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Abstract: Sensor-based sorting offers cutting-edge solutions

for separating granular materials. The line-scanning sen-

sors currently in use in such systems only produce a single

observation of each object and no data on its movement.

According to recent studies, using an area-scan camera has

the potential to reduce both characterization and separation

error in a sorting process. A predictive tracking approach

based on Kalman filters makes it possible to estimate the

followed paths and parametrize a unique motion model for

each object using a multiobject tracking system. While ear-

lier studies concentrated on physically-motivated motion

models, it has been demonstrated that novel machine learn-

ing techniques produce predictions that are more accurate.

In this paper, we describe the creation of a predictive track-

ing system based on neural networks. The new algorithm is

applied to an experimental sorting system and to a numeri-

cal model of the sorter. Although the new approach does not

yet fully reach the achieved sorting quality of the existing

approaches, it allows the use of the general method without

requiring expert knowledge or a fundamental understand-

ing of the parameterization of the particle motion model.
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Zusammenfassung: Die sensorgestützte Sortierung

bietet zukunftsweisende Lösungen für die Trennung von

körnigen Materialien. Die derzeit in solchen Systemen

verwendeten Zeilensensoren liefern nur eine einzige

Beobachtung jedes Objekts und keine Daten über

dessen Bewegung. Jüngsten Studien zufolge hat die

Verwendung einer Flächenkamera das Potenzial, sowohl

den Charakterisierungs- als auch den Trennungsfehler

in einem Sortierprozess zu verringern. Ein prädiktiver

Tracking-Ansatz auf der Grundlage von Kalman-Filtern

ermöglicht die Schätzung der verfolgten Pfade und die

Parametrisierung eines individuellen Bewegungsmodells

für jedes Objekt in einem Multiobjekt-Tracking-System.

Während sich frühere Studien auf physikalisch motivierte

Bewegungsmodelle konzentrierten, hat sich gezeigt, dass

moderne Ansätze des maschinellen Lernens genauere

Vorhersagen ermöglichen. In diesem Beitrag beschreiben

wir die Entwicklung eines prädiktiven Trackingsystems auf

Basis neuronaler Netze. Der neue Algorithmus wird auf ein

experimentelles Sortiersystem und auf ein numerisches

Modell des Sortierers angewendet. Zwar erreicht der neue

Ansatz noch nicht ganz die Sortierqualität der bestehenden

Ansätze, jedoch ermöglicht er die Anwendung von

prädiktivem Tracking, ohne dass hierfür Expertenwissen

oder ein grundlegendes Verständnis der Parametrisierung

des Partikelbewegungsmodells erforderlich sind.

Schlagwörter: Sensorgestützte Sortierung; Maschinelles

Lernen; DEM-CFD; Sichtprüfung; Multiobjekt Tracking.

1 Introduction

Sensor-based sorting provides state-of-the-art solutions for

sorting of granular materials. This general term refers to

a group of systems that allow for the physical separation
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of distinct objects from a material stream based on data

collected by one or more sensors. It is regarded as a cru-

cial technology for achieving a circular economy [1], among

other fields of application. Since particle classification and

separation are carried out in separate steps, the technology

is sometimes referred to as indirect sorting in contrast to

mechanical processes like magnetic or electrostatic sorting,

froth flotation, or float/sink processes [2]. Theoretically, it

is possible to recognize any number of classes for sorting,

and it is also theoretically feasible to divide the material

stream into multiple fractions. However, binary sorting, or

sorting into “product” and “residue”, is preferred in indus-

trial applications because multi-way sorting necessitates

intricate mechanical handling.

The following is a brief summary of the functional

principle of sensor-based sorting. The material is initially

fed into the system using a conveyor mechanism. The mate-

rial is then moved onward using a transport medium, for

instance a conveyor belt. The process of acquiring sensor-

based data occurs during the transport. The gathered infor-

mation is assessed in an effort to identify and classify par-

ticles in the material stream. The classification outcome

serves as the foundation for the sorting decision, which is

carried out by an actuator. The de facto standard is the usage

of an array of pneumatic nozzles for this purpose.

The variety of industrially available sensors that can be

used in sensor-based sorting systems is a particular strength

of the sorting technology. As a result, there is a lot of flexi-

bility in the detectable material properties and the sorting

criteria that can be used. Imaging sensors currently hold a

dominant position due to their suitability for systems with

high material throughput.

1.1 Problem statement

Line-scanning sensors are used in current systems, which

is practical because the material is perceived during trans-

portation. Line-scan cameras in the visible spectrum are

used when sorting criteria based on color, shape, or texture

are sufficient. This results in a single observation of each

object only, with no knowledge of their movement. Calcu-

lating the location and time for separation requires making

assumptions about the velocity due to the delay between

localization and separation [3, 4], which mainly exists due

to the required time for data processing and actuator activa-

tion. Therefore, it is crucial to guarantee that all objects are

transported at uniform velocity. This is frequently a difficult

task.

Recent studies have demonstrated that switching from

a line-scanning camera to an area-scanning one has the

potential to reduce both characterization error [5] and

separation error [6] in sensor-based sorting. Individual

objects are observed at various times when the frame rate

is high enough. This enables the estimation of the followed

paths as well as the parametrization of a unique motion

model for each object by using a multiobject tracking sys-

tem. The latter enables precise predictions regarding which

actuators should be activated at what time in order to

deflect an object and thereby remove it from the material

stream. As a result, this method, known as predictive track-

ing, leads to higher sorting quality.

However, these aforementioned earlier studies concen-

trate on physically-motivated motion models. Choosing the

motionmodel is not straight forward as it is a hard problem

to ensure the model structure is capable of capturing the

motion behavior. Furthermore, identifying optimal param-

eters for such models is cumbersome. This may include

identification of constants for initialization of the motion

model, e.g., an average time bias in the predictions of when

to activate the actors. Additionally, other design choices

need to bemade and it might only be possible to experimen-

tally determine a suitable setting. For amotionmodel-based

approach, this involves deciding on a basic function family,

which is typically based on assumptions on the particles’

fundamental motion behavior, such as the assumption of

constant velocity or constant acceleration, and situation-

depended adaptions on the basis of these models.

1.2 Contribution

In this paper, we present a neural network-based predictive

tracking system for sensor-based sorting. The system is inte-

grated both in a numerical simulation as described in ref.

[7] as well as in a laboratory-scale sorting system with an

area-scan camera as described in ref. [6]. For this purpose,

the complete development cycle required to make such

machine learning-based methods applicable in an indus-

trial sorting setting is considered. The approach presented

enables the use of predictive tracking to achieve high sort-

ing quality without requiring expert knowledge for motion

model setup. Plant operators with typically limited trained

personnel are thus given access to the technology by using

the process model for setup based on examples instead of

mathematical parameters in the further course of the paper.

The proposed model is based on a multilayer percep-

tron as described in ref. [8]. It takes observation coordinates

of individual objects as an input and generates the predic-

tions for future time points, in our case for the separation

stage, as an output. The input coordinates are obtained

using the numerical simulation or by means of real-time
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image processing, respectively, and managed by the mul-

tiobject tracking system. To simulate the sorting process,

the Discrete Element Method is coupled to Computational

Fluid Dynamics (DEM–CFD). The approach is validated both

in terms of simulated and actual sorting experiments and

compared with existing approaches in terms of the sorting

accuracy.

1.3 Related work

Contrary to the commonly used line-scanning sensors, usage

of area-scan color cameras for sensor-based sorting has

been proposed in ref. [9]. The authors propose a multiob-

ject tracking algorithm, in which the parameterization of

a motion model can incrementally be updated with each

observation and eventually be used to predict a particle’s

future trajectory. This in turn can be used for calculation

of the actuator control signals for separation. The potential

of this approach is demonstrated in refs. [10, 11] using a

numerical simulation of a sorting system and in ref. [6]

experimentally on a lab-scale sorting system. The presented

results suggest that the approach is particularly advanta-

geous for sorting scenarios in which non-uniform transport

velocities exist.

While earlier studies concentrated on physically-

motivated motion models, it is demonstrated in refs. [8,

12] that cutting-edge machine learning techniques offer a

potent tool for improving prediction accuracy, particularly

in challenging sorting scenarios. For example [8], proposed

a mixture of experts approach for adaptive combination of

both physically-motivated models and learned neural net-

works to enhance both, predictions accuracy and general-

ization capability.

Utilization of the DEM–CFD simulation method is

widely spread in the field of process engineering. The

method is used tomodel pneumatic conveying [13], fluidized

beds [14] and other processes, where the interaction of a

solid and a fluid phase plays a crucial role [15, 16]. A compre-

hensive review is given by [17]. Recently, the DEM–CFD was

used to model a full optical sorting system and to compare

the results against experiments [7]. In another study, the

numerical model was used to optimize the sorting stage.

It was shown that the optimized setups can improve the

sorting accuracy under certain conditions [18].

2 Materials and methods

We pick a model sorting scenario from the recycling of construction

waste. In this field of application, the material is prepared for the pro-

duction of recycled constructionmaterials by producing pure fractions

from construction and demolition waste [19]. In our hypothetical case,

we take into account a brick and sand-lime brick input stream, see

Figure 1. The task is to remove brick from the waste stream. Prior to

sorting, the material is crushed into grains that are 4–6 mm in size.

2.1 Experimental setup

We employ the lab-scale sorting system depicted in Figure 2 for both

the acquisition of training data and the experimental validation. A

thorough explanation of the system is given in ref. [6]. The material is

fed into the system using a vibrating feeder. A 140 mm wide conveyor

belt with a total length of 600 mm is used for transportation. An area-

scan camera and a ring light are used to record thematerial stream just

before discharge at the belt’s end. Fast switching pneumatic valves are

used to perform separation after discharge during a flight phase.

In order to locate and classify specific particles, the acquired

image data is processed. The sorting decision is based on a classification

that relies on the color of a particle. If a particle needs to be removed

from the material stream, a control signal is calculated and sent. It

specifies when and which valves in the array need to be opened. The

focus of the current study is precisely this calculation, which is referred

to as the prediction model, see Section 2.3.

2.2 Simulation model

Coupled DEM–CFD simulations are used to model the sorting system.

With the DEM, particle-particle as well as particle-wall interactions are

Figure 1: Photos of the materials used for the exemplary sorting task.

The particle size is 4–6 mm. (a) Sand-lime brick, (b) brick, (c) mixed

material.

Figure 2: Photo of the lab-scale sorting system used in this study.
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simulated, while the bursts of compressed air are simulated with the

CFD. At the sorting step, both phases are coupled tomodel the deflection

of particles by the air jets. A stationary one-way coupling is used. Here,

the fluid field is computed once and thus not influenced by the particles.

Consequently, the particle-fluid force acting on each particle is obtained

by drag correlations.

The translational particlemovements in theDEMare described by

the acceleration ̈⃗xi times the mass mi of particle i. They are governed

by the sum of acting forces F⃗. The resulting force is composed of the

contact force F⃗c
i
caused by contacts with particles or walls, the fluid

force F⃗
f

i
originating from the bursts of air and the gravitational force

F⃗
g

i
,

̈⃗ximi = F⃗c
i
+ F⃗

f

i
+ F⃗

g

i
.

Additionally, rotational particle movements are caused by

Torques originating from contacts, T⃗c
i
, or from rolling movements T⃗r

i
.

Analogously to the translation expressed by mass and acceleration, the

rotation of particle i is described by the mass tensor of inertia Ji, the

angular velocity 𝜔⃗i and the angular acceleration
̇⃗𝜔i. The transforma-

tion from the global frame to the body fixed frame is given byΛ−1
i
.

Ji
̇⃗𝜔i + 𝜔⃗i × ( Ji 𝜔⃗i) = Λ−1

i

(
T⃗c
i
+ T⃗r

i

)
.

Linear contactmodelswereused for contact force calculation. The

normal force component F⃗n is given by the sum of the spring stiffness

kn times the overlap 𝛿 in normal direction n⃗ and the normal damp-

ing coefficient 𝛾n times the relative velocity at the contact point 𝑣n
rel
,

F⃗n = kn𝛿 n⃗+ 𝛾n𝑣n
rel
. The tangential contact force is computed such

that product of tangential spring stiffness kt and tangential dis-

placement 𝜉t is limited by the Coloumb friction, given by the fric-

tion coefficient 𝜇c and the normal force component F⃗n. This yields

F⃗t = min
(
kt|𝜉t|, 𝜇c| F⃗n|

)
t⃗ with t⃗ being the tangential vector. The

parameters of all contact pairs were calibrated by conducting and

simulating small scale experiments and comparing both. For further

details regarding the parameters and the model of rolling friction, we

refer the reader to [7]. The air jet was simulated using the commercial

CFD-softwareANSYS Fluent. The pressure differencewas 0.75 bar. Using

the fluid velocity around the particles, the fluid force acting on the

particle was calculated by [20]

⃗
F
f

i
= 1

2
𝜌 f | u⃗− ̇⃗x|cDA⊥𝜀

1−𝜒
f

( u⃗− ̇⃗x). (1)

The force depends on the fluid density 𝜌 f , the difference between

fluid velocity u⃗ and particle velocity ̇⃗x, the drag coefficient cD, the parti-

cle area perpendicular to the flowdirectionA⊥ and the local voidage 𝜀 f ,

powered by an empirical correction factor (1 − 𝜒 ). The drag correlation

of [21] was used to consider the particle shape implicitly in cD. More

details on the DEM–CFD coupling are given in ref. [18]. To model the

ejection by the nozzle jets, the fluid field was activated and deactivated

at the positions and at the times computed by the respective prediction

model, see next Section 2.3.

Due to the irregular shape of the considered material (see

Figure 1), a representation of particles with clusters of overlapping

sphereswas chosen. This approach yields a sufficient trade-off between

computational effort and approximation of the shapes. A time step of

1 · 10−5 swas used for the simulations. An image of the simulated sorting
system is shown in Figure 3. Note that an inflow of randomly generated

particles was used to place thematerial onto the chute and tomatch the

mass flow in the experiments.

Figure 3: Image of the numerical model of the sorting system used in

this study.

2.3 Prediction models

Wevalidate the proposed approach comparatively. In total, we consider

three predictionmodels. Besides the newly proposed approach, we also

take into account two prediction models that were analyzed in earlier

studies for the computation of the separation control signals.

First, we consider a systemusing a line-scan camera. This is in line

with the setup that was prevalent at the time this article was written.

There is no knowledge of the motion of the particles in this situation.

Consequently, it is necessary to assume a uniform transport velocity.

The temporal component of the prediction is computed by adding a

fixed, typically experimentally determined delay to the observational

time of a particle. It is further assumed that there is no velocity perpen-

dicular to the transport direction. As a result, the valves that need to be

opened match the particle’s lateral position as seen by the camera.

Second, we look at the strategy first put forth in ref. [9] and

experimentally supported in ref. [6]. Particles contained in thematerial

stream are observed at various points in time and tracked using a

multiobject tracking system and a high-speed area-scan camera. This

allows for the individual determination of motion parameters for each

particle, such as the velocity parallel to and perpendicular to the trans-

port direction. These variables are used to precisely estimate the opti-

mal separation control signal in conjunction with a motion model. The

method focuses on applying Kalman filters to the particle centroid for

predictive tracking. Constant velocity (CV) and other linear, physically-

motivated models are used in this course.

Third,we experimentally validate thenovel data-driven approach

introduced in this paper. The proposed approach uses a multilayer

perceptron with four hidden layers as a predictor, each consisting of 16

neurons. A detailed description of the architecture is provided in ref.

[8]. As an input, the model takes the last five captured position mea-

surements of each particle and it directly outputs the control signal for

separation, i.e., the estimated arrival time and location of the particle

at the separation bar. This distinguishes our new approach from the

original predictive tracking algorithm, which relies on the estimated

positions and velocities from the underlying Kalman filter for this

purpose. However, the input, i.e., the measurements, are obtained by

precisely the same multiobject tracker as in the original predictive

tracking setup.
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3 Test methodology and

experimental results

In the following, experimental results for the simulation

study as well as the experimental setting are presented. In

both cases, the true negative rate (TNR) and true positive rate

(TPR) were determined as performance indicators for the

sorting quality. In this context, the TNR depicts the propor-

tion of residuematerial that has been successfully removed.

The TPR refers to the proportion of product material that

has successfully been accepted, i.e., not been removed.

3.1 Experimental validation

We carry out sorting experiments with the materials and

methods discussed in Section 2. One experiment is equiv-

alent to batch sorting 200 g of the material. Three differ-

ent mixing ratios are investigated in addition to the three

prediction models that are discussed in Section 2.3. More

specifically, we take into account brick ratios of 10%, 25%
and 50%. We perform tests using mass flows of 10 g s−1 and

20 g s−1.

3.1.1 Model training and deployment

A data set of particle tracks, i.e., measured positions,

recorded on the lab-scale sorting system described in

Section 2.1 was used to train a multilayer perceptron. The

tracks were obtained from an earlier offline run of the mul-

tiobject tracking algorithm. The multilayer perceptron was

trained on just one specification, amass flow of 20 g s−1 with

a ratio of brick of 25%, where we used the tracks of both

brick and sand-lime brick for training. This specification

corresponds to the highest mass flow considered in our

experiments, which has the advantage that the number of

tracks, and thus training examples, is sufficiently high. In

contrast, we test the novel approach on several mass flows

and mixing ratios, which allows for testing the generaliza-

tion capability of the approach. A frame rate of 100 Hz was

used to capture the images. The belt moved at a speed of

about 1 m s−1.

Since the camera does not record the scene at the

separation bar, and the temporal resolution is limited, the

ground truth for the arrival time and location of the particle

was created using the idea of a “virtual separation bar” (see

[8, 9]). Here, only the images from the area scan camera

are used for training. The prediction is made with respect

to a specific row of pixels in the camera image correspond-

ing to the virtual separation bar, and the tracking phase is

accordingly shortened. In addition, the coordinate system

of the recorded measurements is shifted, i.e., we add a

constant offset to the coordinates describing the position

in transport direction so that the virtual and the actual

separation bar match. In other words, we move the image

so that both separation bars coincide, and act as if the image

now depicts the scene as it would be captured in the vicinity

of the real separation bar. By linearly interpolating between

the final measurement taken before and the first measure-

ment taken after the virtual separation bar, the ground truth

is then determined. When deployed, the trained network

is used with non-shifted measurements and the initial con-

figuration. This concept has the advantage of not requiring

additional sensors and allowing the network to be trained in

an unsupervisedmannerwithout incurring additional costs

for manually labeling the ground truth. However, it intro-

duces some errors due to interpolation and the assumption

of similar particle motion on the belt and in the flight phase.

Early tests showed that additionally to training the

developed model on the basis of the generated image

sequences, it is beneficial to include knowledge about the

system structure in the implementation, see Figure 4. More

precisely, parameters relating to the separation, such as

the distance between the camera observation area and the

separation bar, were taken into account. To compensate for

errors potentially arising due tomeasurement inaccuracies,

parameters for manual configuration of an offset, e.g., with

regard to the distance, were implemented.

For the purpose of using the model under real-time

conditions as present in sensor-based sorting, we imple-

ment an inference engine using TensorRT from NVIDIA in

the programming language C++. By that, inference can

be executed on dedicated NVIDIA graphics cards. However,

conversion of the model is necessary in order to be compat-

ible with the framework. We use the onnx format for this

purpose. The overall setting for deployment is depicted in

Figure 5.

Figure 4: Schematic illustration of the training process of the neural

network-based predictive tracking system.
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Figure 5: Schematic illustration of the deployment setting of the neural

network-based predictive tracking system.

3.1.2 Experimental results

The experimental results are presented in Figure 6. The

individual markers represent the result of an individual

experiment. The preliminary results demonstrate that the

novel system, while not outperforming a highly optimized

Kalman filter-based one, achieves results that are compara-

ble to those of the latter. However, given the early stage of

development and the potential for improving performance,

such as through the use of training data, we believe it to

be an promising area for future research. As a result of the

novel approach’s data-driven nature, it is possible to avoid

tedious manual tuning of the motion model’s parameters.

Instead, these parameters can be learned by using examples

that are provided.

3.2 Simulation study

Analogously to the experimental sorting experiments, sim-

ulations of the sorting process are carried out. Identical sce-

narios are used in terms ofmass flows,material proportions

and prediction models.

3.2.1 Model training and deployment

A data set of particle tracks was created using the DEM–CFD

simulation model, covering a time equivalent of 60 s. As

with the experimental data, the data set was recorded at

a simulated frame rate of 100 Hz. In contrast to the data

obtained on the real sorting system, the identity of each

Figure 6: Results of the sorting experiments using the three different

prediction models in terms of TNR and TPR. The individual markers

represent the result of an individual experiment.

measurement is known, i.e., it is known a priori which par-

ticles generated the measurements. Furthermore, there is

no noise (stemming, e.g., from a sensor) on the measured

positions and no image processing is required to obtain the

centers of the particles. Again, the MLP was trained with

only one specification, a mass flow of 20 g s−1 and a ratio of

bricks of 50 %, and tracks of both particle classes were used

for training.

To obtain a ground truth for model training, opposed

to the experimental setup, we observe the separation bar,

i.e., we are provided with position measurements recorded

in the vicinity of the separation bar. However, we again
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assume that these measurements are only available at a

frame rate of 100 Hz. Thus, we again apply an interpolation

as described in Section 3.1.1 to obtain a precise ground truth.

To deploy the trained model, the simulation exchanges

datawith the predictive tracking algorithm that includes the

MLP. Note that, although known to the simulation, we do not

directly use the positions of each simulated particle as input

to the MLP. Rather, we also apply a multiobject tracking on

the measurements provided by the DEM–CFD simulation

for a fair comparison between simulation and experiment.

Analogous to the experiments, we have to take into account

the geometric dimensions, such as the distance between the

camera observation area and the separation bar.

3.2.2 Simulation results

The results of the simulated sorting scenarios are shown in

Figure 7. For the true negative rate, all prediction models

perform similarly accurate with rates at or near 100 %. The

tracking with MLP slightly outperforms the Kalman filter-

based tracking approach. In the true positive rate, the trend

of declining accuracywith increasing ratio of rejectmaterial

can be observed. Again, all three prediction models yield

nearly equal results.

3.3 Result discussion

In Table 1, the results of the experimental sorting exper-

iments are compared with the simulated sorting experi-

ments. The TNR and TPR are listed for each prediction at

every scenario, i.e., mass flow and proportion of reject and

accept material. At the first scenario, a gap of up to 13.8 % in

the TNR is observed between experiment and simulation.

In the simulations, all particles were correctly sorted out.

There may be several reasons for the deviation. First, an

exact detection of particle centers is applied in the simu-

lations. Second, the transient built-up of the air jet is not

considered. Thus, the jet is fully developed after the nozzle

being activated by the prediction model. Third, there exist

fewer sources that lead to scattering of particle motion in

the simulation, such as irregularities in the feeding process.

The trend of higher TNR in the simulations is well-marked

in all scenarios. Interestingly, the line-scan predictionmodel

outperforms both tracking algorithms in the simulations,

while the Kalman filter-based tracking yields the highest

TNR in the experiments. As far as the TPR is concerned, both

experiment and simulation show a tendency of declining

Figure 7: Results of the sorting simulations using the three different

prediction models in terms of TNR and TPR.

TPR with an increasing ratio of reject material. This is due

to the higher frequency of nozzle activations, as shown in

ref. [18]. Similarly to the TNR, the overall level of the TPR is

higher in the simulations.

In general, the new predictive tracking approach based

on neural networks has clearly shown its potential to yield

highly accurate sorting results. It outperforms the line-scan

model in the experiments and is near equally accurate as

both comparison models in the simulations.
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Table 1: Comparison of TNR and TPR in experiment and simulation for each scenario and prediction model. Experimental values are averaged over all

repetitions.

Scenario Pred. model TNR in % TPR in %

Experiment Simulation Experiment Simulation

90:10 – 10 g s−1 LS 89.3 100 97.7 99.6

T-CV 97.3 100 97.7 99.6

T-MLP 87.2 100 93.4 99.6

90:10 – 20 g s−1 LS 87.5 100 96.9 99.8

T-CV 96.8 99.5 95.8 98.9

T-MLP 83.4 99.5 93.6 98.7

75:25 – 10 g s−1 LS 92.6 100 95.7 99.1

T-CV 97.3 99.8 97.7 99.1

T-MLP 93.7 99.6 89.5 99.0

75:25 – 20 g s−1 LS 91.4 99.9 92.4 97.5

T-CV 96.6 99.4 91.6 97.8

T-MLP 93.7 99.7 85.5 97.2

50:50 – 10 g s−1 LS 91.5 100 91.6 97.9

T-CV 97.8 99.2 92.8 98.2

T-MLP 94.6 99.9 83.3 97.8

50:50 – 20 g s−1 LS 91.1 100 88.0 99.6

T-CV 95.4 99.0 82.3 95.5

T-MLP 93.8 99.4 73.8 95.1

4 Conclusions

In this paper, we introduced a novel neural network-based

predictive tracking system for application in sensor-based

sorting. An advantage of the novel system compared to

approaches presented so far is that tiresomemanual tuning

of parameters of the motion model is avoided and thus

no expert knowledge for describing the particle motion is

required. We validated the approach both using numerical

simulation as well as sorting experiments on a laboratory-

scale sorting system that was equipped with an area-scan

camera. In both cases, we compared the performance to a

line-scan-based system as well as a multiobject tracking sys-

temwith physically-motivatedmotionmodels. With respect

to the experimental results it was shown that the novel

system achieves results comparable to a highly optimized

Kalman filter-based one, although it does not outperform it.

When comparing results obtained via numerical simulation

and experiments, it was shown that although results do not

match accurately with respect to absolute values, compa-

rable trends were achieved. The full potential of our new

approach was even more pronounced in the simulations.

The achieved sorting results suggest choosing a Kalman

filter-based approach over the novel one formaximum sort-

ing efficiency. However, in the spirit of data-drivenmethods,

the new approach enables to set up the system by provid-

ing examples in terms of images recorded by the sorting

system.

So far it remains unclearwhether the novel approach is

capable of also outperforming the Kalman filter-based one.

Yet there are measures to be taken in order to potentially

increase its performance. It is believed that especially select-

ing training data more carefully could contribute towards

this goal. A second approach is to compensate for errors in

ground truth generation and geometrical model mismatch.

Furthermore, a system combining physically-motivated as

well as machine learning-based models as described in ref.

[8] is of great interest.
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