
242

Syst. Biol. 72(1):242–248, 2023

Software for Systematics and Evolution

© The Author(s) 2023. Published by Oxford University Press on behalf of the Society of Systematic Biologists.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/
by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please
contact journals.permissions@oup.com

Lagrange-NG: The next generation of Lagrange
Ben Bettisworth1,*, Stephen A. Smith2, , and Alexandros Stamatakis1,3,

1Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
2Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States

3Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
*Correspondence to be sent to: Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany;

E-mail: ben.bettisworth@h-its.org

Received 21 April 2022; reviews returned 9 January 2023; accepted 20 January 2023
Associate Editor: James Albert

Abstract.— Computing ancestral ranges via the Dispersion Extinction and Cladogensis (DEC) model of biogeography
is characterized by an exponential number of states relative to the number of regions considered. This is because the
DEC model requires computing a large matrix exponential, which typically accounts for up to 80% of overall runtime.
Therefore, the kinds of biogeographical analyses that can be conducted under the DEC model are limited by the number
of regions under consideration. In this work, we present a completely redesigned efficient version of the popular tool
Lagrange which is up to 49 times faster with multithreading enabled, and is also 26 times faster when using only one
thread. We call this new version Lagrange-NG (Lagrange-Next Generation). The increased computational efficiency allows
Lagrange-NG to analyze datasets with a large number of regions in a reasonable amount of time, up to 12 regions in
approximately 18 min. We achieve these speedups using a relatively new method of computing the matrix exponential
based on Krylov subspaces. In order to validate the correctness of Lagrange-NG, we also introduce a novel metric on range
distributions for trees so that researchers can assess the difference between any two range inferences. Finally, Lagrange-NG
exhibits substantially higher adherence to coding quality standards. It improves a respective software quality indicator
as implemented in the SoftWipe tool from average (5.5; Lagrange) to high (7.8; Lagrange-NG). Lagrange-NG is freely
available under GPL2. [Biogeography; Phylogenetics; DEC Model.]

Lagrange-NG implements the DEC (Dispersion
Extinction and Cladogensis) model of geographic range
evolution Ree et al. (2005). A geographic range, in this
context, describes the broadly defined distribution of the
habitat of a particular species. The evolution of this range
is assumed to follow the phylogeny, or the biological evo-
lution of a species or clade. The DEC model takes, as a
minimum, a phylogenetic tree, and a set of regions. The
phylogenetic tree is assumed to be the true phylogeny of
the included species, and the regions are the generalized
areas of potential habitation for the species in question.
The DEC model constructs a list of states based on the
valid set of regions that a particular species could inhabit.
With these components, the DEC model constructs a tran-
sition matrix between states using two parameters, an
extinction parameter and a dispersion parameter. Using
this transition matrix, the likelihood of the model param-
eters can be computed and used to optimize the model
parameters. Once the optimal model parameters have
been found, the most likely ancestral ranges can be found
by computing the model “backwards.”

However, computing likelihoods under the DEC
model is computationally challenging. This is because:
(i) the geographical regions are splayed into 2r = s states
(Landis et al., 2013) as each possible range distribution
is represented as a state; and (ii) the computation of
the respective transition matrix is in O

(
s3
)
. Thus, com-

puting a single likelihood of the DEC model requires
O
Ä
(2r)3

ä
= O

(
23r

)
 time. In other words, the likelihood

computation is exponential with respect to the number
of regions under study. Therefore, the scalability of data

analyses under the DEC model is limited to the number
of regions, that is, only a small number of 6 to 10 regions
can be analyzed in a reasonable time (Landis et al., 2013;
Matzke, 2013).

The most expensive inference step is the compu-
tation of the transition matrix that often accounts for
80% or more of overall runtime. As in standard like-
lihood-based phylogenetics, the transition matrix is
computed via a matrix exponential, albeit on a substan-
tially larger matrix. Substantial research effort has been
invested into finding the best way to compute the matrix
exponential (Moler and Loan, 2003), but it still remains
challenging to compute efficiently as well as accurately.
In addition, unlike in standard phylogenetics, the DEC
model is nonreversible (i.e., uses a nonsymmetric rate
matrix), which limits the number of applicable numer-
ical methods for computing the matrix exponential,
typically to less precise ones. In the following, we pres-
ent the Lagrange-NG (Lagrange-Next Generation) soft-
ware, an almost complete rewrite of the popular and
widely used Lagrange software by Ree et al. (2005), and
more specifically the unpublished but available to use
C ++ version of Lagrange developed by Smith which
can be found on GitHub at https://github.com/rhr/
lagrange-cpp. In this work, when we refer to the orig-
inal Lagrange, we are referring not to the Python ver-
sion from Ree and Smith (2008), but to the unpublished
C ++ version. As the primary challenge to computing
the likelihood under the DEC model is to efficiently
calculate the matrix exponential, Lagrange-NG relies
on a relatively recent method of computing a matrix

https://doi.org/10.1093/sysbio/syad002
Advance Access Publication January 27, 2023

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/72/1/242/7008307 by KIT Library user on 11 July 2023

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-9130-6878
https://orcid.org/0000-0003-2035-9531
https://orcid.org/0000-0003-0353-0691
mailto:ben.bettisworth@h-its.org
https://github.com/rhr/lagrange-cpp
https://github.com/rhr/lagrange-cpp

BETTISWORTH ET AL. - LAGRANGE-NG2023 243

exponential based on Krylov Subspaces (Moler and
Loan, 2003) for a moderate to large number of regions
(six and more) in the default mode of operation.

Alongside the improvements to the matrix exponen-
tial, many so-called “micro-optimizations” (e.g., pass-
ing function arguments by reference instead of value,
using more efficient data structures to store regions, or
eliminating unnecessary computation) have been imple-
mented that further accelerate computations. We have
also implemented a task-based hybrid multithreading
approach, which increases the rate of analyses by up to
a factor of eight for datasets with exceeding 200 taxa.
Furthermore, we improve upon the numerical stability
compared to the original software, and fix a major bug
which we discovered during development. Finally, to
verify that Lagrange-NG produces analogous results as
the original implementation, we devised a novel method
of comparing range distribution on trees, which is based
on the Earth mover’s distance metric. A similar applica-
tion of the Earth mover’s distance has been successfully
applied to phylogenetic placement, though this method
and application is distinct (Evans and Matsen, 2012).

Software Description

Lagrange-NG constitutes an nearly complete rewrite
of the original (unpublished) C ++ version of Lagrange.
Of the 4600 lines of code present, only 5% are present
from the original code base. This redesign retains the
complete functionality of Lagrange, but is computation-
ally more efficient, and implements a parallelization of
DEC calculations. Lagrange-NG implements four major
improvements to Lagrange. First, it supports paral-
lelism via a hybrid task-based parallelization scheme
which utilizes both coarse and fine-grained parallelism.
The coarse-grained parallelism of Lagrange-NG assigns
tasks to workers, which for this work can be thought
of as threads for the purposes of this paper. For more
details, please see the Supplementary Materials. Second,
it deploys more efficient numerical methods and algo-
rithms which were developed relatively recently to
compute the matrix exponential, for example, an algo-
rithm based on Krylov subspaces which we use in
Lagrange-NG. Third, it introduces general improve-
ments and optimizations, that is, micro-optimizations,
which individually do not notably increase efficiency,
but put together yield a substantial improvement.
Finally, the fourth improvement is a substantial increase
in coding standards adherence and hence, software
quality, as measured by the coding standards adherence
evaluation tool and benchmark SoftWipe (Zapletal et al.,
2021). The SoftWipe score of the original Lagrange soft-
ware is 5.5, while our nearly complete rewrite increases
this to a score of 7.8. While the original score of 5.5 is
fairly average, the new score of 7.8 places Lagrange-NG
3rd in the list of 51 scientific software tools written in C
or C ++ that are contained in the SoftWipe benchmark.

Importantly, during the process of improving the
code quality, a potentially serious bug was discovered

which, as far as the authors can determine, affects not
only the C ++ version of Lagrange but also applies
to the older Python version of Lagrange which uses
matrix exponentiation to compute the transition matrix.
In order to correct numerical instabilities, the transition
matrix was normalized such that the rows summed to
1.0 after the matrix exponential computation. During
normal computation, this operation will have little
effect on the results. However, if the rate matrix is suf-
ficiently ill conditioned, the computation exhibits an
extreme numerical instability such that any results pro-
duced are meaningless. If the matrix is then normalized
at this point, then results produced with this matrix
are made to appear sensible. Therefore, any error in
the computational process is hidden from the user,
and the results of the computation will be perceived
as plausible. Fortunately, as long as the matrix remains
unnormalized, these errors are easy to detect, as sev-
eral analytical conditions are no longer met (such as
the rows no longer summing to 1.0). We are not aware
of any approaches to recover from these errors, but at
least the user is not misled into thinking that meaning-
less results are plausible. This normalization error is
exceedingly rare, as the authors never observed it in the
thousands of datasets analyzed for this paper. Despite
this, the error can occur, and will by Murphy’s law. As
such, we are convinced that in the event of this bug,
the user should be appropriately informed. Therefore,
in this case, Lagrange-NG simply fails, and alerts the
user to what occurred.

In addition, we identified and corrected a configura-
tion error in the process of building Lagrange, where
important compiler optimization options were not
properly utilized. Fixing this configuration error alone
increased the computational efficiency of the origi-
nal Lagrange by up to 10×. While this error is easy to
overlook, yet trivial to fix, we assume that many past
Lagrange analyses were conducted using the unopti-
mized code. Nonetheless, in this work when we per-
form benchmarks with Lagrange, we do them with this
configuration error fixed.

Lagrange-NG can be downloaded from GitHub
at https://github.com/computations/lagrange-ng
along with a tool to plot the results at https://github.
com/computations/lagrange-ng-plotter. To build the
software, the only requirements are a C ++ compiler,
and CMake. Optionally, Lagrange-NG can be built
with the respective system versions of the Intel Math
Kernel Library (2022) (also known as MKL) and NLOpt
(Nelder and Mead, 1965; Johnson, 2021). If a system
version of MKL is not present, Lagrange-NG will build
with OpenBLAS (2022) instead.

Please see the Supplementary Material for a more
thorough description of Lagrange-NG.

Performance

To assess the performance of Lagrange-NG rela-
tive to the original implementation, we randomly

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/72/1/242/7008307 by KIT Library user on 11 July 2023

http://dx.doi.org/10.5061/dryad.mw6m905zv
https://github.com/computations/lagrange-ng
https://github.com/computations/lagrange-ng-plotter
https://github.com/computations/lagrange-ng-plotter
http://dx.doi.org/10.5061/dryad.mw6m905zv

SYSTEMATIC BIOLOGY244 VOL. 72

generated a large number of synthetic datasets with
a varying number of regions and executed Lagrange
and Lagrange-NG to record the respective runtimes.
We generated 100 random datasets with either 5,
6, or 7 regions, and all had 100 taxa, to obtain a
total of 300 datasets. Furthermore, we ran an addi-
tional series of parallel performance evaluations on
Lagrange-NG with eight threads assigned to coarse
grained parallelization using the same datasets. The
results of this performance assessment are shown in
Fig. 1. In addition, we assessed the performance of
only Lagrange-NG on datasets with 8, 9, 10, 11, or
12 regions when using eight workers. For the exper-
iments with eight regions, we generated 100 datasets,
for the experiments with 9 or 10 regions, we gener-
ated 30 datasets, and for the experiments with 11 or
12 regions, we generated 10 datasets. Results from this
performance assessment are shown in Fig. 2. To assess
the parallel scaling of Lagrange-NG, we generated 100
datasets with 500 taxa a six regions. Using these data-
sets, we measured the execution time of Lagrange-NG
with 1, 4, 8, 16, and 32 cores. We took the mean run-
time for each core count and used this value to com-
pute speedups as seen in Fig. 3.

Additional performance tests are available in the
Supplementary Material.

Metric Performance

To demonstrate the performance of the Wassserstein
metric, we use a case study with three regions: A, B,
and C. These three regions induce a state space with 8
states, with the states being “Empty,” “A,” “B,” “C,”
“AB,” “AC,” “BC,” and “ABC.” For each of these
states, we generated a “basis” distribution, which is
a distribution vector containing 1.0 in the entry cor-
responding to the state, and 0.0 everywhere else.
For example, the basis distribution representing “A”
would be

(0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

We then computed the pairwise distance between all
of the basis vectors. The results of this computation is
summarized in Fig. 4. As it can be seen from this sum-
mary, our Wasserstein metric behaves as intended,
which is to say states which have fewer regions in com-
mon with each other are farther away.

Validation

Lagrange-NG re-implements core numerical routines
of Lagrange. Such changes in numerical routines are
often associated with difficult and subtle bugs as well

Figure 1. Comparison of runtimes between Lagrange (left) and Lagrange-NG (right) with sequential Lagrange-NG (top) and parallel
Lagrange-NG using 8 cores (bot). Results were obtained by generating 100 random datasets. Note that the original Lagrange was not run with
any multi-threading, as it does not support it. Instead, the data has been replicated for comparison’s sake. Times are in seconds. The figure was
generated using seaborn (Waskom, 2021).

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/72/1/242/7008307 by KIT Library user on 11 July 2023

http://dx.doi.org/10.5061/dryad.mw6m905zv

BETTISWORTH ET AL. - LAGRANGE-NG2023 245

as slight numerical deviations. We sought to ensure
that Lagrange-NG and Lagrange produced the same
results. To this end, we developed a pipeline to (i) gen-
erate random datasets, (ii) run both, Lagrange, and
Lagrange-NG, and (iii) compare the results of the two

programs. To compare results, we developed a measure
to evaluate the distance between distributions of ances-
tral ranges on trees based on the Wasserstein metric
(Vaserstein, 1969). We provide a summary here; further
details are provided in the Supplementary Material.

Figure 2. Runtimes for Lagrange-NG on a larger number of regions when using 8 cores. Results were obtained by generated random
datasets with 100 taxa and 8, 9, 10, 11, or 12 regions. We generated 100 random datasets for the 8 region cases; for the 9 and 10 region cases we
generated 30 datasets; and for the 11 and 12 region cases we generated 10 datasets.

Figure 3. Parallel efficiency plot for a datasets with 500 taxa and 6 regions. Please notice the log-log scaling. The actual values plotted are
1.7, 1.8, 2.0, 2.1 for 4, 8, 16, and 32 cores, respectively. The ratio of the realized speedup to the optimal speedup is 0.43, 0.24, 0.13, 0.06 for 4, 8,
16, and 32 cores, respectively.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/72/1/242/7008307 by KIT Library user on 11 July 2023

http://dx.doi.org/10.5061/dryad.mw6m905zv

SYSTEMATIC BIOLOGY246 VOL. 72

To compute the distance between two ancestral range
distributions on a given tree, we embed the range as
a vertex weight into a hypercube graph, and then use
that graph to compute the Wasserstein metric between
the distributions for each node. This metric is then nor-
malized to be between 0.0 and 1.0 by dividing by the
maximum total distance, and subsequently averaged
over all nodes. The intention of this metric is to better
account for what the states represent in terms of range
distributions in the real world. By transforming the
problem into a distance through a hypercube graph, we
better match the intuition that states with less regions in
common are more distant.

We ran this comparison for 100 iterations on data-
sets comprising 10, 50, and 100 taxa, and a number of
regions between 2 and 6. This yielded 15 parameter
sets, for a total of 1,500 tests.

Biological Examples

While we conducted extensive tests on simulated
data, we also verify that Lagrange-NG behaves cor-
rectly on empirical datasets. To this end, we repro-
duced the results from a previous study on sloths
from Varela et al. (2019). In addition, we took the
opportunity to reproduce the results using the tools
specified in the paper as this gave us an opportunity

to compare with BioGeoBEARS (Matzke, 2013), a sim-
ilar tool.

In order to reproduce results, we downloaded the
supplementary data from the Dryad repository asso-
ciated with the publication. To run the analyses with
BioGeoBEARS and Lagrange-NG, we had to slightly
modify the data. This involved correcting some taxon
names so that they matched between the tree and the
region data, and also removing the outgroup from
the tree as there was no region data included for the
outgroup. These modifications appear to be in line
with what the original authors must have done,
because the results from both BioGeoBEARS and
Lagrange-NG match the results reported in the article.
Both BioGeoBEARS and Lagrange-NG were run with
the same dataset on the same computer. Despite the fact
that the original study limited the number of regions to
5, we decided to also measure Lagrange-NG’s perfor-
mance with no region limit, to show that Lagrange-NG
can analyze large empirical datasets without a region
limit.

Validation

The validation of Lagrange-NG with respect to
Lagrange, was surprisingly successful, despite sub-
stantial modifications of nearly all critical code paths
and numerical routines. Of the 1,500 tests, 0 produced

Figure 4. Plot showing the pairwise Wasserstein metric between the “basis” distributions on three regions: A, B, and C. Here, the “basis”
distributions are a set of distributions, one for each state, with 1.0 in the corresponding entry for that state. Distributions are labeled by which
entry contains the 1.0. States are ordered by a Gray code for aesthetic reasons only.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/72/1/242/7008307 by KIT Library user on 11 July 2023

BETTISWORTH ET AL. - LAGRANGE-NG2023 247

results with differences over the tolerance of 1× 10−4
when computed using our novel distance method, indi-
cating that the results are equivalent between the two
tools.

The mean sequential speedup between Lagrange-NG
over Lagrange on one core for 5, 6, and 7 regions is
1.54, 4.93, and 26.63, respectively. The overall time-to-
solution speedup of Lagrange-NG with 8 cores over
sequential Lagrange on one core for 5, 6, and 7 regions
is 1.88, 7.75, and 49.2, respectively. For datasets with
larger regions, Lagrange-NG analyzed these datasets
with a mean time of 3.00 s, 11.12 s, 40.75 s, 217.01 s, and
1130.60 s for 8, 9, 10, 11, and 12 regions, respectively.

The speedup from adding more cores when com-
pared to the 1 core execution is 1.7, 1.8, 2.0, 2.1 for 4,
8, 16, and 32 cores, respectively, on simulated datasets
with 500 taxa and 6 regions, as can be seen in Fig. 3.
The ratio between realized speedup and idealized
speedup for this experiment is 0.43, 0.24, 0.13, 0.06 for
4, 8, 16, and 32 cores, respectively. Additional results
for parallel speedups can be seen in the Supplemental
Material.

In addition, Lagarange-NG is substantially faster
than BioGeoBEARS. On the empirical dataset,
Lagrange-NG computed the result in about 7 seconds
using 8 cores, while BioGeoBEARS required about 14
min to analyze the data using 80 cores. BioGeoBEARS
and Lagrange-NG inferred different optima for model
parameters, with BioGeoBEARS achieving a slightly
better log-likelihood score (−216.127 vs. −224.396). It
is unclear if these likelihoods are directly comparable.
Nonetheless, this does not affect the respective qualita-
tive results as BioGeoBEARS and Lagrange-NG agree
on the most likely distribution for every node.

The analysis of this dataset with no region limit using
Lagrange-NG produced similar results to the analysis
with the 5-region limit, albeit with a better likelihood
(−217.023). The time for this analysis was about 2 s
using 8 cores.

Comparing runtimes with RevBayes is difficult, as
RevBayes and Lagrange-NG produce different kinds of
results. RevBayes is a Bayesian analysis software, and
as such produces a distribution of parameter values
as the posterior. On the contrary, Lagrange-NG finds
only the parameter values with the highest likelihood.
Nonetheless, the limited range of available tools to com-
pare with necessitates us to use RevBayes as a compari-
son. We let RevBayes run for ≈ 7 h on the sloth dataset,
and in that time RevBayes managed to perform ≈ 30
iterations, which is ≈ 14 min per iteration. Using 3000
iterations as the default number of iterations, a number
of iterations suggested by the tutorial for DEC analysis
using RevBayes, the full analysis would take ≈ 29 d.

Discussion

We have shown that computation of likelihood-based
biogeographical models can be greatly accelerated

without sacrificing result quality. An 8-fold increase in
speed over the original implementation, and a 28-fold
increase in speed over BioGeoBEARS represents a step
forward, especially when taking the time complexity of
the matrix exponential into account. In addition, we retain
this speed even on datasets with a large number of regions
and no region limit, enabling for more fine grained as well
as exploratory analyses of biogeographical data.

Readers might wonder why the execution time
for the analysis of the empirical dataset with a maxi-
mum number of regions is the slower than the analysis
without a maximum number of regions. Ostensibly, a
smaller number of regions should lead to a faster execu-
tion, but the runtimes shown contradict this. However,
for this specific dataset, when using a maximum num-
ber of regions Lagrange-NG’s adaptive mode detected
numerical issues on nearly all results involving the
matrix exponential, and therefore had to fall back to
the slower, but safer, method of computing results.
Indeed, if we force Lagrange-NG to use the faster mode
computing results using the matrix exponential, the
numerical errors are so excessive that a result cannot
be computed. As a happy accident, this showcases the
utility of Lagrange-NG’s adaptive mode, where it was
able pick the best method of computation without inter-
vention from the user.

However, the parallel efficiency of 0.5, or even lower
as core counts increase, is rather sub-optimal. Yet, as
detailed in the Supplementary Material, the parallel
efficiency increases with increasing taxon and region
numbers (strong scaling). This means that, as datasets
become more taxon rich or as the size of the transition
matrix grows, and run-times increase, Lagrange-NG
will utilize its parallel computational resources more
efficiently.

Future work on Lagrange-NG includes extending the
range of models that can be computed by the DIVA/
DIVALIKE and BAYAREA family of models (Ronquist,
1997; Sanmartín et al., 2001; Landis et al., 2013). In addi-
tion, the current models can be further optimized in
three areas, although we expect unspectacular perfor-
mance improvements.

We produced a version of Lagrange-NG that uti-
lized GPU acceleration for the matrix computations.
Unfortunately, this method failed to produce acceptable
speedups even for large datasets (10–11 regions). This is
in line with the performance results of previous attempts
to accelerate likelihood computations for phlyogenetic
tree inference on GPUs (Izquierdo-Carrasco et al., 2013).
The fundamental difficulty is that the tree-based nature
of the computation that induces a decreasing degree of
parallelism as we approach the root, leaves many com-
putational units starved for work, as is the case with the
existing CPU-based course-grained parallization. It is
possible that further development would produce bet-
ter results, but we believe that by the time that datasets
become large enough to observe large speedups, the
analysis will simply be infeasible due to the exponential
nature of the problem.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/72/1/242/7008307 by KIT Library user on 11 July 2023

http://dx.doi.org/10.5061/dryad.mw6m905zv

SYSTEMATIC BIOLOGY248 VOL. 72

For remaining improvements to the computational
efficiency of Lagrange-NG, the first is to further refine
the matrix exponential routine. While the current
implementation is extremely fast, the implementation
in Lagrange-NG has not been thoroughly optimized for
this particular use case. In addition, one could further
refine the work allocation for the coarse grained par-
allelization approach. The current method of assigning
tasks is straight-forward, and can be improved upon by
becoming aware of which nodes are “most blocking”
of other tasks. It might be possible to devise an algo-
rithm that can minimize the “task starved” period of
computation, either as a clever assignment method, or
as a so-called “work stealing” scheme.

Supplementary Material

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.mw6m905zv

Acknowledgments

We would like to thank Qihao Yuan for his work
implementing the Krylov subspace-based implementa-
tion of the matrix exponential. We would also like to
thank Lucas Czech for his help on the results plotting
tool for Lagrange-NG.

Data Availability

The software, tools, and data used for this paper are
available online at https://github.com/computations/
lagrange-ng.

Funding

This project has received funding from the European
Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Sklodowska-Curie grant
agreement No 764840. In addition, this work was
funded by the Klaus Tschira Foundation. The funding
sources had no influence on topic choice, experimental

design, analysis, or interpretation of the results in this
article.

References
Evans S.N., Matsen F.A. 2012. The phylogenetic Kantorovich–

Rubinstein metric for environmental sequence samples. Journal
of the Royal Statistical Society: Series B (Statistical Methodology)
74:569–592.

Intel Math Kernel Library. 2022. Developer Reference for Intel®
oneAPI Math Kernel Library - C.

Izquierdo-Carrasco F., Alachiotis N., Berger S., Flouri T., Pissis S. P.,
Stamatakis A. 2013. A Generic Vectorization Scheme and a GPU
Kernel for the Phylogenetic Likelihood Library. Pages 530–538
in 2013 IEEE International Symposium on Parallel Distributed
Processing, Workshops and Phd Forum.

Johnson S. G. 2021. The nlopt nonlinear-optimization package.
https://nlopt.readthedocs.io/en/latest/Citing_NLopt/.

Landis M.J., Matzke N.J., Moore B.R., Huelsenbeck J.P. 2013. Bayesian
Analysis of Biogeography when the Number of Areas is Large.
Syst. Biol. 62:789–804.

Matzke N. J. 2013. BioGeoBEARS: BioGeography with Bayesian (and
Likelihood) Evolutionary Analysis in R Scripts. University of
California, Berkeley Berkeley, CA.

Moler C., Loan C.V. 2003. Nineteen Dubious Ways to Compute the
Exponential of a Matrix, Twenty-Five Years Later. SIAM Rev.
45:3–49.

Nelder J.A., Mead R. 1965. A Simplex Method for Function
Minimization. The Computer Journal 7:308–313.

OpenBLAS: An optimzed BLAS library. 2022. OpenBLAS: An opti-
mized BLAS library.

Ree R.H., Moore B.R., Webb C.O., Donoghue M.J. 2005. A Likelihood
Framework for Inferring the Evolution of Geographic Range on
Phylogenetic Trees. Evolution 59:2299–2311.

Ree R.H., Smith S.A. 2008. Maximum Likelihood Inference of
Geographic Range Evolution by Dispersal, Local Extinction, and
Cladogenesis. Syst. Biol. 57:4–14.

Ronquist F. 1997. Dispersal-Vicariance Analysis: A New Approach
to the Quantification of Historical Biogeography. Syst. Biol.
46:195–203.

Sanmartín I., Enghoff H., Ronquist F. 2001. Patterns of animal disper-
sal, vicariance and diversification in the Holarctic. Biol. J. Linn. Soc.
73:345–390.

Varela L., Tambusso P.S., McDonald H.G., Fariña R.A. 2019. Phylogeny,
Macroevolutionary Trends and Historical Biogeography of Sloths:
Insights From a Bayesian Morphological Clock Analysis. Syst. Biol.
68:204–218.

Vaserstein L.N. 1969. Markov Processes over Denumerable Products
of Spaces, Describing Large Systems of Automata. Problemy
Peredači Informacii 5:64–72.

Waskom M.L. 2021. seaborn: statistical data visualization. Journal of
Open Source Software 6:3021.

Zapletal A., Höhler D., Sinz C., Stamatakis A. 2021. The SoftWipe tool
and benchmark for assessing coding standards adherence of scien-
tific software. Sci. Rep. 11:10015.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/72/1/242/7008307 by KIT Library user on 11 July 2023

http://dx.doi.org/10.5061/dryad.mw6m905zv
https://github.com/computations/lagrange-ng
https://github.com/computations/lagrange-ng
https://nlopt.readthedocs.io/en/latest/Citing_NLopt/

