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Abstract. Atmospheric carbon dioxide (CO2) accounts for the largest radiative forcing among anthropogenic
greenhouse gases. There is, therefore, a pressing need to understand the rate at which CO2 accumulates in the
atmosphere, including the interannual variations (IAVs) in this rate. IAV in the CO2 growth rate is a small
signal relative to the long-term trend and the mean annual cycle of atmospheric CO2, and IAV is tied to climatic
variations that may provide insights into long-term carbon–climate feedbacks. Observations from the Orbiting
Carbon Observatory-2 (OCO-2) mission offer a new opportunity to refine our understanding of atmospheric CO2
IAV since the satellite can measure over remote terrestrial regions and the open ocean, where traditional in situ
CO2 monitoring is difficult, providing better spatial coverage compared to ground-based monitoring techniques.
In this study, we analyze the IAV of column-averaged dry-air CO2 mole fraction (XCO2) from OCO-2 between
September 2014 and June 2021. The amplitude of the IAV, which is calculated as the standard deviation of the
time series, is up to 1.2 ppm over the continents and around 0.4 ppm over the open ocean. Across all latitudes,
the OCO-2-detected XCO2 IAV shows a clear relationship with El Niño–Southern Oscillation (ENSO)-driven
variations that originate in the tropics and are transported poleward. Similar, but smoother, zonal patterns of
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OCO-2 XCO2 IAV time series compared to ground-based in situ observations and with column observations
from the Total Carbon Column Observing Network (TCCON) and the Greenhouse Gases Observing Satellite
(GOSAT) show that OCO-2 observations can be used reliably to estimate IAV. Furthermore, the extensive spatial
coverage of the OCO-2 satellite data leads to smoother IAV time series than those from other datasets, suggesting
that OCO-2 provides new capabilities for revealing small IAV signals despite sources of noise and error that are
inherent to remote-sensing datasets.

1 Introduction

Increasing atmospheric CO2 concentration from anthro-
pogenic emissions is the major driver of the observed warm-
ing of Earth’s climate since the industrial revolution (IPCC,
2023). Although CO2 accumulation in the atmosphere gen-
erally is ∼ 45 % of anthropogenic emissions on a multiyear
average (Ciais et al., 2013; Friedlingstein et al., 2019), the
growth rate shows substantial interannual variability (Con-
way et al., 1994). The difference between emissions and the
atmospheric CO2 growth rate results from net CO2 uptake
by oceans and terrestrial ecosystems (Prentice et al., 2001;
Doney et al., 2009), and the fluctuations reflect variations in
the strength of those sinks due to climate variations (Peters et
al., 2017; Friedlingstein et al., 2019). Much research has sug-
gested that interannual variability (IAV) in the growth rate is
predominantly due to variations in terrestrial ecosystem car-
bon uptake (Marcolla et al., 2017), even though the average
uptake is roughly comparable between land and ocean (Le
Quéré et al., 2009). Existing atmospheric CO2 observations
from surface flask sampling and in situ networks have been
used to estimate global- and regional-scale interannual vari-
ability in CO2 fluxes (Gurney et al., 2008; Peylin et al., 2013;
Keppel-Aleks et al., 2014; Piao et al., 2020). We note, how-
ever, that the surface-observing network is located primarily
at land and coastal sites, and more subtle ocean-flux signals
may be obscured by the large IAV in terrestrial fluxes.

Previous analyses of surface CO2 IAV have shown a
strong relationship with the phase and intensity of El
Niño–Southern Oscillation (ENSO) (Le Quéré et al., 2009;
Schwalm et al., 2011). ENSO variations originate from cou-
pled ocean–atmosphere dynamics that are reflected in large
wind and sea surface temperature anomalies over the central
and eastern Pacific Ocean. ENSO affects the climate of much
of the tropics and subtropics via atmospheric teleconnections
on timescales of 2–7 years (Timmermann et al., 2018). On
land, suppressed precipitation and high temperature associ-
ated with positive phases of ENSO (El Niño conditions) sup-
press CO2 uptake by tropical ecosystems while promoting
fires that further reduce the CO2 uptake by land (Feely et al.,
2002; McKinley et al., 2004; Piao et al., 2009; Wang et al.,
2014). Although of smaller magnitude, the equatorial Pacific
Ocean experiences weakening of the easterly trade winds and
suppression of ventilation of deep, cold, carbon-rich waters
to the surface during an El Niño, reducing the efflux of nat-

ural CO2 to the atmosphere (Patra et al., 2005; Chatterjee et
al., 2017).

Chatterjee et al. (2017) were able to directly observe the
ocean-flux-driven signal on atmospheric CO2 from El Niño
for the first time using XCO2 (column-averaged dry-air CO2
mole fraction) observed over the ocean by NASA’s OCO-2
satellite. Space-based observations from OCO-2, which was
launched in July 2014, provide novel opportunities to charac-
terize the patterns of IAV in XCO2 in areas that were previ-
ously not directly observed by existing monitoring networks.
The IAV in XCO2 is being used implicitly for flux attribu-
tion in inverse modeling studies (Nassar et al., 2011). These
exciting results, however, must be tempered by an aware-
ness that atmospheric CO2 IAV is a relatively small signal.
For example, IAV in the surface network is about 1 ppm in
scale compared to a seasonal amplitude of around 10 ppm at
northern high latitudes. OCO-2 measures column-averaged
CO2, so its measurements are sensitive to variations in the
boundary-layer mole fraction, which is in direct contact with
the land or atmospheric fluxes but also variations in the free
troposphere and stratosphere, where flux signals are gener-
ally smaller than those observed at the surface (Olsen and
Randerson, 2004). Furthermore, variations in the free tropo-
sphere are expected to have relatively long correlation length
scales due to efficient mixing, making it important to con-
sider the spatial scales at which XCO2 observations provide
unique information. This is especially important in light of
analysis which suggests that the error variance budget in
OCO-2 observations is large and contains a substantial spa-
tially coherent signal (Baker et al., 2022; Torres et al., 2019;
Mitchell et al., 2023).

In this paper, we analyze XCO2 from OCO-2 to character-
ize spatiotemporal patterns in IAV at a near-global scale, over
both land and ocean, and relate XCO2 variations to ENSO
conditions. We contextualize the information contained in
OCO-2 observations by comparing them with space-based
GOSAT and ground-based Total Carbon Column Observing
Network (TCCON) XCO2 and with surface measurements
of CO2. Finally, we use these comparisons to emphasize the
spatial scales at which the IAV signal emerges from instru-
mental noise.
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2 Data and methods

2.1 Datasets

2.1.1 OCO-2 observatory

We analyzed IAV in dry-air column-averaged mole-fraction
XCO2 inferred from OCO-2 satellite observations. The
OCO-2 observatory was launched in July 2014 and has mea-
sured passive, reflected solar near-infrared CO2 and O2 ab-
sorption spectra using grating spectrometers since September
2014 (Eldering et al., 2017). XCO2 data are retrieved from
the measured spectra using the Atmospheric CO2 Obser-
vations from Space (ACOS) optimal-estimation algorithm,
which is a full-physics algorithm that takes into account
XCO2 and other physical parameters, including surface pres-
sure, surface albedo, temperature, and water vapor pro-
file in its state vector (O’Dell et al., 2018). The satellite
flies in a polar and sun-synchronous orbit that repeats ev-
ery 16 d with three different observing modes of OCO-2,
namely, nadir (land only, views the ground directly below
the spacecraft), glint (over ocean and land, views just off
the peak of the specularly reflected sunlight), and target
(typically for comparison with specific ground-based or air-
borne measurements) (Crisp et al., 2012, 2017). We use the
version 10 OCO-2 level-2 bias-corrected XCO2 data prod-
uct from the Goddard Earth Sciences Data and Information
Services Center (GES DISC) archive (https://disc.gsfc.nasa.
gov/datasets/OCO2_L2_Lite_FP_10r/summary, last access:
1 March 2022), which has been validated with collocated
ground-based measurements from TCCON, discussed in
more detail in Sect. 2.2. After filtering and bias correction,
the OCO-2 XCO2 retrievals agree well with TCCON in the
nadir, glint, and target observation modes and generally have
absolute median differences of less than 0.4 ppm and root-
mean-square differences of less than 1.5 ppm (O’Dell et al.,
2018; Wunch et al., 2017).

2.1.2 TCCON

We corroborate patterns of XCO2 IAV from OCO-2 with
those from TCCON, a ground-based network of Fourier-
transform spectrometers (FTSs) that measure direct solar-
absorption spectra in the near infrared (Wunch et al., 2011).
Retrievals of XCO2 and other gases are computed using
the GGG2014 version of the TCCON standard retrieval
algorithm (Wunch et al., 2015), a nonlinear least-squares
spectral-fitting algorithm. The TCCON retrievals are tied to
the World Meteorological Organization (WMO) X2007 CO2
scale via calibration with aircraft and AirCore profiles above
the TCCON sites (Karion et al., 2010; Wunch et al., 2010).
This ensures an accuracy and precision of ∼ 0.6 ppm (1-
sigma) throughout the network (Washenfelder et al., 2006;
Messerschmidt et al., 2010; Deutscher et al., 2010; Wunch et
al., 2010). TCCON has been used widely as a validation stan-
dard by providing independent measurements to compare

with multiple satellite XCO2 retrievals, including OCO-2. In
previous work, Sussmann and Rettinger (2020) demonstrated
a concept to retrieve annual growth rates of XCO2 from TC-
CON data, which are regionally to hemispherically represen-
tative in spite of the nonuniform sampling in time and space
inherent to the ground-based network. In our study, we focus
on IAV in the XCO2 time series from 26 TCCON sites (Ta-
ble 1 and Fig. 1) that have at least 3 years of observational
coverage within the period from September 2014 to June
2021. These TCCON data have been filtered using the stan-
dard filter that is based on a measure of cloudiness and that
limits the solar-zenith angle. Data are publicly available from
the TCCON GGG2014 data archive (https://tccondata.org/,
last access: 2 December 2020) hosted by the California Insti-
tute of Technology.

2.1.3 Marine-boundary-layer observations

To explore differences in surface and column-averaged CO2
IAV, we analyze IAV in the surface CO2 mole fraction at
marine-boundary-layer (MBL) sites in the NOAA (National
Oceanic and Atmospheric Administration) cooperative sam-
pling network (https://gml.noaa.gov/dv/site/?program=ccgg,
last access: 6 May 2023). At these sites, boundary-layer CO2
is measured using weekly flask samples (Masarie and Tans,
1995; Dlugokencky et al., 2021). MBL sites are typically
far away from anthropogenic sources and regions of active
terrestrial exchange, so they provide an estimate for large-
scale patterns in the global background CO2 concentration.
The surface MBL dry-air mole-fraction data have an accu-
racy level of about 0.1 ppm. In this study, we select 16 sites
with at least 80 % data coverage for the approximately 7-
year period overlapping with OCO-2 (Table 2 and Fig. 2),
and the data are aggregated into four north–south zones for
comparison with OCO-2 XCO2: Northern Hemisphere and
Southern Hemisphere tropical zones (0–20◦) and Northern
Hemisphere/Southern Hemisphere extratropical zones (20–
60◦). Each belt contains at least three MBL sites. Higher lat-
itudes (60–90◦) are not considered in this comparison due to
the gaps remaining in the OCO-2 XCO2 record at high lati-
tudes during wintertime and shouldering seasons.

2.1.4 GOSAT

We compare patterns of XCO2 IAV from OCO-2 with those
from GOSAT. Also known as Ibuki, GOSAT is the world’s
first satellite dedicated to greenhouse gas monitoring, mea-
suring global total column CO2 and CH4 since 2009 with
the Thermal and Near infrared Sensor for carbon Observa-
tion (TANSO) FTS on board for greenhouse gas monitoring
using three SWIR bands and one TIR band (Cogan et al.,
2012; Yoshida et al., 2013). Column-averaged dry mole frac-
tions are obtained at a circular footprint of approximately
10.5 km. GOSAT has a regional bias of approximately 0.3
and 1.7 ppm single observation error versus TCCON (Ku-
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Table 1. TCCON column-averaged dry-air mole fractions of CO2 (GGG2014 data).

Region Site Abbreviation Latitude Longitude Start date End date Publication

Polar Northern Eureka (NU) eu 80.05 −86.42 2010/07 2020/07 Strong et al. (2017)
Hemisphere Ny-Ålesund sp 78.90 11.90 2014/04 2019/09 Notholt et al. (2019a)
(60–90◦ N) Sodankylä (FI) so 67.37 26.63 2009/05 2020/10 Kivi et al. (2022)

Temperate Northern East Trout Lake (SK) et 54.35 −104.99 2016/10 2020/09 Wunch et al. (2018)
Hemisphere Bialystok (PL) bi 53.23 23.03 2009/03 2018/10 Deutscher et al. (2019)
(20–60◦ N) Bremen (DE) br 53.10 8.85 2010/01 2020/06 Notholt et al. (2019b)

Karlsruhe (DE) ka 49.10 8.44 2010/04 2020/11 Hase et al. (2015)
Paris (FR) pr 48.97 2.37 2014/09 2020/06 Te et al. (2014)
Orléans (FR) or 47.97 2.11 2009/08 2020/06 Warneke et al. (2019)
Garmisch (DE) gm 47.48 11.06 2007/07 2020/06 Sussmann and Rettinger (2017)
Zugspitze (DE) zs 47.42 10.98 2015/04 2020/06 Sussmann and Rettinger (2018)
Park Falls (US) pa 45.95 −90.27 2004/06 2020/12 Wennberg et al. (2016)
Rikubetsu (JP) rj 43.46 143.77 2013/11 2019/09 Morino et al. (2016b)
Lamont (US) oc 36.60 −97.49 2008/07 2020/12 Wennberg et al. (2015)
Anmyeondo (KR) an 36.58 126.33 2015/02 2018/04 Goo et al. (2014)
Tsukuba (JP) tk 36.05 140.12 2011/08 2019/09 Morino et al. (2016a)
Edwards (US) df 34.96 −117.88 2013/07 2020/12 Iraci et al. (2016)
Caltech (US) ci 34.14 −118.13 2012/09 2020/12 Wennberg et al. (2017)
Saga (JP) js 33.24 130.29 2011/07 2020/12 Kawakami et al. (2014)
Izana (ES) iz 28.30 −16.50 2007/05 2021/02 Blumenstock et al. (2017)

Tropical Northern
Hemisphere
(0–20◦ N)

Burgos (PH) bu 18.53 120.65 2017/03 2020/03 Morino et al. (2023)

Tropical Southern Ascension Island (SH) ae −7.92 −14.33 2012/05 2018/10 Feist et al. (2014)
Hemisphere
(0–20◦ S)

Darwin (AU) db −12.46 130.94 2005/08 2020/04 Griffith et al. (2014a)

Temperate Southern Réunion Island (RE) ra −20.90 55.49 2011/09 2020/07 De Maziere et al. (2017)
Hemisphere Wollongong (AU) wg −34.41 150.88 2008/06 2020/06 Griffith et al. (2014b)
(20–60◦ S) Lauder (NZ) ll −45.04 169.68 2010/02 2018/10 Sherlock et al. (2014)

Figure 1. Map showing the locations and the abbreviations of the TCCON sites.
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Table 2. Marine-boundary-layer stations within the NOAA Earth System Research Laboratory CO2 sampling network.

Region Station Abbreviation Latitude Longitude Start date End date

Temperate Northern Mace Head, Ireland MHD 53.3 −9.9 2014/01 2020/07
Hemisphere Shemya, AK SHM 52.7 174.1 2014/01 2020/07
(20–60◦ N) Terceira, Azores AZR 38.8 −27.4 2014/01 2020/07

Tudor Hill, Bermuda BMW 32.3 −64.9 2014/01 2020/07
Sand Island, Midway MID 28.2 −177.4 2014/01 2020/07
Key Biscayne, FL KEY 25.7 −80.2 2014/01 2020/07

Tropical Northern Cape Kumukahi, HI KUM 19.5 −154.8 2014/01 2020/07
Hemisphere Mariana Islands, Guam GMI 13.5 144.7 2014/01 2019/08
(0–20◦ N) Ragged Point, Barbados RPB 13.2 −59.4 2014/01 2020/07

Christmas Island, Republic of Kiribati CHR 1.7 157.2 2014/01 2019/08

Tropical Southern Seychelles SEY −4.7 55.2 2014/01 2020/07
Hemisphere Ascension Island ASC −8.0 −14.4 2014/01 2020/07
(0–20◦ S) Tutuila, America Samoa SMO −14.2 −170.6 2014/01 2020/07

Temperate Southern Cape Grim, Australia CGO −40.7 144.7 2014/01 2020/07
Hemisphere Baring Head BHD −41.4 174.9 2014/01 2020/07
(20–60◦ S) Crozet Islands CRZ −46.5 51.9 2014/01 2020/07

Figure 2. Map showing the locations and the abbreviations of the marine-boundary-layer stations within the NOAA Earth System Research
Laboratory CO2 sampling network.

lawik et al., 2016). We utilize the FTS SWIR level-3 data
global monthly 2.5◦ resolution mean CO2 mixing ratio prod-
ucts from 2009 June to 2021 December to generate IAV and
make comparisons with OCO-2. Level-3 products are gener-
ated by interpolating, extrapolating, and smoothing the FTS
SWIR column-averaged mixing ratios of CO2 and apply-
ing the geostatistical calculation technique kriging method.
GOSAT observation datasets are available to the public at
the NIES GOSAT website (https://www.gosat.nies.go.jp/en/
about_5_products.html, last access: 5 August 2022).

2.1.5 Multivariate ENSO index (MEI)

We use the bimonthly MEI (downloaded from the Physical
Sciences Laboratory: https://psl.noaa.gov/enso/mei/, last ac-

cess: 5 April 2023) to explore the relationship between CO2
IAV and ENSO. The MEI is the time series of the lead-
ing combined empirical orthogonal function of five different
variables (sea level pressure, sea surface temperature, zonal
and meridional components of the surface wind, and outgo-
ing longwave radiation) over the tropical Pacific basin. Pos-
itive values in the MEI indicate El Niño conditions, while
negative values indicate La Niña conditions, and the mag-
nitude reflects the relative strength. Unlike other ENSO in-
dices which use only one climate metric (e.g., the sea level
pressure difference between Tahiti and Darwin or the sea sur-
face temperature anomaly within a predefined box), the MEI
provides for a more complete and flexible description of the
ENSO phenomenon than traditional single-variable ENSO
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indices and has less vulnerability to errors (Wolter and Tim-
lin, 2011).

2.2 Methods

2.2.1 Spatial aggregation

We aggregate daily XCO2 observations from the version 10
OCO-2 level-2 lite product to the monthly scale, exploring
patterns of IAVs at three spatial scales: grid-cell level, zonal
averages over 5◦ of latitude, and broad zonal belts. Aggregat-
ing soundings reduces random noise in the observations, mit-
igates the impact of data gaps due to cloud cover, and partly
mitigates effects from low winter sunlight levels in polar re-
gions. For grid-cell-level analysis, we aggregate data equa-
torward of 45◦ to 5◦×5◦ bins since these data are not limited
by polar night or degraded by high solar-zenith angles dur-
ing winter. Poleward of 45◦ in both hemispheres, we aggre-
gate the satellite observation to a latitude–longitude resolu-
tion of 5◦× 10◦ to compensate for fewer and noisier sound-
ings in these latitudes, especially during winter and its shoul-
der seasons. Within each 5◦× 5◦ or 5◦× 10◦ grid cell, only
months that have more than five soundings are included in the
analysis. Our criteria for aggregation are based on sensitivity
experiments in which we modulated the grid-cell resolution
from 1◦×1◦ to 15◦×15◦ (Figs. S1 and S2 in the Supplement)
and varied the threshold on the required number of soundings
within a month from 1 to 25 (Figs. S3–S5 in the Supplement).
Our goal was to reduce noise but maintain high spatial cov-
erage (Figs. S6 and S7 in the Supplement). The 5◦× 5◦ and
5◦× 10◦ aggregations strike the necessary balance of reduc-
ing noise (evidenced by the smoother IAV amplitude fields
as aggregation increases in Fig. S1) but maintaining spatial
information by not oversmoothing (evidenced by the fact that
the aggregation occurs at spatial scales finer than the “elbow”
where correlations among 1◦ grid cells stop changing with
separation distance in Fig. S8 in the Supplement)

In our analysis, we also aggregate data to zonal averages.
At intermediate spatial scales, we average all data around
the 5◦ latitude bins described above. For comparison with
TCCON and MBL data, which are spatially sparse, we fur-
ther aggregate XCO2 data into four broad zonal belts – each
of which contains at least one TCCON or three MBL sta-
tions – (delineated in Tables 1 and 2) to assess IAV patterns
among the datasets. Keppel-Aleks et al. (2014) showed that
drivers of IAV (i.e., temperature, drought stress, or fire) could
be attributed when surface CO2 were aggregated into similar
broad zonal belts, whereas process-level attribution was not
possible with global averaging. We therefore analyze broad
zonal belts to gain a large-scale understanding of how three
CO2 datasets are similar and where differences lie.

2.2.2 Deriving interannual variations

We use a consistent process to calculate IAV (Eq. 1) from
the raw OCO-2, TCCON and MBL time series. The method-

ology is based on approaches used in Keppel-Aleks et al.
(2014) and NOAA curve fitting methodology (Thoning et al.,
1989). We decompose the raw time-series data into a long-
term trend (which is a function of location (x,y) and time
(t)), a seasonal cycle (which is a function of location and cal-
endar month (m)), and IAV anomalies using Eq. (1):

IAV(x,y, t)=raw(x,y, t)− trend(x,y, t)

− seasonal(x,y,m). (1)

We first fit a third-order polynomial to the raw time series
to calculate the observed trend at each location (Fig. 3a). Af-
ter removing the trend calculated at each grid cell (Fig. 3b),
we calculate a mean seasonal cycle by taking the mean value
of all January, February, etc., data (Fig. 3c). Particularly at
high latitudes, some months are systematically undersam-
pled. For these grid cells, we must have at least 2 years with
sufficient observations to calculate a climatological mean
for that month; otherwise, that calendar month is assumed
to have insufficient data to infer the IAV. Finally, we re-
move the mean seasonal cycle from the detrended time se-
ries at each grid cell to obtain the IAV anomaly time series
(Fig. 3d). Given the short data record, we quantify the uncer-
tainty in our calculation of the climatological seasonal cycle
as the standard error for each calendar month (blue shading
in Fig. 3c), and this uncertainty is propagated to the corre-
sponding IAV time series (Fig. 3d). We fit a third-order poly-
nomial to the raw time series since the GOSAT, MBL, and
TCCON time series extend over a decade in length. We con-
firm that the use of a third-order polynomial versus a second-
order polynomial does not remove the IAV signal from the
shorter OCO-2 time series (Fig. S9 in the Supplement).

3 Results

3.1 Spatiotemporal variations based on OCO-2
observation

When averaged into broad zonal belts representing the trop-
ics and mid-latitudes, the OCO-2 XCO2 IAV time-series
anomalies range between −0.5 and 0.75 ppm (Fig. 4a). All
latitude bands show increasing IAV during positive MEI (El
Niño) and decreasing IAV during negative MEI (La Niña), al-
though the phasing varies among latitudes. During the strong
2015–2016 El Niño, which began around March 2015 and
reached its peak at the start of 2016, XCO2 showed the
largest IAV. The Southern Hemisphere extratropical region
(Fig. 4d) has a larger and more rapid response in the IAV as-
sociated with ENSO compared to other zones, especially for
the smaller El Niño that peaked at the beginning of 2020. At
this time, the XCO2 IAV time series (Fig. 4d) had an anomaly
nearly twice as large as that of other latitude belts (Fig. 4a–c).
During both El Niño events, the IAV time series in the North-
ern Hemisphere tropics zone peaks nearly 6 months after the
maximum MEI value.
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Figure 3. Methodology to calculate the CO2 interannual variability time series using OCO-2 XCO2 data at the 5◦ grid cell at 20◦ N, 155◦W,
which contains Moana Loa as an example. (a) 5◦-resolution monthly mean raw OCO-2 XCO2 and the associated third-order polynomial
trend. (b) Detrended monthly XCO2 after removing the long-term trend with a repeating 12-month annual cycle obtained from calculating
the mean for each month. The light-blue shading gives the uncertainty of the seasonal cycle, which is derived by calculating the standard
deviation across all Januaries, Februaries, etc. (c) 12-month mean annual cycle together with the uncertainty range plotted in panel (b). (d)
Resulting interannual variability when the mean annual cycle is removed from detrended time series.

We assess the spatial correlation patterns with no time lag,
3-month lag, and 6-month lag between the IAV time series
and the MEI (Fig. 8a). The XCO2 IAV time series have a
strong correlation coefficient with the MEI at both the South-
ern Hemisphere and Northern Hemisphere low latitudes from
0 to 30◦ N at lag 0, whereas in the Northern Hemisphere ex-
tratropics, the maximum positive correlation occurs at month
4 (Fig. 8b). The positive correlation between the MEI and the
IAV time series is gradually attenuated, with no clear corre-
lation at 6 months’ lag (Fig. 8c).

The differences in temporal phasing between the broad
zonal belts (Fig. 4a) associated with El Niño events can be
linked to transport of El Niño-driven CO2 flux anomalies
away from the tropics when zonal means are calculated from
OCO-2 observations at 5◦ latitude resolution (Fig. 5). For
the two El Niño periods in 2015–2017 and late 2018 to 2021,
high IAV values originate in the tropics, and a smooth transi-
tion to high IAV values is seen at higher latitudes as time pro-
gresses (Fig. 5a). We note that fluxes outside the tropics may
also be influenced by ENSO-related climate variability, yet
the transport of tropical-driven anomalies appears to domi-
nate. This 7-year study period also captures the half-year lags
for atmospheric transport or climate–ecological teleconnec-
tions that impact XCO2 variations in the far north. While the
OCO-2 patterns largely conform to the variability expected
based on ENSO and are in broad agreement with other ob-

servational networks, there are some anomalies that cannot
be explained, such as the high XCO2 in early 2020 around
60◦ S (Fig. 5a). Even with more aggressive data filtering, this
episode persists, requiring more investigation of unknown
geophysical drivers of high XCO2 or potential retrieval is-
sues that could cause a high bias.

We quantify coherence in CO2 IAV within a latitude circle
by taking the standard deviation across grid-cell-level IAV
anomalies within each 5◦ latitude zone. The standard devia-
tion among grid cells is highest in the far north, with values
as high as 1 ppm poleward of 45◦ N and as low as 0.2 ppm in
the southern tropical bands (Fig. 5b), indicating that IAV is
less spatially coherent in the Northern Hemisphere. This may
be consistent with studies that show greater IAV in terrestrial
ecosystem fluxes (concentrated in the Northern Hemisphere)
(Zeng et al., 2005) relative to ocean fluxes or may reflect
the fact that our IAV time series also retains the imprint of
sampling, measurement, and retrieval errors, which become
more pronounced at higher latitudes. In general, there is no
time-dependent or ENSO-related pattern for the longitudi-
nal variation of IAVs (no obvious changes during the two El
Niño periods), which suggests that the variation within each
5◦ band may be approximately stable and does not change
substantially with interannual climate events.

The XCO2 IAV amplitude (the standard deviation of the
IAV time series) is notably larger over continental grid cells

https://doi.org/10.5194/acp-23-5355-2023 Atmos. Chem. Phys., 23, 5355–5372, 2023



5362 Y. Guan et al.: Characteristics of interannual variability in space-based XCO2 global observations

Figure 4. IAV time series averaged for zonal bands between 60◦ N and 60◦ S from four different observing strategies: space-based OCO-2
XCO2 (black), surface CO2 observations from NOAA’s marine-boundary-layer (MBL) sites (blue), ground-based TCCON XCO2 (red),
and space-based GOSAT XCO2 (grey). (a) Temperate Northern Hemisphere (20–60◦ N), (b) tropical Northern Hemisphere (0–20◦ N), (c)
tropical Southern Hemisphere (0–20◦ S), (d) temperate Southern Hemisphere (20–60◦ S). For all panels, the background shading indicates
the multivariate ENSO index (MEI), which is positive during El Niño phases.

compared to ocean grid cells (Fig. 6). In both hemispheres,
the IAV amplitude over subtropical ocean basins is less
than 0.4 ppm, while the IAV amplitude over tropical land in
Southeast Asia, the Congo forests, and the Amazon basin is
about 1 ppm. At higher latitudes, the XCO2 IAV amplitude

can exceed 1.2 ppm above deciduous and boreal forests in
North America and Eurasia. Higher values over land likely
occur due to the active CO2 exchange between the terres-
trial ecosystem and the atmosphere, but we cannot rule out
that retrievals over land show more variance due to complex
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Figure 5. Hovmöller diagram showing zonal-mean OCO-2 XCO2
IAV time series for 5◦ latitude bins (a) and the zonal standard de-
viation of XCO2 IAV (b), which gives an estimate of coherence in
the IAV patterns among grid cells in the 5◦ zonal belt.

topography, albedo, etc., which are elements of the retrieval
state vector. Nevertheless, over land areas with low carbon
exchange (e.g., Australia, the Middle East, the Sahara), the
XCO2 IAV amplitude is nearly at the same low level as the
ocean basins. It is worth noting that, for high-latitude regions,
including both northern continents and the Southern Ocean,
OCO-2 does not obtain observations over a full calendar year
(stippled grid cells in Fig. 6) due to polar nights, low light
levels, and high solar-zenith angles. The XCO2 IAV ampli-
tudes are less zonally coherent through these regions than
those in the tropics and at the mid-latitudes for both land and
ocean. When averaging all ocean or land grid cells around a
latitude circle, the zonal-mean IAV amplitude over the ocean
ranges from 0.3 to 1.0 ppm, while the land IAV amplitude
ranges from 0.4 to 1.1 ppm (Fig. 9). Both the land and ocean
profiles have similar north–south patterns, with a higher IAV
amplitude in the Northern Hemisphere and a lower IAV am-
plitude in the Southern Hemisphere and small IAV ampli-
tudes in the subtropics of both hemispheres, with more scat-
ter among land grid cells than the ocean (Figs. 5b and 9),
suggesting either the influence of local-flux IAV on land or
greater error associated with retrievals on land. We note bet-
ter coherence between the XCO2 IAV time series of each lo-
cal grid cell and that of zonal-mean XCO2 IAV time series
for the ocean, with correlation coefficients of approximately

Figure 6. OCO-2 XCO2 IAV amplitude, determined as the standard
deviation of the IAV time series. Data equatorward of 45◦ are aver-
aged at 5◦ by 5◦ resolution, and data poleward of 45◦ are averaged
at 5◦ by 10◦ resolution. Shaded regions indicate grid cells that lack
mean annual cycle data for at least 2 calendar months due to polar
night or related retrieval challenges.

Figure 7. Similar to Fig. 6 but based on GOSAT data.

0.8. In contrast, land grid cells are generally correlated with
the zonal mean at around 0.4 to 0.6 (Fig. 10).

3.2 OCO-2 XCO2 IAV compared to GOSAT XCO2 IAV

We carried out comparisons between the global spatiotempo-
ral pattern of XCO2 IAV between OCO-2 and GOSAT, since
GOSAT has data beginning in 2009. The XCO2 time se-
ries from OCO-2 provides higher coverage over midlatitude
oceans and tropical rainforests (stippling in Figs. 6 and 7).
The IAV amplitude of OCO-2 is generally smaller than that
of GOSAT worldwide (Figs. 6 and 7), which may be due to
greater data volume and reduced noise in the OCO-2 dataset
(Wu et al., 2020). OCO-2 and GOSAT zonal-mean IAV time
series generally share the same feature from 2014 to 2021
(Fig. 4a–d), with an increasing trend during El Niño and a de-
creasing trend during La Niña; however, the GOSAT XCO2
shows a delayed response at the northern midlatitudes, by al-
most 9 months, to the strong 2015 El Niño compared to the
other datasets. Generally, GOSAT IAV time series are nosier,
from month to month, compared to those from OCO-2.

3.3 XCO2 IAV compared to surface and TCCON
ground-based sites

Given that the small IAV signal (up to 1 ppm over land and
smaller over the ocean) is similar in magnitude to noise and
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Figure 8. Correlation coefficient between local grid-cell OCO-2
XCO2 IAV time series and MEI (a) for synchronous time series,
(b) with 3-month lags, and (c) with 6-month lags.

systematic bias in OCO-2 soundings (Torres et al., 2019), we
corroborate patterns of IAV from OCO-2 with other datasets.
The OCO-2 IAV time series in broad latitudinal belts share
similarities with those of TCCON XCO2 and MBL surface
CO2 ground-based IAV time series, with all time series show-
ing similar relationships with the MEI. Especially striking is
that all time series capture the lagged response in the North-
ern Hemisphere midlatitude belt to the strong 2015/16 El
Niño (Fig. 4a–d). Although the patterns are similar, the mag-
nitude of IAV at the MBL sites is almost double the IAV in
the OCO-2 XCO2 time series. Given that the atmospheric
boundary layer, where surface observations are made, is on
average 10 % of the total column, this suggests that much
IAV in total column observations is present within the free
troposphere. For TCCON, the amplitude of IAV is similar
to that of OCO-2, since both methods capture total column

Figure 9. Latitudinal profile for the zonal mean of IAV amplitude
and the standard deviation among land (green) or ocean (blue) grid
cells in each latitude band (shaded area). Individual points represent
all grid cells valid in the IAV record within a certain zonal band.

Figure 10. Correlation coefficient between local grid-cell IAV time
series and the corresponding 5◦ zonal-mean OCO-2 XCO2 IAV
time series.

variations. We note that the zonal IAV time series for MBL
and TCCON appear to have more high-frequency variations
than those from OCO-2 (Figs. S10–S12 in the Supplement),
which likely stems from the fact that the zonal composites
are developed from sparse ground-based sites (between 1
and 12 observatories) within each latitude belt, whereas the
satellite measures at all longitudes within a belt though with
more limited time resolution. The zonal-mean OCO-2 obser-
vations are correlated with MBL sites within the same lati-
tude band with R between 0.5 and 0.75 (diagonal elements
in Fig. 13b). Correlations between zonal TCCON and OCO-
2 observations range between 0.15 and 0.55 (Table S1 in the
Supplement). The correlations are weakest in the northern
tropical band, where TCCON data were unavailable during
the strong El Niño (Fig. 3c). It is noteworthy that OCO-
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2 zonal averages are more correlated among different lati-
tudes than are MBL or TCCON observations (off-diagonal
elements in Fig. 13c–e). The greater correlation across lati-
tudes for OCO-2 compared to MBL sites is likely due to the
sensitivity of the OCO-2 XCO2 observations to the free tro-
posphere, where meridional transport is more rapid than at
the surface. While TCCON data are also sensitive to the free
troposphere, we hypothesize that the zonal-belt averages for
TCCON, constructed from only a few sites, are more affected
by noise, both instrumental and geophysical, and thus show
lower coherence than the OCO-2 XCO2 averages constructed
from the whole latitudinal bands.

We further compared the IAV from OCO-2 XCO2 with
TCCON stations at the site level (Fig. 12). Across all the
sites, the IAV amplitude generally shows good agreement
and lies between 0.4 and 1.2 ppm. We note a slight low-
IAV amplitude in OCO-2 relative to TCCON for all five sites
in the Southern Hemisphere which lie below the one-to-one
line. Low OCO-2 IAV amplitudes may be due to the fact
that a 5◦× 5◦ grid cell encompassing these near-coastal lo-
cations includes both land and ocean OCO-2 soundings and
may be due to specific sources of variance from retrieval bias
affected by surface type for OCO-2 (e.g., Fig. 9). It is also
worth noting that OCO-2 looks at a region of 5◦ by 5◦ grid
cells (or 5◦ by 10◦ at higher latitudes) around TCCON sites,
so there are different signals affecting the variance between
the two types of observations.

We derive the regression slopes and correlation coeffi-
cient R between OCO-2 and monthly averaged TCCON IAV
through bootstrapping linear-regression fitting techniques to
investigate the coherence between IAV signals from space-
based and in situ ground-based observations. We compute
the linear regression 1000 times by iteratively resampling
the IAV time series with replacement and calculate the 95 %
significance level for regression slopes based on the his-
togram of the sample distributions during the bootstrapping
(Fig. S13 in the Supplement). Despite having similar IAV
amplitudes, the IAV time series from OCO-2 are only mod-
erately correlated with those from TCCON (Fig. 11). The re-
gression slopes range from 0.1 to 0.6, and R values are gen-
erally around 0.1–0.5, indicating that less than 25 % of the
IAV in OCO-2 is explained by IAV measured by TCCON.
These R values are, as expected, smaller than the zonal aver-
ages shown in Fig. 11b, which average some of the site-level
noise for TCCON and grid-cell-level noise for OCO-2. The
detailed XCO2 IAV time series of each site (Fig. S10) for
OCO-2 and TCCON show that the IAV time series in the
Northern Hemisphere are more variable, which can partly
explain the hemispheric difference in amplitude, slope, and
correlation coefficients.

4 Discussion

We use 7 years of OCO-2 total column carbon dioxide ob-
servations from late 2014 to mid 2021 to illustrate the global
temporal–spatial patterns of atmospheric XCO2 interannual
variations. OCO-2 and GOSAT showed reasonable agree-
ment (Fig. 4) in Northern Hemisphere and Southern Hemi-
sphere tropical zones (0–20◦), although there were some no-
table phase differences during the strong 2015 El Niño for
GOSAT compared to the other time series in both the north-
ern and southern extratropical regions. In contrast, OCO-2
shows good temporal agreement with the ground-based ob-
servations from the MBL and TCCON. The temporal agree-
ment of the OCO-2 and TCCON XCO2 IAV time series and
the MBL surface CO2 IAV time series in broad zonal belts
improves our confidence that we can quantify IAV time se-
ries from the satellite record. We note that amplitude differ-
ences remain among the time series, owing to two major fac-
tors: first, compared to MBL surface observations, we expect
XCO2 time series to have smaller amplitudes of variability
since it integrates over the entire atmospheric column (Olsen
and Randerson, 2004), and second, the fact that the OCO-2
time-series averages around a full-latitude circle rather than
a few discrete sites reduce some of the IAV contained in site-
level records. From the space-based and ground-based detec-
tion, we are able to characterize the global response of OCO-
2 and TCCON XCO2 or MBL surface CO2 IAV to ENSO
and track the CO2 IAV against the positive/negative phase of
ENSO, together with the transport of the signal from south
to north (Fig. 4). All the datasets show consistent patterns in
the response to the El Niño periods, although we note that the
IAV amplitude is a factor of almost 2 smaller in the column-
averaged mole fraction compared to the boundary-layer CO2,
which reflects the fact that IAV variations emerge due to sur-
face fluxes in the lower part of the atmosphere (Olsen and
Randerson, 2004) but are efficiently transported into the free
troposphere, which comprises the bulk of the column. When
taken together, the use of surface and column data may al-
low better separation of transport-driven versus local flux-
driven variations at the interannual timescale. In the future,
as partial column retrievals (e.g., Kulawik et al., 2017) ma-
ture, intercomparisons of the lowermost tropospheric partial
columns may provide a useful bridge between variations in
surface MBL observations and total column observations.

Our results, however, underscore the difficulty in detecting
IAV signals from remote sensing of XCO2 – while North-
ern Hemisphere seasonal amplitudes are typically 10 ppm in
scale (Basu et al., 2011), the magnitude of OCO-2-detected
XCO2 IAV is almost an order of magnitude smaller (less than
0.4 ppm over the ocean and about 1 ppm over continents).
The magnitude of IAV is therefore comparable to other com-
ponents of the XCO2 variance budget; for instance, Torres et
al. (2019) show random noise in individual OCO-2 sound-
ings of about 0.3 ppm in the Southern Hemisphere and about
0.7 ppm in the Northern Hemisphere and spatially coherent
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Figure 11. Latitudinal profile of regression slope (panel a) and correlation coefficient (R, panel b) of OCO-2 versus TCCON XCO2 IAV.
The slope and R values are based on using monthly XCO2 IAV. The error bars result from a Monte Carlo bootstrapping approach. The colors
represent the number of months of data which are used for the regression calculation given gaps in both the OCO-2 and TCCON datasets.

Figure 12. Comparison of OCO-2 and TCCON XCO2 IAV ampli-
tude at individual sites. Colors reflect site latitudes. The grey dashed
line is the one-to-one identity line. The grey solid line is the error
bar of the IAV amplitude.

errors in the retrievals ranging from 0.3 to 0.8 ppm (Torres et
al., 2019). Moreover, the uncertainty which originally comes
from the varying climatological seasonal cycle can also reach
a level of 0.5 ppm (Fig. 3d). Therefore, robust partitioning
of IAV from the observed XCO2 signal at a given location
requires a comprehensive variance budget (Mitchell et al.,
2023), and efforts to infer interannual variations in fluxes
from OCO-2 must take grid-cell-level variance into account
or leverage zonally averaged data, which are characterized
by greater separation between IAV signal and noise.

Our analysis shows that proper spatial averaging of the
monthly XCO2 signal can mitigate the imprint of random
noise and systematic effects from weather systems at sub-
monthly timescales. Based on sensitivity tests, we recom-
mend averaging low- to mid-latitude XCO2 (equatorward of
45◦) to 5◦×5◦ bins and a 5◦ latitude×10◦ longitude grid cell
poleward of 45◦, ensuring that each grid-cell aggregates at
least five soundings within a month. At these levels of spatial
averaging, the XCO2 IAV amplitude was comparable to that
of the co-located ground-based XCO2 IAV amplitude mea-
sured by TCCON (Fig. 12). However, the moderate to low
correlation between the IAV time series from each monitor-
ing platform reveals the discrepancies of the two measure-
ments in sampling, detection, or retrieval, suggesting that one
or both is still convolving another source of variance with the
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Figure 13. Correlation coefficient (R) between mean CO2 time series using three observing strategies. Panel (a) shows the correlation
between zonal-mean OCO-2 XCO2 IAV and zonal-mean marine-boundary-layer CO2. Panel (b) shows the correlation between zonal-mean
XCO2 IAV from OCO-2 and TCCON. Panels (c–e) show the correlation in zonal-mean IAV time series across four latitude bands for a single
observing strategy. Panel (c) shows OCO-2 XCO2, panel (d) shows MBL CO2, and panel (e) shows TCCON XCO2. For panels (c–e), the
diagonal elements are 1 by construction. Zonal bands include the tropical (0–20◦) and Northern Hemisphere/Southern Hemisphere temperate
(20–60◦) zones.

calculated IAV signal. Based on the good agreement between
the two time series in broad zonal belts, we expect that ran-
dom noise in both observations may degrade the comparison.

The smaller coherence in the IAV time series in nearby
land and ocean grid cells may be due to larger error over land
or may reflect the fact that XCO2 observations over land con-
tain information about heterogeneous local-flux IAV. Com-

plete analysis of the variance budget for OCO-2 observations
(Mitchell et al., 2023) will elucidate the likely imprint of each
process. When using IAV time series for flux inference, it
will be crucial to account for non-flux imprints such as im-
print from atmospheric transport, random errors, systematic
errors, and remote geophysical coherence on the time series
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(e.g., Torres et al., 2019; Mitchell et al., 2023), since spurious
attribution of IAV will lead to biased fluxes.

5 Conclusions

We examined IAV in OCO-2 data to determine whether
the small variations that result from interannual flux varia-
tions can be detected in light of other sources of variance
in the space-based dataset. Our results show that zonal aver-
ages reveal relationships with ENSO that are consistent with
those from an established ground-based monitoring network.
Zonal averages greatly reduce random noise in XCO2 com-
pared to 5◦×5◦ averages. In general, OCO-2 can successfully
monitor CO2 IAV over both land and ocean, contributing im-
portant spatial coverage beyond inferences of IAV from ex-
isting ground-based networks.
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