Here, j ∈ {1, . . . , N} indicates the
Maxwell element, where N denotes the number of viscoelastic units in the generalized
Maxwell chains, see Fig. 6.3. In formulas (6.3.1)-(6.3.6), we suppress the dependence of
the �elds on x ∈ Y and the time t for simplicity of notation.
For later use, we record that the di�erential form of the constitutive law (6.3.2) and (6.3.3)
can be equivalently represented in integral form [266]

σ(x, t) =

∫ t

0

C(x, t− u) : ∂ε(x, u)
∂u

du (6.3.9)

with the material function

C(x, t) = C0(x) +
N∑

j=1

Cj(x) exp (−βjt) . (6.3.10)

6.3.2. Choice of parameters

Similar to Krairi et al. [8], to identify matrix material parameters valid for the compos-
ite's material behavior, we consider tensile tests at di�erent strain-rates. For short-�ber
reinforced PBT, Mortazavian and Fatemi [267] reported on such experiments. However,
these authors did not characterize the �ber orientations within the specimen. We assume
the �ber orientation inside the injection molded specimen to be layered with the �ber
orientation tensor components shown in Fig. 6.7(a), as suggested by the analysis of CT-
scans of similar materials [224,268�271]. We use a commercial PBT with 35 weight-% of
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Figure 6.7.: Young's modulus of the layered �ber structure at di�erent strain rates com-
pared to experimental data [267]

�ber inclusions and a respective �ber volume content of 17.8% [272]. The aspect ratio of
the �bers is set to 29, see, e.g., Hessman et al. [224] for an analysis of typical aspect ratios.

Element i Ematr
i in MPa τ matri in s νmatri Efiber

i in GPa νfiberi

0 2475.0 - 0.4 72 0.22

1 582.4 2.4× 10−3 0.4

2 429.9 2.4× 10−2 0.4

3 316.2 2.2× 10−1 0.4

4 233.0 1.9 0.4

Table 6.2.: Identi�ed material parameters for Maxwell element number i of PBT matrix
and glass �bers

Based on the strain-rate dependent experiments on the composite, we obtained the moduli
Ej and relaxation time constants τj = 1/βj given in Tab. 6.2. In Fig. 6.7, the experimental
results published by Mortazavian [267] are compared to viscoelastic computations on the
layered �ber structure using the identi�ed parameters. We observe that for both the
0◦-oriented specimen and the 90◦-oriented specimen, the computational prediction of the
material modulus matches the experimental data rather well. Thus, the dependence on
both strain rate and orientation is well-reproduced by the linear viscoelastic model with
material parameters given in Tab. 6.2.
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6.3.3. Dynamic sti�ness of linear viscoelastic composites for

long-term cyclic loading

We are interested in the long-term response of the viscoelastic composite subjected to a
periodic excitation. Thus, we consider a periodic loading σ(t) of the system (6.3.1)-(6.3.6)
and seek solutions which are periodic in time with a period T = 2π/ω. The system (6.3.1)-
(6.3.6) possesses a unique solution, and we are concerned with obtaining computationally
feasible approximations. For this purpose, we expand the total strain and the viscoelastic
strain �elds

ε(x, t) =
∑

k∈Z
ε̂k(x) exp (ωi kt) (6.3.11)

εv,j(x, t) =
∑

k∈Z
ε̂v,jk (x) exp (ωi kt) (6.3.12)

into Fourier series w.r.t. the time variable.
For the time derivative, we obtain

ε̇v,j(x, t) =
∑

ω∈Z
ωi kε̂v,j(x) exp (ωi kt) . (6.3.13)

The evolution equations (6.3.3) for the viscoelastic strains can be reassembled as

ωi kε̂v,j(x) = βj(x)
(
ε̂(x)− ε̂v,jk (x)

)
for all k ∈ Z. (6.3.14)

As di�erential equations in real space get transformed to algebraic equations in Fourier
space, we may solve for the �elds ε̂v,jk (x) explicitly

ε̂v,jk (x) =
βj(x)

βj(x) + ωi k
ε̂(x). (6.3.15)

With this formula at hand, we may recast the constitutive law (6.3.2) in a form reminiscent
of linear elasticity, but with complex coe�cients

σ̂k(x) = C0(x) : ε̂k(x) +
N∑

j=1

Cj(x) :
(
ε̂k(x)− ε̂v,jk (x)

)

=

[
C0(x) +

N∑

j=1

(
ωi k

βj(x) + ωi k

)
Cj(x)

]
: ε̂k(x).

(6.3.16)

Inserting the material law into the balance equation (6.3.1) yields

0 = div

([
C0(x) +

N∑

j=1

(
ωi k

βj(x) + ωi k

)
Cj(x)

]
:
[
ε̂k +∇sûk(x)

]
)
. (6.3.17)
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Suppose that the tensor �elds Cj are positive de�nite. Then, provided the Fourier coef-
�cients σ̂k of the macroscopic stress loading are contained in a speci�c subset F of the
integers, i.e.,

σ̂k = 0 for k /∈ F , (6.3.18)

we conclude

ûk(x) = 0 for k /∈ F . (6.3.19)

Put di�erently, the displacement �uctuation �eld is then supported on this reduced set
F of Fourier frequencies, as well.
We obtained a complex -valued elastic model [255] for the viscoelastic material's asymp-
totic periodic orbit. Typically, �ber reinforced polymer materials comprise just one vis-
coelastic constituent, the matrix, and one type of elastic inclusions, the �bers. We will
discuss this special case in the following and derive a real -valued approximation for the
dynamic sti�ness of such materials.
To simplify further discussion, we assume a stress-driven sinusoidal load in the form

σ(t) = σa cos(ωt) (6.3.20)

with a stress-tensor valued �amplitude� σa.
With the help of the expressions for the cosine and the sine in terms of the exponential
function

cos y =
eiy + e−iy

2
and sin y =

eiy − e−iy
2i

, y ∈ R, (6.3.21)

this loading may be written in the form

σ(t) =
σa

2
eiωt +

σa

2
e−iωt. (6.3.22)

Thus, the Fourier coe�cients compute as

σ̂1 =
σa

2
, σ̂−1 =

σa

2
and σ̂k = 0 for k ̸= ±1. (6.3.23)

By the previous argument (6.3.19), we thus seek a strain �eld ε supported only on the ±1
Fourier frequencies. As we look for a real solution, it is actually more convenient to seek
real-valued �elds εc, εs : Y → Sym(3), s.t. the representations

ε̂±1 =
1

2
(εc ± i εs) . (6.3.24)
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are valid. We will also use a similar representation for the local stress �elds

σ̂±1 =
1

2
(σc ∓ iσs) . (6.3.25)

In the �ber material, the linear elastic constitutive law (6.3.16) gives

σc = Cf : ε
f
c and σs = Cf : ε

f
s, (6.3.26)

where Cf denotes the elastic sti�ness tensor of the �ber material. For the linear vis-
coelastic matrix material, we restrict to the case of an equal Poisson's ratio ν in all N
elements of the Maxwell model. Then, the constitutive equation (6.3.16) can be rewritten
as

σ̂k(x) =

[
E0(x) +

N∑

j=1

(
ωi k

βj(x) + ωi k

)
Ej(x)

]
K(ν) : ε̂k(x) (6.3.27)

within the linear viscoelastic matrix. With the abbreviations

r = E0 +
N∑

j=1

(
ω2

β2
j + ω2

)
Ej and q =

N∑

j=1

βj ω

β2
j + ω2

Ej, (6.3.28)

we deduce the strain-explicit representation

εmc =
r

r2 + q2
K(ν)−1 : σc −

q

r2 + q2
K(ν)−1 : σs,

εms =
q

r2 + q2
K(ν)−1 : σc +

r

r2 + q2
K(ν)−1 : σs,

(6.3.29)

see Appendix A.3 for details.
De�ning the local compliance matrices

Sc =

{
Sf, in �ber

r
r2+q2

K(ν)−1, in matrix,
and Ss =

{
0, in �ber

q
r2+q2

K(ν)−1, in matrix,
(6.3.30)

where Sf = C−1
f denotes the compliance tensor of the �ber material, we may succinctly

write

εc = Sc : σc − Ss : σs

εs = Ss : σc + Sc : σs.
(6.3.31)

Upon spatial averaging, we deduce the expressions

εc = S
eff
c : σc − Seffs : σs (6.3.32)

εs = S
eff
s : σc + S

eff
c : σs. (6.3.33)
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Using the prescribed conditions

σc = σa and σs = 0, (6.3.34)

we conclude

ε(t) = Seffc : σa cos(ωt) + Seffs : σa sin(ωt). (6.3.35)

Thus, to determine the evolution of the macroscopic strain under the loading (6.3.20),
the two compliance tensors Seffc and Seffs need to be determined via computational ho-
mogenization. Due to the tensorial nature of the strain and the stress tensor, the
convenient splitting of a superimposed cosine and sine wave in terms of a shift angle
and an amplitude, well-known in the scalar case, is not available in this general set-
ting. However, it appears plausible - at least in the case q/r ≪ 1 - that we may ap-
proximate the e�ective response 6.3.35 by an e�ective model with shift-angle-amplitude
form

ε(t) = εaC cos (ωt− δ) . (6.3.36)

where C is a scalar and the corresponding sine-cosine form is

ε(t) = εa (A cos(ωt) +B sin(ωt)) . (6.3.37)

Then, the relations

tan(δ) =
B

A
and C2 = A2 +B2 (6.3.38)

hold. To approach this problem in a systematic manner, we use approximations of the
local compliance tensors (6.3.30) that lead to a homogenized response of the appropriate
form (6.3.36). Subsequently, we will use computational experiments to determine which
approximation is appropriate.
We consider three approximations of this stress-strain relation for small phase shifts in
the viscoelastic material, i.e., for q/r ≪ 1.

1. Matrix-dominated approximation MA: For small fraction q/r, we consider the ap-
proximation

SMAs =

{
0, in �ber

q
r2+q2

K(ν)−1, in matrix,
≈
{

q
r
C−1
f , in �ber

q
r2+q2

K(ν)−1, in matrix.
(6.3.39)

We write the approximated stress-strain relation as

ε(t) ≈ ⟨Sc : σa⟩Y cos (ωt) +
q

r
⟨Sc : σa⟩Y sin(ωt) (6.3.40)

= ⟨Sc : σa⟩Y
(
cos (ωt) +

q

r
sin(ωt)

)
(6.3.41)
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We de�ne the approximated dynamic compliance as

S
MA

dyn = ⟨Sc cos(δmatr) + Ss sin(δmatr)⟩Y (6.3.42)

=

〈{
cos (δmatrix) C

−1
f , in �ber

cos (δmatrix)
r

r2+q2
K(ν)−1 + sin (δmatrix)

q
r2+q2

K(ν)−1, in matrix,

〉

Y

.

(6.3.43)

Using the shift-angle-amplitude form (6.3.36), we �nally obtain

S
MA

dyn =

〈{
cos (δmatrix) C

−1
f , in �ber

1√
r2+q2

K(ν)−1, in matrix,

〉

Y

. (6.3.44)

2. Fiber-dominated shift approximation FA: For small fraction q/r, we consider the
approximation

SFAs =

{
0, in �ber

q
r2+q2

K(ν)−1, in matrix,
≈
{

0, in �ber
0, in matrix

(6.3.45)

leading to the approximation of the stress-strain relation

ε(t) ≈ ⟨Sc : σa⟩Y cos(ωt). (6.3.46)

The maximum e�ective strain is obtained at

t = 0. (6.3.47)

We de�ne

δfiber = 0 (6.3.48)

and the approximated dynamic compliance as

S
FA

dyn =
〈
Sc cos(δfiber) + Ss sin(δfiber)S

eff
0

〉
Y

(6.3.49)

=

〈{
C−1
f , in �ber

K(ν)−1 r
r2+q2

, in matrix,

〉

Y

. (6.3.50)

3. Limit shift approximation LA: In the limit case of a neat matrix material or a neat
�ber material under cyclic loading, the above approximations violate the expected
phase shift of the homogenized material. Indeed, using MA, we obtain

Cdyn =
1

cos δmatrix
Cf ̸= Cf (6.3.51)
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for neat �ber material. For FA, we obtain

Cdyn =
r2 + q2

r
K(ν) ̸=

√
r2 + q2K(ν) (6.3.52)

for neat matrix material. To circumvent this, we propose to use a combination of
the above approximations

S
LA

dyn =

〈{
Sf , in �ber

1√
r2+q2

K(ν)−1, in matrix,

〉

Y

. (6.3.53)

The three approaches MA, FA, and LA are compared to full linear viscoelastic computa-
tions (LVE) in a numerical study in section 6.3.4.
With the dynamic sti�ness of the viscoelastic material and the elastic sti�ness of the
inclusions at hand, we may approximate the dynamic sti�ness of the composite material
based on elastic computations. We will refer to this approach as surrogate elastic computa-
tion (SEC) approach in the remainder of the manuscript. For convenience of the reader, we
summarize the necessary computational steps in the following box.
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Summary of the surrogate elastic computation (SEC) approach

Assumptions:

� single isotropic viscoelastic material, reinforced by elastic �bers

� Poisson's ratio ν equal in all sti�nesses and viscosities of the viscoelastic ma-
terial

Input: elastic sti�ness Cf; viscoelastic properties of the matrix Ei, βi for all i ∈
{1, . . . , N}; Poisson's ratio ν; angular frequency ω of the loading
Computation:

1. Evaluate the dynamic material constants of the viscoelastic material

r ← E0 +
N∑

j=1

ω2Ej
ω2 + β2

j

(6.3.54)

q ←
N∑

j=1

ωEjβj
ω2 + β2

i

(6.3.55)

2. Choose an approximation approach (MA, FA or LA) and compute the dy-
namic sti�ness of the viscoelastic material

Edyn ←
{ √

r2 + q2, for MA or LA
r2+q2

r
, for FA,

(6.3.56)

3. Compute the isotropic sti�ness Cmatr
dyn = C (Edyn, ν) for the matrix material

(see equation (6.2.7))

4. Compute the dynamic sti�ness of the �ber material

Cfibr
dyn ←

{
Cf , for FA or LA

Cf
1

cos δmatr
, for MA,

(6.3.57)

with

δmatr ← tan−1
(q
r

)
. (6.3.58)

5. Compute the homogenized elastic sti�ness of the microstructure with the sti�-
ness �eld

C(x) =




Cfibr
dyn , in the �ber,

Cmatr
dyn , in the matrix.

(6.3.59)
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6.3.4. Computational investigations of the dynamic sti�ness of

SFRPs

In this section, we validate the derivations of the previous sections. Indeed, in section 6.3.3,
we showed that we may approximate the dynamic sti�ness with an e�cient scheme.
Instead of computing the material response of a viscoelastic material subjected to cyclic
loading, we may compute a single �elastic� sti�ness.
To verify the accuracy of the approximation, we choose a simple microstructure with �bers
of aspect ratio ten, shown in Fig. 6.8(a). To compare the e�ect of the shift approximations
MA, FA and LA. A viscoelastic material with large phase shift δmatrix at the applied
loading frequency is chosen. We subject the material to stress-driven cyclic loading with
a stress amplitude of σa =15 MPa and a frequency of 3 Hz. To keep the numerical e�ort at
a minimum, only one Maxwell element for the matrix material model is used. Its material
parameters are E0 =1 GPa, E1 =10 GPa and ν =0.4. We study the material behavior
for two di�erent viscosities, η1=160 GPa·s leading to a phase shift of δmatrix=57.6◦ at
the applied load frequency and η1=25 GPa·s leading to a phase shift of δmatrix=27.4◦,
respectively. We vary the Young's modulus of the �ber material between 101 − 107 MPa,
its Poisson ratio is set to ν =0.22.
For the linear viscoelastic computation (LVE), we evaluate the strain of the homogenized
material ε(t) and identify the maximum εmaxxx and minimum value εminxx in each cycle N .
When the di�erence △εxx(N) = εmaxxx (N) − εminxx (N) reaches a steady state in N , we
evaluate the dynamic modulus in x-direction

Ex
dyn,LVE =

2σaxx
△εxx

(6.3.60)

of the linear viscoelastic material (LVE). In Fig. 6.8, the predicted dynamic moduli are
compared to the SEC model, using the three di�erent approximation approaches MA, FA
and LA. For a large phase shift, shown in Fig. 6.8(b), the FA overestimates the dynamic
sti�ness of the composite material signi�cantly. Both MA and LA approximate the com-
posite behavior comparatively well. In the region of typical sti�ness contrast between
matrix and �ber, i.e., for log10 (Efiber/GPa) = 104 − 105, the LA model matches the
composite behavior more accurately than MA.
For smaller phase shifts, the deviation between the models decreases. Comparing the pre-
dicted dynamic moduli in Fig. 6.8(c) for a smaller phase shift to the moduli in Fig. 6.8(b),
the deviation between MA and LA is barely visible. Both models approximate the linear
viscoelastic model with reasonable accuracy.
To summarize, the deviations from the full computation using the LVE model are smaller
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Figure 6.8.: Comparison of di�erent approximation approaches to the linear viscoelastic
model (LVE)

for the LA than for the FA and the MA approach. Thus, we �x the LA approach to
study the material behavior in the remainder of the manuscript.
With these insights at hand, we return to the industrial �ber-reinforced PBT. The ma-
terial parameters of the matrix are chosen as described in section 6.3.2 and the �ber
inclusions are modeled as an isotropic linear elastic material with the Young's modulus
E = 72 GPa and the Poisson's ratio ν = 0.22. The �ber structure is layered, with the
�ber orientations in each layer chosen according to the structure plotted in Fig. 6.7(a)
and its realization shown in Fig. 6.14.
The results for excitation of the �ber structure in 0◦- and 90◦-direction are shown in
Fig. 6.9. The hysteresis loops plotted are the result of the linear viscoelastic computa-
tion. Here, for each load case the �fth hysteresis loop is shown. For better visualization,
each of the hysteresis loops is shifted by some strain value ε0. For the 0◦-direction, the
strain at the �rst time step of the plotted loop starts at 0%, 0.1% and 0.2% for the compu-
tations at 3 Hz, 5 Hz and 10 Hz, respectively. For the 90◦-direction, the strain at the �rst
time step of the plotted loop starts at 0%, 0.2% and 0.4% for the computations at 3 Hz,
7 Hz and 12 Hz, respectively. The dashed lines represent the Young's moduli computed
by the SEC model in the respective direction. In Fig. 6.9(a), di�erent stress amplitudes
at a frequency of 10 Hz are shown. The hysteresis loops are shown in blue, green and red.
As discussed in section 6.2.2 for the one-dimensional case, we observe that the dynamic
sti�ness of the composite material is independent of the load amplitude. In Fig. 6.9(b),
the hysteresis curves for excitation in 0◦-direction of the �ber structure are shown for dif-
ferent frequencies. The colored dashed lines, which represent the dynamic sti�ness of each
hysteresis loop computed by the SEC model, are shifted to higher strain values for better
comparison. With increasing frequency, the dynamic sti�ness increases. In Fig. 6.9(c),
the hysteresis curves and their dynamic sti�ness is shown for the 90◦-direction. The SEC
model represents the dynamic sti�ness of the linear viscoelastic computations quite well.
To study the approximation of the viscoelastic model quantitatively, the axial dynamic
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sti�ness

Evisco
x =

σmaxxx − σminxx

εmaxxx − εminxx

, (6.3.61)

obtained from both models is shown in Fig. 6.10. We observe that the SEC model rep-
resents the dynamic properties of the material model in this �fth cycle very well. The
deviation between the sti�ness computed by the time resolved viscoelastic model and the
simpli�ed SEC model is well below 1%.
To get an idea of the speed up obtained by using the SEC model instead of the viscoelastic
computation, we computed one load cycles discretized by 40 time steps for the viscoelastic
model on the layered �ber structure. The number of Maxwell elements is 4 and we used
the FeelMath-solver [228] on 8 nodes. The resulting runtime is approximately 2.4h. In
contrast, a single elastic time step on the same �ber structure takes approximately 2min
on the same hardware. To obtain the material sti�ness, we need to compute six load cases
both in the SEC and the viscoelastic model. It is necessary to compute a few cycles to
reach the periodic orbit. Assuming that six cycles are enough to reach the �xed point
using the viscoelastic model, we get a speed-up factor of about 432.
Additionally, the SEC algorithm highly increases the memory e�ciency of the computa-
tion. For a viscoelastic material with 4 Maxwell elements, i.e., 4 internal strain �elds, we
need to store 24 scalar �elds. On the other hand, the SEC computation does not need
any additional internal variables. Taking a microstructure discretized by 2563 voxels as
an example, storing one scalar �eld of double precision values takes 0.125 GB in memory.
Thus, we can reduce the memory use by 3 GB in comparison with the viscoelastic material
model.

6.3.5. In�uence of �ber volume content and �ber orientation

To get further insights into the in�uence of viscoelastic properties of the polymer matrix
onto the cyclic behavior of the composite material, we study the dependence of the ma-
terial behavior on the �ber volume content and the �ber orientation.
Goméz et al. [254] studied the in�uence of the �ber volume content on the dynamic prop-
erties of short-�ber reinforced PBT at elevated temperatures by experiments. We use
their experimental results as a reference for the trends observed in numerical predictions
obtained by the SEC model.
Goméz et al. [254] measured the frequency-dependent material properties of PBT at
50.2◦C. In Fig. 6.11, the dependence of the storage modulus of PBT on the frequency
is shown in black. To reproduce this behavior by a linear viscoelastic material model,
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we chose to use 15 Maxwell elements, about one for each decade in the measured fre-
quency range. The parameter identi�cation proceeds with an algorithm similar to the
one described in Woldekidan [273]. The obtained moduli Ej and relaxation time con-
stants τj = 1/βj are given in Tab. 6.3. The Poisson's ratio of all elements is set to ν = 0.4

for all further computations, as commonly identi�ed for PBT. The resulting �t of the
material behavior is shown by the red line in Fig. 6.11. We observe that the material
behavior can be represented accurately by the viscoelastic model. The dynamic modulus
is mainly governed by the storage modulus as the phase shift in the material behavior is
not pronounced.

Element i Ematr
i in MPa τ matri in s νmatri Efiber

i in GPa νfiberi

0 300.7 - 0.4 72 0.22

1 173.6 2.3× 10−8 0.4

2 166.8 2.4× 10−7 0.4

3 179.4 2.2× 10−6 0.4

4 175.7 1.9× 10−5 0.4

5 155.0 1.7× 10−4 0.4

6 126.0 1.6× 10−3 0.4

7 97.0 1.4× 10−2 0.4

8 71.7 1.3× 10−1 0.4

9 52.7 1.2× 100 0.4

10 38.8 1.2× 101 0.4

11 29.9 1.1× 102 0.4

12 24.0 1.0× 103 0.4

13 20.1 9.4× 103 0.4

14 17.5 8.8× 104 0.4

15 18.6 9.2× 105 0.4

Table 6.3.: Identi�ed material parameters
for Maxwell element number i
of PBT matrix and glass �bers
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Figure 6.11.: Storage modulus
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Figure 6.12.: Loss modulus

Goméz et al. [254] did not report on the �ber orientation inside the experimental spec-
imens. In the present study, we use �ber structures with the eigenvalues of λ1 = 0.5

and λ2 = 0.3 in their second-order Advani-Tucker �ber orientation tensor [169]. Higher
order momenta are recovered by the exact closure approximation [274]. We compare �ber
structures with 0%, 12% and 29% �ber volume content. For the �ber structures of 12%
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and 29% �ber volume content, two realizations are generated. The �rst has a volume
edge-length Lvol of 1.32 �ber lengths ℓfiber, i.e., we use a volume-�ber length ratio of
Lvol/ℓfiber = 1.32. In the second structure this ratio is increased to Lvol/ℓfiber = 1.77.
The number of voxels per �ber diameter is thereby kept constant (6.4 voxels per �ber
diameter). The �ber structures with a ratio of Lvol/ℓfiber = 1.77 and with 12% and 29%
�ber volume content are shown in Fig. 6.13, visualized with GeoDict2. The structures
were generated using the Sequential Addition and Migration (SAM) algorithm [173].
In Fig. 6.13, the dependence of the dynamic modulus of the composite material on the
frequency is shown. The increase in �ber volume content is re�ected in a shift of the dy-
namic modulus to higher values. The slope of the curve is slightly increased, i.e., higher
frequencies show a stronger in�uence on the composite than on the plain matrix material.
These computational observations agree well with experimental observations reported by
Goméz [254].
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Figure 6.13.: Frequency dependent dynamic modulus
for di�erent �ber volume contents

Figure 6.14.: Realization of
the layered �ber
structure

We further study the in�uence of the �ber orientation on the viscoelastic material behav-
ior in the periodic orbit. In Fig. 6.15, the dependence of the composite's dynamic sti�ness
on the frequency is shown for three �ber structures with di�erent �ber orientations. Each
of the �ber structures is subjected to stress-driven extension in x-direction. The reinforce-
ments in the direction of loading lead to a sti�ening of the composite material. Thus, the
uni-directional �ber structure shows the highest dynamic modulus in x-direction, as all
�bers point in loading direction, followed by the planar-isotropic and the isotropic �ber
structure. Higher frequencies lead to a higher dynamic modulus of the matrix and thus the

2Math2Market GmbH, http://www.geodict.de
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composite. This e�ect becomes apparent for all three structures. The increase of the com-
posite dynamic sti�ness with increasing frequencies is most pronounced for the isotropic
structure, as the matrix behavior is more dominant in this case.

6.4. A fatigue-damage model for the dynamic sti�ness

in SFRPs

6.4.1. Material model

In polymer-based materials under fatigue loading, we observe a steady degradation of the
mechanical behavior over a range of thousands or millions of cycles. This degradation is
observable in a decrease of the measured dynamic sti�ness. On the other hand, short-term
e�ects of viscoelastic nature can signi�cantly in�uence the measured sti�ness, as discussed
for linear viscoelastic materials in the previous section 6.3. As both of this e�ects, damage
and viscoelasticity, manifest at di�erent time scales, we chose to decouple these e�ects
and model them in two subsequent steps. First, we compute the dynamic sti�ness of
the viscoelastic material at high cycles, i.e, we evaluate the function Cdyn(f) using the
SEC model discussed in section 6.3. Secondly, we use the evaluated long-term viscoelastic
dynamic sti�ness to model the evolution of the dynamic sti�ness with a fatigue-damage
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model. In principle, this approach is independent of the chosen damage model, i.e., the
engineer is free to choose a proper damage variable D and to design an appropriate
damage-evolution law dD/dN = f (ε,D, . . .) to suit the material behavior.
We demonstrate the e�ects of the proposed ansatz on a recently published compliance-
based model [231] in the following. The elastic compliance-based material law is de�ned
based on the free energy density

w (ε, D) =
1

2

1

1 +D
ε : C0 : ε. (6.4.1)

with the elastic sti�ness tensor C0, the strain amplitude tensor ε and a scalar damage
variable D ∈ [0,∞), and the dissipation potential

ϕ (D′) =
1

2α
(D′)

2
. (6.4.2)

The damage evolution, directly formulated in logarithmic cycle spaceD′ ≡ d(D)/d (log10N)

is governed by the damage speed parameter α. We refer to chapter 4 for a detailed dis-
cussion of the model. We introduce N = log10N as short-hand notation for the variable
in logarithmic cycle space. To account for the frequency-dependent long-term behavior of
the viscoelastic matrix material, we replace the elastic sti�ness with the dynamic sti�ness
Cdyn. This yields

w (ε, D) =
1

2

1

1 +D
ε : Cdyn(f) : ε. (6.4.3)

The modi�cation e�ects both the stress-strain relation

σ =
1

1 +D
Cdyn(f) : ε, (6.4.4)

where σ is the stress amplitude tensor in the current cycle, and the damage evolution
equation

D′ = α
1

2
σ : (Cdyn(f))

−1 : σ, (6.4.5)

i.e., the damage evolution is governed by the load amplitude and the frequency. Ex-
perimental studies revealed that damage evolution inside the polymer matrix and the
resulting sti�ness degradation of the composite material is indeed in�uenced by the load
amplitude [243,275,276]. Moreover, a recent study of Imaddahen et al. [277] reports that
the fatigue process in short-glass �ber reinforced polypropylene depends on the strain rate
or frequency. They observed an improvement of the fatigue strength at higher frequencies,
i.e., a higher number of bearable load cycles at higher frequencies. As a possible explana-
tion for this result they refer to the static experiments of Fitoussi et al. [278] where the
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Figure 6.16.: In�uence of frequency on sti�ness degradation

authors showed that damage e�ects at high strain rates are delayed in polymer compos-
ites. This observation suggests that the damage evolution in thermoplastic materials is
reduced by an increase in frequency.
To uncover the in�uence of an increased frequency in the proposed model (6.4.2)-(6.4.3),
we study the in�uence of the frequency on the sti�ness degradation in simulations. In
Fig. 6.16, the degradation of the dynamic Young's modulus in x-direction Ex

dyn is shown
for the structure with isotropic �ber orientation shown in Fig. 6.16(c) and stress-driven
uniaxial extension of the material with a load amplitude of 50 MPa. The material pa-
rameters are listed in Tab. 6.2. The sti�ness of the material increases with increasing
frequency. Thus, the evolution of the dynamic modulus is shifted to higher values for
higher frequencies. Plotting the relative evolution of the Young's modulus, we observe
that higher frequencies lead to slower degradation. Higher frequencies lead to a slower
degradation. This in accordance with the experimental observations of Imaddahen et
al. [277].

6.4.2. Experiments vs. computational predictions

To validate the viscoelastic damage model discussed in section 6.4.1, we performed fatigue
experiments at di�erent load amplitudes and frequencies. The experiments were done on
specimen geometries as shown in Fig. 6.17(a). The geometries were cut from an injection-
molded plate. The layered �ber orientation structure inside the plate, which evolves due
to the injection process, was characterized by µCT-scans and is shown in Fig. 6.17(b).
For the scans, a small volume at the center of the injection molded plate was cut out.
Subsequently, the �ber orientation in nine layers subdivided over the thickness of the
plate was analyzed, see Hessman et al. [224] for more details on the method. We in-
vestigate two types of specimens, 0◦-oriented and 90◦-oriented. By 0◦-oriented, we refer
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Figure 6.17.: Geometry and �ber structure of test specimen

to specimens that were cut from the plate in the direction of the mold injection and in
which the resulting �ber orientation is thus mainly oriented in the loading direction. By
90◦-oriented specimens, we mean specimens that were cut transverse to the mold injection
direction. The specimens were subjected to cyclic loading with stress ratios R = 0. The
di�erent load cases are listed in Tab. 6.1. To get an estimate for the scattering of the
measurements, each load case was conducted three times.
For the computational predictions, we use the (visco)elastic material properties of the
matrix and �ber listed in Tab. 6.2. For the damage evolution in the matrix material,
a straightforward parameter-identi�cation strategy, see chapter 3, led to the parameter
α = 0.18 1/MPa. Subsequently, the reduced order model was trained for the frequencies
of interest. For the macroscopic specimen, we considered a layered �ber structure resolv-
ing nine layers, see Fig. 6.17(b). For more details about the computational procedure
on component scale, the model order reduction and the setup of the simulation on the
component level in the �nite-element solver Abaqus [192], we refer to chapter 4.
In Fig. 6.18, we compare the resulting sti�ness evolution in the component simulations to
the experimental measurements. Both the measured and the predicted dynamic sti�ness
increase with increasing frequency. An increase of the frequency by several Hz results in
an increase of the dynamic sti�ness by several hundred MPa. The computational pre-
dictions of this increase match the experimental values quite well, both qualitatively and
quantitatively. The scattering of the measurements of 0◦-oriented specimens is signi�-
cantly higher than for the 90◦-specimens. For 0◦, the initial predicted dynamic sti�ness
matches the measured mean value and the predicted degradation is within the experi-
mental scattering up to the last decade of the experiment. For the 90◦-oriented specimen
the dynamic sti�ness within the �rst few hundred is overestimated by the computational
predictions. Yet, for cycle numbers exceeding 100, the deviation between computational
predictions and experimental measurements is acceptable.
The applied damage model does not account for localization e�ects by construction and
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Figure 6.18.: Sti�ness degradation: simulation vs. experiment

is therefore unable to represent a negative second derivative in the sti�ness degradation.
Rather, we focus on the reproduction of the approximately linear trends in the stable
sti�ness degradation, see chapter 4 and 5. The damage processes leading to the sti�-
ness degradation within the last decade of the fatigue process are most likely already
localized. To improve predictions in this regime, a localizing damage model needs to be
applied.

6.5. Conclusion

In this chapter, the dynamic sti�ness of short-�ber reinforced composite materials un-
der high-cycle fatigue loading at di�erent stress amplitudes and frequencies was studied.
Experiments reveal a frequency dependence that is not typically accounted for in con-
temporary existing elastic fatigue damage models. To accurately predict the dynamic
sti�ness in fatigue experiments, this dependence needs to be accounted for.
We restrict ourselves to linear viscoelastic material model for the thermoplastic matrix.
At high stress levels locally occurring in the composite material, this is an approximation.
Yet, we are able to reproduce the composite material behavior at a range of strain-rates
already with this simple material model, see section 6.3.2. For cyclic loading of linear
viscoelastic materials, a frequency dependent relation between the stress and strain am-
plitudes at the steady-state is known. We use this relation to approximate the dynamic
sti�ness of a short-�ber reinforced polymer with equal Poisson's ratios in every Maxwell
element valid for small phase shifts. The e�ective dynamic sti�ness may be determined
as an elastic e�ective sti�ness (SEC) and is shown to be rather accurate for short-�ber
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reinforced PBT, see section 6.3.4. The proposed algorithm is both memory and time
e�cient.
We validated the approach using experiments of short-�ber reinforced PBT at di�erent
load amplitudes, frequencies and �ber orientations. The model is able to predict the
frequency dependence in the dynamic sti�ness degradation. Additionally, the trend of a
slower damage evolution at higher frequencies is reproduced, as the the damage evolution
equation is governed by the dynamic sti�ness.
To calibrate the model, we need to identify the viscoelastic material parameters of the
matrix (see section 6.3.2) from strain-rate experiments on the composite and the damage
parameter α from a single fatigue experiment for the matrix. The experimental expense
is thus signi�cantly reduced in comparison to a multitude of fatigue measurements.
It remains to propose an interpolation approach for the frequency dependent material
behavior in the reduced order model. For the computations on the microstructure, it
is straightforward to account for a change in frequency by adjusting Cdyn(f) to the new
frequency. However, for the reduced order model, a database for every frequency of in-
terest has to be trained and the macroscopic computation is run at a constant prescribed
frequency. To account for a frequency change, the reduced order model thus needs further
development.
Additional e�ects that are of interest in short-�ber reinforced components include tem-
perature dependence. Since polymers are known to show interchangeable properties in
frequency and temperature change, it would be interesting to investigate an extension to
temperature dependency.
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7. Conclusion

The main result of this work is the development of a multiscale material model for the
fatigue degradation of the dynamic sti�ness in SFRTs. Two classes of damage models for
the matrix degradation have been developed and integrated in a data-driven model order
reduction framework that enables an e�cient computation of fatigue degradation at the
macroscale.
The �rst class of fatigue damage model discussed in chapter 3 is very similar to classical
continuum damage [129,206] and phase-�eld models [133,204,205], formulated directly in
cycle space. The model is able to capture localization at the microscale and directly suit-
able for Galerkin-type model order reduction technique. Upon localization, the existence
of a representative volume element (RVE) is lost and consistent homogenization is no
longer applicable. Thus, the computation up to highly localized damage �elds is at most
valid on the microscale. Nevertheless, this allows the exploration of localized damage evo-
lution in SFRT in a detailed level. For moderate sti�ness degeneration and non-localized
damage �elds, the model order reduction scheme enables an e�cient computation of the
anisotropic sti�ness evolution on component scale.
The second class of fatigue damage model is introduced in chapter 4. It can be regarded
as the an extension of the convex rate-independent damage model proposed by Görthofer
et al. [207] to fatigue. It precludes localization a priori and does not require a regular-
ization strategy. However, due to the hyperbolic structure of the strain energy potential,
the model order reduction technique used in chapter 3 is no longer applicable. Thus, a
new model order reduction strategy has been developed. It has been shown to capture
the microscale behavior rather well at signi�cantly decreased computational costs as the
model proposed in chapter 3. Therefore, to model the sti�ness degradation within a mul-
tiscale framework, fatigue damage models of convex type are preferable. However, when
localization is of interest, one needs to resort to the class of classical damage models.
The fatigue damage models discussed in chapter 3 and 4 have been directly formulated
in (logarithmic) cycle space as a pseudo-time scale. This approach enables an e�cient
computation of high cycle fatigue, however it lacks an physical understanding for the
load-dependent damage evolution in time. When applying di�erent load wave forms or
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stress ratios, the e�ect on the damage evolution had remained an open question. Thus, we
proposed a fatigue damage model directly formulated in time space in chapter 5. It pre-
serves the convex structure which is shown to be advantageous for an application within
the multiscale framework (see chapter 4). Building upon the work of Paas et al. [230] and
Peerlings et al. [211], damage evolution is only permitted under loading and precluded
under unloading. This approach enables the prediction of fatigue damage evolution under
arbitrary loading. An approximation of the fatigue damage evolution in (logarithmic)
cycle space has been recovered for sinusoidal loadings. The model has been applied to
the sti�ness degradation of short-�ber reinforced polyamid specimens with di�erent �ber
orientations, notch geometries and stress ratios and has shown to be in good agreement
with the experimental measurements. However, as the model precludes localization by
de�nition, the third and �nal stage of sti�ness degradation can not be captured. How
to model this stage of evolution consistently within a multiscale framework is out of the
scope of this work.
The models discussed in chapter 3-5 neglect viscoelastic e�ect for the sake of simplicity.
However, short-�ber reinforced materials are well-known to be viscoelastic in nature. In
chapter 6, we turn our attention to viscoelastic e�ects in experimental measurements of
PBT-based materials and their consequences for the measured dynamic sti�ness. We
propose to use a linear-viscoelastic material model for the matrix to capture the rele-
vant processes. For high-cycle loading at constant stress or strain amplitude, the linear-
viscoelastic material reinforced by elastic inclusions is shown to reach a steady cycle. This
cyclic �xed point is the point of departure for our investigation of the dynamic sti�ness
properties of the composite material. We propose a simple approximation valid for mate-
rials with rather small phase shifts to identify the dynamic sti�ness at the �xed point via
a single elastic computation. This enables us to integrate the, now frequency dependent,
viscoelastic dynamic sti�ness into the proposed multiscale framework. We demonstrated
that the model captures the sti�ness degradation in PBT-based SFRT rather well. We
integrated the viscoelastic e�ects into the compliance based fatigue damage model. As
the viscoelastic e�ects are re�ected only in a modi�ed undamaged dynamic sti�ness of
the material, the approach can easily be transferred to other fatigue damage models for-
mulated in cycle space, see, e.g., chapter 3.
In the present work, a complete framework � from microstructure simulation to compo-
nent prediction � to model fatigue damage under di�erent loading conditions has been set
up and validated by experimental results. A suitable failure criterion on the macroscale
within the proposed framework remains an open question. This is mainly due to the
fact that transfering failure processes from microscale to macroscale within the context of
homogenization is a rather di�cult task. Failure at every scale is interpreted di�erently:
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the formation of cracks is already considered as failure on the microstructural level, while
from a macroscopic view point, failure only begins when cracks through larger parts of
the specimen begin to evolve. However, in many engineering components, the prediction
of the complete fracture is not the goal. Rather, engineers are interested in the evolution
of the not yet critical fatigue damage, to exchange the component after a sti�ness loss of
several (ten) percent. For these components, the proposed framework is ready for appli-
cation.
The material model for the �ber adopted is the simplest choice one can think of: linear-
elastic. Yet, in many experiments on short-�ber reinforced materials also �ber breakage
has been observed under certain loading conditions. The incorporation of a �ber failure
model and its in�uence on the degradation of the composite remain to be investigated.
As this failure mode is of highly localized nature, an incorporation to multiscale models
based on snapshot-informed model order reduction seems to be a tedious task. Possibly,
alternative surrogate models need to be developed.
Furthermore, thermal e�ects have not been investigated in this work. For many polymers,
the time-temperature superposition principle holds. Thus, it might be interesting to in-
tegrate thermal dependencies in a similar fashion as the frequency dependency discussed
in chapter 6. Similarly, the e�ect of creep needs to be further investigated. The material
modeling in the work at hand solely focuses on the prediction of the dynamic sti�ness
of the material, where creep naturally is excluded. Yet, SFRT are well known to exhibit
creep under fatigue loading with non-zero mean stress.
Last but not least, the material equations developed are solely motivated on phenomeno-
logical observations. As they are not motivated by material scienti�c considerations,
their scope of applicability is limited to the previously regime, e.g., one needs to carefully
revalidate the material model if one moves away from the validated range of stress ratios
between 0 and −1.
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A. Appendix

A.1. Derivation of the saddle-point problem

We wish to establish the equivalence of minimizing the Ortiz-Stainier potential (4.2.20)

F (ε,u, D) =

〈
1

2 (1 +D)
(ε+∇su) : C : (ε+∇su) +

1

2α△N (D −Dn)2
〉

Y

− ε : σ

(A.1.1)
and the variational principle (4.3.4)

S (σ, D) ≡
〈
−1 +D

2
σ : S : σ +

1

2α△N (D −Dn)2
〉

Y

−→ min
D

max
div σ=0
⟨σ⟩Y =σ

(A.1.2)

in terms of the relationship (4.3.2)

ε = (1 +D) S : σ. (A.1.3)

This appendix provides a derivation based on convex duality. More precisely, suppose
a convex function f : X → R is given on a Banach space X. Let f ∗ : X ′ → R be its
Legendre transform

f ∗(y) = sup
x∈X
⟨x, y⟩ − f(x), (A.1.4)

where ⟨·, ·⟩ denotes the natural pairing ⟨·, ·⟩ : X×X ′ → R. Suppose that a closed subspace
U ⊆ X is given, and let U∗ ⊆ X∗ be its annihilator

U∗ = {y ∈ X∗ | ⟨y, x⟩ = 0 for all x ∈ U}. (A.1.5)

Then, according to convex duality [279, Thm. 31.4], the identity

min
x∈U

f(x) = −min
y∈U∗

f ∗(y) (A.1.6)

holds. For the problem at hand, we consider the space X to consist of square-integrable
strain (or stress) �elds on the unit cell Y , and we consider the objective function

f(ε) =

〈
1

2 (1 +D)
ε : C : ε+

1

2α△N (D −Dn)2
〉

Y

− ⟨ε⟩Y : σ, (A.1.7)
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treating the damage variable D as a parameter, and work on the subspace of kinematically
compatible strains

U = {ε ∈ X | ε = ε+∇su for some ε and u} . (A.1.8)

The Legendre transform of the function (A.1.7) computes as

f ∗(τ) =

〈
(1 +D)

2
(σ + τ) : S : (σ + τ)− 1

2α△N (D −Dn)2
〉

Y

(A.1.9)

in terms of the compliance S = C−1. Indeed, the Legendre dual (A.1.4) is de�ned in terms
of a maximization principle

f ∗(τ) = sup
ε∈X
⟨τ : ε⟩Y −

〈
1

2
ε : C̃ : ε+

1

2α△N (D −Dn)2
〉

Y

+ ⟨ε⟩Y : ε, (A.1.10)

whose critical points ε ∈ X satisfy

τ − C̃ : ε+ σ = 0, i.e., ε = S̃ : (σ + τ) . (A.1.11)

Here, we set

C̃ =
1

1 +D
C and S̃ = (1 +D) S (A.1.12)

for notational brevity. Inserting the explicit expression for the strain �eld ε into the
de�nition (A.1.10) yields

f ∗(τ) =
〈
τ : S̃ : (σ + τ)

〉
Y
−
〈
1

2
(σ + τ) : S̃ : (σ + τ) +

1

2α△N (D −Dn)2
〉

Y

+

〈
σ : S̃ : (σ + τ)

〉
Y

=
〈
(σ + τ) : S̃ : (σ + τ)

〉
Y
−
〈
1

2
(σ + τ) : S̃ : (σ + τ) +

1

2α△N (D −Dn)2
〉

Y

=

〈
1

2
(σ + τ) : S̃ : (σ + τ)− 1

2α△N (D −Dn)2
〉

Y

,

(A.1.13)

i.e., the representation (A.1.9) emerges. To complete the picture, we note that the or-
thogonal complement1 U∗ takes the form

U∗ = {τ ∈ X | ⟨τ⟩Y = 0 and div τ = 0} , (A.1.14)

1As we are working in a Hilbert space, we may canonically identify the dual space with the primal

Hilbert space, and exchange the annihilator by the orthogonal complement, both in view of Riesz'

representation theorem.
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i.e., it consists of equilibrium stress �uctuations. Combined with the expression (A.1.10),
we conclude by convex duality (A.1.6) that we may transform

min
ε,u

〈
1

2 (1 +D)
(ε+∇su) : C : (ε+∇su) +

1

2α△N (D −Dn)2
〉

Y

− ε : σ

=− min
div τ=0
⟨τ⟩Y =0

〈
(1 +D)

2
(σ + τ) : S : (σ + τ)− 1

2α△N (D −Dn)2
〉

Y

=− min
div σ=0
⟨σ⟩Y =σ

〈
(1 +D)

2
σ : S : σ − 1

2α△N (D −Dn)2
〉

Y

= max
div σ=0
⟨σ⟩Y =σ

〈
−(1 +D)

2
σ : S : σ +

1

2α△N (D −Dn)2
〉

Y

,

(A.1.15)

where we introduced the total stress �eld σ = Σ+τ . Moreover, the identi�cation (A.1.11)
turns into

ε = (1 +D) S : σ. (A.1.16)

Last but not least, we further minimize over the damage �eld to conclude

min
ε,u,D

〈
1

2 (1 +D)
(ε+∇su) : C : (ε+∇su) +

1

2α△N (D −Dn)2
〉

Y

− ε : σ

= min
D

max
div σ=0
⟨σ⟩Y =σ

〈
−(1 +D)

2
σ : S : σ +

1

2α△N (D −Dn)2
〉

Y

,

(A.1.17)

what was to be shown.

A.2. Monotonicity of the operator AM

In this appendix, we wish to derive the identity (4.3.18)
〈
AM(σ⃗β, D⃗β)−AM(σ⃗γ, D⃗γ), (σ⃗β, D⃗β)− (σ⃗γ, D⃗γ)

〉
M

=

〈
2 +Dβ +Dγ

2
(σβ − σγ) : S : (σβ − σγ) + 1

α△N (Dβ −Dγ)2
〉

Y

.
(A.2.1)

For �xed compliance tensor S andDn, ᾱ ∈ R, we investigate the operator

A : Sym(m)×R→ Sym(m)×R, (σ,D) 7→
(
(1 +D) S : σ, ᾱ−1(D −Dn)− 1

2
σ : S : σ

)

(A.2.2)
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For any (σβ, Dβ), (σγ, Dγ) ∈ Sym(m)×R≥0, we observe

[
A(σβ, Dβ)−A(σγ, Dγ)

]
(σβ − σγ, dβ −Dγ)

=
[
(1 +Dβ) S : σβ − (1 +Dγ) S : σγ

]
: (σβ − σγ)

+ ᾱ−1(Dβ −Dγ)2 − 1

2
(σβ : S : σβ − σγ : S : σγ)(Dβ −Dγ).

(A.2.3)

Introducing the short-hand notation D̃κ = 1+Dκ, κ ∈ {β, γ}, we transform
[
D̃β S : σβ − D̃γ S : σγ

]
: (σβ − σγ)− 1

2
(σβ : S : σβ − σγ : S : σγ)(D̃β − D̃γ)

= D̃β σβ : S : σβ − (D̃β + D̃γ)σβ : S : σγ + D̃γ σγ : S : σγ

− 1

2
(D̃βσβ : S : σβ − D̃βσγ : S : σγ − D̃γσβ : S : σβ + D̃γσγ : S : σγ)

=
1

2
D̃β σβ : S : σβ − (D̃β + D̃γ)σβ : S : σγ +

1

2
D̃γ σγ : S : σγ +

1

2
(D̃βσγ : S : σγ

+ D̃γσβ : S : σβ)

=
1

2
(D̃β + D̃γ) (σβ : S : σβ − 2σβ : S : σγ + σγ : S : σγ)

=
D̃β + D̃γ

2
(σβ − σγ) : S : (σβ − σγ).

(A.2.4)

Inserting this result back into the original formula, we obtain

[
A(σβ, Dβ)−A(σγ, Dγ)

]
(σβ − σγ, Dβ −Dγ) (A.2.5)

=
2 +Dβ +Dγ

2
(σβ − σγ) : S : (σβ − σγ) + ᾱ−1(Dβ −Dγ)2. (A.2.6)

Regarding C, ᾱ = α△N and Dn as dependent on x ∈ Y , averaging the latter identity
proves the formula (A.2.1), as claimed.

A.3. Coe�cients for the stress-strain evolution

We derive the strain coe�cients εc and εs for the sinusoidal loading (6.3.20). As shown
in section 6.3.3, the stress in Fourier space is given by

σ̂±1 =
1

2
(σc ∓ iσs) , (A.3.1)

σ̂k = 0 for all k /∈ {−1, 1}. (A.3.2)
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The constitutive equation (6.3.27) then reduces to

1

2
(σc − iσs) =

(
E0 +

N∑

j=1

ωi

βj + ωi
Ej

)
K(ν) : ε1, (A.3.3)

1

2
(σc + iσs) =

(
E0 −

N∑

j=1

ωi

βj − ωi
Ej

)
K(ν) : ε−1. (A.3.4)

With the abbreviations (6.3.28), we write

1

2
(σc − iσs) = (r + qi)K(ν) : ε1, (A.3.5)

1

2
(σc + iσs) = (r − qi)K(ν) : ε−1. (A.3.6)

or, rather,

ε1 =
1

2

(
1

r + qi
K(ν)−1 : σc −

i

r + qi
K(ν)−1 : σs

)
, (A.3.7)

ε−1 =
1

2

(
1

r − qiK(ν)−1 : σc +
i

r − qiK(ν)−1 : σs

)
. (A.3.8)

We obtain the stress-strain relation

ε =ε−1 exp(−iωt) + ε1 exp(iωt) (A.3.9)

=
1

2

(
1

r − qi exp(−iωt) +
1

r + qi
exp(iωt)

)
K(ν)−1 : σc (A.3.10)

+
1

2

(
i

r − qi exp(−iωt)−
i

r + qi
exp(iωt)

)
K(ν)−1 : σs (A.3.11)

=
1

2

(
r + qi

r2 + q2
exp(−iωt) + r − qi

r2 + q2
exp(iωt)

)
K(ν)−1 : σc (A.3.12)

+
1

2

(
ri− q
r2 + q2

exp(−iωt)− ri+ q

r2 + q2
exp(iωt)

)
K(ν)−1 : σs (A.3.13)

=

(
r

r2 + q2
cos(ωt) +

q

r2 + q2
sin(ωt)

)
K(ν)−1 : σc (A.3.14)

+

( −q
r2 + q2

cos(ωt) +
r

r2 + q2
sin(ωt)

)
K(ν)−1 : σs. (A.3.15)

Thus, the coe�cients εc and εs in front of the cosine function and the sine function,
respectively, reassemble to the desired expression

εmc =
r

r2 + q2
K(ν)−1 : σc −

q

r2 + q2
K(ν)−1 : σs, (A.3.16)

εms =
q

r2 + q2
K(ν)−1 : σc +

r

r2 + q2
K(ν)−1 : σs. (A.3.17)
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