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Abstract.— Computing ancestral ranges via the Dispersion Extinction and Cladogensis (DEC) model of biogeography 
is characterized by an exponential number of states relative to the number of regions considered. This is because the 
DEC model requires computing a large matrix exponential, which typically accounts for up to 80% of overall runtime. 
Therefore, the kinds of biogeographical analyses that can be conducted under the DEC model are limited by the number 
of regions under consideration. In this work, we present a completely redesigned efficient version of the popular tool 
Lagrange which is up to 49 times faster with multithreading enabled, and is also 26 times faster when using only one 
thread. We call this new version Lagrange-NG (Lagrange-Next Generation). The increased computational efficiency allows 
Lagrange-NG to analyze datasets with a large number of regions in a reasonable amount of time, up to 12 regions in 
approximately 18 min. We achieve these speedups using a relatively new method of computing the matrix exponential 
based on Krylov subspaces. In order to validate the correctness of Lagrange-NG, we also introduce a novel metric on range 
distributions for trees so that researchers can assess the difference between any two range inferences. Finally, Lagrange-NG 
exhibits substantially higher adherence to coding quality standards. It improves a respective software quality indicator 
as implemented in the SoftWipe tool from average (5.5; Lagrange) to high (7.8; Lagrange-NG). Lagrange-NG is freely 
available under GPL2. [Biogeography; Phylogenetics; DEC Model.]

Lagrange-NG implements the DEC (Dispersion 
Extinction and Cladogensis) model of geographic range 
evolution Ree et al. (2005). A geographic range, in this 
context, describes the broadly defined distribution of the 
habitat of a particular species. The evolution of this range 
is assumed to follow the phylogeny, or the biological evo-
lution of a species or clade. The DEC model takes, as a 
minimum, a phylogenetic tree, and a set of regions. The 
phylogenetic tree is assumed to be the true phylogeny of 
the included species, and the regions are the generalized 
areas of potential habitation for the species in question. 
The DEC model constructs a list of states based on the 
valid set of regions that a particular species could inhabit. 
With these components, the DEC model constructs a tran-
sition matrix between states using two parameters, an 
extinction parameter and a dispersion parameter. Using 
this transition matrix, the likelihood of the model param-
eters can be computed and used to optimize the model 
parameters. Once the optimal model parameters have 
been found, the most likely ancestral ranges can be found 
by computing the model “backwards.”

However, computing likelihoods under the DEC 
model is computationally challenging. This is because: 
(i) the geographical regions are splayed into 2r = s states 
(Landis et al., 2013) as each possible range distribution 
is represented as a state; and (ii) the computation of 
the respective transition matrix is in O

(
s3
)
. Thus, com-

puting a single likelihood of the DEC model requires 
O
Ä
(2r)3

ä
= O

(
23r

)
 time. In other words, the likelihood 

computation is exponential with respect to the number 
of regions under study. Therefore, the scalability of data 

analyses under the DEC model is limited to the number 
of regions, that is, only a small number of 6 to 10 regions 
can be analyzed in a reasonable time (Landis et al., 2013; 
Matzke, 2013).

The most expensive inference step is the compu-
tation of the transition matrix that often accounts for 
80% or more of overall runtime. As in standard like-
lihood-based phylogenetics, the transition matrix is 
computed via a matrix exponential, albeit on a substan-
tially larger matrix. Substantial research effort has been 
invested into finding the best way to compute the matrix 
exponential (Moler and Loan, 2003), but it still remains 
challenging to compute efficiently as well as accurately. 
In addition, unlike in standard phylogenetics, the DEC 
model is nonreversible (i.e., uses a nonsymmetric rate 
matrix), which limits the number of applicable numer-
ical methods for computing the matrix exponential, 
typically to less precise ones. In the following, we pres-
ent the Lagrange-NG (Lagrange-Next Generation) soft-
ware, an almost complete rewrite of the popular and 
widely used Lagrange software by Ree et al. (2005), and 
more specifically the unpublished but available to use 
C ++ version of Lagrange developed by Smith which 
can be found on GitHub at https://github.com/rhr/
lagrange-cpp. In this work, when we refer to the orig-
inal Lagrange, we are referring not to the Python ver-
sion from Ree and Smith (2008), but to the unpublished 
C ++ version. As the primary challenge to computing 
the likelihood under the DEC model is to efficiently 
calculate the matrix exponential, Lagrange-NG relies 
on a relatively recent method of computing a matrix 

https://doi.org/10.1093/sysbio/syad002
Advance Access Publication January 27, 2023

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/72/1/242/7008307 by KIT Library user on 11 July 2023

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-9130-6878
https://orcid.org/0000-0003-2035-9531
https://orcid.org/0000-0003-0353-0691
mailto:ben.bettisworth@h-its.org
https://github.com/rhr/lagrange-cpp
https://github.com/rhr/lagrange-cpp


BETTISWORTH ET AL. - LAGRANGE-NG2023 243

exponential based on Krylov Subspaces (Moler and 
Loan, 2003) for a moderate to large number of regions 
(six and more) in the default mode of operation.

Alongside the improvements to the matrix exponen-
tial, many so-called “micro-optimizations” (e.g., pass-
ing function arguments by reference instead of value, 
using more efficient data structures to store regions, or 
eliminating unnecessary computation) have been imple-
mented that further accelerate computations. We have 
also implemented a task-based hybrid multithreading 
approach, which increases the rate of analyses by up to 
a factor of eight for datasets with exceeding 200 taxa. 
Furthermore, we improve upon the numerical stability 
compared to the original software, and fix a major bug 
which we discovered during development. Finally, to 
verify that Lagrange-NG produces analogous results as 
the original implementation, we devised a novel method 
of comparing range distribution on trees, which is based 
on the Earth mover’s distance metric. A similar applica-
tion of the Earth mover’s distance has been successfully 
applied to phylogenetic placement, though this method 
and application is distinct (Evans and Matsen, 2012).

Software Description

Lagrange-NG constitutes an nearly complete rewrite 
of the original (unpublished) C ++ version of Lagrange. 
Of the 4600 lines of code present, only 5% are present 
from the original code base. This redesign retains the 
complete functionality of Lagrange, but is computation-
ally more efficient, and implements a parallelization of 
DEC calculations. Lagrange-NG implements four major 
improvements to Lagrange. First, it supports paral-
lelism via a hybrid task-based parallelization scheme 
which utilizes both coarse and fine-grained parallelism. 
The coarse-grained parallelism of Lagrange-NG assigns 
tasks to workers, which for this work can be thought 
of as threads for the purposes of this paper. For more 
details, please see the Supplementary Materials. Second, 
it deploys more efficient numerical methods and algo-
rithms which were developed relatively recently to 
compute the matrix exponential, for example, an algo-
rithm based on Krylov subspaces which we use in 
Lagrange-NG. Third, it introduces general improve-
ments and optimizations, that is, micro-optimizations, 
which individually do not notably increase efficiency, 
but put together yield a substantial improvement. 
Finally, the fourth improvement is a substantial increase 
in coding standards adherence and hence, software 
quality, as measured by the coding standards adherence 
evaluation tool and benchmark SoftWipe (Zapletal et al., 
2021). The SoftWipe score of the original Lagrange soft-
ware is 5.5, while our nearly complete rewrite increases 
this to a score of 7.8. While the original score of 5.5 is 
fairly average, the new score of 7.8 places Lagrange-NG 
3rd in the list of 51 scientific software tools written in C 
or C ++ that are contained in the SoftWipe benchmark.

Importantly, during the process of improving the 
code quality, a potentially serious bug was discovered 

which, as far as the authors can determine, affects not 
only the C ++ version of Lagrange but also applies 
to the older Python version of Lagrange which uses 
matrix exponentiation to compute the transition matrix. 
In order to correct numerical instabilities, the transition 
matrix was normalized such that the rows summed to 
1.0 after the matrix exponential computation. During 
normal computation, this operation will have little 
effect on the results. However, if the rate matrix is suf-
ficiently ill conditioned, the computation exhibits an 
extreme numerical instability such that any results pro-
duced are meaningless. If the matrix is then normalized 
at this point, then results produced with this matrix 
are made to appear sensible. Therefore, any error in 
the computational process is hidden from the user, 
and the results of the computation will be perceived 
as plausible. Fortunately, as long as the matrix remains 
unnormalized, these errors are easy to detect, as sev-
eral analytical conditions are no longer met (such as 
the rows no longer summing to 1.0). We are not aware 
of any approaches to recover from these errors, but at 
least the user is not misled into thinking that meaning-
less results are plausible. This normalization error is 
exceedingly rare, as the authors never observed it in the 
thousands of datasets analyzed for this paper. Despite 
this, the error can occur, and will by Murphy’s law. As 
such, we are convinced that in the event of this bug, 
the user should be appropriately informed. Therefore, 
in this case, Lagrange-NG simply fails, and alerts the 
user to what occurred.

In addition, we identified and corrected a configura-
tion error in the process of building Lagrange, where 
important compiler optimization options were not 
properly utilized. Fixing this configuration error alone 
increased the computational efficiency of the origi-
nal Lagrange by up to 10×. While this error is easy to 
overlook, yet trivial to fix, we assume that many past 
Lagrange analyses were conducted using the unopti-
mized code. Nonetheless, in this work when we per-
form benchmarks with Lagrange, we do them with this 
configuration error fixed.

Lagrange-NG can be downloaded from GitHub 
at https://github.com/computations/lagrange-ng 
along with a tool to plot the results at https://github.
com/computations/lagrange-ng-plotter. To build the 
software, the only requirements are a C ++ compiler, 
and CMake. Optionally, Lagrange-NG can be built 
with the respective system versions of the Intel Math 
Kernel Library (2022) (also known as MKL) and NLOpt 
(Nelder and Mead, 1965; Johnson, 2021). If a system 
version of MKL is not present, Lagrange-NG will build 
with OpenBLAS (2022) instead.

Please see the Supplementary Material for a more 
thorough description of Lagrange-NG.

Performance

To assess the performance of Lagrange-NG rela-
tive to the original implementation, we randomly 
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generated a large number of synthetic datasets with 
a varying number of regions and executed Lagrange 
and Lagrange-NG to record the respective runtimes. 
We generated 100 random datasets with either 5, 
6, or 7 regions, and all had 100 taxa, to obtain a 
total of 300 datasets. Furthermore, we ran an addi-
tional series of parallel performance evaluations on 
Lagrange-NG with eight threads assigned to coarse 
grained parallelization using the same datasets. The 
results of this performance assessment are shown in 
Fig. 1. In addition, we assessed the performance of 
only Lagrange-NG on datasets with 8, 9, 10, 11, or 
12 regions when using eight workers. For the exper-
iments with eight regions, we generated 100 datasets, 
for the experiments with 9 or 10 regions, we gener-
ated 30 datasets, and for the experiments with 11 or 
12 regions, we generated 10 datasets. Results from this 
performance assessment are shown in Fig. 2. To assess 
the parallel scaling of Lagrange-NG, we generated 100 
datasets with 500 taxa a six regions. Using these data-
sets, we measured the execution time of Lagrange-NG 
with 1, 4, 8, 16, and 32 cores. We took the mean run-
time for each core count and used this value to com-
pute speedups as seen in Fig. 3.

Additional performance tests are available in the 
Supplementary Material.

Metric Performance

To demonstrate the performance of the Wassserstein 
metric, we use a case study with three regions: A, B, 
and C. These three regions induce a state space with 8 
states, with the states being “Empty,” “A,” “B,” “C,” 
“AB,” “AC,” “BC,” and “ABC.” For each of these 
states, we generated a “basis” distribution, which is 
a distribution vector containing 1.0 in the entry cor-
responding to the state, and 0.0 everywhere else. 
For example, the basis distribution representing “A” 
would be

(0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

We then computed the pairwise distance between all 
of the basis vectors. The results of this computation is 
summarized in Fig. 4. As it can be seen from this sum-
mary, our Wasserstein metric behaves as intended, 
which is to say states which have fewer regions in com-
mon with each other are farther away.

Validation

Lagrange-NG re-implements core numerical routines 
of Lagrange. Such changes in numerical routines are 
often associated with difficult and subtle bugs as well 

Figure 1. Comparison of runtimes between Lagrange (left) and Lagrange-NG (right) with sequential Lagrange-NG (top) and parallel 
Lagrange-NG using 8 cores (bot). Results were obtained by generating 100 random datasets. Note that the original Lagrange was not run with 
any multi-threading, as it does not support it. Instead, the data has been replicated for comparison’s sake. Times are in seconds. The figure was 
generated using seaborn (Waskom, 2021).
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as slight numerical deviations. We sought to ensure 
that Lagrange-NG and Lagrange produced the same 
results. To this end, we developed a pipeline to (i) gen-
erate random datasets, (ii) run both, Lagrange, and 
Lagrange-NG, and (iii) compare the results of the two 

programs. To compare results, we developed a measure 
to evaluate the distance between distributions of ances-
tral ranges on trees based on the Wasserstein metric 
(Vaserstein, 1969). We provide a summary here; further 
details are provided in the Supplementary Material.

Figure 2. Runtimes for Lagrange-NG on a larger number of regions when using 8 cores. Results were obtained by generated random 
datasets with 100 taxa and 8, 9, 10, 11, or 12 regions. We generated 100 random datasets for the 8 region cases; for the 9 and 10 region cases we 
generated 30 datasets; and for the 11 and 12 region cases we generated 10 datasets.

Figure 3. Parallel efficiency plot for a datasets with 500 taxa and 6 regions. Please notice the log-log scaling. The actual values plotted are 
1.7, 1.8, 2.0, 2.1 for 4, 8, 16, and 32 cores, respectively. The ratio of the realized speedup to the optimal speedup is 0.43, 0.24, 0.13, 0.06 for 4, 8, 
16, and 32 cores, respectively.
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To compute the distance between two ancestral range 
distributions on a given tree, we embed the range as 
a vertex weight into a hypercube graph, and then use 
that graph to compute the Wasserstein metric between 
the distributions for each node. This metric is then nor-
malized to be between 0.0 and 1.0 by dividing by the 
maximum total distance, and subsequently averaged 
over all nodes. The intention of this metric is to better 
account for what the states represent in terms of range 
distributions in the real world. By transforming the 
problem into a distance through a hypercube graph, we 
better match the intuition that states with less regions in 
common are more distant.

We ran this comparison for 100 iterations on data-
sets comprising 10, 50, and 100 taxa, and a number of 
regions between 2 and 6. This yielded 15 parameter 
sets, for a total of 1,500 tests.

Biological Examples

While we conducted extensive tests on simulated 
data, we also verify that Lagrange-NG behaves cor-
rectly on empirical datasets. To this end, we repro-
duced the results from a previous study on sloths 
from Varela et al. (2019). In addition, we took the 
opportunity to reproduce the results using the tools 
specified in the paper as this gave us an opportunity 

to compare with BioGeoBEARS (Matzke, 2013), a sim-
ilar tool.

In order to reproduce results, we downloaded the 
supplementary data from the Dryad repository asso-
ciated with the publication. To run the analyses with 
BioGeoBEARS and Lagrange-NG, we had to slightly 
modify the data. This involved correcting some taxon 
names so that they matched between the tree and the 
region data, and also removing the outgroup from 
the tree as there was no region data included for the 
outgroup. These modifications appear to be in line 
with what the original authors must have done, 
because the results from both BioGeoBEARS and 
Lagrange-NG match the results reported in the article. 
Both BioGeoBEARS and Lagrange-NG were run with 
the same dataset on the same computer. Despite the fact 
that the original study limited the number of regions to 
5, we decided to also measure Lagrange-NG’s perfor-
mance with no region limit, to show that Lagrange-NG 
can analyze large empirical datasets without a region 
limit.

Validation

The validation of Lagrange-NG with respect to 
Lagrange, was surprisingly successful, despite sub-
stantial modifications of nearly all critical code paths 
and numerical routines. Of the 1,500 tests, 0 produced 

Figure 4. Plot showing the pairwise Wasserstein metric between the “basis” distributions on three regions: A, B, and C. Here, the “basis” 
distributions are a set of distributions, one for each state, with 1.0 in the corresponding entry for that state. Distributions are labeled by which 
entry contains the 1.0. States are ordered by a Gray code for aesthetic reasons only.
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results with differences over the tolerance of 1× 10−4 
when computed using our novel distance method, indi-
cating that the results are equivalent between the two 
tools.

The mean sequential speedup between Lagrange-NG 
over Lagrange on one core for 5, 6, and 7 regions is 
1.54, 4.93, and 26.63, respectively. The overall time-to-
solution speedup of Lagrange-NG with 8 cores over 
sequential Lagrange on one core for 5, 6, and 7 regions 
is 1.88, 7.75, and 49.2, respectively. For datasets with 
larger regions, Lagrange-NG analyzed these datasets 
with a mean time of 3.00 s, 11.12 s, 40.75 s, 217.01 s, and 
1130.60 s for 8, 9, 10, 11, and 12 regions, respectively.

The speedup from adding more cores when com-
pared to the 1 core execution is 1.7, 1.8, 2.0, 2.1 for 4, 
8, 16, and 32 cores, respectively, on simulated datasets 
with 500 taxa and 6 regions, as can be seen in Fig. 3. 
The ratio between realized speedup and idealized 
speedup for this experiment is 0.43, 0.24, 0.13, 0.06 for 
4, 8, 16, and 32 cores, respectively. Additional results 
for parallel speedups can be seen in the Supplemental 
Material.

In addition, Lagarange-NG is substantially faster 
than BioGeoBEARS. On the empirical dataset, 
Lagrange-NG computed the result in about 7 seconds 
using 8 cores, while BioGeoBEARS required about 14 
min to analyze the data using 80 cores. BioGeoBEARS 
and Lagrange-NG inferred different optima for model 
parameters, with BioGeoBEARS achieving a slightly 
better log-likelihood score (−216.127 vs. −224.396). It 
is unclear if these likelihoods are directly comparable. 
Nonetheless, this does not affect the respective qualita-
tive results as BioGeoBEARS and Lagrange-NG agree 
on the most likely distribution for every node.

The analysis of this dataset with no region limit using 
Lagrange-NG produced similar results to the analysis 
with the 5-region limit, albeit with a better likelihood 
(−217.023). The time for this analysis was about 2 s 
using 8 cores.

Comparing runtimes with RevBayes is difficult, as 
RevBayes and Lagrange-NG produce different kinds of 
results. RevBayes is a Bayesian analysis software, and 
as such produces a distribution of parameter values 
as the posterior. On the contrary, Lagrange-NG finds 
only the parameter values with the highest likelihood. 
Nonetheless, the limited range of available tools to com-
pare with necessitates us to use RevBayes as a compari-
son. We let RevBayes run for ≈ 7 h on the sloth dataset, 
and in that time RevBayes managed to perform ≈ 30 
iterations, which is ≈ 14 min per iteration. Using 3000 
iterations as the default number of iterations, a number 
of iterations suggested by the tutorial for DEC analysis 
using RevBayes, the full analysis would take ≈ 29 d.

Discussion

We have shown that computation of likelihood-based 
biogeographical models can be greatly accelerated 

without sacrificing result quality. An 8-fold increase in 
speed over the original implementation, and a 28-fold 
increase in speed over BioGeoBEARS represents a step 
forward, especially when taking the time complexity of 
the matrix exponential into account. In addition, we retain 
this speed even on datasets with a large number of regions 
and no region limit, enabling for more fine grained as well 
as exploratory analyses of biogeographical data.

Readers might wonder why the execution time 
for the analysis of the empirical dataset with a maxi-
mum number of regions is the slower than the analysis 
without a maximum number of regions. Ostensibly, a 
smaller number of regions should lead to a faster execu-
tion, but the runtimes shown contradict this. However, 
for this specific dataset, when using a maximum num-
ber of regions Lagrange-NG’s adaptive mode detected 
numerical issues on nearly all results involving the 
matrix exponential, and therefore had to fall back to 
the slower, but safer, method of computing results. 
Indeed, if we force Lagrange-NG to use the faster mode 
computing results using the matrix exponential, the 
numerical errors are so excessive that a result cannot 
be computed. As a happy accident, this showcases the 
utility of Lagrange-NG’s adaptive mode, where it was 
able pick the best method of computation without inter-
vention from the user.

However, the parallel efficiency of 0.5, or even lower 
as core counts increase, is rather sub-optimal. Yet, as 
detailed in the Supplementary Material, the parallel 
efficiency increases with increasing taxon and region 
numbers (strong scaling). This means that, as datasets 
become more taxon rich or as the size of the transition 
matrix grows, and run-times increase, Lagrange-NG 
will utilize its parallel computational resources more 
efficiently.

Future work on Lagrange-NG includes extending the 
range of models that can be computed by the DIVA/
DIVALIKE and BAYAREA family of models (Ronquist, 
1997; Sanmartín et al., 2001; Landis et al., 2013). In addi-
tion, the current models can be further optimized in 
three areas, although we expect unspectacular perfor-
mance improvements.

We produced a version of Lagrange-NG that uti-
lized GPU acceleration for the matrix computations. 
Unfortunately, this method failed to produce acceptable 
speedups even for large datasets (10–11 regions). This is 
in line with the performance results of previous attempts 
to accelerate likelihood computations for phlyogenetic 
tree inference on GPUs (Izquierdo-Carrasco et al., 2013). 
The fundamental difficulty is that the tree-based nature 
of the computation that induces a decreasing degree of 
parallelism as we approach the root, leaves many com-
putational units starved for work, as is the case with the 
existing CPU-based course-grained parallization. It is 
possible that further development would produce bet-
ter results, but we believe that by the time that datasets 
become large enough to observe large speedups, the 
analysis will simply be infeasible due to the exponential 
nature of the problem.
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For remaining improvements to the computational 
efficiency of Lagrange-NG, the first is to further refine 
the matrix exponential routine. While the current 
implementation is extremely fast, the implementation 
in Lagrange-NG has not been thoroughly optimized for 
this particular use case. In addition, one could further 
refine the work allocation for the coarse grained par-
allelization approach. The current method of assigning 
tasks is straight-forward, and can be improved upon by 
becoming aware of which nodes are “most blocking” 
of other tasks. It might be possible to devise an algo-
rithm that can minimize the “task starved” period of 
computation, either as a clever assignment method, or 
as a so-called “work stealing” scheme.

Supplementary Material

Data available from the Dryad Digital Repository: 
http://dx.doi.org/10.5061/dryad.mw6m905zv
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