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Abstract 

Even though much research has been conducted on the safety of cycling infrastructures, 

most previous approaches only make use of traditional and proven methods based upon 

datasets such as accident statistics, road infrastructure data, or questionnaires. Apart from 

typical surveys, which are known to face numerous limitations from a psychological and 

sociological viewpoints, the question of how perceived safety can best be assessed is still 

widely unexplored. Thus, this paper presents an approach for bio-physiological sensing to 

identify places in urban environments which are perceived as unsafe by cyclists. 

Specifically, a number of physiological parameters like ECG, skin conductance, skin 

temperature and heart rate variability are analysed to identify moments of stress. Together 

with data gathered through a People as Sensors app, these stress levels can be mapped 

to specific emotions. This method was tested in a pilot study in Cambridge, MA (USA), 

which is presented in this paper. Our findings show that our method can identify places 

with emotional peaks, particularly fear and anger. Although our results can be qualitatively 

interpreted and used in urban planning, more research is necessary to quantitatively and 

automatically generate recommendations from the measurements for urban planners. 
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1 Introduction 

There is overwhelming evidence from the literature and practice (see Gössling (2013) for a 
review of Copenhagen’s bicycle policy) that a consistent pro-bicycle policy is essential for any 
successful promotion of cycling. Pucher et al. (2010) provide an extensive overview of the 
effectiveness of policy interventions. In line with other authors (Aldred & Jungnickel, 2014; 
Lanzendorf & Busch-Geertsema, 2014; Rietveld & Daniel, 2004), they argue for multi-
facetted approaches that are built on adequate infrastructure, information and education, as 
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well as the development of a bicycle-friendly mobile culture. Thus, successful bicycle policies 
combine infrastructure with soft measures, the former being decisive for the potential impact 
of the latter. The anticipation of the specific needs of cyclists is also crucial for the success of 
cycling-promotion strategies (Fernández-Heredia et al., 2014). 

Recent trends show that cycling is enjoying increasing popularity, especially in urban 
environments, on the one hand as a newly propagated, urban lifestyle, and on the other hand 
as a key component in sustainable mobility. Indicators for this increasing relevance in urban 
planning are the growing numbers of bicycle-sharing schemes (Freese et al., 2014) and 
comprehensive bicycle-promotion strategies (Winning et al., 2012), to name just two 
examples. Consequently, cities of various sizes are striving to provide adequate cycling 
infrastructures to make urban cycling even more attractive. Known factors that influence the 
impact of such investments are the quality of the road infrastructure, the accessibility and 
connectivity of bicycle networks, the topography, and traffic safety. This last is often difficult 
to capture, especially with respect to subjectively-perceived safety. In order to gain a more 
holistic picture of how cyclists perceive the road space, different methods need to be 
merged, with the geographical space being the common reference. 

Yet, even though numerous previous research efforts have tried to analyse the safety of 
cycling infrastructures, the majority of these approaches are based only on traditional and 
proven methods that employ datasets like accident statistics, road infrastructure data, or 
conventional questionnaires. Consequently, the question of how to best analyse perceived 
safety is still widely unexplored, other than through typical surveys, which are known to face 
numerous limitations from psychological and sociological viewpoints: the assessment of 
people’s emotions and intrinsic perceptions is an inherently difficult and an unsolved 
problem in psychology. 

Thus, we aim to leverage current developments in the field of emotion-sensing, where we are 
currently witnessing rapid progress in the areas of wearable computing and context-sensitive 
analytics. These technological innovations allow for the passive sensing of bio-physiological 
parameters, and their use complements established assessment approaches such as indicator-
based models that calculate “bikeability” indices (Loidl & Zagel, 2014; Winters et al., 2013) 
and the collection of in-situ feedback (Senatsverwaltung für Stadtentwicklung Berlin, 2013). 
Loidl (2016) provides an overview of spatially-enabled communication frameworks about the 
road space, and Forsyth & Krizek (2011) embed cyclists’ perceptions in an urban design 
context. However, so far little research has been done on the additional benefit of psycho-
physiological in-situ measurements for bicycle policies aimed at specific target-groups. 
Insights gained through the integration of new algorithms and tools with in-situ sensor data 
serve as a basis for informed decisions in urban and transport planning. 

This paper presents an approach which is an inherent part of the Urban Emotions concept 
(Resch et al., 2015b), in which bio-physiological data is sensed in urban environments to 
identify areas in which cyclists feel distinct emotions. This information can then be 
correlated with concrete urban planning requirements. The method was tested in a pilot 
study in Cambridge, MA (USA). The aim of this field test was to set the stage for a large-
scale follow-up investigation with a more extensive sample size, from which general 
conclusions can be deduced and transferred to achieve a city benchmark. 



Zeile et al 

206 

 

With our method, it is possible to detect bicycle riders’ emotions directly in situ, i.e. while 
they are riding their bicycles, and we assign inputs from the “People as Sensors” app 
(subjective observations) to physiological sensor data (objective measurements). The vision 
of this research is to use physiological sensing devices, to collect data in situ, to combine it 
with other data sources like social media channels, and to create a people-centric view for 
bicycle-traffic planning. 

2 State of the Art 

The proposed approach is located at an intersection of technical and planning domains. 
Therefore, related work from these areas – on People as Sensors, and GIS-based bicycle 
planning – is discussed in the following sub-sections. 

People as Sensors, Social Media Emotions and Emotion Measurement 

“People as Sensors” describes a human-centric measurement model that allows the sharing 
of information and local knowledge about citizens’ personal environments (Resch, 2013). 
Recently, a number of reporting and eDiary apps have been introduced, many of which 
address general urban management issues (MySociety, 2010). More specifically, a number of 
approaches to collect citizens’ feelings at virtually any location at any time have emerged. 
One example is the “Mappiness” app, which aims to understand how citizens’ feelings are 
affected by features of their current environment, including air pollution, noise and green 
spaces (MacKerron & Mourato, 2012). Viewed from the discipline of emotion psychology, 
one major shortcoming of these approaches is the induced bias due to conditioning effects, 
user interfaces that are too complex, and the cognitive processes involved (apps collect 
cognitively-generated input rather than authentic emotions). 

In addition to these app-based approaches, emotion-sensing using wearable physiological 
sensors has recently gained much interest in scientific research in various disciplines. Current 
sensor technologies for examining emotions assess parameters like electroencephalogram 
(EEG), electrocardiogram (ECG) and electrodermal activity (EDA) by measuring skin 
conductance level (SCL) together with skin temperature (Kanjo et al., 2015). Currently, EDA 
seems to be the most reliable parameter from which to derive emotions. Zeile et al. (2013) 
have shown in several case studies that reliable results can be obtained for urban planning. 
However, quantitative validation of the results is still lacking. 

From a “Collective Sensing” viewpoint, a number of approaches have been developed for 
extracting emotional information from social media data. However, these approaches do not 
work reliably because they have been designed for edited text, using simple methods like 
word-matching. Examples of these approaches include Kouloumpis et al. (2011) and Hauthal 
& Burghardt (2013). A promising recent approach seems to be TwEmLab, a semi-supervised 
learning approach that identifies distinct emotions in Tweets and other social media posts in 
an intelligent space-time-linguistics algorithm (Resch et al., 2016). This approach can also 
cope with the fact that social media posts contain a large number of slang words, 
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abbreviations, emoticons, irregular punctuation, “yoof speak”, or other lexis that cannot be 
found in standard dictionaries, which most other approaches use (Eisenstein, 2013).  

The Urban Emotions approach presented in this paper advances previous research by 1) 
combining subjectively contributed emotions with technical measurements from wearable 
sensors, and 2) providing a simple mobile app interface that is dedicated to scientific 
purposes and designed in accordance with guidelines and requirements from the field of 
emotion psychology (Resch et al., 2015a).  

Bicycle Safety and GIS 

Bicycle mobility can be modelled and analysed from various perspectives in geographical 
information systems. GIS environments serve as integrated platforms that facilitate the 
detection of, and analyse the dependencies between, cyclists, other road users, the built 
environment, and non-physical descriptions of the road space (Loidl, 2016). 

Current research on perceived bicycle safety focuses mainly on bicycle–vehicle interactions 
(Chaurand & Delhomme, 2013; van der Horst et al., 2013) and the influence of the built 
environment (Dozza & Werneke, 2014; Jensen et al., 2007). Both aspects can be represented 
in a GIS for analysis and modelling purposes. Spatial models that assess the quality of the 
road space in terms of perceived safety (Klobucar & Fricker, 2007; Parkin et al., 2007) or 
safety performance in general (Loidl & Zagel, 2014; Winters et al., 2013) help planners to 
implement targeted counter-measures and better address the concerns and requirements of 
existing and prospective cyclists. Until now, most approaches have relied on models that are 
validated against epidemiological data that is aggregated and abstracted. Thus the relation 
between concrete, physical situations and perceived safety on an individual basis is still 
unknown. 

3 Case Study: Analysing Cyclists’ Emotions 

It is widely acknowledged that human sensors can help planners in urban environments to 
get a better impression of daily processes in the city. Our pilot study, which we carried out in 
the cities of Cambridge and Boston, MA (USA), aims to verify the potential of using 
crowdsourcing mechanisms in combination with the collection of physiological data for 
planning urban cycling infrastructures. 

Participants 

The participants in our experiment were invited to take part by email via the Harvard 
University community. The invitation was shared on a number of social media channels 
(Facebook, Twitter) and spread virally to a large number of people in the Boston 
metropolitan area. Twelve participants were recruited to take part in the experiment for the 
test period (13–20 September 2015). Even though the number of participants seems to be at 
the lower limit for producing reliable results, our results (see section 0) show that both 
qualitative and quantitative interpretation of the data is possible, although the quantitative 
analysis (statistical interpretation of physiological measurements) may be more robust with 
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larger sample sizes. Furthermore, our test area was small enough for the given sample size, 
allowing all participants in the test to cover the entire area throughout the study. 

The composition of the group was 5 female and 7 male cyclists who were between 25 and 45 
years old. All except for 2 used their bikes in their daily routine and thus had extensive 
experience of cycling in the traffic conditions in the Cambridge/Boston area. Two 
participants were only occasional bicycle-users. They used the cycle-renting system 

“Hubway”, which is highly popular in the greater Boston area and provides 1,300 

bicycles at 140 stations.  

Equipment 

To reliably assess emotions and stress levels, several sensor data sources have to be 
combined (see data analysis in section 0). Accordingly, all people were equipped with the 
following sensors (the authors assisted the participants in adjusting the sensors correctly): 

 Zephyr Bioharness 3 chest belt to measure electrocardiogram (ECG) at a sampling 
rate of 250 Hz, pulse at a sampling rate of 1 Hz, and respiration rate at a sampling 
rate of 1 Hz. 

 Bodymonitor Smartband to collect electrodermal activity (EDA) data at a sampling 
rate of 1 Hz. 

 People as Sensors app (Resch et al., 2015) running on an HTC Desire 500 (the 
smartphone was provided by the authors and mounted on the handlebars). 

 GoPro Hero 4 to capture video footage of the test route and to compare the 
physiological stress triggers with the real situation through visual comparison. 

Test Phase 

Once equipped with the sensors, the participants were instructed on how to use the People 
as Sensors app and how the test phase would be carried out. Thereafter, the experiment was 
divided into three stages. 

Phase 1 consisted of a 3-minute resting phase, in which the participants were instructed to 
breathe deeply and regularly, and not to talk or move. This was done to level out the baseline 
of each participant’s physiological measurements – in other words, to assess the individual 
physical condition of each participant, which is essential for producing valid results in the 
subsequent data-analysis phase. 

Phase 2 served to calibrate the participants’ physical conditions while cycling. Therefore, all 
cyclists were asked to go up and down the same route – a small, low-traffic, dead-end street. 
They were instructed to ride in a relaxed fashion, slower than on a normal ride, avoiding all 
peaks of exhaustion. In this way, we could level out the baselines of the measurement 
parameters (ECG, EDA and heart rate variability) for an individual’s physical condition, 
which served as reference value for all measurements. 

Phase 3 was the actual test ride, a freely chosen route through the cities of Cambridge and 
Boston with a duration of at least one hour. During the ride, measurements were collected 
continuously by the physiological sensors and the camera. Throughout the measurement 
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phase, participants were able to enter their subjective impressions and observations into the 
People as Sensors app at any time. Additionally, the app notified them if a stress event was 
detected by the sensor and asked them to enter their feelings (happiness, sadness, fear, 
anger/disgust, surprise) and the context (traffic, safety, etc.), according to the procedure 
described by Resch et al. (2015). Furthermore, a geofencing algorithm notified the user when 
they entered a pre-defined area (Central Square, Harvard Square, Harvard Bridge, etc.) to ask 
for their impressions of the place.  

The use of the People as Sensors app was necessary to ground-truth the sensor 
measurements, i.e. to assign an emotion and a context to the sensor measurements, which is 
still not possible in an automated fashion through pure signal analysis (Resch et al., 2015a). 
Geotags (smartphone positioning using GPS and wireless mobile networks) and timestamps 
(smartphone system time) were automatically added to all measurements. 

After returning to the starting point, the participants were asked to go through a 5-minute 
recovery phase, to assess how quickly their organism returned to its normal physical 
condition.  

Data Analysis 

According to the current state-of-the-art in physiological sensor data analysis, only negative 
arousal can be accurately identified by analysing the physiological parameters skin 
conductance level and skin temperature. This negative arousal is an indicator for a stress 
event as, according to emotion researchers, skin conductivity increases and skin temperature 
decreases when a negative experience occurs (Kreibig, 2010, p. 401; Rodrigues et al., 2014, 
p. 94): “[if] for instance a test person has the experience of anger or fear – a negative 
emotion – skin conductance (the difference between sweat production and absorption of the 
skin) increases and skin temperature in the extremities decreases” (Zeile et al., 2015, p. 217). 

To extract stress events from the physiological measurements, we calculate the first 
derivation for skin conductivity and skin temperature to decreasing or increasing slopes. To 
detect negative arousal, it is only necessary to know whether the skin conductance level is 
increasing; the scoring value for this event is “+1”, and the skin temperature has to decline 
(scoring value is “-1”). At the end of the evaluation, two binary-coded columns have to be 
interpreted (see Figure 1). A stress event is identifiable if a signal shows decreasing skin 
temperature three seconds after the skin conductance level has risen significantly 
(Papastefanou, 2009). 
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Figure 1: Typical course of physiological measurement of skin conductance (blue) and skin 

temperature (red) (left-hand side), scoring and 3-second delay pattern of stress reaction (Bergner et 

al., 2013) 

After collecting the physiological data, all the datasets were analysed using the following 
sequential steps, according to the procedure shown in Figure 2: 

 Identification of the points of negative arousal by analysing the gradient of EDA 
(Map 1) 

 Verification of the detected points of negative arousal with the help of simultaneous 
video tracks (Map 2) 

 Addition of the events from the People as Sensor app (Map 3) 

 Merging of all results with identified incidents and points of negative arousal (Map 
4) 

 

Figure 2: Schematic maps for identifying potential danger spots, combining datasets collected from all 

participants  

Results 

Figure 3 shows the analysis results for all participants combined. Visual analysis of the 
individual cyclists’ results reveal several places in which negative arousal was measured. Some 
critical intersections can also be identified. 
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In the aggregated results for all cyclists, hotspots could be identified (see Figure 3). 
Correlating these hotspots with the People as Sensors inputs and the physiological 
measurements revealed unfavourable traffic conditions, such as large numbers of vehicles, 
bad street design, violations of the highway code, especially cars overtaking without 
respecting the safety distance, long waiting times at crossroads, and damaged road surface. 

 

Figure 3: Visualization of EDA for identifying areas of negative arousal during the test rides.  

The map of hotspots (Figure 3) provides an initial impression, showing areas with more 
intense moments of stress and ones where the cyclists are more “relaxed”.  

For precise information regarding which incidents or triggers aroused negative feelings, we 
can refer to the recorded camera tracks and the geotagged emotions of the People as Sensors 
app. Comparing the duration of the negative arousal and the actual trigger of the arousal is 
also useful. See Figure 4 for an example of this type of analysis. Concretely, we detected 22 
individual triggers in the video track for one of the cyclists. These triggers include cars 
passing close by, long waiting times in heavy traffic, and damaged road surface. The 
Smartband additionally identified a few other points of georeferenced stress triggers 
(moments of stress), which indicates that there is no 100% match of sensor measurements 
with visible real-world events. However, this combination of the different data-acquisition 
mechanisms delivers a new view of the city and of potential planning deficiencies. 
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Figure 4: Comparative analysis of the data of rider 5. “Moments of stress” (MOS) show the negative 

arousal situations. “Triggers from video recording” identify critical situations from the GoPro Tracks. 

“MOS and Triggers” combines triggers from the video recording and instances of negative arousal. 

“People as Sensors” illustrates georeferenced, subjective, perceived emotions. 

The “Moments of Stress” (Figure 4, upper-left) shows the negative arousal identified by the 
Smartband wristband sensor in terms of the duration of the stress events. With the help of 
the video analysis, critical situations can be identified in the physiological measurements. A 
closer look at cyclist 5’s video reveals the triggers for negative reactions in 29 situations 
(Figure 4, upper-right): damaged road surface, dangerous intersections, physical obstacles, 
overtaking, or pedestrians crossing (videos are available on Urban Emotions Youtube 
Channel, 2015). The lower-left map in Figure 4 shows MOS and triggers combined, 
representing a consolidated indicator for negative arousal. 

Finally, the lower-right map in Figure 4 illustrates all subjectively-perceived emotions which 
were triggered, collected and georeferenced by the People as Sensors app. These represent an 
additional information layer for identifying specific places of stress. The People as Sensors 
app generates an individual, subjective impression of the rider’s environment. Using this app, 
the basic emotions of anger, joy, fear and sadness, which were assigned by the cyclists to 
distinct locations, can be enriched with a personal comment. In combination with the 
identified moments of stress and the information extracted from the video footage, these 
user inputs can therefore add meaning to the pure measurements (“ground-truthing”). The 
textual comments range from simple comments (“street bump”, “traffic” or “green wave”) 
to differentiated statements on particular traffic situations, including concrete suggestions for 
improvement. 
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4 Discussion and Conclusions  

This paper presents the results of a case study in which bicycle traffic safety was assessed 
using a combination of physiological sensors, People as Sensors inputs, and video footage. 
Using this method, it is possible to detect cyclists’ emotions directly in situ. We assigned 
inputs from the People as Sensors app (subjective observations) to physiological sensor data 
(objective measurements) and validated our conclusions using video footage. 

The results in their current state can be used as a source of information to help improve 
bicycle traffic planning and to mitigate traffic risks for cyclists. The intermediate results of 
our methodology (sections 0 and 0) can all be used to identify planning requirements, while 
the final integrated analysis results can be employed specifically to identify hotspots in urban 
planning deficiencies. From a planning point of view, the insights gained in the course of this 
research create a new layer of information about urban processes, and the Urban Emotions 
approach can help to reveal an unseen perspective and give better insight into the “city as an 
organism”. 

Although our results can be qualitatively interpreted and used in urban planning, more 
research is necessary to quantitatively and automatically generate recommendations for urban 
planners from the measurements. First of all, the process of emotion-extraction has to be 
made more robust. With our current sensing setup, we are able to achieve a clear 
classification of only one emotion, which is then mapped to the parameters of skin 
conductance level and skin temperature to identify negative arousal. The ground-truthing 
process (identifying a particular emotion) is still done in a semi-automated manner only, 
using the individual inputs from the People as Sensors app and visual comparison with the 
video tracks. In the future, we would like to be able to identify these emotions in a fully 
automated fashion through combination with new sensor parameters (respiratory and 
cardiovascular measurement parameters, like additional heart rate (AHR) and EEG). In this 
regard, greater cooperation with psycho-physiological experts will be necessary. Accordingly, 
field tests and lab trials are currently being set up in conjunction with emotion psychologists, 
aiming to develop a more sophisticated sensor-fusion method.  

In using physiological sensing devices and collecting data in situ in combination with data 
from sources such as social media channels, the Urban Emotions approach establishes a new 
and innovative model for citizen-centric planning processes in the city. 
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