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Abstract: The increasing demand for lithium-ion batteries requires constant improvements in the
areas of production and recycling to reduce their environmental impact. In this context, this work
presents a method for structuring carbon black aggregates by adding colloidal silica via a spray flame
with the goal of opening up more choices for polymeric binders. The main focus of this research
lies in the multiscale characterization of the aggregate properties via small-angle X-ray scattering,
analytical disc centrifugation and electron microscopy. The results show successful formation of
sinter-bridges between silica and carbon black leading to an increase in hydrodynamic aggregate
diameter from 201 nm to up to 357 nm, with no significant changes in primary particle properties.
However, segregation and coalescence of silica particles was identified for higher mass ratios of silica
to carbon black, resulting in a reduction in the homogeneity of the hetero-aggregates. This effect
was particularly evident for silica particles with larger diameters of 60 nm. Consequently, optimal
conditions for hetero-aggregation were identified at mass ratios below 1 and particle sizes around
10 nm, at which homogenous distributions of silica within the carbon black structure were achieved.
The results emphasise the general applicability of hetero-aggregation via spray flames with possible
applications as battery materials.

Keywords: hetero-aggregation; small-angle X-ray scattering; carbon black; silica; spray flame;
nanoparticle characterization

1. Introduction

The urgent need for a reduction in the use of fossil fuels in order to reduce CO2
emissions has led to the emergence of electro mobility, e.g., in the form of electric cars.
Currently, lithium-ion batteries are the most frequently used component for energy storage.
The batteries consist of multiple components, including active materials, polymer binders
and carbon black. Therein, the active materials are responsible for energy storage, and the
carbon black increases the conductivity via the creation of electrical pathways between the
active material particles. At the cathode side, a frequently used binder is polyvinylidene
fluoride (PVDF), which ensures the uniformity and binding of the active materials, correct
slurry rheology [1] and the dispersion of the carbon black [2]. However, PVDF is part of
the group of per- and polyfluoroalkyl substances (PFASs), which are responsible for the
persistent and bioaccumulating pollution of the environment during production [3] and
recycling [4]. Thus, the European Union is evaluating a possible ban on the production,
use, sale and import of PFASs until September 2023, which is why the development and
evaluation of alternatives is of the utmost importance. However, PVDF has the advantages
of a high mechanical strength, corrosion resistance and chemical stability, making it difficult
to replace [5]. One option is to improve the properties of the carbon black network with
another additive to reduce the technical requirements on the binder. In polymers, the addi-
tion of silica to carbon black is used to adjust mechanical properties. One main application
is the reinforcement of tires [6], in which the miscibility of both components is linked to
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durability [7]. Although silica has insulating properties, it is able to improve the generation
of electrical pathways via carbon black, which may lead to increased conductivities [8].
Recently investigated carbon–silica structures for possible applications in Li-ion batteries
as anode materials include hollow spheres [9], aerogels [10], amorphous powders [11] and
carbon-coated silica nanoparticles [12]. To overcome the limitations of volume expansion
due to lithiation at the anode, the silica is nanostructured [13,14]. Moreover, on the cath-
ode side, nanostructured silica has been shown to improve the electrochemical cycling
stability [15]. Regarding the desired structure of carbon black, an open, high-surface-area
structure [16] that forms a robust carbon black–binder network is important for the elec-
trochemical performance [17,18]. Therein, the aggregate size of the carbon black has a
significant impact on the carbon black–binder network, with smaller particles (<250 nm)
forming a more cross-linked network [19]. The current methods for the synthesis of carbon
black–SiO2 composite materials include complex manufacturing methods that are not easily
scalable for industrial production. Therefore, this work introduces a hetero-aggregation
process carried out via the sintering of silica nanoparticles directly onto the carbon black
aggregates in a spray flame. Spray flames are scalable [20] and allow for the dispersion
of both particles due to the active mixing zone above the nozzle [21]. The feasibility of
the spray flame synthesis of hetero-aggregates has been shown frequently for catalysts in
which the sintered contact between the catalytic material and promoter is able to improve
the catalytic activity [22,23]. For hetero-aggregates of carbon black and silica, the sintered
hetero-contact may lead to improvements in mechanical strength and dispersibility. In
theory, this leads to a reduction in the demand on the multi-functionality of the polymeric
binder, opening up alternatives to PVDF. Another possible improvement gained via hetero-
aggregation is an increase in aggregate stability, leading to easier processing during dry
mixing, during which conductivity due to the deformation and breakage of carbon black is
possible [24].

In order to achieve the desired macroscopic properties, the hetero-aggregation process
and its influencing factors must be understood on a microscopic level. However, the result-
ing hetero-aggregates are highly fractal nanoscale structures that consist of two different
amorphous materials and are therefore difficult to reliably characterize. Hence, a multiscale
characterization ranging from primary particle properties to aggregate properties is needed.
Common characterization methods for hetero-aggregates are laser light diffraction [25,26],
X-Ray diffraction [26] and electron microscopy [27,28]. In order to obtain comprehen-
sive information about primary particles, as well as aggregate and mixing properties, a
combination of ultra-small-angle X-ray scattering (USAXS), high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM) with energy-dispersive X-ray
spectroscopy (EDXS) and analytical disc centrifugation (ADC) is used. USAXS provides in-
tegral information about the aggregates and is routinely used for aggregates of carbon and
silica, as well as products obtained via spray flame synthesis [29–32]. The results include
fractal dimensions of the aggregates as well as the mean primary particle sizes of both
materials. ADC allows for the determination of changes in the hydrodynamic aggregate
size for varying flame parameters. The combination of HAADF-STEM and EDXS yields
qualitative information about aggregate shapes, primary particle size distributions and the
homogeneity of the dispersion. In order to understand the behaviour of hetero-aggregation
in a two-material system, the aggregation mechanisms of pure carbon black and pure silica
particles (one-material system) are first investigated. Afterwards, the obtained findings
are compared with the experimental results of the hetero-aggregation process in order to
determine the influence of the primary silica particle size on the hetero-aggregate size, pri-
mary particle properties, fractal dimensions and the homogeneity of the hetero-aggregation
process. As a result, optimized experimental conditions are presented.
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2. Materials and Methods
2.1. Synthesis of Silica Particles

The colloidal silica particles were synthesised via the Stoeber process [33], using am-
monia (25% ammonia solution for analysis, Merck, Darmstadt, Germany) as a catalyst and
tetraethyl orthosilicate (TEOS) (98% tetraethoxysilane, Alfa Aesar, Karlsruhe, Germany)
as a precursor. The cosolvent was ethanol (VWR Chemicals, Darmstadt, Germany). Tem-
perature control and mixing were achieved using a magnetic stirrer with a heating plate.
The exact experimental conditions are provided in the Supplementary Information. Table 1
lists the names of the samples with the corresponding mean particle diameter, d50,0 +/−
one standard deviation of the number size distribution averaged over a triple measure-
ment, as determined via dynamic light scattering (Zetasizer nano ZS, Malvern Panalytical,
Malvern, UK).

Table 1. Overview of the colloidal silica particles produced and their mean diameters.

Name d50,0 in nm

60 nm 63.6 ± 14.9
40 nm 39.2 ± 11.9
30 nm 32.0 ± 8.1
10 nm 11.6 ± 3.4

2.2. Production of the Hetero-Aggregates

For the production of the hetero-aggregates, a carbon black of the type TIMCAL
Super C65 (Nanografi Nano technology, Çankaya/Ankara, Turkey) was suspended in
ethanol with a mass concentration xCB of 0.5 weight-%. The suspension of the colloidal
silica particles was added to the stock solution in varying mass ratios to the concentration
of carbon black that ranged from 5 xCB

xSiO2
to 0.2 xCB

xSiO2
. The particles were then dispersed

with ultrasonic waves (Branson Sonifier 450, Branson Ultrasonics, Danbury, CT, USA) to
break up the existing agglomerates. For clarification, in this publication, loosely bonded
particles, e.g., particles bonded by Van der Waals forces, are referred to as agglomerates,
whereas aggregates are considered particle networks bonded by strong interactions, e.g.,
solid sinter bridges. The suspension was then fed into the spray flame using a SpraySyn
burner (University of Duisburg-Essen, Duisburg, Germany). The gas flows were controlled
via mass flow controllers by Bronkhorst (Ruurlo, The Netherlands ). A laminar pilot
flame was ignited with 2 standard litres per minute (slm) of CH4 and 12 slm of O2. To
stabilise the flame, a sheath gas flow of 120 slm of pressurized air was added. The spray
flame was created in the centre of the burner, where a canula with an annular gap was
located. A syringe pump (Harvard Instruments, Holliston, MA, USA) conveyed the
prepared suspension through the canula. The gas flow of 10 slm of O2 through the annular
gap atomized the suspension. The resulting spray was then continuously ignited by the
pilot flame, which created the spray flame. A scheme of the burner is presented in the
Supplementary Material with an overview of the burner parameters. Further general data
regarding the burner are published in [34]. At 12 cm above the burner surface, a hole-
in-tube probe collected the hetero-aggregates on a nanoporous track-etched membrane
(Whatman Nuclepore Track-Etched Membranes, Cytiva, Amersham, UK) with a pore
diameter of 200 nm.

2.3. Aggregate Characterization

The hetero-aggregates produced were characterized using small-angle X-ray scattering
(Xeuss 2.0 Q-Xoom, Xenocs SA, Sassenage, France) in order to obtain information about
the multiple structural characteristics ranging from the primary particle diameters to the
fractal dimension of the aggregate. Beam generation was achieved with the X-ray micro
focus source Genix3D Cu ULC (Ultra Low divergence), which emits Cu-Kα radiation with
an energy of 8.04 keV and a wavelength of 1.5406 Å. For an extended measuring range,
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a Bonse-Hart-module [35] for USAXS measurements was installed. The powder samples
were prepared for measurement on adhesive polyimide foil. The chosen exposure time
was 30 min, with a distance of 2500 mm from the sample to the detector. A comparative
image analysis of the HAADF-STEM (FEI Tecnai Osiris, FEI company, Hillsboro, OR, USA)
images, carried out via ImageJ [36], yielded a number-based size distribution of the primary
particles. The hydrodynamic aggregate size distribution was measured with an analytical
disc centrifuge (CPS instruments, Prairieville, LA, USA). Before the measurement, the
particles are suspended in deionised water (0.01 mass-%) and dispersed with ultrasonic
waves (Branson Sonifier 450, Branson Ultrasonics, Danbury, CT USA) for the breakage of
the agglomerates.

Small-Angle X-ray Scattering

The scattering of incoming X-Rays on nanoparticles is characteristic to their nanoscale
structures, such as particle size and morphology. The resulting scattering curve is a double
logarithmic plot of an intensity I over the scattering vector q in −1. The scattering vector q
in Equation (1) describes the scattering angle 2θ independent of the wavelength λ of the
primary beam and is provided by:

q =
4π
λ

sin(θ). (1)

Guinier’s law (Equation (2)) yields information about particle or aggregate size in the
form of the radius of gyration Rg with pre-factor G at small angles (qRg < 1):

I(q) = G exp

(
−

q2R2
g

3

)
(2)

The slope of the scattering curve is provided by a local power law fit with prefactor B
according to:

I(q) = B q−P. (3)

For fractal aggregates, the exponent P is equal to the fractal dimension of the mass
of the aggregate DFM [37]. For surface fractals, the exponent P is also proportional to the
fractal dimension of the surface DFS.

P = 6 − DFS, (4)

resulting in values for P between 3 and 4, making it possible to distinguish mass and surface
fractals. If the exponent P equals 4, the particles exhibit an ideally smooth surface with a
sharp density transition, fulfilling Porod’s law [38]. Further evaluation of the scattering
data was performed via the unified fit model (Irena Package 2.71 [39], IgorPro, Wavemetrics,
Portland, OR, USA), according to Beaucage [40]. The results of the unified fit yield a log-
normal size distribution with the assumption of spherical primary particles. The geometric
standard deviation σg is calculated from the parameters of Guinier’s law and the power
law fit with the polydispersity index (PDI) [41]:

σg = exp

(√
ln(PDI)

12

)
; PDI =

B R4
g

1.62 G
. (5)

The mean diameter of the distribution is then calculated as follows [32]:

dSAXS = 2

√
5
3

Rg exp(−13
ln(PDI)

24
). (6)



Nanomaterials 2023, 13, 1893 5 of 14

Due to the possible convolution of scattering information from the silica and carbon
black in the hetero-aggregates, the above-mentioned methodology was only applied to
pure materials.

3. Results
3.1. Pure Carbon Black in the Spray Flame

Figure 1 shows the changes in the primary particle and aggregate properties of the
pure carbon black in a spray flame using ethanol as dispersion liquid. Before the spray
flame, the carbon black had an open fractal structure with a fractal dimension of mass of
2.2, which was derived from the scattering curve with a unified fit, as depicted in Figure 1a.
The open-branched structure is also observable in the HAADF-STEM image, Figure 1d.
The radius of gyration of the primary particles was Rg = 46.4 nm and exhibited a sharp
density transition with P = 4, suggesting a smooth particle surface. From the fit parameters
B = 2.06 and G = 8.2·109, a number-weighted primary particle size distribution with a
median diameter of 38 nm and a geometric standard deviation of σg = 0.4 was calculated
using Equation 5. This particle size is in good agreement with the primary particle size
reported by Spahr et al. [42]. The ADC yielded a hydrodynamic aggregate size distribution
with a mode at 159 nm. After the spray flame, the hydrodynamic aggregate size of the
carbon black increased to dmod = 201 nm, with a reduction in the fractal dimension of mass
to 1.8, suggesting further aggregation in the spray flame. In the TEM image (Figure 1e), the
fractal structure of the carbon black is still observable. The analysis of the primary particles
via TEM imaging resulted in a mean particle diameter of 39.6 nm with a geometric standard
deviation from σg = 0.28. The retrieved fit parameters of the unified fit of the scattering
data after the spray flame were Rg = 33.3 nm, G = 1.1·1010 and B = 6.7. With P = 4, the
primary particle surface properties are unchanged. The calculated size distribution shows
a decrease in polydispersity in the geometric standard deviation from σg = 0.4 to 0.35 and
a decreased primary particle diameter of 35.5 nm. The differences in absolute values are
the results of the resolution limit for TEM and potential deviations from the assumptions
drawn from the SAXS data.

One major advantage of the holistic approach is the combined evaluation of multiple
particle and aggregate properties. Therein, only negligible changes in the primary particle
properties after the spray flame process are revealed, whereas the hydrodynamic aggregate
size increased due to further aggregation. Because of the newly formed inter-aggregate con-
nections, the structure became more open, which led to a decrease in the fractal dimension
of mass.

3.2. Pure Colloidal Silica in the Spray Flame

In order to evaluate the changes in the particle properties of the pure colloidal silica in
the spray flame using ethanol as dispersion liquid, a comparison of the SAXS data and the
TEM analysis was conducted. Figure 2 shows exemplary results for the 60 nm colloidal
silica particles before and after the spray flame. In Figure 2a, the scattering curve of the
sample after the spray flame exhibits multiple structure levels, which are also visible in
the accompanying HAADF-STEM image, Figure 2b. For scattering vectors in the range of
0.01 Å−1 and 0.1 Å−1, the properties of the primary particles (marked in red) were retrieved.
The local Guinier fit yielded a radius of gyration Rg = 25.3 nm which corresponds to a
sphere equivalent diameter of 65.3 nm. A comparison with the TEM data yielded a mean
diameter of 61.1 nm and shows good agreement. Furthermore, oscillations characteristic
for monodisperse spheres are observed in the scattering data. With a fractal dimension of
surface DFS = 2, the particles exhibited a smooth surface with a spherical shape, which is
identical to the properties prior to the spray flame. The silica particles visibly aggregated
and formed sinter bridges in the flame, which were both observable via TEM and SAXS
(marked in blue). A local power law fit results in a fractal dimension of mass DFM = 1.7. In
contrast, the scattering curve of the sample before the spray flame levels off, indicating the
characteristic spherical shape. In consequence, no significant aggregation or other large
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structures were present before the spray flame. The TEM images of the sample after the
spray flame revealed that most silica particles are directly connected to one to three other
particles, resulting in a mean coordination number of 2.1 ± 0.9. The contact length between
two aggregated silica primary particles was roughly half of the particle diameter. However,
an infrequent coalescence of the silica particles, leading to the formation of large structures
in the micron size range, was detected (marked with green). These structures were also
observed in the USAXS data with a radius of gyration Rg = 367.4 nm. The local power
law fit yields an exponent P = 2.8, showing an overlap between the fractal dimension of
surface of the structure (P between 3 and 4) and the fractal dimension of mass of the silica
aggregate, which mainly consists of the smaller primary particles (P = 1.7).
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In conclusion, the colloidal silica particles aggregated heavily in the spray flame.
Although coalescence was observed, most primary particles preserved their spherical
shape. Their infrequent coalescence into larger structures may be attributed to the residence
time distribution of the particles in the turbulent spray flame.

3.3. Characterization of the Hetero-Aggregates

The findings obtained for the spray flame experiments of the pure materials were also
observed for the hetero-aggregates of carbon black and silica. In Figure 3a, a HAADF-
STEM image of a hetero-aggregate with visible hetero-contact is shown. Closeups of the
hetero-contact between the carbon black and silica are depicted in Figure 3b–d. Due to
sintering, a large contact area between the carbon black and silica was formed. A clearly
defined border between the two materials is detected within the resolution limit.
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of silica to carbon black of 3 and original colloidal silica primary particle size of 30 nm.
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As shown in Section 3.2, silica–silica homo-contacts and coalescence may lead to the
formation of homo-aggregates consisting of pure silica. The formation of these homo-
aggregates is visible in the SAXS data shown in Figure 4a. The slope at ultra-small angles
(q < 10−3Å−1) was fitted with a power law fit (Equation (3)), and the exponent P was
evaluated for different original particle sizes of silica and for different mass ratios of silica
to carbon black in Figure 4b. Similar to the data shown in Figure 2a the exponent P is
influenced both by the fractal dimension of mass of the aggregate (P ∼ 1.8 − 2.1 for carbon
black) as well as the fractal dimension of surface of the homo-aggregate (P = 4 for colloidal
silica). Consequently, a higher exponent corresponds with a higher relative degree of
homo-aggregation. In the scattering data, two major trends were observed: on one hand,
the exponent P is influenced by the particle size of the silica. For the hetero-aggregates
produced with 10 nm and 40 nm silica particles with mass ratios of one, the exponent
P was close to the fractal dimension of mass of the pure carbon black aggregates, with
values typically between 2.2 and 2.3 (see Section 3.1). For hetero-aggregates produced at
the same mass ratio but with silica particles 60 nm in size, the exponent P is increased to 2.8.
On the other hand, the mass concentration of silica in the hetero-aggregates significantly
influences homo-aggregation. For a silica particle size of 40 nm, the exponent increased
from 1.8 for a mass ratio of 0.33 to 2.5 for a mass ratio of 3. The HAADF-STEM image in
Figure 4c shows the formation of an irregular structure due to coalescence accompanied by
homo-aggregated 30 nm silica primary particles for a mass ratio of 3 and thus supports the
findings acquired via the SAXS analysis. For this particle size, an increase from 1.9 (mass
ratio 0.33) up to 2.5 emphasizes the importance of choosing lower mass ratios in order to
avoid homo-aggregation and possible coalescence.
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Figure 4. (a) SAXS data of hetero-aggregates produced at a mass ratio of silica to carbon black of 1
with varying sizes of the colloidal silica particles ranging from 10 nm to 60 nm. The evaluated power
law fit in the USAXS area is highlighted in red. (b) Derived exponents of the local power law fit in the
USAXS area for hetero-aggregates with different mass ratios of silica to carbon black ranging from
0.3 to 3. Two different primary particle size ranges of the colloidal silica were investigated: 30 nm and
40 nm. In order to evaluate the experimental spread, three individual experiments were evaluated
for a mass ratio of 0.33. (c) Observed homo-aggregation and coalescence of silica particles for a mass
ratio of SiO2 to carbon black of 3 and 30 nm silica particles in HAADF-STEM images.

The trends observed in the USAXS measurements are further supported by the ADC
measurements depicted in Figure 5. For mass ratios above or equal to three, the PSD is
bimodal (Figure 5a). The first mode is close to the observed hydrodynamic aggregate size
of pure carbon black, while the second mode corresponds to a structure in the micron size
range, possibly the homo-aggregates. The relative weight of the second mode increases
with a decrease in the silica particle size. Even though the formation of homo-aggregates is
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observed, the carbon black aggregates were incorporated into the formed silica structures
for smaller particle sizes. This was especially evident for the 10 nm silica particles at a mass
ratio of 3 for which only a single mode in the micron size range is measured. Therefore,
both materials show better miscibility for smaller silica particle sizes. For lower mass
ratios, the PSD resembled the PSD of pure carbon black after the spray flame with one
mode (Figure 5b). Figure 6b shows the dependency of the first mode of particle size on
the mass ratio of the silica particles. Due to the formed hetero-contact, by sintering silica
particles onto the carbon black aggregate structure, an increase in the mode hydrodynamic
aggregate diameter is expected, as the sedimentation speed is influenced by the aggregate
density, which may be increased by the attached silica (ρCB = 1.86 g

cm3 [42]; ρSiO2 = 2.1 g
cm3

depending on porosity [43]). Therefore, the hydrodynamic aggregate size is a measure for
the effectiveness of the incorporation of silica into existing CB structures. For all particle
sizes, the largest mode value is observed for an equal mass ratio of silica to carbon black,
showing the optimal incorporation of the silica in the carbon black structure. For the hetero-
aggregates produced with a silica particle size of 60 nm, the least pronounced change in
the hydrodynamic aggregate size is observed with a spread between 218 ± 19 nm and
255 ± 8 nm. Furthermore, in Figure 6c, a TEM image of a hetero-aggregate produced
with 60 nm silica particles is depicted. Therein, a carbon black aggregate exhibits only one
visible silica hetero-contact despite a mass ratio of silica to carbon black of 3, supporting the
drawn hypothesis of increasing the segregation of the two materials for larger particle sizes
of silica. Furthermore, the change in the hydrodynamic aggregate size for varying mass
ratios of silica was the most pronounced for hetero-aggregates produced with 10 nm silica
particles. Here, the maximum measured hydrodynamic aggregate size was 357 ± 10 nm.
Figure 6a underlines the influence of silica particle size on the size of the hydrodynamic
aggregate. In the EDXS scan, a homogenous distribution of silica on the carbon black
structure is apparent, meaning that both materials were successfully hetero-aggregated.
The decreasing mode aggregate diameter for mass ratios larger than 1 independent of silica
particle size indicates segregation due to the homo-aggregation of silica. However, in all
cases, the mode of the hetero-aggregates was larger than for the pure carbon black in the
spray flame. This means in all cases, some degree of hetero-aggregation was achieved.
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Figure 5. (a,b) Normalized volume PSDs of hetero-aggregates, as measured via ADC. For better
visual clarity, only every fifth data point is shown. The investigated hetero-aggregates were produced
with mass ratios of silica to carbon black of 3 (a) and 0.33 (b) for 10 nm, 30 nm and 60 nm colloidal
silica particles, respectively.
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Figure 6. (a,c) HAADF-STEM images with EDXS of a hetero-aggregate produced with (a) 10 nm silica
particles at a mass ratio of 0.33 and (c) 60 nm silica particles at a mass ratio of 3. Carbon is coloured
in green (symbol C), silicon in blue (symbol Si) and oxygen in red (symbol O). Therefore, the silica
(SiO2) particles in (a) show a pinkish colour. (b) First mode (highlighted in Figure 5a with a straight
line) of the PSD of hetero-aggregates for mass ratios of silica to carbon black ranging from 0.2 to 5 for
three silica particle sizes. The data points each represent two experiments with three respective ADC
measurements. The highlighted data points (a,c) correspond to the TEM images depicted in (a,c).

In conclusion, the data retrieved via both ADC and SAXS suggest that optimal hetero-
aggregation is achieved for mass ratios of silica to carbon black equal to or below 1 and particle
sizes of silica in the size range of 10 nm. This assumption is supported by the USAXS data,
which reveal a fractal dimension of mass of 2.2, which is equal to the aggregates of pure carbon
black (Figure 3a). The increased hydrodynamic aggregate size of 258 nm in comparison to
pure carbon black after the spray flame with 201 nm shows successful hetero-aggregation. For
higher mass ratios, increased segregation due to the homo-aggregation of silica is observed.

As an extra finding, a layer of carbon was formed on the surface of the silica particles
in the spray flame, as revealed in Figure 7. Although this was not observed for all surveyed
aggregates, the carbon layer is expected to increase the overall conductivity of the aggregate
and is therefore desirable.

Nanomaterials 2023, 13, x FOR PEER REVIEW 11 of 14 
 

 

In conclusion, the data retrieved via both ADC and SAXS suggest that optimal het-
ero-aggregation is achieved for mass ratios of silica to carbon black equal to or below 1 
and particle sizes of silica in the size range of 10 nm. This assumption is supported by the 
USAXS data, which reveal a fractal dimension of mass of 2.2, which is equal to the aggre-
gates of pure carbon black (Figure 3a). The increased hydrodynamic aggregate size of 258 
nm in comparison to pure carbon black after the spray flame with 201 nm shows success-
ful hetero-aggregation. For higher mass ratios, increased segregation due to the homo-
aggregation of silica is observed.  

As an extra finding, a layer of carbon was formed on the surface of the silica particles 
in the spray flame, as revealed in Figure 7. Although this was not observed for all surveyed 
aggregates, the carbon layer is expected to increase the overall conductivity of the aggre-
gate and is therefore desirable.  

 
Figure 7. Carbon layer on the surface of the silica particles (diameter of silica = 60 nm; mass ratio = 
3). Carbon is coloured in green (symbol C) and silicon in blue (symbol Si). 

4. Discussion 
Carbon black is a widely used additive for to improve conductivity in batteries. 

Therein, binders like PVDF ensure the binding of the active material as well as the stabi-
lization of the electric pathways of carbon black. However, the environmental hazards of 
PVDF motivate the search for alternatives. A novel hetero-aggregation process is pre-
sented with the goal of improving the inherent mechanical strength and dispersibility of 
carbon black by incorporating colloidal silica into the carbon black structure via sintering 
in a spray flame. This work focuses on a comprehensive description of hetero-aggregate 
properties via multi-scale characterization through the use of SAXS, HAADF-STEM with 
EDXS and ADC. Therein, the particle size and mass ratio of the silica particles were iden-
tified as main factors in successful hetero-aggregation, which is achieved when a sinter 
contact is formed without significant changes in primary particle properties. In the evalu-
ated TEM images, the majority of silica particles preserved their spherical shape and orig-
inal diameter while forming aggregates connected by sinter bridges. Therefore, it is sug-
gested that the surface of the silica is partially melted upon particle–particle contact 
which, in turn, leads to plastic deformation, forming a contact area. The negligible changes 
in the primary particle properties can be attributed to the short flame residence times of 
≈0.7 ms [44]. However, previous researchers suggested the existence of a toroidal vortex 
within the spray flame of the SpraySyn burner [45]. Recirculation within this vortex may 
explain the infrequent observed coalescence of silica particles. The coalescence of silica 
particles has been reported for temperatures ranging from 1300 to 1700 K [46,47], which 
are similar to the gas phase temperature of the SpraySyn burner (around 1500 K in the 
spray flame [34]) used in this study. The rate of coalescence is directly influenced by the 
particle size, leading to increased coalescence rates for smaller particles [48]. However, the 

Figure 7. Carbon layer on the surface of the silica particles (diameter of silica = 60 nm; mass ratio = 3).
Carbon is coloured in green (symbol C) and silicon in blue (symbol Si).



Nanomaterials 2023, 13, 1893 11 of 14

4. Discussion

Carbon black is a widely used additive for to improve conductivity in batteries.
Therein, binders like PVDF ensure the binding of the active material as well as the stabiliza-
tion of the electric pathways of carbon black. However, the environmental hazards of PVDF
motivate the search for alternatives. A novel hetero-aggregation process is presented with
the goal of improving the inherent mechanical strength and dispersibility of carbon black
by incorporating colloidal silica into the carbon black structure via sintering in a spray
flame. This work focuses on a comprehensive description of hetero-aggregate properties
via multi-scale characterization through the use of SAXS, HAADF-STEM with EDXS and
ADC. Therein, the particle size and mass ratio of the silica particles were identified as
main factors in successful hetero-aggregation, which is achieved when a sinter contact
is formed without significant changes in primary particle properties. In the evaluated
TEM images, the majority of silica particles preserved their spherical shape and original
diameter while forming aggregates connected by sinter bridges. Therefore, it is suggested
that the surface of the silica is partially melted upon particle–particle contact which, in turn,
leads to plastic deformation, forming a contact area. The negligible changes in the primary
particle properties can be attributed to the short flame residence times of ≈0.7 ms [44].
However, previous researchers suggested the existence of a toroidal vortex within the
spray flame of the SpraySyn burner [45]. Recirculation within this vortex may explain the
infrequent observed coalescence of silica particles. The coalescence of silica particles has
been reported for temperatures ranging from 1300 to 1700 K [46,47], which are similar to
the gas phase temperature of the SpraySyn burner (around 1500 K in the spray flame [34])
used in this study. The rate of coalescence is directly influenced by the particle size, leading
to increased coalescence rates for smaller particles [48]. However, the observed segregation
of silica and carbon black for 60 nm silica particles resulted in an increased number of
silica homo-contacts which, in turn, facilitated the creation of homo-aggregates. A sim-
ilar trend was observed for mass ratios of silica to carbon black above 1. The increased
concentration led to an increased particle collision frequency which, in turn, increased the
coalescence rate [49] and the formation of homo-aggregates. The results of the different
measurement systems are consistent with each other. In the USAXS data, the formation of
homo-aggregates is identified by an increased exponent in the power law fit, leading to
values of up to 2.8 in comparison to the original carbon black used (1.8–2.2). Additionally,
in the ADC measurements, the homo-aggregates appear as a second mode in the micron
size range.

In conclusion, larger silica particles may deflect upon contact with the carbon black
aggregates due to their higher mass, whereas smaller silica particles tend to adhere and
sinter to the carbon black. Therefore, the results suggest that the optimal experimental
conditions for the hetero-aggregation of carbon black and silica are mass ratios equal to
or below one and low silica primary particle sizes (10 nm). Smaller silica particle sizes
are only achievable via a modification of the Stoeber method, e.g., through the addition of
Triton X-100, which would lead to impurities in the spray flame [50]. TEM images of the
hetero-aggregates produced under these experimental conditions show a homogeneous
distribution of the silica on the carbon black structure. Furthermore, a fractal dimension
of mass close to the original value for carbon black (2.2) and an increased hydrodynamic
aggregate diameter of 258 nm were measured, which further supports the assumption
of high-quality hetero-aggregation. Additionally, individual silica particles coated with
carbon layers were identified. They are expected to exhibit advantageous properties for Li-
ion battery applications [12,51] and should be investigated in further studies. In summary,
the obtained results emphasize the general applicability of spray flames for the production
of novel hetero-aggregate materials. Future studies will focus on the determination of
functional properties like conductivity, dispersibility and the application of these hetero-
aggregates in batteries.
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SpraySyn burner; Table S1: Experimental conditions of the stoeber process; Table S2: Flame parame-
ters of the SpraySyn burner.
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