

Karlsruhe Institute of Technology

Zero-Emission Circular Concrete

Peter Stemmermann, Angela Ullrich, Krassimir Garbev, Günter Beuchle, Uwe Schweike, Ulrich Precht, Dieter Stapf

Low-T Cement Clinker (1000°C)

I. Heating

I. Clinker

I. Weather and the second se

RC-Cement + Carbonated RC-Aggregate

Zero- Emission Circular Concrete

Processing of low temperature RC-Cement Clinker

Objective

Substitution of Portland Cement by RC-Cement in accordance to cement standards

Clinkering at 1000°C in concentrated CO₂ (TRL 4)

- \Rightarrow Processing of waste concrete fines
- \Rightarrow Capturing of concentrated CO₂
- \Rightarrow Electrical heating
- \Rightarrow 30% reduced process emissions

Hydrothermal sequestration of process CO₂

Objective

Carbonation of cement matrix in crushed aggregates. Used sequestration capacity > 80% in 6h

Semi-dry, pressurized carbonation (TRL 3)

 $\Rightarrow Processing of waste concrete aggregate$ $\Rightarrow Use of CO_2 on site for carbonation hardening$ $\Rightarrow Use process heat from cement process$ $\Rightarrow Upgrade of recycled aggregate$

Recycling of cement and aggregate to reduce its 8% share of global CO₂ emissions

Background Low-T Cement Clinker

Calcination: $CaCO_3 \leftrightarrow CaO + CO_2$ ↑

Increase of p(CO₂) increases calcination temperature

