KIT | KIT-Bibliothek | Impressum | Datenschutz

Comparative validation of machine learning algorithms for surgical workflow and skill analysis with the HeiChole benchmark

Wagner, Martin; Müller-Stich, Beat-Peter; Kisilenko, Anna; Tran, Duc; Heger, Patrick; Mündermann, Lars; Lubotsky, David M.; Müller, Benjamin; Davitashvili, Tornike; Capek, Manuela; Reinke, Annika; Reid, Carissa; Yu, Tong; Vardazaryan, Armine; Nwoye, Chinedu Innocent; Padoy, Nicolas; Liu, Xinyang; Lee, Eung-Joo; Disch, Constantin; ... mehr

Abstract:

Purpose: Surgical workflow and skill analysis are key technologies for the next generation of cognitive surgical assistance systems. These systems could increase the safety of the operation through context-sensitive warnings and semi-autonomous robotic assistance or improve training of surgeons via data-driven feedback. In surgical workflow analysis up to 91% average precision has been reported for phase recognition on an open data single-center video dataset. In this work we investigated the generalizability of phase recognition algorithms in a multicenter setting including more difficult recognition tasks such as surgical action and surgical skill.
Methods: To achieve this goal, a dataset with 33 laparoscopic cholecystectomy videos from three surgical centers with a total operation time of 22 h was created. Labels included framewise annotation of seven surgical phases with 250 phase transitions, 5514 occurences of four surgical actions, 6980 occurences of 21 surgical instruments from seven instrument categories and 495 skill classifications in five skill dimensions. The dataset was used in the 2019 international Endoscopic Vision challenge, sub-challenge for surgical workflow and skill analysis. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000160425
Veröffentlicht am 11.07.2023
Originalveröffentlichung
DOI: 10.1016/j.media.2023.102770
Scopus
Zitationen: 22
Web of Science
Zitationen: 15
Dimensions
Zitationen: 30
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 05.2023
Sprache Englisch
Identifikator ISSN: 1361-8415
KITopen-ID: 1000160425
Erschienen in Medical Image Analysis
Verlag Elsevier
Band 86
Seiten Art.-Nr.: 102770
Vorab online veröffentlicht am 21.02.2023
Schlagwörter Surgical workflow analysis, Endoscopic vision, Surgical data science, Laparoscopic cholecystectomy
Nachgewiesen in Scopus
Dimensions
Web of Science
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page